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Chapter 1

Introduction

1.1 General History of Radiation Dosimetry

The field of modem radiation dosimetry had its beginnings in the late 1940's and early

1950's with the work of Randall & Wilkins, Garlick & Gibson, and Daniels as well as

many others [1.1]. Research on luminescence produced during thermal stimulation of

materials following their irradiation led Daniels and his research group at the University

of Wisconsin to the observation that the intensity of luminescence produced by a material

during heating increased with the dose of radiation absorbed by the material. This led

them to suggest the use of the luminescence signal produced during heating as a tool for

radiation dosimetry.

Since that time the application of luminescence techniques to the field of radiation

dosimetry has grown immensely. Luminescence dosimeters have been produced for the

measurement of heavy particles such as neutrons and alpha particles as well as high­

energy photons such as X-rays and gamma rays [1.2]. This work has led to the

advancement of two types of luminescence as dosimetry techniques. These are themlally

stimulated luminescence known as thermoluminescence (TL) and optically stimulated

luminescence (OSL). These two techniques have been widely used in the field of

commercial radiation dosimetry and shall be discussed in greater detail in the chapter



two. For now we simply note the particular importance of TL and OSL to the field of

radiation dosimetry as well as to the work presented in this thesis.

Through the years great effort has been expended in the search for suitable

materials for application in TL and OSL radiation dosimetry. Although numerous

materials have been studied, by far the most widely used material has been lithium

fluoride (LiF). Since its first use in the 1950's in atomic bomb research LiF has been a

popular material in both commercial and research applications of thermoluminescence

dosimetry (TLD). However, the complicated nature of the TL signal of LiF has helped to

fuel the search for alternative materials for use in dosimetric purposes. Over the years

numerous materials have been suggested as altematives. These materials include

beryllium oxide (BeO), calcium sulphate doped with Oy and Tm (CaS04:Dy,

CaS04:Tm), calcium fluoride (CaF) doped with several different types of impurities just

to name a few of the more popular ones [1.3]. In particular, an increasingly popular

material is aluminum oxide (Al20)) which is the subject of the research presented in this

thesis.

1.2 Aluminum Oxide for use in radiation dosimetry

The use of aluminum oxide (AbO) ) was suggested as an altemativc to LiF as early as

1957 by Daniels, but was soon rejected because of its lack of sensitivity of the TL signal

[1.3]. Over the years several fonns of AI20~, varying mostly in the type of dopants, have

been tested and used with limited success in the area ofTL dosimetry. It wasn't until the

introduction of carbon-doped aluminum oxide (AI 20 1:C) that this material began to sec

widespread use in the area ofTL dosimetry r1.3].
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Since then, Ab03:C has been widely used in many forms in both the research and

commercial arenas. Popular fonns include single crystals consisting usually of a disk

fi ve mi lIimeters in diameter and one millimeter thick cut directly from the as-grown

crystal. and powders consisting of the as-grown crystal unifonnly ground to grains of

about 100 microns in size. Also, Ab03:C has been grown with several types of

additional dopants for the purpose of maximizing its efficiency. Several of these dopants

include titanium, magnesium, chromium, silicon, yttrium, and nickel.

Ab03:C is grown from the melt in the format of single crystal rods. The crystals

produced by this method contain certain intrinsic impurities that are unintentionally

introduced during the growth process, as well as those intentionally introduced as

dopants. Common intrinsic impurities include iron, silicon, calcium, chromium, and

titanium [1.4]. These impurities are products of the growth process and are present in a

dosimetry quality crystal only in trace amounts. The added dopants are added in

controlled amounts, and are found in concentrations ranging from as little as len parts per

million to as much as several thousand parts per million [1.4]. Crystal growth is carried

out in a highly reducing atmosphere in the presence of carbon as well as any other desired

dopants added to the melt. As the growth proceeds, the presence of carbon in the process

catalyses the production of oxygen vacancies in the crystal [1.5]. It is these vacancies

that are responsible for the luminescence produced by AI20 3 :C during a TL or OSL

measurement.

Since the introduction of carbon-doped aluminum oxide, it has been used ill

several types of TL and OSL dosimeters. In particular, it has proven to be a quite

versatile material for application to the measurement of dose from high-energy photons.



Ah03:C dosimeters are now conunercially available for measurement of absorbed dosed

of gamma rays, beta particles, X-rays and UV light.

1.3 This Thesis

In order to develop a material for the application of thennoluminescence dosimetry

(TLD) or optically stimulated luminescence dosimetry (OSLO) it is necessary to

understand the nature of its defects. It is important to know the changes in the properties

of these defects during thennal or optical stimulation to clearly understand the processes

that produce the luminescence signal. Knowledge of the behavior of these defects will

give us the understanding necessary to better engineer AI 20 J :C for luminescence

dosimetry, as well as design OSLO and TLD techniques better tailored to the

luminescence signal of the material.

In the case of AI 20 3:C, the defects of interest are the oxygen vacancies produced

in the crystal growth process. An oxygen vacancy leaves the cryslal lattice with a 2+

charge imbalance in the local region around the vacancy. This leads to the vacancy being

tilled with two electrons to restore the local charge bal"lncc. A vacancy tilled wilh two

electrons is known as an F center. A vacancy filled with one electron (leaving an overall

1+ charge imbalance) is known as an F+ center. This process would involve either the

recombination of an electron with an F+ center to produce an excited F center, or the

recombination of a hole with an F center to produce an excited F+ center. Either of the

excited vacancies will relax to lower state of energy via a radiative process producing

luminescence [1.5].

Exposure of AI20.1:C to radiation causes electrons to be ionized into the

conduction band ami holes to be ionized into the valence band The ionized electron and
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hole are then free to move around the crystal lattice where they may encounter a defect

center that has the ability to trap the ionized charges (electronlholes). The energy level of

a charge trapped at a defect site will be less than the energy of a free charge. The

difference in energy of these two states is known as the activation energy of the site. A

charge can be trapped at a defect site by the coulumbic potential of the site. The trapped

charge will then relax into the ground state of the site possibly producing luminescence.

Stimulation (typically by thennal or optical means) comparable to the activation energy

of the defect site may release the charge from the trap site where it is again free to move

ahout the Jattic~. The charge may then encounter an F or F+ center where recombination

will take place. This process gives the basis for the TL and OSL process observed in

irradiated Ah03:C. A detailed discussion of TL and OSL processes will be given in

Chapter 2.

The position and shape of the TL signals, which is known as the TL glow curve,

has been studied in great detail and these properties are well known for AI 20,:C.

However, it is not well known whether the trapped charges released during thelmal

stimulation are electrons or holes. The purpose of this research is to gain a deeper

understanding of the luminescence processes in AI 20 3:C through the monitoring of the

changes in F and F+ center concentrations while the sample is heated during a TL

measurement. For this research the following experimental techniques were used to

obtain infonnation about the charge processes invol ved in TL (each of these experiments

will be explained in greater detail in chapter 3). The optical absorption (OA) spectrum of

irradiated AI 20 3:C was measured in the wavelength region of F and F+ center absorption

as the sample was heated. From these measurements the concentrations of F and F+



centers will be detennined as a function of anneal temperature. The OA data was then be

compared to TL data, the TL emission spectrum, and thermally stimulated conductivity

(TSC) data collected from the same samples. From comparison of these measurements, a

better understanding of the nature of the recomhination process in Alz0 3:C will be

gained.
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Chapter 2

Background and Theory

2.1 Energy Bands and Charge Traps

During the formation of a solid, the overlap of atomic potentials due to the close packing

of the atoms causes a splitting of the atomic energy levels. This results in the fonnation

of a large number of closely packed energy levels. These levels combine to form

continuous energy bands throughout the crystal. The uppermost filled energy levels foml

the valence bands and the lowest empty levels form the conduction band of the materials.

Electrons in the crystal wi 11 occupy energy states in these two bands. The

occupancy of each band is given by the density of states function [6]

neE) = Z(E) * feE)

wheref(E) is the Fermi-Dirac distribution given by the equation

feE) = I
(exp[(E - EJ)/kT]+ 1)

(2.1 )

(2.2)

From equation 2.1, the density of the occupied energy states is n(E), the density of the

available energy states in a particular energy band is Z(E) , and Er is the Fermi level of

the crystal. At absolute zero, aJ] the energy states below the Fermi level are occupied,

and above all energy states are empty. For non-conducting materials the Fermi level is

above the top energy level in the valence band. This results in the valence band being

completely filled, and no conduction of charge can take place ill the valence band.
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For conduction to take place in these materials, an electron must absorb enough

energy to be excited into the unoccupied levels of the conduction band. The excitation

must be large enough to overcome the energy gap from the top of the valence band to the

bottom of the conduction band. A diagram of the band structure is shown in figure 2.1.

conduction band

band gap

electron Trap

Fennj level

•recombination center

valence band

Figure 2.1: Energy band diagram for insulators and semiconductors representing the
filled energy states of the valence band, the empty states of the conduction band, and
the relation of electron traps and recombination centers to the Fermi level.

For an ideal crystal, the only allowed energy levels would be those contained in

the valence and conduction bands. Energy levels in between these two bands are not

allo\\ed and are said to be "forbidden." In real crystals, the lattice will contain occasIOnal

defects. These defects include atoms displaced from a lattice site, or interstitial atoms,

along with atoms missing from a lattice site, or vacancies, and also impurity atoms that

substitute in place of the regular atoms in the lattice [2.1]. The occurrence of defects will
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cause the creation of forbidden energy levels within the energy gap (or band gap). The

forbidden energy level created by the defect is only present locally near the defect.

Therefore the energy levels arising due to these defects are known as localized states.

For the case of wide band gap semiconductors and insulators the localized states

can play two roles in the production of luminescence. These are the roles of charge trap,

and recombination center. For the most part, a localized state with an energy level below

the Fermi level will be considered a recombination center due to the high probability of a

free charge recombining at this localized center. A localized state with an energy level

above the Fermi level will be considered a trap due to the high probability of a free

charge becoming trapped at this site. The relative locations of the traps and

recombination centers in the band gap are shown in figure 2.1.

2.2 Concepts of Thermoluminescence in Solids

Luminescence in a material is produced following the absorption of energy from an

external source. This luminescence takes place in the form of emission of light from the

sample. Absorption of sufficient energy can excite charge carriers in the fonn of

electrons (e) and holes (h) into the valence and conduction bands respectively. These

charges are free to move about in the delocalized bands until they either recombine with

each other or become trapped at some localized state with an energy level within the band

gap. Emission from a material may be described as either fluorescence or

phosphorescence depending on whether the excited state between absorption of energy

and production of emission due to recombination involves the charge being trapped in a

metastable state or not. If emission occurs due to the being excited to a higher energy

state, but not ionized, then the emission due to relaxation of the center is known a~



fluorescence [1.2]. If however, the return to the groWld state is delayed due to the

transition of the charge into and out of a localized state before recombination and

emission occur, then this type of emission process is known as phosphorescence.

Emission in a phosphorescent process may be greatly delayed depending on the

energy level of the localized state into which the charge makes a transition. If a transition

into a localized state m occurs at a temperature T, where the energy M (known as the

activation energy of the trap) of separation between m and the excited state is greater than

several kbT (kb is Boltzmann's constant), then the charge is likely to stay trapped in m for

an extended period of time. Given a Maxwellian distribution of trap energies, the

probability p per unit time for thermal excitation from the trap is exponentially dependent

on the temperature according to

-M
p = s * exp[--]

kbT
(2.3 )

where s is a constant with units reciprocal time and M is the activation energy of the trap

[1.2]. Therefore it is seen that the key feature in the production of phosphorescence is the

amount of time the charge spends in the localized trap. Then from equation 2.3, the

lifetime of the trap can be seen to last as long as the temperature T is low enough to

sufficiently slow down the thermal emission rate.

Taking from the work done by Randall and Wilkins [2.2] on the production of

luminescence, the rate of thermal excitation of electrons from a trap can be written by the

equation

dn - 6.E
- - = n * s *exp[--]

dt khT

10
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with n equal to the concentration of trapped electrons, where the constant s is now known

as the frequency factor with units of inverse seconds, and the negative sign indicating a

loss of trapped electrons. Furthermore, the assumption is made that only one trap and

one recombination center take place in the luminescence process and that released

electrons can only recombine and cannot re-trap at the trapping site. Under these

conditions, the intensity of the luminescence will be seen to depend upon the rate of

recombination, which is equal to the rate of electron detrapping and can be given by the

equation.

dn -M,
J(t) =-- =-'7* n * 5 * exp[--]

dt kbT

where 1] is the luminescence efficiency of the material and is often a constant.

(2.5)

Electrons trapped in a localized state with activation energy such that IlE » k,J

will require an input of external energy to de-trap the electron. If that energy is supplied

hy raising the temperature of the sample at an arbitrary rate, the probabi Iity that the

electron will be released from the trap will increase according to equation 2.3 producing

an increase in the luminescence emission. Since this emission is due to the increase in

temperature, it is called thermoluminescence (TL) (which should marc appropriately be

called thermally stimulated luminescence (TSL». During such a TL measurement the

luminescence will increase until the population of trapped electrons is depleted. After

this point as the temperature is increased further, the luminescence will fall offproducing

a characteristic TL peak with a maximum at a temperature that is related to the activation

energy 6..£ of the trap, the frequency factor s, and the heating rate fJ [2.2].

A TL measurement requires the pertubation of the system from thermodynamic

equilibrium by the absorption of energy usually in the form of ionizing radiation. This
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ionizing radiation causes the trapping of electrons and holes in a metastable state lying

above the Fermi level and are typically empty. This is then followed by the thermally

assisted release and recombination of electrons and holes which is accompanied by the

measurement of the emission produced in the sample during relaxation of the

recombination centers back to their ground state [2.3].

In order to describe a simple TL process, we will make several definitions and

assumptions. First of all we define that the heating of the sample during measurement be

preformed at a linear rate according to the equation T(t) = To = {Jt, where To is the initial

temperature. Also, we adopt the definition of trapping states to be those at which the

probability of transition of the trapped charge into the delocalized band is greater than the

probability of recombination of a free charge of opposite sign. Conversely, the definition

of a recombination center is defined as a site with a greater probability of recombination

occurring than thermal release from the site. Then we make the assumptions that all

transitions out of the localized traps take place via the delocalized bands. Also,

transitions of electrons from the conduction band into localized traps are nonradiativc

producing only phonons, and transitions of electrons from the conduction band into

recombination sites (trapped holes) are radiative producing photons. Finally, assuming

for this treatment of TL that the only type of charge that is released during heating are

electrons. We note here that, it could have just as easily been assumed that only holes are

released during heating.

From the above assumption that no trapped holes are released during heating, we

see that the only way that the trapped hole concentration (nil) changes is through

l~



recombination. This allows us to define the luminescence intensity as the change in the

recombination centers nil. Using these assumptions, we can express the luminescence

intensity as

I TL =
dn h

dt
(2.6)

During irradiation, we see that electron-hole pairs are created which can be trapped at

electron trap and hole trap (recombination) sites. After this, the sample is heated to

release the trapped charges and produce the TL emission. The trapping, release, and

recombination processes are shown in figure 2.2. We can develop a picture of the TL

process by the development of expressions for the change in the number of trapped

electrons, trapped holes and free electrons in the conduction band during heating.

Expressions for the changes in these quantities can be expressed by the equations

dn -M
- = -ns *exp[--] + n (N - n)A
dt k T (" I (

b

dn
__II = -n n * A
dt l" h r

(2.7)

(2.8)

dnl"

dt dt dt
(2.9)

where Il( IS the concentration of free electrons in the conduction band, nil is the

concentration of holes trapped at recombination sites, Nt is the total number of traps, AI

and A, arc: the transition coefficients of free electron and free holes respectively, and all

other quantities remain as previously defined. The transition coefficients Ar and AI are

defined as the product of the thermal velocities of the respective charge carriers and the

capture cross section of the centers. Also, since electrons and holes are created in pairs,

the total number of holes and electrons present in the sample will be equal and expressed

13



conduction band

(a) (b) (c)

valence band

Figure 2.2: (a) Generation of electron-hole pairs by irradiation, (b) trapping of
electrons, and (c) release of electrons and recombination of electron-hole pairs to
produce emission.
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by the equation

(2.10)

Equations 2.7 - 2.9 are the rate equations representing the movement of charge during the

heating cycle of a TL measurement. These equations are non-linear, coupled, first order

differential equations and are in general analytically insoluble. To develop an analytic

expression for the TL intensity as a function of temperature (In[7]), several assumption

must be made to further simplify the above differential equations.

One important assumption is that of "quasi-equilibrium" (QE). This assumption

requires that the number of electrons in the conduction band be changing much slower

than the number of trapped charges. This assumption is expressed by the eq uations

dn( «dn ,
dt dt

(2.11 )

(2.12)

Applying the approximation made in equation 2.11 to equation 2.9 yields the relation

dn" dn
-:::::;--

dt dt

Substituting equations 2.7 and 2.8 into equation 2.13 and solving for n, gives,

(2.13 )

(2.14)

Substituting this result into equation 2.8 and using equation 2.6 for the TL intensity we

get,

(2.15)

15



For this equation to be useful for predicting TL intensities, one must still know the

concentration of trapped electrons (n). In order to find this one can make the substitution

from equation 2.13 into 2.15 to get,

dn - 11.£ nh Ar } .
/ TL = - = sn * exp[--]{------..:.:..---'---

dt kbT nlrA r + (N, - n)A,

Rewriting this expression gives,

-11.£ (N - n)A
In = sn *exp[--]{I- { {}

kbT n/rA, + (N, - n)A{

(2.16)

(2.17)

Equations 2.16 and 2.17 is known as the general-one-trap (GOT) expression for TL

emission [2.4], [2.5]. It is noted that the telll1 in the square brackets if the probability that

the thennally released electrons will not be re-trapped, and the ratio (N - n)A/n"A,. is the

ratio of the retrapping probability to the recombination probability.

To find a first-order solution to equation 2.l7, another approximation is often

made regarding the size of the retrapping probabilities and the recombination

probabilities. One assumption that is often made is that flliA, .» (N, - JI)A" That is, the

recombination probability is much greater than the retrapping probability. With thIS

assumption equation 2.16 becomes,

dn -11.£
/ n =- = sn *exp[--] .

dl kbT
(2.18)

This equation can now be integrated over the temperature range of the TL measurement.

Using from the assumptions above a constant heating rate so that T = To +/Jt, the

expression for J1 is gi ven by,

16
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T
S f -DEn =no *exp[-- exp[--}iB]
jJ r., kbB

(2.19)

where no is the initial concentration of trapped electrons. Substituting this value back

into equation 2.18, the TL intensity is found to be,

-DE S if· -M;
In =sn o exp[--]*exp[-- exp[--]dB].

kbT jJ 7;, kbB
(2.20)

This is the well known Randall-Wilkins [2.2] equation for the TL intensity. Equation

2.20 represents a first-order expression for intensity since it depends on the first power of

the carrier concentration. The first-order TL intensity equation 2.20 produces

asymmetric peaks with the peak position depending on the activation energy and

frequency factor. The shape of the first order TL intensity peak is shown in figure 2.3.

This first-order expression was derived using the assumption that recombination

dominated over retrapping during heating. For the case when the opposite is true, that is,

when retrapping dominates over recombination (n"A r «(Nt - n)A t) along with the

assumptions that the number of electron traps is much larger than the number of trapped

electrons (Nt »n) and the number of trapped electrons equal the number of trapped holes

(n = nIl), we se that equation 2.18 becomes,

dn A , -DE
1TL = - =s(--'-)11' *exp[--] .

dt N,A r k,J
(2.21 )

Note that equation 2.21 depends on n2 and represents a second-order expression for the

TL intensity. Considering the additional assumption that AI = A" equation 2.2\ can be

integrated to yield,

n 1 -!~E n s 7 -DE
1TL = (_O_)s *exp[--] * {l + (_0_) Jexp[--]dBr 2

Nt kbT flN, T.. kbB

17
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Figure 2.3: First order Randal-Wilkins TL peak generated using equation 2.20 (black)
and second order Garlick-Gibson TL peak generated using equation 2.22 (gray).
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This is the Garlick-Gibson [2.6] TL expression for second-order kinetics. The second-

order expression produces a more symmetric peak shape. This can be understood from

the assumption that retrapping dominates over recombination. Therefore large numbers

of electrons in the conduction band are re-trapped and re-released before they recombine

spreading out the luminescence over a larger temperature range. The shape of the

second-order TL peak is shown in figure 2.3.

The Randall-Wilkins and Garlick-Gibson equations were both derived USIng

specific assumptions about the relative recombination and retrapping probabilities. From

the forms of equations 2.18 and 2.21 Rasheedy [2.7] proposed an equation for TL

intensity of general-order with the fonn of

with hole traps. During this process, if an electric field is applied across the sample

dunng heating a thennally stimulated conductivity (TSC) can be measured. Since both

electrons are ejected from charge traps into the conduction band where they recombine

(2.23)
_ dn _ n

h * -M
J7L - - - (-h-I)S exp[--],

dt N
I

kbT

An important assumption of the model presented above is that during heating

which clearly reduces to first order for the case ofb~J.

the emission an conductivity in the above model are dependent on the number of carriers

released into the conduction band, they should be seen to exhibit the same general curve

shape. The TSC intensity curve can be seen to follow the shape of a general TL intensity

curve. As we.11 as depending on the same parameters as the TL intensity, the TSC

intensity will also depend on the applied electric field and the charge mobility of the

electrons in the conduction band. A general equation for the TSC intensity ean be given

ny,
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(2.24)

where A is the area of the electrodes applied to the sample, e is the charge of an electron,

l is lifetime of the charge carrier in the delocalized bands, ~1 is the charge mobility and In

is the TL intensity given by equation 2.20. From this equation we see that the

correlation between TL and TSC peaks is very prominent. It is therefore important to

understand the relationship between TL and TSC curves. From equations 2.15 and 2.8

we see that

where the second equality follows by plugging equation 2.8 into the second term. For

. dl(t)n
At peak intenSity for TL we must have that =0 and differentiating equation 2.25

dt

we get

dJ dn c dfl h dn J'

- = -n, A + n -- A = _c nhA - nc"n) A " = 0
dt dt I r C dt r dt r , r

this equation to equal zero,

dn( = n "A > O.dt (r

(2.25)

(2.26)

(2.27)

o

i

This says that the change in the number of electrons in the conduction band is greater

than zero, and therefore the TSC has not peaked yet. Therefore we expect to see the TSC

peak at a higher temperature than the TL peak. This is not always the case however, if

dfl l dn eln l-'»-, then --' ~ 0 and the second term in equation 2.26 will equal zero, and the
elt dl dt

TL and TSC peaks will again be at the same temperatures. Also the charge mobility (u)

is seen to be temperature dependent in some materials. This will have the affect of

20
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shifting the TSC peak either to higher or lower temperatures according its dependence on

temperature.

The simple model described above gives a good basis for understanding TSC and

TL kinetics, but real materials are much more complicated. A material described by this

simple model would have traps with a single activation energy and would therefore have

only one peak. In reality, a number of peaks are observed over the temperature range in

th~ measurement. One extension to the simple model is the idea of a thermally

disconnected trap. This trap is one in which the trapped electrons are thermally stable

over the temperature range in which the TL or TSC peak is measured. The addition of

this trap to the model causes a need to modify the rate equations (equations 2.7 - 2.9) for

trap emptying and the charge neutrality equation (equation 2.10) to include its

contribution. The important thing to consider when incorporating the thennally

disconnected trap, is to remember that the number of electrons de-trapping from the deep

trap is zero over the temperature range of the observed peak. It has been shown by Chen

[2.5] that the kinetics ofTL and TSC reduce to first order when the number of electrons

trapped in thermally disconnected traps is much greater than the number trapped in non-

disconnected traps. Also, when the number of electrons in the themlally disconnected

traps is much less than the number in non-disconnected traps, the kinetics ofTL and TSC

tended to second order.

2.3 Optical Absorption

The optical absorption spectrum can rrovide a variety of infonnation about the

lattice defects within a material through the analysis of the optical transitions of these

defects. The optical transitions are detennined by the ground and excited energy states as
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well as the oscillator strengths and influence of the surrounding lattice. These properties

result in an absorption line with characteristics such as a specific central absorption

energy, absorption strength, and line shape. Each of these absorption characteristics are

due to certain fundamental properties of the lattice site. From these properties,

information such as the type of defect, the type of transitions occurring, and the

concentration of these defects in the material can be determined.

The absorption properties of the lattice defects can be best illustrated with a

configurational coordinate diagram. A typical diagram for optical absorption at a

localized charge center is shown in figure 2.4. In these diagrams, the total energy of the

defect is plotted versus the displacement coordinate (Q) of the charge carriers from their

equilibrium position. The energy level of the center is estimated to have a parabolic

shape centered at a finite minimum energy. As the thermal energy in the lattice increases,

the energy of the trapped charge will increase along the energy parabola. The trapped

charge can raised be above the minimum of the energy state through the absorption of

phonons.. When a center absorbs a photon of energy (hud, the localized charge is

promoted vertically upward to an excited state. The charge will then themlal\y relax to

the minimum of the excited state via the emission of lattice phonons. Then the charge

may emit a photon of energy (hu2) equal to the difference between the excited state

minimum and the ground state at the configuration co-ordinate corresponding to the

excited state minimum. For a detailed description of this process the reader is referred to

Semiconductor Devices by Zamburo [2.8).

Due to the many allowed vibrational modes of a given energy state at a given

temperature, absorption does not take place at one given energy. Instead the absorption

-
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Figure 2.4: A cofigurationaJ coordinate diagram of an electron trap_ Optical excitation
of an electron into an excited state (e) takes place at the minimimum of the ground state
(g) QI by a photon of energy hv[ followed by a relaxation to the minimum of the
excited state at Q2 via emission of lattice phonons followed by relaxation to the grounJ
state by the emission of photon of energy hu~_
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takes place over a continuos band of photon energies. As photons of increasing energy

are allowed to illuminate a crystal, an absorption curve will be produced. The shape of

the curve is dependent on the shape of the energy states and the number of vibrational

modes available at a given energy.

It is possible to calculate the concentration of defect centers in a crystal from the

strength of the absorption band through the use of Smakula's Formula [2.9]. This

formula gives an expression for the shape of the absorption band in terms of the number

of absorbing centers per cm 3
. Solving this formula for the number of centers per cm J

(Ne), we get the expression,

N =[ n i JAnKamaxr .
r (2 1)2 fn i +-

(2.28)

--

Where ni is the index of refraction of the crystal, A = 0.87 x 1017
/ cm J

, K IS

determined by the absorption Jineshape and is ;::;1, r is the full width half max (FWHM)

of the absorption peak, f is the oscillator strength, and aIl1J,~ is the maximum ahsorption

value. Using this expression, we can measure the relative changes in defect

concentration of a crystal during a TL measurement by measuring the absorption of the

defect center while the crystal is heated. Given values for the index of refraction,

FWHM, and oscillator strength of a material, we can substitute the measured change in

the absorption into Smakula's formula and calcu late the change in defect center

concentration.

From above, we see that to be able to accurately measure the concentration of a

particular defect, we must know the absorption characteristics of the defect. The shape,

strength, and position of the absorption band are known to be temperature dependent

[2.10]. The maximum value of the absorption band will decrease and shi ft to higher
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energies, and the FWHM of the band will broaden. The band will have a shape that is

dependent on the number of vibrational modes available at each energy level. Since a

large number of these modes are typically available, the interaction of these modes with

incident photons will be a random process with a gaussian shaped distribution producing

a gaussian shaped absorption band. As photons of increasing energy are incident on the

defect site of a crystal, the probability of the photon causing an absorption transition is

given by

P (E) - (~)*ex [_ Cx
2

] cit)
abs - Ilk T. P k T. (dE

bib I

(2.29)

--

where C is the coupling coefficient of the charge carriers in the defect with the crystal

lattice, and x is the displacement of the charge in the defect from its equilibrium position.

E is energy difference between the ground and excited states, and T1 is the effective

temperature. The effective temperature is given by the expression

(2.30)

where v is the oscillator frequency of the defect [2.11]. From equations 2.29 and 2.30,

the absorption band peak will shift to higher temperatures, and its intensity will decrease

as the temperature is increased.

2.4 Properties of Ab03:C

This research is focused on the stu<..ly of AI20] for the purpose of gaining a better

understanding of the processes taking place within the crystal during a TL measurement.

Therefore we now discuss the relevant properties of AhO]. In particular, the properties
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of the TL glow curves in AhOJ:C and of the F and F+ center oxygen vacancies. The

discussed properties of the TL and these vacancies wi II be compared with the current

work in this thesis to gain an understanding of the role played by the F and F+ centers in

the TL process in Ah03:C.

2.4.1 Crystal Structure and Growth

The AhOJ:C crystal structure is shown in figure 2.4 and a is hexagonal close packed 0 2
-

sublattice with A13
+ ions occupying two out of every three interstitial sites in the lattice.

The 0 2
- ions occupy two equilateral triangles one above and one below the plane of the

A13
+ ion. The Al-O bond lengths are 0.197 nm and 0.186 nm due to the slight distortion

of the AI)r sublattice [2.13]. Ah03:C has a band gap of approximately 9.0 eV [2.12].

AI20 3:C used in this research is typically grown from the melt at a temperature of

approximately 2050 Dc. The crystals are grown in the method discussed in section 1.2,

and as a result have a relatively high concentration of carbon impurities (100-5000 ppm).

Also, for the samples used in this research, Mg and H were also introduced as additional

dopants into the growth process for the purpose of further catalyzing the production of

oxygen vacancies. Along with carbon otht.:r intrinsic impurities occur in small amounts

(Ca - 30 ppm, Cr and Ti ~ 10 ppm, Ni and Si ~5 ppm, and Cu and Fe < 2 ppm) [2.91.

TL glow curves for AL20 J:C (known commercially as TLD-5(0) show several peaks

over the temperature range from room temperature to ~700°C as shown in figure 2.5. A

strong peak is seen centered at ~175°C (known as the main peak) and weaker peaks
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Figure 2.4: Schematic representation of the AI 20 J lattice showing the ions surrounding
the AI J

+ and 0 2
- ions.
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appear at -325°C and -475°C. The efficiency of the luminescence in Ab03:C is shown

to be strongly temperature dependent above -200°C. Analysis done by Akselrod [2.14]

and Kortov [2.15] shows that the lum inescence efficiency is given by the equation

I
TJ(T) = _ W

(I + l"V* exp[-])
kbT

(2.31 )

with ru:::: (3.8±1.5) X 10 12
, W:::: 1.1±0.05 eV [2.14], and Wis the activation energy for a

nonradiative transition. As shown for the -175°C TL peak in figure 2.6, the intensity of

the TL is reduced and the peak temperature is shifted to higher values. In this case the

TL intensity would be given by the equation,

(2.32)

--

where In is given in general by equation 2.23. Along with this the shape of the TL peak

is distorted producing a more symmetrical peak shape after correcting for thermal

quenching. This has led to some conflicting analysis of the TL peaks when using the

general-order equation for TL (equation 2.23). Kitis et. al. suggested that the uncorrected

peaks appeared to fit to a TL peak with order parameter b :::: 1.42 [2.161 while Kortov

suggested that the peaks fit to TL peaks with b :::::: 2 [2.15 j. However, when the peaks are

corrected for thermal quenching, it is has been shown that the peaks are actually made up

of several closely spaced first-order peaks that produce the overall TL peak [2.17].

Therefore the TL peaks III Ab03:C are generally believed to be due to a distribution of

traps that are thermally active over the temperature range of the peak. Along with the

changes due to thermal quenching, the luminescence efficiency is affected by the heating

rate of the measurement. According to the predictions of the kinetic analysis made

earlier in the chapter, the luminescence intensity will increase as the heating rate is
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increased. However, due to thermal quenching in AIz03:C this has been shown not to be

the case. For Ah03:C, the expression for TL intensity must be modified to include the

expression for thermal quenching. As the heating rate is increased, the TL peak will shift

to higher temperatures and the numerical value of the efficiency changes accordingly.

Therefore due to the behavior of the themlal quenching ternl given by equation 2.31 the

TL peaks will decrease in intensity as the heating rate increases [2.14].

The emission spectrum for the TL peaks in AIz03:C is mainly due to a single

emission band centered at 420 nm. This spectrum is due to the relaxation of an excited F

center. Also seen in other forms of A\z03:C (such as Mg doped crystals) is an emission

band centered as 326 nm due to the relaxation of an excited F+ center [1.5]. The F center

emission is produced by the relaxation from the 3P excited state to the 1A ground state

with a lifetime of ~35 ms [1.3]. The F+ center emission is produced during relaxation

from the 2A or 2B excited states to the I A ground state with a lifetime of S 7 ns [2.18].

The rt.:laxation and emission processes as well as the absorption processes to be discussed

later in this chapter are shown in figure 2.7 [2.18, 2.19]. The production of F center

emission is thought to be caused by the recombination of electrons with F+ centers

according to the process [1.3],

(2.33 )

In this process, the TL process would involve the release of a trapped electron that uses

an F+ center as a recombination center. Conversely, the production of F+ center

emission is believed to be caused by the recombination of a free hole with an F center

according to the process [1.3],
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Figure 2.7: (a) F+ center transitions at 4.84 cV and 5.27 eV and emission of 3.8 eV, anu
(h) F center transition at 6.01 eV and emission at 3.0 eV.

n
lJ
I)

~

lA---..........-1A_............L..............._o

(a) (b)

3P ,,
6 ,

2B
,, ,

\ , ,, ,

2A \
,

\ \

:1\5 \
,

3P\

1B I
I

\ !,
2A

4 ~ I

>' 2B ",<lJ
'---'

>-.
OJ) 3 6.0 eV.....
<lJ
t::

(.Ll 4.8 eV
2

32

--



(2.34)

-

In this case, the TL process would involve the release of a trapped hole that uses an F

center as a recombination center. The TL in Ab03:C depends strongly on the

temperature at which the luminescence is being produced, as welJ as the heating rate

used.

2.4.3 F and F+ centers in AI20 3:C

Transitions in neutral and singly charged anion vacancies (F and F+ centers) in AIz03:C

are the fundamental processes involved in the luminescence signal produced during TL.

The F center is known to undergo a transition from IA -t 2P, with the 2P excited state

lying in or near the conduction band, upon the absorption of a ~6 eV photon [2.20]. The

F+ center is known to undergo a lA -t IB transition upon the absorption of a ~4.8 eV

photon and also alA ---. 2A transition upon the absorption ofa ~5.3 eV photon neither of

which lies in or near the conduction band [2.18]. The transitions of the F and F+ centers

are shown in figure 2.7. The F and F+ center oscilJator strengths were calculated by

Evans and Staplebrook to be 1.33 and 0.66 respectively. Also, they measurcd FWHM for

the F center of 0.78 ± 0.1 eV and for the F+ center transition at 4.8 eV of 0.41 ± 0.02 cV

and at 5.3 eV of 0.32 ± 0.05 eV [2.18].

Upon inspection of the TL emission spectrum from AbOJ:C it can be seen that the

main emission is at 420 nm due to the relaxation of F centers. From the model for the

production of F center emission given in equation 2.33, it might be suspected that the

production of luminescence would be dependent on the initial concentration of F+

centers. The sensitivity of AI"OJ:C, in fact, has been shown to be sensitIve to the

concentration of F+ centers within the crystal[I.5, 2.20]. For samples with pre-existing
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concentrations of F+ centers many orders of magnitude higher than of the radiation-

induced F+ centers, the dose response has been shown to linear to higher temperatures as

well as much more sensitive to changes in dose [1.5].

The F and F+ center emission measured during TL is known to be thermally

quenched in Ah03:C [2.14]. From the model of the production TL emission given by

equations 2.33 and 2.34, the F and F+ center emission will be thermally quenched. The

lifetime of the F center emission is shown to decay from a room temperature vale of -35

ms to < 2 ms for temperatures above ~280 °C [2.14]. With the decay of the lifetime

following the equation

where i'1E :::::1.1 ± 0.05 eV and ToU::::: (3.8 -1·1.5) x 10 12
. For the F+ center, the

measurements were made of the integrated intensity due to the short lifetime « 7 ns) of

the center. Measurements of the intensity were made and the intensity was then corrected

using equation 2.34 to account for the quenching of the emission lifetime. From lhcse

measurements values of i'1E::::: 0.602 eV and ToU::::: 1.23 x 105 eV [2.22] were calculated.

The F and F+ center concentrations in AI 20):C have been shown to exhibit a

strong reciprocal relationship. That is to say that excitation of F center with 6 eV light

has been shown to lower the concentration of the F center and increase the F+ center

concentration [2.13, 2.20]. Also, when the crystal is exposed to ionizing radiation. the

concentration of F centers is seen to increase and F+ centers to decrease r2.1 8, 2.21].

This supports the ldea of the electrons being ionized into the conduction band by the

irradiation are becoming trapped at the F+ centers to produce F centers. Conversely,
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when the sample is illuminated with 6 eV light, the electrons are excited out of the

centers to produce F+ centers. This reciprocal relationship supports well the ideas for

recombination and the production ofF center emission during TL given by equation 2.31.

2.4.4 Differences in TL for Mg and H Doped AI 20 3:C

In this section are mentioned some of the differences observed in the TL, TSC signals by

the addition of Mg and H dopants to Ah03:C crystals like the ones used in this research.

The addition of Mg and H as additional dopants to Ah03:C during the growth process

has several affects on the TL glow curves, TSC signals, and emission spectra.

The addition of Mg and H dopants to Ab03:C has been shown to increase the

concentration of F+ centers [2.21]. This increase leads to a change in the size, shape, and

positions of the TL and TSC peaks. The TL peaks are much broader giving the

appearance of being produced by a wider than Ah03:C distribution of traps over the

temperature range of the TL peak. Along with this the TL and TSC peaks are seen to

shift in temperature along with the appearance of new peaks at ~75 DC, -,275 "c, and

The TL emission shows much stronger F+ center emission at centered at 326 nm

in the Mg doped samples. Also, for both Mg and H doped samples, the intensity of F

center emission is increased substantially up to ~450 DC were the after which the

emission is almost completely quenched. From these observations we note that the

charge mobility, and the quenching term will affect the TL and TSC production in these

samples differently, but the overall characteristics of the TL emission and TSC in these

sample will generally behave in the same manner as AI203:C.
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Chapter 3

Experimental Procedures and Results

3.1 Preparation of Experimental Samples

For this research, four samples of Ah03:C were chosen that have strong F and F+ center

absorption bands. These samples consisted of one crystal grown with hydrogen

(Ah03:C,H) as an additional dopant, and three samples grown with magnesIum

(Ah03:C,Mg). The samples where grown by Dr. Mark Akselrod by the method

mentioned in section 2.3.1 at Stillwater Sciences (Oklahoma) and at Medus (Russia).

Along with carbon, hydrogen and magnesium were added to help catalyze the production

of oxygen vacancies. Reducing growth conditions in the presence of carbon and

hydrogen catalyzes the formation of oxygen vacancies in the crystal. The magnesium

(Mg2+) substitutes for aluminum (AI 3+) in the crystal [3.1]. This causes a charge

imbalance in the sample, which is compensated for by the production of an oxygen

vacancy filled with one electron (F+ center). The magnesium samples were grown with a

decreasing amount of magnesium available to the melt as the rod was pulled. This results

in a decreasing number of magnesium substitutions occurring along the length of the rod

in the growth process. The three samples used were cut from different spots along the

length of the rod resulting in decreasing F and F+ center concentrations in the three

samples. The samples are labeled according to the concentration of vacancies with Mg-l
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having the highest concentration, Mg-3 having the next highest level, and Mg-6 having

only trace levels of magnesium. Mg-I and Mg-6 were grown from the same melt at

Stillwater Sciences and Mg-3 was grown at Medus. We expected that Mg-l and Mg-6

will have similar properties, but Mg-3 will have slightly different OA, TL, TSC, and TL

emission properties. For the hydrogen-doped sample, we use the label H-l.

For experimental purposes the samples were all cut to the size of about I cm2 with

thickness ranging from 0.101 to 0.066 em. For the purpose of taking absorption

measurements, the samples were all polished to the one micron level. The samples were

pre-annealed at 700°C to remove any trapped charge that may have pre-existed in the

samples. The samples were given a saturation dose of approximately one kiloGray (kGy)

of 1.75 MeV electrons from the electron beam ofa Van de Graafaccelerator.

3.2 Optical Absorption Procedures and Results

The purpose of this research was to investigate the changes in the F and F+ centers in

AbOJ:C during a TL measurement to determine the role the play in the

thermoluminescence process. The monitoring of these centers was done by measuring

the changes in optical absorption by the centers in the crystals during heating. From the

amount of light absorbed by the center, the concentration of F and F+ centers in the

sample can be calculated using Smakula's formula (equation 2.28). By correlating the

changes in F and F+ center concentrations to TL, TSC, and TL emission measurements,

we can gain an understanding of the role that these centers play in the production of

luminescence in AhOJ:C.
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3.2.1 OA Experiments

The optical absorption experiments were conducted using a Cary 5 spectrophotometer.

An oven was placed inside of the spectrophotometer to heat the sample while the

absorption was measured. The sample temperature was ramped at a linear rate of 0.33

°C/sec, and was controlled by an Omega Fuzzy Logic temperature controller. The heater

was connected to a heat ramp that was connected to a computer that recorded the heating

ramp and absorption. A schematic of the setup is shown in figure 3.1.

~c 11 heat ramp
I

computer

_sample.. ,..---
----:-------~-- ---0=-- ----

oven I

DzlampI
I.. --------------- ----y

Spectrophotometer

Figure 3.1: Diagram of optical absorption experimental setup.

The absorption spectra were taken at 50 °C as a function of the anneal temperature

by the process known as pulse annealing [1.3]. The pulsed absorption spectra are shown

in figures 3.2 to 3.5. The absorption spectrum of each sample was taken from 270 nm to

190 nm of an irradiated sample at 50°C. The sample was then annealed to 75 °C and

cooled to 50 °C and the spectrum taken again. This procedure was repeated as the anneal

temperature was each time increased in 25°C increments from 50 °C up to 700°C. The
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absorption for each sample was plotted In three dimensions as a function of photon

energy and anneal temperature.

The absorption spectra were taken over the wavelength range from 270 to 190 run

to detennine the absorption bands for the F and F+ centers. The absorption spectra of the

four samples are shown in figure 3.6. From the spectra obtained, absorption bands were

seen centered at approximately 255 run (4.85 eV), 235 nm (5.27 eV), and 205 nm (6.03

eV). As shown in figure 2.7, the 4.85 eV and 5.27 eV bands (as reported by Evans and

Staplebrook [2.16], and Lee and Crawford [2.18]) were assigned to the 1A to 28 and the

lA to 2A transitions of an F+ center respectively [2.1~, 2.16]. The 6.03 eV band was

assigned to the lA to IP transition of an F center [1.5]. The samples were then irradiated,

and the absorption at 4.85 or 6.03 cV (corresponding to F+ and F center absorption) was

measured as the sample was heated at a rate of 0.33 DC/sec from 50 to 700 DC/sec. The

sample was then cooled to 50°C and an absorption scan of the annealed sample was

measured as the sample was heated to 700°C with an identical heating rate. Thc

annealed absorption scan was taken for the purpose of removing the effects of heating on

the absorption coefficient. The coefficient is seen to be attenuated as the sample is heated

ad discussed in section 2.4.3. The annealed absorption scan was then subtracted from the

irradiated absorption scan to remove any background changes in the absorption due to

heating of the sample. After subtraction, the signal left would be only from the changes

in the F and F+ center concentration due to irradiation of the sample. Therefore, the only

effects presented in the background absorption scan are hose that were induced by

radiation. Before the annealed scan was subtracted from the irradiated absorption scan,

the absorption signal was smoothed to remove noise in the scan due to thermal effects.
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For this technique, the fourier transform of the absorption scan is multiplied with the

fourier transform of a gaussian transform function. The smoothed data is then obtained by

taking the inverse fourier transform of the convolved data and gaussian transform fourier

transfonns. The smoothing process is given by the equation

D;m = IFT[ IN * FT(Drow )* FT(G)] (3.1)

where D'1n is the smoothed data, Draw is the raw data, G is the gaussIan transform

function, 1FT is the inverse fourier transform, FT is the fourier transform, and N is the

number of data points. The effects of the smoothing process is shown in figure 3.7 for

the F+ center absorption of H-1.

The absorption spectrum of the samples after annealing at 700 DC were then

deconvolved using gaussian peak shapes to represent the F and F+ center absorption

bands to obtain the center position, the absorption coefficient, and the FWHM of the

peaks. The initial concentrations of F and F+ centers were then calculated using these

results. The absorption band centers, absorption coefficients, and FWHM calculated

from the results of the deconvolution for the four samples are listed in table 3.1.

3.2.2 Optical Absorption Results

The deconvolution of the optical absorption data for the four samples showed good

correlation the results of Evans and Staplebrook and Lee and Crawford mentioned above.

From the deconvolution of the annealed H-l absorption spectrum shown in figure 3.8, the

F center peak position was calculated to be at 6.03 eV, the absorption coefficient to be

35.99 cm,l, and the FWHM to be 0.784 eV. The F+ center absorption peaks were

calculated to be centered at 4.83 and 5.35 cV. the absorption coefficients to be 17.41 and

16.48 cm'l respectively, and the FWHM to be 0.588 and 0.465 eV respectively. Using
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F center F + center

Sample Cone. FWHM Abs Coer. Center Cone. FWHM Abs Coer. Center

(x 10 17
) (e\/) (em") (eV) (x 10 17

) (eV) (em'l) (eV)

1.35 0.784 35.99 6.03 0.986 0.588 17.41 4.83
H-1

0.465 16.48 5.35

0.388 0.824 17.68 6.00 0.200 0.708 9.23 4.83
Mg-1

0.411 5.21 5.37

2.01 0.801 17.71 6.01 1.41 0.729 9.18 4.84
Mg-3

0.427 5.34 5.3g

1.37 0.716 52.15 6.04 0.583 0.696 17.92 4.84
Mg-6

0.423 10.36 5.35

Table 3.1: Table of calculated properties of samples used in research. Values reported
for the F center correspond to the lA-dP absorption transition. Values r~ported for the
F+ center refer to the 1A-I B (top number) and the I A-2B (bottom number) absorption
transi lions.
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these values and an index of refraction of 11; = 1.665, an F center oscillator strength of

1.33, and an F+ center oscillator strength of 0.66 the concentrations of the centers were

calculated [2.16]. From this the initial F and F+ center concentrations for the un irradiated

H-l crystal were calculated from equation 2.28 to be 1.35 x 1017 cm,l and 0.986 x 1017

em') respectively. From figure 3.9, a general anti-correlation in the F and F+ center

concentrations is observed for sample H-l during heating. For example, the F center

concentration for H-I increased slowly from about 150 "c to about 200°C. The F center

increase correlated to a decrease of about the same size in the F+ center concentration

through the same temperature range. Another increase in the F center and subsequent

decrease in F+ center concentration, each of approximately the same size was measured

from about 300 to 400°C. Finally, from approximately 500 to 700 °C, the F center

concentration decreased and the F+ center concentration increased. For this step in

concentration, The F+ increased only roughly half as much as the F center decreased.

Also shown in figure 3.9 is the comparison of the F and F+ center concentrations from

the step anneal measurements. From these measurements we see that the calculated

values of the F and F+ center concentrations is somewhat less than for the single

wavelength measurements. However, there was good agreement between temperature

ranges during which the changes in concentration occurred, and the step sizes for the

changes for the two types of measurements.

From the deconvolution of the Mg-l absorption spectrum shown in figure 3.10,

the F center absorption peak was calculated to be at 6.0 I eV with an absorption

coefficient of 11.94 em-I and a FWHM of 0.681 eV. The F+ center peak positions were

calculated to be at 4.83 and 5.36 eV with absorption coefficients of 4.52 and 4.82 em-I
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respectively and FWHM of 0.460 and 0.502 eV respectively. From these measurements,

the F and F+ center concentrations of unirradiated Mg-l were calculated from equation

17 '72.28 to be 0.388 x 10 for the F centers and 0.200 x )0' for the F+ centers. From figure

3.11, we see that during heating the F center concentration increased in the range from

about 100°C to 175 °c which correlated to a decrease of about twice as much in the F+

center concentration. From 175°C to about 300 °c there is a decrease in the F center

concentration correlating to a slight increase in the F+ center concentration. The

concentrations of both the F and F+ centers remain approximately constant until about

525°C when the F center concentration is seen to decrease until about 700 "C. The F+

center concentration in this range is seen to undergo an increase at about 525 U( followed

by a decrease at about 560°C, then another increase at about 600 0c. From about 630°C

to 660 °c, the F+ center concentration decreases correlating to a decrease in the negative

slope of the F center concentration curve. Finally, the F+ center concentration increases

from about 660°C through 700 I)C. Also, comparing the calculated concentrations from

the step anneal measurements, we see that the F and F+ changes in F and F+ centers both

showed a decrease in the range from 175 l)C to 300°C. After this cbange, the

concentrations remained roughly constant for the rest of the measurement This showed

bad correlation to the single wavelength absorption measurements, and the general anti-

correlation between the F and F+ center concentrations were not observed in this

measurement.

From the deconvolution of the Mg-3 absorption spectrum shown in figure 3.12.

the F center peak position was calculated to be at 6.02 eV, the absorption coefficient to be

45.42 em· l
, and the FWHM to be 0.926 eV. The F+ center peak positions were calculated
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to be at 4.86 and 5.34 eV. the absorption coefficients to be 28.26 and 20.81 cm'l

respectively. and the F\VHM to be 0,519 and 0.403 eV respectively. From these

measurements, for Mg-3 before irradiation the F and F+ center concentrations were

calculated from equation 2.28 and found to be 2.01 x 10 17 cm'l and 1.41 x W l7 em'l

respectively. The calculated properties for Mg-3 are listed in table 3.1.

Shown in figure 3.13, during heating the concentration of the F centers in Mg-3

increased from about 125°C to 180 0C, which corresponded to a decrease in the F+

center concentration of about the same size. Then, from about 180°C to 325 0C, there is

a rapid decrease in F center concentration accompanied by a rapid increase of about the

same size in F+ center concentration. After this, from about 325 "c to 550°C The F

center concentration continues to steadily decrease, whi Ie the F+ center concentration

stays rather constant. Finally, from about 550 to 700°C, the F center concentration

increases while the F+ center concentration shows a sudden decrease at about 625°C.

The changes shown in the step anneal measurements show good correlation to th(::

changes in the single wavelength measurements in both the temperature range of

occurrence and size of concentration change.

From the deconvolution of the Mg-6 absol1Jtion spectrum shown In figure 3.14,

the F center peak position was calculated to be at 6.02 eV with an absorption coefficient

of 52.14 em'l and a FWHM of 0.679 eV. The F+ center peak positions were calculated to

be at 4.84 and 5.29 cV with absorption coefficients of 14.76 and 16.12 em'l and FWHM

of 0.410 and 0.487 eV respectively. l Jsing these measurements, for Mg-6 the

unirradiated F center concentration was calculated from equation 228 to be 1.37 x 10
17

CI11·
3 and the F+ center concentration to be 0.583 x uP cm-} The calculated properties
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for Mg-6 are listed in table 3.1. As shown in figure 3.15. during heating the F center

concentration decreased from about 100°C to about 160 °c, which correlated to a

decrease in the slope of the F+ center concentration curve. The F center concentration

then decreased from 160°C to about 210°C that correlated to an increase in the slope of

the F+ center concentration curve. The concentration of the F centers stayed relatively

constant until about 500°C when the concentration was seen to increase and decrease

several times in over the temperature range of about 500 to 700 °c. This correlated to

small changes the F+ center concentration and a large increase ill the concentration at

about 650°C. The pulse annealed measurements showed rather noisy results for the F

center concentrations, but the overall trend of the concentration is seen to be increasing

from 50°C to about 225°C and then decreasing for the rest of the measurement.

TL and TSC measurements were used to determine the thermally stimulated

luminescence and conductivity properties of tht: irradiated samples. These measurements

gave us information about the temperature at which charges are themlally released rrom

traps, intensity of luminescence and conductivity produced during this process. Along

with this infonnation, the TL emission spectra were also measured for the irradiated

samples to determine the emission bands produced dunng TL. This information was then

to the results from OA and TL emission to better characterize the emission process during

TL.

3.3 TL and TSC Procedures and Results

TL and TSC measurements were perfol1l1ed to detennine the correlation between the TL

and TSC peaks and TL peaks and F and F-.- cenler concentration changes.
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3.3.1 TL, Emission, and TSC Experiments

A schematic of the TL and TSC setups is shown in figure 3.16. For the measurement of

TL and TSC, the irradiated samples were heated at a rate of 0.33 uC/sec from 50 to 700

°c TL measurements were taken using the automated RlS0 TLiOSL reader systems. A

full description of the RlS0 TLiOSL reader system can be found in the paper The

Automated RlS0 TL Dating Reader SysTem by L. Bolter-Jensen [3.2]. The TL emission

was measured by passing the luminescence through an American Holographic inc.

spectrograph model no. laOS to spatially separate emission spectrum. The emission was

then passed to an EG&G OMA diode array camera model no. 1024-1241 UV. and the

resulting signal was then recorded by a computer. Also, for the TL emission

measurements the temperature of the samples was ramped at a linear rate of 0.33 \)C/sec

using an Omega Fuzzy Logic Temperature controller. The temperature during heating

was measured by a thermocouple that was connected to the bottom of the sample holder

on the opposite end as the heating element. The sample, however, was mounted toward

the top of the holder next to the heating element. Because of this, it is believed that the

temperature recorded by the thennalcouple was lower than the actual temperature of the

sample. Because of this we expect that the emission wi 11 be shown to occur at a lower

temperature than it actually did. For TSC, electrodes were deposited on eithe.r side of the

samples. This was done by evaporating a thin film of titanium onto the sample followed

by a thicker film of palladium. The titanium-palladium electrodes were used to reduce

the background signal measured across the sample before the measurement is made. As

shown in figure 3. l6, these electrodes consi stt:d 0 f a central ci rcle 0 f titani urn -palladi urn

and a thin ring on the outer edge of sample. The outer edge was in contact with the
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Figure 3.16: (a) Diagram of the TL experimental setup, and (b) diagram of TSC
experimental setup (c) Diagram of electrodes for TSC.

sample holder to ground the sample with the holder and eliminate surface currents that

may build up on the sample and distort the signal during measurements. The samples

were then irradiated and placed under vacuum with a 100 V bias placed across the

sample. They were then heated and the current produced across the sample was

measured and recorded by a computer.

3.3.2 TL and TSC results

The TL glow curve, emission spectrum, and TSC curve from H-l are shown in

figure 3.17. The TL results from the four different samples showed a large variety in the

properties of their glow curves as shown in figures 3.17 to 3.20. Sample H-l showed

several peaks, the first of which was centered at ~180°C. Also, there is a second peak

centered at ~410 °c and a third peak centered at ~630 DC. We see that while the 180°C

peak is rather intense, and has a rather symmetrical shape, the 310°C and 630 °C peaks
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have relatively low intensities. and are very anti-symmetrical with the low temperature

side having a much more gradual slope than the high temperature side. This feature of

the glow curve is due to thermal quenching at high temperatures. This effect is not only

retarding the rise in the luminescence intensity. but it is also causing the luminescence to

fall off more rapidly. The TL emission spectra for H-l showed strong F center emission

centered at 420 run for the 180°C TL peak and weaker emission (due to thennal

quenching) centered at 420 nm for the 310°C peak. The emission was shifted about 30

°C lower than the TL peaks due to the problem with the temperature mentioned earlier.

The TSC data for H-l shows a strong peaks at - 200 0e, ~31 0 DC, 410°C and a peak at

-520°C. The TSC peaks occur at temperatures that do not correspond to the TL peaks.

Instead, they seem to occur about 20 to 40°C after the TL peaks. This shift between the

TSC and TL peaks is due to the thermal quenching of the TL peaks as shown in equations

2.24 through 2.27. Therefore, the 200 DC TSC peak is associated with the 180 uC TL

peak, and either or both of the 310°C and 410°C TSC peaks with the 410 lie TL peak.

Also, tbe TSC peaks may have been shifted due to the temperature dependent nature of

the freed charge mobility (;.L(T»). The TL glow curve, emission spectrum, and TSC curve

for Mg-l are shown in figure 3. J 8. For Mg-l, the IL glow curve shows a peak centered

at ~140 Dc. This peak appears as a shoulder on the peak centered at -220 "e. Also. peaks

were observed at -400°C and ~550 0c. The temperature shi fted TL emission spectrum

shows a small F center emission peak at -70 DC centered at 420 nm and a relati vely large

F c~nt~r peak at ~170°C and a smaller F+ center emission peak at .- 175 '\.' centered at

325 nm. The TSC curve shows peaks at ~ 150 nC, and ~300 ')c. Accounting for themlal

quenching effects and the temperature shift in the mobility, the 150°C TSC peak is
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-630°C. (b) TL emission spectra showing peaks centered at ~160°C and ~315 °C and
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associated with the 140°C TL peak. The 300°C TSC peak is associated with a possible

TL peak around 325°C, and the changes in the slope of the TSC curve through the range

of350 °C to 410°C with the 400 DC TL peak.

The TL glow curve, emission spectrum, and TSC curve for mg-3 is shown in

figure 3.19. For Mg-3, the TL glow curve showed a small peak at -75°C, a relatively

large peak at -180°C, a peak at -340 DC, and a peak at -550 DC. The TL emission

spectrum shows a small F center emission peak at -75 DC and a relatively large F center

emission peak at -] 75 "c both of which are centered at 420 nm. Also we see a small F+

center emission peak at -] 80°C centered at 325 nm. The TSC curve shows a peak at

-75°C associated with the 75°C TL peak. Also seen is a TSC peak at ~180°C

associated with the 180 °c TL peak, TSC peaks at -310 DC associated with the 310 DC TL

peak, and TSC peaks at -375°C and - 420 DC associated with the 420 DC TL peak.

For Mg-6 the TL glow curve shows a large peak centered at -210°C and a

relatively small peak centered at -375 0c. The TL emission spectrum shows a single F

center emission peak at -180°C centered at 420 nm. The TSC curve shows a peak

centered at -.] 80°C and -290°C associated with the 210°C TL peak. The TL glow

curve, emission spectrum, and TSC curve for Mg-6 is shown in figure 3.20.

Relatively good agreement is seen between the TL glow curve and TSC curve

from the samples. In general each TL peak can be correlated to a TSC peak that occurs at

slightly higher temperatures. This gives good evidence that radiative recombination is

occurring via recombination processes that involve the conduction band. The shift in the

occurrence of the TSC peaks is noticed to be different in all of the samples. This leads Lo

the interpretation that the temperature dependence of the charge mobility is different in



....

each sample. Also this might lead to the conclusion that the type of charge being

released into the delocalized bands are different, and what we are actually seeing is a

mixture of electrons and holes being released and recombining. This conclusion follows

[rom the fact that the charge mobility is dependent upon such factors as the

recombination lifetime (nJr) and the charge carrier concentration (11" nil) of the

individual samples [3.3].
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Chapter 4

Discussion of Results and Conclusions

4.1 Discussion of Results for H-1

4.1.1 Comparison of TL and TSC

Figure 4.1 shows the comparison of the TL and the TSe curves for sample H-1 prepared,

according to the experimental conditions described in chapter three. The position of the

TSC peaks are shown to be in good correlation with the position of the TL peaks. This

leads to the conclusion that the TL process involves the release of charge carriers into the

delocalized bands as shown in figure 2.2. The delocalized charges then recombine

producing luminescence. We see from the sizes of the TL and TSC peaks that the 410 "c

and 630 °c peaks are much smaller than their TSe counterparts at 310 "C, 410 "C, and

625°C. This is due to thermal quenching of the TL peak intensities seen in AhOJ:C.

From the discussion of section 2.4.2 (specifically equations 2.24-2.27), we expect the TL

peaks to be shifted to lower temperatures than the TSC peaks without considering

themlal quenching. However, for the most part, the TL and TSe peaks occur at

approximately the same temperature throughout the duration of the measurement. From

figure 4.1 we sec that the 180°C TL peak position is somewhat lower than its

corresponding TSC peak centered at 200 DC (as expected). For the other TL peaks

however, we do not see this type of temperature shift. In fact, the 410 °e TL peak is
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quenching is evident by the decrease in the size of the TL peaks relative to the TSC
peaks.

70



....

matched almost perfectly with the peaks of the corresponding TSC signals at 310°C and

410°C. Then we see that the 630° C TL peak is actually centered at a slightly higher

temperature than the corresponding TSC peak centered at 625°C.

The positions and sizes of the TL and TSC peaks are dependent on many factors.

We must remember, that TL and TSC peaks in Ah03:C are known to be made up of a

distribution of smaller peaks that add up to produce the overall peak [4.1,4.2]. The size

and position of a given TL peak is dependent on the distribution and the amount of

overlap of the smaller peak components. From equations 2.6, 2.8, and 2.24 we see that

the TL and TSC can be writ1en

I TSC = VAepnc

(4.1 )

(4.2)

where all terms are the same as previously defined. For TL, we see that the peak position

and size wi 1l depend on the temperature dependence of the [hennal quenching function

(fl), the concentration of charge in the de localized bands (n c), the concentration of

recombination centers (nh), and the transition coefficient of free holes (A r ). For fl, we see

from equation 2.31 that the quenching effects only influence the TL peak positions in the

temperature ranges that the quenching curve is changing. That is to say that when

dr7ldT * O. We see from figure 2.6, if we use the values of TV and W reported by

Akselrod et. a1. [2.14] for AhO):C, that thermal quenching only will only affect the

position of the TL p~ak in the temperature range of approximately 100 °c to 200 uc. For

nil, we see from equation 2.6 that the TL is dependent on the negative rate of

recombination ( - dn h / dT ). However as seen in the samples studied in this research, the
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initial concentration of recombination centers for both electron recombination (nh) and

hole recombination (n) is much greater than the change in the concentrations of these of

centers due to irradiation (Il h »6.n h ). From [his, we conclude that the concentration of

recombination centers remains approximately constant during heating (dn li IdT ~ 0). For

A r , we see that it is weakly temperature dependent due to the fact that it is the product of

the them1al velocity (v) and the capture cross sections (0") of the free holes as given by the

equation

A :;:: va
r (4.3)

where A r is given in units of cm-3*sec- 1
. From the analysis of Rose [4.3], (J is shown to

be proportional to T 2
, and the most widely excepted value for II is given by

(4.4)

where m· is the effective mass of the charge carrier [4.4]. Making these substitutions into

equation 4.1 we can correct the position of the TL peak due to the temperature

dependence of Ar . Taking values of m·= 0.256 MeV for the rest maSS of illl electron

[4.5J, and a= (I/r) for A,., the shift of a TL peak, with a peak temperature or 50 "C, due

to the temperature depen<.lcnc~ of Ar would be approximately 0.5 lJC This shi ft is

negligible compared to the greater than 100°C temperature ranges of the overall TL

peaks of the samples used in this research. Therefore we will take AI' to be a constant in

our measurements. From this, we conclude that the change in the TL intensity during

heating will depend on the changes in the concentration of free charges in the deJocalized

bands and the changes in the thennal quenching function during heating as shown by



-

dJ dlJ dn
~=-nnA +lJ_enA.
dT dT e h r dT h r

(4.4)

We see from equation 4.4 that at temperatures outside of the range of influence for '7

(~I 00-200 °C) the first term is approximately zero. At these temperatures, we expect

that the TL peak intensity will occur when dne/dT = O. For TSC, we see from equation

4.2 that the size and position of the peaks will depend on the temperature dependence of

the charge mobility (;1), and the voltage (V) across the sample. In general, fl is found to be

proportional to the temperature (jl IX. T U
), where a. may be positive or negative.

However, from data taken by Agcrsnap Larsen et. al. [4.6], suggests that fl in AI20 3:C is

approximately constant. However, we consider it still quite possible that fl might exhibit

some temperature dependence in our samples. For our purposes, we shall consider the

voltage (vj across the sample to be constant, even though the space charges in the sample

may exhibit some temperature dependence as charge is de-trapped during heating. For

now we have no way of monitoring this, and thus we will consider V to be a constant.

From these conclusions, we expect the change in the TSC intensity from equation 4.2 to

be given by the equation

dl ' dp dn
~ =VAe-n + VAejl_e

dT dT e eLT .
(4.5)

When we are at temperatures were d'7/dT;::; aand if dp/dT = 0, we will expect the TL

and TSC peaks to occur at the same temperature. When d '7/dT < 0, we expect that the

TL peaks will be shifted to lower temperatures than the TSC peaks. Also, if fl exhibits a

temperature dependence, we expect the TSC peaks to be shifted to higher temperatures if

peT) IX. T a
, and we expect them to he shifted to lower temperatures if p(T) if. T- a

.
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For H-l, we see that the 180°C TL peak is shifted to lower temperature than its

corresponding TSC peak. At this temperature. we see that d'7 < 0 and therefore would
dT

expect the TL peak to be shifted to lower temperatures than its corresponding TSC peale

The 410°C TL peak is centered at approximately the same temperature as its

corresponding TSC peak, and the 310°C peak appears to correspond to a TL peak that

appears as a tail on the front side of the 410°C TL peak. Also. the 630°C peak appears

to be shifted slightly lower than its TSC counterpart, but the shift is small enough that it

is within the uncertainties of the temperature measurements. Therefore we neglect the

shift of the 630°C peak. The fact that these TL and TSC peaks correspond well suggests

that the mobility is possibly exhibiting an inversely proportional temperature dependence

(jJ(T) ce r-a
). However, this is difficull to conclude due to the peak overlap of the

individual peaks that make up the overall TL peaks. Therefore, we can draw no solid

conclusions about the temperature dependence of the mobility for H-I and make only the

statement that the possibility exists of an inversely proportional temperature dependence.

4.1.2 Comparison of TL with the F and F+ Center Concentration

The temperature dependence of the F+ center concentration is shown in figure 4.2 III

comparison with the TL glow curve. The F+ center concentration is seen to decrease in

correlation with the 180 tiC TL peak. The F+ center concentration decreases again over a

temperature range of 300°C to 400 °c correlating to the 410 °e TL peak and increases

from about 550 °e to 700°C correlating to the 630 °e TL peak. The decrease in the F+

center concentration around 180°C and 410°C coincides with an increase 10 the F center

concentration in the same temperature ranges as shown in figure 3.9. This leads to the
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conclusion that the 180°C and 410°C TL peaks in H-l are produced by the release of

trapped electrons that recombine at F+ centers to produce an excited F center which

relaxes producing an emission band centered at 420 nrn as shown in equation 2.33. This

conclusion is further supported by the TL emission spectrum shown in figure 3.17. We

see an emission band centered at 420 nm. We expect that this emission lies in the same

temperature ranges as the 180°C and 4) 0 °C TL peaks; the dependence in temperature is

due to the error introduced by experimental setup, as discussed in section 3.3.1. The

increase in the F+ center concentration from about 550°C to 700 °C and coincides with a

decrease in the F center concentration in the same temperature ranges as shown in figure

3.9. This leads to the conclusion that the 630°C TL peaks in H-l are produced by the

release of trapped holes that recombine at F centers to produce excited F+ centers that

relax to produce an emission band centered at 326 nm as shown in equation 2.34. The

emission spectrum in this temperature range could not be measured due to limitations in

the heating range of the TL emission experimental setup.

From equation 2.6 we see that the TL intensity should be proportional to the

negative derivative of the concentration of recombination centers (17i1) in the crystal

(In <X -dnh/dT). For the case ofH-1 we have concluded that the recombination centers

are either the F+ centers (for the 180°C and 410°C peaks) or the F centers (for the

630 llC peak). Figure 4.3 shows a comparison of the positive peaks produced by the

negative derivative of the F+ center concentration (- dn I. / ciT) and the negative

derivative of the F center concentration (- dU t /dT ) to the TL glow eurve for H-I. The

concentration derivati ve peaks are centered at lower temperatures than the TL peaks.

However, overall, we see good correlation between the TL peaks and the peaks produced
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Figure 4.2: Comparison of the TL glow curve and F+ center concentration for H-I.
Good correlation is seen between the positions of the TL peaks and the changes in the F,
center concentration.
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by differentiating the F and F+ center concentrations with respect to temperature. The F

center concentration derivative peak at 630°C shows several sharp peaks due to the noise

in the data that was then smoothed and then differentiated. This results in the high

frequency noise at high temperatures being smoothed into several steps in the data that

are differentiated to produce several sharp peaks.

The fact that the peaks of the derivative of the recombination center concentration

are at lower temperatures than the TL peaks suggests that recombination at the F and F+

centers might not be the only type of recombination occuning during TL. This

conclusion is also suggested by the differences in the concentration changes of the F and

F+ centers over the temperature ranges of the TL peaks as seen in figure 3.9. lf another

recombination process is occurring during the IL process, F centers may be lost or

created without the production or loss of an F+ center or vice versa resulting in the

changes in the F and f+ c~nter concentrations being di fferent. If the process dido'l

involve recombination at F+ centers, then the derivative of the F+ cenler conccntratioll

would not be affected. However if this involved the production of F centers and F center

emission, it would add to the TL peak causing the TL peak maximum \0 be shined to a

higher temperature. Such a process might involve a negatively charged F center such as

(4.6)

Also if the process involves the production of F+ centers and F+ center emission, it ITllght

involve a doubly ionized F center (F++) such thal

FT' +e- ~F' =hv3: o'I'II" (4.7)

The process described in equation (4.6) involves the production of an F center withoUl
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the loss of an F+ center, and the process described in equation (4.7) involves the

production of an F+ center without the loss of an F center. These ideas might give some

insight into the differences in the size of changes in the F and F+ center concentrations,

and in the differences in the position of the peak maximums for the TL and derivative of

the recombination centers in H-I.

4.2 Discussion of Results for Mg-1, Mg-3, and Mg-6

4.2.1 Comparison of TL and TSC

Figure 4.4 shows the comparison of the TL and the TSC data for sample Mg-1 prepared

according to the experimental conditions described 1n chapter three. We see that the 17S

°c TSC peak is shifted slightly higher than the TL peak centered at approximately 150 lle

due to thermal quenching in this temperature range. The 300 <Ie TSe peak is shifted

quite substantially from the 225 (Ie TL peak (if they are at all connected), and the large

TSC peak that is centered at 575 lIe is shifted above the TL peak centered at 540 "C This

suggests that the charge mobility for Mg-I is possibly directly proportional to the

temperature (p(T):x. T"). Howcvcr, due to peak overlap we arc unable lO make a

definite conclusion about the charge mobility.

Figure 4.5 shows the comparison of the TL to the TSC measurement for sample

Mg-3. We see from the sizes of the TL and TSe peaks that the 340°C TL peak is much

smaller than its TSe counterparts at 300°C and 360 0c. The 180 "C TL and its TSC

counterpart are centered at about the same temperature. As seen for H-l, we expect to

see the TL peak shifted to lower temperatures than its TSe counterpart as seen from the

discussion of section 2.4.2 and due to themlal quenching. The lack of shift suggests that
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Figure 4.4: Comparison of the TL glow curve and TSC signal fonn Mg-l. Good
correlation is seen between the positions of the TL and TSC peaks, and thelmal
quenching is evident by the decrease in the size of the TL peaks relative to the TSC
peaks.

80



--

10000

8000

o
700600500400300200

1e-10

1e-13

100

1e-11 60UO --l........ rVl
0.. ........
E OJ

~
C

'---'

U 4000
If)

I-
1e-12

2000

temperature tC)

Figure 4.5: Comparison of the TL glow curve and TSC signal form Mg-3. Good
correlation is seen between the positions of the TL and TSC peaks, and thermal
quenching is evident by the decrease in the size of the Tl. peaks relative to the TSC
peaks.

~l



the charge mobility is inversely dependent on the temperature, but no conclusion can be

made because we do not know the details of the individual peaks that make up the overall

180 °e TL peak. The 310 °e TL peak appears to correlate to the 300 °e and 375 lie TSe

peaks. The two separate TSe peaks offer good evidence that the TL peak is made up at

least two smaller TL peaks that overlap to produce the 310°C TL peak. The TSe signal

shows 110 distinct peak in the region of the 550 lie TL. There might be a TSe peak

correlated with this TL peak, however the high background signal at these temperatures

will cover up any signal produced by the release of trapped charges.

Figure 4.6 shows the comparison of the TL and the TSe measurements for sample

Mg-6 prepared according to the experimental conditions described in chapter three. The

210°C TL peak is somewhat shifted to lower temperatures than the TSe peaks at 180°C

and 290 0c. This is good evidence of that the 210 "(' TL pcak is made up of at least two

smaller peaks. Also, the 375°C TL peak is shifted to lower a temperature than it 460°C

TSe counterpart. This shifting of the TL peaks to lower temperatures is in agrecment

with the discussion of section 2.4.2. Also this could suggest that the charge mobility for

Mg-6 is possibly directly proportional to the temperature, but we must also consider this

shift is occurring due to the overlap of the peaks.

4.2.2 Comparison of TL with the F and F+ Center Concentration

The comparison of the F+ center concentration as a function of temperature with the TL

glow curve for Mg-I is shown in figure 4.7. The decrease in F+ center concentration unti I

150 lie and increase until 250°C in the F+ center concentration coincides with an

increase and then decrease in the F center concentration in the same temperature ranges

as shown in figure 3.11. This leads to the conclusion that the 150 lle TL peak in Mg-l is
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produced by electron recombination with F+ centers. The increase in the F+ center

concentration from about 150°C to 250 °C leads to the conclusion that the 225°C TL

peak in Mg-I is produced by hole recombination at F centers. From figure 3.18, we see

an emission band centered at 420 nm correlating to the 150°C TL peak after temperature

correction as well as a strong F+ center emission hand. The appearance of both emission

bands in this temperature range suggests that both F and F+ center recombination is

occurring. We see that there is no significant change in the F+ or F center concentrations

correlating to the 400°C TL peak. We then assign the production of the 400°C TL peak

to recombination processes not involving the F and F+ centers. The 540°C TL peak

correlated to an increase and then a decrease in the F+ center concentration, which we

assign to recombination of holes with F centers and recombination of electrons with F+

centers. The increase in the TL signal from 600°C out to 700 °c is assigned

recombination of electrons with F+ centers.

The comparison of the F+ center concentration as a function of temperature to the

TL glow curve for Mg-3 is shown in figure 4.8. This leads to the conclusion that the 180

°c peak is produced by a combination of electron and hole recombination processes at F+

and F centers to produce F and F+ center emission bands. This conclusion is further

supported by the TL emission spectrum shown in figure 3.19 were we see both F and F+

center emission bands. The production of the 340 DC TL peak in Mg-3 is assigned to both

the recombination of electrons at F+ centers and recombination of holes at F centers.

Also, we conclude that the 540°C TL peak is produced by F center recombination

processes that do not involve the F+ center, and the TL signal seen from 650°C to 700 DC

is produced by a both F and F+ center recombination processes.
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Figure 4.7: Comparison of the TL glow curve and F+ center concentration for Mg-I.
Good correlation is seen between the positions of the TL peaks and the changes in the F+
center concentration.
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The comparison of the F+ center concentration as a function of temperature to the

TL glow curve for Mg-6 is shown in figure 4.9. The overall changes in the F and F+

center were very small in Mg-6, and did not show a general anti-correlation as in the

other samples. We also see poor correlation to the change in the F+ center concentration

and the TL peaks for this sample. From the comparison made in figure 4.9, we make the

conclusion that the 210°C TL peak in is produced by recombination of electrons and

holes with F+ and F centers respectively. This conclusion is in conlrast to the TL

emission spectrum shown in figure 3.18, which shows only a large F center emission

peak centered at 420 run. We conclude, that the 375°C TL peak is not produced by a

process involving both F and F+ centers as described by equation 2.34. Instead, it could

be produced by a process such as the one described by equation 4.3. The remaining

increases in F+ centers do not correlate to a decrease in F center concentration or a TL

peak. Therefore we conclude that the recombination occurring is nonradiative and not of

the type described by equation 2.34.

For the case of Mg-I we have concluded that the recombination centers are either

the F+ centers (for the 150 "c, 225 0(, and 540 lie TL peaks and 700°C TL signal) or the

F centers (for the 225 DC and 540°C TL peaks). Figure 4.10 shows a comparison of the

positive peaks of the negative derivative orthe F+ center concentration (- dn F ; !dT) and

of the negative derivative of the F center concentration ( - dn F / dT ) to the TL glow curve

for Mg-l. We see, as for H-I, that the concentration derivative peaks are shifted to lower

temperatures than the TL peaks. The TL peaks for Mg-l appear to be produced by both

electron and hole recombmation processes. As seen by the 225 u(' and 540 tiC TL peaks,

and the 600 uC 10 700 \)C TL signal, both electron and hole recombination processes are
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Figure 4.9: Comparison of the TL glow curve and F+ center concentration for Mg-6.
Good correlation is seen between the positions of the TL peaks and the changes in the F+
center concentration.
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involved in the production of the overall TL peak. Also, several small peaks in the F +

center concentration derivative indicate that several distinct recombination processes are

occurring producing smaller TL peaks that overlap to Conn the overall TL peak. As

suggested by the comparison of F+ concentration to the TL for Mg-l we see no peak for

the F or F+ center concentration derivative for the 400°C TL peak. Because of this,

along with the recombination processes described by 2.33 and 2.34, we also recognize

that alternative processes of recombination must be occurring in Mg-l. Any number of

additional processes, such as the ones mentioned in equations 4.6 and 4.7, could be

contributing to the TL peaks.

For the case ofMg-3 we have concluded that the recombination centers are either

the F+ centers (for the 180°C, 340 DC, and 550 °c peaks) or the F centers (for the 180 l'C,

340°C, 550 °c peaks). Figure 4.11 shows a comparison of the positive peaks produced

by taking the negative derivative of the F+ center concentration ( - dnF..!dT) and of thl:

F center concentration (- dn,. /dT) to the TL glow curve for Mg-3. We sec good

correlation between the TL peaks and the peaks produced by differentiating the F and F+

center concentrations, and we again notice the shift to lower temperatures of the

concentration derivative peaks as seen in H-J and Mg-l. Several F and F+ center

derivative peaks appear in the temperature range of the 340 "c and 550 "C TL peaks

leading to the conclusion that they are made up of several smaller peaks distributed over

the temperature range of the TL peaks. Also, along with F and F+ center recombinatIon

processes described by equations 2.33 and 2.34, we noticed recombination rrocesses

involving the F center (correlating to the 550 "C TL peak) that did not involve the F+

centers One possible conclusion is lhal a recombination process such as the one

89



0.00030

le+5
0.00025 n

".......

u

t\Q...
'i'
E 0.00020
u

F / I 1e -+4 ~......
......
0

1\.1"1
".......

.-l OJ

0 0.00015 c

Ju
--..,.,.

;::::::;

N\1u
c 0.00010 Ie +3
0 .u--..,.,. .
If'

0.00005

0.00000

100 200 300 400 500 600 70U

temperature (C)

Figure 4.10: Comparison of TL intensity (solid gray) and the negative derivative of the
concentration of recombination centers for Mg-I. The 150°C, 225 llC, 540 "C, TL peak
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described by equation 4.2 is occurring.

For the case of Mg-6, we do not see good results in the correlation of the changes

in the F and F+ center concentration to the TL peaks. Therefore we do not expect good

correlation between the TL peaks and the peaks of the concentration derivatives. Figure

4.12 shows thi s comparison for the negative derivative of the F+ center concentration

( - dn F+ / dT ) and of the F center concentration ( - dn F IciT) and the TL glow curve for

Mg-6. The F center concentration derivative peaks occur within the temperature range of

the 210 °c TL peak suggesting hole recombination that produces an F+ center emission

band. This is contrary to the TL emission of Mg-6 shown in figure 3.20. which shows

only an F center emission peak in this temperature region. No derivative concentration

peak appears in the temperature range of the 375°C peak. This leads us to believe that

this TL peak is not produced by recombination at F or F+ centers.

4.5 Conclusions

From the presented work, we see that the F and F+ centers play an important role

in the production of luminescence during the TL process for the samples studied in this

research. The TL process was seen to involve the release of trapped charge into the

delocalized bands ,and recombination at F or F+ centers. All samples showed the

correlatiOn of TSC peaks to the TL peaks. All the samples also showed thenna]

LJuenching of the intensity of the high temperature TL peaks. Also sample H-l and Mg-l

showed evidence that the TL peaks in the range from approximately 100 uc to 200 ()C

showed a shift to lower temperature than the TSC peak due to the effects of the thenna!

quenching. From the shift in the TL peaks we suggest the possibility that the charge

mobility is proportional to the temperature for Mg-l and Mg-6 and inversely
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proportional to the temperature for H-l and Mg-3. However, we cannot draw a definite

conclusion as to the temperature dependence of the charge mobility since we do not know

the details of the individual TL peaks that make up the overall TL peaks.

The change in the F+ center concentration is shown to correlate well to the TL

peaks in samples H-l, Mg-l, and Mg-3. However, the TL peaks and the changes in F+

center concentration are not seen to correlate well for Mg-6. From the results of samples

H-l, Mg-l, and Mg-3, we see that the TL peaks are made up of a distribution of both hole

and electron recombination processes giving rise to both F and F+ center emission. This

leads to the conclusion that both holes and electrons are being released and radiatively

recombining to produce the TL peaks. Therefore, we can see that the TL peaks in

Al203:C can not be accurately analyzed by the simple first, second, or general order

tedmiques discussed in chapter 2. Instead the peaks would need to be deconvolved into

the smaller peaks produced by each individual recombination process that makes up the

overall TL peale This is consistent with the conclusions of Agersnap Larsen cl. al. [4.1]

and Walker et. al. [4.21. The..: concentration of the F and F+ centers showed an anti­

correlation during heating. However, the size of the changes in the F and F+ centers was

not always equal. We sec from this that recombination processes other than the ones

described by equations 2.33 and 2.34 are occurring in the samples. This might be

explained by equation 4.6 and 4.7. These equations present the idea that recombination

at centers other than For F+ centers can take place within the samples to produce an For

F+ center. If these processes were to take place, the concentration of one center would

increase without the concentration of the other decreasing. In all of the samples we saw

the TL peaks occurring at higher temperatures than the concentration derivative peaks.
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This might also be caused by recombination processes such as the ones given by

equations 4,6 and 4.7 occurring in the samples that are adding the Tt peaks. This leads

to the conclusion that recombination at centers other than F and F+ centers are OcculTing

or perhaps energy from recombination at an unknown center is being transferred to the F

center to produce F center emission when it relaxes. Also, just as likely is the possibility

that energy is transferred to the F+ center to produce F+ center emission when it relaxes.

The exact nature of any recombination process other than the ones studied in this research

are not known at this time, and any statement made about these processes is merely a

suggestion.

4.5 Further Work

The results presented in this thesis lead to the conclusions that although the primary

recombination processes involve electron and hole recombination with F and F+ centers

respectively, alternative processes must also be taking place during TL. To gain a

complete understanding of the recombination process in AhO\:C'. lhesc alternative

processes must be identified. To do this, it would be important to measure the emission

spectrum of AI 20 3:C from room temperature to 700 "c. This would give more evidence

of the type of recombination process occurring for the higher temperature TL peaks.

Also, the emission in over a broader range of emission wavelengths would be helpful in

determining other types of recombination processes occurring during TL. It would also,

to perfom1 simultaneous measurements of TL and optical absorption. This might resolve

any differences in the heating rate that might occur between two separate measurements.
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