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ABSTRACT 

 

In this dissertation, mechanical properties of four middle ear tissues: tympanic 

membrane or eardrum, stapedial tendon, tensor tympani tendon and anterior malleolar 

ligament, were reported through experimental measurement and modeling analysis. The 

mechanical experiments with the aid of digital image correlation method were used to 

measure the stress-strain relationship, stress relaxation function, and ultimate or failure 

stress and strain of these middle ear tissues. The experimental results were further 

analyzed by finite element modeling and material modeling analysis with nonlinear 

hyperelastic models, the Ogden model and the modified Ogden model, to derive 

constitutive equations of investigated tissues. The viscoelastic properties of four middle 

ear tissues were reported for the first time in literature. 

The geometric information of four middle ear tissues were also obtained through the 

image measuring technique and listed with statistic significances in Chapter 3. The 

mechanical properties of these middle ear tissues were then summarized and differences 

among them were explained based on their micro-structures and functions in Chapter 6. 

      Mechanical properties of four middle ear tissues were then employed in a published 

3-dimensional finite element model of human ear with an accurate geometric 

configuration to investigate the transfer function of human middle ear in ligament related 

pathological conditions. The model predicted results were compared with temporal bone 

experimental data, and a good agreement between modeling results and experimental data 

were observed. 



 xvii

The major contribution of this study is to provide new and useful data on mechanical 

properties of middle ear tissues in literature. The results can be used for the theoretical 

analysis of human middle ear function under the normal or pathological conditions.      
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CHAPTER 1 

 
INTRODUCTION 

 
 
 
1.1  Structures and Functions of Human Ear   

      The human ear is composed of three parts – the outer ear, the middle ear, and the 

inner ear, as shown in Fig. 1.1. The outer ear includes the pinna (also called auricle) and 

the external ear canal. The middle ear mainly includes the tympanic membrane (TM) or 

eardrum, the ossicular chain (malleus, incus and stapes), ossicular associated ligaments 

and tendons, and the opening of the auditory tube (eustachian tube). The inner ear 

includes two principal portions: the vestibular and semicircular canals superoposteriorly 

and the cochlea inferoranteriorly.  

 

         
 

Figure 1.1 A schematic diagram of a human ear [Flanagan, 1965]. 
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      The outer ear collects sound waves and transmits vibrations of air into vibrations of 

the TM in the middle ear. The external ear canal amplifies sound waves with frequencies 

of approximately 3000 Hz, and the pinna provides protection for the middle ear in order 

to prevent damage to the eardrum [Flanagan, 1965].    

      The main function of the middle ear is to transform input sound waves into 

mechanical vibrations through the TM and three ossicular bones (malleus, incus and 

stapes). The malleus of middle ear has a long process called the manubrium which is 

attached to the mobile portion of the TM, the incus is the bridge between the malleus and 

stapes, and the stapes is the smallest named bone in the human body with the footplate 

contacting to the oval window of inner ear. The movement of the TM induces piston-like 

vibrations of ossicular bones. When the stapes footplate is pushed to and from the oval 

window, it causes oscillations of fluid within the cochlea (a portion of the inner ear) [Møller, 

1974]. 

      The middle ear also works as a lever system. It damps distance but amplifies force: 

the amplitude of movement of the stapes footplate with each sound vibration is about 3/4 

as much as the amplitude of the handle of the malleus, while the force of movement is 

increased by about 1.3 times [Geisler, 1998]. It can cause about 22 times as much pressure to 

be exerted on the fluid of the cochlea as is exerted by the sound wave against the TM, 

due to the force increase mentioned above and the difference between the surface areas of 

the TM and the stapes footplate [Guyton and Hall, 2000]. Therefore, the potential loss of energy 

caused by the sound wave passing from air into fluid is balanced. Some recent research 

on the mechanism of ossicular chain also shows that the ossicular chain serves as a 
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protective mechanism and achieved the optimal impedance for sound transmission 

through the middle ear [Kelly and Prendergast, 2001]. 

      The middle ear cavity is an air space within the temporal bone which contains the 

ossicular chain that transmits sound wave from the TM to the inner ear. The cavity 

communicates with the nasopharynx by the Eustachian tube. The opening to the 

Eustachian tube lies on the anterior wall of the middle ear cavity. The Eustachian tube is 

a narrow trumpet-shaped canal, about 25 mm in length, extending from the anterior wall 

of the middle ear cavity to the lateral wall of the nasopharynx. It opens briefly during 

swallowing and in that way serves to equalize the air pressure in the middle ear cavity 

with the outside environment. 

      The cochlea of inner ear is concerned with hearing. The semicircular canals and the 

vestibule are the body’s horizontal-vertical detectors necessary for balance. The cochlea 

is filled with liquid (cochlear fluid) and surrounded by rigid bony walls. Its cross-section 

shows three distinct chambers that run the entire length: the scala vestibuli, the scala 

tympani and the cochlear duct, or scala media. The basilar membrane separates the scala 

media from the scala tympani. Resting on the basilar membrane is the delicate and 

complex organ of Corti that contains several rows of tiny hair cells to which nerve fibers 

are attached. When the stapes footplate vibrates against the oval window, hydraulic 

pressure waves are transmitted rapidly down the scala vestibuli, causing the basilar 

membrane to vibrate up and down. This creates a shearing force between the basilar 

membrane and the tectorial membrane, causing the hair cell stereocilia to bend back and 

forth. This leads to internal changes within the hair cells that generate electrical signals. 

Auditory nerve fibers resting below the hair cells pass these signals on to the brain. The 
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impulse rate on the auditory nerve depends on both the intensity and frequency of the 

sound [Rossing, 1990; Wever & Lawrence, 1954; Anson & Donaldson, 1981]. 

 

1.2 Middle Ear Tissues 

1.2.1 The Tympanic Membrane 

      The tympanic membrane (TM), also known as the eardrum, has an irregularly oval 

and conical shape, consisting of the pars tensa (lower major part) and the pars flaccida 

(upper small portion), as shown in Fig. 1.2. The apex of the cone is called umbo. Umbo is 

where the end of long process of malleus is connected. The diameter of the TM along the 

long process is approximately 9.0 to 10.2 mm, while the diameter perpendicular to the 

long process has a length about 8.5 to 9.0 mm [Donaldson et al., 1992]. The angle formed by the 

TM and the floor of the ear canal is about 55o [Singh, 1980]. The height of the cone is about 

2.0 mm, and the thickness of the TM is between 0.05 and 0.1 mm [Helmholtz, 1874 and Kirikae, 

1960]. The surface area of the whole TM is 55.8 – 85.0 mm2 [Wever & Lawrence, 1954 and von Békésy, 

1949]. 

 

Figure 1.2 The tympanic membrane of a left human ear (lateral view). 
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      The TM is a multi-layers fibrous connective tissue stretched across the ear canal [Wood, 

1998], with two layers of fibers along the radial and circumferential directions in the pars 

tensa part [Lim, 1968 & 1970]. These two sets of fibers represent a majority of the stiff fibers 

appearing in the eardrum. The margin of the circumference of the membrane is a 

thickened fibrocartilaginous ring, which is called the tympanic annulus. The tympanic 

annulus is lacking superior to the short process of the malleus, thus it is incomplete [Singh, 

1980].  

 

1.2.2 The Ossicular Chain with Suspensory Ligaments and Tendons 

      The ossicular chain, which consists of three small bones (malleus, incus and stapes) 

as shown in Fig. 1.3, with suspensory ligaments or tendons (not shown) connecting to 

middle ear cavity wall, transmits sound energy from the TM to the oval window 

 

Figure 1.3 The ossicular chain. 

      The malleus is the bone on the lateral end of the ossicular chain. It has a head, neck, 

short process (lateral process) and long process. The malleus is held in place by three 
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middle ear ligaments (the anterior malleolar ligament, the lateral malleus ligament, and 

the superior malleus ligament) [Møller, 1974], one articulation (the incudomalleal joint), one 

middle ear tendon (the tensor tympani tendon) and the TM. The head is the largest part of 

the malleus. It articulates posteriorly with the incus. The head is attached to the roof of 

the middle ear cavity by the superior malleus ligament. The narrow part below the head is 

known as the neck. The short process and the long process are below the neck. The end 

of the short process serves as a point of attachment to the pars tensa of the tympanic 

membrane. The end of the long process is connected to the umbo of the tympanic 

membrane. 

      The incus is the biggest ossicle in the ossicular chain, linking the malleus and the 

stapes. It has a body, short process, long process and lenticular process. The short process 

points posteriorly. The long process lies approximately parallel to the manubrium and 

ends in the lenticular process. The end of the lenticular process connects with the head of 

stapes through the incudostapedial joint. The incus is held in place by two middle ear 

ligaments: the posterior incus ligament, which secures the short process to the posterior 

incudal recess, and the superior incus ligament [Møller, 1974]. 

      The stapes is located at the medial end of the ossicular chain, and sits on the oval 

window of the inner ear. It is a stirrup-shaped bone consisting of a head, two crura and a 

base (footplate). The head is directed laterally and articulates with the lenticular process 

of incus. The stapedial muscle tendon is attached to the posterior crus. The footplate of 

the stapes is attached to the oval window by the annular ligament, or stapedial annulus. 

The size of the footplate varies individually. The length usually ranges from 2.64 to 3.36 

mm, while the width from 0.7 to 1.66 mm [Wever and Lawrence, 1954]. 
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      The locations and relations of middle ear tissues mentioned above are shown in a 

middle ear model (Fig. 1.4). 

 

Figure 1.4 A human middle ear model (left ear). 

 

1.3 Motivations and Objectives 

      Hearing loss is one of the common sensory impairments for people all over the world. 

According to the investigation by National Institute of Deafness and Communication 

Disorders (NIDCD), there are 28 million people with hearing loss in the United States. 

Hearing loss can be categorized as conductive hearing loss and sensorineural hearing loss. 

Conductive hearing loss is mainly due to the dysfunction of middle ear, such as trauma, 
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congenital abnormalities, otosclerosis, and most commonly, otitis media. The structures 

and properties of middle ear components are altered by these diseases, such as TM 

perforation, TM stiffening, and ligament calcification or detachment, etc. Therefore, 

understanding the relationship between the properties and functions of middle ear tissues 

is a fundamental hearing research which has not been well studied by researchers. 

Knowledge on mechanical properties of normal and pathological middle ear tissues, 

especially the TM and middle ear ligaments and tendons, is still poor and remains to be 

investigated. This study is proposed to derive mechanical properties of several middle ear 

tissues which are not available in literature. The motivations of this research are listed as 

follows: 

(1) Mechanical response of the TM to the sound stimulus from the ear canal initiates 

the transfer function of the middle ear [Funnel, 1982], which directly depends on the 

structure and properties of the TM. Unfortunately, there are not many data on 

viscoelastic properties of the TM in literature. 

(2) Studies have shown that middle ear ligaments and tendons are involved in normal 

function of the whole middle ear system, such as stapedial reflex which protects 

the inner ear against hazardous levels of noise [Love, 1978] and improves 

intelligibility of speech in the presence of background noise [Gauss, 1997]. However, 

no experimentally measured mechanical properties of middle ear ligaments and 

tendons are available in literature. 

(3) Mathematical models or numerical finite element (FE) models of human middle 

ear have been widely used for the study of middle ear function by researchers 

[Wada, 1992; Beer, 1996; William, 1997; Prendergast, 1999; Ferris, 2000; Koike, 2002; Sun, 2002; Gan, 2002; Kelly, 2003; 



                9

Ferrazzini, 2003 and Gan, 2004]. These models require geometry of middle ear components 

and mechanical properties of ear tissues. To the date, material properties of most 

middle ear tissues are obtained through cross-calibration process or assumption.  

      Based on the motivations proposed above, the objectives of this research are defined 

below: 

(1) Determine viscoelastic properties of the TM which are still not clear in literature.   

(2) Determine viscoelastic properties of three middle ear ligament and tendons 

(anterior malleolar ligament, stapedial tendon and tensor tympani tendon) which 

have never been published before.   

(3) Apply measured mechanical properties of middle ear tissues (TM and three 

middle ear ligament and tendons) into a finite element (FE) human ear model to 

study middle ear function through FE modeling analysis. 

(4) Upon finishing this study, a practical method which combines experimental 

measurement and theoretical analysis for deriving mechanical properties of 

middle ear tissues is developed, and the method is expected to be extended to the 

study of other soft tissues in tissue biomechanics. 

 

1.4 Approaches 

      To incorporate mechanical experiments with the theoretical modeling analysis to 

determine mechanical properties of middle ear tissues, five approaches are listed here: 

1. Three mechanical experiments are performed to measure viscoelastic properties 

of middle ear tissues: uniaxial tensile test; stress relaxation test and failure test. 

The digital image correlation method is used to verify boundary effects on 
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experiments by computing the transverse strain distribution across the specimen 

and the average strain in the middle portion of the specimen during the uniaxial 

loading process. 

2. Theoretical modeling analysis including material modeling and FE modeling are 

used to study constitutive behaviors of middle ear tissues during the loading 

process of uniaxial tensile test. To achieve this, microstructures of middle ear 

tissues are obtained first through the scanning electron microscopy (SEM). A 

nonlinear hyperelastic material model, the Ogden model or the modified Ogden 

model, is then used in FE modeling analysis or material modeling analysis to 

study the constitutive behavior of the tissue. The stress-strain relationships from 

the modeling are finally regressed with experimental data to derive the 

constitutive equation of the tissue. 

3. Mechanical properties of the middle ear tissues are summarized and compared. 

The differences among those tissues are addressed and correlated to their structure 

and functions. 

4. The mechanical properties of middle ear tissues obtained from this study are used 

in a published 3-dimensional FE human ear model to predict the transfer function 

of middle ear in the normal and middle ear ligament related pathological 

conditions. 

5. The conclusions and future work are proposed at the end of this dissertation. 
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CHAPTER 2 

 
BACKGROUND 

 

2.1 Published Mechanical Properties of Human Tympanic Membrane 

      To date, there are four groups who published mechanical properties of the TM with 

different measurement methods and different results. A summary of their works is given 

in this section. 

      (1) In 1949, von Békésy [von Békésy, 1949] first measured the stiffness of the human 

cadaver TM from the bending test. He assumed that the eardrum of man had a thickness 

of about 0.05 mm (in the literature the value of 0.1 mm is often quoted) and was an 

unstretched membrane. For measurement of the natural elasticity of this membrane, a 

rectangle TM sample similar to that shown in Fig. 2.1 was cut out from the whole 

eardrum. The left side of the rectangle was left connected to the main part of the eardrum. 

The length of a hair was adjusted on a balance so that by pressing it down a maximum 

load of L=1.96×10-6 N was exerted. When this load was applied to the free end of the flap 

a displacement of f = 5×10-3 cm resulted. From the length of the strip l = 0.2 cm, the 

width b = 5×10-2 cm, and the thickness h = 5×10-3 cm, it is possible to calculate the 

elasticity coefficient E by means of the well-known formula  

                                                 E = 4L / fb × (l/h)3                                                        (2.1) 

The value obtained for this elasticity was E = 2.0 × 108 dynes / cm2, or 20 MPa.  
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Figure 2.1 Arrangement for measurement of the elastic coefficient of human eardrum. A 
calibration hair was used to produce a known bending force on a tongue like piece cut 
from the eardrum [von Békésy, 1949]. 

 

      (2) In 1960, Kirikae [Kirikae, 1960] measured the Young’s modulus of a rectangular strip 

of fresh TM (length l=10 mm, width b=1.5 mm, thickness h=0.075 mm, and cross section 

area 231025.1 cm−×=σ ) excised from a male cadaver through the tension test. The TM 

strip was attached vertically to a horizontal vibrator (A) and stretched by a mass (M) as 

shown in Fig. 2.2. The vibrating frequency of A was 890 cycles / second (υ0) in the 

experiment under reference. When the TM specimen (S) was attached to the A, the 

vibrating frequency changes to υ0+∆υ0. A mass (m) was placed on the vibrator to change 

the vibrating frequency back into υ0. M was 300 mg and m was 18 mg. The Young’s 

modulus of the TM is then calculated by the following formula: 

                                   ))(/()( 2 mMMmwlE +⋅⋅⋅= σ                                                    (2.2) 

where w is the natural angular velocity of the vibrator A, or 2πυ0 (υ0=890 cycles / second). 

By M>>m                               
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                                                σ/)( 2 mwlE ⋅⋅≈                                                             (2.3) 

A Young’s modulus of 40 MPa was calculated based on the thickness of the TM at 0.075 

mm. Taking the thickness at 0.05 mm, as von Békésy did, would have resulted in a 

modulus of 60 MPa. These values are two or three times stiffer than von Békésy’s (20 

MPa). Kirikae reported that the difference in values between his and Békésy’s seemed to 

be due to different experimental methods embracing both dynamical and static 

measurements.  

 

Fig. 2.2 Measuring apparatus of Young’s modulus of human eardrum [Kirikae, 1960]. 
 

A:   vibrator; 
S:    test material or the TM specimen; 
M:  a mass stretching the test material; 
m:  a mass that makes no frequency difference of the vibrator before and after the test 
material is applied. 
 

      (3) In 1980, Decraemer [Decraemer, 1980] proposed a mechanical model to describe the 

“quasi-elastic” stress-strain relation for soft biological tissues based upon their fiber 

structured design. His model was based on three features:  
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• The specimen contained a large number (N) of fibers.  

• Each fiber was assumed to be purely elastic (Young’s modulus k) and was 

attributed the same average cross-section area S. 

• The initial lengths il  of these fibers were normally distributed around a mean 

value µ with a standard deviation s.  

      According to their initial length li, the fibers were more or less stretched when the 

total specimen (initial length l0) was extended up to a length l. The corresponding elastic 

constitutive equation was proposed as  

                                           ∫ −−−
=

l

l i
sl

i

i dle
l

ll
s

bl i

0

22 2/)()(
2

)( µ

π
σ                                     (2.4)  

where l is the extended length of specimen, b represents an effective Young’s modulus of 

the specimen which equals (NS/A)k, and A is the cross-section area of the strip at rest. 

The “intensity” function 
22 2/)( slie −− µ  differs only significantly from zero in the li interval 

[µ - (a few time s), µ + (a few time s)]. Therefore, one can approximate in the integral the 

factor (l-li)/li by (l-li)/µ. Splitting up the integral of equation (2.4) gives 
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For values of l > µ + (a few times s) and the chosen value for l0 (as µ – 4s), the first term 

approaches (bl)/µ, while the second approaches b. This means that the σ(l) relation for 

large l values becomes linear 

                                  blbl −≈
µ

σ )(    for l > µ + (a few times s) .                                  (2.6) 

The model parameters (b, µ, s) were calculated to fit the experimental data (Fig. 2.3) of 

an uniaxial tensile test on a specimen of fresh human TM. The values for parameters (b, µ, 
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s ) derived numerically were in good accordance with experiments, therefore, a Young’s 

modulus (b) of 23 MPa was obtained for the TM, which was in agreement with von 

Békésy’s 20 MPa. 

 

 

Figure 2.3 Stress-length relation of human eardrum [Decraemer, 1980].  

 

      (4) In 2005, Fay et al. [Fay et al., 2005] proposed three approaches to estimate the elastic 

modulus of the TM. First, constitutive modeling was used to estimate an elastic modulus 

based on the known elastic modulus of collagen and experimentally observed fiber 

densities of the TM. From the stained cross-sections, the fibril density in the human TM 

appears to be 30-50%, this leads to an elastic modulus for a given fiber between 870 and 

1450 MPa. The radial fiber packing near the outer edge of the TM is between 30% and 

70%. Combining this with the estimate of the single fiber puts the fiber layer’s elastic 

modulus at 260 – 1020 MPa in human TM. These values are much higher than the 
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previous data from von Békésy (20 MPa), Kirikae (40 MPa) and Decraemer (23 MPa). 

Fay explained this difference was probably due to the assumption in previous study that 

the TM was isotropic and uniform through its thickness.  

      Second, the experimental tension and bending test results of TM from literature [von 

Békésy, 1949; Kirikae, 1960; Decraemer, 1980] were re-interpreted using composite laminate theory 

(CLT). The idea is to build up a membrane’s global properties by integrating the material 

properties through the thickness in an appropriate manner. (see [Tsai and Hahn, 1980] for a 

detailed explanation of CLT). The TM was assumed to be a four-layer composite. A 

required input to the composite model is the percentage of the total thickness taken up by 

each layer. By using 0.022 mm for the radial fiber layer and 0.015 mm for the 

circumferential fiber layer, the elastic modulus of the fiber layers in human TM is 

between 140 and 1430 MPa from re-interpreting von Békésy’s bending test results, 

between 100 and 270 MPa from Kirikae’s results, and between 60 and 160 MPa from 

Decraemer’s results. All of them are higher than the previous data.  

      Third, dynamic measurements are used in conjuction with a composite shell model to 

estimate the material parameters. In this approach, the TM was acoustically driven with a 

tone generator, and the surface displacement was measured as a function of frequency at 

58 locations along a line from the posterior to the anterior section of the TM (Fig. 2.4). 

The displacement pattern on TM has a wave-like appearance. The experimental wave 

number (by Spatial Fourier transforms) vs. frequency relationships were then found and 

compared with those computed from a composite shell model of the TM. By using 

isotropic fiber layer TM model, an elastic modulus of 30-90 MPa was suggested for the 

human TM, while by using orthotropic TM model, the results suggested that the elastic 
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modulus lied in the range of 100-400 MPa. The values from this approach are 

significantly higher than previous results. 

 

 

Figure 2.4 Line of points where vibration measurements were taken (left). Real and 
imaginary part of the vibration in the posterior section of the eardrum (right) [Fay et al., 
2005]. 
 
 
      Table 2.1 summarizes the elastic modulus of the human TM published by above four 

groups. No conclusion can be made at this point on the final elastic modulus of the TM.  

Table 2.1: Published elastic modulus of the tympanic membrane from experiments 
Reference Test type Estimate modulus (MPa) 
von Békésy (1949) 
 
Kirikae (1960) 
 
Decraemer et. al. (1980) 
 
Fay et. al. (2005) 

Bending 

Dynamic Tension 

Tension and Modeling 

Dynamic Vibration 

20 

40 

23 

100 - 400 

 

      Comparing those published elastic moduli of the TM, one can see that the values vary 

from 20 to 400 MPa, and there is a lack of measurement or modeling on the viscoelastic 

behavior of the TM. Particularly, there is no description on variation of the elastic 

modulus of the TM with respect to the stress or strain at low stress levels from 0 to 1 
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MPa in previous works. The deficiency in knowledge about mechanical properties of the 

TM at the physiological condition not only affects understanding of middle ear 

mechanics for sound transmission or reconstruction of the TM (tympanoplasts), but also 

impedes development of finite element (FE) ear models for theoretical analysis of the 

middle ear transfer function. 

        In all published FE models of human ear, [Wada, 1992; Beer, 1996; William, 1997; Prendergast, 1999; 

Ferris, 2000; Koike, 2002; Sun, 2002; Gan, 2002; Kelly, 2003; Ferrazzini, 2003 and Gan, 2004], mechanical properties of 

the TM were either selected from limited published data or determined through the cross-

calibration process. A single elastic modulus independent to the stress level was used by 

different FE modelers. These modulus values are summarized in Table 2.2. The accuracy 

of mechanical properties of the TM directly affects FE model-predicted results and limits 

medical applications of the model for normal and pathological ears. 

 

Table 2.2: Published elastic modulus of the tympanic membrane used for finite 
element model of human middle ear 
Reference Elastic Modulus (MPa) 
 Tympanic Membrane (TM) 

Wada et al. (1992) 33.4 

Beer et al. (1996) 32, 20 

William et al. (1997) 50 

Prendergast et al. (1999) 40, 20 

Ferris et al. (2000) 40, 10 

Koike et al. (2002) 33.4 

Sun et al. (2002) 32, 20 
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Gan et al. (2002) 35, 20 

Kelly et al. (2003) 40, 20 

Ferrazzini (2003) 4, 1 

Gan et al. (2004) 35, 20 

Note: The first number in the TM column represents the pars tensa, the second number 
represents the pars flaccida, and single numbers represent one value for both pars tensa 
and pars flaccida.    
 

 

2.2 Published Mechanical Properties of Middle Ear Ligaments and 

Tendons 

      Measurements on mechanical properties of human middle ear ligaments and tendons 

have never been reported. In published FE models of human ear, mechanical properties 

of middle ear ligaments and tendons were assumed through the cross-calibration process 

and a constant elastic modulus was normally used for the specific ligament or tendon in 

different FE models [Wada, 1992; Prendergast, 1999; Ferris, 2000; Koike, 2002; Sun, 2002; Gan, 2002; Kelly, 2003; 

Ferrazzini, 2003 and Gan, 2004]. These values are listed in Table 2.3. It is observed that a single 

value varying from 0.52 to 52 MPa was used for the stapedial tendon, from 2 to 70 MPa 

for the tensor tympani tendon, and from 2 to 21 MPa for the anterior malleolar ligament. 

The accuracy of mechanical properties of the ligaments and tendons used in FE modeling 

definitely affects model-predicted results and the applications of the model. 
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Table 2.3: Published elastic modulus of three middle ear ligament and tendons used 
for finite element model of human middle ear 
Reference Elastic Modulus (MPa) 
 Stapedial  

Tendon 
 

Tensor  
Tympani  
Tendon 

Anterior 
Malleolar 
Ligament 

Wada et al. (1992) 0.52  2.6  21  

Prendergast et al. (1999) 0.52  2.6  21 

Ferris et al. (2000) 0.52  2.6  21  

Koike et al. (2002) 0.52  2.6  21 

Sun et al. (2002) 0.52 2.6  2.1  

Gan et al. (2002) 0.52  2.6  2.1  

Kelly et al. (2003) 0.52  2.6  21  

Ferrazzini (2003) 6  2 2  

Gan et al. (2004) 52  70 21  

 

2.3 Fundamentals of Biomechanics 

2.3.1 Mechanical Experiments 

      From the point of view of biomechanics, the properties of a tissue are known if its 

constitutive equation is known. The constitutive equation of a material can only be 

determined by experiments. A variety of mechanical tests has been reported to measure 

properties of soft tissues, such as uniaxial tensile [Fung, 1967], strip biaxial tension [Lanir, 1974], 

and shear tests [Gardiner, 2001]. Among them, the uniaxial tensile test is commonly used to 

characterize one-dimensional tensile properties of ligament tissues [Weiss, 2001] and was 

employed in this study to derive properties of middle ear tissues. For this purpose, a 

targeted specimen of rectangular shape was prepared and stretched in a testing machine. 
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The load and elongation were recorded for prescribing loading or stretching histories. 

From these records we can deduce the stress-strain relationship of the material under the 

uniaxial loading process. 

      It was emphasized by Fung in his “Biomechanics: Mechanical Properties of Living 

Tissues” book [Fung, 1993] that if a segment of a soft tissue was excised and tested in a 

tensile testing machine by imposing a cyclically varying strain, the stress response would 

show a hysteresis loop with each cycle, but the loop decreased with succeeding cycles, 

rapidly at first, then tending to a steady state after a number of cycles (Fig. 2.5 A). The 

existence of such an initial period of adjustment after a large disturbance seems common 

to all tissues and this process is defined as preconditioning [Fung, 1993]. The preconditioning 

is due to the change of the internal structure of the tissue, and only mechanical data of 

preconditioned specimens are presented in biomechanics. 

 

      (A)                                                                    (B) 

Figure 2.5 Preconditioning and stress relaxation of soft tissues [Fung, 1993]. 
 

      Soft tissues usually show viscoelastic behavior in their physiological function range 

[Fung, 1993]. The features of hysteresis, relaxation and creep of tissues at low stress ranges 
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(“physiological”) are usually used to describe viscoelastic properties of materials. Figure 

2.5 B shows typical stress relaxation curves of soft tissues. A step function of elongation 

was applied to the specimen at the beginning (t=0) with a constant displacement rate until 

a stretch was obtained. The length of the specimen was then held fixed and the change of 

tension with time was plotted. In this study, the hysteresis from the tensile test and stress 

relaxation function from the relaxation test were used to describe viscoelastic properties 

of middle ear tissue. Moreover, the strength of tissues can be determined from the failure 

test. 

 

2.3.2 Computational Modeling 

      Experimental studies of soft tissue mechanics are often technically difficult, costly, 

and prone to error. The stress and strain fields within soft tissues are inhomogeneous, yet 

we are forced to measure these quantities between a small numbers of discrete points and 

assume they are homogenous. Other quantities such as pressure and contact area are 

extremely difficult to measure in an experimental setting. Also, parameterized studies 

require large numbers of animals or significant amounts of human tissues. This often 

results in prohibitively high costs and time requirements. 

      The emerging field of computational biomechanics offers a new set of tools for 

studies of solid and fluid biomechanics that can provide information that would otherwise 

be difficult or impossible to obtain from experiments. Advances in the fields of 

constitutive modeling, computational mechanics, numerical methods and computer 

science have led to the widespread application of numerical procedures for the analysis of 

mechanical system. For example, the finite element (FE) method has provided a 
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generalized procedure to analyze the stress/strain response of a structure [Weiss, 2001]. 

However, for the successful application of the FE method to studies of tissue mechanics, 

a detailed mathematical description of material behavior of the tissues is necessary. To 

develop such a material model, referred to in continuum mechanics terminology as a 

constitutive model, detailed experimental measurements of the material structure and 

mechanical behavior are needed. 

      A fundamental knowledge of mechanics is needed to understand the current state of 

research in computational modeling of soft tissues. Concepts in constitutive modeling and 

finite element method are briefly introduced in the following sections. 

 

2.3.2.1 Constitutive Modeling 

      Constitutive equations are used to describe mechanical behaviors of materials through 

specification of the dependence of stress on kinematic variables such as the deformation 

gradient, rate of deformation, temperature, and pressure. They can be used to distinguish 

one material from another but must be defined such that they obey dimensional 

homogeneity and independence of choice of coordinate system. Constitutive relations 

must also obey the Principle of Material Frame Indifference, which states that 

constitutive equations must be invariant under changes of observer frame of reference. 

This principle ensures that rigid body motions will not change the stress in a material. 

The accurate description and prediction of the mechanical behavior of soft tissues by 

constitutive equations remains one of the challenges for computational modeling of 

ligaments and other soft tissues. 

      Specific steps are generally followed in the development of constitutive relations for a 
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material. The first step is to observe the material and classify it according to its behavior 

and composition. Examples of these classifications for a solid would include whether the 

material is elastic or viscoelastic, isotropic or anisotropic, linear or nonlinear, and 

homogeneous or heterogeneous. The second step is to choose an appropriate theoretical 

framework to develop a relationship between kinematic quantities and stress, and 

hyperelasticity is often utilized in the biomechanics field. The third step is to identify a 

specific constitutive equation. This step must take advantage of mathematical conditions 

such as observer independence to derive a relationship based on microstructural 

observations or experimental data. The fourth step is to perform experiments to determine 

values for the material parameters. The final step is independent validation of the model’s 

predictive ability. 

      For an elastic material, the stress at any point can be defined solely as a function of 

the deformation gradient F at that point. A change in stress arises only in response to a 

change in configuration, and the material is indifferent to the manner in which the change 

in configuration arises in space and time. For a hyperelastic material, the above definition 

applies, and in addition there is a scalar function from which the stress can be derived at 

each point X. The scalar function is the stored energy or strain energy function, W, which 

can also be defined solely in terms of the deformation gradient: 

                                                               (F)WW ~=                                                        (2.7) 

The strain energy, W, must obey the Principle of Material Frame Indifference. 

Consequently, W may be expressed in the form 

                                                               (C)WW ~=                                                        (2.8)   

The second Piola-Kirchhoff stress is derived directly from the strain energy as 
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      Hyperelasticity provides a convenient framework for the formulation of constitutive 

equations for biological soft tissues because it allows for large deformations and 

anisotropy. Material symmetries will restrict the way in which the strain energy depends 

on C. Specifically, any orthogonal transformation that is a member of the material 

symmetry group will leave its strain energy unaltered when applied to the material prior 

to deformation. For instance, if the material under consideration is isotropic, its 

symmetry group consists of the entire group of proper orthogonal transformations. For an 

isotropic material, W can depend on C through only the three principle invariants of C: 

                                                              W = W(I1, I2, I3)                                             (2.10) 

where 

                                                      I1 = tr C, I2 = 
2
1 [(trC)2 – trC2], I3 = det C              (2.11) 

and “tr” denotes the trace of the tensor. The isotropic hyperelastic material reduces to 

linearized elasticity when appropriate assumptions regarding the magnitude of strains and 

rotations are made. 

      In literature, there are several hyperelastic constitutive models available for the  

modeling of isotropic materials, such as the Neo-Hookean, Mooney-Rivlin, Polynomial 

Form, Ogden Potential, Arruda-Boyce, Gent, and Yeoh models. Among them, the Ogden, 

Mooney-Rivlin and Yeoh models have been used to explain the stress–strain behavior of 

biological soft tissues, such as the skin, muscle and brain tissue, and the Ogden model 

was found more valid and useful for studying rubber-like biological soft tissue [Miller, 2002; 

Sarma, 2003 and Wu, 2003]. The strain energy potential of the Ogden model is given below: 
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where: 

N = material constant 

kii d,,αµ = material constants 

iλ ’s (i= 1, 2, 3) are deviatoric principal stretches and 1/3
i iJλ λ−= , with iλ ’s being 

principal stretches and J the Jacobian determinant of the deformation gradient. The initial 

shear modulus, G, is given as 
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For an incompressible isotropic material )1( 321 == λλλJ  in the uniaxial stress state, the 

first-order Ogden potential can be rewritten as 

                                                      1 10.51
2
1

2 ( 2 3)U α αµ λ λ
α

−= + −                                       (2.14) 

      In this study, the non-linear hyperelastic model, the Ogden model (Eq. (2.14)), will be 

used to derive the constitutive equations of human middle ear tissues. The material 

parameters ( 1µ  and 1α  in this study) of the Ogden model will be determined through the 

cross-correlation process between material modeling results and experimentally obtained 

stress-strain data of ear tissues. 

 

2.3.2.2 Finite Element Method 

      Due to inhomogeneous material properties, complex three-dimensional geometry, and 

unique boundary/initial conditions such as in situ stress or residual stress of biological 

tissues, it is often difficult to combine the equations of motion with an appropriate 
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constitutive law to obtain closed-form mathematical solutions of the tissue. In that case, 

numerical solution techniques should be considered. The finite element (FE) method 

provides a powerful and commonly used methodology for the solution of complex 

problems in nonlinear solid and fluid biomechanics. In the FE method, a body is 

discretized into small finite elements of material volume, for which the material and 

physical properties are known. The appropriate boundary conditions and initial 

conditions, including applied loading and displacements, must also be specified for the 

forward problem to be well posed. The solution procedure involves the consideration of 

overall energy minimization and/or other fundamental physical balance laws to determine 

unknown field variables over the domain. From these variables, the stresses and strains 

(or other quantities of interest) can be determined throughout the body. 

      The FE method may be described as an analysis method for discrete systems. The 

domain of interest is divided into a finite number of discrete elements. A form is assumed 

for the variation of the unknown functions over each element. Usually a polynomial form 

is assumed, and these polynomials are defined in terms of other independent variables. In 

solid mechanics, the unknown variation of displacements over the element is described 

by these polynomials, referred to as shape functions, in terms of the other nodal 

displacements. These shape functions are called isoparametric if they are used to define 

both the variation of element geometry between nodal points as well as the variation of 

displacement over the element. The equilibrium equations are cast in integral (weak) 

form, with the shape functions and nodal displacement values replacing the continuous 

functions. The requirement of stationarity yields a system of equations that can be 

assembled element by element. Numerical integration is used to evaluate the integrals for 
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each element, and the result is a large (often nonlinear) system of simultaneous equations 

that can be solved for the nodal displacements that satisfy equilibrium. 

      In summary, steps in the analysis of a discrete system include the idealization of the 

system, establishment of equilibrium conditions, assemblage of the discrete element 

system into a set of simultaneous (possibly nonlinear) equations, and solution of these 

equations to determine the response of the state variables. These steps are the same 

whether the problem is steady-state or dynamic, linear or nonlinear, and regardless of the 

initial and boundary conditions. In contrast to other discretization methods, FE method 

has the ability to treat material inhomogeneities, complex boundary conditions, and 

complicated geometry in a systematic way. 

      For nonlinear elasticity, the weak form of the equilibrium equations can be obtained 

from the potential energy. The potential energy function, Π , is defined as the sum of the 

strain energy in the material (internal energy) and the energy due to externally applied 

body forces and surface tractions extΠ . Both sources may be a function of the 

deformation map f over the reference configuration R0: 

                            ∫ Π+=Π
0

)()))}({)(
R

extdV( ff(XCX,Wf                                          (2.15) 

The first variation of Π  with respect to the deformation F in the direction V yields the 

“Euler equations”. In the present case the Euler equations are simply a statement of the 

equilibrium equations in weak form. If these are transformed to the current configuration, 

with variations in configuration v taken with respect to the current configuration: 

                               ∫ ∫∫ ⋅+⋅=∇=⋅Π
R SR

dadvdvD vtvbvTv :                                        (2.16) 
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Note that this is equivalent to the virtual work approach. T : ∇ v represents the internal 

stresses, b · v is the body force, and vt ⋅  is the surface traction. This equation is in general 

highly nonlinear. 

      Two solution procedures are commonly employed at this point. An “explicit time 

integration” provides the solution to the equations of motion by including all inertial 

effects and using the central difference method to integrate the equations forward in time. 

This approach is limited by the Courant stability criterion and requires extremely small 

time step size. It is appropriate for high-rate and impact problems. The second approach 

is to linearize the equations (2.16) about a known configuration. After introduction of the 

FE shape functions, it results in a system of linearized matrix equations: 

                                  (KNL + KL) · Du = Fext – Fint                                                  (2.17) 

where KNL is the nonlinear stiffness, KL is the linear stiffness, Du is the incremental 

displacement vector, and Fext and Fint represent the external and internal forces 

respectively. This equation provides the starting point for an incremental-iterative 

solution strategy characterized by the Newton-Raphson method. 

      In this study, a commercial FEM software, ANSYS v.10.0 (ANSYS Inc., Canonsburg, 

PA), was employed to perform nonlinear structural analysis on a 3-dimensional FE model 

of investigated ear tissues. To build a FE model of the tissue, geometric information of 

the tissue is required, which can be obtained through image measuring techniques on the 

images taken for the ear tissue. The geometric domain of the tissue was then discretized 

into an assembly of finite elements. 

      In FE analysis, nonlinear structural behavior arises from a number of causes, which 

can be generally grouped into three principal categories: (1) changing status; (2) 
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geometric nonlinearities; and (3) material nonlinearities. In this study, only the material 

nonlinearities were considered for the FE analysis of ear tissues. Nonlinear stress-strain 

relationships of hyperelastic materials will cause a structure's stiffness to change at 

different load levels, which can be implemented in FE analysis by using appropriate pre-

defined element types and material models in ANSYS.  

      There are several forms of strain energy potential associated with nonlinear 

hyperelastic material models defined in ANSYS, such as Neo-Hookean, Mooney-Rivlin, 

Polynomial Form, Ogden Potential, Arruda-Boyce, Gent, and Yeoh models. These 

models will work with following elements: SHELL181, PLANE182, PLANE183, 

SOLID185, SOLID186 , SOLID187, SOLSH190, SHELL208, and SHELL209. In this 

study, the Solid 185 element and the Ogden material model were used to calculate the 

nonlinear stress-strain behavior of middle ear tissues in tensile tests.  

      The procedure for performing a nonlinear static analysis consists of following tasks:  

• Build the model, 

• Set solution controls, 

• Set additional solution options, 

• Apply the loads, solve the analysis, 

• Review the results. 

      Moreover, by using different element types and material models for different 

components of the tissue model, people can explore relationships between 

microstructures and properties of the tissue. The interaction between different 

components of the tissue would be included in the FE modeling analysis to gain insight 

into properties of the tissue in the microstructure level.  
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CHAPTER 3 

 
METHODS 

 

3.1 Mechanical Experiments 

 

3.1.1 Machine Calibration 

      The material testing system (MTS, Model 100R, TestResources Inc.) with the SMT1-

2.2 lbs capacity load cell (Interface Inc.) was used in this study to measure mechanical 

properties of middle ear tissues. Before the test, calibration of the load cell is required. 

The correction coefficient of the load cell should be determined through the standard 

weight. The detailed procedures of these two calibration processes are given in this 

section. 

 

3.1.1.1. Load Cell Calibration 

Step 1: Turn on the MTS machine and the computer connected to the machine. 

Step 2: Run MtestWR.exe. 

Step 3: Click the CALIBRATE button (Fig. 3.1) from the Main Menu. 

Step 4: Click on Load Tab. Input “Ear Tissue” to the Name. 

Step 5: Click Clear All button. 

Step 6: Take a zero load reading by clicking Set Pt. Enter a load value of zero in the box 

adjacent to where the Counts reading appeared. 
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Step 7: Connect a standard scale with 50 grams to the load cell and click Set Pt and enter 

the load 0.4905 in the box adjacent the Counts reading. 

Step 8: Repeat Step 7 with standards at 100, 150 and 300 grams, and enter the load of 

0.981, 1.4715 and 2.943 N to the box as shown in Fig. 3.2. 

Step 9: Enter the Range (10 N) and Resolution (1e-006) for the calibrated transducer. 

Step 10: Select the Direction of loading as Positive Position for the tension. 

Step 11: Click Save to save the calibration to a file named MTESTWR.CAL, residing in 

the program directory. 

Step 12: Click Exit to return. 

 

 

Figure 3.1 Main menu of the material testing system. 
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Figure 3.2 Calibration menu of the material testing system. 

 

3.1.1.2. Correction Coefficient (k) Determination 

Step 1: Return to the Main Menu. 

Step 2: Press the Zero button (Z) (shown in Fig. 3.1) to initialize the zero load state. 

Step 3: Connect a calibration weight of 1 gram (Denver Instrument Comp.) to the load 

cell. 

Step 4: Record the load reading from the load cell (sampling size ≈ 6000). 

Step 5: Save the loading data by the name of “1 gram”. 

Step 6: Repeat step 4 to 6 with different calibration weights from 2 to 5, 20, 50, 100 and 

300 gram and different names. 
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      The recorded load data from the correction coefficient determination process were 

further analyzed to derive the mean load reading by the load cell at each standard weight 

with the standard deviation (S.D.). The results are listed in Table 3.1 and shown in Fig. 

3.3 (A~G). The correction coefficient (k) of the load cell was then determined as 0.99007 

as shown in Fig. 3.4, which was used to calibrate the results in later experiments. 

 

Table 3.1: Experimental reading from the load cell on testing weight 
Testing  
Weight 

(g) 

Force  
(N) 

Sample 
Size 

Mean  
Reading 

(N) 

S.D. Mean  
+ 2 S.D. 

Mean 
 – 2 S.D. 

 
1 

 
0.0098 

 
6087 

 
0.0088 

 

 
0.000499 

 

 
0.009798 

 

 
0.007802 

 
 
2 

 
0.0196 

 
6091 

 
0.0200 

 

 
0.000432 

 

 
0.020864 

 

 
0.019136 

 
 
5 

 
0.0490 

 
6087 

 
0.0486 

 

 
0.000450 

 

 
0.049500 

 

 
0.047700 

 
20 

 
0.1960 

 
6085 

 
0.1960 

 

 
0.000665 

 

 
0.197330 

 

 
0.194670 

 
50 

 
0.4900 

 
6084 

 
0.4940 

 

 
0.000667 

 

 
0.495334 

 
0.492666 

 
100 

 
0.9800 

 
6090 

 
0.9990 

 

 
0.000388 

 

 
0.999776 

 

 
0.998224 

 
300 

 
2.9400 

 
6083 

 
2.9670 

 

 
0.000510 

 

 
2.968020 

 
2.965980 

S.D. Standard Deviation 
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Figure 3.3 (A~G) Experimental load reading by the load cell at different weights.  
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Figure 3.4 The correction coefficient (k) of the load cell. 
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3.1.2 Specimen Preparation 

 

3.1.2.1 Tympanic Membrane (TM) Preparation 

      Eleven TM specimens were harvested from fresh or fresh frozen human temporal 

bones through the Willed Body Program at the University of Oklahoma Health Sciences 

Center. The donors’ ages are from 51 to 92 years old, 5 males and 6 females. All the 

experiments were performed within 6 days after obtaining bones. To maintain soft tissue 

compliance, the bones were immersed in 1:10,000 Merthiolate in 0.9% saline solution at 

5 oC until use [Gan, 2004]. The tympanic annulus of the TM was first separated from the 

bony ear canal, and then taken out with the malleus attached and placed in a normal 

saline solution. A rectangular strip was cut from the posterior site of the TM using a 

specially designed knife with two parallel blades with a distance at 2 mm, which is used 

to obtain the uniform width of the TM strip for the experiment each time. The strip, or 

specimen, had the tympanic annulus intact at both top and bottom sides to maintain the 

integrity of the membrane (Fig. 3.5 A and B). The specimen was treated as a flat 

rectangular strip for the experiment and the curvature of the TM was neglected in this 

study. 

            The specimen was then laid on the base of a microscope (Olympus SZX12) and 

fixed to the soft tissue mounting fixture at both annulus sides (top and bottom) using 

cyanoacrylate gel glue (Loctite). Briefly, the fixture has two metal plates for holding the 

specimen along the longitudinal direction. These two plates are connected by two plastic 

adapters so that the TM specimen can be mounted to the material testing system as a 

whole unit to avoid any damage on the tissue during the mounting process. After the 



 39

specimen was lined up with grips in the material testing system, plastic adapters were 

removed and the initial state was setup as shown in Fig. 3.5B. 

 

 

Figure 3.5 (A) The left ear TM harvested from a temporal bone with malleus and 
tympanic annulus attached. The TM strip was cut from the posterior site of the TM near 
the outer edge. (B) The TM specimen fixed at the mounting fixture along the longitudinal 
direction. A ruler was attached to the metal holder at the load cell side for dimension 
measurement. 
 

      A ruler was attached to the metal plate (or holder) at the load cell side for 

measurement of specimen dimensions. The still images of the specimen in front and side 

views were captured first using a digital CCD camera attached to a surgical microscope 

(OPMI 1-FC, Zeiss) for measuring the length, width and thickness of the specimen. 

During our experiments, initial dimensions of the specimen were first measured under the 

microscope using a caliper, and then measured again in computer using image analysis 

tools (e.g., Measuring Tools in Adobe Photoshop 7.0). The distance of 1 mm of the ruler 

in the image was used as a unit for dimensional calculation in the Measuring Tool of 

Adobe Photoshop 7.0. Due to individual differences of age, sex and health condition, the 
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dimensional variation exists for these TM specimens. The length range of specimens is 

from 5 to 8.5 mm, with an average of 6.44 mm and a standard deviation of 1.17 mm. The 

width range of specimens is from 1.5 to 2.5 mm, with an average of 1.97 mm and a 

standard deviation of 0.38 mm. The thickness ranged between 0.06 and 0.1 mm and the 

average thickness is 0.08 mm with a standard deviation of 0.01 mm. 

 

3.1.2.2. Stapedial Tendon Preparation 

      Twelve stapedial tendon specimens were harvested from fresh-frozen human 

temporal bones (obtained from the same source as for the TM specimen mentioned 

above). The average age of donors was 71 (ranging from 51 to 92 yr, 6 male and 6 

female). Experiments were performed within 6 days after harvesting the tissue. The 

stapedial tendon was prepared with the stapes and pyramidal eminence attached as shown 

in Fig. 3.6A. Two bony ends were attached to the mounting fixture under a microscope 

by a tiny drop of cyanoacrylate gel glue (Fig. 3.6B). Care was taken not to allow the glue 

reaching the tendon. The fixture has two pre-aligned metal plates to hold the specimen 

and the metal plates were connected by two plastic adapters and mounted to the material 

testing system as a whole unit. A ruler was attached to the plate as a reference for 

dimensional measurement. After the specimen was lined up with grips in the MTS, 

plastic adapters were removed and a preload of 0.001 N was applied to the specimen 

through the load cell to adjust the initial zero load state. The still images of the stapedial 

tendon in front and side views were captured at this state using a digital CCD camera. 

The length, width and thickness of the tendon were measured from these images through 

Measuring Tools in Adobe Photoshop 7.0 at the resolution of 0.01 mm. 
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(A) (B)   

Fig. 3.6 (A) The stapedial tendon harvested from a human temporal bone with the stapes 
and pyramidal eminence connected. (B) The stapedial tendon specimen fixed at the 
mounting fixture along the longitudinal direction in a material testing system (MTS). A 
ruler was attached to the metal holder at the load cell side as a reference for dimension 
measurement. 
 

      Table 3.2 lists the dimensions of twelve individual stapedial tendon specimens with 

the mean and standard deviation (S.D.). 

Table 3.2: Dimensions of stapedial tendon (ST) specimens (N=12) 
 ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST11 ST12 Mean S.D.(±) 

 
Length 
(mm) 

 
0.87 

 
0.89 

 
1.12 

 
1.10 

 
1.02 

 
0.95 

 
1.00 

 
1.08 

 
1.06 

 
0.90 

 
0.86 

 
1.00 

 
0.99 

 
0.09 

 
Width 
(mm) 

 
0.46 

 
0.43 

 
0.43 

 
0.30 

 
0.46 

 
0.44 

 
0.34 

 
0.50 

 
0.40 

 
0.38 

 
0.30 

 
0.30 

 
0.40 

 
0.07 

 
Thickness 

(mm) 
 

0.40 
 

0.37 
 

0.62 
 

0.41 
 

0.40 
 

0.32 
 

0.36 
 

0.52 
 

0.37 
 

0.26 
 

0.30 
 

0.37 
 

0.39 
 

0.10 
 

 

3.1.2.3. Tensor Tympani Tendon Preparation 

      Ten specimens of the tensor tympani tendon were harvested from fresh frozen human 

temporal bones (obtained from the same source as above). The donors’ ages were from 

50 to 85 years old, 3 male and 7 female. The tensor tympani tendon was prepared with 
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the malleus and cochleariform attached as shown in Fig. 3.7A. Two bony ends were 

trimmed and attached to the mounting fixture at the ends under the microscope by 

cyanoacrylate glue. The fixtures hold the specimen along the longitudinal direction. Care 

was taken to avoid distortion of the specimen during this process. The metal plates were 

then connected by two plastic adapters and mounted to the material testing system as a 

whole unit. A ruler was attached to the metal plate at the load cell side as a dimensional 

reference (Fig. 3.7B). After the specimen was lined up with grips in the material testing 

system, plastic adapters were removed and a preload of 0.001 N was applied to setup the 

zero-load state of the specimen through the machine.  

 

        
                                      (A)                                                                  (B)       
Figure 3.7 (A) The tensor tympani tendon in middle ear cavity connecting to the malleus 
head and cochleariform was viewed in a human cadaver temporal bone. (B) The tensor 
tympani tendon specimen was fixed at the mounting fixture along the longitudinal 
direction in material testing system (MTS). A ruler was attached to the metal holder at the 
load cell side as a dimensional reference. 
 

      The still images of the tendon in front and side views were captured at the initial state 

using a digital CCD camera. The tendon was distinguished from the bony ends by the 
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structural change identified under the microscope, and initial dimensions were measured 

through the Measuring Tools in Adobe Photoshop 7.0 at the resolution of 0.01 mm. 

      The length, width and thickness of the tensor tympani tendon specimens are given in 

Table 3.3, with the mean and standard deviation (S.D.). 

 
Table 3.3: Dimensions of tensor tympani tendon (TTT) specimens (N=10) 

 TTT 
1 
 

TTT 
2 
 

TTT 
3 

TTT 
4 

TTT 
5 

TTT 
6 

TTT 
7 

TTT 
8 

TTT 
9 

TTT 
10 

Mean S.D.
(±) 

Length 
(mm) 

 

 
1.23 

 
1.27 

 
1.58 

 
1.44 

 
1.59 

 
1.79 

 
1.51 

 
1.25 

 
1.39 

 
1.45 

 
1.45 

 
0.18 

Width 
(mm) 

 

 
1.14 

 
0.97 

 
1.39 

 
1.46 

 
1.23 

 
1.26 

 
1.10 

 
0.96 

 
0.90 

 
0.82 

 
1.12 

 
0.21 

Thickness 
(mm) 

 

 
0.50 

 
0.57 

 
1.00 

 
1.05 

 
1.58 

 
1.05 

 
0.47 

 
0.88 

 
1.10 

 
0.67 

 
0.84 

 
0.43 

 

3.1.2.4. Anterior Malleolar Ligament Preparation 

      Nine AML specimens were harvested from fresh-frozen human temporal bones. The 

average age of donors was 71 (ranging from 51 to 92 yr, 5 male and 4 female). 

Experiments were performed within 6 days after harvesting the tissue. The bones were 

immersed in 1:10,000 Merthiolate in 0.9% saline solution at 5 oC until use. The AML 

sample was prepared with two bony parts (the malleus and roof of epitympanum) at ends. 

By using the same mounting fixture and following the same procedure as we described 

before, two bony ends were attached to the mounting fixture under a microscope by a tiny 

drop of cyanoacrylate gel glue (Fig. 3.8). Care was taken not to allow the glue reaching 

the ligament. A ruler was attached to the top of the fixture as reference for dimension 

measurement. The AML was then installed and lined up with grips in the material testing 

system and a preload of 0.001 N was applied to the specimen through the load cell to 

adjust the zero load state. 
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Fig. 3.8 The anterior malleolar ligament of the Human Middle Ear with two bony ends 
(the malleus and roof of epitympanum). A ruler was attached to the metal holder at the 
load cell side as a dimensional reference. 
 

      The still images of the ligament in front and side views were captured first using a 

digital CCD camera and the Measure Tool in Adobe photoshop 7.0 was used to measure 

the length, width and thickness of the specimen. Table 3.4 lists the dimensions measured 

from nine AML specimens with the mean and standard deviation (S.D.). Considering the 

variation of width along the length direction, the width was measured at three locations: 

top, middle and bottom part of the specimen. 

Table 3.4: Dimensions of anterior malleoar ligament specimens (N=9) 
 AML 

1 
 

AML 
2 

AML 
3 

AML 
4 

AML 
5 

AML 
6 

AML 
7 

AML 
8 

AML 
9 

Mean S.D.(±) 

Length  
(mm) 

 

 
2.05 

 
2.38 

 
1.66 

 
1.71 

 
2.20 

 
1.76 

 
1.45 

 
1.46 

 
1.77 

 
1.83 

 
0.32 

Width 
(top) 
(mm) 

 
1.70 

 
2.21 

 
1.45 

 
1.50 

 
1.68 

 
1.64 

 
2.11 

 
1.56 

 
1.52 

 
1.71 

 
0.27 

Width 
(middle) 

(mm) 

 
1.20 

 
1.90 

 
1.11 

 
1.10 

 
1.08 

 
1.25 

 
1.77 

 
1.21 

 
1.22 

 
1.32 

 
0.30 

Width 
(bottom) 

(mm) 

 
1.50 

 
2.10 

 
1.31 

 
1.35 

 
1.35 

 
1.43 

 
1.80 

 
1.40 

 
1.01 

 
1.47 

 
0.31 

Thickness 
(mm) 

 

 
0.81 

 
1.54 

 
1.30 

 
1.10 

 
1.02 

 
1.41 

 
1.27 

 
1.14 

 
1.19 

 
1.20 

 
0.22 
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3.1.3 Experimental Protocols 

      The material testing system with the SMT1-2.2 lbs capacity load cell was used to 

measure the load-deformation relation, stress relaxation function and failure or ultimate 

stress and strain of the TM, stapedial tendon, tensor tympani tendon and anterior 

malleolar ligament. The schematic figure and picture of the experiment setup are given in 

Fig. 3.9 (A, B). The load was applied to the bottom part of the specimen by means of 

elongation, and the top part of the specimen was fixed. Images of the deformation process 

for each specimen on each test were recorded simultaneously using a digital CCD camera 

attached to a surgical microscope with a frame rate of 30 frames /sec. 

 

 

(A) 
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(B) 

Figure 3.9 The experimental setup. 

 

      It is well known that the steady state of biological soft tissues is only reached after 

preconditioning [Fung, 1993], a process that stress-strain curves are gradually stabilized 

during repeated cyclings of the specimen. In this study, the MTS machine was 

programmed to perform five cycles of uniaxial elongation at the elongation rate of 0.5 

mm/sec for the TM and 0.1 mm/sec for ligament and tendons, and the elongation length 

of 10% of the original length for both TM and ligament and tendons. Five cycles of load-

displacement curves of a TM specimen recorded in MTS are shown in Fig. 3.10, in which 

the first three cycles are pointed out. Cycle curves were decreasing during repeated 

loading-unloading process, and a steady state was generally observed after the third 
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cycle. The same phenomena were observed for the stapedial tendon, tensor tympani 

tendon and anterior malleolar ligament, as shown in Figs. 3.11, 3.12 and 3.13. The 

hysteresis was also observed for all these tissues with the unloading curve lagging the 

loading curve as being pointed in Fig. 3.13.  

      After preconditioning, the specimen was subjected to the uniaxial tensile, stress 

relaxation and failure tests. At the end of uniaxial tensile or stress relaxation test, the 

specimen was returned to the initial state and waited 2-3 minutes for recovery from 

previous deformation. The MTS machine and CCD camera were electronically 

synchronized so that the load and deformation data on images could be correlated 

simultaneously. The MTS grip-to-grip displacement and the images of deformation were 

collected to compute strains and assess the boundary effect. The protocols for three tests 

in MTS are listed as follows: 
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Figure 3.10 Preconditioning of the TM specimen. 
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Figure 3.11 Preconditioning of the stapedial tendon specimen. 
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Figure 3.12 Preconditioning of the tensor tympani tendon specimen. 
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Figure 3.13 Preconditioning of the anterior malleolar ligament specimen. 

 

3.1.3.1. Uniaxial Tensile Test 

      The elongation rate was set at 0.1 mm / sec, and the elongation length (∆l) was 15% 

of the original length for the TM and 40% of the original length for the ligament and 

tendons. Three parameters: load, deformation and time, were recorded by the MTS 

software (MTestWRTM, TestResources, MN) with a resolution level of 10-6 for the load 

(N). These data were further used to calculate the stress and strain as well as the Young’s 

modulus of the tissue.  

 

3.1.3.2. Stress Relaxation Test 

      The stress relaxation test was performed to gain insight into viscoelastic properties of 

the tissue. An approximate step function of elongation was applied to the specimen at the 

beginning (t = 0) with an elongation rate of 1.8 mm / sec. The corresponding stresses 
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which include the initial stress response 0σ  and the relaxed stress )(tσ  were recorded 

over a period of time until the rate of loading change was less than 0.1%/sec, or fully 

relaxed. In this study, the elongation length of the specimen for the relaxation test was the 

same value used for the uniaxial tensile test. When a fully relaxation was observed, the 

MTS data recording program was stopped manually and the specimen was returned to the 

initial unstressed state for the next test (failure test). 

 

3.1.3.3. Failure Test 

      To determine the mechanical strength of the tissue, we performed the failure test on 

all tissue specimens. The elongation rate was set at 0.1 mm / sec for the TM and 0.02 mm 

/ sec for the ligament and tendons. The specimen was extended till it’s broken. The load 

and deformation data were recorded by MTS, and the entire failure process was recorded 

using the CCD camera. The breaking site of each specimen was observed. 

 

      Note that all specimens were maintained in their physiological condition by spraying 

normal saline solution on the side of the tissue opposite to the camera during the test.  

 

3.2 Digital Image Correlation (DIC) Method 

      The digital image correlation (DIC) method was employed in this study to verify the 

boundary effect on mechanical testing of the specimen with a dimension of 1 or 2 mm. In 

DIC analysis, the tensile strain distribution across the specimen and the average strain are 

calculated based on images of specimen recorded during the uniaxial loading process. 
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3.2.1 DIC Algorithm 

      Digital image correlation (DIC), a non-contact method for measuring the surface 

displacement or strain distribution in solid materials, has been developed since 1980s 

[Peters, 1982; Sutton, 1983; Vendroux, 1998 and Lu, 2000], and was extended into soft tissues in this study. 

The DIC method relies on the existence of a distinct grayscale pattern in a region 

composed of a subset of pixels around a location where deformations are computed. In 

general, the DIC method is performed between two images. One is the reference or 

undeformed image, and the other is the deformed image. Typically, a grid of nodes is 

located in the reference image, and the deformation mapping is calculated at each of 

these nodes. The fundamental level of the calculation is at the node level, so the 

following development of the algorithm is for each node. Three steps are employed to 

achieve the DIC algorithm: displacement mapping, bicubic spline interpolation, and least 

squares correlation. 

 

3.2.1.1. Displacement Mapping 

      Consider a two-dimensional deformation. A subset of points around a node is mapped 

from the reference image to the deformed image. Each of these subset points is located in 

the reference image at ( yx, ) and is mapped to the deformed image at location ( )~,~ yx  

using  

                                                          
),(~
),(~

yxVyy
yxUxx

+=
+=

                                                     (3.1) 

with U and V being the displacement components of each subset point. The new 

assumption that U and V can be approximated by a second-order Taylor series expansion 

around point ( 00 , yx ) leads to the mapping functions 
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where 0xxx −=∆  and 0yyy −=∆ . 

 

3.2.1.2. Bicubic Spline Interpolation 

      The bicubic spline interpolation implements a third-order polynomial that allows both 

gray-scale values and C2 continuous gradients to be determined at any location in the 

gray-scale image fields. Bicubic spline interpolation is a piecewise interpolation scheme 

in which a set of coefficients are determined for each rectangular patch. Both the 

reference and the deformed images are interpolated to allow the nodes to be located 

anywhere in the image fields. The grayscale value at any location in the interpolated 

region of the reference image can be calculated using the bicubic equation as 

                                         ∑∑
= =

=
3

0

3

0
),(

m n

nm
mn yxyxg α                                                       (3.3)     

       

3.2.1.3. Least Squares Correlation 

      A least square correlation coefficient is used to determine the optimum values for the 

mapping parameters. Let S represent all the points in the subset, and let Sp represent any 

single point in the subset. This correlation coefficient is defined as 
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The summations are performed over all the points in the subset region. From the 

equation, the range of values for C is [0, ∞), where the minimum is reached when the 

differences between g and h are minimized. The set of P that minimizes the correlation  

 

3.2.2 DIC Implementation for Ear Tissues 

      In this section, we will use the TM specimen to show how to implement the DIC 

method to analyze our experimental data. The DIC method was employed to calculate the 

normal strain of the TM specimen based on images simultaneously recorded during the 

uniaxial tensile test. All the images were first digitized using Adobe Premiere 6.5 and 

output as sequential images at a constant time interval, starting from time t = 0 to the end 

of a loading process. The first image (t = 0) was used as a reference and the consecutive 

images (more than 20) were used as deformed states. All the images were transformed 

from the color format (true color, 24 bit) into the grayscale (256 level, 8 bit) format 

before being read into the DIC software package WinDIC_LS 2.0 (provided by Prof. H. 

Lu at Oklahoma State University). 

      Figure 3.14 shows the reference and three consecutive images selected from a TM 

specimen. As shown in this figure, horizontal and vertical lines were first identified and 

drawn in a relatively large area around the center of the specimen in the reference image 

using the DIC software. A grid of nodes (3×11) was then generated along these lines and 

the deformation was calculated at each node by tracing these nodes through three 

procedures of the DIC algorithm introduced before. The length of each vertical line in the 

reference image was used as the original length (L0), and the length of corresponding 

lines in deformed images was measured as the deformed length ( L ). The normal strain ε 
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in the vertical direction was calculated by 0

0

L L
L

ε −
= . The strain across the transverse 

direction at 11 nodes and the average strain was then obtained and synchronized with the 

stress measured by the load cell in MTS to derive the strain distribution across the 

specimen and the stress-strain relationship of the specimen during the uniaxial loading 

process. The stress–strain relationship of the specimen based on DIC analysis was further 

compared with that obtained from the MTS recorded results to evaluate the boundary 

effect of the experiment. 

 

Figure 3.14 Illustration of the digital image correlation (DIC) method for calculating the 
strain distribution of the TM specimen under the uniaxial loading process. 
 

      The illustrations of the DIC method on middle ear ligament and tendons (stapedial 

tendon, tensor tympani tendon and anterior malleolar ligament) are given in Figs. 3.15 

~3.17, with the same procedures as used for the TM to obtained the strain distribution 

across the ligament specimen and the average strain in the middle portion of the ligament 
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or tendon. Note the dimensions of ligament or tendons are smaller than the TM, 

therefore, fewer nodes were generated for the DIC analysis of the ligament or tendons. 

 

Figure 3.15 Illustration of the digital image correlation (DIC) method for calculating the 
strain distribution of the stapedial tendon specimen under the loading process. 
  
 

 

Figure 3.16 Illustration of the digital image correlation (DIC) method for calculating the 
strain distribution of the tensor tympani tendon specimen under the loading process. 
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Figure 3.17 Illustration of the digital image correlation (DIC) method for calculating the 
strain distribution of the anterior malleolar ligament specimen under the loading process. 

 

3.3 Modeling Analysis 

      The experimental data measured by the MTS were post processed to obtain: the 

stress-strain relationship and Young’s modulus-stress or strain relationships of the tissue. 

The loading values directly recorded by the load cell were multiplied by the correction 

coefficient k=0.99007 before further analysis. In this study, we applied several different 

approaches (constitutive modeling or FE modeling) to investigate mechanical properties 

of different middle ear tissues (TM, stapedial tendon, tensor tympani tendon and anterior 

malleolar ligament), which are given one by one in details as follows. 

 

3.3.1 Analysis on Tympanic Membrane 

      The TM specimen was assumed as an isotropic, non-linear viscoelastic material based 

on the observation of loading-deformation curves recorded in preconditioning and 
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uniaxial tensile test. The raw data were treated using a hyperelastic material model for 

elasticity analysis. There are several non-linear material models available for analysis on 

mechanical properties of biological tissues, such as the Ogden, Mooney-Rivlin and Yeoh 

models. Sarma et al.[Sarma, 2003] have tried these models to explain the stress-strain 

behavior of the smooth muscle tissue and concluded that the Ogden model was more 

valid and useful for studying rubber-like biological soft tissues. In literature, the Ogden 

model has been well used to predict the behavior of several non-linear and viscoelastic 

biological tissues such as the skin and brain tissue [Miller, 2002 and Wu, 2003], and was used to 

analyze experimental data of the TM. 

        For the uniaxial elongation, the Ogden model is generally expressed as 

                                              1 11 (0.5 1)1

1

2 [(1 ) (1 ) ]α αµσ ε ε
α

− − += + − +                                    (3.5)  

where σ  is the normal stress, ε  is the strain, and 1µ  and 1α  are material constants [Wang , 

2002]. In this study, we used the stretch ratio λ, the ratio of the deformed length to the 

original length, to describe the strain and 1ε λ= − , thus, Eq. (3.5) becomes 

                                             1 1( 1) (0.5 1)1

1

2 [ ]α αµσ λ λ
α

− − += −                                                 (3.6) 

Differentiating Eq. (3.6) with respect to λ, we have 

                               1 12 (0.5 2)1
1 1

1

2 [( 1) ( / 2 1) ]d
d

α ασ µ α λ α λ
λ α

− − += − + +                                   (3.7) 

which shows the relationship between the tangent modulus or Young’s modulus d
d
σ
λ

 and 

stretch ratio λ. 
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        Two material constants 1µ  and 1α  of the tissue were derived from stress-strain 

loading curves obtained in the uniaxial tensile test using MATLAB v.7.0 through the data 

iteration process, i.e., given experimental data and a user-defined function (Eq. (3.6) in 

this section), find coefficients that best fit the function to the data in a least-squares sense. 

The constitutive equation of the TM in the Ogden form was then represented by 

substituting 1µ  and 1α  into Eq. (3.6), and the Young’s modulus of the TM with respect 

to the strain were determined from Eq. (3.7).  

        Note that Eqs. (3.6) and (3.7) are based on the strain energy potential of the Ogden 

model and the Young’s modulus of the tissue is described as a function of the strain. To 

derive the relationship between the Young’s modulus and stress, the Young’s modulus-

stress curve of the TM was plotted from experimental data following the equation 

                                                             ( )d k b
d
σ σ
λ
= +                                                     (3.8) 

Then, integration gave the stress-strain relationship as 

                                                            kb ce λσ + =                                                           (3.9) 

The integration constants c could be determined by finding one point on the curve, say 

σ σ ∗=  when λ λ∗= . Then 

                                                       ( )( ) kb e bλ λσ σ
∗∗ −= + −                                            (3.10) 

This process has been well accepted for the study of soft tissue biomechanics [Fung, 1993]. 

 

3.3.2 Analysis on Stapedial Tendon 

      The data recorded by the MTS during uniaxial tensile tests were analyzed to obtain 

stress-strain relationship, or constitutive equation, of the stapedial tendon by using the 
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same hyperelasitc Ogden model (Eq. (3.6)) and following the same procedures as for the 

TM. 

      Material constants 1µ  and 1α  were derived from the mean stress-strain loading curve 

of 12 specimens using the least-squares-fit process in MATLAB v.7.0. Based on 

experimental data and Eq.(3.6), the coefficients that best fit the equation to the data were 

determined. The constitutive equation of the stapedial tendon was then expressed by 

substituting 1µ  and 1α  into Eq. (3.6). 

 

3.3.3 Analysis on Tensor Tympani Tendon 

      In addition to using the same data analysis procedures mentioned above for the tensor 

tympani tendon, finite element (FE) modeling analysis was used to study relationship 

between the structure and behavior of the tensor tympani tendon in this study. 

      Based on a parallel-bundled fibrous microstructure of the tensor tympani tendon (Fig. 

3.18A) observed under the scanning electron microscope (SEM, Model: DSM960, Zeiss) 

with 3000x magnification in Samuel Roberts Noble Electron Microscopy Lab at 

University of Oklahoma, five 3-dimensional FE models of the tensor tympani tendon 

with different fiber to ground substance ratio were created in ANSYS v.10.0 (ANSYS 

Inc., Canonsburg, PA) as shown in Fig. 3.18 B~F. Note that only X-Y plane models were 

shown in these figures for a better illustration. The length, width and thickness of each 

model were 1.45, 1.12 and 0.84 mm respectively based on the mean value of specimen 

dimensions listed in Table 3.3. The volume ratio of collagen fiber to ground substance, k, 

was varied from 2.3 (fiber density 70%) to 3.0 (fiber density 75%), 4.0 (fiber density 

80%), 5.7 (fiber density 85%) and 9.0 (fiber density 90%) respectively. Each model was 
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meshed by eight-node hexahedral solid elements (Solid185) with a total of 4860 elements 

and 5880 nodes.  

 
 

                  
                          (A)                                                     (B)                                                  (C) 
 
                                           

                      
                        (D)                                                     (E)                                                     (F) 
Figure 3.18 (A) SEM picture of the tensor tympani tendon at 3000x magnification. (B~F) 
Five FE models of the tensor tympani tendon with different collagen fiber-ground 
substance ratio (k) or fiber density.  
 

      Since the Ogden model was used in data analysis of raw experimental data, it was 

selected in FE analysis. The tensor tympani tendon was assumed as isotropic material 

with fibers oriented along the Y axis. A Poisson ratio (ν ) of 0.495 was used in the FE 
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modeling because an ideal Poisson ratio of 0.5 for incompressible material could bring 

numerical difficulties for the commercial FE solver. The first-order Ogden model (Eq. 

(3.6)) was used in this modeling work. The initial Young’s modulus of the fiber along Y 

direction for incompressible materials ( 0.5ν = ) was expressed as  

                                   110 33)1(2 µαν ==+= GGEY                                                     (3.11) 

The initial modulus along X and Z directions are assumed as 1/10 of 0YE  due to the 

transverse properties of the fibrous tendon [Weiss, 2001]. The ground substance was assumed 

to be isotropic material with a uniform initial Young’s modulus of 10 kPa based on the 

lowest stiffness of soft tissues such as fat (4.8 kPa) published by Wellman et al. [Wellman, 

1999]. Boundary and loading conditions were applied through nodes on top and bottom 

surfaces of the model. For the uniaxial tensile test, all the nodes on top surface were fixed, 

and all the nodes on bottom surface were elongated by 0.6 mm. The elongation was 

accomplished by 120 substeps to reach the maximum of loading.  

        Nonlinear structural analysis was carried out on five FE models of the tensor 

tympani tendon to calculate the force and deformation of the tendon during the 

elongation. The nominal stress and strain along the fiber direction at each substep were 

derived. Meanwhile, the material constants ( 1µ  and 1α ) in the Ogden form for the tensor 

tympani tendon were derived again from FE analysis. The FE simulated stress-strain 

curves of the tendon with different microstructure configurations (fiber to ground 

substance ratio) were compared with experimental results. The relationship between the 

structure and properties of the tensor tympani tendon was then determined. 
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3.3.4 Analysis on Anterior Malleolar Ligament 

      The scanning electron microscope (SEM) picture of the AML at 5000x magnification 

prepared by Samuel Roberts Noble Electron Microscopy Lab at University of Oklahoma 

is shown in Fig. 3.19. A parallel-bundled (coiled) collagen fibrous microstructure of the 

AML was observed. The mechanical behavior of the AML is expected to be described by 

a unidirectional fiber reinforced composite model. 

 

 

Figure 3.19 Microstructure of the anterior malleolar ligament under SEM (5000x). 

 

        In this study, instead of using the Ogden hyperelastic model which was used for the 

TM and other two tendons introduced above, we used a transversely isotropic model 

which consists of a first-order Ogden model augmented by a I4-type reinforcing term 

proposed by Ogden in 2003 [Ogden, 2003]. The strain energy potential of the model, U, is 

described as 
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where 321 ,, λλλ  are principal stretches of the incompressible material and 1321 =λλλ . I4 

coincides with the square of material stretch in the fiber direction. In Eq. (3.12), 1µ  is the 

infinitesimal shear modulus of the material in a natural configuration, and 1α  and β  are 

temperature dependent material parameters. Parameter k is a coefficient (> 0) which 

counts for the increase of material stiffness in the fiber direction. The case with k=0 

represents the isotropic Ogden model which has been well used to model soft tissues such 

as the tympanic membrane, brain tissue, and skin [Cheng, 2007a; Miller, 2002 and Wu, 2003]. 

        The Cauchy stress tensor σ  is then derived from the strain energy function U (Eq. 

(3.12)) as 
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where v(i) are eigenvalues of the left stretch tensor V, p is the Lagrange multiplier 

associated with the incompressibility constraint, and ⊗  denotes the tensor product. 

        Assuming that fibers of the AML are aligned along the X2-axis of a given Cartesian 

coordinate system (X1, X2, X3) and the uniaxial loading is applied along the fiber 

direction (X2-axis), the stretch in the loading direction would be 2λλ ≡ , and the nonzero 

stress component of σ  is 22σσ = . Thus, 2/1
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Eq. (3.15) represents the stress (σ ) ~ stretch (λ ) relationship or constitutive equation of 

the AML expressed with material parameters of βαµ ,, 11  and k. 

      Differentiating Eq. (3.15) with respect to λ, we have the tangent modulus or Young’s 

modulus ( d
d
σ
λ

) of the material:  

])1
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Three material parameters ),,( 11 βαµ  in this study were determined as k value changed 

from 0 to 5, 10 and 20 through iterative regression processes in MATLAB (v.7.0). Briefly, 

given experimental stress-stretch data and a user-defined function (Eq. (3.15) in this 

study), we find the material parameters that best fit the function to the data in a least-

squares sense. Constitutive equation of the AML was then obtained by substituting the 

material parameters into Eq. (3.15). The Young’s modulus of the specimen was obtained 

from Eq. (3.16) and plotted against the stress to derive the Young’s modulus-stress 

relationship of the AML. 
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CHAPTER 4 

 
RESULTS OF THE TYMPANIC MEMBRANE 

 

      Mechanical properties of the human tympanic membrane (TM) were obtained 

through the methods introduced in Chapter 3 and presented here. The results have 

recently been published in Annals of Biomedical Engineering [Cheng et al., 2007a]. 

 

4.1 Mechanical Properties of the Tympanic Membrane 

      Figure 4.1 shows stress-stretch ratio curves obtained from the uniaxial tensile test on 

three TM specimens after preconditioning, with raw data as well as smooth curves 

derived from the Ogden model. The correlation coefficients of model fitting for each 

specimen on Fig. 4.1A, 4.1B, and 4.1C are: 0.9968, 0.9979, and 0.9982 respectively, 

which show adequate accuracy of using the Ogden model to fit the experimental data. 

The hysteresis phenomenon is observed for all of them. Mechanical properties of the TM 

presented in this section are all from the loading curve. Variations among individual TM 

specimens resulted from differences of age, sex, health and sample dimensions are also 

shown in Fig. 4.1. 



 66

1.0 1.1 1.20.0

0.2

0.4

0.6

0.8

1.0

1.2

Stretch Ratio (λ)
(A)

St
re

ss
 (M

Pa
)

Loading

Unloading

1.0 1.1 1.20.0

0.2

0.4

0.6

0.8

1.0

1.2

Stretch Ratio (λ)
(B)

St
re

ss
 (M

Pa
)

Loading

Unloading

1.0 1.1 1.20.0

0.2

0.4

0.6

0.8

1.0

1.2

Stretch Ratio (λ)
(C)

St
re

ss
 (M

Pa
)

Loading

Unloading

 



 67

Figure 4.1 Stress-stretch ratio curves of three TM specimens obtained from uniaxial 
tensile tests after preconditioning. The wave-like lines were original stress-stretch ratio 
curves recorded in MTS. The smooth lines were obtained after the Ogden model fitting 
process. The hysteresis was seen on each specimen with the unloading curve lower than 
the loading curve (pointed by arrows). 
 

      Comparisons of stress-stretch ratio curves of two TM specimens directly obtained 

from the uniaxial tensile test (solid lines) and that derived from the DIC method (broken 

lines) are shown in Fig. 4.2A and 4.2C respectively. The transverse strain distribution 

across TM specimens from the DIC analysis are shown in Fig. 4.2B and 4.2D as well. In 

Fig. 4.2B and D, the x-axis represents the location of nodes (from left to right) along the 

middle horizontal line in Fig. 3.14, and the y-axis is the normal strain ε  calculated at 

these nodes. The normal strains from four steps with a constant time interval are shown in 

each figure. The results show that the transverse strain is relatively uniform across the 

membrane, and the stress-strain curve of the TM obtained from MTS and DIC agrees 

with each other. Therefore, the boundary effect which might be introduced by the small 

size of the specimen was limited in our experiments. 
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Figure 4.2 (A, C) Comparison of stress-stretch ratio curves of two TM specimens 
obtained from the MTS measurement (solid lines) and DIC analysis (broken lines). (B, D) 
Transverse strain distribution across the TM specimen calculated from DIC analysis at 
four time steps. 
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      Figure 4.3A shows stress-stretch ratio relationships of eleven TM specimens under 

the loading process of the uniaxial tensile test. As can be seen in this figure, most TM 

specimens are stretched up to λ  of 1.15, while a few are either stretched longer or shorter 

than λ  of 1.15 or 15% elongation of the original length. Figure 4.3B displays the mean 

and standard deviation for these stress-stretch ratio curves. It is clearly seen that the 

absolute standard deviation increases with the increasing stress, while the relative 

standard deviation remains the same at 0.25. The stress-stretch curve is relatively flat at 

the beginning of the loading and becomes stiff as the stress or stretch ratio increases. 
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Figure 4.3 (A) Stress-stretch ratio curves of eleven TM specimens under uniaxial loading 
tests. The stretch ratio λ  was around 1.15 and the strain rate was 0.1 mm/sec. (B) The 
mean value of stress-stretch ratio relationship of eleven TM specimens with standard 
deviation (S.D.) bars. 
 
      An important biomechanics study of ear tissues is to derive the constitutive equation 

of the tissue based on experimentally measured stress-strain curves. Using Eq. (3.6), the 

constitutive equation of the TM in the Ogden form can be derived by determining two 

material constants, 1µ  and 1α . Through the data iteration process, we have 1µ = 0.46 

MPa and 1α = 26.76 (mean value from eleven specimens). Therefore, the constitutive 

equation of the TM in the Ogden form is derived as 

                      25.76 14.380.03( )σ λ λ−= −            ( 0 1.0σ≤ ≤  MPa, 1 1.15λ≤ ≤ )               (4.1) 

Meanwhile, based on Eq. (3.7), the Young’s modulus-strain relationship of the TM in the 

Ogden form is derived as 

                 24.76 15.380.88 0.49d
d
σ λ λ
λ

−= +         ( 0 1.0σ≤ ≤  MPa, 1 1.15λ≤ ≤ )               (4.2) 
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        It was noted that the behavior of the TM was different at different stress levels. 

Therefore, following Eq. (3.8), the Young’s modulus-stress relationship of the TM was 

derived over three stress ranges: 0~0.1, 0.1~0.3, and 0.3~1.0 MPa. Figure 4.4A shows 

Young’s modulus-stress relationships for eleven individual TMs and Fig. 4.4B represents 

the mean and standard deviation. As shown in Fig. 4.4, the modulus d
d
σ
λ

 is linearly 

increased with the stress σ . Through a two degrees polynomial curve fitting process, the 

Young’s modulus-stress relationship of the TM in the form of Eq. (3.8) is derived over 

three stress ranges as      

 

                                        32.16 0.398d
d
σ σ
λ
= +       ( 0 0.1σ≤ <  MPa)  

                                        29.75 0.645d
d
σ σ
λ
= +      ( 0.1 0.3σ≤ ≤  MPa)                        (4.3) 

                                        17.65 4.274d
d
σ σ
λ
= +       ( 0.3 1.0σ< ≤  MPa) 

 

Eq. (4.3) suggests that the Young’s modulus of the TM increases faster at a low stress 

level than that at a high stress level. There is no significant difference on the modulus at 

stress levels 0 ~ 0.1 MPa and 0.1 ~ 0.3 MPa. 
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Figure 4.4 (A) Young’s modulus-stress curves of eleven TM specimens under uniaxial 
loading tests obtained from three stress ranges: 0~0.1, 0.1~0.3 and 0.3~1 MPa. (B) The 
mean value of Young’s modulus-stress curves of eleven TM specimens with standard 
deviation (S.D.) bars over three stress ranges as in (A). 
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      Integration of Eq. (4.3) gives another form of the constitutive equation of the TM as 

                                 32.16( 1)0.01 0.01e λσ −= −              ( 0 0.1σ≤ <  MPa)             

                                 29.75( 1.06)0.14 0.02e λσ −= −            ( 0.1 0.3σ≤ ≤  MPa)                   (4.4) 

      17.65( 1.1)0.61 0.24e λσ −= −              ( 0.3 1.0σ< ≤  MPa)     

The integration constants are determined by the initial stress-strain value, i.e. 0σ =  when 

1λ = . Eq. (4.4) shows that the constitutive equation of the TM could be represented by 

different exponential functions at different stress ranges.  

      Figure 4.5 shows the stress relaxation behavior of the TM obtained from nine 

specimens (two of eleven TM specimens do not have relaxation results). The normalized 

stress relaxation function ( )G t  in y-axis is defined as the ratio between the stress ( )tσ  at 

time t  and the initial stress 0σ . The initial strain rate used for this study is 1.8 mm/sec, 

18 times of the strain rate used in the uniaxial tensile test. The mean initial stress 0σ  for 

nine specimens is 1.02 MPa. The stress ( )tσ  decreases with time and finally it reaches a 

relatively stable state after 120 seconds. The mean normalized relaxation function ( )G t  

with standard deviation is shown in Fig. 4.5 as well. It is found that the stress relaxation 

of the TM is fast at the beginning. Within 1 sec, 10% of the stress is relaxed; at 5 sec, 

20% of the stress is relaxed; after 50 sec, the stress relaxation gradually tends stable and 

finally, on average, 35% of the stress is totally relaxed. The mean stress after total 

relaxation is 0.64 MPa. The change of the stress with time under the constant stretch 

indicates that the human TM is a typical viscoelastic material. However, the viscoelastic 

property in response to acoustic excitation needs future study on dynamic behavior of the 

TM. 
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Figure 4.5 Normalized stress relaxation function ( )G t of nine TM specimens from stress 
relaxation tests. The solid line shows the mean value of ( )G t with standard deviation (S.D.) 
bars. 
 

      Table 4.1 lists the ultimate stress or failure stress and stretch ratio for eleven TM 

specimens with the standard deviation (S.D.). The mean failure stress is 1.66 MPa, while 

the mean failure stretch ratio is 1.23. The breaking location of TM specimens is in the 

midsubstance as observed for all specimens. 

 

Table 4.1: Ultimate stress and stretch ratio of TM specimens (N=11) 
 
 

TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8 TM9 TM10 TM11 Mean S.D.(±) 

Failure 
Stress 
(MPa) 

 

 
2.27 

 
1.14 

 
2.35 

 
2.89 

 
1.08 

 
1.01 

 
1.10 

 
1.40 

 
0.93 

 
2.03 

 
2.07 

 
1.66 

 
0.67 

Failure 
Stretch 
Ratio 
λ. 

 
1.26 

 
1.17 

 
1.28 

 
1.24 

 
1.19 

 
1.25 

 
1.16 

 
1.32 

 
1.18 

 
1.19 

 
1.35 

 
1.23 

 
0.06 

S.D. Standard Deviation                          
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4.2 Discussion on the Results 

      In this study, mechanical experiments were carried out on TM samples harvested 

from fresh cadaver temporal bones. The experimental results were analyzed using the 

hyperelastic Ogden model and it was the first time of using digital image correlation 

method to measure the deformation of ear tissues. Two forms of the constitutive equation 

and the Young’s modulus-stress or strain relationship of the TM at low stress levels (0~1 

MPa) were derived in Eqs. (4.1) ~ (4.4). It is generally accepted that the representation of 

empirical data is a non-unique process in practice [Fung, 1993]. Therefore, both Eq. (4.1) and 

Eq. (4.4) can be used to describe the behavior of the TM equally well even though they 

have different expressions due to different approaches. 

        The previously published Young’s modulus of the TM is a single value of elastic 

property ranging from 20 to 400 MPa (20 MPa by von Békésy from beam-bending test, 

40 MPa by Kirikae from dynamic tension vibration test, 23 MPa by Decraemer et al. 

from uniaxial tensile test and 30 ~ 90 or 100 ~ 400 MPa by Fay et al. from two modeling 

correlation methods). The Young’s modulus obtained in this study varies from 0.4 to 22 

MPa over the stress range from 0 to 1 MPa and associates with the constitutive equation 

of the tissue. The variation of the Young’s modulus within a low stress range from 0 to 1 

MPa, constitutive equations and the failure stress and strain of the TM obtained in this 

study are first time reported in literature. The results provide a better understanding of 

mechanical properties of the TM over low and high stress levels. Our studies also show 

that the published Young’s modulus data of the TM were measured at higher stress levels 

from 6 to 12 MPa (Decraemer et al.). The results presented in this study may help to 
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investigate the dynamic behavior of the TM and to understand whether the pre-stress 

exists in the TM structure, an interesting topic in ear tissue biomechanics.  

        The hysteresis phenomenon was observed in TM specimens during the loading and 

unloading process as shown in Fig. 4.1. The stress relaxation functions of TM specimens 

were obtained and displayed in Fig. 4.5. These results show that the TM is a typical 

viscoelastic material with the constitutive properties related to the stress and strain history. 

The hysteresis or the lag of unloading curves to loading curves indicates the loss of 

internal energy and entropy of the specimen during the deformation. Therefore, the 

loading process may be more meaningful for describing the behavior of the tissue. In this 

study, only loading curves in uniaxial tensile tests were analyzed for mechanical 

properties of the TM. It is expected that analysis on unloading curves can result in similar 

straight lines as those in Fig. 4.4, but with different slopes. 

        For the tensile test on biological soft tissues with small dimensions, it is important to 

verify the boundary effect on measurement of the sample deformation. In this study, 

digital image correlation method was applied to calculate the axial strain distribution on 

the TM specimen. The uniform strain distribution across the membrane from DIC 

analysis (Fig. 4.2B and 4.2D) and the agreement between stress-strain curves of TM 

specimens obtained by two methods (Fig. 4.2A and 4.2C) provide a standard for 

accepting experimental data. All the experimental results from uniaxial tensile tests have 

been double checked using DIC method for final acceptance. It is expected that digital 

image correlation method, as a useful tool for studying mechanical properties of the TM, 

may be extended to other ear tissues. 
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        To estimate the error induced by measurement of the specimen thickness in this 

study, different thickness values were assumed for one TM specimen to calculate its 

stress-strain relationship and Young’s modulus-stress relationship. When the thickness is 

varied from 0.03 to 0.05, 0.08 and 0.1 mm, the corresponding stress-stretch ratio curves 

are shown in Fig. 4.6A and Young’s modulus-stress relationships are shown in Fig. 4.6B. 

As seen in Fig. 4.6A, stress-stretch ratio curves are affected by the thickness, but Young’s 

modulus-stress curves only have slight differences as shown in Fig. 4.6B. The Young’s 

modulus of the TM with four different thickness values at the stress level of 0.5 MPa are 

calculated as: 14.6, 13.7, 13.1 and 13.0 MPa, decreasing slightly with the thickness 

increasing. The maximum variance is less than 1.6 MPa. This indicates that the Young’s 

modulus of the TM reported in this paper is reliable. 
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Figure 4.6 Effect of TM thickness on stress-stretch ratio curves and Young’s modulus-
stress curves. The thickness (h) was changed from 0.03 to 0.05, 0.08 and 0.1 mm. 
 

      In this study, the specimens were harvested from the posterior site of the TM and 

uniaxial tensile tests were performed along the superior-inferior or longitudinal direction 

of specimens. The TM was considered as an isotropic and homogeneous material for 

macro-mechanics study. However, the human TM is a multi-layer structure with collagen 

fibers along radial and circumferential directions [Lim, 1970]. The ultrastructure of the TM 

should be considered in mechanical measurements. Therefore, two future studies maybe 

performed following the present work. First, the finite element modeling and analysis 

technique will be used to simulate the ultrastructure of the TM and derive the stress-strain 

relationship of the TM under the uniaxial tensile test. In the meantime, specimens may be 

harvested from different locations such as the inferior or anterior site of the TM. The 

relationship between mechanical properties and the structure of the TM will be finally 

derived. Second, nanoindentation techniques will be conducted in TM samples to 
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measure mechanical properties of the TM at the micro- or nano-scale level. Research 

collaborations with Oklahoma State University are currently conducted in this direction. 

        In summary, the results obtained in this study indicate that the human TM is a 

typical viscoelastic material. The constitutive equation or stress-strain relationship of the 

TM and Young’s modulus-stress or strain relationship are derived at the stress range of 

0~1 MPa. The data provided in this study add useful information for ear biomechanics on 

both experimental measurement and theoretical analysis of ear tissues. 
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CHAPTER 5 

RESULTS OF TENDONS AND LIGAMENT 

 

      Mechanical properties of the stapedial tendon, tensor tympani tendon and anterior 

malleolar ligament were obtained from experimental measurement and modeling analysis. 

The results are given in the following sections with the discussion on each tissue. The 

results of the stapedial tendon and tensor tympani tendon are in press with Transactions 

of the ASME - Journal of Biomechanical Engineering [Cheng and Gan, 2007b] and Medical 

Engineering & Physics [Cheng and Gan, 2007c]. The manuscript of the anterior malleolar 

ligament was submitted to Biomechanics and Modeling in Mechanobiology [Cheng and Gan, 

2007d] and is under review.  

 

5.1 Stapedial Tendon 

 

5.1.1 Mechanical Properties of the Stapedial Tendon 

      Fig. 5.1A showed the transverse strain distribution across a stapedial tendon specimen 

from the DIC analysis at four steps with a constant time interval, and Fig. 5.1B showed 

the comparison of the stress-stretch loading curve measured from the MTS (solid line) 

and derived from the DIC method (broken line). The relatively uniform strain distribution 

across the specimen at each step (Fig. 5.1A) indicated that the boundary effect was 
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limited in the experiment. The stress-strain curve of the stapedial tendon obtained from 

the MTS and DIC generally agreed with each other (Fig. 5.1B). However, there is some 

deviation observed above 25% stretch (or 1.25), which may be caused by sensitivity level 

of the DIC method for large deformation. In MTS test, the specimen was treated as a 

whole unit and the grip to grip displacement was used for strain calculation. The results 

from DIC were relied on local micro-deformation in the tissue, which may have different 

response at large deformation. 
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Figure 5.1 (A) Transverse strain distribution across the tendon specimen calculated from 
DIC analysis at four time steps. The time interval for each step is 5 sec. (B) Comparison 
of stress-stretch loading curves of a stapedial tendon specimen obtained from MTS 
experiment (solid line) and DIC analysis (broken line).  
 

      Figure 5.2 showed stress-stretch curves of a stapedial tendon specimen with raw 

experimental data as well as the smoothed data fitted into the Ogden model. The 

correlation coefficient of model fitting for this specimen was 0.99, and the mean 

correlation coefficient for all specimens was 0.98 with standard deviation of 0.03. This 

indicated that the Ogden model fitted the experimental data well for the stapedial tendon. 

The hysteresis phenomenon was also shown in Fig. 5.2 by different traces of loading and 

unloading curves. 
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Figure 5.2 Stress-stretch curves of a stapedial tendon specimen obtained from the 
uniaxial tensile test. The wave-like lines were the original stress-stretch curve recorded in 
MTS. The smooth lines were obtained after the Ogden model fitting process. A hysteresis 
loop was observed for the stapedial tendon. 
 

      Figure 5.3A showed stress-stretch curves of twelve stapedial tendon specimens under 

the loading process of uniaxial tensile tests, and Fig. 5.3B displayed the mean curve with 

standard deviation. The standard deviation was increasing with the increasing stress, but 

the relative standard deviation remained the same at 0.50, which indicated that the 

variation between individual specimens was not changing with the stress level. It was 

also seen that the stress increased slowly at the beginning. The stress-stretch curve was 

almost flat when the stretch ratio was less than 1.2, and became stiffer when the stretch 

ratio continued increasing. 



 85

1.00 1.25 1.50

0

1

2

Stretch (λ)
(A)

St
re

ss
 (M

Pa
)

ST5 ST1

ST10

ST9

ST11
ST8

ST3
ST4

ST2

ST12

ST6

ST 7

ST: Stapedial Tendon

 

1.00 1.25 1.50

0

1

2

Mean ± S.D. (N=12)

Stretch (λ)
(B)

St
re

ss
 (M

Pa
)

 

Figure 5.3 (A) Stress-stretch curves of twelve stapedial tendon (ST) specimens under 
uniaxial loading processes. The maximum stretch ratio λ  was around 1.4 and the 
displacement rate was 0.01 mm/sec. (B) The mean curve of stress-stretch relationships 
obtained from twelve stapedial tendon specimens with standard deviation (S.D.) bars. 
 

      The constitutive equation of the stapedial tendon was derived based on MTS 

measured stress-strain curves (mean curve in Fig. 5.3B) after fitting into the Ogden 
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model. Two material constants were determined as 1µ =0.05 MPa and 1α =17.40 when 

the stretch ratio was less than 1.4. The constitutive equation was then derived as: 

 

               3 16.40 9.705.8 10 ( )σ λ λ− −= × −            for 1.0 1.4λ≤ < , MPa 45.10 ≤≤ σ          (5.1)  

 

      Using Eqs 3.6 and 3.7 in Chapter 3, the Young’s modulus ( λσ dd / ) and stress (σ ) 

relationships for these stapedial tendon specimens were derived and shown in Fig. 5.4. 

The Young’s modulus is linearly increased with the stress (Fig. 5.4A) and the standard 

deviation increases as the stress increases (Fig. 5.4B). The Young’s modulus-stress 

relationship of the stapedial tendon was represented by a straight line as: 

 

                35.093.11/ += σλσ dd                for 5.10 ≤≤ σ  MPa, 4.11 ≤≤ λ               (5.2) 
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Figure 5.4 (A) Young’s modulus-stress curves of twelve stapedial tendon specimens 
under uniaxial loading tests. (B) The mean value of Young’s modulus-stress curves of 
twelve stapedial tendon specimens with standard deviation (S.D.) bars. 
 
 

        Figure 5.5A showed the stress relaxation behavior of the stapedial tendon obtained 

from nine specimens. The normalized stress relaxation function ( )G t  was defined as the 

ratio between the stress ( )tσ  at time t  and initial stress 0σ . The ( )tσ  or ( )G t  decreased 

with time and finally reached a stable state at 120 sec, or the rate of stress change was 

less than 0.1% / sec. The stress was then considered as fully relaxed. The mean 

normalized relaxation function with standard deviation was shown in Fig. 5.5B. The 

mean initial stress was 2.62 MPa. After fully relaxation, on average, 45% of the initial 

stress was totally relaxed. The mean stress after total relaxation is 1.44 MPa 
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Figure 5.5 (A) Normalized stress relaxation function G(t) obtained from nine stapedial 
tendon specimens in stress relaxation tests. (B) The mean curve of G(t) of twelve tendon 
specimens with standard deviation (S.D.) bars. 
 

      Table 5.1 listed the ultimate stress and stretch ratio for eleven stapedial tendon 

specimens (one specimen was damaged before the failure test). The breaking location of 

all specimens occurred about midsubstance. 
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Table 5.1: Ultimate stress and stretch of stapedial tendon (ST) specimens 
 
 

ST 
1 

ST 
2 

ST 
3 

ST 
4 

ST 
5 

ST 
6 

ST 
7 

ST 
8 

ST 
9 

ST 
10 

ST 
11 

Mean S.D. 
(±) 

Ultimate 
Stress 
(MPa) 

 
5.43 

 
3.59 

 
2.06 

 
7.32 

 
2.34 

 
7.39 

 
2.70 

 
2.08 

 
3.31 

 
4.76 

 
3.44 

 
4.04 

 
1.95 

Ultimate 
Stretch λ 

 
1.80 

 
1.67 

 
1.45 

 
1.55 

 
1.72 

 
1.78 

 
1.62 

 
1.51 

 
1.58 

 
1.59 

 
1.85 

 
1.65 

 
0.13 

S.D. Standard Deviation 

 

5.1.2 Discussion on Stapedial Tendon Results 

      In this study, mechanical experiments were carried out on stapedial tendon specimens 

of human cadaver ears in MTS. The DIC method was used to assess the boundary effect 

on experimental data. The grip-to-grip strain of the tissue measured from experiments, 

which agreed with the strain calculated from the DIC method, was further used to derive 

the constitutive equation of the stapedial tendon.  

      The nonlinear stress-strain relationship of the stapedial tendon shown in Fig. 5.3 will 

result in stress-dependent elastic modulus for the tendon. The modulus would increase as 

the stress increases, which is the typical mechanical behavior of soft tissues. Therefore, 

the data reported in this study can be used to improve FE models of human middle ear. A 

varying modulus of the stapedial tendon at different stress levels may be used to simulate 

the middle ear response to the change of ear physiological condition such as the otitis 

media with effusion.  

       Compared with large ligaments or tendons such as the human medial collateral 

ligament (MCL) [Weiss, 2002], the stapedial tendon is much softer. The stress in stapedial 

tendon was 0.025 MPa under the stretch of 1.1, while it was 24 MPa (about 1000 times) 

under the same stretch in MCL. The difference between these two tissues may be related 

to their functions. The stapedial tendon works as one of suspensory elements in middle 
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ear to maintain the stability of ossicular chain in response to sound pressure, while the 

MCL primarily provides restraint to valgus stress at knee during walking. 

       

5.2 Tensor Tympani Tendon 

 

5.2.1 Mechanical Properties of the Tensor Tympani Tendon 

      The transverse strain distribution across a tensor tympani tendon specimen from the 

DIC analysis at four steps is shown in Fig. 5.6A. The relatively uniform strain 

distribution across the specimen indicated that the boundary effect that might be 

introduced by small dimension of the tissue is limited. Comparison between the stress-

stretch loading curve of a tensor tympani tendon specimen directly from the uniaxial 

tensile test (solid line) and that from the DIC method (broken line) is shown in Fig. 5.6B. 

The results from two approaches are in good agreement up to the stretch ratio of 1.25. 

However, there is some deviation observed above 35% stretch (or 35.1=λ ), which was 

probably caused by the same reason as we mentioned above for the stapedial tendon, i.e., 

the sensitivity level of the DIC method for large deformation.. All the results reported in 

this paper were checked through this process to ensure accuracy of the strain used in data 

analysis. 

      Figure 5.7A shows stress-stretch curves of ten specimens under loading process. Most 

specimens were stretched up to λ  of 1.4. Figure 7B displays the mean and S.D. It is 

clearly seen that the absolute S.D. increases with the stress, while the relative S.D. 

remains the same at 0.12. The stress response of the tendon is almost flat at low strain 

level, but it stiffens rapidly after the stretch ratio λ  increases above 1.2 
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Figure 5.6 (A) Transverse strain distribution across the tensor tympani tendon specimen 
calculated from DIC analysis at four time steps. (B) Comparison of the stress-stretch 
curve of a tensor tympani tendon specimen obtained from DIC analysis (broken line) and 
MTS measurement (solid line). 
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Figure 5.7 (A) Stress-stretch curves of ten tensor tympani tendon specimens under 
uniaxial loading processes. The maximum stretch ratio λ  was around 1.4 and the 
elongation rate was 0.01 mm/sec. (B) The mean value of stress-stretch relationships of 
ten tensor tympani tendon specimens with standard deviation (S.D.) bars. 
 
 
      Through the data iteration process, two material constants, 1µ  and 1α , were 

determined as 1µ = 0.01 MPa and 1α = 23.52 using the mean experimental data of Fig. 5.7. 
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Therefore, the constitutive equation of the tensor tympani tendon in the Ogden form is 

derived as 

                    4 22.52 12.768.5 10 ( )σ λ λ− −= × −          for 0.10 ≤≤ σ  MPa, 1 1.4λ≤ <          (5.3)  

 

      The Young’s modulus of each tensor tympani tendon derived from Eq. (3.7) is plotted 

against the stress derived from Eq. (3.6) as shown in Fig. 5.8A. The mean Young’s 

modulus and stress with S.D. is shown in Fig. 5.8B. It is clearly seen that the Young’s 

modulus of the tensor tympani tendon is linearly increasing with the stress, the value 

varies from 0.14 to 12.34 MPa when the stress increases from 0 to 1 MPa. The Young’s 

modulus-stress relationship of the tensor tympani tendon is thus expressed as 

 

                     26.008.12 += σ
λ
σ

d
d           for 0.10 ≤≤ σ  MPa, 4.11 ≤≤ λ                      (5.4) 
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Figure 5.8 (A) Young’s modulus-stress curves of ten tensor tympani tendon specimens 
under uniaxial loading processes. (B) The mean value of Young’s modulus-stress curves 
of ten tensor tympani tendon specimens with standard deviation (S.D.) bars. 
 

        Figure 5.9A shows normalized stress relaxation functions of ten tendon specimens. 

The stress ( )tσ  decreases with time and finally reaches a stable state after 120 seconds. 

The normalized stress relaxation function ( )G t  is defined as the ratio between stress 

( )tσ  and the initial stress 0σ . The mean normalized stress relaxation function ( )G t  with 

S.D. is shown in Fig. 5.9B. The mean initial stress for ten specimens is 1.33 MPa. Within 

one second, 21% of the stress is relaxed; after 5 second, 27% of the stress is relaxed; and 

finally after 120 second, 37% of the stress is totally relaxed. The mean stress after total 

relaxation is 0.84 MPa. 
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Figure 5.9 (A) Normalized stress relaxation functions G(t) of ten tensor tympani tendon 
specimens from stress relaxation tests. (B) The mean value of G(t) of ten tensor tympani 
tendon specimens with standard deviation (S.D.) bars. 
 

      Table 5.2 lists the failure stress and stretch of ten tensor tympani tendon specimens. 

The mean failure stress is 2.25 MPa with S.D. of 1.47 MPa, which shows the strength 

variation among tested individual specimens. The breaking location of all specimens 

occurred in their midsubstance. 
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Table 5.2: Ultimate stress and stretch of tensor tympani tendon (TTT) specimens 
 TTT 

1 
TTT 

2 
TTT 

3 
TTT 

4 
TTT 

5 
TTT 

6 
TTT 

7 
TTT 

8 
TTT 

9 
TTT 
10 

Mean S.D.(±) 

Failure 
Stress 
(MPa) 

 
1.61 

 
2.06 

 
0.98 

 
0.58 

 
1.55 

 
1.81 

 
2.65 

 
2.98 

 
2.38 

 
5.88 

 
2.25 

 
1.47 

Failure 
Stretch 

λ 

 
1.53 

 
1.59 

 
1.70 

 
1.59 

 
1.88 

 
1.71 

 
1.57 

 
1.74 

 
1.65 

 
1.69 

 
1.66 

 
0.10 

S.D. Standard Deviation 

 

 

5.2.2 Finite Element Modeling Results 

 

      The stress-stretch ratio relationships of five FE tensor tympani tendon models are 

compared with the mean stress-stretch ratio relationship of the tendon from experiments 

as shown in Fig. 5.10. The material constants from FE analysis are listed in Table 5.3. It 

is clearly seen that the FE model #3 with the fiber density of 80% has the closest 

behavior as that from experiments. The material constants of the FE model #3, 1µ = 0.007 

MPa and 1α = 20, are also close to the values obtained from experimental data.  

 

Table 5.3: Material constants of tensor tympani tendon obtained from FE models 
Model # Fiber/substance ratio 

k 
Fiber Density 

1µ  (MPa) 1α  

1 
2 
3 
4 
5 

2.3 
3.0 
4.0 
5.7 
9.0 

70% 
75% 
80% 
85% 
90% 

0.008 
0.007 
0.007 
0.006 
0.005 

25 
32 
20 
19 
23 
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Figure 5.10 Comparison between stress-stretch curves of the tensor tympani tendon 
obtained from FE models and the mean curve measured from ten tendon specimens in 
uniaxial tensile tests. The broken lines with symbols representing modeling results from 5 
FE tendon models. The solid line without symbols represents the experimental mean 
curve.   
 

5.2.3 Discussion on Tensor Tympani Tendon Results 

      In this study, mechanical experiments were performed in tensor tympani tendon 

specimens. Digital image correlation method was applied to test the boundary effect on 

experiments. The experimental data were analyzed using the hyperelastic Ogden model to 

derive the stress-strain relationship (Fig. 5.7) and Young’s modulus-stress relationship 

(Fig. 5.8). The constitutive equation (Eq. (5.3)) shows nonlinear elastic properties of the 

tensor tympani tendon for the first time in literature. 

      In stress relaxation test, an elongation rate of 1.8 mm/sec was used to elongate the 

specimen of about 0.6 mm (based on average specimen length and 40% elongation). This 

elongation rate is 180 times faster than the elongation rate used in tensile test (0.01 
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mm/sec) and can be considered as a sufficiently high rate of loading. The initial stress in 

specimen was imposed within 0.3 sec, which provided a reasonable approximation of the 

tensile stress instantaneously generated in the tissue [Fung, 1993]. However, compared with 

the ideal step function of stretching, the relaxation function obtained in this study would 

be slightly lower than that from ideality. 

      The SEM picture of a tensor tympani tendon specimen (Fig. 3.18A) shows that the 

tendon is mainly composed of collagen fibers which are embedded into ground substance 

matrix. However, it is difficult to calculate the fiber density of the tendon based on the 

picture. Therefore, five FE models of the tissue with varying fiber density were created to 

explore the relationship between the structure and properties of the tendon. The results in 

Fig. 5.10 suggest that the stress-strain curve shifts up when the fiber density increases. 

This indicates that the Young’s modulus increases with the collagen fiber density and 

mechanical properties of the tendon are related to the composition of the tissue structure. 

Note that collagen fibrils of the tendon was assumed straight and uniformly distributed in 

FE model. In real cases, collagen fibrils could be crimped. The interaction between 

collagen fibers and ground substances would also contribute to elastic response of the 

tissue, which was not included in current study. In our future studies, a more accurate 

fiber structure of the tendon will be developed and the interaction between fibers and 

ground substances will be included. 

      In summary, the results obtained in this study indicate that the tensor tympani tendon 

is a viscoelastic material with nonlinear stress-strain relationship. The constitutive 

equation or stress-strain relationship of the tendon is dependent on stress or strain level. 

The hyperelastic Ogden model provides a good representation for non-linear behavior of 
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the tendon. The data reported in this paper add useful information to ear tissue 

biomechanics through both experimental measurement and theoretical modeling analysis. 

         

5.3 Anterior Malleolar Ligament 

 

5.3.1 Mechanical Properties of the Anterior Malleolar Ligament 

 

      Figure 5.11A shows the transverse strain distribution of an AML specimen from the 

DIC analysis at four selected steps during the uniaxial loading test. Fig. 5.11B shows the 

comparison of the strain measured directly from the MTS (broken line) and that from the 

DIC (solid line). The strain distribution (Fig. 5.11A) was relatively uniform across the 

specimen at each step, with a slight increase from the left to right side of the specimen at 

last two steps. In Fig. 5.11B, the strain from MTS and DIC are in general agreement, 

although the strain from DIC is slightly lower than that from MTS. These differences 

maybe induced by geometric and structural non-uniformity of the AML tissue and 

sensitivity of the DIC method on calculating the local deformation of the tissue. In 

general, Fig. 5.11 indicates that the boundary effect of experiment is limited and the 

results are reliable. 
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Figure 5.11 (A) Normal strain distribution across the transverse surface of the AML 
specimen calculated from DIC analysis at four time steps. The No. of nodes represents 8 
locations (from left to right) across the specimen in the middle part of the grid. (B) 
Comparison of the strain obtained from MTS experiment (broken line) and DIC analysis 
(solid line). 
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      Figure 5.12A shows stress-stretch curves of nine AML specimens derived from the 

stress measured in MTS and the stretch calculated from DIC for the loading process of 

uniaxial tensile tests. Fig. 5.12B displays the mean stress-stretch curve with standard 

deviation. A nonlinear stress-stretch relationship is clearly seen in Fig. 12. The standard 

deviation was increasing with the increasing stress, but the relative standard deviation 

remained the same at 0.50, which indicated that the variation between individual 

specimens was not changing with the stress level. It was also seen that the stress 

increased slowly at the beginning, and the stress-stretch curve was almost flat when the 

stretch ratio was less than 1.2. The curve became stiffer when the stretch ratio continued 

increasing. 
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Figure 5.12 (A) Stress-stretch curves of nine AML specimens under uniaxial loading 
processes. The maximum stretch ratio λ  was around 1.5 and the displacement rate was 
0.01 mm/sec. (B) The mean curve of stress-stretch relationships obtained from nine AML 
specimens with standard deviation (S.D.) bars. 
 
 
      Figure 5.13A shows the stress relaxation behavior of the AML obtained from 9 

specimens. The normalized stress relaxation function ( )G t  decreased with time and 

finally reached a stable state at 120 sec, or the change rate of stress was less than 0.1% / 

sec. The stress was considered fully relaxed after 120 sec. The mean normalized stress 

relaxation function with standard deviation is shown in Fig. 5.13B. The mean initial 

stress was 1.13 MPa, and 33% of the initial stress, on average, was totally relaxed after 

fully relaxed. 
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Figure 5.13 (A) Normalized stress relaxation function G(t) obtained from nine AML 
specimens in stress relaxation tests. (B) The mean curve of G(t) of nine AML specimens 
with standard deviation (S.D.) bars. 
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      Table 5.4 lists the ultimate stress and stretch ratio of nine AML specimens obtained 

from failure tests. The breaking location of all specimens occurred around midsubstance 

in all the tests. 

 
Table 5.4: Ultimate stress and stretch of anterior malleolar ligament (AML) specimens 

 
 
 

AML 
1 

AML 
2 

AML 
3 

AML 
4 

AML 
5 

AML 
6 

AML 
7 

AML 
8 

AML 
9 

Mean S.D.
(±) 

Ultimate 
Stress 
(MPa) 

 
1.00 

 
0.43 

 
1.34 

 
1.83 

 
2.06 

 
1.54 

 
0.44 

 

 
0.71 

 
0.68 

 
1.11 

 
0.60 

Ultimate 
Stretch 

λ 

 
1.50 

 
1.46 

 
1.33 

 
1.71 

 
1.50 

 
1.56 

 
1.51 

 
1.42 

 
1.37 

 
1.48 

 
0.11 

S.D. Standard Deviation 

 

5.3.2 Material Modeling Results 

      The mean experimental stress-stretch curve of nine AML specimens shown in Fig. 

5.12B was used to determine material parameters, βαµ ,, 11  and k of Eq. (3.15). Table 

5.5 lists the calculated values of 1µ , 1α  and β  when k value was varied from 0 to 5, 10, 

and 20. When k=0, or the material is isotropic, we had 078.01=µ  MPa, 69.131 =α , and 

β  was not accounted for isotropic material. When k increased to 5, 10 and 20, the values 

of 1α  and β  were almost equal (13.71 ~ 13.68), or the same as the 1α  value at 0=k . 

However, the 1µ  values were decreased as k value, the stiffness of material along the 

fiber direction, increased. 

Table 5.5: Material parameters of the hyperelastic model for the AML 
 

1µ  1α  β  
k=0 0.078 13.69 – 
k=5 0.013 13.71 13.68 

k=10 0.0071 13.68 13.69 
k=20 0.0037 13.68 13.69 
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      In Weiss’s review on ligament mechanics [Weiss, 2002], the modulus of the ligament 

along the fiber direction was considered an order greater than the modulus in the 

transverse direction. The AML in this study was assumed with k = 10, and the 

constitutive equation of the AML was then derived as: 

 

                          )(01.0)(1004.1 85.769.1284.768.123 −−− −+−×= λλλλσ                                (5.5) 

 

for stress level of 0 ~ 0.5 MPa, and stretch range of 1 ~ 1.4. Figure 5.14 displays the 

comparison of stress-stretch curves obtained from Eq. (5.5) and that measured from 

experiments. It shows that the material model (Eq. (5.5)) is generally able to describe the 

AML mechanical properties.  
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Figure 5.14 The stress-stretch curve of the AML obtained from modeling analysis and the 
mean stress-strain curve measured from nine AML specimens in uniaxial tensile tests. 
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      Young’s modulus of the AML was calculated from Eq. (3.16) and plotted against the 

stress in Fig. 5.15. It is clearly seen that the Young’s modulus of the AML is linearly 

increasing with the stress. As a first approximation, Young’s modulus of the AML is 

mathematically expressed as 

 

                      22.095.8 += σ
λ
σ

d
d           for 5.00 ≤≤ σ  MPa, 4.11 ≤≤ λ                      (5.6) 
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Figure 5.15 The Young’s modulus-stress relationship of the AML obtained from the 
material model. The Young’s modulus is linearly increasing with respect to the stress. 
The values varied from 0.12 to 6.5 MPa when the stress increases from 0 to 0.5 MPa. 
 

5.3.3 Discussion on Anterior Malleolar Ligament Results 

      In this study, mechanical properties of the AML in human middle ear were first 

reported through experimental measurement and modeling analysis. The DIC method 

was used to assess the boundary effect in experiments (Fig. 5.11A) and calculate the 
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strain in middle portion of the specimen. The strain from DIC was compared with the 

strain measured in MTS (Fig. 5.11B). The consistent results from both methods were 

further analyzed to derive mechanical properties of the AML. 

      A transversely isotropic hyperelastic material model was employed to derive the 

constitutive equation of the AML. Four material parameters of the model, βαµ ,, 11 , and 

k, were determined based on regression of experimental data and material modeling 

results. The physical meaning of 1µ  and k has been stated in the Material Modeling 

section. The parameters 1α  and β  are numbers without direct physical meaning. It is 

clearly seen from Table 5.5 that the value of k only affects 1µ , which indicates that the 

increase of stiffness along the fiber direction (increase of k) results in the decrease of 

infinitesimal shear modulus (decrease of 1µ ). Since 1α  and β  are almost equal as k 

changes, Eqs. (3.15) and (3.16) can be simplified with three material parameters as 

 

                                          
1

5.115.0
1 )1()1(2 11

α
λλµ

σ
αα −+

=
−−k                                            (5.7) 

                                ])1
2

()1[()1(2 )25.0(12
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1 11 +−− ++−
+

= αα λ
α

λα
α

µ
λ
σ k

d
d                          (5.8) 

 

      The stress-strain relationships of the AML specimens shown in Fig. 5.12 are based on 

the stress measured in the middle portion of each specimen from the MTS and the strain 

measured at the same location from the DIC. For fibrous tissues like the ligament, the 

mechanical response of the tissue is mainly due to the strength of fibers inside [Weiss, 2001], 

especially when a uniaxial load is applied to the tissue along the fiber direction. In this 
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study, a local response of fibers in the middle portion of the AML was used to describe 

the mechanical properties of the ligament, which is often a good practical choice. 

However, due to the irregular geometry and inhomogeneous microstructure of biological 

tissues, the stress or strain distribution in the whole tissue is expected to be more 

complicated. A more accurate model including geometry and microstructure of the tissue, 

such as finite element (FE) model, is needed to investigate mechanical properties of the 

AML precisely.            

      The uniaxial tensile test is one of the simplest experiments to measure mechanical 

properties of soft tissue. The ligament is usually considered as a transverse isotropic 

material with collagen fibers embedded in substance matrix. The material behavior of 

ligament usually depends on fiber properties (main factor), matrix properties, fiber-matrix 

interaction, and fiber-fiber interaction. Thus, a single uniaxial test would be insufficient 

to characterize the three-dimensional material behavior of the tissue. Additional 

experiments on multiaxial quasi-static and viscoelastic material properties of the tissue 

are necessary for an accurate representation of ligament mechanics [Weiss, 2002]. 

      The nonlinear stress-strain relationship of the AML shown in Fig. 5.14 resulted in the 

stress-dependent elastic modulus for the ligament (Fig. 5.15). The modulus increases as 

the stress increasing, which is a typical mechanical behavior of soft tissues. Therefore, 

the data reported in this study can be used to improve the FE model of human middle ear. 

A varying modulus of the AML at different stress levels may be used to simulate the 

middle ear response to the change of ear physiological condition such as the otitis media 

with effusion. 
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      In conclusions, mechanical properties and dimensions of the AML in human ear are 

reported in this paper from experimental measurement and modeling analysis. This is the 

first investigation of material properties of the middle ear ligament. The data reported 

here may provide valuable information for understanding the AML and its function. 

However, the future work is needed such as using the FE modeling approach to include 

geometric configuration, micro-structural arrangement and interactions between fibers 

and ground substances on mechanical properties of the AML and developing new 

experimental methods on measurement of 2-dimensional or 3-dimensional mechanical 

properties of the AML. 
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CHAPTER 6 

 
SUMMARY AND COMPARISON OF RESULTS 

 

      Mechanical properties of four middle ear tissues: the tympanic membrane (TM), 

stapedial tendon, tensor tympani tendon and anterior malleolar ligament (AML), have 

been obtained through experimental measurement and modeling analysis. During a 

normal hearing process, all components of the middle ear work together to maintain the 

normal function of the middle ear system. Therefore, it is meaningful to compare 

mechanical properties of these tissues in following aspects: (1) the constitutive equation 

or stress-strain relationship, (2) Young’s modulus-stress relationship, (3) stress relaxation 

function, and (4) ultimate stress and strain level. 

 

6.1 Constitutive Behaviors of Middle Ear Tissues 

      The constitutive equations or stress-strain relationships of the TM, stapedial tendon, 

tensor tympani tendon and AML are compared under the stress range from 0 to 1.0 MPa, 

or the stretch ratio from 1 to 1.4, as shown in Figure 6.1. It is clearly seen that within the 

same strain level, the stress induced in the TM raises faster than the stress increasing in 

the ligament and tendons, which indicates that the TM has a higher elastic modulus than 

the stapedial tendon, tensor tympani tendon and AML, therefore. The stress induced in 

the ligament and tendons are very small at the beginning of the tensile test compared to 

the stress in the TM. At a stretch ratio of 1.1, the stress in the TM reached 0.4 MPa, while 

the stresses in the stapedial tendon, tensor tympani tendon and AML were only 0.025, 
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0.016 and 0.0162 MPa, respectively. The stress response of the tensor tympani tendon is 

very close to that of the AML within the stretch ratio of 1.2. Among these tissues, the 

tensor tympani tendon has the lowest stress response over the stretch range from 1.0 to 

1.3. 
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Figure 6.1 Stress-stretch relationships of tested middle ear tissues. 

 

      The constitutive equations of these middle ear tissues are summarized below: 

TM:                        25.76 14.380.03( )σ λ λ−= −         ( 0 1.0σ≤ ≤  MPa, 1 1.15λ≤ ≤ )         (6.1) 

Stapedial Tendon: 3 16.40 9.705.8 10 ( )σ λ λ− −= × −    ( MPa 45.10 ≤≤ σ ,1.0 1.4λ≤ < )     (6.2) 

Tensor Tympani Tendon: 

                             4 22.52 12.768.5 10 ( )σ λ λ− −= × −     ( 0.10 ≤≤ σ MPa,1 1.4λ≤ < )          (6.3) 

AML:                    )(01.0)(1004.1 85.769.1284.768.123 −−− −+−×= λλλλσ    

                                                                              ( 5.00 ≤≤ σ MPa, 4.10 ≤≤ λ )          (6.4) 
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      Figure 6.1 shows nonlinear stress-strain relationships of four human middle ear 

tissues. The stress-strain behavior of the TM is significantly different from the behaviors 

of middle ear ligaments or tendons. It is clearly seen that the human TM is much stiffer 

than the middle ear ligaments or tendons, while the middle ear ligaments or tendons are 

more stretchable then the TM. 

 

6.2 Young’s Modulus-Stress Relationships of Middle Ear Tissues 

      The Young’s modulus-stress relationships of the TM, stapedial tendon, tensor 

tympani tendon and AML are compared in Fig. 6.2 based on mean experimental data. 

The Young’s modulus of the TM was derived over three stress ranges: 0~0.1 MPa, 

0.1~0.3 MPa and 0.3~1 MPa, while the modulus of the ligament or tendons was derived 

in an overall stress range of 0~1.5 MPa. 
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Figure 6.2 Young’s modulus-stress relationships of tested middle ear tissues. 
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      It is not surprised to see that the TM has the highest Young’s modulus than the 

middle ear ligament and tendons as being predicted from their stress-strain relationships 

shown in Fig 6.1. However, two tendons (stapedial tendon and tensor tympani tendon) 

have almost the same Young’s modulus, and the ligament (AML) has the lower Young’s 

modulus than other tissues. 

      Again, quantified Young’s modulus-stress relationships of four middle ear tissues are 

summarized here: 

 

TM:                     32.16 0.398d
d
σ σ
λ
= +       ( 0 0.1σ≤ <  MPa)  

                             29.75 0.645d
d
σ σ
λ
= +       ( 0.1 0.3σ≤ ≤  MPa)                                  (6.5) 

                             17.65 4.274d
d
σ σ
λ
= +       ( 0.3 1.0σ< ≤  MPa) 

Stapedial Tendon: 11.93 0.35d
d
σ σ
λ
= +         ( 5.10 ≤≤ σ  MPa)                                    (6.6) 

Tensor Tympani Tendon: 26.008.12 += σ
λ
σ

d
d          ( 0.10 ≤≤ σ  MPa)                       (6.7) 

AML:                   22.095.8 += σ
λ
σ

d
d           ( 5.00 ≤≤ σ  MPa)                                    (6.8) 

 

      In conclusion, the Young’s modulus of human middle ear tissues shows a linear 

relationship to the stress induced in the tissue. The TM has a higher Young’s modulus 

than middle ear ligament or tendons at the same stress level, while the AML has the 

lowest Young’s modulus at that stress.   
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6.3 Stress Relaxation Functions of Middle Ear Tissues 

 

      The normalized stress relaxation function of the TM, stapedial tendon, tensor tympani 

tendon and AML are compared in Fig. 6.3. The mean initial stress and the mean relaxed 

stress obtained after fully relaxation from each group of specimens are listed in Table 6.1.  

 
Table 6.1: The mean initial stress and fully relaxed stress of middle ear tissues 

 Mean Initial Stress  
(MPa) 

Mean Relaxed Stress 
(MPa) 

TM 1.02 0.64 
Stapedial Tendon 2.62 1.44 

Tensor Tympani Tendon 1.33 0.84 
AML 1.13 0.76 
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Figure 6.3 Normalized stress relaxation functions of tested middle ear tissues. 
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     It is noted that all the tissues tested in this study are fully relaxed in about 120 seconds 

The stapedial tendon has the highest initial and relaxed stress on average from Table 6.1, 

while the lowest normalized stress relaxation function in Fig. 6.3. 

  

6.4 Ultimate Stress and Stretch Ratio of Middle Ear Tissues 

      The mean ultimate stress and stretch ratio of the TM, stapedial tendon, tensor tympani 

tendon and AML are summarized in Table 6.2, with standard deviation (S.D.). We can 

see that the ligament or tendons are more stretchable than the TM with higher strength 

along the longitudinal or fiber direction of the tissue. The AML has the lower ultimate 

stress than other tissues. On average, the stapedial tendon has the highest ultimate stress 

and stretch ratio among these middle ear tissues. 

 

Table 6.2: The ultimate stress and stretch ratio of tested middle ear tissues 
 Mean Ultimate Stress 

(±S.D.) 
Mean Ultimate Stretch 

(±S.D.) 
TM 1.66 MPa ± 0.67 1.23 ± 0.06 

Stapedial Tendon 4.04 MPa ± 1.95 1.65 ± 0.13 
Tensor Tympani Tendon 2.25 MPa ± 1.47 1.66 ± 0.10 

AML 1.11 MPa ± 0.6 1.48 ± 0.11 
 

 

      In summary, mechanical properties of four middle ear tissues were summarized and 

compared in sections 6.1 to 6.4. The human TM has significantly different properties 

comparing to middle ear ligament and tendons, while the behaviors of middle ear 

ligament and tendons are close to each other.  
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6.5 Comparison based on Structures and Functions  

        The differences of mechanical properties among these middle ear tissues are related 

to their distinctive structures. The TM and middle ear ligament or tendons have fiberous 

microstructure with collagen fibers organized into the matrix of ground substance. 

However, the TM has multi-layers with collagen fibers along radial and circumferential 

directions [Lim, 1970], while the tendon or ligament is generally considered as a collagenous 

tissue with the parallel-fibered structure [Kastelic et al., 1978]. The variations of fibril density of 

a single fiber and the packing density of the fibers within the layer or cross-section area 

of these tissues have been reported [Fay et al., 2005] and observed in our study under the 

scanning electron microscope (SEM). The SEM pictures of the tensor tympani tendon 

and AML are shown in Fig. 3.18A and Fig. 3.19 in Chapter 3, and the SEM pictures of 

the TM and the stapedial tendon are given in Fig. 6.4A and 6.4B here. The SEM pictures 

at the same magnification (5000×) illustrate that the TM has different packed fiber 

density from the stapedial tendon, as well as different microstructure inside the tissue. 

The fiber bundles of the TM are probably taut in the relaxed state, therefore the fibers of 

the TM respond to the tension immediately at the beginning of the tensile test (Fig. 6.1). 

While the fiber bundles of the stapedial tendon are somehow wavy in the relaxed 

condition, but become much straight under the tension. Therefore, the stress-strain curve 

of the stapedial tendon (Fig. 6.1) is relatively “flat” at the beginning of the tension when 

fibers are still coiled or buckled, but the curve stiffens rapidly when these fibers are fully 

straightened or taut and start to respond to the high tension. 

      The microstructures of the tensor tympani tendon and AML show similar wavy fibers 

as the stapedial tendon but different packed fiber density. Therefore, the stress-strain 
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relationships of the ligament and tendons are different as shown in Fig. 6.1. Moreover, 

the properties imparted by the structure enable tissues to perform their physiological 

functions well. The middle ear ligament or tendons function as a suspensory element in 

the middle ear while the TM receives sound pressure and initiates the motion of the 

ossicular chain. Therefore, the TM sustains more strength than the middle ear ligaments 

and tendons, and shows higher Young’s modulus than other tissues. 

 

 
(A)  

 

 
(B)  

Figure 6.4 (A) Microstructure of the TM under SEM (5000x). (B) Microstructure of the 
stapedial tendon under SEM (5000x). 
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CHAPTER 7 

 
APPLICATION 

 

      Mechanical properties of the tympanic membrane (TM), stapedial tendon, tensor 

tympani tendon and anterior malleolar ligament (AML) have been obtained through 

mechanical experiments and theoretical analysis. The geometric information of these 

middle ear tissues was also measured by image processing techniques and presented with 

statistic significance. The results were used in a 3-dimensional finite element (FE) model 

of human ear developed by our group [Gan et al., 2004] to investigate the change of middle ear 

function under the normal and pathological conditions, such as the detaching of middle 

ear ligaments or tendons caused by middle ear diseases, such as otitis media with effusion. 

The results presented in the following sections have been reported by Gan et al. in the 4th 

international symposium on middle ear mechanics in research and otology [Gan et al. 2007]. 

 

7.1 Finite Element Model of Human Ear 

      A 3-dimensional FE model of human ear (Fig. 7.1) reported by Gan et al., 2004 was 

used in this study. The FE ear model was created based on a complete set of histological 

sections from a left human temporal bone. Geometric configurations and material 

properties of the components of the model were listed in Tables 1-3 in Gan’s paper [Gan et 

al., 2004]. Based on the measured results in Chapters 4 and 5 or Chapter 6, the Young’s 

modulus of the TM, stapedial tendon, tensor tympani tendon and AML would be 15, 6.5, 

6.5 and 4.5 MPa, respectively, at the physiological stress level of 0.5 MPa [Prendergast 1999]. 
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These data were employed in the FE model, and the material parameters used for Gan’s 

model and the model in this study are listed in Table 7.1.    

 

 

 

Figure 7.1 A 3-dimensional finite element model of human left ear with outer and middle 
ear parts. 
 

 

Table 7.1: Young’s modulus of middle ear tissues in Gan’s model and this study  
Young’s Modulus Gan’s Model (MPa) This Study (MPa) 

TM 35, 20 15,10 
Stapedial Tendon 52 6.5 

Tensor Tympani Tendon 70 6.5 
AML 21 4.5 

Note: The first number in the TM row represents the modulus along the radial direction, 
the second number represents the modulus along the circumferential direction. 
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7.2 Finite Element Analysis 

      The acoustic-structural coupled analysis was employed to investigate the acoustic 

effect on mechanical vibration transmission in the ear using the FE model with material 

properties from this study. A uniform pressure of 90 dB SPL (0.632 Pa, rms value) was 

applied in the canal side at a location of 2 mm away from the TM. The harmonic analysis 

was conducted on the model over the frequency range of 200–8000 Hz in ANSYS 

(ANSYS Inc, Canonsburg, PA). To simplify the FE calculation, the acoustic-mechanical 

coupled analysis was only involved between the external ear canal air and middle ear 

ossicular structure. This ear canal-TM coupling is called “one-chamber” acoustic-

mechanical analysis [Gan 2004]. The magnitudes of displacements of the TM at the umbo 

and stapes footplate were calculated and compared with temporal bone experimental 

results [Gan 2007]. One of pathological conditions of the middle ear, i.e., the detachment of 

middle ear ligaments and tendons, was simulated in FE model by setting a very low 

Young’s modulus (0.1 MPa) for the detached ligament or tendon, and created in temporal 

bones by cutting the ligament or tendon through the surgical approach. Four middle ear 

ligaments and tendons were selected for this study: superior malleus ligament (C1), 

posterior incus ligament (C3), stapedial tendon (C5), and tensor tympani tendon (C7) in 

the order of cutting C5, C3, C7, and C1. Following the ligament cutting sequence in bone 

experiments, we created the same sequence of removing ligaments in the FE model and 

performed the FE analysis sequentially. The displacements at the umbo of the TM and 

footplate of the stapes were calculated and the results were compared with the bone 

experimental data. 
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7.3 Results 

      Figure 7.2 shows mean frequency response curves of displacement at the umbo of the 

TM measured from 10 bones following the ligament cutting sequence: control or intact 

ossicular chain→ C5→C3→C7→C1 cut. Figure 7.2A displays the magnitude and Figure 

7.2B the phase angle. The results in Fig. 7.2 show that destruction of ligaments C5, C3, 

C7 and C1 affects the umbo movement at low frequencies (f< 2 kHz). The first cut C5 

did not show much effect on the umbo vibration (<0.5 dB) and the C7 cut showed 

stronger influence on TM displacement than other ligaments. 
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Figure 7.2 Mean peak-to-peak displacement curves measured at the umbo of the TM 
under the control and ligament cut sequence: C5→C3→C7→C1. (A) Magnitude; (B) 
phase angle. 
 
 
 
      The mean displacement curves of the stapes footplate from 10 bones following the 

ligament cutting sequence are shown in Fig. 7.3. Figure 7.3A represents the magnitude 

and Figure 7.3B the phase angle. Compared with the umbo displacement data, the 

destruction of ligaments limited its effect on the footplate movement at frequency below 

1 kHz. 
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Figure 7.3 Mean peak-to-peak displacement curves measured at the stapes footplate 
under the control and ligament cut sequence: C5→C3→C7→C1. (A) Magnitude; (B) 
phase angle. 
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      Figure 7.4 displays the FE model-predicted displacement at the umbo of the TM with 

the magnitude (Fig. 7.4A) and phase (Fig. 7.4B) in response to the ligament removal 

sequential. The model results show that ligaments C5 and C3 did not have much effect on 

the umbo movement, but C7 and C1 had considerable effect on the umbo movement at 

low frequencies (f<2 kHz). Compared with the experimental data in Fig. 7.2, the model-

predicted umbo displacement was increased more after C7 or C1 removal at f≤1 kHz. It is 

also noticed that the ligament removal did not affect the umbo movement at high 

frequencies (f≥2 kHz) shown in the experiments (Fig. 7.2) and FE model (Fig. 7.4). 

However, the umbo displacement from the model was decreased faster than that 

measured from the bones at frequencies 2 to 8 kHz. 
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Figure 7.4 FE model-derived umbo displacement curves under the normal and ligament 
removal sequence: C5→C3→C7→C1. (A) Magnitude; (B) phase angle. 
 
 
 
      Fig. 7.5 shows the FE model-derived displacement curves of the stapes footplate 

under destruction of each ligament following the bone experimental sequence. The model 

results indicate that the removal of middle ear ligaments only affected the footplate 

displacement at f<1 kHz and there was no obvious difference observed between 

ligaments. Similar to the umbo, the footplate displacement from the model was decreased 

faster than that measured in bones at frequencies 1 to 8 kHz. 
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Figure 7.5 FE model-derived stapes footplate displacement curves under the normal and 
ligament removal sequence: C5→C3→C7→C1. (A) Magnitude; (B) phase angle. 
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7.4 Discussion 
 
      Both experimental and FE modeling results show that destruction of middle ear 

ligaments/tendons affects the TM and stapes footplate vibrations at low frequencies (f≤1 

kHz). The tensor tympani tendon (C7) and superior malleus ligament (C1) may play more 

important role for acoustic-mechanical transmission compared with other ligaments. The 

effects of ligaments on transfer function of the middle ear are frequency sensitive and 

varying with individual ligament. 

      Mechanical tests of middle ear ligaments and tendons have shown that the ear tissues 

are viscoelastic materials and the Young’s modulus changes with stress level. In this 

study, we employed the preliminary data obtained from uniaxial tensile tests on the TM, 

stapedial tendon, tensor tympani tendon and anterior malleolar ligament into our model, 

and the results showed that the new mechanical property of the tissue had improved the 

accuracy of the model for predicting the ligament function on umbo and stapes 

movements. 
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CHAPTER 8 

 
CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

      The research works presented in this dissertation include:  

1. a review on mechanical properties of four middle ear tissues (tympanic membrane, 

stapedial tendon, tensor tympani tendon and anterior malleolar ligament) 

published in literature through either experimental measurement or modeling 

analysis; 

2. a review on fundamentals of biomechanics study including mechanical 

experiments and computational modeling analysis such as constitutive modeling 

and FE method;  

3. mechanical properties of four middle ear tissues (tympanic membrane, stapedial 

tendon, tensor tympani tendon and anterior malleolar ligament) obtained from 

experimental measurement and theoretical analysis; 

4. the microstructure of four middle ear tissues observed under the SEM and their 

geometric information with statistic significance; 

5. a practicable method to determine mechanical properties of middle ear tissues 

through experimental measurement (with the aid of DIC method to evaluate 

boundary effects of experiments) and theoretical analysis (material modeling and 

FE method);  
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6. an application of determined mechanical properties of four middle ear tissues in a 

FE human ear model to predict the transfer function of middle ear in the normal 

and pathological condition (detachment of middle ear ligaments or tendons), 

which were compared with temporal bone experimental results. 

      The objectives formulated for this research in Chapter 1 are all fulfilled. First, the 

results of Chapter 4 described viscoelastic properties of the TM. Second, the results of 

Chapter 5 gave mechanical properties of three middle ear ligament and tendons. Third, 

applications of determined mechanical properties of middle ear tissues were performed in 

Chapter 7 with improved FE analysis results. Finally, based on results presented in this 

study, methods introduced in Chapter 3 are proved to be practical and reliable in 

determining mechanical properties of middle ear tissues with limited dimensions. Five 

approaches proposed at the end of Chapter 1 were thus feasible and this research work 

was successfully accomplished. 

      The major contribution of this research is to provide the new and useful data on 

mechanical properties of middle ear tissues for study of ear mechanics, which are 

unavailable in literature. The other contribution of this study is to develop a practical 

method to determine mechanical properties of middle ear tissues, and the method can be 

extended to the study of other biological soft tissues in the future. However, the challenge 

of this research is to dealing with middle ear tissues with small dimensions in the order of 

1 or 2 mm. The reliability of experimentally measured data has to be verified carefully 

through image processing techniques and modeling analysis approaches. All the results 

presented in this study have been evaluated through those steps. 
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8.2 Future Work 

      Following our current works on mechanical properties of middle ear tissues, 

additional research issues that ought to be explored to extend our understanding on ear 

tissue mechanics are discussed in this section. 

 

8.2.1 Age-Related Study 

      It is realized that mechanical properties of biological soft tissue are related to the age 

or disease state of the donor. For example, an old person or a person with otitis media 

with effusion might have thickened eardrum or thinner middle ear ligaments or tendons 

due to the structural change of the tissue by the age or disease. The mechanical behaviors 

of the tissue from this donor were different compared to the performance of tissues from 

a young or healthy person. Therefore, the mechanical tests on tissues from different age 

groups will be meaningful to explain age effect on mechanical properties of middle ear 

tissues. 

 

8.2.2 Micro-Structural Modeling 

      In current study, a simple FE model of the tensor tympani tendon has been created to 

estimate the relationship between collagen fibers and ground substances of the tissue. In 

our future study, a more complicated FE model of the tissue will be developed, which 

will evaluate the effect of collagen fibers, effect of ground substances, and interactions 

between fibers and ground substances, in order to better understand the constitutive 

behavior of middle ear tissues. 
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8.2.3 Dynamic Experiment 

      As we have mentioned in Chapter 1, the middle ear functions as a transformer to 

transmit input sound waves into mechanical vibrations through the TM. In another word, 

the TM is the first structure which initiates the hearing process under the acoustic 

excitation across the auditory frequency range (200 ~ 8000 Hz). Therefore, it would be an 

interesting topic to measure the dynamic property of the TM corresponding to acoustic 

excitation at frequency domain. In the future dynamic experiment, the vibration of the 

TM driven by sound waves will be measured through the laser Doppler vibrometer or 

opto-electronic holography. The experimental data can be analyzed through the modeling 

approach to determine the dynamic modulus of the TM in frequency domain. The method 

could be extended to rest of middle ear tissues for modeling dynamic response of the 

whole middle ear system. 
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