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Chapter 1

Introduction

1.1 Control and Optimization

"Contro'" traditionally has been regarded as the problem of maintaining the

process at setpoints so as to ensure stability - if the process deviates from the desired

setpoints determined at the design stage, the departures must be corrected as quickly,

smoothly and effortlessly as possible. This follows from the axiom that any system be it

electrical, mechanical, biological, will need continuous monitoring and correction if it is to

remain stable.

However, from the mid 20th century increasing attention has been directed to

realizing more specific goals, while also maintaining stability of the process. Control

rules are chosen to minimize a cost function over a time horizon, which penalizes

deviation from setpoint and excessive control action. That is, the control problem is now

formulated as an optimization problem. This formulation has virtues in that it leads to a

sharpening of focus towards the goals of a process. However, such a formulation may

suffer from the drawback that the model behind the optimization may be so idealized that

it leads to a non-robust solution - a solution that does not take into account the reality of

the process, but relies on an idealized process model.

Why are idealized models chosen for optimization? The answer to this lies in the

fact that early attempts at optimization suffered from lack of computational facilities

which could handle nonlinearities in the process and which were limited in the number of

variables they could handle. In addition, these primitive optimization methods could not
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handle optimization problems within a feasible length of time. Today, we possess

computational tools that can handle non-ideality in the process; which are swift and

accurate; and, which can handle complex constraints and process disturbances, and

optimize in a reasonable amount of time. In the context of the tools available today, it is

therefore possible for us to address better the basic motive behind industrial operations

- "maximizing profit."

1.2 Conventional Methods of Maximizing Profitability

As mentioned before, the aim of a control system is to maintain the process in a

profitable state of operation, while respecting safety, stability and quality constraints of

the process. Thus, if we wish to produce a product of uniform quality, process control

must compensate for the effects of disturbances and hold the product quality constant

(Buckley 1964). In conventional control, maximizing the profit is achieved by deciding an

optimal operating value for each process variable in the plant for a certain condition of

the plant. These operating values are se.tpoints, and the aim of the control system then,

is of holding each process variable at its setpoint. However, these setpoints represent

optimal operating points for the design condition for which they have been calculated.

As the plant continually changes from one state to another, its optimal conditions

change. Thus, the basic motive of maximizing profit mentioned above is addressed only

at particular conditions. Control systems include conventional feedback control systems,

and new schemes such as Model Predictive Control (MPC) are being used; however,

these methods rely on linearized dynamic models.

The next layer of control consists of updating these setpoints at prescribed

intervals based on objective techniques so that the process is kept in profitable

operation. Online optimization is the strategy currently used to optimize processes using
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nonlinear steady state models. Here an optimizer, based on its search on the model

"dictates" the direction that the process has to take to minimize the process cost

function. This is implemented by the local controllers. As will be discussed later, the

model equations for the optimization problem are algebraic equations representing

steady state operation, which are not accurate representations of the reality of the

process. Obviously, the optimum is only as good as the model. If the model closely

matches the process, the optimum found on the model is nearly the true optimum.

However, steady state models do not account for the process dynamics and transience

in process behavior again ~ead to off-optimal operation.

1.3 The Next Step

The logical next step would be to consider the limitations of conventional control

- by the introduction of process dynamics into the optimization models to address the

question of maximizing profitability at every step of the process and by including better,

more realistic nonlinear models. An ideal dynamic controller would:

• dynamically determine the "best" operating point for the process, which

maximizes a particular performance criterion - preferably the profit made by

the process to reflect the operational objective

• determine the time-optimal path to these operating conditions

• respect the safety, environment, design, and product quality constraints of the

process along the optimal path

With such a controller, the necessity of using setpoints for control variables to be

a reflection of the process profit can be eliminated. A scheme can be developed

wherein a dynamic controller addresses the question of maximizing profit every step of

the way. This is a problem of dynamic nonlinear optimization. It is only recently that
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simple and effective numerical methods for dynamic optimization that can be easily

implemented on a computer have been developed. The ultimate goal of these

optimization schemes is plantwide optimization, which involves effective control and

optimization of an entire sequence of unit operations and not simply individual units.

This consists of implementing nine aspects of plant operation effectively, viz.: energy

management; production rate; product quality; operational, environmental and safety

constraints; inventories; component balances; and economic optimization (Luyben et al.

1998).

1.4 Purpose and Significance of the Study

Several mathematical methods have been developed for solving dynamic

optimization problems, and these have been tested on example processes, such as

batch reactors (Vassiliadis et. al 1994, Cuthrell and Biegler 1987). However, these

remain confined to academic studies. The use of optimal control strategies for profit

maximization using rigorous economic models has not been widely observed in industry.

It is the aim of this study to demonstrate the efficacy of this method to improve the

bottomline profitability of the process. An optimization scheme, which looks at profit

maximization every step of the way and looks at production rates, energy conservation

opportunities and process constraints in its search for its optimum, should necessarily

lead to improved profit and palpable dollar savings.

This work attempts to start the journey to realize this ultimate objective of

plantwide optimization using the powerful computational tools available. As a first step,

an industrially important process was chosen to implement a dynamic optimization and

control scheme, which realizes the three desirables mentioned above. The process

under consideration to test this concept is a simple distillation column. Distillation
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remains the most widely used separation method in chemical and petroleum industries.

Distillation columns contribute sometimes to as much as 50% of the plant operating

costs. Distillation operations consume about 10% of the total energy in the industrial

sector in the US. Hence, there is a significant economic incentive in effective control and

optimization of distillation columns. Besides this, the distillation process has just enough

complexity and size to be a challenging example process to demonstrate a new concept.

Proof that dollars can be saved by a new optimization strategy on a distillation process

would give a good impetus for future research on processes that are more complex.

Hence, distillation is a good first step to test a new concept.

The distillation column model and simulation were developed starting from first

principles. The optimization problem is a nonlinear problem (NLP) which is constrained

by the material and energy balances ("model"), physical limitations, and design

limitations of the column. The problem of controlling the column was formulated as an

optimization problem of maximizing the profit made by the column subject to constraints,

which "restrain" the process from becoming unstable. Thus, a control strategy is

developed which continually steers the process to an economically optimal operating

point. Comparisons for profit over time, disturbance rejection and stability have been

made with conventional PI control and steady state online optimization. It is hoped that

this will be the first step towards realizing a dynamic control strategy for an integrated

plant.

1.5 Scope and Limitations

As mentioned previously, this study is merely a first step in the path to achieving

plantwide control and optimization. The implementation of this proposed strategy has

5
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been simulated on a simple binary distillation column. Comparisons have been made

with simple PI control and online optimization schemes for simple disturbances.

Simple dynamic models were used. The dynamic optimization algorithm, which

will be described later, is developed in a restricted demonstration version of

GAMS/CONOPT (a nonlinear optimization package), and hence it is simplified. Further

fine-tuning and testing is necessary to ensure complete robustness. Other issues such

as sensitivity to model parameters and more rigorous economics must be explored. The

distillation column represents a starting point for extending this algorithm to more

complex systems. The next step should be to implement and test the performance of

this strategy on a more complex three-unit process, such as a Fluidized Catalytic

Cracking unit or the Flotation process in the IMC Agrico plant. The performance on

actual plant data and more severe disturbances must be evaluated before this strategy

becomes functional.

1.6 Outline of Work

Chapter 2 examines the conventional schemes for control, such as PI control and

multivariable control. Chapter 3 introduces optimization methods and discusses the

currently prevalent optimization schemes. The drawbacks of these schemes will be

pointed out and dynamic optimization will be introduced. Chapter 4 focuses on

developing the setup on which this new approach will be tested: the distillation column

model and simulation and the optimization program. Chapter 5 provides information on

the steps taken to code this setup. Chapter 6 analyzes the results of the study and

provides a comparison with conventional control schemes. Finally, Chapter 7

summarizes the results and outlines future recommendations.
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Chapter 2

Background

This chapter reviews some of the conventional schemes of control that are in use

in industry today. Review of these schemes, their applications and drawbacks provides

the basis of this study. The gradual transition of simple PI control to advanced control

schemes is tracked. The chapter begins with a discussion of some control fundamental

aspects of control schemes. Following this, optimization concepts and conventional

methods of optimization will be reviewed.

2.1 Fundamental Aspects of Control Schemes

A control structure consists of the following elements (Morari et al 1980):

• A set of variables to be controlled to achieve a set of specified objectives, which are

usually derived from economic considerations

• A set of variables which can be measured for control purposes

• A set of manipulated variables that can directly be "adjusted" to affect the control

variables, and

• A structure interconnecting measured and manipulated variables

Any control structure must specify the above elements. Morari et al. (19S0)

discuss each of these in detail:

Control objectives:

Control objectives can be twofold. In the first category of objectives, are those related to

operational feasibility. This involves keeping process variables within desired bounds, in

spite of uncontrolled influences on the process, called disturbances. These take into

7



account product quality specifications, safety considerations, operational requirements,

environmental regUlations, etc. These objectives are termed regulatory objectives.

Typically, these are realized by keeping certain "controlled variables" at desired values

called "set points." (Smith and Corripio 1985)

The second category is derived from economic considerations. These enter only

if, after satisfying the first class of objectives, there is freedom to adapt the operating

conditions to stay at the most profitable point of operation. These objectives are termed

optimizing objectives. Control schemes or laws determine how these objectives will be

realized. These will be discussed in greater detail in the next section.

Measurements:

The first class of objectives dictates directly the measurements that need to be

made to regulate the process. The second class needs additional measurements, which

can affect economic performance. Sometimes some measurements cannot be made

directly and need to be inferred from secondary measurements. The method of

selection of these measurements is dealt with in Morari at al. (1980). The relation

between primary and secondary measurements is given by the process model.

Selection of manipulated variables:

Manipulated variables are those that are used to maintain controlled variables at

their set points. Selecting the manipulated variables affects the response to external

disturbances. The more the manipulated variables, the better is the control of the

process. The way the manipulated variables are chosen is an important aspect of

control. The selection of a control structure is a complex problem, which requires

looking at the column from several perspectives (Moore 1992):

8



• A local perspective considering the steady-state characteristics of the column

• A local perspective considering the dynamic characteristics of the column

• A global perspective considering the interaction of the column with other unit

operations in the plant

Interconnecting the measured and manipulated variables:

Solutions to this problem are dependent on the answers to the above three

issues. Based on the three perspectives mentioned above, a sensor-valve pairing is

done, and pairings, which minimize the interaction between individual control loops, are

identified. Narraway et al. (1993) propose a method of selecting the measured and

manipulated variables based on economic criteria. Proper pairing is necessary for

effective control of the process. When this issue is addressed, we obtain a complete

control structure.

2.2 Optimizing and Regulatory Control

The basic goal in operating a plant is to optimize an economic measure of plant

operation (e.g., minimize operating cost or maximize profit), while satisfying certain

constraints, and in the presence of external disturbances (Morari et al. 1980). This

optimization problem is formulated by Morari et al. as follows:

(Minimize specified performance criterion - profit, squared error of deviations etc. - a

function of process variables, subject to process constraints)

Minimize
T

J =J<p(y,u,d)dt
o

9



State equations

Feasibility constraints

Outputs from process

Subject to

x =g'(x, u, d)

x(O)= Xo

g'(x, u, d) ~ a

y' = h'(x, u, d) (Problem 1)

(2-1 )

where. x is the vector state (dependent) variables; u is the vector of manipulated

(independent) variables; d is the vector of external disturbances; y' is the vector of

process outputs; Cl> is the performance criterion of the process; g' is the set of equality

constraints; 9 II is the set of inequality constraints of the process; and h' is the set of

equality constraints relating the process output to the dependent and independent

variables.

Control is required because of external disturbances, d, whose stochastic nature

makes it difficult to keep the process at a desired point. If we define implicitly two time­

scales, which describe control activities of a plant, we can partition the disturbance d into

a stationary part (d,) and a non-stationary part (d2). The component d2 defined on a time

scale t, (a small enough time scale where transient disturbances affect dynamics),

comprises of disturbances that are "fasf ·in nature, which affect the short term dynamics

of the process. These are irrelevant to the long-term optimization of the process,

because their value becomes zero. The component d1, defined on a much larger time

scale To comprises of persistent disturbances which have to be included in the long term

optimization of the plant. Thus, conventionally, the control objectives have been

partitioned into two optimization problems as:



1) Optimizing control

(Minimize operating cost (performance criterion) of the process)

Minimize

Subject to

g'(X,U,d1)=0

g'(X, U, d1):::; 0

y' =h'(x, u, d 1) (2-2)

[Problem 2a]

where d 1 = f(Ta), and Ta is large enough for plant dynamics to be negligible

The optimum solution to the above problem is given by:

x· =x(u', d1) and,

y. =Y(u·,d 1) (2-3)

Where the superscript asterisk denotes optimal values, the solution to the

optimization problem.

These optimal points are the set points provided to the regulatory system.

2) Regulatory control (Morari et al. 1980)

(Minimize deviation between optimal points and the current operating points)

h • [d
2 1 [d

2

:Minimize J2 =I{(V - y )T ~ (y - y*) + (u - u.. )T --t (u - U*)}dt
ay "d au .... dto ,U, 1 T ,U • 1

Subject to

x =g'(x, u, d)

x(to)= XI); x(t,)= x'( t 1)

11



g'(x. u. d)::; 0

Y=h(x, u, d)

where, 0 ~ to ~ t1 :s; To (2-4)

[Problem 2b]

This implies that the time horizon for regulation is significantly shorter than for

optimization. The above objective function says that the basic function of the regulatory

controller is to minimize the deviation between the set points and the operating point.

The focus of this work is to look at this partitioning of the control objectives and to

analyze the necessity and validity of this partition. In other words, the work aims at

looking at the complete plant control problem 1 instead of partitioning it into two separate

optimization problems 2a and 2b. The main aspects to be considered are economic

performance and performance in the face of transient disturbances.

Regulatory control strategies will be considered below, and their merits and

demerits explained. Before that, the following remarks about optimizing control are

worth noting:

Set points, as mentioned previously, are solutions to the optimizing control

problem. These are first established in the design stage, based on economic. safety,

environmental impact, product quality and other considerations. Thus, a set point

represents an optimum operating point with regard to design conditions with maximum

possible economic benefit, maximum safety, minimal environmental impact and perfect

product quality. However, these setpoints reflect only the design conditions. In

conventional control, typically, these are re-estimated whenever there are major



changes to the plant, or based upon operator experience. They are typically updated at

intervals of greater than a day and in some plants even every few weeks. Consequently,

in the face of the changing state of a plant, the set points are not up to date. A

regulatory controller is not "aware" of this and its function is to merely keep variables at

these set points. This approach leads to several issues that will be dealt with later.

2.3 Some Conventional Regulatory Control Schemes

The objective of regulatory control schemes, as pointed out earlier, is to keep

controlled variables at their set points by adjusting the manipulated variables (Luyben,

1990). The various schemes of adjusting manipulated variables are given below:

2.3.1 Feedback Control

The most popular and simple way of manipulating variables is using a simple

feedback control strategy. In feedback control, the process variable to be controlled is

measured and the measurement is used to adjust another process variable, which can

be manipulated (Seaborg, Edgar & Mellichamp 1989). Feedback control involves three

stages (Smith and Corripio 1985):

Measurement - done by a sensor and transmitter

Decision - done by controller, which decides what to do to maintain a variable at

its desired value.

Action - done by a final control element, usually a control valve

A simple feedback loop is shown in Fig 2.1.

13



Comparator

Controller

liP (Cu rrent to
pneumatic)
con\€rter

Sensor/Transmitter

Final
Control
Element

Fig 2.1: Feedback control loop

The above figure illustrates the basic components of a feedback loop: the

controller, the sensor, transmitter, and the process being controlled. The controller here

makes a decision to manipulate the control valve, and it can be digital or analog. Analog

controllers use continuous electric or pneumatic signals. The controllers see transmitter

signals continuously, and control valves are changed continuously (Luyben 1990).

Digital controllers are discontinuous in operation, looking at a number of loops

sequentially. Each individual loop is only looked at every sampling period. Analog

signals from transmitters have to be converted to digital signals by AID converters and

fed to computers. Similarly, computer signals have to be transformed into analog

signals by D/A converters before implementation in a control valve. There are three

basic control laws that are used for continuous feedback control:

ProportionalConuot.

In proportional control, the controller output is proportional to the error, where the

error e(t) is defined by:

e(t) =s(t) - o(t)

and, p(t) =Po + Kc.e(t)

14
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where. e(t) represents the deviati~n between the setpoint s(t) and the current

operating point o(t); p(t) is the controller output; Po is the bias value and Kc the controller

gain. It is seen that the set point s(t), is shown to be time-varying, but, in most process

control problems, it is kept constant for long periods of time. An inherent disadvantage

of proportional control is its inability to eliminate the steady-state errors that occur after a

set point change or a sustained load disturbance (Seaborg, Edgar, Mellichamp 1989).

Proportional-Integral Control

Here the controller output depends on the integral of the error signal over time,

1 I

p(t) =po + Kc[e(t) +- fe(t)dt]
TI 0

where, TI is the integral reset time'

(2-7)

Proportional-integral control has the important advantage of elimination of offset

and also combines the advantage of proportional control of responding rapidly to error

changes. However, integral control has the disadvantage of producing oscillatory

response of the controlled process and reduces system stability (Seaborg, Edgar and

Mellichamp 1989).

Proportional-Integral-Derivative Control

Derivative action is used in conjunction with a PI strategy to provide anticipatory

control of processes. This is done by measuring constantly the rate of change of the

controlled variable and anticipating its future course. If there is a large rate of change,

corrective action may be taken in advance to overcome future instability. By providing

anticipatory control, the derivative mode tends to stabilize the process. The controller

output for a PID controller is given by:
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1 t d
p(t) =po + Kc[e(t) + - Je(t)dt + 10~J

TI
O

dt

To summarize, feedback control provides:

(2-8)

• corrective action as soon as the controlled variable deviates from the set point

• control with minimal knowledge of the process

• simple and versatile control

However, it has the following disadvantages:

• No corrective action is taken until after the deviation in the controlled variable occurs

• No predictive control to compensate for the effects of known or measurable

disturbances is possible

• Set points are seldom a reflection of the actual state of the process and hence do not

represent the optimal operating point. The feedback controller is completely

"unaware" of economic considerations

2.3.2 Feedforward, Ratio and Cascade Control - Simple Predictive Control Schemes

Process control can be significantly improved, if "predictive control," i.e. control to

compensate for known disturbances, can be provided. Also, optimization using the

degrees of freedom available for manipulation can lead to increased profits.

Feedforward control allows for some predictive action. For this, disturbances

must be measured online, which requires knowledge of the process model.

Feedforward control involves measuring the process disturbances and taking corrective

action based on the process model by calculating the manipulated variable required to

maintain the controlled variable at its setpoint (Smith and Corripio 1985). Another way to
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think about it is that it involves adjusting the material and energy that must be delivered

to the process against the demands of the load (Shinskey 1988).

Ratio control is a special type of feedforward control, where the objective is to

maintain the ratio of two variables at a specific value (Seaborg, Edgar and Mellichamp

1989). Thus, the actual ratio of two process variables is controlled rather than the two

variables.

One of the disadvantages of feedforward control, mentioned in the previous

section, is that it can only be used to compensate for measurable disturbances. An

alternative strategy, which improves the dynamic performance is to utilize a secondary

measurement point and a secondary feedback controller, which is so located that it

recognizes the upset condition sooner than the controlled variable (Seaborg, Edgar and

Mellichamp 1989). Thus predictive control is achieved through multiple feedback loops.

This is called cascade control. This requires more than one control loop. The controller

that keeps the primary variable at its set point is called the master controller and that

used to keep the secondary variable at the set point required by the master controller is

called the slave controller (Smith and Corripio 1989).

To summarize, the above controllers provide,

• Predictive control for known disturbances. For immeasurable disturbances,

feedback control uses feedback compensation has to be used to "blindly" control the

process. Quicker response to known, unmeasured disturbances affecting

manipulated variables can be obtained using cascade control.

• Control based on the specific process being controlled
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The various drawbacks are:

• No "awareness" of process economics

• Idealized models used do not provide proper control of the process

2.3.3 Multivariable Control - Advanced Predictive Control

The PID controller has been the workhorse in process industries for the past 40

years. PID controllers are routinely used in 8180 (single input single output)

applications with good results but success with this controller for multivariable systems

has been limited (Deshpande1989, Ogunnaike and Ray 1994).

A multivariable system is one in which one input not only affects its own output

but also one or more other outputs in the' plant. These processes are difficult to control

because of the presence of interactions. The problem is further complicated by the

presence of long time delays, process nonlinearities, and operating constraints. Such

processes cannot be handled by the PID controller because of its inherent

characteristics (Deshpande 1989). With the advent of digital computers, better designs

can be produced without any consideration for hardware realizability. This has spurred

better control strategies for process systems. Comparisons for PI control schemes and

multivariable schemes obviously favor multivariable schemes, as they take into effect

interactions and the actual process model.

The following step-by-step procedure may be employed to solve a multivariable

problem, (Deshpande 1989):

1. Determine the best pairings of controlled and manipulated variables, from competing

sets, by interaction analysis
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2. If interaction is modest, one may consider 5180 controllers for multivariable systems.

3. If interaction is significant, it may be possible to use decouplers to reduce interaction

in conjunction with PID controllers

4. An alternative to steps 3 and 4 is to use a full multivariable scheme that inherently

compensates for interaction such as model predictive control (MPC)

Each of these issues is addressed in several references (Ogunnaike and Ray

1994, Luyben 1986). The general elements of MPC are given below, to aid the

discussion that follows (Ogunnaike and Ray 1994):

1. Reference Trajectory Specification - The first element in MPC is the definition of a

desired target trajectory for the process output, y'(k). This can be simply a step to

the new set point value or more commonly, it can be a desired reference trajectory

that is less abrupt than a step.

2. Process Output Prediction - Some appropriate model, M, is used to predict the

process output over a predetermined, extended time horizon (with the current time

as the origin) in the absence of further control action.

3. Control Action Sequence Computation - The same model, M, is used to calculate

the sequence of control moves that will achieve some specified optimization

objective such as minimizing the pre~icted deviation of the process output from

target over the predicted time horizon, or, minimizing the expenditure of control effort

in driving the process output to target, subject to some operating constraints

4. Error Prediction Update -In recognition of the fact that no model accurately

represents reality, plant measurement, Ym(k), is compared with the model prediction

and the prediction error e(k) =Ym(k) - y(k) is used to update future predictions.

There are issues with the above control sequence:
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• In conventional control, the models chosen for MPC are linear, a major simplification

of reality. Although there is nothing in the basic MPC structure that fundamentally

forbids the use of a nonlinear model, the following serious practical difficulties

prevent the use of nonlinear models:

Difficulty in the development of nonlinear models

Difficulty in nonlinear model solution

• For many processes, steady states may not exist. There is severe transience in the

process due to the presence of disturbances. The nonlinearities even around

steady state may be so severe that no linear model can be an adequate

representation of reality. However, recently advances have been made to make use

of the computational power available to incorporate and solve nonlinear models. In

the face of disturbances, an open-loop back-off calculation is used to maintain

optimality and feasibility by calculating the optimal back-off from the nominal

optimum point. (Bahri et aI., 1996)

• As with other control schemes, this approach does not inherently possess any

"awareness" of economics, concerned mainly with maintaining a reference state of

operation. The way this reference state is determined is of no "concern" to the

MPC.

• The control problem contains a large number of tuning parameters - and it is not

always obvious how these parameters should be chosen.

• The model prediction updating strategy is often extremely inadequate as it assumes

that the currently observed discrepancy between the model prediction and the plant

measurement is due only to unmodeled disturbances, and more importantly, that

such discrepancy will remain constant over the prediction horizon. This often leads

to poor performance, especially in disturbance rejection.
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Conventional regulatory control schemes, which aim at maintaining process

variables at their setpoints have been discussed. Their inherent drawbacks were

mentioned. Optimization methods, which determine setpoints for the regulatory

controllers, will be discussed in the next section.

2.4 Optimization Schemes

This section discusses some essentials of optimization methods used to

generate setpoints to the conventional regulatory control systems. These can be

broadly classified as static and dynamic optimization. Online optimization, currently in

use in industry uses steady-state models and the various aspects of online optimization

and its drawbacks are discussed. In the next chapter, numerical methods for the

reformulation and solution of dynamic optimization problems will be dealt with.

2.4.1 Static and Dynamic Optimization

The goal of optimization is to find the values of the variables in a process that

yield the best value of a performance criterion of the process (profit, operating costs,

efficiency, operating time etc) (Edgar and Himmelblau 1988).

Static optimization refers to the optimization wherein the performance index

does not involve the evolution of the controlled system in time, i.e, if it defines a property

of the system that may be considered as instantaneous with respect to the time scale of

the process. The optimization problem constraints then can be described by steady

state algebraic equations. The cost function typically used for static optimization would

be:

J = cp(x, u, d)
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The model for the process is usually a steady state model and these algebraic equations

are the equality constraints. Algebraic inequalities, which represent design limits and

product quality constraints, constitute the other constraints.

Optimization becomes dynamic if time is explicitly involved in the performance

index (Naslin 1968). Use is often made of cost functions of the following type,

h

J =fq>(x,u,d, t)dt
to

The problem then consists in controlling the process from its initial to its final

time in such a manner as to minimize the performance criterion. Typically solution to

dynamic optimization problems involves determination of the optimum values of the

control variables (or "optimum control policy') which will take the system as quickly as

possible from a given state to a new desired operating state, while minimizing the

performance criterion (Pollard et aI., 1970). The constraints for this optimization problem

are, typically, differential equations representing unsteady state material and energy

balances, and other algebraic equalities and inequalities, thus giving rise to a differential-

algebraic equation (DAE) system. The necessity and the advantages of dynamic

optimization are discussed in Chapter 3.

2.4.2 Steady State Online Optimization

The control activities of a firm are typically grouped into various levels. These

levels range from the actual production goals to the individual single loop controllers in

the plant that "blindly" try to keep the process variables at their setpoints.

Online optimization, the next level in the control hierarchy to regulatory

controllers, involves providing these setpoints to the plant's distributed control system.
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These setpoints are arrived at by a solution of an economic optimization problem. These

setpoints determined at this higher level, as mentioned above, are implemented in the

lower levels by single loop controllers, or more aptly, regulators. Regulators, as was

emphasized in the previous section perform regulatory control, and these typically have

no knowledge of economic considerations. It is the optimizer which "knows" the process

economics. This optimization, until recently, was done off-line by various analytical and

numerical methods and provided updates to setpoints at fairly infrequent intervals (e.g.,

Pollard et al. 1970, Maarleveld et al. 1969).

However, in modern plants the steady state optimization is carried out online at

regular intervals (Glemmestad et al 1997). This means that setpoints are provided in a

time scale of hours. Thus setpoint changes are carried more frequently and these

appear as "economic disturbances" that the regulatory control system has to

accommodate (Ogunnaike and Ray 1994, Smith and Corripio 1985). The actual

implementation is discussed below:

2.4.2.1 Implementation

Online optimization provides a means of maintaining a plant near its optimal

operating conditions by providing setpoints to the regulatory control system (Zhang et al.

1995, Chen et al. 1998). In order to perform a meaningful on-line optimization, it is

required that there is at least one extra degree of freedom during operation. Thus, if

there is one degree of freedom, it means that we can choose a value for this so as to

minimize cost (Glemmestad et al. 1997). Online optimization requires the solution of

three nonlinear programming problems (NLPs) similar to Eq. 2-11:
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For gross error detection and data reconciliation -

Measurements are subject to random errors. Therefore, they have to be

adjusted so that appropriate heat and mass balances are satisfied and random errors

eliminated. This is referred to as data reconciliation. The main aim of data reconciliation

is to improve the data from plants using a model of the plant (Dempf et al., 1998).

Similarly, process data sometimes contains errors caused by non-random events, such

as instrument bias or malfunction.

The presence of any such gross errors invalidates the statistical basis of data

reconciliation and hence they must be detected and eliminated before data reconciliation

is carried out. If a gross error is identified in a measurement, it is defined as:

Xmes = Xes! +.£ + B·.b.E (3-1)

where x",es is the measured value of a variable with an estimated value of Xes.; S·

is the matrix containing as many rows as there are measurements and a column for

each gross error; E is the gross error in the measurement; . The elements containing

measurements with gross errors contain the value 1 and others have value O.

The data reconciliation problem is formulated as an NLP (Nooraii et al. 1998):

(Minimize weighted squared error sum of the deviation between measured and

estimated values)

Minimize

Subject to

(Xmes - Xest)T W (xmes - Xest)

Ax = 0; 0 = A(x",es - Xest) = A( £ + S·.b.t:) (3-2)

where 0 is the residuum of the material and energy balances and Eq. 3-2

represents the equality constraints of the process.
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It must be noted that the model used in data reconciliation is initially chosen to

be of reduced order to avoid complexity. After matching this basic plant model and the

plant data with an accuracy of 10%, model complexity can be enhanced (Dempf et ai.,

1998)

Parameter Estimation -

Model parameters such as catalyst activities, heat exchanger fouling factors,

and heat transfer coefficients do not remain constant with time and these need to be

updated based on prevalent process conditions. The number and type of parameters

depend on the process being optimized. Parameter estimation algorithms are also least

square NLPs.

Process Optimization -

This is the "main" part of the optimizer, in which an economic model of the

process is used to describe a performance criterion to be optimized. This can be done

analytically (e.g., Moore et ai., 1991), but typically solved numerically using an

optimization package. The process model gives the constraint equations (in other

words, the equality constraints for the optimization problem) for the mass and energy,

chemical reaction kinetics and equilibrium relationships. Other specifications such as

design limits and minimum product quality specifications constitute the inequality

constraints. The process model is usually chosen to be a linearized steady state model

at the design conditions, which is one of the issues to be discussed. In steady state

optimization, the process has to reach a new steady state before the next optimization

loop is carried out. This provides a lower bound for the optimization (Loeblein et. al

1998).
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2.4.2.2 Issues with Online Optimization

The above scheme of optimization based on a steady state linearized model

raises two important issues. These are addressed below:

1. Linearized Models -

Verne et al. (1999) consider some of the reasons why linearized models are

chosen:

• The first principles nonlinear models should be converted to a form understood by

the optimizer. This is a complex problem involving conversion of nonlinear implicit

equations to explicit equality constraints.

• Nonlinear equations require sophisticated optimization software, with possible

requirements of new computer hardware

• Ensuring a valid interface between the regulatory controller (which runs every

minute) and the upper-level optimizer (which typically runs one or two hours) is

required, which may be a complex task.

• The likely cost of implementation of a rigorous optimizer is quite substantial and may

not be cost-justified.

• For some processes, with few disturbances and upsets, the plant operates in and

around the desired steady state for which the optimizer is designed. By

supplementing the optimizer with feedback from the process, the simple linear

models "get the job done." Small errors in model gains are corrected by comparing

the predicted process response to what is observed. The important assumptions are

that model gains are at least the correct sign and that the relative magnitudes

between gains are correct.

However, linear models have the following drawbacks:

26



• The simple linear model is not a close representation of reality. Most processes are

nonlinear and even feedback from the process is not enough to provide an optimal

solution, especially in the face of transient conditions. This is the main argument in

favor of using a nonlinear process mode, which produces consistent performance

even in the face of upsets and disturbances. The oversimplification in a linear model

often produces sub-optimal results

• The process models used in the controller and the optimizer differ considerably.

Hence, there is no single accountability for the optimum operating performance.

2. The Steady State Assumption -

The traditional Optimizer, as mentioned above relies on a steady state model.

The steady state assumption gives it a basis for optimization. However, for most

processes, it is rare to encounter steady state operation. Model parameters change,

upsets occur or equipment may undergo modifications. The validity of the setpoint

calculated by the Optimizer based on the steady state is questionable. The invalidity of

the above assumptions causes sub-optimal solutions, and the eventual upshot is that the

Optimizer is turned "off." which is to say it is removed from the line.

In addition to these. White (1998) discusses some of the reasons why Optimizers are

turned "off':

a) Optimization solution does not change - Optimization systems push the operating

point of the plant to the point of intersection of certain constraints and try to hold it

there. Plant operators quickly observe this result and are able to duplicate it without

the Optimizer by adjusting the action of the multivariable controller. Eventually, the

Optimizer is turned "off." The same ensues if the process being optimized is

relatively stable, and encounters few disturbances, in which case the Optimizer
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solution does not vary with time. For such situations, most of the optimization can be

obtained by offline studies.

b) Disturbance frequency too high - The setpoints from the Optimizer are downloaded

to the system and the plant adjusts to new steady state conditions. Generally, the

time this process takes is of the order of the settling time of the process. However, if

major disturbances occur more rapidly than the plant's settling time, then it is seldom

at steady state and the optimization fails. This can be partially offset by using a

dynamic model in the Optimizer.

c) Poor parameter updating and data reconciliation algorithms - Successful

optimization algorithms incorporate online model auto-calibration procedures that

use plant data to update model parameters. Similarly, the plant data being used for

the optimization may be subject to random errors, which a robust data reconciliation

algorithm can "filter." If these are not available, then sub-optimal solutions result.

d) Pricing coefficients - The price coefficients used are typically updated on a monthly

basis. Use of incorrect coefficients causes sub-optimal solutions, which may result in

the Optimizer being turned "off."

Most of the above drawbacks can be eliminated if the optimization is made

more frequent and dynamic (White 1998, Henry et al. 1998). This will help realize the

objective of realizing flexible and dynamic optimization and control based on current

process conditions. A dynamic optimization algorithm can be used to predict an optimal

control path to the desired point of maximum profit.

It is thus obvious that a dynamic optimization algorithm should be the first step

to realize the objectives of control menti~ned in the previous chapter. A review of

numerical methods to solve dynamic optimization problems follows in the next chapter.
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Chapter 3

Dynamic Optimization

The previous chapter provided background information on the conventional

control and optimization schemes. It was pointed out that dynamic optimization to

maximize economic benefit could address some of the drawbacks of the conventional

control schemes. This chapter takes an overview of the numerical methods for dynamic

optimization, and their relative merits. However, it will be useful to appreciate where

these dynamic optimization methods fit in into the overall control structure. Hence the

first part of this chapter presents an overview of the proposed strategy for dynamic

optimization. The next sections discuss the numerical methods of dynamic optimization.

3.1 Proposed Strategy

In Chapter 1, the desirable characteristics of a controller were discussed.

These are recounted below for discussion:

An ideal dynamic controller would:

• Determine setpoints for the optimal point of operation and evolve them with

time to best reflect current operating conditions

• determine the fastest path to these optimal conditions, based on economic

considerations instead of least squares minimization techniques

• respect the safety, environment, design, and product quality constraints of the

process along the optimal path

In mathematical terms, the objective function of such a controller would be to

maximize profit over a time horizon, subject to safety, environmental, design and product
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quality constraints. This is a dynamic optimization problem, the methods of solution for

which will be discussed below.

The performance criterion for the general dynamic optimization problem (3-3)

should then be the profit made by the process over a time horizon, the interval (a,b).

The solution to this optimization problem is then the control and state variable profiles to

be "followed" by the process if it is to make the maximum profit. Since the control is

based on economic considerations as well, this strategy will be termed Control to

Economic Optimum. This can be mathematically represented as:

Max J =L(Lvalue(x) - Lcost(U, L1u))L1t)

Where, L1t is the interval (a,b) := aTOTAL

The proposed optimization is similar to a nonlinear model predictive

optimization algorithm in constraint handling and solution methods, but the objective

function for the optimization is maximizing profit made by the process instead of

minimizing the deviation from setpoints. This setup would then determine economically

optimum points of operation and evolve them with time. This translates to dynamic

determination of setpoints for state ("controlled") variables. The process maintains these

setpoints for a "control step" before the Optimizer is re-run and new setpoints are found.

During this control step, the manipulated variables are kept at the values dictated by the

Optimizer. Thus, the optimization and regulatory control stages are "unified" in the

sense that there is just a single stage, which keeps the process under control and

determines the optimum operating point. The actual method of implementation will be

discussed in Chapter 5.
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In summary, the features of the dynamic optimizer are proposed as follows:

• Objective is to maximize profitability over a future horizon

• Provides predictive control based on a mechanistic, nonlinear process model

• Takes into account current process conditions and unexpected disturbances, which

necessitates that the optimizer 'runs' frequently (once every few minutes) and "re­

optimizes" based on current conditions

• Determines optimal conditions which do not simply optimize process for a particular

instant, but over a control horizon

• Determines optimal path to these optimum conditions based on economic

considerations instead of least squares optimizations or subjective operator tuning

• Respects process constraints

• Maintains stability of process by not taking too aggressive control actions

This proposed strategy would be, for reasons mentioned in Chapter 1,

implemented and tested on a binary distillation column. Chapter 4 describes the

modeling, simulation and the optimization program formulation for the distillation column

for implementation of the concept.

The next section discusses the numerical methods for dynamic optimization.

3.2 Dynamic Optimization

A general dynamic optimization problem. as mentioned previously, contains

time as a variable in the optimization. The general form of a dynamic optimization

problem is given by:

(Minimize a specified performance criterion over the time horizon (a,b))
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Minimize

b

4J(x(b)) +f<t>(x(t),u(t)) dt
a

Subject to

dx =h' (x(t), u(t))
dt

g" (u(t), x(t)) ~ 0

gt" (x(b)) ~ 0

x(a) =Xo

x(t) L ~ X(t) ~ X(t) U

U(t) L ~ U(t) ~ U(t) U

(equality model constraints)

(inequality constraints)

(inequality constraint at the end condition)

(initial conditions)

(bounds on state variables)

(bounds on control variables)

(3-3)

Where, a and b represent the beginning and ending time for optimization;

4J(x(b») is the component of the objective function at the end condition; x(t) is the state

profile vector and u(t) the control profile vector; g" is the set of inequality design

constraints; the superscripts Land U represent lower and upper bounds; Xi) is the initial

condition for the state vector (Logsdon et al. 1989). In fact, this is a more general

version of the nonlinear model predictive control discussed in the previous chapter.

The optimization problem such as the one for the binary distillation column are

complicated by the presence of model differential and algebraic equations, which must

be solved by the optimizer to determine the optimum operating point. Such a system of

equations is called a DAE (differential algebraic equation) system. The model equations

are usually differential, and the algebraic equations are constituted by the physical and

design constraints that ensure the thermodynamic consistency and physical

meaningfulness (Tanartkit and Biegler 1995). Typically, these are solved by
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-

transforming them into nonlinear optimization programs (Tanartkit and Biegler 1996,

Sistu et al. 1993).

Numerical techniques for dynamic optimization problems can be c1assi'fied into

three approaches (Barton et al. 1998): dynamic programming based approaches;

indirect approaches, and direct approaches. The dynamic programming approach was

first described by Luus (1990) and consists of including constraints on state and control

variables in the objective function as penalties, and solution is obtained by using the

Bellman principle of optimality (Fikar et al. 1998) without transforming the original

problem as in the other approaches described below. Indirect approaches or variational

approaches consist of transforming the optimization program into a two-point boundary

value problem (Tanartkit and Biegler 1996). Recent studies have focussed on the third

category of approaches called the direct approaches for their generality and ease of

implementation. These direct approaches can be further classified as the sequential or

control vector parameterization approach and the simultaneous or the collocation

method. In these approaches, the original optimal control problem is converted to a

nonlinear programming problem.

A discussion of these direct approaches follows.

3.2.1 Control Vector Parameterization

Control vector parameterization reduces the infinite dimensional dynamic

optimization problem to a finite dimensional problem through approximation of only the

control variable profiles (Barton et al. 1998). This is also called the feasible path

approach. Basically this consists of discretizing the control variables u(t) in the time

horizon of interest. For given u(t), it is then possible to integrate the underlying DAE
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system using standard integration algorithms (Vassiliadis et aI., 1994) so as to evaluate

the objective function and the constraints that have to be satisfied by the solution. This

control vector parameterization thus corresponds to a feasible path approach since the

DAEs are satisfied at each step of the optimization algorithm. The problem is thus

converted into a nonlinear programming problem, for which the objective function and

the constraint functions are evaluated by the integration of the system equations, and

their gradients with respect to the optimization parameters via the integration of the

sensitivity equations (Pantelides et ai., 1994). Thus the integration (of the model and the

sensitivity equations) is done by any standard integration algorithm independent of the

optimization algorithm, and the evaluation of the objective function and the inequalities is

done subsequent to the integration (Vassiliadis et al. 1994) for given values of control

variables, which are the decision variables in the optimizer.

Mathematically, the general dynamic optimization problem (3-2) is converted

into a sequence of approximate problems such that the solution of each of the

approximation problems is a sub-optimal solution to the above problem (Goh and Teo

1988). Approximation is carried out by sub-dividing the time horizon of control into finite

control intervals as shown in Fig 3-1.

Finite elements, ti

i
i
I
I
I
I
I~

i I
, I

i = 1 j'= 2

Total time t

i

: i = 3
i

~i

Fig 3-1: Division of time into finite elements
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A low order polynomial form is assumed for the control variables u(t). Thus,

control profiles are discretized (as order K polynomials) as follows (Vassiliadis et al.

1994):

K

u(t)= I.U;ko/~(t)
;=1

K t-t
'V~(t)=[I-_J (K22)

j=l t; - t j
j;t,

Where,
o/~(t)=1, (K =1)

(3-4)

-

and i and j represent finite points in time, demarcating control intervals

K =1 corresponds to a piecewise constant control profile, K =2 to a piecewise linear, K

= 3 to piecewise quadratic and so on. For some applications, continuity may be

enforced on control profiles by suitable junction conditions.

This type of approach to solving dynamic optimization problems is called the

sequential approach. In addition to the smaller size of the optimization problem, this

approach has the advantage of controlling the discretization error by adjusting the step

size by adjusting the order and size of the integration steps using well-established

ODEIDAE integration techniques (Vassiliadis et al. 1994). The disadvantage of this

approach lies in the treatment of profile constraints as well as eliminating the need to

obtain expensive and possibly infeasible intermediate solutions (Tanartkit and Biegler

1996). Also, since the model and sensitivity equations are solved at each iteration, it is

found that 85% of the system time is spent on the integration of the equations that

provide gradient information. If the integration could be accomplished with the
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optimization, computational times can be reduced significantly (Renfro et al. 1987). This

leads us to consider the simultaneous optimization and solution of dynamic systems.

3.2.2 Orthogonal Collocation

An alternative to the above approach is the simultaneous approach in which

both state and control variables are discretized. This is called the infeasible path

approach as the discretized constraints are, in general, satisfied at the solution to the

optimization problem only (Vassiliadis et al. 1994). The result of discretizing both the

control and state profiles is to convert the model differential equations into algebraic

equations that can be directly embedded as equality constraints in the optimization

problem along with other constraints (Cuthrell and Biegler 1989, Tjoa and Biegler 1991).

The numerical discretization of ordinary differential equations representing the

model is accomplished through polynomial approximation of time varying profiles. In

theory, any polynomial can be used to approximate the state and control profiles. A low

order polynomial is usually found to be sufficient to give good accuracy while keeping

the dimension of the NLP problem low (Renfro et al. 1987). Early approaches (Tsang et

al. 1975) used arbitrary approximating polynomials, of usually linear or quadratic order.

Biegler (1984) proposed the use of Lagrange polynomials to approximate the time­

varying independent variables, which have several desirable properties: using these

polynomials forces the polynomial coefficient to be equal to the value of the variable

itself at certain points of evaluation called the collocation points. This technique is called

global orthogonal collocation (Cuthrell and Biegler 1989).

To overcome the disadvantage of global collocation which fails to approximate

sharply varying variable profiles (which would require the number of collocation points to
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be very large), Cuthrell and Biegler (1987) proposed the use of orthogonal collocation

on finite elements, where the time horizon is partitioned into finite elements and control

profile discontinuity is allowed across the. elements. As in control vector

parameterization, the discretization is carried out by sub-dividing the time into finite

elements. However, another layer of sub-division is carried out by dividing each finite

element into collocation points as shown in Fig 3-2. Thus, the state and control vectors

are approximated by piecewise polynomials over each finite element.

Collocation
points, j = 1 to 2
(NeOl) for each
finite element Finite elements, i =1 to 3 (NFE)

I I I
I I I

: j= 1 j= 2 j= 1 j= 2 i '= 2 j= 1 j= 2 : i = 3
I I

!llIIlIIIll------------------+~l

Total time t

Fig 3-2: Divi sion of time into finite elements and collocation points

Using these collocation points provides an extra level of definition of state and

control variables is obtained. Boundaries between finite elements are defined as the

points of discontinuity for control variable profiles. These discontinuities help

approximate steep bang-bang type profiles. As will be described below, discontinuities

are not allowed in state variable profiles. Tieu et al. (1995) also consider an endpoint

collocation method, where the final point at t =t, is also treated as a collocation point,

avoiding the interpolation of the state variables to the end condition. This improves the

stability of the optimization. Certain conjunction equations are used to artificially enforce
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continuity in state profiles. The control and state profiles are defined by polynomials with

constant coefficients.

The state and control vectors are thus determined if the coefficients of these

polynomials are evaluated at collocation points (see Appendix C). The polynomial basis

functions are usually chosen as the lagrange polynomial functions, which are given by:

and
NeOl ('r - "[k )

\jI lij] ("[) = I1 for control profiles
k=l ("[j - "[k)
k;<j

(3-5a)

(3-5b)

where NeOl is the number of collocation points

j represents the piecewise polynomial coefficient

i represents the jlh finite element

<Plij) , \jI[ij) represent the r polynomial basis function in the i1h finite element at time

tviJ

and [ij] == (i+1)U-1)

In the above equations, the "['s are defined as follows:

where UI is the jlh finite element length

Thus the state and control vectors can be discretized as follows:

NCOl

Xi (t) = I x[ij)<!>[1Jl (t)
1=0

NCOl

u
i
(t) = I U[ij] 'V~j) (t)

J=1
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where xi(t) represents the state variable in the jlh finite element

and ui(t) represents a control variable in the i1h finite element

Discontinuities are allowed in control profiles, but not allowed in state profiles.

Continuity is enforced on state profiles using conjunction equations as follows:

NeOl

x[IOI = L x\I_1jJ<P j ('t =1)
);(l

i= 2,3, ... NE (3-8)

where NE is the number of finite elements

Thus, the optimization problem becomes:

Minimize

NE K

q>(x,)+ LL<P(X(ijJ,U(ijl,~Oi)
i=l j=1

subject to

r(t(ijJ) = x(t~j) - F(X[ij) ,U[ijj' l!.a i' t(ij)) =0

g(X[ijJ,U(iiJ,~Oi) ~ 0

gf(XI)~O

NeOl

x[loI= L X[I_1jJ<P j (r=1), i=2,3... ,NE
j=O

;-1 ( ) 0
Xl -x 0NE+l =

NE

L1l.Ui =UTOTAL
i=1

where arorAl is the time horizon for optimization
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These concepts are explained through an example in Appendix C. The reader

is directed to Appendix C for further details.

The advantage of the complete discretization approach is that it does not waste

valuable computational effort trying to obtain feasible solutions away from the solution to

the optimization problem (Vassiliadis et al 1994). However, the difficulty is the

formidable size of the optimization problem. This and other difficulties will be discussed

later. Due to its inherent advantages mentioned above, the simultaneous approach

would be used in the solution of the problem of dynamic optimization of the performance

of the distillation column chosen in this study.

This chapter discussed the numerical methods for dynamic optimization. The

next chapter introduces the binary distillation process on which the above concepts

would be implemented. The actual implementation of the strategy and its comparison

with conventional control schemes form the focus of Chapter 5.
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Chapter 4

Modeling, Simulation and Optimization Problem Formulation

This chapter deals with the modeling, simulation and the development of the

optimization program for the distillation column. Fundamental aspects of the model

development are first discussed, as outlined in commonly used textbooks such as

Luyben (1990). This is followed by a description of the method for a first principles

simulation of the distillation column. Finally, the economic objective function for the

distillation column and the constraints for the optimization problem are developed.

Before beginning, the following points are in order:

The proposed concept involves an Optimizer dictating optimal control policies

over a time horizon to a Process. The Optimizer uses a model for itself to verify that the

control policy it dictates does not violate the process constraints. Since this study is

carried out on a simulation, the "Process" on which the Optimizer works is also a

simulation in itself. Thus, there are two models in use:

1. For the Process (simulation)

2. For the Optimizer model constraints

The reason why different models are chosen for the Process and the Optimizer

is as follows:

No model can adequately represent the reality of the process. Hence, when

implemented this setup would obviously have a different model, which would behave

differently from the process. Hence, the Process model is chosen to be different from

the Optimizer model. The Process model uses a simple tray model, and assumes

equimolal overflow. The Optimizer uses a reduced order model, where all the enriching
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section trays are lumped into two collocation points in the enriching section (not to be

confused with the orthogonal collocation technique used in the Optimizer), and all the

stripping section trays are lumped into two points in the stripping section. The reboiler

and the reflux drum represent the other two collocation points, with the result that the

column is approximated by equations at 7 "lumping" or collocation points.

The development of both the models will be discussed. The general aspects of

distillation modeling will be discussed first.

4.1 Distillation Column Modeling

Distillation is one of the most important separation processes in industry.

Modeling of distillation columns has been dealt with in several texts (Luyben 1990,

Luyben et al. 1992). These involve writing mass and energy balances over various

modules of the distillation column and applying simplifying assumptions while

appropriate.

For the purpose of modeling, a simple binary distillation column with feed flow

rate F, feed composition ZFas shown in Fig. 4-1 is chosen. The overhead vapors are

condensed in the condenser and these flow into a reflux drum, whose holdup is Md' The

liquid in the drum is at its bubble point. Reflux is pumped back at rate R to the top tray.

Overhead product is removed at a rate D. liqUid bottoms product is removed at a rate

B. The column consists of NT trays. Two models will be developed - one a rigorous

model and the other a simplification based on certain assumptions.
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Fig. 4-1 Binary Distillation Column
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4.1.1 Tray Model

The equations for material and energy balances can be derived by defining the

streams that enter and leave the tray. These are shown in Fig 4-2 below:

L,+1

Vn~ F

i
Vn-1

Fig. 4-2 Tray Model

Applying material and energy balance for the trays gives rise to the following

equations, where:

F =feed flow rate

In= Liquid flow rates on the nIh tray. n =1,2 ... ,NT

Vn =Vapor flow rates on the nih tray

Mn = Inventory on the nth tray

Xi = liquid phase composition of the ith component; i = 1, 2... ,Nc

Nc =number of components

Yi =Vapor phase composition of the jth component;

hn' = Liquid phase enthalpy on the nth tray

hnv =Vapor phase enthalpy on the nIh tray
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Material Balance for nth tray

dMn--=F + Ln +, + Vn- , - Ln - Vn
dt

Component Balance for ith component from nth tray

(4-1 )

d(XiMn)----'---..:... =Zi. FF + Xi,n +,L.,n +,+ y,.n - ,Vn - 1- Xi nL,n - Yi.nVn (4-2)
dt

Energy Balance for ith tray

d(h~Mn) I I I v d(h~)
----,--....:..:.....---:...=hFF +hn+,Li.n + 1+hn., Vn -1 -hnL.n -hn Vn. where--·", 0

dt dt

(4-3)

The key assumptions involved in this model are listed below:

• Negligible vapor hold up

• Negligible specific enthalpy change

• Constant pressure or tray pressure drop

This model is reported to be successful in 95% of industrial distillation problems

(Grassi II 1992). However, further assumptions are made to simplify the problem.

Usually, the major simplification is of equimolal overflow. If the molal heats of

vaporization of the two components are about the same, whenever one mole of vapor

condenses, it vaporizes a mole of liquid. Assuming heat losses up the tray are negligible

and the feed is a saturated iquid, the vapor rates on all trays may be assumed to be the

same, so that

v = V, = V2 = V3 = = VNT

The mathematical effect of this is that the energy balance on each tray can be

neglected.
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4.1.2 Condenser and Reflux Drum

Total Continuity

dMo
--=VNT-R-D

dt

where R = reflux flow rate

D = Distillate flow rate

Component Continuity (More volatile component)

d(MDXD)
---'---- = VNT.yNT - (R + D)Xo

dt

where XD is the distillate composition

Energy Balance

(4-4)

(4-5)

The energy dynamics of the condenser are small relative to the column

composition dynamics (Grassi II 1992). The condenser duty is equal to the latent heat

required to condense the overhead vapor to its bubble point liquid plus the sensible heat

for any subcooling of the liquid.

This is given by:

Qc = VNT.hNT - (R + D)hD

Where Qc is the cooling load of the condenser

(4-6)

Usually, a simplification that is made is that the inventory in the accumulator is constant

and that there is perfect level control. Hence the first equation vanishes and in the

second equation, the term Mo can be removed from the derivative.

4.1.3 Column Base and Reboiler

Total Continuity

dMs
--=L,- Vo-B

dt
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where Me is the material in the reboiler

and B is the bottoms flow rate

Component Continuity

d(xs .iMs )
-----'---"'--------'=:....:... = x,. iL1 - yo. iVa - XB. is

dt

where Xb is the bottom composition

Energy Balance

(4-8)

(4-9)

The usual simplification is of constant ba~e inventory which eliminates the first equation.

Also, neglecting the changes in the specific enthalpy gives a simple relation between the

reboiler heat duty OR and the vapor flow rate V.

4.1.4 Simple Tray Hydraulic Model

A simple linear relationship between the liquid leaving the tray, Ln and the liquid

holdup on a tray, Mn is used as follows:

Ln is the liquid leaving the nth tray;

Ln is the initial liquid flow rate (at the start of the simulation);

Mn is the holdup of the nth tray;

(4-10)

Mn is the initial holdup on the nth tray;

~ is the hydraulic tray time constant, typically between 3 to 6 s per tray

4.1.5 Vapor-Liquid Equilibrium Model

The following equation is used to represent equilibrium:

-

Yn =a. Xn / (1+ (1-a)xn)
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where a. is the relative volatility, which is assumed constant throughout the

column.

4.2 Developing the Process Model

Although there are distillation column simulations available in simulation

packages such as ASPEN and HYSYS, a rigorous simulation of the distillation column

was developed from first principles. The reasons for doing so are that a rigorous

dynamic model would be readily available for later use with the Optimizer. Also that the

nonlinear Optimizer used in the study (GAMS - General Algebraic Modeling System) is

Visual Basic compatible.

To summarize, the assumptions made in the model to be used for the

distillation column Process are as follows (Luyben 1992) -

• There is one feed plate onto which a saturated liquid feed is introduced

• Pressure is constant and is known on each tray. It varies linearly up the column from

Ps at the bottom to PD at the top

• Equimolal overflow is assumed, so that the vapor flows on all trays is equal

• Coolant and steam dynamics are negligible in the condenser and the reboiler

• Dynamics of vapor space in the reflux drum and throughout the column are negligible

• liqUid hydraulics are calculated by the simple hydraulic relation (4-10)

• Volumetric liquid holdups in the reflux drum and the column base are held perfectly

constant

• There is negligible specific enthalpy change, as a result of which the energy balance

is purely algebraic
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The simulation is fairly straightforward if the model equations established above

are available. It mainly involves solving material and energy balances for each tray, and

looping back at the end of a time step after integrating the process equations. The

integration procedure used is the Euler's method, chosen for its simplicity and

reasonable accuracy.

The main issue is of developing a consistent initial condition from which the

simulator can move forward. This is simple if consistent input data from an experiment

are available. However, this not being the case, the initial convergence procedure

followed is given below:

• An input file is prepared with feed stream information, reflux, heat input (which gives

the vapor boilup) and product compositions

• Tray liquid compositions are initialized using a linear profile from top to bottom

• A constant vapor rate based on the heat input is computed

• The liquid rate is initialized to be equal to the reflux in the trays above the feed tray

and the reflux rate plus the feed rate for the feed tray and the trays below it

• The dynamic simulation is run from these conditions until it converges to a bona fide

steady state

Once an initial convergence is obtained, then the following steps are used to move

forward in time -

1. An input file is created with relevant physical property data

2. The initial convergence simulation results are used as the bona fide input conditions

to the simulator
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3. The equilibrium vapor composition is calculated from liquid composition using the

equilibrium equation

4. The liquid rate leaving the stage is obtained using Eq. 4 -10

5. The total and component mass balance derivatives are computed using the model

equations

6. All the ODEs using are integrated using Euler's method and the procedure loops to

step 3.

Since the simulation is in Visual Basic, which is a partial object-oriented

programming language, this can be easily converted to an object-oriented simulation by

declaring trays and fluids as classes. The main advantage of object-oriented simulations

is that they are extremely flexible and generic and they can be easily modified for any

system. Also, they support reusability and require less computer requirements.

4.3 Developing the Collocation Model for the Optimizer

The procedure followed is the one described by Papadourakis and Rijnsdorp

(1992), in which the authors develop a reduced order model of a distillation column, by

approximating the dynamics of a number of stages by the dynamics of a fewer number

of pseudostages. In the collocation model, certain grid points, which are the zeroes of

suitable polynomials are chosen as locations where material and energy balances are

written. The advantages of these models are that they retain the nonlinear nature of the

original model; allow for free choice of the thermodynamic subroutines; can be

implemented without the full order solution; and reduce the computational time

significantly. Their main disadvantage is that the nonretention of the original model's

gain in an exact manner. However, the gain predicted by the collocation model is

usually in good agreement with that of the full model.
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The development of the collocation model is detailed in Appendix A. In the

Appendix, the method of choosing collocation points and the development of model

equations is elaborated. The reader is directed to Appendix A for details regarding

model development.

Using the method detailed in Appendix A, the model for the distillation column

used in the study was determined as follows:

Reboiler

(4-12a)

Stripping Section Trays

ML dX2 =(R + F)[(S/S)x2 + (S/S)x3 + (-1/4)x 4 ]- (R + F).x2
dt (4-12b)

+ V.[(5/12)Y, + (5/8)Y2 + (-1/24)y3]- vy2

ML dX3 =(R + F)[(-1/24)x 2 + (S/S)x3 + (S/12)xJ- (R + F).x3
dt (4-12c)

+ V.[(-1/4)Y, + (S/8)Y2 + (S/S)Y3]- VY3

Feed Tray

ML dX 4 = (R)[(1/2)X 4 + (1/2)xs ]- (R + F).x 4 + F,ZF
dt

+ V.[(1/2)Y3 +(1/2)yJ- VY4
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Enriching Section Trays

ML dxs =(R)[(S/8)xs +(5/8)5<6 +(-1/4}x7 ]-(R).xs
dt (4-12e)

+ V.[(5/12}Y 4 + (5/8)ys + (-1/24)y6]- vy5

ML dX6 =(R)[(-1/24)xs + (S/8)xs + (S/12}x7 ]-(R).xsdt

+ V.[(-1/4)Y4 + (5/8)ys +(S/8)ys]- VYs

Reflux Drum

where

= 1,2..7 represent the collocation points

Xi (t) = Liquid phase compositions at collocation point i;

Yi (t) = Vapor phase compositions at collocation point i

ML = Tray inventories assumed constant for all trays

MLB = Inventory in bottoms sump

MLD = Reflux drum inventory

R = Reflux flow rate

D = Distillate flow rate

B = Bottoms flow rate

F = Feed flow rate

Z, = Feed composition

(4-12f)

(4-12g)

,"

I.

:~lt

I ....
'~

'-...

These are the model equations that were used in the optimizer after discretization.
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4.4 Optimization Problem Formulation

The main aim of the study is to develop an optimization algorithm that will

continuously receive inputs from the process, and optimize these inputs and steer the

process to an economic optimum. The objective of this optimizer is thus to maximize the

profit made by the distillation column, which is simply the difference between the value

that the products give and the cost of the raw materials necessary for the separation.

The optimization is subject to several constraints, which may be physical limitations of

the column; design limitations; safety considerations; product quality constraints etc.

The specification of the objective function and the constraints constitutes the

optimization problem. This is developed as follows-

Costs and Vatues

These costs and values for the column are summarized below:

Costs

For Feed

1;-'4liII

= (Feed flow rate, Ib/hr) (Feed cost, $/Ib)

For Reboiler steam

= FCF, $/hr

= (Steam flow rate, Ib/hr) (Steam cost, $/Ib) =

Values

For Top product

SCs, $/hr

=(Top product price, Iblhr) (Top product cost, $/Ib) (Top Product Cost function)

=DVoZ (xo), $/hr
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For Bottoms product

=(Bottom product price, Ib/hr) (Bottom product cost, $/Ib) (Bottom Product Cost function)

= BVeZ (Xa), $/hr

where, Z (XI) is a cost function for the Ith product, and XI is the minimum purity

for which the Ith product has any value

Thus, the objective function becomes:

Maximize J = L[{DVoZ (xo) + BVBZ (XB» - (FCF+ SCs)] ~t

(4-13a)

The following simplifications can be made

• The cost function Z (Xi, XI), is a function which describes the cost decrease as a

function of product purity. For purposes of this study, this will be approximated as a

linear function of purity. Thus, Z(Xo) =Xo and Z(XB) =Xa

• The feed to the column is usually an unmeasured disturbance, and it is assumed to

flow at no cost to the distillation column. Hence this can be removed from the

optimization as it will not affect the optimization

• The steam flow rate is assumed to be related to the vapor boilup using:

SAs =VAv

where the Arepresent the latent heat of vaporization of the respective streams.

Hence, in the objective function, SCs is replaced by VCy where

Cy = (As!A.v)Cs

• Although the reflux is not a product per se, increasing the reflux does cost us in the

sense that the product withdrawn is reduced, and also pumping and other costs

increase. This is reflected by including the reflux cost CR in the objective function.
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• Also, in conventional Optimizers, there is a rate of change constraint, which

penalizes overly aggressive control action. In this study, these rate constraints for

manipulated variable changes are not accounted for.

Based on the above simplifications, the objective function becomes:

Maximize J =1:[(DVoxo + BVBXB, - VCv - RC R}] ~t (4-13b)

This is the objective function commonly used in online optimization studies such as

those by Moore e1. al (1991) and Pollard et al. (1970).

Depending on the rigorousness of the economics required, other costs such as

pumping, cooling and even taxes payable can be included in the analysis. However, for

the sake of simplicity, only the above costs are considered.

Constraints

The constraints for the distillation column are given below:

, .....
:f......

• Design Pressure

• Flooding limit for the column

• Weeping limit for the column

• Bottoms flow

• Reflux drum level

• Bottoms level

• Product quality

• Equilibrium

• Model constraints
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Of these, the pressure constraint cannot be modeled easily. The constant

pressure assumption makes this constraint irrelevant. The reflux drum and the column

base are assumed to be perfectly level controlled. Hence, these constraints are also

invalid. Also, using the collocation model,

Thus the optimization problem becomes

Maximize J = L(DVoxD + BVaxa, - VCr RCR)~t

Subject to

O:s; B:s; F

Yi = a X; / (1+ (1-a)x,)

Model constraints Eq. 4-12a-e

(4-14)

......)
...... -- ..

This simplified objective function will be used for the distillation column to test

the proposed control strategy.

This chapter discussed the optimization and the simulation of the distillation

column. The "control aspects" will be discussed in the next chapter, where the proposed

strategy will be compared with conventional PI control and online optimization.
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CHAPTER 5

ALGORITHM DEVELOPMENT

Thus far, the basics for the development for a dynamic optimization algorithm,

whose objective is to maximize profit over a time horizon, were discussed. With these

basics, it is now possible to develop a strategy for implementation of this concept. First,

the steps for the development of the algorithm for Control to Economic Optimum are

described.

The performance of this strategy will be compared with conventional control

schemes, a discussion on the development of the algorithms for conventional PI control

and online optimization follows. A point worth noting in these comparison is that since

this is a "first step" study which involves preliminary demonstration of a new concept.

idealized models and simplifications have been made. Thus. a very simple PI control

and supervisory steady state optimization scheme have been chosen for comparison. It

must be emphasized that the performance differences between the new and

conventional schemes would probably not be as great if more advanced conventional

control strategies such as DMC are chosen. These studies must be carried out before

this concept is ready for implementation.

5.1 Control to Economic Optimum

In Chapter 1, it was mentioned that any control strategy should specify

• A set of control objectives

• A set of measured variables

• A set of manipulated variables
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• A structure interconnecting measured and manipulated variables

The concept of control to economic optimum will be analyzed with respect to the above

control aspects:

• Control Objectives -

The objective for this approach, as discussed earlier is to maximize profit.

However, since the process should also be kept under control, it is necessary that while

maximizing profit, the process not violate any design, safety and environmental

constraints. For the distillation column, the profit to be maximized is given by the

objective function in Eq. 4-14.

• Measured Variables -

It is necessary to measure certain variables, so that, based on the values

measured, the control system can take appropriate action to steer the process in such a

way that the control objective mentioned above is maximized. For the distillation

process, the performance of the process can be gauged by measuring the compositions

and temperatures at each tray/section in the column, and the flow rates of all the

streams entering and leaving the process. If the compositions and temperatures are

within bounds and at the values dictated based on the control objective, the process is

under control; on the other hand, the controller should take appropriate action. In the

simplified model, which assumes equimolal overflow, the energy balance is not

considered; hence, only the compositions and flow rates will be measured.

• Manipulated Variables -

If the measured variables are not at their respective optimal values, then the

controller should manipulate certain variables to move the process in a direction that

58

..:.



would maximize the control objective. For the distillation column, the variables that can

affect the control objective are the top and bottom compositions; the distillate and

bottoms flow rate; the feed flow rate; and the reflux and vapor boifup. These are all

decision variables for the controller in its quest to maximize the control objective. Since

the distillation column has 2 degrees of freedom (Luyben 1992), in reality, only 2 of the

above variables are "adjustable" by the optimizer, and the other variables are fixed if

particular values for these are chosen by the optimizer. These manipulated variables for

the distillation column are chosen to be the vapor boilup and the reflux flow rate (see

Henry and Mujtaba 1998). However it must be emphasized that the controller chooses

values for these variables only after due consideration to the constraints and economic

values for the other variables.

• Interconnecting the Variables-

As mentioned before, the model fixes the relationship between the variables of

the process. For the optimizer, the model chosen was the collocation model developed

in Chapter 4. The reasons why this model was chosen were explained in Chapter 4.

The model equations are added as equality constraints to the dynamic optimization

problem.

Using the above control structure and the concepts of orthogonal collocation on

finite elements discussed in Chapter 4, it is possible to develop a dynamic optimization

algorithm for the distillation column.

5.1.1 The Optimization Problem - Applying Orthogonal Collocation

In Chapter 3, the method of orthogonal collocation on finite elements was

discussed. The method involves discretizing both independent and dependent variable
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profiles using polynomial approximations, and expressing the objective function and the

inequality constraints in terms of these discretjzed variables. The model drtferential

equations are expressed as residuals using the discretized variables. Also, time is

discretized by partitioning finite elements and further into collocation elements within the

finite elements. A simple example for applying orthogonal collocation to a system of

differential equations is given in Appendix C. The steps for converting the distillation

column optimization problem into a form suitable for applying orthogonal collocation

The optimization problem for the distillation column was developed in Chapter 4 and is

follow very similar steps.

shown below:

Maximize J = L(DVDXD + BVBXe, - VCV-RCR)~t

Subject to

R ~ Rmin

a ~ B~ F

L U
Xo S xos Xo

X L < ><s< x uB - - B

Yi =a Xi / (1+ (1-a)x;)

Model constraints Eq. 4-12a-e

(4-14)

The procedure to convert the above optimization problem for the distillation column

follows:
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Each of the state and control variables in the above equations must be discretized. The

discretized equivalent of each control and state variable is given in Table 5-1:

Table 5-1: Discretization of Distillation Column Variables

Variable

Bottoms flow rate

Distillate flow rate

Vapor boilup flow rate

Reflux flow rate

Distillate composition

Bottoms composition

Symbol

B

D

v

R

Discretized

Equivalent

NCOl

LBfij] 'l1[ij] (t)
J=1

NCOl t:)LD[ij] 'l1[ij] (t) ~~j=1 JQ
:)-

NCOl
:l

LV[ii] \II [ij] (t) :~
I)

j=l
~~

NCOl
I)
'toLR(ij] 'l1[ij] (t) I)

j=1
.....
:3
.~--'NCOl 1)L X7[ij]<t>(jj] (t) .~

.Ij
j=O ~~t,

NCOl
....
:....I X1(1j]<t>(ijJ(t) "'1

j=O ~~
~~

Using the discretized equivalents of the variables, and the property that,

NCOl ( )
<t>[ij] (1') = IT l' -1'k ~ ¢l(ij] ('t j) =1 , where j is an interior collocation point

k=O ('t j - 't k )

k"J

the objective function can be rewritten in discretized form as:
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Maximize

NFE

L
;=1

.{1-'tNCOL-1 )~a,

< - - - - •. - - - - - - - - - objective function value at end of each finite element - - - - - - - - >

< - - -objective function value at interior collocation point - - - - - -- >

where the first i =1 to NFE sum is nothing but the objective function value at the

end condition of each finite element; the second i =1 to NFE sum represents the

objective value at the interior collocation points.

The constraints are also discretized using the above table and the final

objective function and constraints are written in discretized form suitable for applying

orthogonal collocation as shown in Appendix D. Appendix D lists the final objective

function and constraints as used in the GAMS optimizer.

The equalities and inequalities given in Appendix D form the constraints to the

dynamic optimizer - the optimal solution is one which maximizes the objective function

in the above equation without violating constraints.

Some comments on the optimization are in order - these are covered in greater

detail in Chapter 7:
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The solution to the optimization problem above are the control profiles R and V

which maximize the objective function. It is to be noted that, in the above optimization

problem, the <Xi are finite element lengths and these are specified by the user. This leads

to several issues: In problems that are nonlinear in state variables, the optimal control

profiles are difficult to obtain as these optimal profiles have bang-bang (up and down)

and/or singular arc portions (Cuthrell and Biegler 1988). Thus, control profiles with

discontinuities are very difficult to approximate. This is because the optimal profile is

constrained to have the point of discontinuity at the end of each finite element, whose

location is specified by the user.

Two different solutions have been proposed for this problem. Cuthrell and

Biegler (1988) propose that the correct points of discontinuity can be found if the location

of the finite element points are made decision variables in the optimization algorithm. In

other words, we let the optimizer decide what the optimal length for each finite element

is. Thus in the objective function, the ~a, 's are left as decision variables, further

increasing the complexity and the nonlinearity of the problem.

Tanartkit and Biegler (1997 alb) propose a second solution where a single

optimization problem suggested by Cuthrell and Biegler is replaced by two nested

problems. In this nested approach, the element placement problem of Cuthrell and

Biegler is decoupled from the optimization of other decision variables. Briefly, the inner

problem involves finding the optimal values of the parameters, state variables and

control variables for a given set of finite elements; then the outer problem is used to

update the element spacing according to the optimality and the stability of the overall

problem (Tanartkit and Biegler 1997b). These issues will be discussed later.
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The point is that both the above solutions were not included in the current

study. There are several reasons for this, the principal reason being that the

optimization in the demonstration version of GAMS used in the study could only support

a certain number of nonlinear elements and decision variables. The reader is directed to

Appendix-B for further discussion on the constraints due to the demonstration version.

The implementation of the control to economic optimum strategy follows.

5.1.2 Implementation

As mentioned briefly in Chapter 3, the operational objective of this unified

optimizer-controller is to maximize the profit made by the process being controlled.

Since the optimizer runs frequently (every three minutes in the study - see Chapter 6,

Section 6.2), the optimization algorithm receives the most current operating points as

input and provides the optimal values to the process. Hence. the optima are a better

reflection of the current state of the plant. Further, a dynamic optimization algorithm also

provides the most optimum path to the optimal conditions. This is the first step towards

developing a maneuverable process that steers itself to the optimum conditions along an

optimal control path.

Before the actual mechanism is discussed, the entities involved in the study are

listed:

• The Process - As mentioned in the previous chapter. the process being chosen for

the current study is a methanol-water distillation column simulation. The main

reason for studying this process is its industrial relevance. Also, its multivariable and

nonlinear nature provide just enough complexity. The Process model developed in
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Section 3-2 is used. The current values of the independent and dependent variables

of the process are the inputs to the subsequent optimization block.

• The OptimizaUon Algorithm - This is a "black box" into which inputs from the process

flow. The black box contains the optimization program - the NLP developed in the

previous section. Usually, the optimization is carried out by dividing the physical

space into different co-ordinates (one for each control and state variable) and moving

in a stepwise manner along that direction which improves the performance criterion.

The Optimizer achieves this by guessing a direction, calculating the performance

criterion and if it is found to improve to advance in that direction, and if it does not to

re-guess a new direction. Having guessed the optimal direction to take for each

control variable, it thus provides a trajectory or path for the control variables to reach

the final optimal point. These trajectories form the input to the process. In this study,

the optimization algorithm chosen is a nonlinear local optimization engine called

GAMS/CONOPT. The algorithms used in GAMS/CONOPT, its unique features and

comparisons with other optimization packages in GAMS are given in Appendix-B.

• Simulator - The simulator is a test device (included solely for the purpose of

analyzing the optima provided by the optimizer) which simulates the trajectories

proVided by the Optimizer over the entire prediction horizon. To understand the

need for this simulator the actual mechanism of implementation described below

must be understood.

Mechanism-

The following steps take place using the above entities -
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1. Computation of Optimal Control Sequence - The Optimizer decides a sequence of

control steps (as mentioned above, the trajectory) over a prediction horizon. This

prediction horizon is chosen to be of the order of 2/3 of the process settling time.

2. Implementation on Process - The optimal control sequence determined by the

Optimizer is an input to the Process. However, the entire optimal sequence is not

implemented in the Process. Only the first step of the control sequence is

implemented. The reasons for this is two-fold:

• The Process may be subject to disturbances, which may cause it to behave in a

manner different from that expected by the Optimizer when it computed the

optimal sequence. Hence, the optimal values in the face of these disturbances

are likely to be different

• The Optimizer uses a model to determine optimal trajectories. However, no

model is an adequate representation of reality. Thus, the DAEs, which are used

in the model, cannot be considered as a perfect representative of the system.

Therefore, operations using these optimal control profiles are no longer optimal

(Mujtaba and Hussain 1998). So, the optimal paths determined by the Optimizer

need to be updated as in model predictive control to reflect this Process-Model

mismatch. Since we implement only the first step of the trajectory, it is

impossible to know what would happen if the entire optimal trajectory were

implemented assuming there are no disturbances. This is the reason why, for

the sale purpose of "seeing" what the Optimizer "says: a simulator is used to

mimic process behavior for analysis.

3. Model Mismatch Update - Since it is impossible to determine whether a discrepancy

between the process behavior and the behavior expected by the Optimizer based on
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its model, is due to model mismatch or due to disturbances, it is assumed that any

discrepancy is entirely due to model mismatch. Hence, to reflect this, we need to

choose initial conditions for the Optimizer consistent with its model. This is done as

follows:

We define a Process-Model Mismatch (PMM) term as follows:

PMM = xprocess - X predicted ' where

xprocess =Actual measured value of state variable after implementing

the first control step in the optimal control trajectory (5-2)

xpredicted =value of state variable predicted by the Optimizer

based on its model

The first time the Optimizer is run the Process-Model Mismatch (PMM) is assumed

to be zero. However in subsequent runs, the PMM will be determined by the above

equation. The way the PMM is incorporated in the optimization is by correcting the

values of the state vector predicted by the Optimizer by summing the PMM term

before evaluating the objective function as follows:

Xcorrecled = xpredicled + PMM

and using these Xeorrected values in the objective function.

(5-3)

Also, to provide initial conditions consistent with the Optimizer model, the initial

conditions chosen are the Xpredicled values at the end of the control step implemented in

the process.

Thus, this strategy is used to provide economic, optimal, nonlinear control to the

process. This should steer the process in the direction of optimal economic operation.
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The actual "numbers" used for the prediction horizon, the finite element lengths etc will

be discussed in the next chapter.

5.2 PI Control

In the PI control strategy, a very simple scheme is chosen to provide a basis for

comparison with the control to economic optimum strategy. Setpoints are chosen for X<j

(X<jset) and Xb (Xbset) and these are kept fixed during the time for which the study is carried

out, irrespective of disturbances. In other words, there is no optimization carried out,

are continuously manipulated in accordance with the PI control laws to keep the

be the manipulated variables to control X<j and Xb respectively. This means that R and V

and the setpoints are kept fixed. The reflux rate R, and the vapor boilup V are chosen to

J
;:.

)

.~
' ..

.1'

(5-4)[
Jebdt lj

Vnew =VOid + K eB eb +-­
TIB

compositions X<j and Xb at their respective setpoints as follows:

where,

(5-5)

the subscripts new and old represents the new value of the respective

manipulated variable.

Kee, 'tIB and KeD, 'tID represent the PI tuning parameters of the bottom and top

composition controllers respectively

eb and ed are the bottom and top composition errors defined by:

(5-6)
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The tuning parameters chosen' for the purposes of the study are based on

open-loop tests, using Ziegler-Nichol's rules. The values are given in the next chapter.

This control algorithm should regulate the process in such a way that the deviation from

setpoint is dealt with by adjusting the manipulated variables in accordance with the PI

control laws given above. Comparisons were made between PI control and control to

economic optimum for feed composition and flow disturbances. The results are

discussed in the next chapter.

. ~

control to economic strategies were outlined in Chapter 3. In the steady state

5.3 Steady State Online Optimization

The main differences between the steady state optimization strategy and the

optimization, a steady state model is used and set point updates are made on a fairly

infrequent basis. The setpoint updates are assumed to change the XtJsel and the ~el in

the PI control laws discussed in the PI control scheme above, based on a steady state

economic optimization. Thus, a simple steady state supervisory optimization and an

underlying PI regulatory control scheme are chosen to demonstrate the online

optimization strategy and provide a comparison with the control to economic optimum

scheme.

5.3.1 Developing the Steady State Model

The dynamic models developed in the previous chapter can be easily changed

to steady state models by setting the derivatives to zero. These steady state equations

form the equality constraints for the optimization problem discussed in the next section.

In conventional online optimization studies on distillation columns, such as those by

Moore and Corripio (1991), the steady state optimum is determined analytically by

setting the derivative of the objective function with respect to a cost variable to zero, and
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solving the resulting equations. These studies also assume a simple empirical yield

model. The analytical equations developed are extremely complex and this is just for

single-ended composition control, which guarantees purity on only one end of the

column.

In this study, to avoid the complexity of the analytical solution and the

dubitable empirical yield model, the optimum is determined as a solution to a steady

state optimization problem where the model equations form equality constraints and

design limits, product quality constraints etc constitute the inequality constraints. The

steady state model uses the same assumptions as the Process model with the additional

assumption of steady state. which makes all the derivatives vanish. These steady state

equations as mentioned above form the equality constraints to the optimization problem.

The equations without their derivation are given below:
-'
)
)

•'l.:;:
"

V=D+R

VYNI =(D + R)xo

VX d + Rxd/(o - (0 -1 )x d)
YN,-1 = V

VYi -RX;+1 +Rx j • '-N -1 t N 1
Y = ,1- t 0 f +;., V

VYi - Rx;... , + (R + F)x j - FZ f

V

(Overall component material balance)

(Material balance in accumulator)

(Compnent balance in accumulator)

(Component balance in top tray)

(Component balance on enriching trays)

(Component balance on feed tray)
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= VYi-(R+F)Xi+1 +(R+F)xi .. N
Yi-1 V ' 1= , -1 to 1

B=R+F - V

aX j

Y; =-(1-+-(-a--'---1)-X-
j

)

(Component balance on stripping trays)

(Material balance in reboiler)

(Component balance in reboiler)

(Equilibrium)

(5-7)

5.3.2 Development of the Optimization Problem

In accordance with the definition of steady state (static) optimization, time is

not considered in the optimization. The optimal values are based on values at the

current time. With this, the optimization program can be written as follows, based on Eq.

4-14

Maximize J = l:(DVoxo + BVBXB - VCv- RCR)

Subject to

....
.J

O~ B~ F

L U
Xo ~ xo~ Xo

YI =a X, 1(1+ (1-a)x;)

Model constraints Eq. 5-7
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This optimization problem receives its initial inputs from the process, and is made

to run at a frequency of once every 1 hour (see Section 6.2). Comparisons with control

to economic optimum have been made for feed flow and composition disturbances.

These will be discussed in the next chapter.

This chapter discussed the development of the control to economic optimum, PI

Control, and simple steady state optimization with PI control algorithms. The results of

implementing these algorithms on a distillation column simulation form the focus of the

next chapter.
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CHAPTER 6

RESULTS AND DISCUSSION

The algorithms for the three control schemes - Control to Economic Optimum

(CEO); Steady State Online Optimization (00) and PI Control (PI) - were discussed in

the previous chapter. The results from these control schemes for various test data will

be presented in this chapter. Comparisons of the results obtained from the three

schemes will be made and the reasons for differences in the results will be analyzed.

First however, the input data and preliminary calculations will be discussed.

6.1 Column Data

The process under consideration to demonstrate the performance of the control

to economic optimum approach, is as mentioned earlier, a methanol-water distillation

column. To run the simulation. as was mentioned in Chapter 4, the column design

parameters must be specified. Also, consistent initial conditions must be specified. The

design data is based on the binary distillation column simulation given in Luyben (1990).

A McCabe-Thiele diagram for a methanol-water system was constructed (as the

equimolal assumption is valid), for a top composition of 0.96, a bottom composition of

0.04 and a feed composition of 0.48. The hydraulic time constants, reboiler and reflux

drum holdup were obtained from the simulation in Luyben (1990).

The design data for the column are given in Table 6-1 below:
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Table 6-1: Design data for distillation column

Total number of trays, NT 15

Feed tray, Nr 8

Feed composition, Zj 0.48 (mol fraction methanol)

Distillate composition (design), X<j 0.96 (mol fraction methanol)

Bottoms composition (design), Xt> 0.04 (mol fraction methanol)

Relative volatility, 0: 2

Initial tray holdups, ML 10 mol

Reflux drum hold-up, MLD 100 mol

Bottom sump hold-up, MLB 100 mol

Tray hydraulic time constant, ~ 0.1 s

Tray efficiency 100 %

Initial compositions given as input to the process are based on the design

conditions from the McCabe-Thiele diagram. Initial convergence from these input

conditions guarantees that these conditions are made consistent. The above data is

provided to the simulation from input text files to the Visual Basic simulation. and at the

end of each time step, the outputs are written to an appropriate file as follows -

• Data to be used for subsequent simulation get written to simple text files, which are

used as input files in the future

• Data to be displayed - top and bottom compositions; reflux and vapor boilup flow

rates - are written to the Excel worksheet in the simulation interface, which allows

the user to follow the simulation "live"
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• Data to be used by the Optimizer (for the CEO and 00 schemes) are written to

.GM3 files, which are later compiled and executed by GAMS for optimization

6.2 Open Loop Response Studies .

Open loop studies were carried out on the column from the initial conditions for

step changes in specific process variables, while keeping others constant. The

simulation is allowed to run for 2 hours and a step change in a variable (reflux for Fig 6-

1a and vapor boilup for Fig 6-1 b) and the appropriate controlled variable is monitored.

From the open loop studies, settling time and steady state gain data can be

obtained, using which the tuning parameters for PI controllers as well as the prediction

horizon for predictive control can be decided. Fig 6-1 a shows the open loop response of

the top composition to a step increase in reflux flow rate while keeping other variables

constant. This is studied because the top composition (controlled variable) will be

controlled by manipulating the reflux. The specific response shown is for a 5% increase

in reflux flow rate. Similarly, Fig 6-1 b shows the open loop response in bottom

composition to a step decrease in vapor boilup, which is its manipulated variable.

It is worth comparing these open loop responses with the responses obtained

when a controller takes compensating action. This ability to compensate for

disturbances and still maintain process variables at desired points of operation is the

purpose of a controller. These responses will be discussed for the three control

schemes (PI. 00 and CEO) in the following sections.
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The process "reaction" curve in Fig 6-1 alb may be approximated as a first order system

with time delay and approximate tuning rules for PI controllers such as Ziegler-Nichols or

Cohen-Coon rules. The Ziegler-Nichols rules were chosen to estimate the tuning

parameters for top and bottom composition controllers. These are listed in Table 6-4 in

Section 6.3.

It is worth noting that the tuning rules are at best approximate. Hence, the

comparisons provided below should not be taken as the final word on the performance

of the control schemes. Better tuning rules are expected to give better control and

possibly, more profitable performance. Also, distillation columns are multivariable in

nature - as a result, a step change in a manipulated variable will produce changes in

variables not controlled by this manipulated variable as well. For example, a change in

the vapor boilup will cause a change in bottom composition, but it will also cause a less

significant, but nevertheless, perceptible change in top composition. This can only be

resolved using multivariable control techniques mentioned briefly in Chapter 2. Such

control schemes will definitely give better control and performance and must also be

studied in order to provide a fair comparison. This study, it must be stressed used

simple models and control strategies to provide a first step in the direction of economic

optimal control. These issues will be discussed further in Chapter 7.

From Fig 6-1 alb, it is seen that the settling time for the process is found to be of

the order of 1-1.2 hours. We define settling time as the time for the process variable to

reach within 5% of its ultimate value for a step change in the input. As mentioned in the

previous chapter, the prediction horizon for the predictive control in the CEO approach is

about 213 of the settling time. Thus, for the distillation column under study, the prediction
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horizon would be of the order of 2/3 hours. This translates to the sum of finite element

lengths to be 2/3 hours for the dynamic optimization.

6.3 Optimization Parameters

Since this is a study on a fairly idealized, theoretical simulation of a distillation

column, it is difficult to determine exact values of parameters, which playa very crucial

role in determining the optimal operating point: these include cost coefficients and

constraints on reflux and vapor boilup.

• Cost coefficients were chosen from crude market data available from

Chemical magazines and online resources, and by no means is the accuracy

of these values claimed. The numbers are chosen to reflect the relative order

of magnitude of the values and costs of products and raw materials

respectively. A preliminary sensitivity analysis to the values of these cost

coefficients is carried out in the study (see Tables 6-5 and 6-7). The values

listed below are those which were finally used to study effects of disturbances

• Constraints on reflux and vapor boilups were chosen to be equal to 20%

higher than steady state design values for the base case and varied to study

the effect of constraints. The optimal manipulated variable profiles are found

sensitive to these constraints. This can be explained by the fact that the

optimizer tends to push one of the degrees of freedom to its constraint and

manipulate the other to keep the process variables within their constraints.

Hence, if the constraints are changed, the optimal profile changes also. The

values given in Table 6-2 for the reflux and vapor boilups are 120% of the

steady state design values, which are respectively 125 mol/hr for reflux and

160 moVhr for vapor boilups..
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For the optimizations involved in the Control to Economic Optimum and Online

Optimization strategies, the following parameters shown in Table 6-3 below:

Table 6-2 - Optimization Parameters: Base Case

Parameter Value

Cost coefficients

Distillate product value, VD

Bottoms product value, VB

Vapor boilup cost, Cv

Reflux cost, CR

Bounds

Lower bound for bottom composition, XBL

6.12 $/mol

0.95 $/mol )...
0.002 $Imol ' ....

....

0.001 $/mol

)

0.04 mol fraction methanol

Upper bound for bottom composition, XsU

Lower bound for top composition, Xo
L

Upper bound for top composition XoU

Lower bound for reflux rate, RL

Upper bound for reflux rate, RU

Lower bound for vapor boilup, VL

Upper bound for vapor boilup, VU

6.3.1 Control to Economic Optimum Parameters

0.08 mol fraction methanol

0.95 mol fraction methanol

0.98 mol fraction methanol

100 mollhr

150 mol/hr

130 mol/hr

190 mol/hr

."

;:
I
)

.•1'.

As mentioned in previous chapters, CEO is a horizon predictive strategy

involving profit maximization over a prediction horizon. The profit objective requires

appropriate cost functions to be included in the objective function. The parameters for

the strategy are given in Table 6-3:
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Table 6-3: Control to Economic Optimum - Dynamic Optimization Parameters

Parameter

Prediction horizon

Number of finite elements, NFE

Number of collocation points, NeOl

Finite element lengths, al, a2

Reprediction frequency

Value

2/3 hr

2

2

1/3 hr; 1/3 hr

Once every 0.03 hr

)

The results using the above parameters are discussed in section 6-4. The finite

elements are chosen to be of equal size, an important issue to be discussed later.

6.3.2 PI Control Parameters

As mentioned earlier in the chapter, PI tuning parameters were decided by

simple Ziegler-Nichols rules based on a first order with time delay approximation of the

open loop response. These are given in Table 6-4.
.

,-

Table 6-4: PI tuning parameters using Ziegler-Nichols rules

Controller

Top composition

Bottom composition

Setpoints

(mol. fraction methanol)
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'tID = 2.7 /hr

Kcs = 1127 mol/hr

LIB=1.7/hr
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For XB =0.04



6.3.3 Online Optimization

The important parameter to be decided in online optimization is the time when

the steady state optimizer is made to run and dictate setpoints. For purposes of this

study, the time interval between the steady state optimizations will be chosen to be of

the order of the settling time of the process or once every hour. This is based on

industrial input (see Appendix E). The starting setpoints are chosen to be the same as

in PI control.

With these parameters, the results for the three control schemes were obtained

as discussed in the next section

)-

)

6.4 Results and Comparison Between the Control Schemes

The results for performance under a case when there are no disturbances for the

..
I

CEO scheme are discussed below. In the presence of feed flow and composition

disturbances, comparisons with the other two approaches are given. For performance

under no disturbances, the column is allowed to start from sub-optimal conditions and

after 2-3 minutes the controllers are allowed to take over. Sensitivity to parameters and

constraints, and finite element size is analyzed under no disturbances for the CEO

approach and these form the 5 preliminary case studies.

For performance under disturbances, the parameters in Table 6-3 are used.

Feed flow disturbances studied include 5% step increase and decrease in flow.

Composition disturbances include 10% increase and decrease in feed composition.
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6.4.1 Preliminary Case Studies - Control to Economic Optimum

These case studies listed in Table 6-5 were carried out without introducing

disturbances other than a starting vapor boilup of 177 kmol/hr and a reflux flow rate of

114 kmollhr, the initial conditions under which the simulation is started.

Table 6-5: Case Studies Conducted

Case

o. Base Case

- Table 6-2 values

Description

Rmax = 150, Vmax =190, Rmin = 100, Vmin = 130;

VD = 6.12 $/mol, VB =0.95 $/mol, Cv =0.002

$/mol, u, =u, =1/3

1. Effect of finite element

length
)

a) u,: U2 = 1:3 u, =2112;u2 =6/12;

b) u,: U2 = 3:5 u, = 3/12; U2 = 5/12
.~..

c) u,: U2 =5:3 Ul = 5/12; U2 = 3/12 I

2. Effect of constraint limits

a) 10% increase in reflux Rmax =162.5; other parameters kept constant

flow constraint

b) 10% decrease in reflux Rmax = 137.5; other parameters kept constant

flow constraint

c) 10% increase in vapor Vmax = 208; other parameters kept constant

boilup constraint

d) 10% decrease in vapor Vmax = 176; other parameters kept constant

boilup constraint

3. Effect of cost coefficients

a) 10% increase in methanol Vo = 6.732 $/mol; other parameters kept constant

cost coefficient

b) 10% decrease in methanol Vo = 5.508 $fmol; other parameters kept constant

cost coefficient
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c) 10% increase in water

cost coefficient

d) 10% decrease in water

cost coefficient

e) 10% decrease in water

cost coefficient

f) 10% decrease in water

cost coefficient

VB = 1.045 $/mol; other parameters kept constant

VB =0.855 $/mol; other parameters kept constant

Cv =0.0022$/mol; other parameters kept constant

Cv =0.0018$/mol; other parameters kept constant

....

These will be discussed case by case:

6.4.1. 1 Case 0: Base Case

The optimal control profile is shown in Fig 6-2a (Case 0). As mentioned in Table

6-5. the base case uses reflux and vapor boilup constraints of 120% of the steady state

design values. It is seen that the optimizer drives the vapor boilup to its constraint of

190 moVhr, while the reflux reaches a final average value of 142 mol/hr. The

comparison with other cases follows, which throws greater light on the significance of

these numbers.

6.4. 1.2 Case 1: Effect of Finite Element Length

In the CEO strategy, it was mentioned that the finite element lengths were

chosen to be of equal lengths. This is an important assumption in that it influences the

optimum profile obtained. As was briefly mentioned in Chapter 4. the step size plays a

crucial role in optimal control profiles that have discontinuities in the boundaries between

the finite elements. Before the problem is analyzed, the optimal control profiles for the

control to economic optimum scheme for various finite element sizes (for R and V) are

as shown in Fig 6-2a1b (Case 1a-1c) below.
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As shown in Table 6-2, for the base case the finite elements are chosen to be of equal

lengths. For cases 1a to 1c, finite element lengths are varied as mentioned in Table 6-5.

It is seen that as step size changes the shape of the optimal control profile changes.

This may be because the optimal control profiles may have points of discontinuity

in them. This point of discontinuity is forced to be at the edge of a finite element

boundary, when a finite element length is fixed. In other words, fixing the finite element

length fixes the point(s) of discontinuity at the boundary between the finite elements.

Such a method does not guarantee that the "best" profile, with the point of discontinuity

at its optimal point is found. Thus, there is no way of knowing whether a given profile is

the optimal profile.

In this problem for the distillation column, for the given set of parameters, it is

seen that there is a smoothing of the control profile when the first finite element length

increases. This may suggest that when the first finite element is of the length of

prediction horizon, there would be no ridges. This means that the optimal profile has no

point of discontinuity. However, it must be emphasized that this may merely be a

coinddence. There is no guarantee that with different parameters, the control profile

may not have points of discontinuity. A general algorithm thus, should have the

capability to fix the optimal point of discontinuity.

An excellent description of the problem is provided in Cuthrell and Biegler (1989),

where a problem whose optimal control profile is a "bang-bang" profile is analyzed. The

orthogonal collocation strategy uses discretized values of variables. Since this relies on

numerical approximations in the discretization, the results obtained depends on the

following:
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• The number of finite elements, which must be sufficient to cover all points of

discontinuity

• The length of the finite elements, which must be so chosen so that the finite

element "knots" are at the points of discontinuity

• The degree of the polynomial approximation and interpolation

In the above paper, Cuthrell and Biegler develop a new set of elements known as

superelements, which are chosen so as to determine the optimal locations of the points

of discontinuity. However, this introduces unnecessary complexity. Cuthrell and Biegler

(198gb) again develop another simpler strategy for this problem. The solution is the

inclusion of the finite element lengths as decision variables in the optimization. If this is

done, then the location of the finite element knots will represent optimal points of

discontinuity. However, the nonlinearity of the process goes up by an order of

magnitude inducing additional complexity.

Tanartkit and Biegler (1996/1997) develop another solution to the problem. Here

they treat the knot placement problem as an outer problem. Thus in the outer problem

the finite element lengths are adjusted, while the inner problem is the actual optimization

problem. Tanartkit and Biegler also advocate the use of additional constraints called the

error approximation constraints to control the discretization error and ensure the

accuracy of the approximation, in the outer problem.

In our study, this aspect of the problem remains unsolved, the main reason being

that the study is constrained by the limitations in the demonstration version of GAMS,

which only allows a fixed number of nonlinear elements, variables etc (see Appendix B).

Hence, in this study equal finite element lengths are chosen to retain lhe generality of
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the method. Hence, it cannot be said that the points of discontinuity are at their optimal

positions.

From 6-2b it is seen that the top composition trajectories have higher slopes

when the first finite element length decreases. The bottom composition graphs have

similar shapes and hence are not shown. The final top composition for the all the cases

is found to be 0.971 for the top composition and 0.046 for the bottoms. The saw-toothed

may be attributed to the fact that the Optimizer takes more aggressive control actions

when the time period available for action is made smaller, as is the case with smaller

finite elements. This would explain the fact that the optimal profile has an up-and-down

appearance. As the first finite element length increases it is seen that there is a

smoother approach of the top composition to its steady state value. The profit for all

cases is found to be $ 668 at the end of 2 hours.

To conclude, finite element lengths should be left as decision variables in the

Optimizer so that optimal points of discontinuity in control profiles can be found.

6.4.1.3 Effect of Constraints

This is an important aspect of the study as the freedom available with the

manipulated variable constraints determines the final optimum. Hence, in theory,

increasing the bounds on the vapor boilup and reflux should provide higher purities of

the top and bottom products. The results for the effect of changing the constraints on

the reflux and vapor boilup from their base case values are shown in Fig 6-2b. More

results are given in Table 6-6.
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Table 6-6: Effect of Constraints

Variable Value

Steady state compositions Base case Xb = 0.047 Xd = 0.971

(mol fraction methanol) Case 2a Xb = 0.047 Xd = 0.971

Case 2b Xb = 0.047 Xd = 0.967

Case 2c Xb = 0.048 Xd = 0.976

Case 2d Xb = 0.049 Xd = 0.956

Steady state values for manipulated Base case V = 190 R = 150

variables (mol/hr) Case 2a V = 190 R = 163

Case 2b V = 190 R = 138

Case 2c V = 198 R = 150

Case 2d V = 176 R = 150

Cumulative Profit ($) Base case: 668

Case 2a 668

Case 2b 669

Case 2c 672

Case 2d 663

• When the reflux flow constraint is relaxed to its Case 2a value, it is seen that

the optimum value does not change. This can be explained by the fact that

since the vapor boilup has alr~ady reached its upper constraint; hence, the

optimizer cannot increase the reflux in the hope of increasing the profit as the

vapor boilup cannot be further increased

• Tightening the reflux constraint (Case 2b) brings the reflux to its upper

constraint, and this forces the vapor boilup down from its upper constraint.

Hence, the top product purity drops. However, since the reflux cost has been

reduced, it just compensates for the loss of purity and a very slight increase in

profit is obtained as shown
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• Relaxing the vapor boilup constraint (Case 2c) has two effects. While the

increase in vapor boilup increases bottom purity, relaxing this constraint

allows the optimizer to increase the reflux to a value higher than Case 2a,

resulting in higher purity. This increases the profit to a slightly higher value

• Tightening the vapor boilup constraint (Case 2d) forces the optimizer to drop

the reflux and decreases the top composition. This causes the profit to drop

slightly.

6.4. 1.4 Effect of Cost Coefficients

The values of the top product is an order of magnitude higher than the bottom

product, which is in turn higher than the costs of the reflux and vapor boilup. These cost

coefficients as was emphasized in the previous section, are by no means accurate, and

are chosen to be order-of-magnitude-representative values.

With this distribution of costs, it is expected that a change of 10% in the cost or

value of any product or raw material would not force the optimizer to abandon its policy

of maximizing top product quality and quantity. Tests with 10% changes in cost

coefficients for methanol, water and the vapor boilup validate this point. The optimal

control trajectory is exactly the same for all the six cases. The profit changes are only

due to the change in the cost coefficients, and the compositions and control profiles

remain unchanged (Table 6-7). In the study, one of the products has much higher value

than the other. The optimum operating point is at the upper constraint of the vapor

boilup, the nearest constraint. In fact, it is found that a change of 50% is needed in the

methanol cost for the optimizer to "consider" a different profile. An order of magnitude

change is needed in the bottoms value or the vapor boilup cost for the optimal profile to

change. In this case, the products have similar value, and the minimum cost (or
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maximum profit) will be achieved by minimizing utility consumption (Shinskey, 1992) and

the Optimizer is found to bring both the products to their lower specification limits and

minimize utility consumption.

Table 6-7 - Effect of Cost Coefficients

Case Compositions R,V Profiles Cumulative

(steady state) profit, $

0 Xd =0.971,

Base Case Xb =0.047 Fig 6-2a (Case 0) 668

3a

VD =$ 6.732/mol Same as above Same as above 725

3b

VD =$ 5.508/mol Same as above Same as above 611

3c

VB =$ 1.045/mol Same as above Same as above 678

3d

VB =$ 0.855/mol Same as above Same as above 658

3e

Cv =$ 0.0022 /mol Same as above Same as above 668

3f

Cv =$ 0.0018 /mol Same as above Same as above 668

I

Hence, it is concluded that the optimal control profile is not very sensitive to the

cost coefficients chosen for the given order of magnitude of the cost coefficients. These

cost coefficients are one of the "business" aspects of the optimization problem

formulation. The optimization problem can be formulated in such a way as to answer

some of these business concerns. Accordingly, the Optimizer dictates the direction the

process should take to optimize the particular performance criterion. These business

aspects of optimization are detailed in Appendix H.
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6.4.2 Base Case Comparison Between the Control Schemes

Using the base case values given in Table 6-2 for the CEO scheme, and the

parameters for the PI and the 00 schemes from Table 6-4 and Section 6.3.3, a base

case comparison between the methods was made. The results are given in Fig 6­

3a1b/c1d. It is thus seen that the three control schemes give about the same profit when

there are no disturbances (Table 6-8). The CEO strategy gives about 3% more profit

than the 00, which gives about 3% more profit than the PI scheme. The steady state

Optimizer and the CEO Optimizer use the same optimization coefficients. Hence, it is

expected that they must predict the same values of state and manipulated variables at

steady state. Results for the base case support the above fact. It is seen that the two

Optimizers reach the same steady state.

However, the most dramatic improvement of the CEO scheme is its early

determination of the optimal conditions and its crisp determination of the path to the

optimal conditions. This is to be expected as we treat time as an explicit entity in the

optimization. From the reflux and vapor boilup curves (see Fig 6-3 c/d) it is seen that the

control to economic optimum scheme reaches the optimum conditions in about 10

minutes. This brings the process to steady state faster. The PI control algorithm causes

the oscillatory response in the other two control schemes which makes the process go

up and down before it settles to a final steady state. The setpoints chosen for the PI

control scheme were chosen from the steady state design values for the top and bottom

composition, and hence they are quite close to the optimum when they are no

disturbances. The steady state Optirnize.r is run every 1 hour and it is seen therefore

that for the first one hour the profiles match that of the PI control strategy and after 1

hour, the Optimizer catches up with the CEO Optimizer.
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Fig 6-3c: Manipulated Variables (R)
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6.4.3 Comparison under Feed Flow Rate Disturbances

Studies were made for the three control schemes under step changes in feed

conditions. The step tests conducted include those for 5% feed flow rate increase and

decrease. The disturbances are introduced into the process after 0.1 hr and the

simulation is carried out for 2 hours. The results for the profits are summarized along

with those for feed composition changes in Table 6-8.

It is seen that the control to economic optimum strategy (Fig 6-4 alb) provides a

much crisper and quicker approach to the optimal conditions. The final optimal control

variable profile is found as quickly as 0.2 hr for feed flow disturbances. In contrast, it is

seen that PI controller takes about 1 hr to reach the setpoint, which is anyway sub­

optimal under the current process conditions. The steady state Optimizer is run only

once an hour and hence the process operates sub-optimally for this period. After it runs

on the process, the steady state Optimizer takes the process to its optimal value in the

next settling time.

As with the base case, the final steady state values for the CEO and the 00

Optimizers are the same. Since they use the same optimization parameters, they

predict the same steady states. The CEO Optimizer determines the steady state early

as it is run more often and it also looks at getting to the optimal conditions as fast as

possible. Thus the approach to the final optimum is smooth. In contrast, the supervisory

Optimizer is run once every hour and it has no "concern" for how to get to the optimum.

This implies that the profit during the suboptimal path taken by the steady state

Optimizer is not at its maximum, but only. becomes maximum after the steady state is

reached.
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Both the Optimizers reach to a steady state value of 190 mol/hr for the vapor boilup

value and 140 moVhr for the reflux value ,for a 5% feed increase disturbance. The

compositions are as shown in Fig. 6-4a. For a 5% feed decrease disturbance, the

Optimizers reach to a value of 190 mol/hr for the vapor boilup and 146 moll hr for reflux

at steady state. The PI controller sticks to its setpoint value of 0.96 even when there are

disturbances, which leads to a suboptimal performance.

The CEO strategy "looks ahead" in time while making a decision on profitability.

Thus it combines control objectives with economic objectives. Hence, it adds a level of

intelligence to the steady state Optimizer, which is only concerned with optimizing

current conditions, but has no idea of dynamics. Both Optirnizers tend to push one of

the variables to its constraint limit, and manipulate the other variable so as to maximize

profit This is in accordance with expectations as one of the products is of much higher

economic value than the other and hence maximizing recovery of that product translates

to maximizing profit

A comparison of profits obtained is shown in Table 6-6 and Fig 6-3 alb. It is seen

that the 00 and PI control strategies have the same profit during the first one hour. This

is because the 00 Optimizer runs only every hour. By this time, the PI controllers have

taken enough action to bring the process back on track after the disturbance. After the

first hour, the steady state Optimizer catches up to the CEO Optimizer and hence the

profit using the steady state Optimizer starts catching up with that of the CEO approach.

The profits obtained would be more in favor of the steady state Optimizer when it is run

more frequently or when a disturbance appears not too long before it is run. With the

CEO strategy, the process makes the maximum profit every step of the way; with the

00 strategy, the profit is maximized only after reaching steady state. These studies are
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not discussed here as the emphasis is on testing the performance of the new strategy.

The CEO strategy gives about 5% more profit than the 00 scheme, which gives 12%

more than the PI scheme for a 5% feed increase. For 5% feed decrease, the CEO gives

about 4% more profit than the 00, which gives about 11% more profit than the PI

scheme.

Also, it is seen that the optimal profile for a 5% decrease in feed flow is slightly

oscillatory. This could be because the equal finite element sizes used do not determine

the optimal point of discontinuity as discussed in the previous section.

6.4.4 Comparison under Feed Composition Disturbances

The performance for the control schemes under larger (10%) composition

disturbances is similar to those under feed flow disturbances. The CEO strategy again

outperforms the other strategies in its early aggressiveness in determining the optimal

control profile. The steady state Optimizer catches up to the CEO Optimizer when it is

run at the end of 1 hour.

The approach to steady state is faster for the CEO strategy. The plots for the

responses are shown in Fig 6-4 c/d and some of the results are summarized in Table 6­

8. The dynamic Optimizer brings the process to a steady state top composition of 0.979

for a step decrease in composition and to a top composition of 0.968 for a step increase

in feed composition. Bottom compositions are correspondingly higher. The steady state

Optimizer reaches these values after it is run. Over the time horizon the CEO ensures

that the process is optimal. As discussed in the case of feed flow disturbances, the

steady state Optimizer only predicts the optimal steady state, but the path to the steady

state is not economically optimal.
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The profit obtained is about 4% higher for a step increase in feed composition and about

6% higher than online optimization for step decrease. Table 6-8 summarizes the results

for the profits obtained. Fig 6-4 albcld show the responses for top and bottom

compositions and the manipulated variable values. The cumulative profits are also

compared as a function of time.

Table 6-8 Results for Feed Flow and Composition Disturbances

Parameter Control to Online Optimization PI Control

Economic

Optimum

Profit (Cumulative over

2 hours), $

Base Case 668 648 631

5% step increase in 808 768 685

feed flow

5% step decrease in 719 691 619

feed flow

10% step decrease in 694 654 599

feed composition

10% increase in feed 821 778 696

composition

6.4.5 Computational Requirements

If implemented in industry, the CEO approach would require extremely advanced

computer requirements as compared to the steady state Optimizer and the PI control
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schemes. These are the GAMS Optimizer, and an interface, which displays the GAMS

results. In this study, the GAMS Optimizer was linked to a Visual Basic interface and the

results were displayed online on an Excel spreadsheet. Admittedly, this is an inefficient

way of doing things, as this requires three packages viz., GAMS, Excel, and Visual Basic

to be simultaneously active. The whole setup was run on a Pentium II, 400 MHz,

Windows '98 Gateway computer. It was found that around 20% of the system resources

were in use while the setup was running, and this caused frequent crashes of the

machine. Also, the simulation could not be run for more than 2 hours of process time,

after which the system became unstable and crashed. Hence, the possibility of using

other software packages must be considered. These issues will be addressed in the

next chapter. The steady state Online Optimizer computational requirements are also

the GAMS Optimizer and the Excel interface to display the optimizer setpoints.

The optimization problem solved in the CEO approach is highly nonlinear and

this nonlinearity is bound to increase if the approach is further refined by adding finite

elements as decision variables and when more complex systems are considered. It is

clear that the measure of merit as far as the computational requirements are concerned

is the execution time for the Optimizer - the time it takes to converge to a final solution.

The GAMS Optimizer includes a feature, which enables the user to determine the

compilation and execution times (through the listing file - see Appendix B), and these

and compared below for the CEO and the 00 approaches, for the worst case. (The

worst case occurs either during initial convergence from inconsistent initial conditions or

after a disturbance is introduced)
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Table 6-9 • Worst Case ~omputational Requirements

Property GAMS Optimizer (CEO) GAMS Optimizer (00)

Compilation time 0.120 s 0.100 s

Model generation time 0.080 s 0.080 s

Execution time 0.120 s 0.110 s

Iterations 36 14

Total CONOPT 0.281 s 0.223 s

optimization time

Although the difference seems to be not so major, it must be kept in mind that the

CEO Optimizer runs about 20-30 times more frequently than the 00 Optimizer, as it

runs every 2-3 minutes as compared to the steady state optimizer which runs every

hour. This tremendously increases the computational time for the CEO approach.

The following points must also be emphasized when making a judgment on the

relative performance of the control schemes:

• The optimal control relies on fast changes in a short time in order to

aggressively track the optimum. In reality however, the sudden spurts in

values of the variables also costs money. Hence if changes are penalized

the control will not be as aggressive and hence profit differences not as large.

• Even with less aggressive control action, this strategy tends to be a still more

aggressive than a steady state optimizer. To control the process from

becoming unstable, there must be a layer of regulatory control which keeps

the manipulated variables in their previous optimum values, when there is a

loss of convergence in the optimizer or when excessive control action
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threatens instability in the process. This layer of regulatory control is the

backup for the process to go into when there is a failure in the optimizer.

Thus, although this approach can help get rid of some of the setpoints for

compositions and other controlled variables, the setpoints for the backup

regulatory control layer must remain as a fall-back option.

• The optimal profile will change when the constraints on the manipulated

variables are changed. The aggressiveness of control also depends on these

bounds. For example, it was seen that when the bounds on the reflux were

tightened, the vapor boilup could not be pushed to its constraint limit and

hence changes were slower and less aggressive.

• The economic objective function is a linear function of the top and bottom

composition. This means that the optimizer "thinks" that when the

composition increases, the value of a product goes up and hence it is

encouraged to keep increasing the composition even if it means increasing

the cost variables. In reality however, the value of a product is not a linear

function of cost. Hence, for instance, a 0.96 composition product would not

be significantly more valuable than a 0.97 composition product predicted by

the dynamic optimizer. This would playa crucial role in determining the

economic optimum. This coufd be addressed by using a discontinuous cost

function for product purity. The discontinuity in pricing could create problems

in convergence during the repeated solution of the optimization problem.

• In industry, rate of change constraints are enforced on variables which force

the optimizer not to abruptly change process variables in a short period of

time, which may lead to instability. Such constraints would curtail the

aggressiveness of the controller and hence the rapidity of the approach to the

optimum.
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• The single distillation column in isolation is not enough to really comment on

the performance of the CEO strategy. There are not enough disturbances

that radically affect the economics of an isolated column.

• Adding the aspects mentioned above into the formulation of the optimization

problem is likely to increase the nonlinearity and hence the computational

effort and time involved in the solution.

• CEO, if used for a plant in isolation, might suggest an optimal point of

operation for that plant in response to a disturbance, but this may lead to sub­

optimal performance in downstream processes. This may in fact lead to

propagation of disturbances.

These considerations must be kept in mind when evaluating the performance

differences between the control schemes. These form the basis for further improvement

and fine-tuning of the strategy. In spite of these limitations, the comparisons provided

above form an important first step for de~elopment of the dynamic optimization strategy.

Hence, while it is safe to say that the strategy will address the issue of best economics

at every step of its implementation, it must be emphasized that further testing on more

complex models is required before the industry has enough confidence to implement it.

This chapter discussed the results for the three strategies with respect to

performance under disturbances. However, these preliminary results though promising

must not be taken as the last word on the subject. Several other issues must be kept in

mind while considering the implications of the strategy. Some of the limitations of the

strategy and the points to be kept in mind for future directions will be explored. The next

chapter outlines future directions and summarizes the conclusions.
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· Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this study, a new strategy, which attempts to address the basic motive of

industrial operations - maximizing profitability, and thus integrates both control and

economic objectives, has been proposed. The strategy involves a dynamic optimizer

providing optimal control profiles to the process by solving a dynamic optimization

problem whose objective is to maximize profit. By maintaining the manipulated variables

at the optimal values suggested by the Optimizer, it is then possible to maximize profit

over a time horizon. This strategy has been tested on a binary distillation column

simulation as a first step.

Simulations for the distillation column using simplifying assumptions were

developed as part of the study. The objective function for the proposed strategy was

developed for the distillation column. Various numerical methods were analyzed and

orthogonal collocation was chosen for its generality and simplicity of implementation. A

first principles model was developed and the model equations were embedded as

equality constraints in the optimrzation problem. The results from the proposed strategy

were compared with conventional schemes - steady state online optimization and PI

control. The following conclusions were drawn from the comparisons:

The proposed control to economic optimum strategy provides aggressive control

and fast approach to economic optimum. Typically, the dynamic optimizer finds the new

economic optimum when disturbed from the optimum within 20-30% of the process

settling time. The steady state Optimizer predicts the same optimal steady state as the
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CEO Optimizer, but the path to the optimum is not optimal. The conventional

approaches thus show a slow approach to the economic optimum. Tests were carried

out for feed flow and feed composition disturbances and comparisons were made with

conventional control schemes.

The tests on disturbances in feed flow and composition demonstrate that

dynamic optimization provides on an average about 5% higher profits than the steady

state Optimization scheme, which in turn.yields about 10% more profit than regular PI

control. The economic optimum strategy tends to "push the limits" much more than the

conventional regulatory PI control. For instance, it is seen that the vapor boilup is at its

constraint of 190 mollhr in many of the cases discussed. Disturbances lead to large

changes in manipulated variables due to the time-optimal search for the optimum.

Tests were also carried out to determine the effect of parameter uncertainties in

the search for the optimum. These included tests for constraint limit sensitivities, cost

coefficient sensitivities, etc. It is found that uncertainties in constraints playa major role

in determining the final optimum. From the results, it is seen that relaxing or tightening a

constraint causes changes in product compositions and optimal control profiles. For this

strategy to be successful, these parameters must be updated regularly.

The CEO strategy also required higher computational requirements than the 00

strategy. The execution time is about 0.01 s higher for every time the Optimizers run.

This adds to a large difference over the entire duration of optimization.
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This study used various simplified models and simple economics. These need to

be improved and fine tuned before a fUlly functional strategy can be developed. These

are discussed in the recommendations below.

7.2 Recommendations

Overall, the study demonstrated the efficacy of a dynamic optimization strategy.

The results show a good improvement in profitability in comparison to conventional

control methods. However, further testing and studies should be carried out before a

functional algorithm can be developed. The initial focus of future directions should be to

refine the existing strategy developed in the study. After this is done, this must be

extended to more complex situations and tested. These aspects are given below:

• Improving the current models -

This study used simple models and very simple economics. The profitability

objective implies that a rigorous economic model is necessary to ensure that the

optimum dictated by the dynamic optimizer is indeed the correct one. Based on the

simple economic function used, CEO would attempt to make unlimited amounts of the

most valuable product. However, there might not be a market for such large volumes of

this product, or there might be a reduced price after a particular amount of production.

Similarly, a slightly purer product might not have a higher value. The economic model

must take into account these issues and incorporate it in the objective function. Also,

the model must be able to incorporate incremental costs of production increase versus

costs incurred. Some of these business concerns are further discussed in Appendix-H.

This study was limited by the demonstration version of the GAMS optimizer

available and hence, finite element lengths could not be included as decision variables in
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the optimizer. The importance of finite element lengths was discussed and their role in

discontinuous profiles was analyzed in the previous chapter. It is recommended that this

is done to complete the strategy. Also, the use of several software for this strategy led

to computer crashes. More user-friendly, less restrictive software such as MatLab,

GenSym's G-2 etc may be explored for easier implementation.

For implementation on an actual plant, the optimizer must run on plant data,

which may be unreliable due to random errors. Future work should focus on

incorporating data reconciliation and gross error detection algorithms, which must be

carried out before the data is processed by the optimizer.

Also, uncertainties in model parameters must also be analyzed for each process

and robust model parameter updating algorithms must be incorporated specific to each

process being investigated. These model parameter updating algorithms are

optimization problems by themselves and these must be incorporated when necessary

before performing the dynamic optimization.

Since this is a first-step study, the current study did not consider the cost of

control action, which means that the optimizer does not penalize excessive control

action. In addition, rate of change constraints were not included in the optimization

problem. These issues should also be analyzed.

This study assumed that the feed to the process is fixed by an upstream unit.

Future work must also consider using the feed as a decision variable in the optimization,

so as to achieve product maximization (see Appendix E).
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The study provided comparison with conventional PI control-based strategies.

In industry, advanced control strategies such as MPC are available, which are also

based on dynamic optimization. Such algorithms, if implemented properly would

necessarily track setpoints better than PI strategies. Hence, for fairer comparisons

should be made with more rigorous control algorithms such as model predictive control,

which are in practice in industry today.

• Extension to more complex processes -

The current study demonstrated the working of the proposed strategy for a

distillation column. Although this is a good starting step, distillation units do not exist in

isolation and the economics must be considered in conjunction with other units. The real

test for the strategy would be when used with a more complex process.

Future work on implementation of this strategy could be divided into two

directions - continuous and batch processes:

• For studies on continuous processes, a 3-unit process such as an FCC unit or the

flotation plant in IMC Agrico may be chosen to implement the strategy. These are far

more complex processes than the simple distillation process chosen in the study.

These are also economically significant parts of the operating plant. Hence, the

concept should be tested on these processes for its performance.

• Batch processes form another set of industrially important processes. Such

processes may optimize on other objectives such as time for batch operation,

conversion etc. These processes are well suited for implementation of the proposed

strategy and this could be another possible future direction. Some aspects of use of

the proposed strategy are given in Appendix-H.
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Finally, this strategy should be studied during a long-term period of perhaps a

year, including transient periods such as start-ups and shutdowns, so that its robustness

can be verified. These transient periods are fraught with disturbances and upsets and

optimal performance under such conditions would alone vindicate the use of this

strategy for everyday industrial applications.

Once this concept is established for a complex three-unit process on a long­

term basis, the final goal of plantwide optimization can be addressed, and hopefully,

realized.
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APPENDIX-A

DEVELOPMENT OF A REDUCED ORDER LUMPED MODEL FOR A DISTILLATION

COLUMN

The following is an example for obtaining a reduced order model for a distillation column

and has been directly taken from Poupadourakis and Rijndorp, 1992.

Consider a sequence of M stages used for any separation as follows:

--- ----M+1

L V
M

M-1

F

2
1

L o

Fig 4-3: A sequence of M stages used for separation of a mixture

Assuming constant molar overflow, the dynamic component material balances on each

tray s is given by:

M
L

dx(s,t)=Lx(S+1,t)-Lx(s,t)+VY(S-1,t)-Vy(s,t); s=1,... ,M (A-1)
dt
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The compositions in this module of trays can now be approximated by polynomials,

using n < M interior grid points plus two entry points Sl1+1 = M + 1 for the liquid and So = 0

for the vapor. The corresponding equations of the collocation model for the module are

given by:

dX(Sj,t) _ _ _ _
ML ::::Lx(Sj+1,t)-Lx(sj,t)+Vy(sj-1,t)-Vy(Sj,t); j=1, ... ,n (A-2)

dt

where the tilde represents an approximate value

Thus the number of equations describing the component material balances for the

module is reduced from M (number of stages in the module) to n (number of collocation

points in the module). The location of these points, S"S2"'8" are the zeros of what are

called Hahn polynomials and they are given in Table A-1

Table A-1: Collocation Points for a Module Consisting of M Stages

Number of Collocation

Points, n

1

2

3

Points Sj

M+1

2

M+1 ~M2 -1--+
2 - 12

M+ 1 M+ 1+ ~3M
2

- 7
2 ' 2 - 20

The compositions at each stage of the module are given by:

N+l

x(s, t) :::: I. <I> jL (s)x(s, t)
j=1

N

y(s, t):::: I. <I> jL (s)y(s, t)
j=O
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where the ep functions are the Lagrange polynomials given by:

0+1 S - s
¢JL(S)=I1 k; j=1, .... ,n+1

k=1 Sj -Sk
k;tj

(A-4)
o s- s

<1> jV (s) =II k; j =0,.... ,n
k=O Sj - Sk
k;tj

Thus for M = 15, the reduced order model is developed as follows:

Reboiler

Using the reboiler as one collocation point, for M=1, n=1, we get, 'from Table A-1 S1 =1

The equation for the reboiler is:

Stripping Section

(A-5)

Assuming the stripping section can be described by only 2 collocation points, the mass

balance equations become:

where 52 and 53 are the collocation points for the stripping section

(A-6)

The location of the collocation points for M= 7 (number of stripping trays) and n =2 is

found from Table A-1. For example, 52 = 2 and S3 = 6. Since there is one reboiler stage

below, we have, ~ =3 and 53 =7.

Feed Tray

The mass balance for the feed tray is given by:
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where S4 is the collocation point corresponding to the feed tray

(A-7)

Again, using Table A-1, for n=1 and M=1, we get S4 = 1. However, since there are 8

stages below this point (7 stripping trays + 1 reboiler), we have S4 = 9

Enriching trays

Mass balance equations for the enriching trays assuming 2 collocation points is given

by:

(A-8)

The location of the collocation points S5 and S6 can be found from Table A-1, for M=7 (7

enriching trays) and n =2. Using this table, we get S5 = 2, S6 = 6; since there are 9 trays

below these points, we have S5 = 11 and S6 = 15

Reflux drum

The mass balance for the reflux drum takes the form:

Using Table A-1, we get S7 = 17

In the above equations, the vapor compositions can be found using:
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The remaining variables in the preceding equations are functions of the liquid and vapor

compositions in the previous equations. For example,

4

X(S3 -1, t) = x(6, t) = L <1>jd6)x(sj' t) where
j=2

() n4 6 - Sk .' 2 4
q> jL 6 = , J= ,...

k=2 S j - Sk
k,oj
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APPENDIX- B

GAMS OPTIMIZER FEATURES

GAMS (General Algebraic modeling System) was developed to solve general

optimization problems with the following aspects in the mind:

• Providing a high-level language for the compact representation of large and

complex models.

• Allowing changes to be made in model specifications simply and safely

• Allowing ambiguous statements of algebraic relationship

• Permitting model descriptions that are independent of solution algorithms

The features of GAMS and an overview of the GAMS program structure are discussed

below, followed by a discussion of the nonlinear solvers available, and applications in

dynamic optimization.

B.1 GAMS Features

The design of GAMS has incorporated ideas drawn from relational database theory. It

offers the following features [1]:

• Use of existing algorithmic methods and development of new methods

without changing model representation. Linear, nonlinear, mixed integer,

mixed integer nonlinear optimization and complementarity problems can

currently be accommodated

• Optimization independent of the data used

• Ease and fleXibility for construction of large and complex models
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• Concise representation of the mathematical description of the system to be

optimized

• Documentation embedded within program

• Portability on various computers

B.2 STRUCTURE OF GAMS PROGRAMS

A GAMS model is a collection of statements in the GAMS language. The only

rule governing the ordering of statements is that an entity of the model cannot be

referenced before it is declared to exist. The creation of GAMS entities involves two

steps: a declaration and an assignment or definition. 'Declaration' means declaring the

existence of something and giving it a name. 'Assignment' or 'Definition' means giving

something a specific value of form [1].

The entities in GAMS program are as follows:-

SETS - Sets are building blocks of a GAMS model, corresponding exactly to the indices

in the algebraic representation of models. Three fundamentally different formats are

allowable for entering data. The three formats are

• Lists

• Tables

• Direct assignments

VARIABLES - The decision variables (or endogenous variable) of a GAMS-expressed

model must be declared with the Variables statement. Each variable is given a name, a

domain, if appropriate, and (optionally) documentary text [1].

124



EQUATlONS - Equations must be declared in separate statement after the keyword

"Equations." The entities included under this key word include both equality and

inequality relationships between variables and parameters [1].

OBJECTIVE FUNCTION - GAMS has no explicit entity called the 'objective functions.'

To specify the function to be optimized, you must create a variable, which is free

(unconstrained in sign) and scalar-valued (has no domain) and which appears in an

equation definition that equates it to the objective function [1].

MODEL - A specified collection of equations constitutes a model. Like other GAMS

entries, it must be given a name in a declaration. Once the model has been declared, we

are ready to call the solver. This is done with a solve statement as follows [1]:

SOLVE <model name> USING Ip/nlplminlplmip MINIMIZING/MAXIMIZING

<objective function variable>

B.3 INPUTI OUTPUT IN GAMS

To solve a problem, we must create the model using the entities discussed above and

key it in a file with a .gms extension. This is the Input File

GAMS solves the problem and displays output in <filename>.lst. This is the Output or

Listing file. GAMS provides extremely detailed output which help in quick debugging

and analysis.

The output consists of

• Echo prints - A copy of the input file

• Error messages - if any
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• Reference maps - a list of all entities and the lines where they are referenced

• Equation listing - lists the equations with current values of sets and parameters

plugged into the general algebraic models

• Model statistics - statistics on model size

• Status report - summary of solution

• Solution reports - details of solution

After the solver runs and executes the program, the user can examine the listing file and

read the solution.

8.4 NONLINEAR PROGRAMMING IN GAMS

Nonlinear models created with GAMS must be solved with a nonlinear

programming algorithm. Currently there are two standard NLP algorithms available,

MINOS and CONOPT, which is available in two versions, CONOPT and CONOPT2. All

algorithms attempt to find the local optimum. The algorithms in CONOPT and MINOS

are based on fairly different mathematical algorithms and behave differently on most

models. This means that while MINOS is superior in some models, CONOPT is superior

in others [2].

GAMS/CONOPT is suited for problems with very nonlinear constraints. If it is

seen that MINOS has problems maintaining stability during optimization, CONOPT may

be tried. On the other hand, for models with few nonlinearities outside the objective

function, MINOS would be better. CONOPT has a fast method for finding the first

feasible solution that is particularly suited for models with few degrees of freedom. If the

model has roughly the same number of constraints as variables, CONOPT may be more

suitable. If the number of variables is much larger than the number of constraints, then
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MINOS would work better [2). For this study, GAMS/CONOPT is used as the NLP

solver.

8.5 Limitations in the GAMS demonstration version

Because the version of GAMS available is only a demonstration version, the

following restrictions apply:

Total nonzero elements 1000

Nonlinear nonzero elements 200

Discrete variables 20

Due to these restrictions the following limitations were encountered:

• Number of finite elements could not be increased more than 2, as then the nonlinear

nonzero element limit was crossed

• Number of collocation point could not be increased beyond 2

• Finite element lengths could not be used as decision variables in the optimizer

A simple example from [3] follows:

Example B-1:

Minimize

Z 2 2 2=x,+X 2 +X 3

subject to
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The program for solving this problem with GAMS with comments is given below

(Comments are those lines which have an asterisk (*) as the first character):

• Declare the title for the problem
$ TITLE TEST PROBLEM

.. Declare variables using the VARIABLES statement
VARIABLES X1, X2, X3, Z;

.. Declare domain for van"ables
POSITIVE VARIABLES X1, X2, X3;

.. Declare equations using EQUA nONS statement
EQUATIONS CON1, CON2, CON3, OBJ; .

.. Define equations from constraints
CON1 .. X2-X3 =G= 0;
CON2.. X1-X3 =G= 0;
CON3.. X1 -X2*-2 + X1*X2 -4 =E= 0;

.. Objective function is also treated as an equation
OBJ.. Z =E= SQR(X1) + SQR(X2) + SQR(X3);

.. Declare Bounds- Lower bound is not declared since the variable is already declared positive
X1.UP = 5;
X2.UP =3;
X3.UP = 3;

.. Declare initial point
X1.L = 4;
X2.L =2;
X3.L = 2;

.. Declare MODEL statement and specify equations to be included in the model. IALU means that
all equations are included

MODEL TEST / ALL I;

• Declare SOL VE statement and specify direction and variable of optimization
SOLVE TEST USING NLP MINIMIZING Z;

This is a valid GAMS program which solves the above optimization problem.

This can be executed by typing

GAMS <fI1ename. GMS>

Outputs can be viewed by typing

EDIT <filename.LST>

at the MSDOS prompt

at the MSDOS prompt
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APPENDIX-C

APPLICAT10N OF ORTHOGONAL COLLOCATION FOR DAE SYSTEMS- A SIMPLE

EXAMPLE

The following example from [1] illustrates the method of discretizing DAE systems using

orthogonal collocation.

Example

The system is that of a car starting and ending at rest, and covering a fixed

distance (300 meters) in a minimum amount of time. The problem involves finding the

optimum acceleration profile, which minimizes the time taken to cover the 300 meters.

The performance is controlled by the acceleration, which is to be kept between the limits

of is -1 m/s2 and 2 m/s2
. It is of interest to determine the optimum acceleration profile

over time, which minimizes the time taken, t" to cover the distance of 300 meters.

The mathematical definition for this optimization problem is:

Minimize t,

dx 2

-=u
dt

x' (O)=O

x2 (0) =0

x1(tt>=300

X
2 (t f )=0

- 2 ~ u(t) ~ 1

where Xl is the distance and ~ is velocity.

and u(t) is the acceleration at time t
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D1SCRETJZATION

Time is discretized using orthogonal collocation as follows

where the CIi represent finite elements of time

The differential equations are discretized using the principles mentioned in

Chapter 3. The first step is to discretize the differential equations (C-1) and (C-2).

For example, considering equation (C-1):

This contains two state variables X
l and x:

Using Lagrange polynomials, these continuous state variables are discretized as

in Eq. (3-7):

NcaL

x~ (t):::: I xQilCl>[iil (t), where the i's represent finite elements j represent state
1=0

variables and the superscript s represents the s'th state variable

Thus, for example Xl is discretized in the ith finite element as:

NCOL

x~(t):::: I,X[ijJC1>PjJ(t)
)=0

The residual of this equation can be written as [2]:

NcaL NcaL""1' ,2R(t) = LJ X lijJ¢[iil (t) - £.. x fill¢ro (t)
j=O )=0

131

(C-8)



Using the Villadsen and Michelson method of weighted residuals, this residual

has the property that [2]:

1

fR(t)o(t-tj)dt = 0;
o

i =1 ,...k

This integral can simply be written as:

Applying eq. (C-9) in (C-8),

(C-9)

(C-10)

Since, et>i[ijl(ti) = 1 (which is the reason why lagrange polynomials are chosen),

(C-10) can be written simply as:

NCOL

I. X 1[ij]<i:>[ij] (t;) - X
2

[ij) =0
j=O

.' <t>[ij) (t; )
USing et>[iiJ (t i ) = d ,the above equation may be written as:

u j

which reduces to :

NCOL

I. x;1n<Pn (r j) -l1oi (x~) =0
n=O

(C-11 )

Here NCOl is the number of collocation points, n is a collocation point within the ith finite

element.

In a similar manner, other equations can be discretized. The only other addition

is that of the continuity equations, which are added to enforce continuity at the finite
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element boundaries as was discussed in Chapter 3. Thus the DAE system can be

converted into a discrete algebraic system and the optimization problem can be re-

written as:

NFE

MinIflo i
i=1

Ncal

I X~j]qJlij) (t j ) -flo; (xf;j]) =0
j=O

Ncal

I X~ilqJ[iJ1 (t j ) -flo; (U[ij)) =0
j=O

i=1,NFE,j=1,NCOL

Ncal

x~ = LXiij]Q>nn (t =1)
j=O

NCOl

x~ = L X~j]Q>lijl (t =1)
n=O

x~ =0

Ncal

L X!NFE,ij<Pn (T =1) =0
i=O

NCOl

L X~FE'j) qJn(T =1) =300
n=O

(C -1 a)

(C - 2a)

(Continuity equation 1)

(Continuity equation 2)

(C - 3a)

(C - 4a)

(C - 5a)

(C - 6a)

(C -7a)

This can now be solved as an NLP using a normal NLP engine.
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APPENDIX- D

FINAL OBJECTIVE FUNCTION AND CONSTRAINTS IN DISCRETIZED FORM USING

ORTHOGONAL COLLOCATION METHOD

Using the method of discretization outlined in Chapter 3 and Appendix C, and the

collocation model developed in Chapter 4, it is possible to develop an NLP for the

dynamic optimization of the distillation column. This will form the optimization algorithm

in GAMS. The final objective function and constraints are given below:

Maximize:

i=1

< - - - - - - - - - - - - - - - objective function varue at end of each finite element - - - - - - - - >

< - - -objective function value at interior collocation point - - - - - -- >

subject to

G1 ~ R lijJ ~ C 2 (B[ij] + C 3 ) - F

-L - -u
x'[ii] ~ x, ~ X1[ij]

Yk[ijl = aXk{ij]/(1 + (0 -1 ).Xk1ij])
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(model constraints)

(Reboiler total material balance)

NeOl m (T)
M ~ - T~jl i (R F)f( I )- 1)-] B - -

lB L..J x 1[1j] 6. - [ii] + ~12 Xl [ijl +(12 X21ijj + [Ij)X l [ij) +V[ijjYl[1jl =0
j=O 0i

(Reboiler component balance)

NCOl 'P (T)

Ml .LX2[iil fijI i - (R[ij) + F)[(S/8)X2[ijj + (5/8)X3[ij) + (-1/4)X4[ij)]+ (R~il + F),X2[ijl
j=O !1o;

- V[ijJ.[(5/12)Yl[iJ) + (S/8)Y2[ij) + (-1/24)Y3(ij]]+ V1ijJ Y2[ijJ =0

(Component balance for collocation point 1

in stripping section)

NCOl rn (T)
M ~ - T[ij) i (R F)f( 1)- ( I )- ( -] -

l L..J X3[ij) - lij] + ~ -1 24 X2[ij) + S 8 X3[ijJ + S/12)X4[ii] + (R(ij] + F),X3Iijj
i=O !1o i

- V[ij] .[(-1/4)y1(ijj + (5/8)y 2[ij) + (5/8)y3[ij)]+ V[ijJ Y3r~) =0

(Component balance for collocation point 2

in stripping section)

~l_ 'P[ijl(T j ) f( _ _] ( _
Ml LJ X4[ijJ -(R[iil + F)~ 1/2)X4[ij] + (1I2}xS[ij] + RlijJ + F),X4[ij) - F,ZF

j=O l10 i

- V~j).[(1/2)Y3[ij) + (1/2)y 4[ijJ]+ V(ijlY 4(')1 =0

(Component balance for the

Feed Tray collocation point)

N~l_ 'P[iij(T j ) [(I - - - ] (R)-Ml L..J XS1ijJ - (R[ijJ)~ 5 8)XS[ijl + (5/8)x6{ij) + (-1/4 )X 7 [1j) + [ij] ,XS[ijJ
j=O !1° i

- V1ijJ'[(S/12)Y4[iij + (5/8)Ysrijj + (-1I24>YSlii]]+ V[ij)YS[ij) =0

(Component balance for collocation point 1

in enriching section)
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NCOl q> (r)
ML ~)(6Qj] ['JI J - (R 11jJ )[(-1/24)X 5[iJI + (5/8)X 6[iJI + (5/12)x7[~1 J+ (Rllil ).X 6[iij

,=0 l1o,

- V[ijj.[(-1/4)Y 4[ijJ + (5/8)y 5[ijl + (5/8)y 61.j)]+ VlijJ Y6[ij] =0

(Component balance for collocation point 2

in enriching section)

(Component balance for accumulator)

NCOl

XkflO) = I,X['.TJI¢>[ijJ(l: =1)
j=O

(Total material balance for accumulator)

(state profile continuity equations)

The objective function, with the above constraints, forms the NLP whose solution

is the optimal control profiles that will be implemented in the process.
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APPENDlX- E

CEO Tutorial

As mentioned in Chapters 3 and 5, the CEO strategy involves a dynamic

Optimizer dictating optimal control profiles to the Process. The implementation of these

entities is described below.

PROCESS

A screenshot of the Process interlace is shown in Fig F-1 below:

.505 nne I

v..-_
2'" r------.-~-,

DOI---------~

2lD1---------~

2101-----------1
2001----------1-'SO 1-----------.,
'80 1-----------1
l1Q 1---------1
'00 t----------j
'50 l---~--~----:

o

240
DO
220
210
200
ISO,eo

.. ,eo
'$0
"0
.JO
f211
110
'00
~eo

o

Fig F-1: Process VB Interface
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The above interface comes up when the CEO program is invoked in Visual Basic. When

the -Run Process· command button in the above interface is clicked, the simulation

"officially" begins. The simulation is run for a few minutes (determined by the user) so

as to converge the initial conditions to bona fide conditions. The progress of the

simulation can be tracked on the Excel chart on the interface. Then, the GAMS

Optimizer is called by the Process itself. For purposes of the study, the Process is kept

"on hold" while the Optimizer is running.

VB GAMS Interface

For the Visual Basic Process simulation to "call" the GAMS Optimizer (in other

words, to link Visual Basic and GAMS), a plug-in is necessary. This plug-in is available

at www.gams.com. the official GAMS web site. For linking the two software, the forms for

the plug-in named frmGAMS must be included as part of the current Visual Basic

project. The particular lines of code that must be included to run VB GAMS is as follows:

frmGams.Show

CALL frmGams.cmdRunGams_ Click

During runtime when the VB compiler encounters this piece of code, it will run the VB

GAMS code, and call up the interface shown in Fig F-2. This interface can be kept

normal (as shown in Fig F-2), minimized, or completely hidden. The second line of code

causes the GAMS to get activated and compile and execute the GAMS file mentioned in

the textbox of the interface in Fig. F-2. Then, the GAMS file is executed and the

Optimizer builds an output file which dictates the optimal profile to the Process.
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J

I'

I

...

Fig F-2: VB GAMS Interface Form

After writing the output file, the VB GAMS is made to recall the Process interface and run

the simulation with the optimal profile dictated by the Optimizer.

The above setup then loops over till the end of the specified process time (2 hr in the

study).
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APPENDIX - F

CODE FOR THE THREE CONTROL SCHEMES

CONTROL TO ECONOMIC OPTIMUM

Common Declarations - Common to All Modules

Declare the following variables (arrays as appropriate)

i Tray number
Nt Number of trays
Nf Feed tray location
X (i) Liquid phase compositions or. a given tray
XQ(i) Initial liquid phase compositions on a given tray
Y(i} Vapor phase compositions on a given tray
L(i) Liquid flow rate leaving a given tray

Lo(i) Initial liquid phase inventories on a given tray
Mdot(i) Material balance derivatives on a given tray
Mxdot(i) Component balance derivative on a given tray
M(i) Inventory on a given tray
MO Initial inventory on a given tray
MbO Bottom sump inventory
MdO Reflux drum inventory
2f Feed composition
F Feed flow rate
Vb, Yd Bottoms and distillate vapor composition
Xb, Xd Bottoms and distillate liquid composition
Beta Tray hydraulic time constant
Alpha Relative volatility
B Bottoms flow rate
V Vapor flow rate
R Reflux flow rate
D Distillate flow rate
delta Integration step size
Tim Process Time
Upd Dummy variable to keep track of real time
Tprint Time step fat printing results
Iteration Overall iteration number
objExcel Excel spreadsheet object for graphical display

Dim X(1 To 20) As Single, Y(1 To 20) As Single, L(1 To 20) As Single, LO(1 To 20) As Single,
M(1 To 20) As Single
Dim MX(1 To 50) As Single, Mdot(1 To 50) As Single, Mxdot(1 To 50} As Single, Yb As Single,
Yd As Single
Dim MO As Single, MbO As Single, MdO As Single, Tdum(1 To 2} As Single, 2f As Single
Dim Nt As Integer, Nf As Integer, F As Single·, Beta As Single
Dim Tprint As Single, delta As Single, Xb As Single, Xd As Single
Dim Alpha As Single, B As Single, V As Single, R As Single, D As Single
Dim Str1 As String, Str2 As String, objExcel2 As Object
Dim XO(1 To 20) As Single, XdO As Single, XbO As Single, Bop As Single
Dim Iter As Single, Upd As Single
,
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MODULE A - PROCESS SIMULATION MODULE

Public Sub cmdRun_c1ickO
I LOCAL VARIABLE DECLARATION

objExcel
Xp(i)
PMM(i)
t1 - t7

Excel object for graphical display of results
Liquid phase composition based on Optimizer collocation model
Process Model Mismatch in the ith tray
Time periods whose lengths match the finite element
lengths in the Optimizer
Reflux flow rates dictated by the Optimizer for above time periods
Vapor Boilup flow rates dictated by Optimizer for above time periods

Create the Excel Spreadsheet object for the graphical display of data
Set objExcel == 0le1.object
Rem The Model is described below:
Rem Assumptions:
Rem· Constant relative volatility
I _ Equimolal overflow
I • Theoretical trays
• - Simple tray hydraulics
• Inital Conditions - Open Input file and receive inlet conditions

Open App.Path & "/input1 a.txt" For Input As #1
Input #1, Nt, Nf, MdO, Mba, MO. RO, VO, Beta, Alpha
Close #1
Open App.Path & "/input2a.txt" For Input As #2
Input #2, tim
Input #2, Xb
For I == 1 To Nt
Input #2, X(I)
NeX11
Input #2, Xd
Input #2, Iter
Close #2
Tprint =tim
Upd == tim

Reset time to its appropriate value as given by Upd
If Upd > °Then Iter = Iter - 1

Receive Feed conditions
Open App.Path & "linput5a.tX1" For Input As #6
Input #6, F, Zf
Close #6

Optional disturbance (could be feed flow rate or composition)
'If tim> 1.2 Then F == 95
If tim == D Then I Initialize conditions on trays
For 1=1 To Nt

M(I) == MO
MX(I) == M(I) * X(I)
LO(I) == RD + F
If (I > Nf) Then

LO(I) == RD
End If
NeX11

Else
Open App.Path & "/liqflow.txt" For Input As #1 D 'Else proceed from previous values
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For 1= 1 To Nt
M(I) = MO
MX(I) = M(I) " X(I)
Input #10, LO(I)

Next I
Close #10

End If
I Obtain optimal control trajectory and predicted compositions from the Optimizer: if time
= 0, then just read initial conditions
Open "C:/gams/opt.gms" For Input As #10
Input #10, t1, V1, R1
Input #10, t2, V2, R2
Input #10, t3, V3, R3
If tim> 0 Then

Input #10, t4, V4, R4
Input #10, t5, v5, R5
Input #10, t6, V6, R6
Input #10, t7, Vl, R7
Input #10, t8, VB, R8
For I = 1 To 7

Input #10, Xp(I)
Next I

End If
Close #10

I Tray hydraulics and VLE
10 For I = 1 To I\It
L(I) = LO(I) + (M(I) - MO) I Beta
Y(I) = alpha" X(I) I (1 + X(I)
Next I
Yb = alpha" Xb I (1 + Xb)
Yd = alpha • Xd I (1 + Xd)

EQUATION (4-10)
EQUATION (4-11) FOR EACH TRAY

EQUATION (4-11) FOR BOTTOMS
EQUATION (4-11) FOR DISTILLATE

Recreate optimal profile based on the Lagrange Polynomial basis approximation
for the first step

If tim >= t1 + Upd And tim <= t3 + Upd + 0.5 Then
V = V2 " (tim - Upd - t3) I (t2 - t3) + V3 " (tim - Upd - 12) I (t3 - 12)
R = R2 " (tim - Upd - t3) I (t2 - t3) + R3 • (tim - Upd - (2) I (t3 - (2)

End If

I Assuming perfect level controllers in column base and reflux drum
D = V - R I EQUATION (4-4) WITH ACCUMULATION TERM = 0
B = L(1) - V EQUATION (4-7) WITH ACCUMULATION TERM = 0

I Check for validity of R and V
If «R < 0) Or (V < 0) Or (D < 0) Or (B < 0») Then

GoTo 100
End If

I Evaluate Derivatives and Tray Temperatures
I Step 1: for Bottoms
Xbdot = (L(1)· X(1) - V· Yb - B' Xb) / MbO
I Step 2a: for first tray
Mdot(1) = L(2) - L(1)
F(1} = 0
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Mxdot(1) = v * (Yb - Y(1» + L(2) • X(2) - L(1)" X(1)' EQUATION (4-2) FOR TRAY 1 WITH
F(1) =a
• Step 2b: Stripping section trays
For I =2 To Nf - 1
Mdot(l) = L(I + 1) - L(I) EQUATION (4-1) FOR TRAYS 2-7 WITH F(I) =a
Mxdot(l)::: V· (Y(I- 1) - Y(I» + L(I + 1) * X(I + 1) - L(I) * X(I)

, EQUATION (4-2) FOR TRAY 2-7 WITH F(I)::: a
Next I
• Step 2c: Feed Tray
Mdot(Nf) =L(Nf + 1) - L(Nf) + F
, EQUATION (4-1) FOR TRAY Nf
Mxdot(Nf) =V • (Y(Nf - 1) - Y(Nf» + L(Nf + 1) • X(Nf + 1) - L(Nf) • X(Nf) + F * 2f

, EQUATION (4-2) FOR TRAY Nf
, Step 2d: Enriching section trays
For I =Nf + 1 To Nt - 1
Mdot(l) =L(I + 1) - L(I) EQUATION (4-1) FOR TRAY 9-14 WITH F(i) == a
Mxdot(l) = V· (Y(I- 1) - Y(I» + L(I + 1)· X(I + 1) - L(I)· X(I)

, EQUATION (4-2) FOR TRAY 9-14 WITH F(i) = a
Next I
, Step 2e: Top Tray
Mdot(Nt) = R - L(Nt)

EQUATION (4-1) FOR TRAY Nt WITH F(i) = 0
Mxdot(Nt) = V • (Y(Nt - 1) - Y(Nt» + R • Xd - L(Nt) • X(Nt)

, EQUATION (4-2) FOR TRAY Nt WITH F(i) =a

, Step 3: Reflux Drum
Xddot = V .. (Y(Nt) - Xd) / MdO EQUATION (4-5)

, Print current conditions in the Excel Spreadsheet object
If tim < Tprint Then GoTo 20
0le1.Action = 7
objExcel.worksheets("Process Values").Cells(lter + 2, 1).Value = tim / 12 'output Time
objExcel.worksheets("Process Values").Cells(lter + 2, 2).Value =Xd ' Distillate compositions
objExcel.worksheets("Process Values").Cells(lter + 2, 3).Value =Xb ' Bottom compositions
objExcel.worksheets("Process Values").Cells(lter + 2, 4).Value =R ' Reflux flow rates
objExcel.worksheets("Process Values").Cells(lter + 2, 5).Value =V ' Vapor boilups
objExcel.worksheets("Process Values").Cells(lter + 2, 6).Value =(6.12" (V - R)" Xd + 0.95' (F +
R - V) * (1 - Xb) - 0.002 * V - 0.001 * R) , output Current Profit
Print #4, tim; Tab(10); Xb; Tab(20); X(10); Tab(30); Xd; Tab(40); R; Tab(50); V
Iter'= Iter + 1 ' Update iteration number
Tprint = Tprint + 0.05 Update print time

I Euler Integration
20 tim = tim + delta
tim = Round(tim, 3)
Xb = Xb + delta * Xbdot

For I = 1 To Nt
M(I) = M(I) + Mdot(l) * delta
tray
MX(I) =MX(I) + Mxdot(l) * delta'
X(I) =MX(I) / M(I) ,

If X(I) < a Or X(I) > 1 Then
GoTo 100

End If

Step forward in time

Integrate the Bottoms Component Material Balance

Integrate the Total Material Balance Equation for each

Integrate the Component Material Balance for each tray
Update tray liquid compositions
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Next I

Xd =Xd + Xddot * delta Integrate reflux drum Component Material Balance
If tim> Upd + 0.5 Then GoTo 110 Else GoTo 10
100 message =MsgBox("Level too low or composition unreal!", vbOKCancel. Alert)

, Provide alert in case of inconsistent conditions
110 Close #4

I Update conditions in appropriate input/output files
I Update input compositions for next iteration
Open App.Path & "/input2a.txt" For Output As #2
Write #2, Round(tim - 0.01, 2)
Write #2, Xb
For 1=1 To Nt

Write #2, X(I)
Next I
Write #2. Xd
Write #2, Iter
Close #2
'OLE1.Action = 9

I Update Process Model Mismatch for next iteration
PMM(1) ::; Xb - Xp(1)
PMM(2) = X(2) - Xp(2)
PMM(3) ::; X(6) - Xp(3)
PMM(4) = X(8) - Xp(4)
PMM(5) ::; X(1 0) - Xp(5)
PMM(6) =X(14) - Xp(6)
PMM(7) =Xd - Xp(7)

r If time::; 0, initialize Process Model Mismatch
If Upd ::; 0 Then

Xp(1)=Xb
Xp(2) ::; X(2)
Xp(3) = X(6)
Xp(4) = X(8)
Xp(5) ::; X(10)
Xp(6) ::; X(14)
Xp(7) = Xd
For 1= 1 To 7

PMM(I) =0
Next I
End If

, EQUATION (5-3)

If tim < 24 Theil
Open App.Path & "/liqflow.txt" For Output As #10

For I::; 1 To Nt
Print #10, L{I) Update Liquid flow rates

Next I
Close #10
Cat! frmCEO.cmdOpt_Click(F, Zf, XO, V, R, LO, MO, MbO, MdO, Xd, Xb, B, D, Upd, PMMO,

Xp()) , Call GAMS optimizer
frmProcess.Hide

"Hide" Process form
End If
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At the end of simulation, update all input files for future simulations
fnnProcess.Show

Update liquid compositions
Open App.Path & "/input2a.txt" For Output A~ #2
Print #2, "0"
Print #2, "0.03307186"
Print #2, " 0.05707043"
Print #2, "0.09118611"
Print #2, "0.1371004"
Print #2, "0.194544"
Print #2, "0.2601927"
Print #2, "0.3278891 II

Print #2, "0.3906865"
Print #2, "0.4434727"
Print #2, "0.4876422"
Print #2, "0.5445065"
Print #2, "0.6129248"
Print #2, "0.6888504"
Print #2, "0.7659057"
Print #2, "0.8373332"
Print #2, "0.8981946"
Print #2, "0.9464403"
Print #2, "0"

Update initial flow rates
Open "C:/gams/opt.gms" For Output As #10
Print #10, "0, 177, 114"
Print #10, ·0.5, 177, 114"
Print #10, "1,177,114"
Close #10

End Sub

MODULE - B FOR CONSTRUCTING THE INPUT FILE TO THE OPTIMIZER
Rem This subroutine "creates" a GAMS program by writing the text following the PRINT
statements below to the file "C:/gamslce2.gms," The Code for the PRINT statements is not
shown below. Instead the GAMS file itself is provided.
Rem The documentation for the statements below are provided in the GAMS file

Call the subroutine that executes GAMS
Call frmGams.cmdRunGams_Click
Iter = 1
End Sub

CEO GAMS PROGRAM
.. GAMS OPTIMIZER THAT DICTATES OPTIMAL PROFILES FOR R AND V FOR THE
PROCESS

* DECLARE TITLE
$TITLE Control to Economic Optimum

* MAKE GAMS CASE·INSENSITIVE
$OFFUPPER
.. SET OTHER PROGRAM OPTIONS
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$OFFSYMXREF OFFSYMLlST
$OFFDIGIT
• (SEE APPENDIX B FOR DEFINITION OF KEYWORDS)

================-----.-- .- ====================================:=========
• DECLARE SETS

.=========================================================================
SETS K equation # (max 10) IK1 *K71

I finite elements # (max 20) 111 *1201
J collocation coeH. # IJ1*J61
COL # possible coil pt (max 4) IC1*C41

ALIAS (K,KP)
(J,JP,JJ,JS) ;

*======================================================,============
• DECLARE SCALARS AND SET FLAG OPTIONS

*=======================================--=================================
SCALARS NK actual # of equations 171

NFE actual # of FE used 121
NCOl actual # coil. pt used 12/;

SCALAR NCOF equal to ncol+1 ;
NCOF = ncol+1 ;
SCALAR NCOT equal to ncol+2

• SEE APPENDIX A FOR COLLOCATION MODEL DEVELOPMENT

F FEED FLOW RATE
ML MATERIAL ON TRAY
MLB MATERIAL IN BOnOMS
MLD MATERIAL IN DRUM
RElVOL RELATIVE VOLATILITY
PMM1 process model mismatch between process and collocation model for variable x(s1,t)
PMM2 process model mismatch between process and collocation model for variable x(s2,t)
PMM3 process model mismatch between process and collocation model for variable x(s3,t)
PMM4 process model mismatch between process and collocation model for variable x(s4,t)
PMM5 process model mismatch between process and collocation model for variable x(s5,t)
PMM6 process model mismatch between process and collocation model for variable x(s6,t)
PMM7 process model mismatch between process and collocation model for variable x(s7,t)
xf feed composition;
relvol = 2.0;

=============================================:===========================
• ASSIGN CURRENT PROCESS VALUES AND VALUES FOR PROCESS MODEL MISMATCH

*=========================================================================
F = 100

XF = 0.48
ML = 10
MLB = 100
MLD = 100
PMM1= 0
PMM2= 0
PMM3= 0
PMM4 = 0
PMM5= a
PMM6= 0
PMM7= 0
NCOT = ncol+2 ;

146



*==============================================--=====--====================
• DEFINE DIMENSIONS FOR COLLOCATION COEFFICIENTS, CONTROL VARIABLES,
LAGRANGE POLYNOMIAL BASIS FUNCTION PHI, ITS DERIVATIVE PHIPR, ERROR
APPROXIMATION EQUATIONS, FINITE ELEMENT LENGTH EQUATIONS, CONTROL
PROFILES, END CONDITION EQUATIONS
.====================================--====================================
SET SXCOL(k,i,jp) actual dim of call. coeff. (XCOL) ;

SXCOL(k,i,jp) = YES $ ( (ORO(k) LE nk) $ (ORD(i) LE nfe)$ (OROUp) LE ncof) ) ;
SET SU(i,j) actual dim of control variable;

SU(i,j) =YES $ ( (ORO(i) LE nfe) $ (OROO) GT 1)$ (ORO(j) LE ncot) ) :
SET SPHIPRU,jp) actual dim of PHIPR ;

SPHIPRU,jp) = YES $ ( (OROG) GT 1) $ (OROG) LE ncot)$ (ORDUp) LE ncof) ) ;
SET SOPHIUp) actual dim of dominator of PHI;

SOPHI(jp) =YES $ ( (OROUp) LE ncof) ) ;
SET SRES(i,j) actual dim of residual eq ;

SRES(i,j) =YES $ ( (ORD(i) LE nfe) $ (ORDO) GT 1)$ (ORDO) LE ncof) ) ;
SET SERR(i,j) actual dim of error eq ;

SERR(i,j) =YES $ ( (ORD(i) LE nfe)$ (ORO(j) EO ncot) ) ;
SET SALF(i) actual dim of alpha;

SALF(i) =YES $ (ORD(i) LE nfe) ;
SET SUPRO(i) dim of contol profile:

SUPRO(i) = YES $ (ORD(i) LE nfe) ;
SET SXENO(k,i) end condition for state variables;

SXENO(k,i) =YES $ ( (ORO(k) LE nk) $ (ORD(i) EQ nfe) ) ;
SET SCONT(k,i) actual dim of continuity eq ;

SCONT(k,i) = YES $ ( (ORO(k) LE nk) $ (ORD(i) GT 1)$ (ORO(i) LE nfe) ) ;
=========================================================================

* DECLARE PARAMETERS
*=========================================================================
PARAMETERS TAU(jp) tau at specified ncol SEE EQUATION (3-6)

PHIPRU,jp) 1-st deriv of phi
alpha(i) finite element length
OPHIUp) dominator of phi;

SET AT ALPHA('11') =ALPHA('12') = 4 SEE DISCUSSION IN SECTION 6.4.1.2
alpha('i 1') =4 ;
alpha('i2') = 4 ;

*=============--===========================================================
* SET THE ROOTS OF THE LAGRANGE POLYNOMIALS:
*=========================================================================

1.
.9305681558

.788675134594813
.5

.3300094783
J5

+
C4

C1
C2
C3
C4

TABLE GENTAU(col,jp) the roots of Lagrange polyn.
J2 J3

.5 1.

.2113248654051 87

.1127016653792585

.0694318442
J4
1.
.8872983346207415
.6699905218

J6
1. ;

+
C2
C3
C4
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-=- -==============================================================
.... Assign tau according to the specified NCOl
TAUUp) $ ( ORDUp) LE neat) = gentau('C1',jp) $(ncol EQ 1) + gentau('C2',jp) $(ncol EQ 2) +
gentau('C3',jp) $(ncol EQ 3) + gentau('C4',jp)'$(ncol EQ 4) ;

* Calculate DPHI (needed for calculating PHIPR)
DPHI(JP) $ SDPHI(JP) = PROD(J $ ( (ORD(J) LE neaf) $ (ORD(J) NE ORD(JP)) ),(TAU(JP) ­
TAU(J») ;

* Calculate PHIPR (1-st derivative of PHI)
PHIPR(J,JP) $ SPHIPR(J,JP) = SUM (JS $ ( (ORD(JS) LE ncof) $ (ORD(JS) NE ORD(JP) ),

PROD(JJ $ «ORD(JJ) LE ncof) $ (ORD(JJ) I\JE ORD(JP»$ (ORD(JJ) NE ORD(JS» ), (TAU(J) ­
TAU(JJ» » 1DPHI(~IP) ;

===========================================~============--===============
• DECLARE VARIABLES
*=========================================================================
VARIABLES XCOL(k,i,ip) collocation coefficients

XEND(k,i) state variable at the end condition
L(I,J) REFLUX FLOW
V(I,J) VAPOR FLOW RATES
OBJ objective function;

--------------------------------------------------------------------------------------------------------------------------------------------------
• DECLARE EQUATIONS

--------------------------------------------------------------------------------------------------------------------------------------------------
EQUATIONS ERES1(i,j) residual equations from EQUATION 4-12a & r(t[i,j]) in
EQUATIONS 3-9

ERES2(i,j) residual equations from EQUATION 4-12b & r(t[i,j]) in EQUATIONS 3-9
ERES3(i,j) residual equations from EQUATION 4-12c & r(t[i,j]) in EQUATIONS 3-9
ERES4(i,j) residual equations from EQUATION 4-12d & r(t[i,j]) in EQUATIONS 3-9
ERES5(i,j) residual equations from EQUATION 4-12e & r(t[i,j]) in EQUATIONS 3-9
ERES6(i,j) residual equations from EQUATION 4-12f & r(t[i,j]) in EQUATIONS 3-9
ERES7(i,j) residual equations from EQUATION 4-129 & r(t[i,j]) in EQUATIONS 3-9
ECONT(k,i) continuity equations from EQUATION (3-8)
Ello(i) Lower limit for Reflux Control Profile from Table 6-2 for RL
Elup(i) Upper limit for Reflux Control Profile from Table 6-2 for RU
Evlo(i) Lower limit for Vapor Boilup Control Profile from Table 6-2 for VL
Evup(i) Upper limit for Vapor Boilup Control Profile from Table 6-2 for VU
EXEND(k,i) end conditions
EOBJ objective function;

--------------------------------------------------------------------------------------------------------------------------------------------------
• SEE APPENDIX 0 FOR FOR FUR"rHER EXPLANATION OF EACH EQUA1"ION
------------------------------------------------------------------ ---------------------------------------------
• residual equations from EQUATION 4-12a & r(t[i,j]) in EQUATIONS 3-9
• Component balance Equation for Reboiler Collocation Point

ERES1 (i,j) $ SRES(i,j) ..
MLB'OSUMUp $ (GRO(jp) LE neof), XCOL('K1',i,jp)*PHIPRU,jp) ) - ALPHA(i) *
«L(I,J)+F)*« 112)*XCOL('K1 ',I,J)+(1 12)*XCOL('K2', I,J))-(L(I ,J)+F-V(I,J))*XCOLCK1 ',I,J)­
V(I,J)*(RELVOL*XCOL('K1',I,J)/(1 +(RELVOL-1 )*XCOL('K1 ',I,J)))) =E= 0 ;

• residual equations from EQUATION 4-12b & r(t[i,j]) in EQUATIONS 3-9
• Component balance Equation for Collocation Point 1 in Stripping Section
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ERES2(i,j) $ SRES(i,j) .,
Ml"SUMUP $ (OROUp) LE neaf), XCOL('K2',i,jp)*PHIPRU,jp) ) - ALPHA(i) "
«L(I,J)+F)*«5/8)*XCOL('K2',I,J)+(5/8)*XCOL('K3',I,J)+(-1/4)*XCOL('K4',I,J»­
(F+L(I,J»*XCOL('K2',I,J)-V(I,J)*(RELVOl*XCOl('k2' ,I,J)/(1 +(RELVOL-
1)*XCOL{'K2',I,J)))+V(I,J)*«5/12)*(RELVOL*XCOL('K1 ',I,J)/(1 +(RELVOL-
1)*XCOL('Kl', I,J»)+(5/8)*(RElVOL*XCOL('K2',I ,J)/(1+(RELVOL-l )*XCOL('K2' ,I,J»)+(­
1/24)*(RELVOL*XCOL('K3'.I,J)/(1 +(RELVOL-1)*XCOL('K3',I,J»))) =E= 0 ;

" residual equations from EQUATION 4-12c & r(t[i,j}) in EQUATIONS 3-9
" Component balance Equation for Collocation Point 2 in Stripping Section
ERES3(i,j) $ SRES(i,j) ..
ML*SUMUp $ (OROUp) LE neat), XCOL('K3',i,jp)*PHIPRU,jp) ) - ALPHA(i) *«L(I,J)+F)*«-
1/24)"XCOL('K2' ,I,J)+(5/8)*XCOL('K3',1,J)+(5/12)*XCOL('K4',I ,J))-(F+L(I,J))*XCOL('K3',I ,J)­
V(I,J)"(RELVOL"XCOl('K3',I,J)/(1 +(RELVOL-l )"XCOL('K3' ,I,J»)+V(I,J)*«­
1/4)*(RELVOL"XCOL('K1 ',I,J)/(l +(RELVOL·
1)*XCOL('K1 ',I,J»)+(5/8)*(RELVOL*XCOL('K2',I,J)/(1+(RELVOl·
1)*XCOl('K2',I,J»)+(5/8)*(RELVOL*XCOL('K3' ,I,J)/(1 +(RELVOl-1 )*XCOL('K3',I,J»») =E= 0 ;

" residual equations from EQUATION 4-12d & r(t[i,j]) in EQUATIONS 3-9
" Component balance Equation for Feed Tray Collocation Point
ERES4(i,D $ SRES(i,j) ..
ML"SUMUp $ (OROUp) LE neat), XCOL('K4',i,jp)*PHIPR(j,jp) ) - ALPHA(i) "
«L(I ,J»*«l /2)*XCOL('K4', I,J)+(l /2)*XCOL('K5', I,J»-(F+L(I,J» *XCOL('K4', I,J)+F"XF­
V(I,J)*(RELVOL*XCOL('K4',I,J)/(1 +(RELVOL-
1)"XCOL('K4', I,J)))+V(I,J)*«l /2)*(RElVOL*XCOL('K3' ,I,J)/(l +(RELVOL­
1)*XCOL('K3',I,J)))+(1/2)*(RElVOL*XCOL{'K4',I,J)/(1+(RELVOL-1 )*XCOL('K4',I,J»)))) =E= 0 ;

" residual equations from EQUATION 4·12e & r(t[i,j]) in EQUATIONS 3-9
" Component balance Equation for Collocation Point 1 in Enriching Section
ERES5(i,j) $ SRES(i,j) _.
ML*SUMUp $ (OROUp) LE neat), XCOLCK5',i,jp)*PHIPRU,jp) ) - ALPHA(i) *
«L(I,J))*((5/B)*XCOL('K5', I,J)+(5/8)"XCOL('K6',I,J)+(-1/4) *XCOL('KT,I ,J))-l(l,J)*XCOL('K5', I,J)­
V(I,J)*(RELVOL*XCOL('K5',I,J)/(1 +(RELVOL-
1)*XCOL('K5',I,J»)+V(I,J)*«5/12r(RELVOL*XCOL('K4',I,J)/(1 +(RELVOL-
1)*XCOL('K4',I,J»)+(5/8)*(RELVOL"XCOL('K5',I.J)/(1 +(RELVOL-l )*XCOL('K5'.I,J»)+(­
1/24)"(RELVOL*XCOL('K6',I,J)/(1+(RELVOL-l)*XCOL('K6',I,J»») =E= 0;

" residual equations from EQUATION 4-121 & r(t[i,j}} in EQUATIONS 3·9
" Component balance Equation for Collocation Point 2 in Enriching Section
ERES6(i,j) $ SRES(i,j) ..
ML*SUMUp $ (ORO(jp) LE neat), XCOL('K6',i,jp)*PHIPRU,jp) ) - ALPHA(i) * «L(I,J»*«­
1/24)"XCOl('K5' ,I,J)+(5/8)*XCOL('K6', I,J)+(5/12)*XCOL('KT,I,J»-L(I,J)*XCOL('KS', I,J)­
V(I,J)"(RELVOL*XCOL('KS',I,J)/(l +(RELVOL-1 )*XCOLCK6',I,J»)+V(I,J)*«­
1/4)"(RELVOL*XCOL('K4',I,J)/(1+(RELVOL-
1)"XCOLCK4' ,1,J)))+(5/B)*(RELVOL*XCOL('K5',I,J)/(1 +(RELVOL-
1)"XCOLCK5',I,J»)+(5/B)*(RELVOL*XCOL('K6',I,J)/(1 +(RELVOL-1 )*XCOL('K6',I,J»») =E= a ;

" residual equations from EQUATION 4-12g & r(t[i,j]) in EQUATIONS 3·9
" Component balance Equation for Accumulator Collocation Point
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ERES7(i,j) $ SRES(i,j) ..
MLO*SUMOp $ (OROUp) LE neof), XCOLCK7',i,jp)*PHIPRO,jp) ) - ALPHA(i) * (­
L(I ,J)"XCOLCKT, I,J)-(V(I,J)-
L(I ,J»*XCOL('KT, I,J)+V(I,J)"«1/2)*(RELVOL*XCOLCK6', I,J)/(1 +(RELVOL-
1)*XCOL('K6' ,1,J}))+(1I2)*(RELVOL*XCOL('K7', I,J)/(1+(RELVOL-1 )"XCOL('KT,1,J»))) =E= 0 ;

* Continuity Equation from Equation 3-8
ECONT(k,i) $ SCONT(k,i) ..
XCOL(k,i,'J 1') =E= SUMU $ (OROO) LE neof), XCOL(k,i-1 ,j)*PROD(jp $ (ORDUp) NE OAD(j) AND
OROUp) LE neof), ( (1.0 - tauUp»/(tauU) - tau(jp» ) ) ) ;

* Lower limit for Reflux Control Profile from Table 6-2 for RL
EVLO(i) $ SUPRO(i) ..
SUMUp $ (OROUp) GT 1 AND ORDUp) LE neot), V(i,jp)* PROD(js $ (ORD(js) NE ORDUp) AND
ORDUs) GT 1 AND ORDUs) LE neot), ( (0 - tauUs»/(tauUp) - tauUs» ) ) ) =G= 130 ;

* Upper limit for Reflux Control Profile from Table 6-2 for RU
EVUP(i) $ SUPRO(i) ..
SUMUP $ (ORO(jp) GT 1 AND ORDUp) LE neat), V(i,jp)* PROOUs $ (ORD(js) NE ORD(jp) AND
ORDOs) GT 1 AND ORDOs) LE neot), ( (1.0 - tauUs»/(tau(jp) - taufjs» ) ) ) =L= 190 ;

* Lower limit for Vapor Boilup Control Profile from Table 6-2 for VL
ELLO(i) $ SUPRO(i) ..
SUMUp $ (ORDUp) GT 1 AND ORDUp) LE neat), L(i,jp)" PROOUs $ (ORDUs) NE ORDUp) AND
ORDUs) GT 1 AND ORDUs) LE neot), ( (0 - tauUs»/(tau(jp) - tauOs)) ) ) ) =G= 100 ;

* Lower limit for Vapor Boilup Control Profile from Table 6-2 for VL
ELUP(i) $ SUPRO(i) ..
SUMUp $ (ORDUp) GT 1 AND OROUp) LE neat), L(i,jp)* PROOUs $ (ORDUs) NE ORO(jp) AND
ORO(js) GT 1 AND ORDUs) LE neof), ( (1.0 - tauUs»/(tauUp) - tau(js» ) ) ) =L= 150 ;

* end condition equations
EXENO(k,i) $ SXENO(k,i) ..
XCOL(k,i+1,'J1') =E= SUMU $ (ORDOl LE neat), XCOL(k,i,j)* PRODUp $ (OROUp) NE OROO)

AND ORDUp) LE neot), ( (1.0 - tauUp»/ (tauU) - tauUp» ) ) ) ;
*

* the objective function - See Appendix -0
EOBJ ..
OBJ =E= SUM(I $(ORO(I) LE NFE), «6.12*(V(I,'J2')-
L(I, 'J2'»*(XCOL('KT,I,'J2')+PMM7)+0.95*(L(I,'J2')+F-V(I,'J2'»*(1-(XCOL('K1', l,'J2')-PMM 1»­
0.002*V(I,'J2')-0.001*L(i, 'j2'»*(O.211 *ALPHA(I»+

(6. 12*(V(I, 'J3')-L(I, 'J3') )*(XCOL('KT, I, 'J3')+PMM7)+O.95*(L(I, 'J3')+F­
V(I,'J3'»*(1-(XCOL('K1 ',I,'J3')-PMM1 »-0.002*V(I,'J3')-0.001 *L(i,'j3'»*(0.679*ALPHA(I»)))+

(6.12*(EVUP.L('11 ')-
ELUP.L('11 '»)*(XCOL('KT ,'12','J1 ')+PMM7}+0.95*(ELUP.L('11 ')+F-EVUP.L('11 '»*(1-(XCOL('K1 ','12',
'J1 ')-PMM1 }}-O.002*EVUP.L('11 ')-0.001 *ELUP.L('11 '»*(0.211*alphaCi1 '»+

(6.12*(EVUP.L('12')-
ELU P.L('12'})*(XCOL('KT, '13','J1'}+PMM7)+o.9S*(ELUP.L('12'}+F-EVUP.L('12'»*(1­
(XCOL('K1 ','13','J 1')-PMM1 »-0.002*EVUP.L('12'}-0.001*ELUP.L('12'»)*(0.211 *alpha('i2'»;
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====.===========--====================---========--======
• SET BOUNDS FOR ALL COLLOCATION COEFFICIENTS AND CONTROL VARIABLES
• ==========================================

XCOL.LO('K1',I,JP)$ SXCOL('k1',i,jp) = 0.04;
XCOl.UP('K1',I,JP)$ SXCOL('k1',i,jp) =0.09;
XCOL.LO('K2',I,JP)$ SXCOL('k2',i,jp) = 0.09;
XCOL.UP('K2',I,JP)$ SXCOL('k2',i,jp) = 0.22;
XCOL.LO('K3',I,JP)$ SXCOL('k3',i,jp) = 0.20;
XCOL.UP('K3'.I,JP)$ SXCOL('k3',i,jp) =0.40;
XCOL.LO('K4'.I,JP)$ SXCOL('k4',i,jp) =0.35;
XCOL.UP('K4',I.JP)$ SXCOL('k4',i,jp) =0.52;
XCOL.LO('K5',I,JP)$ SXCOL('k5',i,jp) = 0.5;
XCOL.UP('K5',I,JP)$ SXCOL('k5',i,jp) = 0.75:
XCOL.LO('KS',I,JP)$ SXCOL('kS',i,jp) =0.7;
XCOL.UP('KS',I,JP)$ SXCOL('k6',i,jp) = 0.935;
XCOL.LO('KT,I,JP)$ SXCOL('kT,i.jp) =0.95 ;
XCOL.UP('KT,I,JP)$ SXCOL('kT,i,jp) = 0.98 :
L.LO(i,j)$SU(I,J) =100.0;
L.UP(i,j)$SU (I,J) =150;
V.LO(I,J}$SU(I,J) =130.0 ;
V.UP(I,J)$SU(I,J) = 190.0 ;

======================--==================================================
• starting guesses for collocation coefficients
*=========================================================================

XCOL.L('K1 ',I,JP)$ SXCOL('k1',i,jp) = .06;
XCOL.L('K2'.I,JP)$ SXCOL('k2',i,jp) = .18 ;
XCOL.L('K3',I,JP)$ SXCOL('k3',i,jp) = .40 ;
XCOL.L('K4'.I.JP)$ SXCOL('k4',i,jp) = .60:
XCOL.L('K5',I,JP)$ SXCOL('k5',i,jp) = .70;
XCOL.L('KS',I,JP)$ SXCOL('k6',i,jp) = .8 ;
XCOL.L('KT,I,JP)$ SXCOL('k7',i,jp) = .95 ;

=========================================================================
• initial conditions from Process Measurements
*=======================================================================--=
XCOL.FX('K1 ','11','J1'} = 3.331115E-02
XCOL.FX('K2','11','J1') = 9.222243E-02
XGOL.FX('K3','11 ','J1') = 0.3287193
XCOL.FX('K4','11','J1') = 0.4418286
XCOL.FX('K5','11'.'J1') = 0.5336051
XCOL.FX('K6','11','J1') = 0.8142292
XCOL.FX('KT.'11 ','J1 ') = 0.9434926
XCOL.lo('K7','13','J1'} = 0.95;
XCOL.up('KT,'13','J1 ') = 0.98;
XCOL.lo('K1','13','J1') = 0.04;
XCOL.up('K1' ,'13','J1') = 0.09;
ELLO.L('i1') = 114
EVLO.L('11'}= 177
ELUP.L('i1')= 114
EVUP.L('11') = 177

• Initial value of Objective function from Process
Obj.1 = (6.12*(EVLO.L('11 ')-ELLO.L('11'»*(XCOL.I('KT,'11 ','J1 '}+PMM7)+0.95*(ELLO.L('11 '}+F­
EVLO.L('11')}*(1-(XCOL.l('K1 ','11 ','J1')-PMM1 »-0.002*EVLO.L('11')-
0.01*ELLO.L('11 '»*(alpha('i1')+alpha('i2')};
*===========================================================--=============
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MODEL PROBLEM2IALU;
SOLVE PROBLEM2 USING NLP MAXIMIZING OBJ;
.===========- ===--=================
• Open Output File and Display Optimum Values
*===================::====================================================

file TRAJ lopt.gmsl ;
Put TRAJ ;
Traj.nd =4;
PU1 @1, 'O",'EVLO.I('11')','ELLO.I('11')/;
Put @ 1, (alpha('l1 ')*0.211)' ,'V.I('11' ,'J2')','L.I('11' ,'J2') I;
Put @ 1, (alpha('i1 ')'*0.789)','V.1('11', 'J3')' ,'L.I('11' ,'J3') I;
Put @1, ALPHA('11 ')','EVUP.I('11 ')','ELUP.I('I 1')/;
Put @1, (ALPHA('11')+0.01 )','EVLO.I('12')','ELLO.I('12')/;
Put @1, (alpha('i1 ')+0.211 *ALPHA('12'))','V.I('12', 'J2')', 'L.I('12', 'J2') I;
Put @1, (alpha('i1 ')+O.789*(alpha('12')))','V.I('12','J3')','L.I('12','J3') I;
Put @1, (alpha('i1')+ALPHA('12'))' ,'EVUP.I('12')' ,'ELUP.1('12')/;
Put @1, XCOL.l('K1', '11',
'J2')' ,'XCOL.l('K2','11','J2')','XCOL.l('K3','11', 'J2')' ,'XCOL.l('K4','11','J2')' ,'XCOL.l(' KS','11','J2')' ,'X
COL.I('K6' ,'11','J2')','XCOL.l('K7','11','J2')/;
•
============================--============================================
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PI CONTROL

Declare the following variables (arrays as appropriate)

I

Nt
Nf
X (i)
XO(i)
Y(i)
L(i)

Lo(i)
Mdot(i)
Mxdot(i)
M(i)
MO
MbO
MdO
Zf
F
Vb, Yd
Xb,Xd
Beta
Alpha
B
V
R
D
delta
Tim
Upd
KeD, TauD
KcB, TauB
Tprint
Iteration
objExcel

Tray number
Number of trays
Feed tray location
Liquid phase compositions on a given tray
Initial liquid phase compositions on a given tray
Vapor phase compositions on a given tray
Liquid flow rate leaving a given tray
Initial liquid phase inventories on a given tray
Material balance derivatives on a given tray
Component balance derivative on a given tray
Inventory on a given tray
Initial inventory on a given tray
Bottom sump inventory
Reflux drum inventory
Feed composition
Feed flow rate
Bottoms and distillate vapor composition
Bottoms and distil!ate liquid composition
Tray hydraulic time constant
Relative volatility
Bottoms flow rate
Vapor flow rate
Reflux flow rate
Distillate flow rate
Integration step size
Process Time
Dummy variable to keep track of real time
Distillate Composition Controller Tuning parameters
Bottom Composition Controller Tuning parameters
Time step fot printing results
Overall iteration number
Excel spreadsheet object for graphical display

Private Sub cmdPIControl_ClickO
Set objExcel =OLE1.0bject
Errintb =0
Errintd = a
iter =0

Rem The Model is described below:

Rem Assumptions:
Rem· Constant relative volatility
, - Equimolal overflow
I _ Theoretical trays
I _ Simple tray hydraulics

I Inital Conditions - Open Input file and receive inlet conditions

Open App.Path & IlinputPI1.txt" For Input As #1
Input #1. Nt, Nt, MdO, Mba, MO, RO, va, Beta, Alpha
Close #1

153



F =100
Xbset = 0.04
Xdset =0.96
tim =D
'Tprint = 0

Open App.Path & "linputPI2.txt" For Input As #2
Input #2, Xb
For i = 1 To Nt
Input #2, X(i)
Next i
Input #2, Xd
Close #2

Open App.Path & "/inputPI3.txt" For Input As #3
Input #3, Ked, Keb, TauD, TauS, delta
Close #3
Tprint =0
delta = 0.01

ZF = 0.48

, Initial Conditions
For i =1 To Nt
M(i):;;; MO
MX(i) =M(i) - X(i)
LO(i) =RD + F
If (i > Nt) Then

LO(i) =RD
End If
Next i

I Display Conditions in Interlace
pieR.Cls
pieR. Print RD
pieFeed.Cls
picFeed.Print F
PieFeedComp.Cls
PieFeedComp.Print ZF
pieB.Cls
pieS. Print L(1) - VO
pieD.Cis
pieD. Print VO - RO
pieS.Cls
pieS.Print VO

, Tray hydraulics and VLE

10 For I :;;; 1 To Nt
L(I) =LO(I) + (M{I) - MO) I Seta
Y(I) =alpha" X(I) I (1 + X(I»
Next I

Yb =alpha- Xb 1(1 + Xb)
Yd =alpha * Xd / (1 + Xd)
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I Two feedback controllers
ErrB =Xbset - Xb
ErrD =Xdset - Xd

If tim <= 0.5 Then
V=VO
R =RO

Else
V = VO - Kcb • (ErrB + Errintb / TauB)
R =RO + Ked· (ErrO + Errintd / TauD)

End If

, PI CONTROL ALGORITHM
, PI CONTROL ALGORITHM

I Assuming perfect level controllers in column base and reflux drum
D =V - R 'EQUATION (4-4) WITH ACCUMULATION TERM =0
B =L(l) - V EQUATION (4-7) WITH ACCUMULATION TERM =0

, Check for validity of R and V
If «R < 0) Or (V < 0) Or (0 < 0) Or (B < 0)) Then

GaTa 100
End If

I Evaluate Derivatives and Tray Temperatures
I Step 1: for Bottoms
Xbdot = (L(l) • X(l) - V· Yb - B· Xb) / MbO

I Step 2a: for first tray
Mdot(l) =L(2) - L(1)
F(1) =0
MXdat(l) =V· (Yb - Y(l» + L(2)· X(2) - L(l)· X(1)'
F(l) =0

EQUATION (4-8)

EQUATION (4-1) FOR TRAY 1 WITH

EQUATION (4-2) FOR TRAY 1 WITH

, Step 2b: Stripping section trays
For I = 2 Ta Nf - 1
Mdat(l) =L(I + 1) - L(l) EQUATION (4-1) FOR TRAYS 2-7 WITH F(l) =0
MXdat(l) =V' (Y{I- 1) - Y(I» + L{I + 1) • X(I + 1) - L(I)· X{I)

, EQUATION (4-2) FOR TRAY 2-7 WITH F(I) =0
Next I

I Step 2c: Feed Tray
Mdat{Nf) = L(Nf + 1) - L{Nf) + F
, EQUATION (4-1) FOR TRAY Nf
Mxdot(Nf) =V • (Y(Nf - 1) . Y(Nf» + L(Nf + 1) • X(Nf + 1) - L(Nf) • X(Ni) + F • Zf

, EQUATION (4-2) FOR TRAY Nf

, Step 2d: Enriching section trays
For I = Nf + 1 Ta Nt - 1
Mdat(l) =L(I + 1) - L(I) EQUATION (4-1) FOR TRAY 9-14 WITH F(i) = 0
Mxdot(l) = V· (Y(I - 1) - Y(I» + L{I + 1)· X(I + 1) - L(I)· X(I)

, EQUATION (4-2) FOR TRAY 9-14 WITH F(i) =0
Next I
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, Step 2e: Top Tray
Mdot(Nt) = R - L(Nt)

EQUATION (4-1) FOR TRAY Nt WITH F(i) =0
MXdot(Nt) = V * (Y(Nt - 1) - Y(Nt» + R * Xd - L(Nt) * X(l'Jt)

, EQUATION (4-2) FOR TRAY Nt WITH F(i) =0

, Step 3: Reflux Drum
Xddot = V • (Y(Nt) - Xd) / MdO EQUATION (4-5)

I Print current conditions in the Excel Spreadsheet object
If tim < Tprint Then GoTo 20
ole1.Action =7
objExcel.worksheets(*Process Values").Cells(lter + 2, 1).Value =tim / 12 'output Time
objExcel.worksheets("Process Values").Cells(lter + 2, 2).value =Xd ' Distillate compositions
objExcel.worksheets("Process Values").Cells(lter + 2, 3).Value =Xb ' Bottom compositions
objExeel.worksheets("Process Values").Cells(lter + 2, 4).Value = R ' Reflux flow rates
objExeel.worksheets("Process Values").Cells(lter + 2, 5).Value = V ' Vapor boilups
objExeel.worksheets("Proeess Values").Cells(lter + 2, 6). Value = (6.12 * (V - R) * Xd + 0.95 * (F +
R - V) * (1 - Xb) - 0.002" V - 0.001 • R) , output Current Profit

Print #4, tim; Tab(10); Xb; Tab(20); X(10); Tab(30); Xd; Tab(40); R; Tab(50); V

Iter = Iter + 1
Tprint = Tprint + 0.05

• Update Results
pieR.Cls
pieR. Print R
pieFeed.Cls
pieFeed.Print F
PieFeedComp.CIs
PicFeedComp.Print ZF
pieB.Cls
pieB.Print B
pieD.Cls
pieD. Print D
pieS.Cls
pieS. Print V
Tprint = Tprint + 0.05

, Euler Integration
20 tim = tim + delta
tim =Round(tim, 3)
Xb = Xb + delta * Xbdot

For 1= 1 To Nt
M(I) =M(I) + Mdot(l) • delta
tray
MX(I) = MX(I) + Mxdot(l) • delta '
X(I) = MX(I) / M(I) ,

If X(I) < 0 Or X(I) > 1 Then
GaTa 100

End If

Update iteration number
Update print time

Step forward in time

Integrate the Bottoms Component Material Balance

Integrate the Total Material Balance Equation for each

Integrate the Component Material Balance for each tray
Update tray liquid compositions
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Next I

Xd == Xd + Xddot • delta
Errintd == Errintd + ErrD • delta
Errintb == Errintb + ErrB • delta

Integrate reflux drum Component Material Balance
, Integrate Error

100 message = MsgBox("Level too low or composition unreal! OJ, vbOKCancel, Alert)
, Provide alert in case of inconsistent conditions

picStatus.Cls
picStatus.Print tim
'If ((tim> 1#) And (tim < 1.00012)) Then
, picFeed.Print Zf
, Zf == Zf + 0.1 • Zf

PicFeedComp.Print Zf
, n == MsgBox("Feed Composition change", vbOKOnly, "Alertl ")

'End If

If (tim < 40) Then GoTo 10 Else GoTo 30

100 picStatus. Print "Level too low or composition unreal"

Close #4

30 End Sub
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ONLINE OPTIMIZATION - VB CODE

REM: THE CODE FOR ONLINE OPTIMIZATION IS THE SAME AS FOR PI CONTROL
REM: THE ONLY EXTRA CODE IS·TO CALL THE OPTIMIZER AS GIVEN BELOW

If tim / 12 = Int(tim / 12) Then . IF IT IS TIME TO RUN OPTIMIZER THEN (1 HR)

CALL VBGAMS OPTIMIZER
Call Optimize_conditions
Open "C:\Gams\onli.gms" For Input As #8
Input #8, Ropt, Vopt, Xbsetopt, Xdsetopt
Close #8

UPDATE SETPOINTS FOR XB AND XD

Xdset = Xdsetopt
Xbset = Xbsetopt

LOOP BACK TO PI CONTROL LOOP
GoTo 25

End If
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ONLINE OPTIMIZATION - GAMS PROGRAM

* DECLARE TITLE - ONLINE OPTIMIZATION
==============================--=======:==;==;========

$ TITLE ONLINEOPT

=====================================================
DECLARE SETS

=====================================================

SETS
I TRAY NUMBER /1 * 15/
TOP(I) Top TRAY
ENR(I) ENRICHING SECTION TRAYS
FEED(I) FEED TRAYS
STR(I) STRIPPING SECTION TRAYS
BOT(I) COLUMN BOnOMS;
TOP(I) = YES $(ORD(I) EO 15);
ENR(I) =YES $«ORD(I) LE 14)$(ORD(I) GE 9));
FEED(I)= YES $(ORD(I) EO 8);
STR(I) = YES $«ORD(I) LE 7)$(ORD(I) GE 2));
BOT(I) =YES $(ORD(I) EO 1);
=====================================================

DECLARE SCALARS
===============================================:;====

SCALARS
Alpha RELATIVE VOLATILITY
F FEED
ZF FEED COMPOSITION;
ALPHA = 2;
F = 100;
ZF = 0.456;
=====================================================

DECLARE VARIABLES
=====================================================

VARIABLES
Xd Top COMPOSITION
Xb BOnOM COMPOSITION
Y(I) VAPOR COMPOSITIONS
Yb REBOLIER VAPOR COMPOSITION
V VAPOR BOILUP
R REFLUX
PROF PROFIT;
===-===================.============================

* DECLARE EQUATIONS
==============================================~======

-

EQUATIONS
OMB
CMBACCU(I)
CMBTOP(I)
CMBEN(I)
CMBF(I)
CMBST(I)
CMBBOT
OBJ

OVERALL MATERIAL BALANCE
OVERALL MATERIAL BALANCE IN THE ACCUMULATOR
COMPo BALANCE IN TOP TRAY
COMPo BALANCE IN ENRICHING SECTION
COMP BALANCE IN FEED TRAY
COMPo BALANCE IN STRIPPING SECTION
COMPo BALANCE IN BOnOMS
OBJECTIVE FUNCTION;
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REBEQ EQUILIBRIUM IN REBOILER

*
=====~~======================================;=======

DEFINE EQUATIONS -- EQUATIONS (5-7) PAGE 70
=====================~===============================

CMBACCU(I)$TOP(I) ..
XD =E= Y(I);

OMB..
F"ZF =E= (V-R)*XD + (R+F-V)'XB;
CMBTOP(I-1) $TOP(i) ..
Y(I- 1) =E= (V" Xd - R ' Xd + R '(Xd I (Alpha - (Alpha - 1) 'Xd» ) I V;

CMBEN(I-1) $ENR(I) ..
Y(i - 1) =E= (V" Y(i) - R *(Y(i+1) I (Alpha - (Alpha - 1) .. Y(i+1») + R • (Y(i) I (Alpha - (Alpha - 1) •

Y(i»))) I V;
CMBF(I-1) $FEED(I) ..
Y(I - 1) =E= (V" Y(I) - R • (Y(I+1) I (Alpha - (Alpha - 1) .. Y(I+1») + (R + F) *(Y(I) I (Alpha - (Alpha
-1)" Y(I») - F * 2t) IV;
CMBST(I-1 )$STR(I) ..
Y(i -1) =E= (V' Y{i) - (R + F)" (Y(i+1) I (Alpha - (Alpha -1)' Y(i+1})) + (R + F)" (Y(i) I (Alpha­

(Alpha - 1) " Y(i)))) / V;
CMBBOT..
Xb =E= «R+F)"(Y('2')/(ALPHA-(ALPHA-1 )"Y('2'»)-V"Y('1 '))1 (R+F-V) ;
REBEQ..
Yb = Xb"Alpha/(1 +(Alpha-1 )*Xb)

=====================================================
DEFINE OBJECTIVE FUNCTION

=====================================================

OBJ..
PROF =E= 6.12*(V-R)"XD+0.9S*(R+F-V)*(1-XB)-0.002*V-0.001"R;

=====================================================
* DECLARE BOUNDS
==============================~======================

XB.LO = 0.04;
XB.UP = 0.08;
XD.LO = 0.95;
XD.UP = 0.98;
R.LO = 110;
R.UP = 150;
V.LO = 160;
V.UP =190;
Y.UP('15')= 0.98;
R.L = 134.26;
V.L = 178.7489;
XD.L = 0.9593144;
XB.L = 3.980564E-02;

*=====================================================

MODEL ONLINEOPT /ALU;
SOLVE ONLINEOPT USING NLP MAXIMIZING PROF;
*=====================================================
* OUTPUT RESULTS
*=====================================================



file onli /onli.gms/ ;
Put onli ;
onli.nd =4;
Put @1, R.U;
Put @1, V.U;
Put @ 1, Xb.U;
Put @1, Xd.U;
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APP·ENDIX - G

SUMMARY OF TECHNICAL INPUT FROM INDUSTRY

To better understand the requirements of industry, and to appreciate the practice

of control in industry, it was decided to seek help from people working in industries that

are part of the Measurement, Control and Engineering Center, the symposium which is

the project sponsor. The following questions mainly aimed at understanding the method

of online optimization in practice in the industry were asked.

1) Does your company do any kind of optimization?

2) If no, on what basis are the setpoints changed and at what frequency?

3) If yes, how frequently do you update setpoints?

4) Is the optimizer "on" all the time or are there times when it is turned "oW?

5) Is the optimizer kept "on" even during start-up and pre-shutdown periods?

6) What algorithms/software do you use for optimization?

7) What algorithms/software do you use for model parameter updating and data
reconciliation?

8) Is the optimization on a plantwide basis or on a process-to-process basis?

These questions were asked of several MCEC members and the responses were

surveyed for deciding future directions. The answers from the majority of

industrialists were as follows:

1) Yes, on selected applications

2) For applications not on optimizers, the setpoints are changed on the basis of

Product specrfications requirements

Disturbances
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Feedstock changes

The frequency of updates varies from once to twice daily to once weekly

3) For applications on optimizers, setpoints are changed on a more frequent basis.

depending on the process response time. Setpoints may be changed every few

hours by running the supervisory optimizer

4) There is usually a provision to turn the optimizer "off." This usually happens during

transient periods or at the discretion of the operators. Sometimes, the optimizers

may be taken offline when analyzers are taken out for maintenance

5) Optimizers are rarely kept on during transient periods such as start-up and shutdown

6) The popular software in use include

- RT OPT (AspenTech)

- Profit Max (Honeywell)

- ROMEO (Simsci)

7) Software used for model parameter updating are

RT OPT (AspenTech)

- LSGREG

- MS Excel

8) Optimization is carried out using steady state models on both a process-wide and

plantwide basis

OTHER INPUT FROM MCEC MEETINGS

The original intention of this project was to develop a control optimization scheme,

which would completely eliminate the need for setpoints. This was to be accomplished
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by making the Optimizer directly "write" its optima to valves, which would necessitate

that valve position models be encoded as part of the Optimizer.

Input from industry regarding this was that such an Optimizer would have problems

of maintaining stability, unwarranted complexity, and difficulty in convergence. The

general consensus was that an optimizer determining economic optimal profiles for

manipulated variables and dictating these profiles as setpoints to regulatory controllers

would be more suitable for industrial application. Hence, this was the preferred direction

of approach.

Further, in this study, it was assumed that the feed to the process is fixed by an

upstream unit. Industrial concern regarding this was that companies are always

interested in product maximization, by corresponding feed optimization. This means that

the optimal feed flow should also be a decision to be made by the Optimizer. This is

also an issue that must be included in future studies.

Other input for future directions include application of CEO principles to batch

processes. Input from industry on this issue was that batch problems would be of

smaller size and easier to accomplish in the short run. Some aspects of application of

CEO principles in batch optimization are given in Appendix-H.

We acknowledge all the MCEC members whose valuable suggestions have given

impetus and direction to this project.
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APPENDIX- H

APPLICATION OF CEO PRINCIPLES TO
BATCH REACTOR OPTIMIZATION

The determination of optimal feed rate profiles for batch reactors is an important

control problem, especially in biochemical industries. Some complications are slow

rates of production, low yield of high-value product, nonlinear models, and discontinuous

(bang-bang type) control profiles. Additionally, there could be constraints on both control

(manipulated) and state variables (Cuthrell and Biegler 1989). Some objectives that can

be handled in an optimal control problem are to optimize the time for which the batch is

treated by determining the optimal feed rate policy; to maximize the conversion (yield) of

a particular product; or, in the case of competing reactions, to maximize the rate of a

particular reaction.

Such problems are generally amenable to the dynamic optimization solution

approaches discussed in Chapter 3, speCifically the orthogonal collocation approach

used in the CEO strategy and the control vector parameterization approach. This is

because the mathematical equations describing the system behavior contain DAEs. For

the orthogonal collocation approach, (Cuthrell and Biegler 1989, 1987), both control and

state profiles can be discretized. By leaving the finite element lengths as decision

variables in the Optimizer, it is possible to determine the optimal control profiles, even in

the presence of discontinuities. Other studies (Vassiliadis et al 1994aJb) solve the

optimization problem using the control vector parameterization approach. Here, only the

control variables are discretized and the optimal profile is obtained by checking for

feasibility in a separate integration stage.
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To implement the CEO strategy on a batch process, the same steps as were

used in the study can be used. These include developing a first principles process

simulation and the optimization tools. Then, the optimal profiles can be obtained either

online or off-line and implemented on the simulation. Systematic reoptimization can be

carried out to compensate for process-model mismatch and disturbances (Iyer et al

1999). Parameter adjustment algorithms should also be included to dynamically update

process model parameters (Dhir et al. 2000, Iyer et al 1999)

To summarize, the DAEs in the batch optimization problem can be handled in the

same way as in the CEO approach. Either orthogonal collocation on finite elements or

control vector parameterization can be used to solve the problem.
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APPENDIX-I

BUSINESS CONSIDERATIONS IN THE CEO STRATEGY

The production goals of a company are grouped under several levels. Ogunnaike and

Ray (1994) discuss the activities and objectives of these levels as shown in Fig I -1 :

I. Production goals' -

11. Econorriic
.Scheduling

III. Process -Unit
Optimization

IV. Advanced
Proc~s Control

v: 'SIS0 Regulatory' .
Control

VI. Instruments/
.actuators

VII. Plant

Fig 1-1: Hierarchy of Process Operations

In the CEO strategy, the Optimizer is mainly concerned with Levels III, IV and V. The

reason for this is that in the time-scale in which the Optimizer is run, the parameters in

the higher "business" level do not change and it may be unnecessary to include these in

the "control" level optimization. However, these business objectives may be included in

the CEO optimization problem and a higher level optimization carried out on this larger

time scale, whenever the business parameters (market prices, demand for particular

products. costs of raw materials etc) change. This can be done by including/neglecting
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appropriate terms in the CEO objective function and adding/deleting constraints on

specific variables in the optimization as the situation demands. Some of these scenarios

are given below:

Case 1. Consider the following two cases given below.

1. a)

FEED (F)
PROCESS

A

C

P
R
o
D
U
C
T
S

1. b)

.~
A •PROCESS-A P

R

FEED (F) 0
B

~
D

PROCESS-B U

~
C

C T
PROCESS- C ~ S

The business objectives behind each of these scenarios is different:

In scenario 1a), one has to decide how much of A, Band C to produce and the

optimum F. Here, changes in any of A, Bore affect the production and quality of the

other two products. An example of such a case is a multi-component distillation column

in a refinery.

On the other hand, in scenario 1b), one has to decide how to "route" the feed in

the processes A, Band C, given F and individual process constraints. Here, once the
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individual feed flowrates are decided, changes in any of A, B or C do not have any

effects on the other two. The objective function for maximizing profit would be:

Max Profit =APA + BPs + CPc - FPF - Capital costs - Running costs

SUbject to:

FOR CASE 1a) Overall process model constraints

FOR CASE 1b) Process A model constraints,

Process B model constraints

Process C model constraints and individual equipment constraints

Where, the P'S are the values ($/mol), and A, B, C and Fare flowrates (mol/hr).

Thus by formulating the problem in different ways, different concerns can be addressed.

Case 2. Consider the two cases given below.

FEED (F) A B

-----+~I PROCESS - A I==~.I PROCESS - B 1__."
2. a) Intermediate product A can vary between certain limits

FEED (F) A I I B
---••1 PROCESS - A 1__•• PROCESS - B ---1.~

2. b) Intermediate product A is fixed

In scenario 2a), one can choose to vary the amount and quality of A produced (between

certain limits) and decide the rate at which A & B are produced, given F, to maximize the
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profit. So, here optimization of the overall process is the key issue. On the other hand

in scenario 2b), the amount of A is fixed by an upstream process-A and one has to

decide how much of B to produce, given A, to maximize the profit. So, here process B

gives the degree of freedom for optimization.

The CEO approach is thus amenable to inclusion of higher business objectives in

the lower levels of control. By changing the way the objective function and constraints

are written, the optimization problem can address different economic objectives.
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