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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

The industry of micromachining is in its infancy today, just as the Very Large
Scale Integrated (VLSI) industry has been developing quickly since the late 70's. As
design tools made the development of the Integrated Circuit (IC) industry possible.
design tools will make the development of new components possible, which will combine
the physical world needs of sensing and actuators with the rapidly growing capabilities of
information technology. Microelectromechanical  systems (MEMS) are miniature
electromechanical sensor and actuator systems developed Irom the mature batch-
fabricated processes of VI.Sl technologics. MEEMS have wide applications such as
miniature inertial measurement  units, biochemical analysis on a chip, arrayed
micromanipulation of parts, optical displays and micro-probes for neural recording. The
current and increasing success of MEMS stems from their promise of better performance,
low  manufacturing costs, miniaturization and their capacity for integration with
clectronic circuits. The MEMS market is conservatively projected to reach between $12

and $14 billion by the end of this year. Micro-optics and MEMS are paving the way for



Micro-Opto-Electro-Mechanical Systems (MOEMS). Using MOEMS technology, micro-
optical elements are batch-fabricated on chips concurrently with microsensors and
microactuators to form integrated microsystems. MOEMS technology is highly attractive
for commercial applications, since it leverages the integrated circuit infrastructure, which

enables high volume production of microsystem components at a fow manufacturing cost.

Uniaxial tension is the most direct way of evaluating mechanical properties of
materials such as the elastic properties, the character and extent of plastic deformation,
yield and tensile strengths, and toughness. Tensile tests are most common in determining
the mechanical properties at macro level. However, when it is applied to thin film
materials used in MEMS devices, many problems arise:

1. Alignment of the spectmen in the testing machine is not easy to perform.

2. Gluing the specimen to the machine 1s not reliable.

3. Manipulation of the thin film specimen may cause irreparable mechanical damage.

4. It 1s very costly to perform nano-regime tensile testing due to complexity of the
equipment.

5. Production of detect free materials in the form of tensile specimens is very difficult.

Thus 1t is very difficult to perform tensile testing of these devices. An alternative

approach would be Molecular Dynamics Simulation, which is very easy to perform and 1s

inexpensive.



1.2 MOLECULAR DYNAMICS SIMULATION

The essence of Molecular Dynamics (MD) is simply stated: numerically solve the
N-body problem of classical mechanics. Molecular Dynamics started way back in the
1950’s, but widespread attention was given only in the late 1970°s. Even then it was
possible only in some of the big national labs which had super-computers. But today with
the advent of low cost powerful workstations with fast processors (e.g. the Digital Alpha
workstation with 500 MHz clock speed used in this project) and parallel computing, it is

possible to construct large scale MD simulations.

Molecular Dynamics Simulation brings together ideas from several disciplines.
Knowledge of classical mechanics, vector analysis, numerical analysis, thermodynamics.
and programming is essential. Also, a good understanding of the manufacturing processes
is required to analyse the results. MD simulation is basically calculating the tiijectories
of the atoms by solving the differential equations of motion. MD predicts the motion of a
given number of atoms governed by their mutual interatomic interactions described by a
continuous potential function and requires the numerical integration of Hamilton's
Classical equation of motion. A potential model is required to determine the forces on
each atom due to its ncighbours. Until recently, the Morse Potential was used to represent
the potential between two atoms. It is a pair potential and represents FCC materials fairly
well. but when it comes to BCC materials it does not represent the deformation behaviour
well( Komanduri et al (2000)). So, a better potential model is required to represent all the

materials. The Modified Embedded Atom Method (MEAM) developed by Baskes (1992)



represents the matenal properties betier than the Morse Potential and is applicable to
almost the whole range of metals. Pair potentials like the Morse Potential yield the total
energy directly, but need the volume dependant energy to describe the elastic properties
of a metal. If the volume is not represented properly, it may invalidate the results of a
pair-potential calculation because the elastic properties of the solid are not represented
accurately. In the Modified Embedded Atom Method, every atom is considered as an
impurity, embedded in a host lattice consisting of all other atoms. This allows
calculations using electron densities and allows realistic treatment of impurities in

structures that include cracks, surfaces, and alloying additions.



Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION TO TENSILE TESTING AT MICROLEVEL

With the advent of thin film materials like silicon wafers used in the semiconductor
industry, it is becoming increasingly necessary to perform tensile testing at micro level to
determine how the materials would react under load. Sato et al. (1998) performed
uniaxial tensile testing of a single-crystal silicon film on a silicon chip. They proposed a
tensile testing procedure, in which the external load is applied perpendicular to the
loading lever, by which the file specimen is uniaxially stretched in the horizontal
direction which is given in figures 2.1 and 2.2. This method allowed the tensile testing of
single crystal silicon film having any arbitrary orientation. They showed that the load
linearly increased until the specimen fracturcd When the fracture occurred, the load
dropped to equal that of the rotational stiffness of the torsion bars. They performed
uniaxial tensile testing on three differently oriented specimens and measured Young’s
modulus and fracturc strain for each orientation. The measured values were in close
agreement with the caleulated values of bulk materials.

Fhe direet tension tests, like the one described above, are effective only when

properly performed. The set up requirements for testing, such as alignment and deflection
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Supporting frame Tersion bar

Substrate

Figure 2.1 The on-chip tensile testing method: chip structure [Sato et al. (1998)]

Specimen Loading point
(Tensile farce j
@'mngatioxg ( Displacement )

Torsion bar Loading lever

(Spring reaction )

Figure 2.2 The on-chip tensile testing method: cross section
of the chip [Sato et al. (1998)]
measurement. are ditficult to meet for micro-scale test samples. Yi et al. (2000) proposed
a new method in which a load cell measured the induced force and the strain was

measured bv a laser interferometry system. The advantage of the optical method was that



the strain was obtained without physical contact to the sample. The specimen was etched
by four different common silicon etchants - KOH, EDP, TMAH and XeF; The Young's
modulus measured, 169.2+ 3.5 GPa, was very close to the widely accepted value of

168.9 GPa for silicon.

2.2 MOLECULAR DYNAMICS SIMULATION

Eyring and his colleagues (1944) performed the first trajectory calculations of H and
H, molecules. All the calculations were performed manually since there were no
computers available during that time. They found that the system was caught in a local
minimum and oscillated in that minimum without escaping out. Later, Alder and
Wainwright (1959} devised molecular dynamics in the late 1950°s, which is one of the
forms of equilibrium molecular dynamics. It 1s typically applied to an isolated system
containing a fixed number of molecules N in a fixed volume V. Because the system is
1solated, the total energy £ (sum of Potential and Kinetic energies) is also constant. The
first applications of MD techniques for molecular simulation were muade for simple
fluids. Another forrn of molecular dynamics. non-cquilibrium molccular dynamics, first
appeared in the early 1970’s. In these methods. an external force is applied to the system
to establish the non-equilibrium situation of interest, and the system’s response to the
force i1s determined from the simulation. MD simulation has been applied to various
fields Like crystal growth, reactive scattering and simulation of complex liquids in

chemistry. simulations for energetic and structural features of biological systems, and in



machining for tension, indentation, cutting and friction at the atomic scale. The available

literature is vast, only the literature concerning the tension and shear is reviewed.

Lynden-Bell (1994, 1995) investigated the behavior of FCC crystals of the metals
platinum, gold, rhodium and silver under uniaxial tension using the Finnis-Sinclair
potential. The study was conducted for the variation of potential energy and longitudinal
stress with strain for the above materials at four different temperatures 0.047Ty,, 0.35 7},
0.55 T, 0.7 Ty, where 7, was the bulk melting temperature of the material. Void
formation and growth of nano-cracks were reported which were the causes of failure. The
stress was reported to increase to a maximum at low temperatures and then decreased due
to a series of structural recarrangements. Platinum and gold, which were highly ductile,
were reported to develop local regions of disorder first when compared to the not-so-
ductile rhodium and silver. However, at temperatures above half the melting point, all the
metals were reported to be disordered before failure, by wvoid formation. tor the
investigation at different temperatures, it appeared that both the short and long range
terms for interactions were needed. So, a potential model with many-body terms would

have better represented the behavior of the material in bulk.

Rentsch and Inaski (1995) conducted MID simulation of silicon under uniaxial tension
using the Tersoff potential. They reported a linear stress-strain relationship followed by a
sudden break down to zero. Anisotropic deformation of silicon was reported. The
Young's modulus was found to be 171 GPa and the specific surface energy to be 0.393

Jm™.



Kitamura et al (1997) performed MD simulation of nano-single crystal of nickel in
tension using the embedded atom potential. Tension tests were carried out under two
conditions: (1) tension without constraint of transverse deformation and (2) tension with
constraint of transverse deformation. In the first case, yielding was brought about by the
crystallographic slip on the {111} planes at a strain of 0.1. The yield stress in tension was
about 15 — 20 GPa and very little differences were noticed among the wire, film and bulk
samples. The multiple slip on the {111} planes continued to take place after the yield.
The plastic deformation caused ductile shear fracture. With constraints, the yield stress
reached 40 GPa. No plastic strain was generated. A cleavage crack initiated and brought

about brittle fracture. It was reported that the constraint changed the fracture mode.

Heino et al (1998) studied the mechanical properties of copper by MD using the
effective medium theory as the potential model. Simulations of point defects, grain
boundary, and a larger void, which served as the seed for crack propagation, were studicd
at room temperature. A decrease in fracture stress and strain, and tensile modulus was
reported with an increasing number of defects. Systems with larger number of defects
were reported to appear more isotropic that ordered systems, in terms of tensile modulus.

They reported that the systems with grain boundaries were weaker than the ordered

systems in terms of modulus, fracture stress and fracture strain. With thick systems, with

free boundaries and an initial large void, the {111} slip plane was reported to propagate
ina (1 10> direction with a speed of about 60% of the longitudinal speed of the sound for

the specific crystal orientation. With thin systems, including a crack seed and having free



boundaries, crack propagation was reported in the (110) direction by microvoid

coalescence.

Komanduri et al (2000) studied the uniaxial tension of single-crystal materials, both
FCC [Al Cu, and Ni] and BCC [Fe, Cr, and W] using the Morse Potential. They reported
a rapid increase in stress up to a maximum followed by a gradual drop to zero when the
specimen failed by ductile fracture. They also reported that the radius of the neck
increased with an increase in the deforrﬁation of the lsp”e'cim’en”and decreased as the
ductim]r.ity of the material decreased. Rapid fluctuations in the force values were reported.
The stréinﬁitc-) frz;cture was reported to be lower for BCC materials than FCC materials.
Tungsten had the highest 'strengthﬁand aJuminum had the lowest strength. The ultimate
tensile s;trength of Cu, Ni, Al, Fe, Cr, and W were reported to be ~28, 36, 13, 29, 31, and
51 GPa, respectively. The strain to fracture was reported to be ~2.17, 1.67, 3.2, 1.52.
1.52, and 1.4 for Cu, Ni, Al, Fe, Cr, and W, respectively. They also reported a good
correlation between the D- and o- parameters of the Morse potential with the ultimate
tensile strength and the strain to fracture for the FCC materials, and no such correlation
for the BCC materials.| They: 'gﬁggested that an alternate potential model should be used
for BCC materials sincc; the deformation behavior wasn't represented well by the Morse

potential.

Horstemeyer and Baskes (1999) performed atomistic finite deformation using the
Embedded Atom Method. They observed a spatial size scale effect on the yield stress.

Thev observed that the mechanical yield point occurred from dislocation initiation at the



edge of the numerical specimens. They also observed that, as the spatial length scale
increased, the continuum rotational effect coupled with the increase in the dislocation
population reduced the oscillatory behavior. They proposed a length scale bridging idea
by relating a continuum single degree of freedom loss coefficient, which related the

plastic energy to the total strain energy, to varying sizes of blocks of atoms.

By the above review, it is clear that a potential model which is good for all the metals,
FCC, BCC, diamond structure and HCP, must be used for MD simulation. Modified
Embedded Atom Method (MEAM) is one such potential model and is considered in this

project.

2.3 MODIFIED EMBEDDED ATOM METHOD

The first step towards the present day MEAM was the quasiatom theory proposed
by Stott and Zaremba (1982), that was used successfully to calculate the characteristics of
hydrogen in metals. They proposed that "the energy of an impurity in a host is a function

of the electron density of the unperturbed (i.e. without impurity) host".

Daw and Baskes (1984) generalized the quasiatom theory to treat all atoms in a
unified way, and called it the embedded atom method. '_l"hey proposed that, every atom is
considered as an impurity, embedded in a host lattice consisting of all other atoms. This
allowed calculations using electron densities and allowed realistic treatment of impurities

in structures that include cracks, surfaces. and alloying additions. The electron densities



were approximated by the linear superposition of spherically averaged atomic electron
densities. They also proposed that the embedding energy of the atom depends only on the
environment immediately around the impurity, i.e. impurity experiences a locally

uniform electron density. The energy was given by

E. =2F(p,(R)+-ZHR,) ()

Where p; was the electron density of the host atom without atom i, and ¢ was the short-
range electrostatic pair potential. From this expression for the total energy of a given
metal, several ground state properties like lattice constant, elastic constants, sublimation
energy, and vacancy-formation energy were calculated. The validity of the above
functions was tested by computing a wide range of properties, like the formation volume
and migration energies of vacancies, the formation energy, the migration energy of
divacancies and self-interstitials, the surface energy and geometries of the low-index
surfaces of the pure metals, and the segregation energy of substantial impurities to {100}
surfaces. The embedded atom method developed by Daw and Baskes was based on the
density fur;ctional 'theory and the electron density was approximated as a linear
superposiiion»of electron densities. These assumptio;ls are better approximations for i:CC

metals but not for BCC metals.

Adams and Foiles (1990) extended the embedded atom method to BCC matcrial
Vanadium. Since the electron density in BCC metals was not well approximated by linear
superposition of electron densities, the authors used the adjustable electron density

proposed by Voter and Chen (1987). This theory was adopted since spherically



symmetric electron densities were easier to incorporate in the model. The pair term in Eq

(1) was assumed to have the form of the Morse Potential.

Later on, Baskes (1987) modified the embedded atom method to include
directional bonding and applied it to silicon. Baskes, Nelson and Wright (1989) extended
the silicon embedded atom method to the silicon-germanium system. This extended
method was called modified embedded atom method. This method had a few deficiencies
when it was initially developed. There was inward relaxation at a vacancy, an extremely
large stacking fault energy and only qualitatively accurate small cluster predictions.
These deficiencies were partially resolved in the later paper by Baskes (1992). The
common attribute of all the papers is that the ipteraction between two atoms depends on

the local environment.

The MEAM has been applied to metals and semiconductors and also for diatomic
gaseous elements. In this method, simplification to the first nearest neighbors is possible,
which reduces the computational time. The difference between the EAM and MEAM is
that the pi. which isb given as the linearly superposition of spherically averaged atomic
elgctron densities in EAM is augmented by an angularly dependent term in MEAM.
Baskes and Nelson (1994) have extended MEAM to HCP materials. So, MEAM is much

more versatile and can be used for FCC, BCC, digmond structures, and HCP metals.



Chapter 3

PROBLEM STATEMENT

MD simulation has been used to conduct uniaxial tension of different materials using
different potential models like the Finnis-Sinclair potential (Lynden-Bell [1994,1995]),
the Tersoff potential (Rentsch and Inaski [1995]), the Morse potential (Komanduri et al.
[2000]), and the effective medium theory (Heino et al. [1998]). Using the Finnis-Sinclair
potential, it appeared that a potential model with many body terms would have better
represented the behavior of the material in bulk. When the Morse potential was used for
MD simulations, good correlation was found between the D- and «- parameters of the
Morse potential with the ultimate tensile strength and strain to fracture for the FCC
materials. No such correlation was found for BCC materials. So, a potential model which
can represent the bulk properties of metals fairly accurately, and which can be used for
the whole range of metals should be used for MD simulations. The embedded atom
method and the MEAM are such potential models. The difference between these models
is that the linear superposition of atomic electron densities in the embedded atom method
is augmented by an angularly dependent term in the MEAM. Thus MEAM potential s

chosen as the potential model for MD simulation. The objective of this study s to:



b

Develop the software for MD using the MEAM as the potential model for the
trajectory calculations

To find the forces on the atoms by calculating the derivatives of the total potential
with respect to the three coordinate axes, X, y and z.

To validate the software by different testing procedures like the numerical vs. the
analytical force test, the conservation of energy test and the back integration test, to
validate the accuracy of the model.

To perform a shear test of Nickel to evaluate the shear stress and strain and 1o observe
the deformation during the simulation.

To perform uniaxial tension calculations using MD for various FCC and BCC metals
and to find the ultimate tensile strength and the strain to fracture of these metals and,

also, to observe the deformation and necking during the simulation.

£



Chapter 4

MOLECULAR DYNAMICS SIMULATION

Molecular dynamics simulation basically involves the calculation of trajectories.
This calculation involves the numerical integration of classical equations of motion for a
system of interacting atoms over a period of time. The time step used in this integration is

of the order of 10"'° sec, which is less than the period of vibration of the atoms.

4.1 MOLECULAR DYNAMICS MODELING

Consider an isolated system comprising N bodies with the coordinates (X;, y;, zi)

where 1 = 1, 2,3, ...... N. Given a set of N independent generalized coordinates and
velocities {g,,q, jthat describe the state of a conservative system (one in which all the
forces derive from some potential energy function U ), so that L = L({g, },14,},¢) then L

can be shown to satisfy the Lagrange equations

dfoL —%:O,IEL....,N (4.1)
dr\oq, ) Oq,

These equations are the starting point for many of the subscquent developments.

Newton’s second law is a simple consequence ol this result. where. if ¢; denotes a



component of the Cartesian coordinates for one of the atoms (and assuming identical

masses m):

L=—-mY4’ -V} (4.2)

19 | =—

So that equation (4.1) becomes

mg, =-0V/dq, = F, (4.3)

Where F;is the corresponding force component.

By replacing the generalized velocities {g in the Lagrange formulation by the
generalized momenta p, = 0L/0q, (if the coordinates are Cartesian, then p, = mq,) and
consider the Hamiltonian H = H({g, },{p, },¢) defined by

H=>gp -L (4.4)

The two first order equations of motion associated with each coordinate are

Pt 4.5)
op,
. oH
p =2 (4.6)
aq,

If H has no explicit time dependence, then ¥ =0, and H - the total energy — is a

conserved quantity.

From the above equations (4.5) and (4.6), we get the following differential

equations for each atom in the three coordinate systems.



8H/dPx, =dx, [dt = px, I m, (4.7)

OH[0Py, =dy,[dt = py, I m, (4.8)
0H [Pz, =dz, |dt = pz, I m, (4.9)
OH ox, = 8V /ox, = dpx, /dt (4.10)
8H/dy, = oV oy, = dpy, /dt (4.11)
OH|oz, = 6V 6z, = dpz, |di (4.12)

So the total number of differential equations to be solved are 6N. The following are the
system of units used in the above equations

| mass unit = | atomic mass unit = 1.007/6.023 x 10%

1 distance unit = 1 A”=10%cm

1 energy unit =1 eV = 23.06 kcal/mol = 4.184 x 23.06 kJ/mol

1 time unit=1t.u. = 1.018 x 107" sec.

4.2 NUMERICAL INTEGRATION

The calculation of trajectories requires the numerical integration of the equations
(4.7) through (4.12) from an initial state in the configuration space identified as reactants
to some final state associated with products. The various numerical techniques used are:
1. Fourth order Runge-Kutta method (which is self starting)

2. Fifth, sixth etc order predictor-corrector methods (non self starting)
3. Variable step size methods.

Runge-Kutta method has several advantages when compared to the other methods.



1. Ttis self-starting, so it is unnecessary to know the values of elements prior to t = 1.

2. The integration error is very small, of the fourth order, O (h*). So the error can be
neglected without affecting the results significantly.

3. The method is stable and fairly easy to program.

[ts main disadvantage is:

1. The need to compute a large number of derivatives (24N) for each integration step,
which demands a lot of computer time

Though this is a disadvantage, it is worth it because of the greater accuracy and the

stability of the method. Other methods, like Predictor-Corrector methods, have the

advantage of providing an automatic error estimate at each integration step, thus allowing

the program to use variable step size to achieve the specified accuracy. However, these

methods are not self-starting and require the use of Runge-Kutta method to start the

integration. So, the Runge-Kutta method was chosen for the calculations.

If there are N particles whose initial derivatives D1 = f (xp_ yp) are known and we
integrate them over a period of time ¢, the Runge-Kutta method involves the calculation
by the following steps.

1. Move them to a new position P2 using D1 and a time step of t/2, so that

D2 = f(xo+Ax/2 yotD1*Ax/2)

2. Get them back to their original positions and move them to their new positions P3
using the derivatives D2 and calculate D3 = { (xo+Ax/2 yo+D2*Ax/2)

Get them back to their original positions and move them to their new positions based

LWR)

on derivatives D3 and a time step of t and calculate D4 = { (x;=Ax/2 yo )3T A2}




4. Compute the average derivative <D> = [D1 + D2*2 +D3*2 + D4]/6.0 and then
compute the Ay = <D>*Ax and y1 =y, +Ay , to get them to their final positions

Figure 4.1 illustrates this point. This is a simultaneous approach in the sense that all the

particles are moved during the above steps. Thus, for a set of N particles, there will be 4N

intermediately calculated positions and forces for a Runge-Kutta procedure time step.

The interatomic potential used in the simulation to model the materials plays an
important role in determining the accuracy of simulation results. The modified embedded

atom method is used in the present calculations, which is explained in the next chapter.

4.3 CHOICE OF THE MODEL

The following are some of the important considerations in the choice of the model

for MD simulations:
1. The number of differential equations to be evaluated for a system of N atoms, which
is 6NV, So, if there are 1000 atoms, we need to integrate 6000 first order coupled
differential equations. This provides a restriction on the computer memory and

computational time. So, we need to choose a model within these restrictions

O]

Number of terms in the potential energy hypersurface that are to be considered. For
example, in a pair potential it is N(N-1)/2 and for a many body potential like the
Modified embedded atom method, it is N(N-1)

3. Size convergence should be considered so that the results are independent ol our

choice of N.



Final Position

D3 O b

P3 ), z” ’_..r"' p4

D2

P2

Figure 4.1 llustration of Runge-Kutta Method in action
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Chapter 5

POTENTIAL MODEL

The choice of the potential model to be used in the trajectory calculation is very
important since it has to represent the properties of materials in bulk. The modified
embedded atom method is a good choice in the sense that in represents the properties of

bulk materials better than other pair potentials, like Morse or Lennard Jones potentials.

5.1 MODIFIED EMBEDDED ATOM METHOD

The total energy £ of a system of atoms given by the embedded atom method is:

E, =ZF(p,(R)+~ZHR,) 5.1)
i 24 :

The first term in the right side of the equation is the embedding function, i.e., the energy
to embed an atom of type 7 into the background electron density at site i, g,, and the
second term 1s the pair interaction between the atoms / and j, whose separation is given
by Rj. According to the embedded atom method, p, is the linear supposition of

spherically averaged atomic electron densities. In the modified embedded mcthod. it is

augmented by an angularly dependent term. The energy for an individual atom is given



E =F(p,/Z)+-Z¢,(R,) (5.2)
2 J

The background electron density is renormalized by dividing it by the number of nearest
neighbors Z,.

The pair interaction is given by the equation

4, (R)= %{E,"(R) ~F(5(R)/ Z,)} (5.3)

t

From the above three equations the energy of an atom £; is given by

1 u _ 1 _
E=—3YF (RU){F,»(/J,/Z.-) o LEPR)[Z) (54)

i J(zi) i J(=i)
The first part of the above equation is the average of the energy per atom, of the reference
lattice at each of the nearest-neighbor distances. The second part is the difference
between the embedding energy at the background electron density actually seen by the
atom i and the average embedding energy of this atom in the reference lattice, at each of

the nearest-neighbor distances.

5.2 DETERMINATION OF PARAMETERS

The equation (5.3) has three terms and each of the terms can be determined in the

following way. In the first term Z; is the number of nearest neighbors and E;“ is given by

E"(Ry=—-E (1+a*)e™ (5.5)
a*=a (R/R"-1) (5.6)
Where
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«; = exponential decay factor for the universal energy function

E{” = sublimation energy (eV)

R = distance between the atoms (A%

R = equilibrium nearest neighbor distance (A°)

In the second term, the function F'is given by

F(p)=4,E plnp 5.7
So the second part becomes

F(p,/Z)Y=A,E (p,/Z)In(p,! Z,) (5.8)
Where

p, = total background electron density

A;= scaling factor for embedding energy
E? = sublimation energy (eV)

The total background electron density is given by

(B = it,"’ (0"’ (5.9
/=0

Where
1/ = weighting factors for the atomic densities

The first partial background electron density at site i is given by

2" =3 p "R, (5.10)

J(#)

Where the atomic clectron density of type-/ atom at a distance R;; from site i is given by
p,"V(R)=e" (5.11)

e-h- :ﬁj(l)(RU /R,-O _1) (512)
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B,"" = exponential decay factors for the atomic densities

R’ = equilibrium nearest distance (A%

Rj; = distance between atoms i and j (AO)

Similarly the second, third and fourth partial electron densities are given by

(pi(l))z :Zlizxijapja(l)(Rij):| (513)

a | j(=i)

027 =3] Tatn o 0| - S| an

a.fB | J(=i) J(#i)

2
(pi(B))Z — Z I:nyczxijﬂxijrpjua)(RU):' (515)

afy i(sh)
Where x,° = R,” /R, and R,"is the & component of the distance vector between atoms

i and j. The above equations are chosen so that the partial background electron densities
are invariant to lattice translation and rotation, scale simply with atomic electron density

for homogeneous deformation, and equal zero for a cubic lattice.

In the third term, the function £ is given by
F(B (R Z)=AE" (P (R)/Z)In(p,"(R,)/Z,) (5.16)
Where

a(l)

(P, (R,))* = ijr,"’s,""° (0, (R, (5.17)

s % = geometry factors

i

The rest of the terms are the same as explained above.




All the prior terms are put together to obtain the final equation, i.e., the total potential of
the system. The next step is to determine the forces between the atoms from the potential

function.

5.3 DETERMINATION OF FORCES

The determination of forces is crucial and time consuming because of the
complexity of the potential function. The force on an atom 7 due to atom j is obtained by
differentiating the total potential with respect to x, y, and z-components of the distance
between the atoms i and j, to get the force in x, y and z directions respectively.

Force in x-direction,

Fx, = ——o (5.18)

Similarly, in y and z-directions

4
Fy, = P (5.19)
Yy
1%
Fz, = —a—'“ (5.20)

Once the potential and forces are obtained, the model is to be tested to validate the

accuracy of the model.
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Chapter 6

VALIDATION OF THE POTENTIAL MODEL

Once the software for the MD simulation is developed, i.e., the potential and the
forces are determined; it has to be tested before it is used. There are many ways of testing
the model for different parameters like numerical vs. analytical forces test for the

validation of the forces, the conservation of energy test and the back integration test.

6.1 NUMERICAL vs. ANALYTICAL FORCES

The first and foremost thing is to validate the force function. This is done by
comparing the analytical forces, got from the derivatives of the potential, to the numerical

forces derived from the formula:

‘;—V =0.75x 8, - 0.15x S, +0.01666666667 x S, (6.6)
X |,

S, =[V(x, + Ax)-(x, - Ax)]/ Ax (6.7)
S, =[V{x, +2Ax) - (x, —2Ax)]/ Ax (6.8)
S, =[x, +34x) - (x, - 3Ax)]/ Ax (6.9)
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The testing sample contains five atoms, which are placed in the following configuration

(2.0, 2.0, 0.0), (2.0, -2.0, 0.0), (-2.0, 2.0, 0.0), (-2.0, -2.0, 0.0}, (0.0, 0.0, 2.0). The atom 1
is moved to 1 A” in steps of 0.1 A° and the forces are calculated at each step. The
numerical and analytical forces agree well, demonstrating that the analytical forces are
right. The tables 6.1 through 6.3 show the comparison between analytical vs. numerical

forces in x, y and z directions respectively

6.2 CONSERVATION OF ENERGY

After the validation of the force function, it is necessary to check if the system
conserves energy. If there are no external forces acting on the system, and if the model is
allowed to integrate for the given period of time, the sum of potential and kinetic energies
which is the total energy must remain constant. This test is necessary, as it not only
validates the accuracy of the potential and forces functions but also the integration
procedure, i.e., the Runge-Kutta procedure.

For this test, the sample is one lattice of Nickel, which has 14 atoms. This sample
is allowed to integrate for 10 time units and the values are given in the table 6.4. The total

potential is constant for up to 12 significant digits. The same is shown in the figure 6.1
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Distance moved by !

atom 1 in the

positive x direction |

0
01
0.2
03
0.4
05
0.6
0.7
0.8
0.9

1 .

Distance moved by |

atom 1 in the

positive x direction '

0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
09

1

Analytical force on

atom 1

in the x-direction

0.317994486191
0.392243426220
0.443425449382
0.478482723558
0.5601392714854
0.514487845642
0519309615179
0.517073341564
0.508875262056
0.495757231715

" Numerical force on |

|

0478706598832

Analytical force on

atom 3

in the x-direction

-0.257069230915
-0.338090086813
-0.396303411500
-0.437962686834
-0.466695160543
-0.484697915969
-0.493505232742

-0.494398598502

-0.488581739721

-0.477227183899
-0.461465660331

atom 1

in the x-direction

0.317994486191'
0.392243426220
0.443425449382
0478482723558
0.501392714854
0.514487845642
0.5619309615179
0.517073341564
0.508875262056
0.495757231715
0.478706598832

Numerical force on

atom 3

in the x-direction

-0.257069230915
-0.338090086813
-0.396303411500
-0.437962686834
-0.466695160543
-0.484697915969
-0.493505232742
-0.494398598501
-0.488581739721
-0.477227183900
-0.461465660331

Analytical force on

atom 2

in the x-direction |
0.146299010461 .
0.150204136858

0.156172952299'
0.163469672011"
0.171538306544

0.179955816315

0.188397761492
0.196614201357
0.204413074192
0.211648656965,
0.218213345221

t

Analytical force on

atom 4

in the x-direction

-0 236635445138
-0.232026780657
-0.228303822004
-0.225355906459
-0.223087644108
-0.221418205942
-0.220279968193
-0.219616899031
-0.219382936439’
-0.219540480476"
-0.220059039661,

Numerical force on

atom 2

in the x-direction

0.146299010461
0.150204136858
0.156172952299
0.163469672011
0.171538306544
0.179955816315
0.188397761492
0.196614201357
0.204413074192
0.211648656965
0.218213345221

Numerical force on

atom 4

in the x-direction

-0.236635445138
-0.232026780657
-0.228303822004
-0.225355906459
-0.223087644108
-0.221418205942
-0.220279968193
-0.219616899031
-0.219382936440
-0.219540480476
-0.220059039661
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Distance moved by
atom 1inthe |
positive x direction !
o'

0.1

02

03

04

05

0.6

0.7

08

09

1

Distance moved by
atom 1 in the
positive x direction

0
0.1
0.2
0.3
04
05
06
0.7
08
0.9

1

Analytical force on

atom 1

in the y-direction '
-0.054107368965

-0.041623846943
-0 025029638329
-0 005801407510
0.014951936750
0.036413427791
0.057983435612
0079217767652
0 099781729090
0119418518149
0.137928567431

Analytical force on

atom 3

in the y-direction

-0.051063618610
-0.040987459133
-0.028741038951
-0.015132293624
-0.000657430361
0.014379828210
0.028786079394
0.045428224009
0.061206002845
0.077038261115
0.092856669310

Numerical force on

atom 1

in the y-direction ‘
-0.054107368965

-0.041623846942
-0.025029638329
-0.005801407510
0.014951936750
0.036413427791
0.057983435612
0.079217767652
0.099781728090
0.119418518149
0.137928567431

Numerical force on

atom 3

in the y-direction
-0.051063618610
-0.040987459133
-0.028741038951
-0.015132293624
-0.000657430360

0.014379828210
0.029786079394
0.045428224009
0.061206002845
0.077038261115
0.092856669310

Analytical force on

atom 2

in the y-direction .
0.080636084097
0.075181102209

0.066073809105
0.054151400966
0.040057342538
0.024293594021
0.007260434499

-0.010714927052

-0.029358504450

-0.048435958660.

-0.067743288466'

Analytical force on

atom 4

in the y-direction

-0.019561987246
-0.021888614212
-0.026941023364
-0.033992787708
-0.042541731626
-0.052235196542
-0.062817203350
-0.074094373119
-0.085915200241
-0.098157757934
-0.110722307002

Numerical force on

in the y-direction

Numerical force on

in the y-direction

atom 2

0.080636084097
0.075181102209
0.066073809105
0.054151400966
0.040057342538
0.024293594021
0.007260434499
-0.010714927052
-0.029358504450
-0.048435958660
-0.067743288465

atom 4

-0.019561987246
-0.021888614212
-0.026941023364
-0.033992787709
-0.042541731626
-0.052235196542
-0.062817203350
-0.074094373119
-0.085915200241
-0.098157757934
-0.110722307002
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Distance maved by |

atom 1 in the
positive x direction

O |

0.1
02
03
04
05
06
0.7
0.8
08

1

Distance moved by
atom 1 in the
positive x direction

0
0.1
0.2
03
04
05
06
0.7
08
09

1

Analytical force on

atom 1

in the z-direction ,
-0.119698158477
-0.127825866682

-0.136446272533
-0.144953537850
-0 152895817351
-0.159959002693
-0 165938142358
-0.170708506925
-0.174202060831
-0.176380634542
-0.177274897688

Analytical farce on

atom 3

in the z-direction

-0.046221264055
-0.050412089960
-0.054611433443
-0.058718867304
-0.062715834715
-0.066624396184
-0.070480257711
-0.074318051068
-0.078164952085
-0.082039377610
-0 085951445681

| Numerical force on
‘ atom 1 [
in the z-direction |
-0.119698158477
-0.127825866682
-0.136446272533
-0 144953537850
-0.152895817350
-0.159959002693
-0.165938142358
-0.170708506925
-0.174202060831
-0.176390634542
-0.177274897688

Numerical force on
atom 3
in the z-direction
-0.046221264055
-0.050412089960°
-0.054611433442
-0.058718867904
-0.062715834715
-0.066624396184
-0.070480257711
-0.074318051068
-0.078164992095
-0.082039377610
-0.085951445681

Analytical force on

Analytical force on

|
|
atom 2

in the z-direction

-0.113413198955
0111954133477
-0.110826785940
-0 110028566566
-0.109543211377
-0.109346965477
-0.109413322326
-0.109715992768
-0.110230426767
-0.110934382926
-0.111807971497

|

atom 4

in the z-direction

-0.096603114301
-0.095602641243 !
-0.094868811573
-0.094418927064
-0.094258323386
-0.094384779920
-0.094792331587'
-0.095473873734
-0.096422598917
-0.097632566556
-0.099098730598

Numerical force on

atom 2

in the z-direction

-0.113413198955
-0.111954133477
-0.110826785940
-0 110028566566
-0.109543211377
-0.109346965477
-0.109413322326
-0.109715992768
-0.110230426767
-0.110934382927
-0.111807971497

Numerical force on

atom 4

in the z-direction

-0.096603114301
-0.095602641243
-0.094868811573
-0.094418927064
-0.094258323386
-0.094384779920
-0.094792331587
-0.095473873734
-0.096422598916
-0.097632566556
-0.099098730598




Time Step (a.tu.) | Potential Energy | Kinetic Energy Total Energy
0.00 -21.364048196790 [ 0.000088638515 [-21.363959558276
1.00 -22.196414169609 | 0.832454611336 | -21.363959558273
2.00 -23.990249036528 | 2.626289478255 | -21.363959558272
3.00 -25581711816619(4.217752258343|-21.363959558277
4.00 -26.366085822929|5.002126264649 [-21.363959558281
5.00 -26.358503582788 | 4.994544024505 | -21.363959558283
6.00 -25.825487399068 | 4.461527840785[-21.363959558283
7.00 -25.035808526646 | 3.671938968363 [-21.363959558283
8.00 -24 181875485159 2.817915926876 |-21.363959558283
9.00 -23.380380305858|2.016420747575 |-21.363959558283
10.00 -22.695542389809|1.331582831526 |-21.363959556283

Enargy(sV)

-10.00

-15.90

10.00

Table 6.4 Conservation of energy test

Conservation of Energy Test

500

000 | ———T

-5.00

Kinetic Energy

Total Energy

/

I

Time Stap (a.Lu)

Figure 6.1 Conservation of energy test
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6.3 BACK INTEGRATION

Back integration is the most sensitive of all the tests. In this test, the model, which
is an isolated system, is allowed to integrate over a period of time, and then the time step
is made negative, and the model is allowed to back inteprate for the same period of time.
The model should trace the same potential, kinetic and total energy curves in both the
forward and backward integration. Also the atoms must trace the same path in both the

torward and backward integration.

For this test, one lattice of Nickel is taken and allowed to integrate for a period of
100 time steps. Then the time step is made negative and the structure is allowed to back
integrate for the same period of time. The potential, kinetic and total energy curves for
both forward and backward integration are given in the figure 6.3. The curves overlap
each other almost exactly and look as if they are the same curve. Also the position of one
of the atoms in the structure is plotted against time and it traces the same path in both the
directions and can be seen in the figure 6.2. These three tests validate the potential and

force functions and also the integration procedure.
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Figure 6.2 Path traced by atom 1 during forward and backward
integration
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Figure 6.3 Potential, kinetic and total energies during forward and backward
integration



Chapter 7

RESULTS AND DISCUSSION

7.1 INTRODUCTION

The potential model developed is good for any material with FCC, BCC, diamond

structure, and HCP metals. The values are given for some of these materials in the paper

by Baskes (1992). Of these, nickel, copper, and iron are selected and subjected to uniaxial

tension.

7.2 TENSION TESTS

Table 7.1 shows the conditions in which the experiments are conducted.

Configuration

3 Dimensional

Potentials Used

Morse, MEAM

Work Material Dimension

4a x 4a x 6a (a = lattice constant)

Tensile Loading Condition Uniaxial
Tension Rate 500 m/s
Bulk Temperature 293K

35




The specimen has boundary (which are fixed) atoms at the top and bottom surfaces.
Immediately after the boundary atoms, is a layer of peripheral atoms. The rest are moving
atoms. The tension simulations are conducted at the rate of 500m/s to achieve reasonable
computational time. Consequently the system temperature will increase significantly
which is dissipated by means of the peripheral atoms. The motion of the atoms in the
moving zone is determined solely by the forces produced by the interaction potential and
the direct solution of the classical Hamiltonian equations of motion. The motion of the
peripheral atoms is also calculated from the solution of Hamiltonian equations, but
modified by the presence of velocity reset functions associated with each atom in the
peripheral zone. In this method, the Cartesian velocity components of each peripheral

lattice atoms is reset at periodic time intervals, At, using the following algorithm:

v " =(1- w)'/zva,."ld +w!" V(T (8.1)

ar

Where va,.""'is the a-component (a=x, y, or z) of velocity of lattice atom i

new

resulting from the solution of the Hamiltonian equations of motion, and v, is the reset
« velocity component. ‘w’ is a parameter that controls the strength of the reset with w=0
corresponding to no reset and w=1 being a complete reset. V' (7, &) is a randomly chosen
velocity from a Maxwell-Boltzmann distribution at temperature 7. £ is a random number
whose distribution is uniform on the interval [0,1] that controls the random selection.
This procedure simulates the thermostatic effect of the bulk and guarantees that the

equilibrium temperature will approach the desired value, which is 293 K in these

calculations.
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The animations for nickel using the MEAM and the Morse Potentials are given in
figures 7.1(a)-(d) and 7.2(a)-(d). After relaxation, a light bulge in the specimen is
observed, using the Morse potential as well as the MEAM potential. This is because,
when the crystal relaxes, it tries to take the minimum energy position and tries to attain a
spherical shape. But, since it is constrained at the top and bottom layers by boundary
atoms, it bulges only on the +ve and —ve x and y-directions. The bulge is more in the case
of the Morse potential than the MEAM potential. MEAM potential represents crystal
surfaces better than the Morse potential. This is because MEAM potential involves
calculations using electron densities and allows realistic treatment of impurities in
structures that include cracks, surfaces, and alloying additions. When the tension test
begins, similar behavior is observed in both the cases. The bulge decreases gradually and
the specimen starts to neck. Because of the high tension rates and also because the
specimen is very small, the crystal becomes amorphous almost immediately after the
experiment begins. The necking continues and the diameter of the neck decreases with
the increasing strain. This process continues until the specimen fails due to fracture. The
stress-strain curves for the tension test of nickel using the Morse and the MEAM
potentials, is given in the figure 7.3. The curves behave almost similarly until reaching
the peak of the tension curves. After that, the tension curve of nickel, using the MEAM
potential drops rapidly when compared to the one using the Morse potential. This can be
attributed to the fact that the atoms in the tension test using the Morse potential are
bonded by a pairwise potential and these bonds exist until the all the bonded pairs in the
center of the specimen are out of the cutoff radius. But, in the case of the MEAM

potential, the volume of the material is represented well, because the calculations are
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done using the electron densities. This results in the rapid drop down in the tension curve
simulating the behavior of the bulk material. Using the MEAM potential, the ultimate
tensile strength is 44.46 GPa approximately at a strain of 0.31 and in the case of Morse

Potential the ultimate tensile strength is 54.25 GPa approximately at a strain of 0.232.

The stress-strain curves using the MEAM potential for nickel, copper, and iron
are shown in figure 7.4. The animations for the tension tests of copper, and iron using the
MEAM potential, are given in figures 7.5(a)-(d) and 7.6(a)-(d). For FCC materials, nickel
and copper, the simulations show reasonable behavior. Copper has a lesser ultimate

tensile strength than nickel as is shown in figure 7.4. It is 25.28GPa approximately at a

Ultimate Tensile Ultimate Tensile Ultimate Tensile
Strength values Strength values Strength values
quoted by Hertzberg | obtained by obtained by MEAM
(1996) Komanduri et al Potential
(2000)
(GPa) (GPa) (GPa)
Nickel 334 36.0 44.46
Copper 19.1 28.0 26.20
Tron 31.8 29.0 - 3216

Table 7.2 Comparison of ultimate tensile strength values obtained by using the MEAM
potential with those obtained by Komanduri et al (2000) and those quoted by Hertzberg
(1996)
strain of 0.159. The strain to fracture is 0.49.The fact that the copper has lesser strength
than nickel is clearly illustrated by these observations. The ultimate tensile strength of

iron is 32.16 GPa approximately at a strain of 0.133 and the strain to fracture is 0.455.
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Iron is found to have lesser ultimate tensile strength than Nickel but more than Copper.
The ultimate tensile strength values of nickel, copper, and iron are compared with those
obtained from Komanduri et al (2000) and those quoted by Hertzberg (1996) in the table

7.2. The values obtained from MEAM have the same ranking as the above

7.3 SHEAR TEST OF NICKEL

Horstemeyer and Baskes (1999) conducted a shear test of a nickel specimen of
dimensions 4a x 2a x 2a at a speed of 1.0m/s and observed the shear stress vs. shear strain
curves for these samples (figure 7.8). The shear stress was normalized by the elastic shear
modulus of nickel (124.8 GPa). They observed a spatial size scale effect on yield stress.
They used the embedded atom method as the potential model. Since embedded atom
method is supported by strong physical arguments, shear of Nickel using the MEAM
potential was done to compare and validate the results with those obtained by

Horstemeyer et al.

A nickel sample with dimensions of 4a x 4a x 6a is taken and is subjected to shear
at the speed of 500 m/s (this speed is chosen to keep the computational times reasonable),
until a shear strain of 0.3. The animations are shown in figures 7.7(a)-(d). The shear
stress/elastic modulus vs. the shear strain is shown in figure 7.8. It is observed that both
the curves reach a peak of 0.1(approximately) for a shear strain of 0.125 (approximately).
After that, the curve obtained by Horstemeyer (1999), drops down rapidly when

compared to the one obtained by using the MEAM potential. This is because the shear
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test of nickel using the MEAM potential is conducted at the speed of 500 m/s and this
generates a lot of heat. This causes the material to become more ductile and hence
increases the value of strain to fracture. The maximum shear stress/elastic modulus

values are in reasonable agreement for both the curves.

The software developed is good for single crystal materials. The
development and validation of the MD using MEAM was done along with Mr. David
Stokes. The project consisted of five important steps, developing the code for potential
function (done by me), developing the code for force function (50% by me and 50% by
David), validating the potential model (50% by me, 50% by David). conducting the
tension tests (done by me), and conducting the shear test (done by me). This software can
be used to model other manufacturing applications like cutting, milling, and indentation

by using the Morse potential as the interface potential between the tool and workpiece.
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Figures 7.1(a)-(d) Snapshots of animation during tension test of nickel using

the MEAM potential
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Figure 7.2 a
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Figure 7.3 Tension test of nickel using the Morse potential and the
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Figure 7.4 Stress vs. strain curves of nickel, copper, and iron using
the MEAM potential
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Figure 7.5a
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Figures 7.5(a)-(d) Snapshots of animation during tension test of copper
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Figures 7.6(a)-(d)Snapshots of animation during tension test of iron
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Figure 7.8 Comparison of the shear stress/elastic shear modulus vs. shear
strain for nickel using the MEAM potential with that obtained by
Horstemeyer (1999)
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Chapter 8

CONCLUSIONS

8.1 TESTING FOR ACCURACY OF THE SOFTWARE

The “Modified Embedded Atom Method” developed by Baskes (1992) was used
in the Molecular Dynamics Simulation. The following tests were conducted for
determining the accuracy of the software:

1. Numerical vs. analytical forces test for the validation of the forces: A system of five-
Nickel atoms was taken and one of the atoms was moved in increments of 0.1 A" and
both the analytical and numerical forces were calculated. They were in excellent
agreement up to 12 significant digits

2. Conservation of energy test: Based on the fact that an isolated system should
conserve energy, one lattice of Nickel was taken and allowed to integrate for a time
period of 10 time steps. The total energy (sum of potential and kinetic energies)
remained constant up to 12 significant digits.

3. Back Integration test: One lattice of Nickel was taken and allowed to integrate up to
100 time units and then the time step was changed to a —ve value and the system was
back integrated. [t traced back the same curve for kinetic, potential and total energies

arcl the same path for the atom positions.
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Based on above tests it was proved that the software developed was accurate and ready to

be used.

8.2 UNIAXTAL TENSION

Uniaxial tension experiments were done on four materials: two FCC (nickel, copper) and

a BCC (iron) material at 500m/s using the MEAM pofential. Also, uniaxial tension of

nickel, using the Morse potential, was performed and compared with the results obtained

from the MEAM potential. The following observations were made:

1. The measured ultimate tensile strengths were 26.20 GPa (copper), 44.46 GPa
(nickel), and 32.16 GPa (iron). These values have the same ranking as the theoretical
values of defect free whiskers given in Hertzberg (1998) and also as those obtained
by Komanduri et al (2000).

2. Copper has the least strength (26.20 GPa) while nickel has the highest strength (44.46
GPa) among the three matenials. In bulk also, copper has the least strength of the
three materials and nickel has the highest.

3. The strain to fracture at room temperature for Cu, Ni, and Fe, 0.493, 0.43, and 0.461
respectively. Copper exhibited the maximum ductility undergoing a maximum strain
of 0.493 before failure.

By the above observations it 1s clear that the MEAM potentials represent both the FCC

and BCC materials fairly well and can be used to perform tensile testing of these

materials.
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8.3 SHEAR TEST OF NICKEL

Shear test of Nickel was conducted at a speed of 500m/s and the shear stress, which
was normalized by dividing it with the elastic shear modulus of Nickel (124.8 GPa) vs,
shear strain was plotted. The curve reached a maximum of ~0.1 at a shear strain of
~0.125. The value of maximum shear stress/ elastic modulus was in reasonable
agreement with that obtained by Baskes and Horstemeyer (1999). After reaching the
peak, the curve obtained by MEAM dropped less rapidly than that obtained by
Horstemeyer. The difference is attributed to the fact that the shear test conducted by
using the MEAM potential was conducted at a high speed, and this increased the
temperature of the specimen. This lead to higher ductility and increased value of strain to

fracture.

8.4 FUTURE WORK

1. The existence of stray atoms might be because of the small specimen sizes. Due to
time constraint on this project, the experiments were conducted with smaller sizes.
Experiments must be conducted using large sizes to find out the size-scale effects on
the ultimate tensile strength and strain to fracture.

2. The model developed above is good for single crystal materials. 1t can be used to
define the potential between like atoms. An altemnate potential model like the Morse
potential can be used to define the potential between unlike atoms. Then this model
can be extended to other manufacturing applications like cutting, milling, and
indentation, where the Morse potential can be used to define the interactions between

tool and workpiece (unlike atoms).
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3. Crystals with defects and cracks can be modeled using the MEAM potential. This can
be done by introducing a defect by removing few atoms randomly from the
workpiece to simulate a defect, or by removing few atoms from the workpiece in the
shape of the crack to be studied to simulate a crack. Uniaxial tension and shear
experiments should then be conducted on materials to study their effects on the

tensile properties.
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