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CHAPTER I

PRELIMINARlES

Graph traversal is fundamental for many graph algorithms. Universal traversal se

quences provide a traversal strategy for graphs in limited space complexity. The s

tudy of universal traversal sequences was introduced by Cook [Ale78]. For a family

of edge-labeled graphs, universal traversal sequences traverse all vertices starting at

any vertex of each graph in the family. The edge-labeled graphs are regular undirect

ed graphs, all edges incident with each vertex have unique labels. Lower and upper

bounds on lengths of universal traversal sequences for regular undirected graph have

been established [Tom90] [BT95] [DF96a]. Good length bounds translate into good

time bounds for traversing graphs.

Reflecting sequences were introduced in [Tom90] for proving length lower bounds

for universal traversal sequences. Reflecting sequences provide end-to-end traversal in

labeled chains. For a labeled chain. like edge-labeled graphs, two edges incident with

every interior vertex have unique labels in {O, I}. Each complete end- to-end traversal

is considered a reflection.

The bridge between reflecting sequences and universal traversal sequences is cir

cumnavigation sequences, which were introduced in [BRT89]. Circumnavigation se

quences provide cyclic traversal in labeled cycles. The labeled cycles are regular undi-



rected graphs with regularity of 2. A circumnavigation starting at a vertex v is a

traversal that returns to v moving in the same direction in which it last exits v.

Reflecting sequences, circumnavigation sequences, and universal traversal sequences

are related:

1. A tradeoff exists between the circumnavigation frequency jcyde order and regu-

larity j graph order, and

2. One circumnavigation traversal in a 2n-vertex labeled cycle behaves like a two

reflecting traversals in a n-vertex labeled chain.

The length lower bounds computation for universal traversal sequences involves

two reductions:

1. Reducing length lower bounds for universal traversal sequences to that for cir-

cumnavigation sequences - motivated by the possible tradeoff between the regu-

larity jcircumnavigation frequency and the order of the graph.

2. Reducing length lower bounds for circumnavigation sequences to that for reflecting

sequences - motivated by the possible tradeoff between circumnavigation frequ n-

cyjreflecting frequency and the order of the graph.

The universal traversal sequences for undirected graphs and their variants [Tom90]

are introduced below.

1.1 Universal Traversal Sequences for Undirected Graphs

For positive integers d and n such that d < n, let Q(d, n) be the set of all connected, d-

regular, n-vertex, edge-labeled, undirected graphs G = (V, E). For every edge {u, v} E

E, there are two labels lu v and Lv u on both endvertices. For every vertex u E V 1, ,
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{lu,vl{u,v} E E} = {0,1,···,d-1}. For each edge-labeled graph G E Q(d,n), a

sequence U E {O, 1, ... ,d - I} * traverses a unique sequence of vertices from every

staring vertex Va in V. If all vertices of G are visited at least once by U, U is said

to traverse G starting at Va. A sequence U is called a universal traversal sequence

(UTS) for 9(d, n) if U traverses each G c 9(d, n) starting at any vertex in G. We

let U(d, n) denote the shortest length of UTSs for non-empty 9(d, n), and define

U(d, n) = U(d, n + 1) in case 9ld, n) is empty. 1 ote that 9(d, n) is not empty if and

only if dn is even [BRT89]. Figure 1 shows an example of an edge-labeled graph and

two example traversal sequences starting at vertex O.

a
oI+----+----+----Y-I
2

Figure 1. A 6-vertex 3-regular edge-labeled graph with
two traversal sequences (02010 and 01212220).

1.2 Circumnavigation Sequences for Labeled Cycles

For edge-labeled cycles C E 9(2, n), a sequence U E {O, 1}* is said to circumnavigate

C t times starting at Vo if there are at least t times at which the traversal returns to Vo

moving in the same direction in which it last exits Va. More precisely, U circumnavi-

gates C t times if and only if there exist 0 :S i} < '£2 :S i 3 < Z4 :S ... :S i 2t - 1 < i2t :S lUI

such that

3



2. VI t= Vo for all i2j - 1 and 1 ~ } ~ t, and

A sequence U is a i-circumnavigation sequence for Q(2, n) if U circumnavigates each

C E Q(2, n) t times starting at any vertex in C. Let C(t, n) denote the shortest length

of t-circumnavigation sequences for Q(2, n). Figure 2 shows an example of an edge-

labeled cycle and an example 2 times circumnavigation sequence starting at vertex

o.

1
o

\
~@-1-""'{051

o
4
1

Figure 2. An 8-vertex edge-labeled cycle with a traversal sequence
(1100100110010011010110) .

1.3 Reflecting Sequence for Labeled Chains

A labeled chain of length n is a graph G with vertex set V(G) = {O, 1,"', n} and

edge set E(G) = {{i, i + I} 10 ~ i ~ n - I}. An edge-labeling is defined as follows:

Every edge {i,i + l}.E E(G) has two labels, ii,Hl and [Hl,i such that

1. lO,l = in,n-l = {O, I}.

2. li,i-l and ii,i+l from a partition of {O,l} for alII ~ i ~ n - 1

Let £ (n) be the set of all labeled chains of length n. A labeled chain G E £ (n)

can be identified with the sequence a = ala2" ·an-l E {O, 1}n-l where ii,i+l = {ad

4



for 1 ~ i ~ n - 1. The sequence (}1 is called the label of G. A sequence U E {O I} *

determines a unique traversal sequence of vertices (va VI,"', Vk) with starting vertex

Va = O. For t ~ 0, a sequence U E {O, 1}* is said to reflect t times in G E £(n) if

the endvertices nand 0 are visited alternately by U at least t times. More precisely,

there exist °< )1 < 12 < ... < jt ~ lUI such that VJ2k _ l = n for all 1 < k ~ rt/21

and Vj2k = 0 for all 1 ~ k ~ lt /2J. A sequence U is a t-reflecting sequence for L:(n)

if U reflects t times on each G E L:(n). We let R(t, n) denote the shortest length of

t-reflecting sequences for L:(n). Figure 3 shows an example of an edge-labeled chain

and an example 2 times reflecting sequence starting at vertex 0.

Figure 3. An edge-labeled 100 chain (end labels are denoted by *)
with a traversal sequence (111100111110).

The current best known lower bounds on U(d, n) [DF96a] is :

{

Q(nI09719) if d = 2
U(d, n) = fl(cF-lo9719nl+lo9719) if 3 < d < E.. + 1

- - 17

Since the study of reflecting sequences for labeled chains of various lengths serves

as an important vehicle for length lower bounds for universal traversal sequences, the

thesis work focused on the combinatorial nature of reflecting sequences.
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CHAPTER II

LENGTH LOWER BOU DS FOR REFLECTING SEQUE. CES

The length lower bounds for UTSs, circumnavigation sequences, and reflecting se-

quences are closely related [Tom90]. Their relationships are explained below, describ-

ing how a good lower bound on R(t, n) translates to a good lower bound on U(d, n).

2.1 Relating U, C, and R

The first theorem below shows the relationship of lower bound between lengths of

UTSs and circumnavigation sequences. Notice the tradeoff between the number of

circumnavigations and the order of the cycle.

Theorem 1 [BRT89]: Let d 2: 3 be an integer and n be a multiple of 8(d -1), then

U(d ) > ~C((d- 2)n 2 n ).
, n - 2 4 +, 8(d - 1)

The next theorem relates circumnavigation sequences for labeled cycles to reflect-

ing sequences for labeled chains. The underlying idea is to project a cycle onto a chain.

Suppose that a labeled chain of length n has a label 0:" = 0:"10:"2'" O:"n. For 0:" E {O,I}*,

define a to be the string that results from reversing 0:" and then complementing its

bits. For example, if 0:" = 01000, then a = 11101. Construct a 2n-cycle whose clockwise

label from its start vertex is 00:"00'. The correspondence between the cirnumnavigation

in the labeled cycle and the reflection in the labeled chain is illustrated in the example



in Figure 4.

O-*-----<Ol-'-°-------{Orl-------{Ol-'-°------<or-::°------.*0

°

/ ~
~ /

0 0
0

0

0:'

0:'

Figure 4. An example of correspondence between the label d chain
and labeled cycle

Theorem 2 [BRT89]: For any positive integers t and n,

C(t, 2n) ~ R(2t, n).

By combining Theorems 1 and 2, we relate the length lower bounds of universal

traversal sequences and reflecting sequences. Again, notice the tradeoff between the

number of reflections and the length of the chain.

Theorem 3 [BRT89]: Let d ~ 3 be an integer and n be a multiple of 16(d-1), then

d ((d - 2)n n)
U(d, n) ~ '2 R 2 + 4, 16(d _ 1) .



2.2 Recurrence for R(t n)

The following recurrence illustrates a tradeoff between the length of labeled chains

and the frequency of reflections. Hence it suffices to study lengths lower bounds for

reflecting sequences on short labeled chains.

Theorem 4 [BRT89]: For all positive integers t, m, and n,

R(t, mn) ~ R(R(t, m), n).

The next theorem shows that we only need to find constant c, r, and t to obtain

the length lower bounds of reflecting sequences. The large loger translates into a good

lower bound.

Theorem 5 [DF96a]: Suppose that there exists a positive integer c and positive

reals r ~ 2 and k such that for every positive integer t, R(t c) ~ rt - k. Then for all

positive integers t and n that is an integral power of c,

By Theorems 3, 4, and 5, a lower bound on U(d, n) can be obtained.

Theorem 6 [DF96a]: Suppose that there exists a positive integer c ~ 2 and positive

reals r ~ 2 and k such that for every positive integer t, R(t, c) ~ rt - k, then

if d = 2
if 3 ~ d ~ ~ + 1.

8
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CHAPTER III

A ALYTICAL APPROACHES

In order to obtain the length lower bounds of reflecting sequences via the recurrence

in Theorem 4, the basic lower bounds of short chains are needed. Tompa [Tom90]

showed that R(t, 3) ~ 4t and R(t, 4) ~ 6t using a marking scheme on a hypothetical

reflecting sequence. In Tompa's marking scheme, a mark is placed on a pair 0:(J (where

0:, f3 E {O, I}) beginning at an even index when the pair causes the last exit from vertex

1 in a complete forward (vertex 0 to vertex n) traversal. For th chain length 3, since

a pair has at most one mark, the lower bound is obtained easily. For the chain length

4, a pair may have at most two marks. Since 1£(4)1 = 23 , the lower bound is obtained

by considering all cases how marks are placed on pairs. The marking scheme yields a

lower bound of R(t, n) ~ tn10946.

In another marking scheme [BT95L two kinds of marks, called an opening mark

and a closing mark, are used. The Buss-Tompa marking scheme was used to obtain

length lower bounds of reflecting sequences for labeled chains of length 5. An opening

mark is similar to a simple mark in Tompa's marking scheme. In addition, a closing

mark on a pair is to delimit a complete left-to-right traversal. If an opening mark or a

closing mark is not placed on a pair, an opening debt or a closing debt, respectively,

9
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is placed on the pair. This marking scheme improved the lower bound to R(t, n) 2:

3.1 Tampa's Marking Scheme

Consider a traversal sequence 5 E {O, I}· in a labeled chain in £(n) with label Q =

QIQ2' .. Qn-l, where Qi E {a, I} for i = 1,2, ... ,n -1. \Vithin every complete forward

traversal from vertex a to vertex n induced by 5, the last exit from vertex 1 enroute

to vertex n corresponds to a pair-substring QIQ2 beginning at an even index on 5.

We place a mark Mo. on the pair QIQ2' An example is depicted in Figure 5.

M OOI M lOI

MOOD M lOO

00 10 00

M lll

MllO MOll
11 01 10

Figure 5. An example of marks on a traversal sequence for labeled chains in £(4).

The following two theorems show the optimal bounds on the length of reflecting

sequence for £(3) and £(4), using Tompa's marking scheme.

Lemma 7 [Tom90): R(2t - 1,3) 2: Bt, for all positive integers t.

Proof: Let U be a (2t - l)-reflecting sequence for £(3). For each labeled chain with

label Q in £(3), U induces at least t complete forward traversals from vertex a to

vertex 3 in the labeled chain. We mark each of the first t complete forward traversals

according to Tampa's marking scheme. Since 1£(3)1 = 22 = 4, a total of 4t marks are

placed on U (at even indices). Also, none of these marks share the same even index.

Thus, lUI 2: 8t. I

Theorem 8 [Tom90]: R(t,3) 2: 4t, for all positive integers t.

Proof: R(2t,3) 2: R(2t - 1,3) + 3 2: 8t + 3. Thus, R(t,3) 2: 4t. I

The bound in Lemma 7 and hence the one in Theorem 8 is tight. The string 1101(10001

10
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101)L is a 2t-reflecting sequence for .c(3).

Lemma 9 [Tom90]: R(2t - 1, 4) ~ 12t, for all positive integers t.

Proof: Let V be a (2t - I)-reflecting sequence for £(4). For each labeled chain with

label Q' in .c(4), U induces at least t complete forward traversals from vertex 0 to

vertex 4 in the labeled chain. 'We mark each of the first t complete forward traversals

according to Tompa's marking scheme. First, we consider the four labeled chains:

000, DOL 100, and 101, each of which yields marks that begin substrings matching a

regular pattern, as shown in Table 1.

Table 1: Substrings of V beginning at marks

label of chain substring of U must match
000 00(10)"'0
001 00(00)*1
100 10(10)*0

I101 10(00)*1

A substring of 00 or 10 beginning at an even index on U is called a pair. For these

four chains, there are 4t marks on the pairs 00 and 10. Despite the fact that two of

these marks may share an even index, there 4t marks account for at least 3t distinct

occurrences of the pairs 00 and 10. We notice the following constraints on marked

paIrs:

1. Any pair with two marks must be followed immediately by another occurrence of

either 00 or 10 (see Table 1).

2. Two pairs consecutive in V, one marked "ODD" and one marked "101", must be

followed immediately by a third (Jccurrence of either 00 or 10 (see Table 1),

3. Two pairs with the same mark must be separated by a distance of at least 8, to

account for two reflections.

11
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To show the marks-to-pairs density of at most ~, we argue that at least 3 pairs

can be charged to every 4 distinct marks from the labeled chains with label 000, 001

100 and 101 as follows.

1. For the case of two consecutive pairs in U, each with two marks: By constraint 1,

an immediate third occurrence is either 00 or 10 pair. By constraint 3, this third

pair can not be marked. Hence these three pairs can be charged to these four

marks.

2. For the case of a pair with two marks followed immediately by a pair with a single

mark 000: By constraint 2, an immediate third occurrence is either 00 or 10 pair.

a. If the third pair has a mark, that must be 001. By constraint 3, these three

pairs can be charged to these four marks.

b. If the third pair has no mark, there must be a pair P with a single mark 001

in U. These two consecutive pairs and P can be charge to four marks. otic

that, if P immediately follows a pair with two marks, P is not charged to these

preceding two marks since P has been charged to the other marks already.

3. For the case of a pair with two marks followed immediately by a pair with a single

marks DOl: If the 001 mark has already been used elsewhere (cas b), then these

two pairs are charged to these two marks. Otherwise, there must be a pair P with

a single mark 000, and these three pairs can be charged to these four marks (P

cannot immediately follow a pair with two marks, which has been handled in case

2).

4. For the case of a pair with two marks followed immediately by a pair with either

single mark 100 or 101: This is handled as in case 2 and 3.

12
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5. The remaining cases are that a pair with two marks followed by an unmarked pair,

or a pair with a single mark. In these cases, each pair can be charged to one mark.

Similarly, the other four marks 010, 011, 110, and 111 account for at least 3t

distinct occurrences of the pairs 01 and 11. Since these two sets of pairs ({DO, 10} and

{01, 11}) are disjoint, we have lUI ~ 12t. I

Theorem 10 [Tom90]: R(t, 4) ~ 6t, for all positive integers t.

Proof:

Case 1: t = 2k - 1 for some integer k. Then

R(t,4) = R(2k - I, 4) ~ 12k = 6t + 6.

Case 2: t = 2k for some integer k. Then

R(t,4) = R(2k, 4) ~ R(2k - 1, 4) ~ 12k = 6t.

I

3.2 The Buss-Tompa Marking Scheme

Tompa's marking scheme is improved in [BT95]. We consider a motivating example

on (2t - I)-reflecting sequences U for £(5). For example, to traverse the chain 0000,

the sequence U must contain a substring matching 00(01+10)*00 starting at an even

index. The substring of length 2 beginning at an even index in U is called a pair. The

first 00 pair is said to start the traversal of 0000 and the second 00 pair is said to

finish the traversal of 0000. Since there are at least t forward traversals of 0000, U

must contain at least 2t occurrences of the pair 00. Similarly, there must be at least 2t

occurrences of 01, 10, and 11. These pairs, which correspond to starting and finishing

13
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forward traversals of chain 0000, 0101, 1010, and 1111, are called base pairs. A pair

of U is called nonbase if it is not a base pair. This argument shows that R(t, 5) ~ 8t.

Since l0958 < l0946, there is no improvement over the result when u ing Tompa s

making scheme. A new idea in the Buss-Tompa marking scheme is their introduction

of opening mark, closing mark, opening debt, and closing debt. In the following argu-

ment, eight chains of the forms 043o.{3 and o.j3(i~, where 0., {3 E {O, I}, are considered.

If an a{3 pair finishes a traversal of either o.{3o.{3 or a/3o.{3, the o.{3 pair has a closing

mark; otherwise, the o.{3 pair has a closing debt. If an o.{3 pair starts a traversal of

a{3o.{3 or it is the last o.{3 pair during a traversal of 0./10./3, the o.{3 pair has an opening

mark; otherwise, the o.{3 pair has an opening debt.

Table 2 shows the substring requirements for a reflecting sequence for £(5) corre-

sponding to all labeled chains. In addition to base pairs, we plan to use nonbase pairs

of a reflecting sequence to obtain a better length lower bound. First we derive a rela-

tionship between the number of nonbase pairs and of debts in a reflecting sequence,

then a lower bound on the number of debts.

Table 2: Substrings of U traversing chains from left to right

chain label substring of U must match
0000 00(01+ 10)*00
0011 00(00+10)*11
0101 01(00+11)*01
0110 01(01+11)*10
1001 10(00+10)*01
1010 10(00+11)*10
1100 11(01+11)*00
1111 11(01+10)*11

o.{3o.{3 o.{3(o./3 + a(3)*o.{3
o.{3o.7J o.{3(o.{3 + a{3ta7J
a7Jo.{3 a/3(o.7J + a8)*o.{3

14
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Theorem 11 [BT95]: Let U be a (2t - I)-reflecting sequence for £(5), where t 2 l.

The number of nonbase pairs in U is exactly half the number of debts in U.

Proof: For a, (3 E {O, I}, U embeds substrings of the forms (starting at even indices):

a(3(alJ+Ci.(3)*a(3, a(3(a(3+a{3)*alJ, Ci.7J(a7J+Ci.(3)*a{3, corresponding to forward traver

sals of a(3a(3, a{3a(3, Ci.lJaa{3, respectively (see Table 2). From Table 2, we can see

that no a(3 pair can both start a traversal of a{3a{3 and be the last a(3 pair during a

traversal of a/3Ci.(3 (at most one opening mark on a pair), and no a(3 pair can finish

a traversal of both a(3a(3 and alJa{3 (at most one closing mark on a pair). So, the

number of marks plus the number of debts on any a{3 pair is two. Since U induces

at least t forward traversals of each chain, there are at least 4t marks on a(3: 2t for

traversals of a(3a(3, t for traversals of a/3Ci.lJ, and t for traversals of Ci.(3a(3.

Suppose that U has n nonbase a(3 pairs and a total of d debts on a(3 pairs. By

noting that there are (first) 4t marks on a(3 pairs, the total of marks and debts on a(3

pairs is 4t+d, and by noting that there are 2t base a(3 pairs, the total is 2(2t+n)-the

number of marks and debts on an a(3 pair (base or nonbase) is 2. These give us that

4t + d = 2(2t + n), hence n = ~. I

The next two lemmas describe the marking and debting on consecutive a(3 pairs.

The proofs follow immediately from Table 2.

Lemma 12 [BT95]: Let a, (3 E {a, I}. If an a(3 pair has a closing mark, then the

next a(3 or alJ pair to its left must have an opening mark. If an a(3 pair has an opening

mark, then the next a(3 or Ci.lJ pair to its right must have a closing mark.

Lemma 13 [BT95]: Let a, (3 E {a, I}. If an a(3 pair has a closing debt and the next

a(3 or CilJ pair to its left exists, then it must have an opening debt. If an a(3 pair has

15
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an opening debt and the next a/3 or 0'./3 pair to its right exists then it must have a

closing debt.

In the marking scheme in [Tom90], we consider only the t forward traversals of

each chain induced by a (2t - 1)-reflecting sequence. To improve the length lower

bounds of reflecting sequences, backward (right-to-Ieft) traversals are al 0 considered.

We introduce the notion of interval that captures the constraints between two forward

traversals. For 0'., (3 E {O, I}, an a/3O'.(3 interval is a substring of U that begins with

the a(3 pair that finishes a traversal of a,80'.(3, and ends with the 0'./3 that starts the

next traversal of O'.(3a(3.

The following lemma shows a lower bound on the number of debts in an 0'.(30'.(3 in

terval; and by Theorem 11, a lower bound of the number of nonbase pairs is obtained.

Lemma 14 [BT95]: For a,(3 E {a, I}, each 0'.(30'.(3 interval contains at least two

debts on 0'.(3 and/or o.e pairs.

Proof: Each 0'.(30'.(3 interval must contain a substring of the regular pattern 730.(/30. +

/3Ci)*eo. beginning at an odd index to account for a backward traversal of a(3a(3. It

is rewritten as xe(o.(3)*o.73((a73)*O'./3(o.{3)*o.7J) * (O'.73)*o.y where x, y E {O, I}, beginning

at an even index. Consider the leftmost 0'.71 pair, not including the pair matching x71.

L1. If it has a closing debt, then by Lemma 13, the next a{3 or a.e pair to its left

must have an opening debt. ote that an 0'.(30'./3 interval ends with an 0'.(3 pair,

so there are at least two debts within the interval.

L2. If it has a closing mark, it must finish a traversal of a.7Ja.71. Otherwise, it would

finish a traversal of a/3Ci71, and this is not possible since the regular languages

denoted by x(3(o.lJ)*o.71 and by a/3(a(3 + 0.(3)*0.73 are disjoint.

16
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Next, consider the rightmost Ci{J pair, not including the pair matching cry.

Rl. If it has an opening debt, then by Lemma 13, the next a{3 or cre pair to its

right must have a closing mark. Note that an 0:{30:(3 interval ends with an 0:{3

pair, so there are at least two debts within the interval.

R2. If it has an opening mark, it must start a traversal of Cieae. Otherwise, it

would be the last ae pair in a traversal of Ciea{3, and this is not possible since

the regular languages denoted by Ci{3(aetcry and by CilJ(crlJ)*a;3 are disjoint.

Suppose that the a(3a{3 interval contains fewer than two debts on a;3 and/or

crlJ pairs. From cases L2 and R2, there must be an crP"alJ interval within the 0:(30:(3

interval. By an analogous argument, there must be an a/3a/3 interval within the

Ci.lJa/3 interval. Since no a/3a/3 interval contains another a/3a/3 interval, a contradiction

arrives. Therefore, the a,Ba/3 interval contains at least two debts on a/3 and/or a(3

pairs. I

Now we obtain the length lower bound of reflecting sequences for £(5) using

Theorem 11 and Lemma 14.

Theorem 15 [BT95]: R(t,5) 2: lOt for all positive integers t.

Proof: Consider a (2t - I)-reflecting sequence U for £(5). The sequence U contains

k - 1 0000 intervals and k - 1 0101 intervals (all base pair can be seen from these

intervals). By Theorem 14, U has at least 2k - 2 debts on 00 and/or 11 pairs, and at

least 2k - 2 debts on 01 and/or 10 pairs. The total of 4k - 4 debts account for 2k - 2

nonbase pairs by Theorem 11. Since there are 8k base pairs (k forward traversals of

each chain), there are at least 10k - 2 pairs. Thus, R(2k - 1, 5) 2: 2(10k - 2) = 20k - 4.

To show that R(t, 5) 2: lOt, we consider two cases:
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Case 1: t = 2k - 1 for some integer k. Then

R(t, 5) = R(2k - I, 5) ~ 20k - 4 = lOt + 6.

Case 2: t = 2k for some integer k. Then

R(t, 5) ~ R(t - 1,5) + 5 = R(2k - 1,5) + 5 ~ 20k + 1 = lOt + 1.

I

The next theorem shows that the Buss-Tompa marking scheme improved the

length lower bound of reflecting sequences from tnl0946 to tn109s10.

Theorem 16 [BT95]: R(t, n) ~ tnl09SlO.

Proof: Immediately by combining Theorem 5 with Theorem 15. I

The best upper bound of length reflecting sequences for ..c(5) is given in next the-

orem.

Theorem 17 [BT95]: R(t, 5) ~ 12t + 0(1).

Proof: The string (000010110111001001011110)1+1 IS a 2t-reflecting sequ nce for

..c(5). I

The bounds in Theorems 8 and 10 are tight because, in each case, a matching upper

bound is demonstrated by exhibiting a t-reflecting sequence of repeating form-uv t

for some u, v E {D, 1}*. However, the lower and upper bounds in Theorem 15 do not

match. The upper bound of Theorem 17 cannot be improved with the type of simply

repeating sequence.

Theorem 18 [BT95]: Let c < ~. If IPI is even and pLctJ is a (2t - I)-reflecting

sequence for ..c(5) for all positive integers t, then IPI ~ 24.

Proof: Suppose that pLctJ is (2t -I)-reflecting sequence for ..c(5). There are t forward
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traversals of each of the chains 0000 0011, and 1100, so 4t marks are on 00 pairs

altogether. Therefore, there exists a copy of P (including a cyclic shifting of P) has

at least r4t / Ld J1::::: r4/c1::::: 4 marks on 00. First notice that P cannot have only one

00 pair by Theorem 11. We show that P cannot have exactly two 00 pairs. Suppose

the contrary that P has only two 00 pairs with four marks. Then P mu t be a rota

tion of (01+10+11)*11(01)*00(01+10)*00(10)*11 (see Table 2). In this case, p. has

no occurrence of 00(01+10)*00 beginning at an odd index (no backward traversal of

1111). Because of this contradiction, P must contain at least three 00 pairs.

Similarly, P must contain at least three occurrences of the pairs 01, 10, and 11.

Therefore, P contains at least 12 pairs. I
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CHAPTER IV

COMPUTATIO AL APPROACHES

In order to apply Theorems 5 and 6, we need to determine c, r, and k such that

R(t, c) 2:: rt - k, that is, the length of a t-reflecting sequence for L:(c) is at least rt - k.

The next theorem shows that it suffices to consider only the case when the number

of reflections is odd.

Theorem 19 [DF96a]: For all positive integers t, c and positive reals r, k, if R(2t

1, c) 2:: 2rt - k for every positive integer t, then R(t', c) ~ rt' - k for every positive

integer tl.

To show that R(2t-l, c) 2:: 2rt- k in Theorem 19, we modify a technique in [FD094],

which assigns a minimum of 2c- 1t "marks" to various positions in a hypoth tical

(2t - I)-reflecting sequence S (there are 2c- 1 different labeled chains and t marks for

each labeled chain of length c).

4.1 Marks

There are 2c- 1 different labeled chains of length c. Let C i E L(c) have label i E

{oc-l, oc-21, OC-312, ... ,1'-1}. As C is traversed by a hypothetical (2t - I)-reflecting

sequence S, put a mark Mi on the bits in 5 that correspond to the last exit from vertex

1 in a complete forward traversal. For example, if c = 4, there are eight chains 000,

001, 010, 011, 100, 101, 110, and 111. Traversing Cooo with 5 = 0110010001111001
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visits vertices 0, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 1, a 1 2 3, 2; hence, we place the mark

j\1ooo corresponding to the chain with label 000 at the 4th and 14th bits in S.

Two different kinds of "mark" are defined below, depending on the completion of

the forward traversal:

1. Closed Marks: If S traverses chain Gi from vertex 1 to vertex n without returning

to vertex 1, closed marks of Mi are put on that bit of S that correspond to the

last exit from vertex 1 in a complete forward traversal.

2. Open Marks: If a bit of S that correspond to the last exit from vertex 1 and S

doesn't make a complete forward traversal of chain Gi , an open mark is put on

that bit. Even if an open mark M i is not closed on S, Mi is a potential closed

mark because the mark might be closed on SS' where S E {a, l}*

Two open marks on S are suffix-inconsistent if there does not exist any sequence

5' E {a, 1}* such that both open marks become closed on SS'. Figure 6 shows an

example of a traversal sequence for labeled chains for £(5) with marks Mi , wher

i E {OOOO, 0001, .. ·,1111}. Marks Moooo , MOOlO , Moo 11 , M lOOO , and MIOll ar los d

and the other marks are open marks.

]\;[0011

Moo 10

]\;[0000

00

M lOU

M lOlO

M lOOO

10 00

MUll

M lllO

M UOI

M lloo
11

Figure 6. A traversal sequence for labeled chains for £(5) with marks.

For a (2t - I)-reflecting sequence S for £(c), S makes at least t forward traversals

for all labeled chain in £(c). There are at least 2c - 1t marks on S. To show that

R(2t - 1, c) 2:: 2rt - k, it suffices to show that the "marks-to-bits" density for all but
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a short suffix of 5 is at most 2;~;t = ~~l •

Two properties of marks are immediate:

1. All marks on S are put at even bit-position.

2. The two same marks are put at least 2c bits apart from.

Let PI (51) denote for the marks-to-bits density of a subsequence 51 ofS. From property

2, we obtain that PI(5') ~ 2~~1 for every subsequence 51 of 5. This implies that if

5 = 5152 such that Pl(51 ) ~ 2;~1 and 152 1 ~.,.I for some positive real.,. and integer .,.',

then the number of marks on 51 is at least 2c- 1t - 1521PI (52) ~ 2c- l t - .,.12~~1 . Thus,

Here, the supposition in Theorems 5 and 6 will be satisfied and we can see that

the length of the suffix 52 is bounded by some .,.1, which is not dependent on t.

By property 1, 5 can be regarded as a sequence of "pairs" of bits following the first

single bit. The focus is on "marks-ta-pairs" density instead of on marks-to-bits, and

our task is to prove that marks-ta-pairs density of every (2t - I)-reflecting sequence

S for L:(c) is at most 2
C;1 for all but a short suffix of 5.

A tree T, called quadtree, can be constructed to divide marked S into segments,

each of which, except for the last segment, has a marks-ta-pairs density at most 2
C

r
-

l
.

For the marked (2t - I)-reflecting sequence 5 for L:(c), we use T to segment 5 as

follows:

1. Discard the first bit of S.

2. Starting at the root of T. go down the branches of T, whose labels correspond to

S, until a leaf of T is reachrd (at depth d).
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3. Once reached to a leaf, there exists a prefix of S of length at most 2d that has a

mark-to-pairs density at most 2";1. Discard the prefix from S and repeat at tep

2 using the remainder sequence.

At step 2, when the remainder of S runs out before reaching a leaf, that means, we

have found the final segment of S. If such a tree exists, the supposition in Theorems

5 and 6 is satisfied.

4.2 Building the Quadtree

For a given chain length c and an upper bound P2 on marks-to-pairs density, the

quadtree is built in a depth-first fashion. First, generate DO-branch and find an upper

bound of the marks-to-pairs density for 00. If that density is greater than P2, extend

the tree by appending 00 at that vertex. ow we consider the sequence 00 00, and

calculate an upper bound on the marks-to-pairs density on every prefix of 0000. If no

prefix has lower marks-to-pairs density than P2, extend the tree and consider 00 00 00

as well; otherwise, 00 DO-branch becomes a leaf and examin the 00 Ol-branch next.

The quadtree is completed when the enumeration process terminates. The method of

building the quadtree is summarized by the following algorithm [DF96aJ.

ALGORITHM Build_Quadtree(c,p)

1. Initialize S to the pair 00;

2. (* Only examine DO-branch by symmetry *)

while S =1= 01 do

2.1. Try to find a prefix of S whose marks-to-pairs density is at most P2;
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2.2. If no such prefix exist, then

2.2.1. Extend the quadtree by appending the pair 00 to S;

else

2.2.2. (* The sequence S represents a leaf *)

Replace S with the pair-sequence no longer than S and

following S in the lexicographic ordering of pair-sequence;

END Build_Quadtree

Figure 7 illustrates the Quadtree built by given c = 4 and P2 = ~.

01

Figure 7. A quadtree for £(4) by given a marks-to-pairs density of ~.

The other two subtrees at the root with 10 and 11 are sym
metric to OI-subtree and DO-subtree, respectively.

4.3 Inconsistent and Inconsistency Graphs

In Step 2.1 in the Build_Quadtree algorithm, we calculate the marks-to-pairs density

of each prefix. We obtain the maximum number of marks for each chain in £(c) by

assuming the forward traversal of the chain with the traversal sequence S. Yet, among
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several open marks, they may not co-exist. We construct an inconsistency graph to

solve the maximum number of open marks which can co-exist. Let Gc(S) denote an

inconsistency graph for the traversal sequence S, whose vertex set represents all possi-

ble open marks on S and edge set represents all pairwise inconsistencies between open

marks on S. Thus, an upper bound on the marks-to-pairs densit of S is computed

by the number of closed marks on S and the independence number of Gc(S).

We define the inconsistency graph Gc as follows. The vertex set {(Co, u)la E

{oc-l,oc-21,···,lC-l} and u E {2,3,···,e-l} is odd}, in which a vertex (Ca,u)

represents all possible open marks on S. The edge set E of Gc repre ents pairwise

inconsistencies between all possible pairs of ((Co, u), (C~, v)) E V(G c ) x V(G c) from

one trivial and two non-trivial sources.

One trivial sources are ((Co, u), (Co, v)) E E(Gc ) for (Co, u), (Cet , v) E V(G c ) with

u i- v. The other two sources are suffix-inconsistency and prefix-inconsistency defined

below.

For a,{3 E {OC- 1 oc-21,"',F-1},u,v,u',v' E {O,l,···,e}, and a trav rsal se-

quence S E {O,l}*. Let ((Co, u), (Co, v))~ ((Co, u'), (C", v')) denote that S in-

duces two traversals: in Co from u to u' and in Cf3 from v to v'. In particular,

((C ) (C ))S;(l,C) .. I h . h d ' d 1
0' u, {3, v -'-+ means mtenor traversa, t at IS, t ey on t enter an eave

vertices 1 and c.

(Ca,u),(C{3,v) E £(c) x {2,3,···,e-l},(Ca,u) and (C",v) are suffix consis

tent if there exists a traversal sequence S E {O, l}* such that ((Co, u), (C{3, v))s;(I'f)

((Co, e), (C{3, v')) for some v' E {2, 3,"" c} or ((Co, u), (Ce, v))s;(I'f) ((Co, u'), (Co, c))

for some u' E {2,3,·· ·,e}.
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(Ca,U),(C,B,v) E L(c) x {2,3,···,c - l},(Ca,u) and (C,B,v) are prefix consis

tent if there exists a traversal sequence S E {O,l}* such that ((CO" 1), (C,B, 1))~

((CO" u), (Cfj, v))

The pair (Co., u) and (Cfj, v) are suffix inconsistent (prefix inconsistent) if they are

not suffix consistent (prefix consistent, respectively).

4.4 The Inconsistency Graph Gg for £(9)

In order to obtain a lower bound on R(t, 9), we need to understand the structure of

the (suffix-)inconsistency graph, denoted by Gg , and solve the associated Maximum

Independent Set Problem.

The vertex set of Gg , V(Gg), is {(Cil u)li E {O, 1" . ,,28 - I} and u E {3, 5, 7}.

The edge set E(Gg) can be determined using one of the following methods:

1. A characterization theorem for suffix-inconsistency in [DF96a]:

Let b(u, v) = (c - u) - (v - 1), the differences of distances of u and v from vertices

c and 1 in CO' and Co, respectively. Let 0:( i, j) denote O:jO:j+l ... O:j if i :s j, and the

empty sequence otherwise, and let 0:( i, j) denote the reversal of the component-

wise complement of 0:( i, j). We define N Rc,a,fj as follows:

{

13(2, c - 1 - i) = 0:(2, C - 1 - i) if i E {O, I},
NRc,a,fj(i) = ((3(2, c - 1 - i) = 0:(2, C -1 - i))V

:Jji E {2, 3, .. " c - 1 - i}(j3j; = 0:2+c-l-i-jj 1\ N Rc,a,O(i - 2)) if i 2: 2.

Theorem 20 [DF96a]: Let (Ca,u),(Cfj,v) E £(c) x {2,3,···,c-l}, we have:

1. Ifb(u,v) < 0, then (Ca,u) and (CfJ,v) are suffix-consistent,
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ii. If b(u, v) ~ 0, then (Ca , u) and (Cp, v) are suffix-inconsistent if and onl if

NRc,a,p(b(u, v)).

An implementation of the theorem is given in Appendix B.l.

2. An equivalent condition for suffix-inconsistency for £(c) is that for all traversal se-

quence S E {O, 1}* such that ((Ca,u), (C{3, v)) ~ ((Ca,c), (Cp,VI)) for some v' E

{O,l,"',c} (((Ca,u),(Cp,v)) ~ ((Ca,u'),(Cp,c)) for some u' E {O,l, .. ·,c})

if the traversal in Ca from u to c (in C{3 from v to c, respectively) does not transit

through vertex 1 and c, then, the traversal in Cp from v to v' (in Ga from u to u',

respectively) must visit vertex 1.

An implementation of this detection is given in Appendix B.2

When viewing Gg as three layer of vertices:

layer-u vertices of the form (Ci , u), where i E {O, 1,' .. ,28 - I} and u E {3, 5, 7}, we

obtain the adjacency structure in E(Gg ) as follows.

1. Partitioning layer-3 into eight 32-order clusters, {V3 i I i = 1,11, ... ,VIII}

V31 = {GiIO ~ i ~ 15, 128 ~ i ~ 143} x {3}
V3 IJ = {Ci 116 ~ i ~ 31, 144 ~ i ~ 159} x {3}
V3m = {Gi 132 ~ i ~ 47, 160 ~ i ~ 175} x {3}
V3w = {C148 ~ i ~ 63, 176 ~ i ~ 191} x {3}
V3 v = {Ci 164 ~ i ~ 79, 192 ~ i ~ 207} x {3}
V3 V1 = {Gi 180 ~ i ~ 95, 208 ~ i ~ 223} x {3}
V3VII = {Ci 196 ~ i ~ 111, 224 ~ i ~ 239} x {3}
V3VIII = {Ci 1112 ~ i ~ 127, 240 ~ i ~ 255} x {3}

Within {V3 i I i = 1,11, ... , V I I I}, there are four complete K 32 ,32- bipartitions:

(V3 f , V3 v ), (V3 II , V3 VI), (V3 m , V3VII ), (V3w ,V3 vll/)

which provide a four-combination of 32-order cluster choices for a maximum inde-

pendent set in Gg .
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2. Partitioning each 32-order clusters into form 8-order clusters (a total of 32 8-order

clusters), {V3 i I i = 1,2, .. " 32}:

V3 1 = {GilD::; i::; 3,128::; i ::; 131} x {3}
V3 2 = {Gi I4::; i::; 7,132::; i ::; 135} x {3}
V3 3 = {Gi 18 ::; i ::; 11,136 ::; i ::; 139} >: {3}
V3 4 = {Gd12 ::; i ::; 15,140 ::; i ::; 143} x {3}
V3 5 = {Gi 116 ::; i ::; 19,144 ::; i ::; I47} x {3}
V36 = {Gi 120 ::; i ::; 23, 148 ::; i ::; 151} x {3}
V37 = {Gi 124 ::; i ::; 27,152 ::; i ::; I55} x {3}
V38 = {Gi 128 ::; i 'S 31,156 ::; i ::; 159} x {3}
V39 = {Gi 132 ::;i ::; 35,160 ::; i ::; 163} x {3}
V3 10 = {C136 ::; i ::; 39,164 ::; i ::; 167} x {3}
V311 = {Gi [40 ::; i ::; 43,168 ::; i ::; 171} x {3}
V3 12 = {CI44::; i ::; 47,172::; i::; 175} x {3}
V3 1S = {Gi 164 ::; i ::; 67,192 ::; i ::; 195} x {3}
V3 14 = {CI68::; i ::; 71,196::; i ::; 199} x {3}
'V3 1S = {Gi I72::; i::; 75,200::; i::; 203} x {3}
V3 16 = {Gi 176 ::; i ::; 79,204 ::; i 'S 207} x {3}
V3 17 = {Gi 11l2 'S i ::; 115,240 'S i ::; 243} x {3}
V3 18 = {Gi 11l6 ::; 2: ::; 119,244::; i 'S 247} x {3}
V3 19 = {Gi 1120 'S i ::; 123,248 ::; i ::; 251} x {3}
V320 = {C1124 'S i ::; 127,252::; i ::; 255} x {3}
V321 = {Gd48 ::; i ::; 51,176 ::; i ::; I79} x {3}
V3 22 = {Gi 152 ::; i ::; 55,180::; i ::; I83} x {3}
V3 23 = {Gd56 'S i 'S 59,184::; i ::; I87} x {3}
V3 24 = {Gd60 ::; i ::; 63,188::; i ::; I91} x {3}
V325 = {Gi 180 ::; i ::; 83,208::; i 'S 21l} x {3}
1/326 = {C184 ::; i ::; 87,212 ::; i ::; 215} x {3}
V327 = {Gi [88 ::; i ::; 91,216::; i ::; 219} x {3}
V328 = {Ci /92 ::; i ::; 95,220 ::; i ::; 223} x {3}
V329 = {Gi 196 ::; i ::; 99,224 ::; i 'S 227} x {3}
V3 30 = {Gdl00 ::; i 'S 103,228 ::; i ::; 231} x {3}
V3 31 = {Gi !104 ::; i ::; 107,232::; i ::; 235} x {3}
V3 32 = {Gi ll08::; i ::; 111,236::; i 'S 239} x {3}

Within {V3 i I i = 1,2, ... , 32}, there are 16 complete Ka,s- bipartitions:

(V3 1 , V320 ), (V3 2 , V3 24 ), (V3 3 , V32a ), (V34 , V38 ), (V3s , V3 32 ), (V36 , V3 12 ),

(V3 7 , V3 16 ), (V3 9 , V3 18 ), (V3 1O , V322 ), (V3 11 , V3 26 ), (V3 13 , V3 19 ), (V3 14 , V323 ),

(V3 15 , V3 27 ), (V3 17 , V3 29 ), (V3 21 , V3 30 ), (V325 , V3 sd
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which provide a refined combination of 8-order cluster choices inherited from 1.

for a maximum independent set in G9 .

3. Within {V3 i I i = 1,2 ", 32}, there are 64 complete K 2•2 - bipartitions (for Im-

plicity we abbreviate (Gi , 3) as 3i ):

({30 ' 3 12S}, {3127 3 255 }) ({31, 3129}, {363 , 3I9l }), ( {32, 3130}, {395' 3223 } )

({33, 313d, {331 3159}), ({34 , 313Z}, {3 Ul ' 3 239 }), ({35 , 3133 }, {347 , 3175 })

({36, 3134 }, {379 , 3207 }), ({37 , 3 135}, {315 3 143}), ({316 , 3144}, {3123 , 325d)
({317 , 314S}, {359 , 3 187 } ), ({318 , 3146}, {391 , 3219 }), ({319 , 3147}, {32,(, 3155 } )

({3zo , 3148 }, {3107 , 3 235 } ), ({ 321,3149}, {343 , 3171 }), ({ 3 22 , 31S0}, {375 , 3203 } )

({323 , 3 15d, {311 , 3139 } ), ({ 332 , 3160 }, {3125 , 3 253 } ), ({333 , 3161 }, {361 , 3 189 } )

({334 , 316z), {393 , 322d), ({335 , 3 163}, {329 , 3 1S7}) ({336 , 3164 }, {3109 , 3237})

({337 , 3165}, {345 , 3173}), ({338 , 316d, {377 320S }), ({339 , 3167 } {313 , 314d)
({348 , 3 176}, {3121 , 3249 }), ({349 , 3177 }, {357 , 3 1SS}), ({350 , 3178 } {389, 3217 })

({351 , 3179 } , {325 , 3153 }), ({352 , 3180 }, {3105 , 3233 }), ({3S3 ' 3181 } {341 , 3169 })

({354 , 3182}, {373 , 3201 }) ({3ss , 3183 }, {39, 3137 }) ({364 , 3192 }, {3126 , 3 254 })

({36S ' 3193}, {362 , 3190 }), ({366 , 3194}, {394 , 3222 }), ({367 , 3195 } {330 3 158 })

({368 , 3 196}, {3uo , 3238 }), ({369 , 3197 }, {346 , 3174}), ({370 , 3198 }, {37S , 3206 })

({3n ,3199 } {314 , 314z}), ({3so , 3208 }, {3122 , 3 250 }), ({38b 3 209 }, {358 , 3186})

({382, 3210 }, {390 , 3218 }), ({3S3 ' 3211 } {326 , 3154}), ({384 3 212 }, {3106 , 3 234 })

({3as, 3213 }, {342 , 3170 }), ({3S6 ' 3214 }, {374 , 3 202 }), ({387 3215 }, {31O , 3138})

({396 , 3224}, {3124, 3252 }), ({397 , 3225 } {360 , 318S}), ({398 , 3226 }, {392 , 3220 })

({399 , 3227 } , {328 , 3156 } ), ({3l00, 3228 }, {3108 , 3236 }), ({3101 , 3229 }, {344 , 3172 } )

({3102 , 3230 }, {376 , 3204 }), ({3 103 , 3 231 }, {312 , 3140 } ), ({3 112 , 3240 }, {3120 , 3248 })

({3 U3 , 324 t} , {356 , 3184 }), ({31l4 , 3242 }, {3S8, 321d)' ({311S , 3243 }, {324 , 3152 })

({3116 , 3244 }, {3104 , 3232 }), ({3117 , 324S }, {340 , 3168 }), ({3 U8 , 3246 }, {372 ,3200 })

({3119 , 3247 }, {38 , 3136 })

which provide the final choices for layer-3 vertices in a maximum independent set

in G9 .

4. Partitioning layer-5 into 32 8-order clusters, {V5 i I i = 1,2,· ", 32}:

V5 1 = {GiIO::; i ::; 3,128::; i ::; 131} x {5}
V52 = {Gi 14 ::; i ::; 7,132 ::; i ::; 135} x {5}
V5 3 = {Gi 18 ::; i ::; 11 136::; i ::; 139} x {5}
V54 = {Ci I12::; i ::; 15,140::; i::; 143} x {5}
V5s = {CtI16::; i ::; 19,144::; i ::; 147} x {5}
V5 6 = {Gi I20::; i ::; 23,148::; i ::; 151} x {5}
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V57 = {Gi 124 ~ i ~ 27, 152 ~ i ~ 155} x {5}
V5s = {Gi 128 ~ i ~ 31 156 ~ i ~ 159} x {5}
V5g = {Gi 132 ~ i ~ 35, 160 ~ i ~ 163} x {5}
V510 = {Gi 136 ~ i ~ 39 164 ~ i ~ 167} x {5}
V511 = {Gi 140 ~ i ~ 43 168 ~ i ~ l71} x {5}
V5 12 = {Gi 144 ~ i ~ 47, 172 ~ i ~ 175} x {5}
V5 13 = {Gi 164 ~ i ~ 67, 192 ~ i ~ 195} x {5}
V5 14 = {Gi 168 ~ i ~ 71, 196 ~ i ~ 199} x {5}
V5 15 = {Gi 172 ~ i ~ 75 200 ~ i ~ 203} x {5}
V5 16 = {Gi 176 ~ i ~ 79, 204 ~ i ~ 207} x {5}
V5 17 = {Gi 1112 ~ i ~ 115, 240 ~ i ~ 243} x {5}
V5 18 = {Gi 1116 ~ i ~ 119, 244 ~ i ~ 247} x {5}
V519 = {Gi 1120 ~ i ~ 123, 248 ~ i ~ 251} x {5}
V520 = {Gi 1124 ~ i ~ 127, 252 ~ i ~ 255} x {5}
V521 = {Gi 148 ~ i ~ 51, 176 ~ i ~ 179} x {5}
V522 = {Gi 152 ~ i ~ 55, 180 ~ i ~ 183} x {5}
V523 = {Gi 156 ~ i ~ 59, 184 ~ i ~ 187} x {5}
V524 = {Gi 160 ~ i ~ 63,188 ~ i ~ 191} x {5}
V5 25 = {Gi 180 ~ i ~ 83, 208 ~ i ~ 211} x {5}
V526 = {Gi 184 ~ i ~ 87, 212 ~ i ~ 215} x {5}
V5 27 = {Gi 188 ~ i ~ 91, 216 ~ i ~ 219} x {5}
1:'"528 = {Ci 192 ~ i ~ 95,220 ~ i ~ 223} x {5}
V529 = {Gi 196 ~ i ~ 99,224 ~ i ~ 227} x {5}
V5 30 = {GillOO ~ i ~ 103, 228 ~ i ~ 23l} x {5}
F531 = {Gi 1104 ~ i ~ 107, 232 ~ i ~ 235} x {5}
V5 32 = {Ci j108 ~ i ~ 111, 236 ~ i ~ 239} x {5}

Between the groups of {V3 i I i = 1,2, ... ,32} and {V5 i I i = 1,2,· .. ,32}, ther

are 32 complete K8,s-bipartitions:

(V3 1, V5 20 ), (V32 , V5 24 ), (V33 , V52S) , (V34 , V5s) (V3s, V5 32 ), (V36 , V5 12 ),

(V37 , V516 ), (V3s, V5 4 ), (V3 g , V5 1S), (V3 1O , V5 14 ), (V311 , V3 22 ), (V3 12 , V5 6 )

(V3 13 , V3 19 ), (V3 14 , V523 ), (V31S , V527 ), (V3 16 , V57), (V3 17 , V52S ), (V31S , V59 )

(V3 19 , V5 13 ), (V3 20 , V5 1), (~321 , V529 ), (V322 , V5 1O ), (V323 , V5 14 ), (V324 V52 )

(V32S , V5 31 ), (V3 26 , V5), (V3 27 , V5 1S ), (V32S , V53), (V329 , V52d, (V330 , V5)
(V331 , V5 2S ), (V3 32 , V5s)

5. Within {V5 i I i = 1,2, ... ,32}, there are 64 complete K2,2-bipartitions (for sim-

plicity, we abbreviate (Gi 5) as 5i ):
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({50, 5128}, {5127, 52SS }), ({51, 5129}, {563, 519d)' ({52, 5130 }, {59S , 5223 })
({53, S131}, {531 , 51S9}), ({54, 5132 }, {5Ul ' 5239 }), ({55, 5133}, {547 517S})
({56, 5134}, {579 , 5207}), ({57, 513S }, {51S , 5143 }), ({516 , 5144} {5123' 52S1 })
({517, 514S}, {5S9 ' 5187 }), ({518 , 5146}, {591 , 5219 }), ({519 , 5147 }, {527 , 51SS })
({520 , 5148 }, {5107, 523S }), ({521 , 5149 }, {543 , 5l7d), ({522 , 51SO}, {575 , 5203 })
({523 , 51Sd, {5u , 5139 }), ({532 , 5160}, {512S 52S3}), ({533 , 516d {561 , 5189})
({534 , 5162 }, {593 , 522d), ({53S 5163 }, {529 , 51S7}) ({536 , 5164 }, {5109, 5237})
({537 , 516S }, {54S , 5173 }), ({538 , 516s} , {5n , 520S}), ({539 , 5167} {513 , 514d)
({548 , 5176}, {5 l2l , 5249}), ({549 ,5177 }, {5S7 ' 518S}), ({5so , 5178}, {589, 5217})
({5S1,5179},{52S,51S3}), ({5S2,5180}, {510S ' 5233}), ({5S3,518d,{541,5169})
({5S4 ' 5182}, {573 , 5201 }), ({5ss , 5183}, {59, 5137}), ({564 , 5192 }, {5126 , 5254 })
({56s , 5193}, {562 , 5190}), ({566 , 519d, {594' 5222 }), ({567 , 519S }, {530 , 51S8})
({568 , 519s}, {5uo , 5238 }), ({569 , 5197}, {546 , 5174}), ({570 , 5198 } {578' 5206})
({571 , 5199}, {514 , 5142}), ({580 , 520B}, {5122 , 52S0 }), ({581 , 5209 }, {5S8 , 5186})
({582 , 5210 }, {590 , 5218 }), ({583 , 52U }, {526 , 5154}), ({584 , 5212 l, {5I06 , 5234 })
({58S , 5213 }, {542 , 5170 }), ({586 , 5214}, {574 , 5202}), ({587, 521S }, {51O , 5138 })
({596 , 5n ,t}, {SI24, 52S2 }), ({597 , 522S}, {560 , 5188 }), ({598 , 5226 }, {592 , 5220 })
({599 , 5:m }, {528 , 51S6 }), ({5 lO0 , 5228}, {5108 , 5236 }), ({5101 , 5229 }, {544 , 5172})
({ 5102 , 5230 }, {576 , 5204 }), ({ 5103 , 523d 1{512 , 5140 }), ({ 5U2 , 5240 }, {5120 , 5248})
({5U3 , 524d, {5S6 ' 5184 }), ({5 U4 ' 5242}, {5B8 , 5216 }), ({5 us , 5243}, {524 , 51S2})
({5U6 ' 5244}, {5I04 , 5232}), ({5 U7 , 524S}, {540 , 5168}), ({5 U8 ' 5246}, {5n , 5200 })
({5 U9 ' 5247 }, {58, 513S})

6. Between the groups of {V3 i I i = 1,2, ... ,32} and {V5 i I i = 1,2,,' " 32}, there

are complete 128 K2,2-bipartitions:

({3013128 }, {5 127 , 52SS }). ({ 50, 5128 }, {3127 , 32S5 }), ({31, 3129 }, {563 , 519d)
({51, 5129 }, {363 , 3191 }), ({32, 3130}, {59S ' 5223 }), ({52, 5130 }, {39S , 3223 })
({33,3131},{531,51S9}), ({53,5131},{331,31S9}), ({34,3132},{5ul,5239})
({54, 5132 }, {3Ul, 3239 }), ({3s, 3133 }, {547 , 517S }), ({5s, 513s}, {347 , 317s})
({36, 3134 }, {579 , 5207}), ({56, 5134 }, {379 , 3207 }), ({37, 313s}, {51S ' 5143 })
({57, 5l3s}, {31S1 3143}), ({316 , 3144 }, {5123 , 52sd)' ({5 16 , 5144 }, {3123 , 32SI })
({3 17 , 314S}, {5S9 , 5187}), ({517 , 514S}, {3S9, 3187 }), ({318, 31451, {591 , 5219 })
({5 18 , 5146}, {391 , 3219}), ({319 , 3147}, {527 , 51Ss}), ({5 Ig , 5147 }, {327 , 31Ss})
({320 , 3148}, {51071 523S }), ({520 , 5148 }, {3107 , 323S }), ({321 , 3149}, {543 ,5 l71 })
({521 , 5149}, {343 , 3m }), ({322 , 31S0}, {57S1 5203 }), ({522 , 51S0}, {37S , 3203 })
({323 , 3m }, {5 u , 5139 }), ({523 , 51Sd, {3u13139}), ({332 , 3160 }, {512S , 52S3 })
({532 , 5I60}, {312S , 32S3 }), ({ 333 , 3161 }, {561 , 5189}), ({ 533 , 516d, {361 , 3189 })
({334 , 3162}, {5931522I}), ({534 , 5162}, {3931 322d), ({33S1 3163 }, {529 , 51S7})
({535 ,5163}, {329 , 315d), ({336 , 3164 }, {5109 , 5237 }), ({536 , 5164 }, {3109 , 3237 })
({337 , 316S }, {545 , 5I73 }), ({537 , 516S }, {34S1 3m }), ({338 , 3166}, {5n , 520S })
({ 538 , 516d 1{377 , 320S }), ({339 , 3167 }, {513 , 514d), ({539 , 5167), {3I3 , 3141 })
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({348 , 3 176 ), {512I 5249 }) ({548 5 176 } {3121 3 249}), ({349 , 3 177}, {5S7 , 5 18S })

({ 5 49 ,5177 }, {3S7 , 3 18S })' ( {350 , 3 178}, {589 , 5217 } ), ( {5so , 5 178}, {389 , 3 217 } )

({3S1' 3 179 ), {52S ' 51S3 }) ({551 , 5 179 }, {32S , 3 1S3 }) ({3S2 ' 3 180}, {51OS,5233})

({5 S2 ' 5 180 }, {3105,3233}), ({3S3 ' 3 18d, {541 , 5169}), ({5S3 ' 5 18d, {341,3169})

({3S4 ' 3 182 }, {573 , 520d), ({554 , 5182}, {373 , 3 201 }), ({3ss , 3 183}, {59, 5137})

({5ss , 5 183 }, {39 , 3 137}) ({364 , 31n }, {5126 , 52S4 }), ({564 , 5 192}, {3126 , 3 2S4 })

({36S ' 3 193 }, {562 , 5 190}) ({56S ' 5 193 }, {362 , 3 190}), ({366 , 3 194 }, {594 , 5 222})

({566 , 5 194 }, {394 , 3 222 }), ({367 , 3 19S }, {53o , 5 1S8 }), ({567 , 5 19S } {330 , 3 1SS })

({368 , 3 19d, {5 uo 5238 }) ({568 , 5 19d, {3uo , 3 238 }), ({369 , 3 197 } {546 , 5174 })

({569 , 5197 }, {346 , 3 174 }), ({370 , 3 19S }, {578 , 5206}), ({570 , 5 198}, {378 3 206 })

({371 ,3199 }, {5 14 , 5 142 }), ({571,5199},{314,3142}), ({380 , 3 208 }, {5122 52S0 })

({580 , 5 208 ), {3122 , 3 2S0 }), ({381' 3209 }, {5S8 ' 5 186}), ({58b 5209}, {3s8,3186 })

({382 , 3 210 }, {590 , 5 218 }), ({582 , 5210}, {390 , 3 218 }), ({383 , 32U }, {526 , 5 1S4 })

({583 , 5 2U }' {326 , 3 1S4 } ), ({3M , 3 212}, {5106 , 5 234 }), ({584 , 5212 }, {3106 , 3234 })

({38S ' 3 213 }, {542 , 5 l7o}), ({58S ' 5 213 }, {342 , 3 170 }), ({386 , 3214 }, {574 , 5 202 })

({586 , 5214 }, {374 , 3202 }), ({387 , 3 21S ), {51O , 5 138 }), ({587 , 5 21S } {31O , 3138 })

({396,3224}, {5124,5252}), ({596 , 5224 }, {3I24 , 32S2 }), ({397 , 3 225 }, {560 , 5188})

({597 , 5 225 }, {360 , 3 188}), ({398 , 3 226 }, {5n , 5 220 }), ({598 , 5 226 }, {392 , 3 220 })

({399 , 3 227 }, {528 , 5 IS6 } ). ( {599 , 5227 }, {328 , 3 1S6 }), ({3 100 , 3 228 }, {5108 , 5 236 } )

({5100 , 5 228 }, {3108 , 3 236 } ), ({3101 , 3229 }, {544 , 5172 }), ({ 5101 , 5 229 }, {344' 3172 } )

({3102 , 3230 }, {576 , 5204 }), ({ 5 102 , 5 230 } , {376 , 3204 }), ({ 3103 , 3 231 ), {512 , 5 140} )

({5103 , 5 231 }, {312 , 3HO } ) ( {3U2 , 3 240 }, {5120 , 5 248 }) ({ 5112 , 5 240 }, {3120 , 3248 } )

({3 U3 ' 3u d, {5S6 ' 5184}) ({5 U3 , 5 24d, {3S6 , 3 1M }), ({3 U4 ' 3 242 ), {588 , 5216})

({5 U4 , 5 242 }, {388, 3216 }), ({3U5' 3243 ), {524 , 51S2}), ({5 us , 5 243 ), {324 , 3 1S2})

({3U6 , 3 244 }. {5104 , 5232 }), ({5 116 , 5 244 }, {3104 , 3 232 }), ({31l7 , 3 24S }, {540 , 5 16 })

({5U7,524S}' {340 , 3168}), ({3U8, 3 246 }, {572 , 5 200 }), ({5 U8 , 5246 }, {372 3 200 })

({3U9 , 3247 }. {58, 5 136 } ), ({ 5119,5247 ), {38 , 3136} )

t. Between the groups of {V3t I i = 1,2,···, 32} and fCC, 7)li = 1,2,···, 255} (for

simplicity, we abbreviate (Gi , 7) as 7j ), there are complete 128 K2,2-bipartitions:

({30, 3 128 }, {7127 , 7250}) , ({70, 7128 }, {3127 , 32SS }), ({31, 3 129 }, {763 , 7191 })

({71 , 7129 }, {363 , 3 191 } ) ( {32, 3 130 }' {795, 7223 }), ( {72, 7130 }, {395 , 3223 } )

({33, 3 13d, {731 , 7159 }), ({73, 7131 }, {331 , 3159 }), ({34 , 3 132}, {7m, 7239 })

({74l 7132 }, {3 U1l 3 239 }), ({3s , 3 133 }, {747 , 717s }), ({7Sl 713JJ, {347 , 317S })

({36 , 3 I34 }, {779 , 7207 }) 1 ({76, 7134 }, {379 , 320d), ({37 , 3 13S ), {7 1Sl 714d)
({77l 713S }, {315 , 3143}), ({316 , 3144 }, {7123l 725d), ({716, 7144 }, {3123l 32Sd)
({317 , 314S }, {7S9 ' 7187 }), ({717 : 714S }, (3s9,3187}), ({3 18 , 3146 }, {791 , 7219 })

({718l 714d, {391 , 3219 }), ({3 19 , 3147}, {727 , 71So}), ({7I9, 7147 }, {327 , 3 15S })

({320l 3 148 }, {7107 , 723S }), ({720l h~8}, {3107 , 3 23S}), ({32b 3149 }, {743l 7m })
({721 , 7149 }, {343 , 3m }), ({322l 31so}, {77S ' 7203 }), ({722l 71S0 }' {37S , 3 203 })
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({323 , 3 1Sd, {7u, 7 139 }), ({723,71Sd {311 3 139 }) ({332 3 160}, {712S, 7 2S3 })

({732 7160},{312S 3 2S3 }) ({3333161},{761,7189}), ({733,7161},{3613189})

({334 , 3 16d, {793 , 7 221 }), ({734 7 162 }, {393 , 3 22d) ({335' 3 163}, {729 7 1S7 })

({73S 7 163 } {329 , 3 1S7 }), ({336 3164 } {7109 , 7 237}) ({736 , 7 1M}, {3109 , 3 237})

({337 3165 } {74S 7 173 }), ({737 7 16S }, {34S , 3173 }), ({338 3166 } {777 7 20S })

({738 , 7166}, {3n , 3 200}) , ({339 , 3 16d, {713 7 14d), ({739 , 7167}, {313 3 14d)
({348,3176} {7121 , 7249 }), ({748 , 7 176 }, {3121 , 3 249 }), ({349 , 3 177}, {iS7 ' 718S })

({749 , 7177 } {3S7 , 3 18S}), ({3so , 3 178}, {789 7 217 }) ({7so , 7 178}, {3 9,3217 })

({3S1 , 3 179 }, {72S ' 7153 }), ({7S1' 7179 }, {32S , 3 1S3}), ({3S2 ' 3 180 }, {71OS 7 233 })

({7S2 ' 7 180 }, {31OS , 3 233 }), ({3S3 , 3 18d, {741 , 7 169 }), ({7S3, 7 181 }, {341 , 3 169 })

({3S4 ' 3 182 }, {773 , 7 201 }), ({754, 7182}, {373 , 3 201 }), ({3ss , 3183}, {79 7 137})

({7ss , 7 183 }, {39 , 3137 } ), ({364 , 3192}, {7126 , 72S4 }), ({764, 71n }, {3126 , 3 2S4 } )

({36S ' 3 193 }, {762 , 7 190 } ), ( {765, 7193}, {362 , 3 190 } ), ({ 366 , 3 194}, {794 , 722d)
({766 , 7 194 }, {394 , 3222 }), ({367 3 19S }' {730 , 71S8 }), ({767 , 7 19S}, {330 , 3 1S8 })

({ 368 , 3 196 }, {7110, 7238}), ({768, 7196 }, {3uo, 3 238 }), ({369 3 197}, {746 7 174 })

({769 , 7 197}, {346 , 3 174}), ( {370 , 3198}, {778 , 720d ), ({770, 7 198}, {378 , 3 206 } )

({3n ,3199 } {714, 7142 }), ({7n , 7 199 }, {314 , 3142 }), ({380 , 3208 }, {7122, 72S0 })

({780 , 7208 }, {3122 , 32S0 }), ({381' 3209 }, {7S8 , 7186 }) ({781' 7209 }, {3S8 , 3 186 })

({382 3 21O }, {790 , 7218 }), ({782, 721O }, {390 , 3 218 }), ({3 3,3211 }, {726, 7154})

({783 7 211 }, {326 , 3 154 }), ({384 3 212 }, {7106 , 7234 }), ({784 , 7 212 }, {3106 , 3 234 })

({38S , 3 213}, {742 , 7 170 }), ({785, 7213 }, {342 , 3170}), ({386 , 3 214 }, {774 , 7 202 })

({786 , 7 214 }, {374 , 3202 }), ({387, 321S }, {7lO, 7 138 }), ({787 7 21S }, {3lO , 3138 })

({396 , 3 224 }, {7124 , 7252 }) ({796 7224 }, {3124 , 3 2S2 }), ({397 , 3 22S }, {760 , 7188 })

({797 , 7 22S }, {360 , 3 188 }), ({398 , 3226 }, {792 , 7 220 }) ({798 , 7226 }, {392 , 3220 })

({399, 3227 }, {728 , 7156 }), ({799 , 7 227 }, {32S ' 31S6}), ({3 100 , 3 228 }, {710B , 7236 })

({7100 , 7228 }, {3108 , 3 236 } ), ({ 3 101 , 3229 }, {744 , 7l72 } ), ({ 7101 , 7229 }, {344 , 3 172})

( {3102 , 3 230 }, {776, 7204}), ({7102 , 7230 }, {376 , 3204 } ), ({ 3 103 , 3 23d, {712 , 7 140 } )

( {7lO3, 7231 } {312 , 3 140 } ), ({3 112 , 3 240 }, {7120 , 7248 }), ({ 7 112 , 7240 }, {3 120 , 3248 } )

( {3 113 , 3 241 }, {756, 7184 }), ({7U3 ' 7 241 }, {3S6 , 3 184 } ), ({ 3114 , 3242 }, {788 , 7216} )

({7114 , 7242 }, {388, 3216 }), ({311S, 3243 }, {724 , 71S2 }), ({711S, 7243 }, {324 , 3152})

({3116 , 3244 }, {7104 , 7232 }), ({7116 , 7244 }, {3104 , 3232}), ({3U7, 324S }, {740 , 7168 })

({7U7 ' 724S}, {340 , 3168}), ({ 3 118 , 3 246 }, {772 , 7200 } ), ({7ll8 , 7 246}, {372 , 3 200 } )

({3119, 3 247 }, {78 , 7 136 }), ({7ll9, 7247 }, {38 , 3 136 })

4.5 Solving the Embedded Maximum Independent Set Problem in G9

For computing the independence number of an induced subgraph G of G9 , we consider

"ladder subgraphs" L of G9 of the form:
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v (L) = {Uj I i ~ i ~ l} U {Vi I i ~ i ~ l} and

E(L) = {{Ui, ui+d I 1 ~ z ~ l - I} U {{Vi, Vi+d I 1 ~ i :::; l - I} U
{{Uj, vi+d I 1 ~ i ~ l - I} U {{Vi, Ui+d I 1 ~ i :::; l - I}.

The independence number of G is given by max{ IV (G) n{Uil' Vi] , Ui2' Vi2' Ui3' Vi3' ... } I I

i 1,i2,i3 ,··· E {1,2,·· ·,l} and i j + 1 < i j +1 for j = l,2,··}
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CHAPTER V

CONCLUSIO S

In this thesis, we study two approaches that prove the length lower bounds of re

flecting sequences for labeled chains. Improving the length lower bounds of reflecting

sequence results in improving those of universal traversal sequences, which provide a

traversal strategy for graphs in limited space complexity.

For short labeled chains, the lower bounds of reflecting sequences are obtained

by analytical approaches. Tompa's marking scheme is used for the labeled chains of

lengths 3 and 4, and the Buss-Tompa marking scheme is used for that of length 5.

In Tompa's marking scheme, only forward traversals on the chains are consid red,

and marks are placed on a hypothetical reflecting sequence. Tampa's marking sch me

yield a lower bound of R(t, n) ~ tnl0946. In the Buss-Tampa marking scheme, back

ward traversals are also considered in addition to forward traversals, and the new

notions of debts and interval are introduced. The Buss-Tompa marking scheme im

proved the length lower bound of t-reflecting sequences from tnlog46 to tnI09&lO.

A computational approach is used to improve the length lower bounds of univer

sal traversal sequences further. This approach applies Tampa's marking scheme. Two

kinds of marks, open marks and closed marks are introduced. We consider inconsis

tencies between open marks since some of them may not co-exist on any reflecting
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sequence. The inconsistency graph that contains information of such inconsistencies

between open marks is used for constructing a quadtree. The computational approach

show a length lower bound of R(t, n) 2: tnl09719 using labeled chains of length 7.

We obtain the suffix inconsistency graph of labeled chains of length 9. The struc

ture of the graph is complicated because there are 29- 1 = 256 chains with different

labels. We need to understand the structure of the graph well in order to get an

efficient construction of the quadtree.
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APPE. DIX A: GLOSSARY

a(3a.(3 Interval A substring of a reflecting sequence that begins with the 0.(3 pair that

finishes a traversal of a.(3a(3, and ends with 0.(3 pair that starts the next traversal

of a(3a.(3, where a (3 E {O, I}.

Base Pairs The pairs which correspond to starting and finishing left-to-right traver

sal of the chains with labels a.(3a(3 for a., (3 E {O, I}

Circumnavigation Sequence A traversal command for labeled cycles.

Closed Marks If 5 traverses chain C i from vertex 1 to vertex n without returning

to vertex I, closed marks of j\;fi are put on that bit of 5 that induces to exit from

vertex 1.

Closing Marks If an 0.(3 pair finish a traversal of either a(3a(3 or a(3a.7J, the 0./3 pair

has a closing mark.

Closing Debts If an a(3 pair doesn't have a closing mark, the 0.(3 pair has a closing

debt.

Complete Bipartite Graph Km,n The graph with m left vertices, n right vertices,

and an edge joining every left vertex to every right vertex.

Edge Labeling Place a unique label on each endpoint of an edge.

Finishing Traversal The pair matching the second a(3 in a(3(a.73 + a./3ta.(3 is said

to finish a (left-to-right) traversal of a.j3a(3.

Labeled Graph A graph in which each endpoint of an edge is labeled by edge la

beling.

39



Labeled Chain A chain in which each endpoint of an edge incident \\ ith everv

interior vertex have a unique labeL

Labeled Cycle Labeled graphs with regularity of 2.

Lower Bound The Q notation gives a lower bound for a function to within a con

stant factor. We denote f(n) = Q(g(n)) if there are positive constants no and c

such that n > no and the value of f(n) always lies on or above cg(n).

Marks-to-Bits Density The number of marks per bit.

Marks-to-Pairs Density The number of marks per pair.

Marks-to-pairs density = 2*(marks-to-bits density).

Nonbase Pairs The pairs which are not base pairs.

Open Marks If a bit of 5 induces to exit vertex 1 and S doesn't make traversal

reach neither vertex 1 nor vertex n on chain Gi , an open mark is put on that bit.

Opening Marks If an 0.(3 pair starts a traversal of 0:(30:(3 or it is the last 0.(3 pair

during a traversal of 0:./375{3, the 0:/3 pair has an opening mark.

Opening Debts If an 0:.(3 pair doesn't have an opening mark, the 0:(3 pair has an

opening debt.

Recurrence In urder to accomplish a task, use itself with some part of the task.

Reflecting Sequence An end-to-end traversal command on labeled chains.

Reflection A complete endvertex-to-endvertex traversal on a labeled chain.

Regular Graph A graph in which every vertex has the same degree of regularity.

Regularity The number of edges connected to a vertex in the regular graph.

Starting Traversal The pair matching the first 0:/3 in 0:/3(0.{3 + 0(3)*0:(3 is said to

start a (left-to-right) traversal of 0.(30./3.

Traversal Sequence A traversal command for labeled graphs.
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Undirected Graph A graph whose edges are unordered pairs of vertices.

Universal Traversal Sequence A particular traversal sequence that makes traver

sal visit all vertices at least once staring at any vertex for each graph in the set of

d-regular, n-vertex, edge-labeled, undirected graphs.

Upper Bound The 0 notation gives a upper bound for a function to within a con

stant factor. We denote f(n) = O(g(n)) if there are positive constants no and c

such that n > no and the value of f(n) always lies on or below cg(n).
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APPENDIX B: PROGRA I LISTING

B.1 Implementation of Finding Inconsistencies (Method I)

/*
find inconsistencies of open marks by using the theorem in [DF96a]

*/
#include <stdio.h>

#define CHAIN_LEN 9
#define MAX 256
#define CONSIS 0
#define INCONSIS 1

void init_tableCint t[] [MAX])
{

int i, j;

for(i=O;i<MAX;i++)
£or(j=O;j<MAX;j++)

t [i] [j] = 0;
}

void int_to_bin(int n, int a[])
{

int i = CHAIN_LEN-i, j;

do{
a[i] = n %2;
n = n/2;
1--;

}while(n != 0);

for(j=i;j>=i;j--)
a[j] = 0;

}

int NR(int alpha[], int beta[], int delta)
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{

int i, j J endl, end2;
int flag = 1, flag2 = O·,
int s, t·,

endl = CHAIN_LEN-l-delta;
j = endl;

if (delta<=l){
for(i=2; i<= endl; i++, j--)

if(beta[i] != !alpha[j])
return CONSIS;

return INCONSIS;
}

else{
for(i=2; i<= endl; i++, j--)

if (beta [i] != ! alpha [j] )
flag = 0;

if (flag)
return INCONSIS;

else{
end2 = endl+2;
for(t=2;t<=endl;t++)

if(beta[t] == alpha[end2-t])
flag2 = 1;

if(flag2 && NR(alpha, beta, delta-2»
return INCONSIS;

else
return CONSIS;

}

}

void make_table(int t[] [MAX], int delta)
{

int i, j;
int alphaCCHAIN_LEN], beta[CHAIN_LEN];

for(i=O;i<MAX;i++){
int_to_bin(i, alpha);
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for(j=O;j<MAX;j++){
int_to_bin(j, beta);

t[iJ[jJ = NR(alpha, beta, delta);
}

}

}

void print_table (int table [] [256J, int numchains)
{

int cent, i, j;

far(i=O;i<numchains;i++){
cant = 0;
printfC"\n'l.d\n",i);
far(j=O;j<numchains;j++){

if(table[i] [j]){
if(cont)

printf(",'l.d",j);
else

printf(" - %d",j);
cant = 1;

}

else{
if(cont)

printf("\n");
cant = 0;

}

}

}

}

mainO
{

int table33 [MAX] [MAX], table35 [MAXJ [MAX], table37 [MAX] [MAX] ;
int i, j, s;

init_table(table33);
make_table(table33,4) ;
print_table(table33, MAX);

init_table(table35) ;
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make_table(table35,2);
print_table (table35, MAX);

init_table(table37) ;
make_table(table37,O);
print_table(table37, MAX);

}
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B.2 Implementation of Finding Inconsistencies (Method II)

/*
find inconsistencies of open marks by traversing each chain

*/
#include <iostream.h>

#define MAXCHAINLEN 256
#define chainlen 9

typedef struct{
char size;
short int chainnum;
char labels [MAXCHAINLEN] ;
char currentstate;

} DFA;

void setdfa(int size, int dfanum, int initstate, DFA *dfap)
{

int 1;

dfap->size = size;
dfap->chainnum = dfanum;
dfap->currentstate = initstate;

for(i=size-i; i>O; i--){

dfap->labels[i] = dfanum %2;
dfanum = dfanum / 2;

}

}

void setstate(int initstate, DFA *dfap)
{

dfap->currentstate = initstate;
}

int state(DFA *dfap)
{

return dfap->currentstate;
}
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int dfasize(DFA *dfap)
{

return dfap->size;
}

void movebit(int bit, DFA *dfap)
{

int oldcurrent = dfap->currentstate;

if(dfap->currentstate == dfap->size)
(dfap->currentstate)--;

else if(dfap->currentstate == 0)
(dfap->currentstate)++;

else if(dfap->labels[dfap->currentstate] -- bit)
(dfap->currentstate)++;

else
(dfap->currentstate)--;

}

int consistentopenpair(DFA *dfap1, OFA *dfap2,
int visited [MAXCHAINLEN+1] [MAXCHAINLEN+1])

{

int state1, state2, i, consistent, n = dfasize(dfap1);

statel = state(dfap1);
state2 = state(dfap2);

if(lvisited[statel] [state2]){
visited[state1] [state2] = 1;
if (state1 == 1 I I state2 == 1)

return 0;

if(state1 == n I I state2 -- n)
return 1;

consistent = 0;

for(i=O; i<2; i++){
movebit(i, dfapl);
movebit(i, dfap2);
consistent 1= consistentopenpair(dfapl, dfap2, visited);
setstate(state1, dfap1);
setstate(state2, dfap2);

}
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return consistent;
}

else
return 0;

}

void print_table(int table[J[256] J int numchains)
{

int cont J i, j;

forCi=O;i<numchains;i++){
cont = 0;
cout «"\n"«i«"\n";;
for(j=O;j<numchains;j++){

if (table [iJ [jJ) {
if (cont)

cout «', '«j;
else

cout «" - "«j;
cont = 1;

}

else{
if (cont)

cout «"\n";
cont = 0;

}

}

}

}

void make_table(int table[] [256J, int numchains J int vi J int v2)
{

DFA dial, dfa2;
int dfanumi, dfanum2 J i, j;
int consistent;
int visited [MAXCHAINLEN+1J [MAXCHAINLEN+i];

for(dfanuml=O; dfanuml<numchains; dfanumi++)
for(dfanum2=O; dfanum2<numchains; dfanum2++){

for(i=O; i<=chainlen; i++)
for(j=O; j<=chainlen; j++)
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visited [i] [j] = 0;

setdfa(chainlen, dfanumi, vi, &dfai);
setdfa(chainlen, dfanum2, v2, &dfa2);

consistent = consistentopenpair(&dfal, &dfa2, visited);

table[dfanumi][dfanum2] = (!consistent);
}

}

main()
{

DFA dfal, dfa2;
int dfanumi, dfanum2, state1, state2, consistent;
int i, numchains;

int table33 [MAXCHAINLEN] [MAXCHAINLEN] ;
int table3S[MAXCHAINLEN] [MAXCHAINLEN] ;
int table37 [MAXCHAINLEN] [MAXCHAINLEN] ;
int table5S[MAXCHAINLEN] [MAXCHAINLEN] ;

cout « "Computing Tables for chainlength = 9\n";

for<i=chainlen, numchains=l; i>l; i--)

numchains *= 2;

cout « "Computing (3,3) state pair table ... ";
make_table (table33, numchains, 3,3);
print_table (table33, numchains);

cout « "Computing(3,S) state pair table ... ";
make_table (table3S , numchains, 3, S);
print_table (table35, numchains);

cout « "Computing (3,7) state pair table ... " ;
make_table (table37 , numchains, 3, 7);
print_table (table37, numchains);

cout « "Computing(S,S) state pair table ... ";
make_table (table55, numchains, 5,5);
print_table(table5S, numchains);

}
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