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CHAPTER I

INTRODUCTION

Gene transfer between bacteria holds gross consequences for species diversity and

evolution. The ability ofbacteria to transfer genetic material is made more important with

the advent of using Genetically Engineered Microorganisms (GEMs) in such tasks as

bioremediation, wastewater treatment, and mineral processing (Ripp, 1996). While these

are noble efforts, it is possible that not enough effort has been devoted to understanding

entire ecosystems ofmicroorganisms. This includes both natural cell-based life forms and

viruses that utilize them as hosts.

Genetic exchange happens primarily via three well-studied mechanisms.

Transformation, the ability ofa cell to take up naked DNA, was first documented by Avery,

MacLeod, and McCarty in 1944 (Avery et. aI., 1944), This has been studied most

extensively in Escherichia coli whereby one strand of linear double-stranded DNA is

degraded in order to provide the needed energy for injection of the other. The DNA then

undergoes a single-stranded aggression event in which it undergoes a RecA mediated

homologous recombination event. While said mechanisms have been examined in the E.

coli system, the same mechanisms do not necessarily hold true for other gram-negative



bacteria such as those in the genus Pseudomonas (R.V. Miller, personal communication).

Conjugation, a second type of gene transfer, occurs when one cell bearing a conjugal pilus

("male") attaches to a non-pilus-possessing ("female") cell and passes DNA into the

recipient. The exact mechanisms by which this takes place are not fully understood.

Transduction of prokaryotic DNA is transfer that is mediated by bacteriophages.

Studies have implicated transduction as the major manner in which gene transfer is

arbitrated in situ (Miller et. aI., 1977). Bergh and his colleagues discovered in 1989 that

phage titers in marine waters were actually seven times greater than had been previously

assumed (Bergh et. aI., 1989), and this may provide a venue by which frequent transduction

events come to pass. Transduction may not seem to be a common candidate for genetic

exchange because the DNA recipi.ent may in tum be killed in the process. However, a little­

studied process known as pseudolysogeny may be responsible for the bulk of the transfer

(Ripp and Miller, 1997).

During pseudolysogeny, a susceptible host cell exists in a viable but non-culturable

state, as may be the case for many microorganisms as they exist in the environment. This

cell becomes infected by a phage which is capable of either vegetative or reductive

(lysogenic) growth as we know it in the laboratory. The virus, once inside the starving cell,

must maintain itself in a harsh envi ronment devoid of nutrients.

If this virus holds genetic material from the prior host cell from which it came, this

DNA is now introduced into the new host (transduced). It may now recombine into the host

chromosome or into a plasmid. Either way, this new gene may introduce the phenotype of

the previously infected cell. In this way, transduction ofGEMs into the natural flora ofan
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ecosystem can give rise to a "Genetically Engineered Environment." Experimental

application of phage DNA probes to the environment has shown that such transfer is

observable (Ogunseitan et. aI., 1992).

Pseudomonas aeruginosa is ubiquitous in the environmentand can easily be isolated

from freshwater lakes (Ripp, 1996). The entire genome of Pseudomonas aeruginosa PAO

has been sequenced at the University ofWashington, though this sequence infonnation has

not yet been published. An omnipresent bacteriophage, UT1, was isolated from a freshwater

source in 1988 (Ogunseitan, 1988). Another phage, UNL-l, was propagated from a

spontaneously arising plaque at the University ofNebraska-Lincoln (Shaffer et. aI., 1999).

UNL-I does not replicate in starved cells, and it does not mediate generalized transduction.

This study examines properties of UTI and UNL-l. Specifically, this work aims to

show that the receptor for these two phages lies within the lipopolysaccharide layer and that

this confers identical host ranges. Molecul.ar properties of the bacteriophages are also

considered.
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CHAPTERll

LITERATURE REVIEW

Bacteriophage Distribution in the Environment. It is well known that

bacteriophages can undergo both reductive and vegetative life cycles, but methods presently

in use for detecting phages rely on their lytic activity when infecting a specific host. Should

this lytic behavior be the nonn in the environment, it stands to reason that there would be

little to no host bacteria living in the habitat. Furthennore, there would be no dynamic

interaction between phages and their hosts. This notion was contradicted by Ogunseitan

(Ogunseitan et. a!., 1990).. Bacterial viruses have a finite half-life in the environment

(Roszak and Colwell, 1987).

One reason why UT 1was chosen in previous studies was that it was actually isolated

from a lake sample and not induced from a laboratory lysogen (Ogunseitan et. aI, ]990). In

order to mimic actual environmental microbiology, it is paramount to make all attempts

possible to employ actual environmental isolates of both bacteriophages and their hosts.

Pseudolysogenic Relationships. Pseudolysogeny was first described by Twort

(Twort, 1915), but this phenomenon wasn't fully recognized until 1961 (Romig and
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Brodetsky, 1961) when it was used to describe the stasis between various soil bacilli and the

viruses that infect them.

It was hypothesized that pseudolysogeny happens in response to low levels of

nutrients. To test this hypothesis, a chemostat run with chemically defined minimal media

was used to control growth ofPseudomonas hosts which had been inoculated with UT1 at

an Mal of approximately one. Detection of phage was then accomplished by infective

center assays taken at intervals during the run. Indeed, a constant low level of phage

production was seen at times when few nutrients were available. Spiki ng the medium with

richer nutrients (yeast extract) induced the production of viable phage particles. This

increased the phage:bacterium ratio (Ripp and Miller, 1997). Phages from a freshwater

environment were also probed with labeled lIT I DNA and shown to be positive (Ripp and

Miller, 1997). This confinned that UTI was an omnipresent phage in that environment or

that UTI-like phages were ubiquitous. In a separate study, lITl DNA was shown to be

present in hosts that had been infected and then starved for five years (Schrader et. aI.,

1999). lITl DNA can thus seemingly exist in a pseudoprophage state in the lab or in situ.

A study by Ogunseitan et. a1. (1990) described the importance of lakewater

transduction events. Several phages [UTI, D3, DS I, FI16 (temperate), E79 (virulent), and

MI (a mixed population)] were utilized in the study (Ogunseitan et. al., 1992). Phage DNA

probes were constructed via nick translation using radioactive nucleotides, and these probes

hybridized to genomic DNA isloated from wild bacteria in a lake to test for phage

lysogenization. Many of the probes did indeed reveal a strong hybridization signal.
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Bacteriophage Receptors. While much attention has been given to the molecular

biology ofbacteriophages and the events that regulate their life cycles, relatively little effort

has been geared toward understanding the initial event in virus infection, attachment to the

host cell.

Animal cells have no cell walls, and animal viruses thus tend to adsorb to protein or

carbohydrate moities on the outside of the host cell. This explains their high tissue/organ

specificity, as different types ofdifferentiated cells within a multicelluar organism display

different surface proteins (often to aid in a given function).

Bacteriophages, on the other hand, utilize host cells that do have cell walls that are

often quite complicated in nature. Furthennore, the cell wall is often the outennost structure

of the host. This is certainly the case with P. aeruginosa (Meadow, 1975). Aside from

phospholipids, the major component ofthe cell wall is lipopolysaccharide (Meadow, 1975).

Bacteriophages may use this abundant moiety as an attachment site.

Lipopolysaccharide (LPS) has been shown to be the receptor for many

bacteriophages. Pseudomonas phages 68, PBl (Bradley and Pitt, 1974), B3, D3, GI01, and

E79 have all been shown to be specific for the cell wall (Jacoby, 1974). The LPS has been

identified as the receptor for T3, T4, and T7 in Escherichia coli (Weidel, 1958), T2 and T4

in Shigella dysenteriae (Goldham et. al., 1975), for P22 in Salmonella typhimurium

(Lindberg, 1973), and for phage IP in Rhizobium trifo/ii (Zajac et. aI, 1975). More recently,

LPS has been shown to be the receptor for P. aeruginosa cytotoxin-converting phage <DCTX

(Yokota et. aI, 1994) It is of interest to note that these are primarily bacteriophages in the

Myoviridae genus.
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Of utmost importance is the discovery of the receptor for Pseudomonas phage E79

(Jarrell and Kropinski, 1977). In the Jarrell study, E79-resistant mutants were generated by

introducing a culture of P. aeruginosa PAO 307 to a high concentration ofE79. Such

mutants were shown to have a rough colony morphology, which is characteristic ofbacteria

that are deficient in LPS. LPS was then purified from P. aeruginosa PAO 307. The LPS

was incubated with phage, and the resulting mixture was titered by a plaque assay, using

PAO 307 as a host. The fractions containing the most LPS yielded a lower phage titer

(efficiency of plating). The investigators concluded that exogenous LPS competed for

binding sites on the phage particles. It was not alluded to, an LPS binding event may have

induced a needed conformational change in phage proteins that elicited a DNA expulsion

event into the medium. This would have yielded "ghost" phage particles that were neither

able to bind cells nor to generate a successful infection. In any case, incubation of phage

with LPS caused the decreased efficiency of plating that occurred. This indicated that LPS

is likely the receptor for E79.

Pili have been shown to be receptors for C22, M6, PE69, and C5 (Bradley and Pitt,

1975), as well as the widely-used generalized transducing phage F116 (Pemberton, 1973).

P. aeruginosa PAO possesses four to five of these phage-attaching pili/cell (Pemberton,

1973). These pili are constitutively expressed, and they can be observed using any standard

negative staining technique coupled with visualization in the transmission electron

mIcroscope.

The Cell Wall in Pseudomonas aeruginosa. Lipopolysaccharide is a common

component of gram negative bacteria, but the lipopolysaccharide is often quite different
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between species and even strains of the same species. This is true for members of the

Pseudomonas genus (Meadow, 1975) between differing species and strains.

The outer membrane and wall ofthe P. aeruginosa cell is characterized by 9 distinct

layers visible in a thin section electron micrograph of a celL These have been designated

L( through ~ (Lickfield et aI., 1972). Ofthese, L1 .~ Ls ~,and ~are electron dense, and. . ,

L( is the outermost layer. The even numbered layers are transparent when viewed in the

electron microscope.

For purposes of nomenclature, the cell wall (16 nm) consists oflayers L\ through L6.

Ls (3 nm) is the mucopeptide layer that is within the periplasmic space. In E. coli, the

mucopeptide (peptidoglycan) is linked to the outer layers ofthe wall via a lipoprotein which

can be removed by trypsin (Braun and Sieglin, 1970). There is much less lipoprotein in the

P. aeruginosa mucopeptide-outer membrane junction, but there still may exist some sort of

lipoprotein-mediated joining of the peptidoglycan and outer membrane. (Meadow, 1975).

The outer membrane (7 nm) is L1 through L3 (Gilleland et. ai., 1973). This

constitutes the exterior layers ofL\-L6 referred to above. The cytoplasmic membrane (7 nm)

is L7 through~. The lipid A portion ofthe lipopolysaccharide has been shown to be located

within L j -L3, while the polysaccharide portion is extrudes outward from the cell (Gilleland

et. aI., 1973). There is likely a common basic lipopolysaccharide molecule which is

modified in different strains (Meadow, 1975). This means that a phage which can use P.

aeruginosa PAO lipopolysaccharide as a receptor might not be able to infect a different

strain such as Pseudomonas aeruginosa FRD.
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The LPS of P. aeruginosa can be cleaved into its lipid A and polysaccharide

segments by mild acid hydrolysis, though this also cleaves some glycoside linkages (Fensom

and Meadow, 1970). The lipid A lacks P-hydroxyl myristic acid, which is the major

component ofthe LPS ofmost Gram negative bacteria (Fensom and Gray. 1969). The major

P. aeruginosa LPS lipid is 3-hydroxy myristic acid (12:0). Also present are 3-hydroxy 10:0

and 2-hydroxy 12:0 fatty acids (Chester et. al., 1973). The lipid A moiety is synthesized

from a P-l ,6-linked disaccharide ofglucosamine. The glucosamine hydroxyls are esterified

with fatty acids while 3-0H myristic acid (12:0) is amide linked to the glucosamine amino

group. The remaining hydroxyls can be substituted with palmitic acid (16:0) and/or 2­

hydroxy myristic acid (12:0) (Drewry et. aI., 1973). All three ofthe hydroxy acids of the

lipid A can be synthesized from the coenzyme A derivatives or the derivatives of the

corresponding saturated fatty acid. Hydroxylation takes place before incorporation into lipid

A. and the adding of these acids to the gJucosamine backbone is one of the final stages in

the assembly of the outer layers of the wall (Humphreys et. at., 1972).

Polysaccharide fractions of the LPS contain glucose, rhamnose, galactosamine, 2­

keto-3-deoxyoctonic acid. and alanine. Other amino sugars have been discovered in some

strains but not all. There is indeed high variability among the P. aeruginosa strains with

respect to the LPS polysaccharide (Meadow, 1975).

Aside from the cell wall, P. aeruginosa has also been shown to possess a cell

glycocalyx (envelope) under certain conditions. Specifically, certain strains produce mucoid

colonies or excrete large amounts of their glycocalyx when exposed to increased amounts

ofgluconate and magnesium (Vogel and Bonner, 1956). In fact, this extracellular substance
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is important to macrophage evasion and pathogenesis, especially in cystic fibrosis patients

(Govan, 1975). Furthermore, this envelope promotes cell-to-cell adhesion of bacteria that

may assist in biofilm fonnation (in nature) or increased resistance of phagocytosis by

alveolar macrophages (within a host) (Reynolds et. aI., 1975). Electron micrographs ofthin

sections reveal that the envelope can ex1end as much as 2 micrometers from the bacterial

surface (Costerton et. ai., 1979).

Bacteriophages of Pseudomonas aeruginosa. P. aeruginosa has a number of

viruses that researchers have used for genetic studies as well as for basic microbiology.

Unlike the coliphages, viruses ofP. aeruginosa have letter designations to group phages that

are immunoreactive to each other (Holloway et. aI., 1960). The phages are thus grouped by

letter (A, B, C, D, E, etc.). This tradition has been broken in recent years due to the increase

in number ofphages isolated from natural environments. Furthermore, there has been a shift

toward the usage of phages to study transduction and away from the study of

immunoreactivity of bacteriophages. A summary of several important Pseudomonas

bacteriophages is shown in Table 2.1.

Characterization of Ba.cteriophage UTI. Oladele Ogunseitan first isolated this

bacteriophage (Ogunseitan, 1988) and named it LLPP5 for "Lake Loudon Pseudomonas

Phage, plaque 5," Lake Loudon is a freshwater lake near the University of Tennessee. For

simplicity, the name was changed to UTI in the literature. While many of the transducing

properties ofthe virus were characterized and published (Ogunseitan et. aI, 1990), properties
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Table 2.1 Bacteriophages of Pseudomonas aeruginosa

Bacteriophage Family Receptor Life Cycle Reference

"Classical" Phages

B86 Siphoviridae ** Temperate Kilbane et. aI., 1988

D3 Siphoviridae (Cell Wall) Temperate Miller et. aI., 1974

E79 Myoviridae LPS Lytic Jarrell et. a., 1977

F116 Podoviridae Pilus Temperate Miller et. aI., 1974

GI0l Siphoviridae ** Temperate Miller et. aI., 1974

Recently Discovered Phages

CTX Myoviridae LPS Temperate Yokota et. al., 1994

ACQ ** ** Temperate Schrader et. aI., 1997

BLB •• ** Temperate Schrader et. aI., 1997

UNL-l Myoviridae LPS Temperate Shaffer et. aI., 1999

UTI Myoviridae LPS Temperate Ripp et. aI., 1994

**Not studied or undetermined
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of the virus itself were not. This phage was preliminarily classified by its virion

morphology, namely that the head is octahedral with a67.5 ron diameter about its horizontal

axis, its collar is 10 nm, and it has a contractile sheath that measures 12 run thick. There

is also a 125 nm non-flexible tail core (Ogunseitan, 1988).

Phage morphology is important for at least two reasons. IfUT I is indeed mostly

lytic, pseudolysogeny may be a crucial alternative to lytic replication inside an environment

devoid of nutrients. Second, the size of the phage head (which contains the DNA)

determines the amount of DNA that can be transduced. The electron microscopy results

prompted a classification in the ICTV-approved phage family Myoviridae (Ogunseitan,

1988).

Phages with inflexible tail cores are predominantly members of the Myoviridae

family (Murphy et. aI., 1996), and this is a family populated by bacteriophages that undergo

preponderantly lytic life cycles. It seems logical that this phage may prefer a lytic cycle.

The primary physical property of UTI described in the literature is its likeness to

Pseudomonas phage E79, a highly lytic bacteriophage similar to coliphage T4. Evi.dence

ofE79 and UTI similarity was similar virion morphology and similar restriction patterns.

E79 DNA does hybridize with labeled UTI DNA (Ogunseitan et. al, 1990).

UTI Bost Range and Receptor. A limited host range for bacteriophage UTI has

been alluded to in the thesis originally reporting discovery of the virus (Ogunseitan, 1988),

but nothing further on the matter has appeared in the peer-reviewed literature. The lone

attribute used to determine host susceptibility of UTI was the ability to form plaques

12



(Ogunseitan, 1988). Furthermore, only a few Pseudomonas aeruginosa strains were used

in that study.

The mechanism that UT 1 uses for cell entry has not been elucidated, though

Ogunseitan did mention that "absorption of phage (UTI) to host cells appears to be similar

to those of previously characterized, contractile tail phages" (Ogunseitan, 1988). This

generalized mechanism was first described in 1967 (Bradley, 1967).

Recently Characterized Pseudomonas Bacteriophages. Because viruses are so

ubiquitous in the environment, phages should be easily identifiable in many freshwater

lakes. This has been demonstrated multiple times and in multiple environments (Ripp,

1996; Ogunseitan, 1988). Indeed, bacteriophages ACQ and BLB were i.solated from

Antelope Creek in Lincoln, Nebraska. ACQ is a nonUV-inducible lysogenic phage of P.

aeruginosa with plaque morphology and immunity properties identical to the specialized

transducing P. aeruginosa phage D3. BLB is a UV-inducible lysogenic generalized

transducing phage ofP. aeruginosa (Schrader et. aI., 1997).

Another Pseudomonas virus, UNL-l, was isolated from a spontaneously arising

plaque at the University of Nebraska-Lincoln. It was partially characterized by Shaffer et.

al. (1999). Upon viewing UNL-1 particles in a transmission electron microscope following

a negative stain with phosphotungstate, the phage was classified to be a member of the

Myoviridae family. The head is approximately 80 nm in diameter, and its contractile tail

measures 200 nm in length (Shaffer et. aI., 1999).
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The G/C content of the UNL-i genome was detennined to be 68% when examined

spectroscopically. As was the case with UT1, DNA restriction fragment lengths were added

in an effort to detennine the length ofthe entire viral genome. It was estimated to be 48 kb

long (Shaffer et. at, 1999), a length that is much shorter than UTi and E79. Also unlike

UTI, UNL-l was shown to not be capable of mediating generalized transduction (Shaffer

et. aI., 1999). Despite this difference, however, UNL-l has genome sequence similarity to

UT 1 of at least 86%.

Research on Pseudomonas bacteriophages is not limited to freshwater ecosystems.

Researchers in Japan uncovered a bacteriophage, <1>CTX, that carries a P. aeruginosa

cytotoxin. <1>CTX was isolated from a clinical strain ofP. aeruginosa that had been purified

from an individual with a P. aeruginosa infection, and it was detennined that <I>CTX

lysogenizes many clinically-important P. aeruginosa strains. It was shown that P.

aeruginosa strains lysogenized with this virus were capable of producing the cytotoxin

(Hyashi et. aI., 1990). For this bacteriophage, the receptor was demonstrated to be in the

LPS core region (Yokota et. aI.., 1994). The complete genome of<I>CTX was also sequenced,

but this bacteriophage has not been compared to viruses isolated from the environment such

as E79, UTI, or UNL-l (Nakayama et. at, 1999).
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CHAPTERlli

IDENTIFICATION OF LPS AS THE HOST RECEPTOR
FOR BACTERIOPHAGES UTI AND UNL-I

Introduction

It is ofparamount interest to understand how attachment of the bacteriophage to the

host occurs. When the nature of this interaction is known, one can more clearly begin to

learn more about when and where phages can exhibit dynamic interactions with their host

bacteria. The consequences of studying phage-host symbioses will be addressed in later

chapters.

Variations in cell surface structures exist across genera, species, and strains of

bacteria. In order for a bacteriophage to have a limited host range, it must attach to a fairly

specific receptor; and the receptor would have to be conserved over those hosts which it

could infect. The only other alternative to using a common receptor would be to use

different receptors for different hosts, but this would require that the phage would likely

have to use different tail fibers for different hosts. This phenomenon has not been reported

for any bacteriophages of P. aeruginosa. The purpose of this study is to elucidate the

receptor for bacteriophages UT I and UNL-I.
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Materials and Methods

Bacterial Strains and Bacteriophages. P. aeruginosa PAO 303 is an argB21

mutant ofP. aeruginosa PAO 1, the prototype member ofthe species. Other strains used are

listed in Table 3.1. Pseudomonas phage UTI was provided by R. V. Miller, and phage

UNL-l by T. Kokjohn.

Bacteriophage Plaque Assays. The method ofSilhavy et. al. (1984) was employed.

Host bacteria were grown to late logarithmic phase. Phage dilution (500 ~l) was added to

4.4 ml ofsoft agar (1 % BBL Trypticase, O. 5% sodium chloride, 0,65% agar, 48°C), and 100

III ofhost bacteria were then added to the mixture and mixed by rolling for 10 seconds. The

soft agar was then poured onto a Luria-Bertani (LB) plate (1.3% agar), allowed to cool, and

stored at the appropriate temperature for host bacterial growth. Plaques were observed for

morphology and counted the following day.

UTI Propagation on Various Strains ofP. aerug;nosa PAO. UTI (103 pfu) was

inoculated into a 10 ml culture of bacteria at mid-log phase. After 10 hours, the cells were

pelleted by centrifugation, and the resulting lysate was titered using the above assay.

Preparation of P. aerug;nosa RM 4500. The method of Jarrell and Kropinski

(1977) was utilized. Pseudomonas aeruginosa PA0303 were grown to mid-logarithmic

phase and inoculated into 4.5 mllow-melting point phage titration agar (1 % BBL Trypticase,

0.5% sodium chloride, 0.65% agar, 48°C). The mixture was gently mixed and poured onto

16



Table 3.1 UTI Titer Propagated on Various P. aeruginosa Strains

PA067 his· 2 X 1010 pfulml

PA0886 his· leu· pro· ade· ura· B I- I X 1010 pfulml

PA0860 his- mer ade" ura· B I· 1 X 108 pfulml

PA08 ilv· mer SmR 1 X 107 pfu/mr

PA0844 his· arg- ade- 5 X 108 pfulml

PA0859 his· mer ade· ura- l X 107 pfulmr

PA0664 pro- ade- 7 X 109 pfulml

PA0871 his· lys- ade- ura· Bl· 2 X 10 10 pfulml

PAOl prototroph 8 X 109 pfulml

•plaques formed in the acceptable range of 30-300 were available on I plate only.
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an LB nutrient agar plate and allowed to cool. After 5 min., 20 III ofa high-titer E79 phage

stock was administered to the center of the plate. The plate was allowed to dry and then

placed at 37 0 C overnight. The following day, a rough colony (Pseudomonas aeruginosa

PAO E~ had grown up near the center of the cleared area of bacteria. This colony was

restreaked and designated P. aeruginosa RM 4500.

Preparation ofLPS by Phenol-Water Extraction. The methodofWestphal (1969)

was used to purify LPS. Twenty g (dry weight) of bacteria were suspended in 350 ml of

water at 65 0 C. An equal volume of 65 0 C phenol was added and left to stir in a 65 0 C

water bath for 15 min.. The mixture was then cooled to 10 0 C in an ice bath, and the

emulsion centrifuged at 1000 x g for 40 min. This separated the mixture into a water layer,

a phenol layer, and an insoluble residue formed at the phase interface. The water layer was

saved, and the remaining phenol/residue was re-extracted with another 350 rol of preheated

water. The resulting water extracts were dialyzed 4 days against nanopure water and treated

with Proteinase K (20 J..lglml) after dialysis.

Preparation of LPS by Triton X-I 00 Treatment and Salt Precipitation. The

method of Uchida and Mizushima (1987) was used. A 50 ml culture of late logarithmic­

phase bacteria was spun down at speed of 12,000 x g for 20 min. and resuspended in 2.2 ml

distilled water. To the mixture were added successively 0.4 ml of 100 mMTris-HCI (pH

8.0),0.4 ml of0.5 MMgCl2 and 1.0 ml of8% Triton X-lOO. The vessel was tightly capped

and heated in boiling water for 10 min.. After cooling, the mixture was centrifuged at
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15,000 x g for 15 min. The resulting pellet was washed once with 4.0 ml oflO mMTris-HCI

(pH 8.0)-lOmMMgCI2' The resulting pellet was resuspended in 4.0 ml of 10 mMTris-HCI

(pH 8.0)-10 mMMgCI2 as well as 1.0 ml each of distilled water, 0.2 MEDTA (pH 8.0),2

MNaCI, and 8% Triton X-lOa, and incubated at 3r C for 60 min. (while shaking). The

mixture was then centrifuged at 15,000 x g for 15 min. The supernatant (-8 ml) was

recovered, 0.8 ml of 1 MMgClz added, stirred, and incubated again at 37 0 C for 60 min.

The resulting cloudy solution was centrifuged at 100,000 x g (33,100 rpm in a Beckman 70.1

Ti rotor) for 90 min. at 4 0 C. The LPS (the pellet) was then resuspended in 4.0 mIlO roM

Tris-HCI (pH 8.0), treated with Proteinase K (20 ~glml) at 3r C overnight, washed once

with 4.aml of 10 mMTris-HCl (pH 8.0)-10 mMMgCl2, and re-centrifuged. The LPS pellet

was dried and reconstituted in water.

Results and Discussion

Propagation ofUTl on Various Strains ofP. aeruginosa. In an effort to identify

membrane-bound proteins as possible viral targets, many independent mutants of P.

aeruginosa were analyzed for their ability to propagate phage UTI. The exact nature of

most of the mutations in these strains had not been studied, but it was anticipated that some

of the autotrophic properties of these mutants could have stemmed from mutations in

transporters and/or pathway-dependent enzymes. All mutant strains were capable ofphage

production, but the efficiency of UTI growth on different strains varied. One explanation

of the variable UTI titers produced could have been an increased phage need for the

nutrients for which the host was autotrophic. We did note that the mutant status of the
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organisms caused markedly higher generation times. Because they grew at such disparate

rates, they were thus likely less able to produce phage at comparable titers.

Bacteriophages UTI and UNL-I Bind Uniformity Over the Host Cell Wall. To

examine the distribution of phage binding receptors on the bacterial host, electron

microscopy was perfonned. Electron micrographs (Figures 3.1-3.4) showthat bacteriophage

particles ofUTI and UNL-I are capable ofbinding to multiple sites along the P. aeruginosa

PA0303 cell wall. No phages were observed binding to pili. Indeed, Figure 3.5 reveals the

tail fibers of a UTI phage particle juxtaposed over a pilus. Two distinct bacteriophage

particles can in fact be seen attaching to both sides to the L.-L3 Iayer (the outer cell wall) of

P. aeruginosa PA0303 in Figure 3.6, the layer that contains the lipid A portion of its

lipopolysaccharide. These results suggest that UT I does not bind to pili but rather to some

molecule distributed over the surface of the bacteria.

Generation ofan E79-resistant Organism. UTI showed very little DNA sequence

homology to many previously-characterized Pseudomonas bacteriophages (Ogunseltan,

1988). It was demonstrated, however, that UT 1 was very similar to Myovirus E79 with

respect to DNA sequence (Ogunseitan et. aI., 1992). Since LPS has been proven to be the

receptor for many Myoviruses including E79 (Jarrell and Kropinski, 1977),

lipopolysaccharide was postulated to be a receptor for phages UT 1 and UNL-l.

Generating UTl- or UNL-l-resistant organisms using the method of Jarrell and

Kropinski (1977) was not useful because both UT 1 and UNL-l have been reported to
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Figure 3.1 UTI attaching to PA0303 (228,000 X).
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Figure3.2 UNL-l attaching to PA0303 (201,600 X).
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Figure 3.3 SEM ofUTI attaching to PAGl (31,853 X).

Figure 3.4 SEM of UTI attaching to PAG} (56,296 X).
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Figure 3.5 UTI tail fibers juxtaposed over a pilus (360,000 X).
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Figure 3.6 UTI attaching to both sides ofa PAG 303 wall (356,364 X).
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generate lysogens that might be mistaken for resistant organisms (Ripp, I996~ Shaffer et. aI.,

1999). This property was confirmed and will be discussed in the next chapter.

Pseudomonas phage E79, on the other hand, is analogous to coliphage T4 in that it does not

lysogenize~ E79 forms clear plaques, and it has been demonstrated to use the LPS as its

receptor (Jarrell and Kropinski, 1977). When 20 III of a high titer E79 lysate were

inoculated onto a top agar/Po aeruginosa PA0303 mixture, a large zone oflysis resulted with

several rough colonies emerging within. These colonies were restreaked and named P.

aeruginosa RM 4500.

Characterization of P. aeruginosa RM 4500. P. aeruginosa RM 4500 produced

rough colonies and was even found to cause rough lawns when spread plated. RM 4500 was

shown to be immune to both UNL-I and UTI (Chapter 4). RM 4500 did not grow any

slower than PAO 1(Figure 3.7), though it apparently produced a suspension ofcells that was

less optically dense or grew to a lower stationary phase titer. No phage attached to RM 4500

when inoculated with a high tIter preparation of UTI or UNL-I as visualized by electron

mlcroscopy.

Preparation of LPS from PA0303 and RM 4500. The most common method for

purifyIng bacterial lipopolysaccharides is the one developed by Westphal (1969). This

method inadequately recovers LPS from rough (LPS deficient) strains (Key et. aI., 1970), but

it is successful in preparing LPS from a number ofgram negative genera. ThIS was certainly

the case WIth P. aeruginosa RM 4500, as LPS was unable to be recovered using this hot
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phenol method. Furthennore, bacterial lawns grown for purposes of plaque assays during

a titration assay containing LPS purified by this method grew unusually slowly. Fortunately,

the method ofUchida and Mizushima (1987) was capable ofextractingLPS from both rough

and smooth strains even though it is fairly specific for P. aeruginosa LPS. In the final

centrifugation step, RM 4500 (the UTIIUNL-l resistant strain of P. aeruginosa) LPS

produced a transparent pellet whereas LPS extracted from PA0303 generated a white pellet.

Clearly, the lipopolysaccharide molecules ofthe phage-sensitive and phage-resistant bacteria

were dissimilar.

Titration of Bacteriophage with LPS Decreases Efficiency of Plating. If LPS is

the receptor for phage UT I or UNL-l, exogenously provided LPS should decrease phage

titers by either blocking the LPS binding sites or causing phage to spontaneously eject their

head contents. A reduction in titer following treatment with LPS was observed for both UTI

(Figure 3.8) and UNL-I (Figure 3.9), but not to the extent observed by Yokota, et. a1. (1994)

with <I>CTX or by Jarrell and Kropinski (1977) with E79. UTI and UNL-I titers were

unaffected by incubation with LPS extracted from RM 4500.

Conclusion

The isolation of a UTIIUNL-l resistant strain of P. aeruginosa (RM 4500) was

accomplished by generating an organism immune to infection by Pseudomonas

bacteriophage E79. UT1and UNL-l thus likely utilize the same receptor as E79. The rough

nature ofthe colonies created by RM 4500 lends significant support to the fact that RM4500

28



.
CJ)

>
c
o.-
10
~

+-".-
I-
~o

-a Eor- ......
(/)

E
co
L..
0)
a
L..
(,)

E-....--.
(J)

0r- o...
---''---'

o
a
~

~ ~ ?f!- ?f!-
a a a a
OC> <.D "'!" N

UQ!lEJl!..L 0/0

-..

\

•
"\

\
\
\
\

II I I I I II I I II III I I I " I I. II I
II I I I I I III I I II I II II I I I. II I

tJ)
D..
..J

.---.
~C/)

.c~
~

c
o.-..,
t!..,.-
I-

Figure 3.8 LPS effect on virulence of UTI. PA0303 LPS C.) and RM 4500 LPS ce).
ANOVA showed significant differences at the LPS concentration of 10 Jlglml.

29



----

0
,-.,.
.....-4

or- ~
tn

a
0
1-1
U.-
S
r--""1

Gf)

~

~
~
1........1

o
a
or-

or-

~oo
a

~o
a
N

'#.
a
<.0

'#.
a
co

-

..

• I
,
\
1
\
\
\

I ~,.
'I I , I" I II I : I ....

~o
a
a
or-

.en
>
c
o

+:i
ro
~

~

I­
~o

~
I

..J
Z
::J

ena.
..J
>. ........cU)

c..
c::~
o--.....,
ca........,--I-

Figure 3.9 LPS effect on virulence ofUNL-l. PA0303 LPS C.) and RM 4500 LPS ce).
ANOVA showed significant differences for LPS concentrations 1 and 10 llglml.

30



-

is deficient in its lipopolysaccharide layer, as the lack of one or more portions of the LPS

causes irregularities in the way that the cells stack on and around each other. The growth

rate of RM 4500 paralleled that of PAOl. As a result, RM 4500 is likely a strain of P.

aeruginosa that does not have any serious metabolic deficiencies.

Due to the fact that adding free LPS to the phage preparation decreased the infectious

titer, it appears that the LPS has some neutralizing ability. In the case of both E79 and

<I>CTX, the number of LPS binding sites on phage tails was unascertainable (Jarrell and

Kropinski, 1977; Yokota et. aI., 1994). Furthermore, the exact nature of lipopolysaccharide

binding has yet to be determined for any of the Pseudomonas LPS-binding phages. It was

postulated by Jarrell and Kropinski (1977) that the phage actually requires both a portion of

the polysaccharide and the lipid A in order to get an injection event to occur. Because E79

resistance confers immunity to UT1 and UNL-l, the same might also be true for UNL-l and

UTI. Another possible conclusion is that the LPS may assume a different conformation

when it is separated from the cell membrane and that this conformational change affects

UTI and UNL-Ibinding ability more than it affects E79 or <I>CTX binding ability. The

purification method presented here required the use of magnesium chloride to precipitate

the LPS. Unfortunately, the added presence of the divalent cation may have chelated the

LPS and interfered with phage neutralization.
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CHAPTER IV

DEFINING THE HOST RANGES OF
BACTERIOPHAGES UTI AND UNL-I

Introduction

Understanding the host range for a virus is an important step in understanding phage

biology. Because all viruses are obligate intracellular parasites, the most important

characteristic of a virus is what host it utilizes. In other words, what is its "habitat?" This

is indeed an important question for any biological entity.

The host range ofUT 1and UNL-I has not been defined to date. UNL-I was purified

from a spontaneously arising plaque (Shaffer et. al., 1999), and it has only been studied

using the original P. aeruginosa PAO host. Similarly, UTI has only been used in the P.

aeruginosa PAO system. Original work by Ogunseitan (1998) showed that all PAO strains

were sensitive to UTI infection except LPL5, which was a UTI lysogen. He did not test

other strains of P. aeruginosa, other Pseudomonas species, or any other gram-negative

orgamsms.

It has been shown that UTI is a generalized transducing phage (Ripp et. aI., 1994).

If a bacteriophage such as UTI or UNL-I could in fact infect other types of bacteria, such

a phage could be an important transducing vector. The introduction of genetically
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engineered microorganisms into an ecosystem which contains such a wide host range

bacteriophage could have significant consequences on the balance of that ecosystem.

Moving of genes from a GEM into a natural organism might not yield any significant

consequence, as genes transferred might not be active in the new host. If the new gene(s),

however, would provide some selective advantage for the new host, some random mutation

event (such as that which might occur in a promoter region) might provide the needed force

to generate a genetically engineered environment.

Unlike UT 1, UNL-I is not capable ofgeneralized transduction in P. aeruginosa. Its

high sequence homology to UTI (Shaffer et aI., 1999) thus leaves us with many interesting

questions. No studies to determine the host range ofUNL-1 have been published.

In this study, several gram-negatives, Pseudomonas species and strains of P.

aeruginosa were examined. With regard to host range, there are three questions that are

pertinent to understanding the bacteriophage:

1. Which organisms can the phage attach to?

2. Which organisms can the phage lyse when introduced in high titer?

3. Which organisms can the phage propagate (produce plaques) on?

Materials and Methods

Preparation of Phage Lysates. P. aeruginosa PADI or .PA0303 (an argE21

mutant) were grown for 8 hours (late mid-logarithmic phase) in Luria-Bertani (LB) broth and

then infected with phage at a multiplicity of infection (MOl) of approximately 0.1. At 10

hours post-infection, cells were centrifuged at 4,300 x g or 30 min. in a SorvaIl centrifuge.
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The supernatant (phage lysate) was then filtered through a 0.45 micron filtering apparatus

and stored at 4°C.

Purification of Bacteriophage for Electron Microscopy. Phage lysates were

centrifuged through a glycerol gradient at 146,550 x g for 1 hour and fifteen min. at 4°C in

a Beckman ultracentrifuge. The supernatant was decanted into a bleach solution. The

resulting pellets (purified phage) were suspended in 100 microliters of TE buffer (10 mM

Tris-HCI, pH 8.6, 10 mMEDTA) and infectious phage titrated by plaque assay.

Analysis of Bacteriopbage Attacbment to Hosts. Purified phage were added to

mid-Iogarithimically growing bacteria at an (Mal) of approximately 100. After an

adsorption period of5 min., a carbon and fonnvar coated 200 mesh grid was touched to the

bacteriophage-host suspension, the suspension allowed to settle for I min., and negatively

stained with 2.5% uranyl acetate for 1 min. Grids were washed (I minute) in sterile water.

blotted dry, and viewed with a lEaL JEM 100 CX II STEM.

Observation of Lytic Properties. A high titer lysate (50 I.d, >1010
) of phage were

added to the center ofa lawn ofhost bacteria on an LB plate and allowed to dry. The plates

were allowed to incubate at an optimal growth temperature (30°C for P. putida, P.

fluorescens, andB. cepacia, 3rC for the others) overnight. Bacteria susceptible to lysis by

the phage had a large plaque in the precise shape of the phage suspension added to the plate

(a spot lysis assay). Bacteria immune to phage were identified by the absence of lysis.
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Bacteriophage Plaque Assays. The method described in Chapter 3 was employed.

Host bacteria were grown to late logarithmic phase. Phage dilution (500 fJl) was added to

4.4 ml of soft agar (1% BBL Trypticase, 0.5% sodium chloride, 0.65% agar, 48°C). Host

bacteria (100 Ill) were then added to the mixture and mixed by rolling for 10 seconds. The

soft agar was then poured onto an LB plate (1.3% agar), allowed to cool, and stored at the

appropriate temperatw"e suited for host bacterial growth (30°C for P. putida, P.fluorescens,

and B. cepacia, 37°C for the others). Plaques were observed for morphology and counted

the following day.

Results and Discussion

Visualization of Phage Attachment to Hosts. A typical example of attachment is

provided in Figure 4.1 . Results of phage attachment studies are summarized in Table 4.1.

In most cases, few viruses were seen in the background unattached to bacteria. Cases where

no viral attachment occurred thus had little or no phage in the field, or the phages were

congregated away from the surface of the bacterial cell. A typical instance of noo­

attachment is provided in Figure 4.2.

Phage Lysis of Host Bacteria. Results of bacteriophage lysis studies are

summarized in Table 4.3. Photographs of typical positive and negative results are shown

in Figure 4.3. In general, zones oflysis were visibly apparent. P. aeruginosa PAT gave an

unusual densely tw"bid lytic zone. Others were mostly clear in appearance. It was initially
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Figure 4.1 UNL-l binding to PA0303 (235,714 X).
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Figure 4.2 RM 4500 exposed to UTI (65,143 X).
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Table 4.1 Phage Attachment to Various Bacterial Strains

Bacterial Strain Tested

Pseudomonas aeruginosa PAO1

Pseudomonas aeruginosa PA0303

Pseudomonas aeruginosa PAT

Pseudomonas aeruginosa RM 4500

Pseudomonas aeruginosa LLPAIO

Pseudomonas aeruginosa LPL5

Pseudomonas aeruginosa RM 2097

Pseudomonas aeruginosa RM 759

Pseudomonas aeruginvsa FRD

Burkholderia cepacia

Pseudomonas pUlida

Pseudomonasjluorescens

Salmonella typhimurium

Escherichia coli B*

Seratia marcesans

Vibrio natriegans

UTI

++

++

++

++

+

++

+

++

UNL-I

++

++

++

++

+

+

++

+

++ many phage particles were observed bound to the bacterial cells
+ some phage particles were observed bound, though not the majority
- very few phage particles were observed bound if any
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Table 4.2 Phage Lysis of Bacterial Lawns

Bacterial Strain Tested

Pseudomonas aeruginosa PAO1

Pseudomonas aeruginosa PA0303

Pseudomonas aeruginosa PAT

Pseudomonas aeruginosa RM 4500

Pseudomonas aeruginosa LLPAIO

Pseudomonas aeruginosa LPL5

Pseudumonas aeruginosa RM 2097

Pseudomonas aeruginosa RM 759

Pseudomonas aeruginosa FRD

Burkholderia cepacia

Pseudomonas putida

Pseudomonas jluorescens

Pseudomonas syringae

Salmonella typhimurium

Escherichia coli B*

Seratia marcesans

Vibrio natriegans

+ a zone of lysis was observed
- a bacterial lawn grew unperturbed
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+

+

+
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+
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Table 4.3 Plaque Production on Various Strains of Bacteria

Bacterial Strain Tested

Pseudomonas aeruginosa PAOI

Pseudomonas aeruginosa PA0303

Pseudomonas aeruginosa PAT

Pseudomonas aeruginosa RM 4500

Pseudomonas aeruginosa LLPAIO

Pseudomonas aeruginosa LPL5

Pseudomonas aeruginosa RM 2097

Pseudomonas aeruginosa RM 759

Pseudomonas aeruginosa FRD

Burkholderia cepacia

Pseudomonas putida

Pseudomonas jluorescens

Salmonella typhimurium

Escherichia coli B*

Seratia marcesans

Vibrio natriegans

+ plaques were produced
- no plaques were observed
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+
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+

+

+

+

UNL-l

+

+

+

+
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Figure 4.3 Typical results of bacteriophage lysis. Left: UTI plated onto a PA0303 lawn
(note the zone of lysis). Right: UNL-l plated onto a LPL5 lawn (no lysis observed).
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thought that Escherichia coli could serve as a host for UTI and UNL-l, but these results

were later shown to be the result of contamination with P. aeruginosa PA0303.

Ability of Phage to Form Plaques on Hosts. Results of phage plaque assay were

consistent with phage adherence assays. There were no cases ofplaque fonnation in strains

that did not experience lysis when dosed with a high titer of phage. The highest degree of

turbidity of the plaques was shown with P. aeruginosa PAT. This could be due to a high

degree oflysogeny or an increased resistance. Interestingly, plates that showed the highest

number of plaques also exhibited the largest amount of pyocyanin released into the agar

medium except when there was so much phage on the plate as to cause confluent lysis over

the surface ofthe whole petri dish. In all cases where plaques were fonned, the titer was not

significantly different from the titer of the positive control, P. aeruginosa PA0303.

Sensitive strains were all of derivatives ofPAOl except for B. cepacia. Virus propagated

on P. aeruginosa PA0303 had the same efficiency of plating when titrating on PAT hosts

and PAO hosts. Virus propagated on P. aeruginosa PAT had the same efficiency ofplating

when titrating on PA0303 hosts and PAT hosts. P. aeruginosa FRD was immune to

infection.

Conclusion

P. cleruginosa phages UT1 and UNL-I have identical host ranges with respect to the

bacterial host strains tested in this study. The only non-PAO strains sensitive to those phage

were Burkholderia (formerly Pseudomonas) cepacia and Pseudomonas aeruginosa PAT.

This shows that UT1and UNL-l are highly selective with respect to their choice ofreceptor.
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Interestingly, these phages can both go outside of the genus to infect BurkhoJderia cepacia,

but they are quite limited within the species of P. aeruginosa.

Also ofinterest is the fact that the viruses can grow equally well on PAT and on PAD

even after being propagated on the other. This is somewhat riveting because PAT and PAD

have restriction/modification systems that restrict each other much like E. coli K12 and E.

coli B. In the case ofE. coli, ATber's work with coliphage Awas one ofthe first to show that

restriction/modification systems exist between strains oforganisms within the same species.

In that study, phages first grown on E. coli K12 grew poorly on E. coli B. Those that did

grow on E. coli B were very successful at propagating on B in the future, but they then failed

to grow well when plated back on K12. If P. aeruginosa had been ATber's organism of

choice and UTI or UNL-l his bacteriophage of choice, we may still be ignorant to the

presence of restriction enzymes.

An important characteristic ofa phage that has lysogenized is the fact that it confers

immunity to superinfection by the same phage. P. aeruginosa LPL5 is a bacterial strain that

has been shown to be a lysogen ofUT 1 (Ogunseitan, 1988). LPL5 was immune to both UTI

and UNL-l when challenged. RM 759 is a lysogen of<1>OS-1 (a relative ofPodovirus FlI6),

and RM 2097 is a lysogen ofPseudomonas phage 03 (a relative ofcoJiphage A). Both were

sensitive to infection by UT] and UNL-l .

The host range of phages UT 1 and UNL-l are limited and likely do not extend far

beyond the PAO strain. The environmental ramifications ofthis are such that UT I or UNL­

1might be a suitable vector for in situ genetic engineering offreshwater ecosystems. UNL-I

could be of particular significance because it does not transduce chromosomal genes to a
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Interestingly, these phages can both go outside ofthe genus to infect Burkholderia cepacia,

but they are quite limited within the species ofP. aeruginosa.

Also ofinterest is the fact that the viruses can grow equally well on PAT and on PA0

even after being propagated on the other. This is somewhat riveting because PAT and PAO

have restriction/modification systems that restrict each other much like E. coli K12 and E.

coli B. In the case ofE. coli, Arber's work with coliphage Awas one ofthe firstto show that

restriction/modification systems exist between strains oforganisms within the same species.

In that study, phages first grown on E. coli KI2 grew poorly on E. coli B. Those that did

grow on E. coli B were very successful at propagating on B in the future, but they then failed

to grow well when plated back on KI2. If P. aeruginosa had been Arber's organism of

choice and UTI or UNL-l his bacteriophage of choice, we may still be ignorant to the

presence of restriction enzymes.

An important characteristic ofa phage that has lysogenized is the fact that it confers

immunity to superinfection by the same phage. P. aeruginosa LPL5 is a bacterial strain that

has been shown to be a lysogen ofUT1 (Ogunseitan, 1988). LPL5 was immune to both UT 1

and UNL-l when challenged. RM 759 is a lysogen of<1>DS-I (a relative ofPodovirus Ft 16),

and RM 2097 is a lysogen ofP~Yeudomonasphage 03 (a relative ofcoliphage A). Both were

sensitive to infection by UTI and UNL-l.

The host range of phages UT 1 and UNL-I are limited and Ii kely do not extend far

beyond the PAO strain. The environmental ramifications ofthis are such that UTI or lJNL..

1might be a suitable vector for in situ genetic engineering offreshwater ecosystems. UNL-l

could be of particular significance because it does not transduce chromosomal genes to a
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measurable extent, and it doesn't seem to be capable ofpseudolysogeny. Its half-life would

likely be considerably less as a consequence.
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CHAPTER V

RELATEDNESS OF BACTERIOPHAGES UTI AND UNL-l

Introduction

It has been shown that both UNL-l and UTI require the lipopolysaccharide as the

receptor for host infection, and the host range of the two bacteriophages are identical.

Shaffer et. al.( 1999) showed that UNL-I DNA hybridizes strongly with DNA purified from

UT I. The same report also calculated the UNL-I chromosome at 48 kb, 30 kb less than that

ofUTI. Many of the UNL-I DNA restriction fragments were of identical lengths to that of

UT1DNA, but it was demonstrated that UNL-I, unlike UT I, could not mediate generalized

transduction (Ripp et. aI., 1994). What was strikingly ignored, however, was the fact that

UTI (with a DNA length of79 kb) possessed a smaller capsid (67.5 nrn) than UNL-t (80

nrn) even though the chromosome was larger. This would not agree with the headfuJ rule

(the property that phage pack their capsids with as much DNA as possible), but it could be

an indicator that UNL-I may serve as a vector by using the extra head room to transduce

foreign DNA.

While many of the ecological consequences and DNA reactivation characteristics

of these viruses have been examined, little effort has been placed on trying to discover

physical properties of the viruses. The goal of this set ofexperiments was to look at some
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ofthe physical attributes in an effort to better understand the biology ofthese phages and to

examine the similarities between the viruses.

Materials and Methods

Bacteriophage Purification for Purposes of DNA Analysis. The method of

Silhavy et. a1. (1984)was used with slight modification. Polyethylene glycol (6000 MW)

was added to a phage lysate at a concentration of 10% (w/v) and allowed to stand at 4°C

overnight. The phage-PEG pellet was then collected by centrifugation at 6000 x g for 10

min. at 4°C. The pellet was resuspended in 50 mMTris-HCI, pH 7.5, 10 mMMgS04 (TM

buffer). Phage was extracted from the solution with an equal volume ofchlorofonn, and the

solution was centrifuged at 2000 x g for 10 min. to separate the organic phase. The aqueous

phase (4 ml) was then loaded onto a glycerol gradient (2 ml40% glycerol, 2 m15% glycerol)

and then centrifuged at 100,000 x g for 60 min. at 4°C. The resulting pellet was

resuspended in 1 ml TMbuffer and treated with RNase A (final concentration 10 Ilg/ml) and

DNase I (final concentration 1 Ilg/ml) and allowed to incubate 30 minute at 37°C.

Purification of Bacteriophage DNA. STEP buffer (0.5 ml of 0.5% SDS, 50 mM

Tris-HCI, pH 7.5, 0.4 MEDTA, 1 mg Proteinase Klml) was added to the above suspension

and allowed to incubate overnight. After a 15 min. incubation at 50°C, DNA was extracted

successively with Tris-saturated phenol, phenol:chlorofonn:isopentyl alcohol (25 :24: t), and

chlorofonn:isopentyl alcohol (24: 1). The DNA was then precipitated with 1110 volume 3

M sodium acetate and 2 volumes cold ethanol. The DNA was then centrifuged 30 min. at
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3,000 x g, washed with 70 % ethanol, and then resuspended in 10 mMTris-HCI, pH 7.5, 10

rnM EDTA. DNA concentration was detennined by the ethidium bromide spot method

using salmon spenn DNA as a standard.

Restriction Analysis ofBacteriophage DNA. Restriction enzymes were purchased

from Prornega. Protocols were provided by the supplier. Briefly, 1 J.lI of lOX restriction

buffer, 1 J.lg DNA, and 1 /-ll enzyme were diluted to 10 Jll with nanopure sterile water and

allowed to react at 37°C for two hours.

Agarose Gel Electrophoresis. 1% agarose gels were made with IX TAE running

buffer (0.484 % Tris, 01142 % glacial acetic acid, 0.3722% EDTA). In most cases, the gels

were electrophoresed overnight at 25 volts. Lambda DNA was cut with HindID and used

as a standard.

Visualization ofPhage DNA Using Electron Microscopy. Phage DNA (10 Jlg) was

added to a 40 Jll staining solution described by Mayer, et. al. (0.2 M ammonium acetate, 2

Jlglml cytochrome c, 0.07 M fonnaldehyde, and 0.001 M EDTA). This preparation was

gently spread over parafilm, and then a drop of it was applied to a fonnvar and carbon­

coated 300-mesh electron microscopy grid. DNA was then stained with 1% uranyl acetate

and then viewed in an STEM as described in the previous chapter.
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Figure 5.1 Bacteriophages UNL-1 and UTI. Right: UNL-I (416,000 X), Left: UTI
(420,000 X).
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Figure 5.2 Differing plaque morphologies ofUTI and UNL-l. Both phages are capable
of both lysogenic plaques (left) and clear, halo-fonning plaques (right).
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Results and Discussion

Temperate Behavior of UNL-I and UTI. UNL-I is classified as a "lytic

bacteriophage ofP. aeruginosa" (Shaffer et. a1., 1999), and UTI is known to be capable of

bothtemperate and vegetative growth. Itwas detennined, however, that UNL-I cannot grow

on P. aeruginosa starved for 24 hours (Shaffer et. al., I999)~ and it is not capable of

generalized transduction. What was not reported, however, was the ability of UNL-l to

produce turbid plaques. Such turbid plaques were observed in this study, and they were

particularly apparent when UNL-l was assayed using P. aeruginosa PAT as a host

The genetic switch between lytic replication and lysogeny in UT I remains an

enigma. For some time in this study, only turbid plaques were observed for UTI (which

were not reported previously for plaque assays using laboratory strains of P. aeruginosa).

When a spontaneously appearing clear plaque emerged, it was plaque-purified and regrown.

Some progeny retained the ability to produce clear plaques. Others reverted back to

turbidity.

Analysis of Bacteriophage DNA. The only published values for genome length of

UT I and UNL-I are based on the addition of the sizes of restriction fragment lengths. It is

of importance to note that this is not a reliable measure ofDNA length, as lengths of20 kbp

or greater are both difficult to size estimate and umeliable on a standard (non-pulse field)

gel. Nonetheless, this experiment was repeated. EcoRl was the only enzyme used with UTI

DNA that gave what appeared to be a complete digestion (lanes I and 2, Figure 5.3) ofDNA

fragments into lengths less than 20 kbp. The results are provided in Table 5.1. Sixteen

fragments were identified. IfEcoRI sites occurred completely randomly, one would expect
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Figure 5.3 Restriction analysis ofUTl. Lanes 1 and 2: EcoRI; 4 and 5: Bamfll; 7 and 8:
PstI; lOand U:HindIII; l3and 14:SmaI; 16 and 17: Sail; 19and20:Sau3A;3,6, 15, 18,
and 23 : 1 kbp; 9 and 23: AX HindIII.
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Table 5.1. Approximate Restriction Fragment Lengths of EcoRI-digested UTI DNA

Fragment Number Length (kbp)

1 (smallest) 1.1

2 1.2

3 1.3

4 1.4

5 1.5

6 1.75

7 2.0X2

8 2.1

9 2.4

10 2.45

11 2.95

12 .l05 X 2

13 3.5

14 3.75

15 4.0

16 (largest) 6.0

Total 45.5 kbp
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Table 5.2 Approximate Restriction Fragment Lengths of HindID-digested UTl DNA

Fragment Number Length (kbp)

1 (smallest) 1.25

2 1.75

3 2.2

4 2.3

5 2.5

6 2.7

7 3.0

8 3.25

9 3.5

10 3.75

11 3.8

12 4.4

13 5.8

14 6.0

15 6.4

16 6.6

17 7.5

18 8.2

19 (largest) 9.4

Total 84.3 kbp
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it to cut every 4096 base pairs. IfUTI DNA was cut 15 times, it would seem that the DNA

would be approximately 61 kb in length. Indeed, adding the EcoRI restriction fragment

lengths group an estimated genome size of50.5 kbp.

In contrast to this, HindIll yielded 19 fragments (statistically, UTI DNA would thus

be nearly 74 kbp with such a random digest). In the case of Hindlll, the fragments added

up to 84.3 kbp. This actually fits into the value of79 +1- 5 kbp noted by Ogunseitan (1988),

but one could only speculate what results might be obtained ifyet another enzyme was used.

A comparative restriction analysis ofphages UTI and UNL-I is shown in Figure 5.4.

Many common restriction patterns are apparent by looking at the ladders produced. Also

of interest is the high sensitivity of the bacteriophages to PaeR7, an enzyme purified from

P. aeruginosa. Based on digests by EcoRI, ClaI, and PaeR7, phage UTI appears to have

one or more bands present not found with UNL-l DNA. In the PaeR7 lanes, a series of6-9

kbp fragments (possibly four) are present in UTI that are not in UNL-I DNA. These

fragments approximat~ the reported differences in DNA lengths of the bacteriophage

genomes.

Visualization of the bacteriophage DNA molecules by electron microscopy was

possible, but no contour lengths over half a kilobase pair were observed (using the

established length of 3.4 Aibp present in B-form DNA). The longest (straight) molecules

seen are provided in Figure 5.5. Many DNA molecules were visualized as large "knots of

yarn," but accurate contour lengths could not be calculated from those micrographs.

Extensive spreading of the DNA on the parafilm likely caused mechanical breaks in the
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Figure 5.4 Restriction analysis of UTI and UNL-I DNA.
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Figure 5.5 Bacteriophage DNA. Left: UTI (8,640 X), Right: UNL-l (11,520 X).
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molecule, or there may have been a lack of adequate amounts of cytochrome c in the

preparation to absorb the electron dense stain.

Conclusion

Bacteriophage UNL-l may be related to UTI on an evolutionary level. Previous

studies have proven there to be at least 86% identity with respect to DNA sequence between

VT 1and UNL-I. This study has shown that there seem to be many restriction fragments that

the two phages have in common.

We have also learned that there seems not to be a simplistic answer to the choice of

life cycles (temperate or vegetative). Both UNL-I and UTI are capable of producing both

turbid and clear plaques. This occurred in both the plaque and bacterial lysis assays

described in Chapter 4, though the latter was only true when P. aeruginosa PAT was used

as a host. This could serve as evidence supporting the notion that PAT is really the "natural"

host for the virus instead ofPAO as was originally thought.

Because it is not truly known where UNL-l originated (environmental sample,

laboratory contaminant, etc.), it is difficult to comment on what real consequences UNL-l

has had or could have on freshwater ecosystems. Evidence in previous studies pointed to

UNL-l as a variant of VI I in which 30 kbp has been deleted, with the deletion rendering

the virus incapable of generalized transduction and unable to engage in pseudolysogenic

behavior. However, our data failed to confirm the 30 kbp difference. Such a deletion

doesn't seem to explain the increased size of the capsid or what type of role the capsid has

57



-

on the "headful rule" for UNL-l, but such measurements based on electron microscopy may

not be reliable measurements due to artifacts of the preparation process.
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CHAPTER VI

CONCLUSIONS

In a scientific world that has clearly stepped into the age of the gene, fonnerly

advanced techniques such as genetic engineering and bioremediation have become

commonplace in today's fast-paced solution-oriented world. It is thus of paramount

importance to consider the biology of an ecosystem before attempting to engineer it to our

perceived benefit. Because of the widespread occurrence of gene transfer between

organisms, we must first understand these mechanisms of transfer so that we do not

inadvertently offset the delicate balance that exists in nature.

It is apparent that substantial amounts of genetic transfer occur in the environment

as a result of virally-mediated transduction (Ripp et. aI., 1997). Transduction has been

shown to occur to a significant extent in freshwater systems via freshwater bacteriophages

(Rippel. aI., 1996). Specifically, Pseudomonas bacteriophage UTI has probably been a key

player in the transduction of many naturally-occurring Pseudomonas aeruginosa strains.

Until this study was performed, however, little was known about how many different types

of organisms this phage could actually infect.
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We know now that UTI is fairly restricted in its ability to infect host bacteria.

Specifically, it is really quite limited to P. aeruginosaPAO and PAT as well as Burkholderia

cepacia. Due to its capability to fonn lysogens rapidly on PAT, it is reasonable to believe

that PAT may be its true natural reservoir.

There is significant evidence in this study to support the fact that UTI gets its ability

to infect such a limited host range as a result of its utilization ofLPS as a receptor, as LPS

is very species- and strain-specific among gram negative bacteria. The implications for such

knowledge are widespread. First, one might conclude that introducing new organisms to a

community which are notP. aeruginvsa PAO, PAT, or B. cepacia isa relatively safe process

with respect to UT 1. Ofcourse, this is not to say that some other naturally omnipresent virus

would not be able to mediate genetic transfer as viruses are of very high concentration in

natural ecosystems. Perhaps a more striking use of this knowledge is to consider the fact

that UTI is so selective that it might actually be used as a vector either in the environment

or as a phage therapy. It would have the capability to regulate populations in a very species

and strain-specific manner.

Lost in this discussion is the recently-characterized virus UNL-l, which seems to

have everything in common with UTI except its ability to mediate generalized transduction

and its penchant for thriving in starved environments. Authors ofpreviously-published UT I

work would almost certainly argue that these were the two characteristics that made UTI

such an appealing virus to work with as an environmental model. However, the lack of an

aptitude for pseudolysogeny nearly guarantees a shorter half-life for UNL-l in a starved

environment such as that found in a freshwater community. Because UNL-l has not been
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shown to be a generalized transducing phage and apparently possesses a larger capsid size

than UTI, UNL-I might be the ideal vector for in situ genetic engineering.

Even if one is not interested in these phages for their environmental or applied

significance, the very biology ofthese fascinating entities leaves one thirsty with questions.

How do these phages "choose" between temperate and vegetative growth? What is the true

stimulus that flips the genetic switch? Such bizarre life cycle habits are likely not the norm

in the laboratory setting, but they very well may be the rule and not the exception in the

environment.
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