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NOMENCLATURE

Ai scaling factor for embedding energy

£;0 sublimation energy (eV)

£101 total energy of the system (eV)

FXI) x-component of the force on atom i due to atom j

FYI) y-eomponent of the force on atom i due to atom j

FZij .l.-component of the force on atom i due to atomj

N total number of atoms

R distance between the atoms (A0)

R/ equilibrium nearest neighbor distance (A0)

RI) distance between atoms i and j (A0)

R/ a component of the distance vector between atoms i and j.

V'o, total potential energy of the system (eV)

ZJ number of nearest neighbors

m, mass of atnm i (atomic mass unit)

Pi mOIl1t:ntlll1l or atom i

I), force on atom i (eY/ AD)

(I: Cartesian coordinates of atom i

(i, velocity of atom i (Ao/time unit)
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s, (1),0 geometry factors

t/') weighting factors for the atomic densities

Xo initial position of the atom

Xi x-coordinate of atom i

xtJ x-component of the distance between the atoms i andj

X ij a ratio of a component of the distance vector between atoms i and j and the distance

between atoms i and j.

y, y-coordinate of atom i

YtJ' y-component of the distance between the atoms i and j

Zi z-coordinate of atom i

Zij z-component of the distance between the atoms i andj

a; exponential decay factor for the universal energy function

P
j

(I) exponential decay factors for the atomic densities

p, background electron density of atom i

p, total background electron density

P, (I) partial background electron dCIlsit)' nr atom i
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

The industry of micromachining is in its infancy today, just as the Very Large

Scale Integrated (VLSI) industry has been developing quickly since the late 70's. As

design tools made the development of the Integrated Circuit (lC) industry possihle,

design tools will make the development of new components possible, \'\'hich will cnmhine

the physical world needs of sensing and actuators with tht: rapidly growing Glpabilities of

infonnation technology, Microelectromechanical syslems (MEMS) are miniature

electromechanical sensor and actuator ~ystem~ c.kvelopcd from the mature batch­

fabricated processes of VI.Sl technologies. MLMS have wide applications such as

miniature inertial meaSLlTL'mcnl units, biochemical analysis on a chip, arrayed

micromanirulation or parts, optical displays and micro-probes for neural recording. The

current 3m] increasing success of MEMS sterns from their promise of better perfonnance.

10\\ manufacturing costs, miniaturization and their capacity for integration with

electronic circuits. The MEMS market is conservatively projected to reach between $12

and $14 billion by the end of this year. Micro-optics and MEMS are paving the way for



Micro-Opto-Electro-Mechanical Systems (MOEMS). Using MOEMS technology, micro­

optical elements are batch-fabricated on chips concurrently with microsensors and

microactuators to fonn integrated microsystems. MOEMS teclmology is highly attractive

for commercial applications, since it leverages the integrated circuit infrastructure, which

enables high volume production of microsystem components at a low manufacturing cost.

Uniaxial tension is the most direct way of evaluating mechanical properties of

materials such as the elastic properties, the character and extent of plastic deformation,

yield and tensile strengths, and toughness. Tensile tests are most common in determining

the mechanical properties at macro level. However, when it is applied tu thin film

materials used in MEMS devices, many problems arise:

I. Alignment of the specimen in the testing machine is not easy to perform.

2. Gluing the specimen to the machine is not reliable.

3. Manipulation of the thin film specimen may cause irreparable mcdwllical damage,

4. It is very costly to perfonn nano-regime tensile testing due to colnplcxity of the

equipment.

S, Production of defect free materials in the forlll of lensile specimens is very difficult.

Thus it is very difficult 10 pcrfmm lensile testing of these devices. An alternative

approach would be Molecul<:H Dynamics Simulation, which is very easy to per[onn and is

inexpensl \'C.
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1.2 MOLECULAR DYNAMICS SIMULATION

The essence of Molecular Dynamics (MO) is simply stated: nwnerically solve the

N-body problem of classical mechanics. Molecular Dynamics started way back in the

1950's, but widespread attention was given only in the late 1970's. Even then it was

possible only in some of the big national labs which had super-computers. But today with

the advent of low cost powerful workstations with fast processors (e.g. the Digital Alpha

workstation with 500 MHz clock speed used in this project) and parallel computing, it is

possible to construct large scale MD simulations.

Molecular Dynamics Simulation brings together ideas from several disciplines.

Knowledge of classical mechanics, vector analysis, numerical analysis, thermodynamic:,-,

and programming is essential. Also, a good understanding of the manufacturing processes

is required to analyse the results. MO simulation is basically calculating the trajccluries

of the atoms by solving the differential equations of motion. MD predicts the motion of a

given number of atoms governed by their mutual inlcratol11it.: interactions described by a

continuous potential function and requires the numerical integration of Hamilton's

Classical equation of motion. /\ potential model is required to determine the forces on

each atom due to its neighbours. Until recently, the Morse Potential was used to represent

the potential hetw<:<:n tv,o atoms. It is a pair potential and represents FCC materials fairly

well. hut when it comes to BCC materials it does not represent the deformation behaviour

\\cll( Komanduri ~t al (2000)). So, a better potential model is required to represent all the

materials. The Modified Embedded Atom Method (MEAM) developed by Baskes (1992)

:I



represents the material properties better than the Morse Potential and is applicable to

almost the whole range of metals. Pair potentials like the Morse Potential yield the total

energy directly, but need the volume dependant energy to describe the elastic properties

of a metal. If the volume is not represented properly, it may invalidate the results of a

pair-potential calculation because the elastic properties of the solid are not represented

accurately. In the Modified Embedded Atom Method, every atom is considered as an

impurity, embedded in a host lattice consisting of all other atoms. This allows

calculations using electron densities and allows realistic treatment of impurities in

structures that include cracks, surfaces, and alloying additions.
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Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION TO TENSILE TESTING AT MICROLEVEL

With the advent of thin film materials like silicon wafers used in the semiconductor

industry, it is becoming increasingly necessary to perform tensile testing at micro level to

determine how the materials would react under load. Sato et al. (1998) performed

uniaxial tensile testing of a single-crystal silicon film on a silicon chip. They proposed a

tensile testing procedure, in which the external load is applied perpendicular to the

loading lever, by which the file specimen is uniaxially stretched in the horizontal

direction which is given in figures 2.1 and 2.2. This method allowed the tcnsile Icsting of

single crystal silicon film having any arbitrary orientation. Thcy shU\'vcd that the load

linearly increased until the specimen fractured When the fracture occurred, the load

dropped to equal that of the rotatioll3l stiffness or the torsion bars. They performed

uniaxial tensile testing Oil three dilTcrcntly oriented specimens and measured Young's

modulus and fracture strain for each orientation. The measured values were in close

agreemcnt \\ llh Ihe calculated values of bulk materials.

1111: dil\.'cl tension tests, like the one described above, are effective only when

properly performed. The set up requirements for testing, such as alignment and deflection

5



Specimen

Supportmg frame

.Loaamg .lever

TcrSlOn bar

Test material

Figure 2.1 The on-chip tensile testing method: chip structure [Sato et al. (J 998)]

..~ ... _~.-.~.

-----_ ... ---.-.--

Spe...."'imen

( Tensile force)

( Elongation)

Torsion bar

Loading point

( Load J
( Displacement )

Lvading lever

( Spring reaction)

Figure 2.2 Th~ on-chir tcnsik testing method: cross section

of the chip [Sato et al. (1998)]

measuremcnt. Jrc Jit'Jicult to meet for micro-scale test samples. Yi et aJ. (2000) proposed

:l nc\\ mcthud in which a load cell measured the induced force and the strain was

m~::J.sureJ by :l laser interferometry system. The advantage of the optical method was that
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the strain was obtained without physical contact to the sample. The specimen was etched

by four different common silic.on etchants - KOH, EDP, TMAH and XeF2 The Young's

modulus measured, 169.2±3.5 GPa, was very close to the widely accepted value of

168.9 GPa for silicon.

2.2 MOLECULAR DYNAMICS SIMULATION

Eyring and his colleagues (1944) performed the first trajectory calculations of H and

H2 molecules. All the calculations were performed manually since there were no

computers available during that time. They found that the system was caught in a local

minimum and oscillated in that minimum without escaping out. Later. Alder and

Wainwright (1959) devised molecular dynamics in the late 1950's, which is one of the

forms of equilibrium molecular dynamics. It is typically applied to an isolated system

containing a fixed number of molecules N in a fixed volume V. Becausl: th~ system is

isolated, the total energy E (sum of Potential and Kinetic energies) is also C(lnst~nt. The

first applications of MD techniques for molecular simulation were l1l;Jdc ror sinlple

fluids. Another form of molecular dynamics. non-equilihrium molecular dynamics, first

appeared in the early 1970's. In these methods. an eXkrnal force is applied to the system

to establish the non-equilibrium situation of interest, and the system's response to the

force is determined from tht simulation. MD simulation has been applied to various

fields like crystal growth. reactive scattering and simulation of complex liquids in

chemistry. simulations for energetic and structural features of biological systems, and in

7



machining for tension, indentation, cutting and friction at the atomic scale. The available

literature is vast, only the literature concerning the tension and shear is reviewed.

Lynden-Bell (1994, ]995) investigated the behavior of FCC crystals of the metals

platinum, gold, rhodium and silver under uniaxial tension using the Finnis-Sinclair

potential. The study was conducted for the variation of potential energy and longitudinal

stress with strain for the above materials at four different temperatures 0.04T~, 0.35 Tm.

0.55 Tm. 0.7 Tm, where Tm was the buJk melting temperature of the material. Void

fonnation and growth of nano-cracks were reported which were the causes of failure. The

stress was reported to increase to a maximum at low temperatures and then decreased due

to a series of structural rearrangements. Platinum and gold, which were highly ductile,

were reported to develop local regions of disorder first when compared to the not-50­

ductile rhodium and silver. However, at temperatures abDve half the melting point, all the

metals were reported tD be disordered before failure, by void formation. For (h4.'

investigation at different temperatures, it appeared that both the shorl and long range

tenns fDr interactions were needed. So, a potential model with many-houy terms would

have better represented the behavior of the material in bu Ik.

Rentsch and Inaski (1995) cDnducted MD simulation of silicon under uniaxial tension

using the TersoffpDtential. They rerorted a linear stress-strain relationship followed by a

sudden break down to zero. Anisotropic defonnation of silicon was reported. The

Young's muuulus was found to be 171 GPa and the specific surface energy to be 0.393

.r III .: .
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Kitamura et al (1997) perfonned MD simulation of nanD-single crystal of nickel in

tension using the embedded atom potential. Tension tests were carried out under two

conditions: (1) tension without constraint of transverse deformation and (2) tension with

constraint of transverse deformation. In the first case, yielding was brought about by the

crystallographic slip on the {Ill} planes at a strain of 0.1. The yield stress in tension was

about] 5 - 20 OPa and very little differences were noticed among the wire, film and bulk

samples. The multiple slip on the {] II} planes continued to take place after the yield.

The plastic deformation caused ductile shear fracture. With constraints, the yield stress

reached 40 OPa. No plastic strain was generated. A cleavage crack initiated and brought

about brittle fracture. It was reported that the constraint changed the fracture mode.

Heino et al (1998) studied the mechanical properties of copper by MD using the

effective medium theory as the potential model. Simulations of point defects, grain

boundary, and a larger void, which served as the seed for crack propagation, were studied

at room temperature. A decrease in fracture stress and strain, and tensile modulus was

reported with an increasing number of defects. Systems with larger nUlllhcr of dckets

were reported to appear more isotro ic that ordered systems, in terms of tensile modulus.

They reported that the systems with grain boundaries were weaker than the ordered

systems in terms of modulus, fracture stress and fracture strain. With thick systems, with

free boundaries and an initial large void, the {Ill} slip plane was reponed.1.o opropagate

in a (110) direction with a speed of about 60% of the longitudinal speed of the sound for

the speci fic crystal orientatio~..~ith thin systems, including a crack seed and having free



boundaries, crack propagation was reported m the (II~) direction by microvoid

coalescence.

Komanduri et al (2000) studied the uniaxial tension of single-crystal materials, both

FCC [AI, Cu, and Ni] and BCC [Fe, Cr, and W] using the Morse Potential. They reported

a rapid increase in stress up to a maximum followed by a ~radual drop to zero when the

specimen failed by ductile fracture. They also reported that the radius of the neck

increased with an increase in the .defo:m:ation of the--spedmen- and decreased as the

ductility of the material decrease~:..g~pid fluctuations in the force values were reported.

The strain to fracture was reported to be lower for BCC materials than FCC materials.

Tungsten had the highest strength and aluminum had the lowest strength. The ultimate
~---

tensile strength of Cu, Ni, AI, Fe, Cr, and W were reported to be -28, 36, 13,29, 31, and

51 GPa, respectively. The strain to fracture was reported to be -2.17, 1.67, 3.2, 1.52.

1.52, and 1.4 for Cu, Ni, AI, Fe, Cr, and W, respectively. They also reported a good

correlation between the D~ and a- parameters of the Morse potential with the ultimate

tensile strength and the strain to fracture for the FCC materials, and no such correlation

for the Bee materials.t:he~ggested that an alternate potential model should he used

for BCC materials since the deformation behavior wasn't represented well by the Morse

potential. ,!

'--

Horstemeyer and Baskes (J 999) performed atomistic finite deformation using the

Embedded Atom Method. They observed a spatial size scale effect on the yield stress.

They ohservcd that the mechanical yield point occurred from dislocation initiation at the
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edge of the numerical specimens. They also observed that~ as the spatial length scale

increased, the continuum rotational effect coupled with the increase in the dislocation /
I

population reduced the oscillatory behavior. They proposed a length scale bridging idea ,,
i.

by relating a continuum single degree of freedom loss coefficient, which related the _J

plastic energy to the total strain energy, to varying sizes of blocks of atoms.

By the above review, it is clear that a potential model which is good for all the metals,

FCC, BCC, diamond structure and HCP, must be used for MD simulation. Modified

Embedded Atom Method (MEAM) is one such potential model and is considered in this

project.

2.3 MODIFIED EMBEDDED ATOM METHOD

The first step towards the present day MEAM was the quasiatom theory proposed

by Stott and Zaremba (1982), that was used successfully to calculate the characteristics of

hydrogen in metals. They proposed that "the energy of an impurity in a host is a function

of the electron density of the unperturbed (i.e. without irppurity) ho~t".

Daw and Baskes (1984) generalized the quasiatom theory to treat all atoms in a

unified way, and called it the embedded atom method. hey proposed that. every atom is

considered as an impurity, embedded in a host lattice consisting of all other atoms. This

allowed calculations using electron densities and allowed realistic treatment of impurities

in structures that include cracks, surfaces. and alloying additions. The electron densities

II
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were approximated by the linear superposition of spherically averaged atomic electron

densities. They also proposed that the embedding energy of the atom depends only on the

environment immediately around the impurity, i.e. impurity experiences a locally

uniform electron density. The energy was given by

(1)

Where Pi was the electron density of the host atom without atom i, and ~ was the short-

range electrostatic pair potential. From this expression for the total energy of a given

metal, several ground state properties like lattice constant, elastic constants, sublimation

energy, and vacancy-formation energy were calculated. The validity of the above

functions was tested by computing a wide range of properties, like the formation volume

and migration energies of vacancies, the formation energy, the migration energy of

divacancies and self-interstitials, the surface energy and geometries of the low-index

surfaces of the pure metals, and the segregation energy of substantial impurities to {I OO}

surfaces. The embedded atom method developed by Daw and Baskes was based on the

density functional theory and the electron density was approximated as a linear

superposition of electron densities. These assumptions are better approximations for FCC--- ._.---
metals but not for BCC metals.

Adams and Foiles (1990) extended the embedded atom method to BCe material

Vanadium. Since the electron density in BCC metals was not well approximated by linear

superposition of electron densities, the authors used the adj uslahle electron density

proposed by Voter and Chen (1987). This theory was adopted since spherically

12



symmetric electron densities were easier to incorporate in the model. The pair tenn in Eq
.-----~... - ~ ---~•• - -. _ .-........ _'0"_ '.' I

(1) was asswned to have the fonn of the Morse Potential.

Later on, Baskes (1987) modified the embedded atom method to include

directional bonding and applied it to silicon. Baskes, Nelson and Wright (1989) extended

the silicon embedded atom method to the silicon-germanium system. This extended

method was called modified embedded atom method. This method had a few deficiencies

when it was initially developed. There was inward relaxation at a vacancy, an extremely

large stacking fault energy and only qualitatively accurate small cluster predictions.

These deficiencies were partially resolved in the later paper by Baskes (1992). The

common attribute of all the papers is that the interaction between two atoms depends on
...... - •• &'

the local environment.

The MEAM has been applied to metals and semiconductors and also for diatomic

gaseous elements. In this method, simplification to the first nearest neighbors is possible,

which reduces the computational time. The difference between the EAM and MEAM is
..._.. j ....... _il ••.. ~ ......

that the .Pi. which is. give~ as the line~rly superposition of spherically averaged atomic

electron densities in EAM is augmented by an angularly dependent term in MEAM.
. . "." -. • - """Ia ~~~..."._ ... to... ,-, ••• •

Baskes and Nelson (1994) have extended MEAM to HC? materials. So, MEAM is much

more versatile and can be used for FCC, BCC, diamond structures, and Her metals.

I '-'



Chapter 3

PROBLEM STATEMENT

MD simulation has been used to conduct uniaxiaJ tension of different materials using

different potential models like the Finnis-Sinclair potential (Lynden-Bell [1994,1995]),

the Tersoff potential (Rentsch and Inaski [1995]), the Morse potential (Komanduri et al.

[2000]), and the effective medium theory (Heino et al. [1998]). Using the Finnis-Sinc1air

potential, it appeared that a potential model with many body terms would have better

represented the behavior of the material in bulk. When the Morse potential was used for

MD simulations, good correlation was found between the D- and a- parameters of the

Morse potential with the ultimate tensile strength and strain to fracture: for the FCC

materials. No such correlation was found for BCe materials. So, a potential model which

can represent the bulk properties of metals fairly accurately, and which can be used for

the whole range of metals should be used for MD simulations. The embedded atom

method and the MEAM are such potential models. The difference between these models

is that the linear superposition of atomic electron densities in the embedded atom method

is augmented by an angularly dependent term in the MEAM. Thus MEAM polelltial j"

chosen as the potential model for MD simulation. The objcctuvc (d' thi" slUdy i~ La:

1-1



1. Develop the software for MD usmg the MEAM as the potential model for the

trajectory calculations

:2. To find the forces on the atoms by calculating the derivatives of the total potential

with respect to the three coordinate axes, x, y and z..

3. To validate the software by different testing procedures like the numerical vs. the

analytical force test, the conservation of energy test and the back integration test, to

validate the accuracy of the model.

4. To perform a shear test of Nickel to evaluate the shear stress and strain and to observe

the deformation during the simulation.

5. To perfonn uniaxial tension calculations using MD for various FCC and Bee metals

and to find the ultimate tensile strength and the strain to fracture of these metals and,

also, to observe the deformation and necking during the simulation.



Chapter 4

MOLECULAR DYNAMICS SIMULATION

Molecular dynamics simulation basically involves the calculation of trajectories.

This calculation involves the numerical integration of classical equations of motion for a

system of interacting atoms over a period of time. The time step used in this integration is

of the order of 10-15 sec, which is less than the period of vibration of the atoms.

4.1 MOLECULAR DYNAMICS MODELING

Consider an isolated system comprising N bodies with the coordinates (Xi, Yi, lj)

where i = 1, 2, 3, .,.",N. Given a set of N independent generalized coordinates and

velocities {q"q, }that describe the state of a conservative system (one in which all the

forces derive from some potential energy function U ), so that L = L({q, }, {q J }, t) ,then L

can be shown to satisfy the Lagrange equations

~(8L]_~ = O,i = 1,,,.,,N
dt 8q, 8q,

(4.1 )

These equations are the starting point for many of the suoscquent dcvelopments,

Newton's second law is a simple consequence or this result. \\here. if qi denotes a

II)
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component of the Cartesian coordinates for one of the atoms (and assuming identical

masses m):

So that equation (4.1) becomes

mq, = -av/aq, = F,

Where Fi is the corresponding force component.

(4.2)

(4.3)

By replacing the generalized velocities {q in the Lagrange formulation by the

generalized momenta Pi = ai/aq, (if the coordinates are Cartesian, thenp, = mqi) and

consider the Hamiltonian H = H({qj}' {P, }, t) defined by

The two first order equations of motion associated with each coordinate are

. aH
p=--

I aq,

(4.4)

(4.5)

(4.6)

If H has no explicit time dependence, then H = 0, and H - the total energy - is a

conserved quantity.

From the above equations (4.5) and (4.6), we get the following dillcrcntial

equations for each atom in the three coordinate systems.

17



BHjBPx, =dx;/dt = pXj 1m,

BHjBPy; =dy;/dt = py, 1m,

8HjBPz, =dz;/dt = pz, Imj

8HjOx, =8V/Ox; = dpx;/dt

BHjBy, =8V/Byj = dpy)dt

8Hj8z; = 8V/8z, = dpz)dt

(4.7)

(4.8)

(4.9)

(4.10)

(4.11 )

(4.12)

So the total number of differential equations to be solved are 6N. The following are the

system of units used in the above equations

1 mass unit = 1 atomic mass unit = 1.007/6.023 x 1023

1 distance unit = 1 A0 = 10·gcm

1 energy unit = 1 eV = 23.06 kcaVmol = 4.184 x 23.06 kllmol

1 time unit = 1 t.u. = 1.018 X 10- 14 sec.

4.2 NUMERICAL INTEGRATION

The calculation of trajectories requires the numerical integration of the equations

(4.7) through (4.12) from an initial state in the configuration space identified as reactants

to some final state associated with products. The various numerical techniques used are:

1. Fourth order Runge-Kutta method (which is self starting)

2. Fifth, sixth etc order predictor-corrector methods (non self starting)

3. Variable step size methods.

Runge-Kutta method has several advantages when compared to the other methods.

IR



1. It is self-starting, so it is unnecessary to know the values of elements prior to t = 1{).

2. The integration error is very small, of the fourth order. 0 (h4). So the error can be

neglected without affecting the results significantly.

3. The method is stable and fairly easy to program.

Its main disadvantage is:

1. The need to compute a large number of derivatives (24N) for each integration step,

which demands a lot of computer time

Though this is a disadvantage, it is worth it because of the greater accuracy and the

stability of the method. Other methods, like Predictor-Corrector methods, have the

advantage of providing an automatic error estimate at each integration step, thus allowing

the program to use variable step size to achieve the specified accuracy. However, these

methods are not self-starting and require the use of Runge-Kutta method to start the

integration. So, the Runge-Kutta method was chosen for the calculations.

If there are N particles whose initial derivatives 01 = f (xo. Yo) are known and we

integrate them over a period of time t, the Runge·Kutta method involves the calculation

by the following steps.

1. Move them to a new position P2 USIng Oland a time step of 1/2, so that

D2 = f (xo+~x12. yo+D1" ~x/2)

2. Get them back to their original positions and move them to their new positions P3

using the derivatives 02 and calculate 03 = f (xo+~x12. Yo+02* ~x/2)

3. Get them back to their original positions and move them to their nc\\- positions ha~eJ

l1n derivatives 03 and a time step oft and calculate 04 = f (xrf'-llx.i:2 )q+f)V"l\\/2)
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4. Compute the average derivative <D> = [01 + D2"'2 +03"'2 + 04]/6.0 and then

compute the !1y = <D>*!1x and y 1 = Yo +!1y , to get them to their final positions

Figure 4.1 illustrates this point. This is a simultaneous approach in the sense that all the

particles are moved during the above steps. Thus, for a set of N particles, there will be 4N

intermediately calculated positions and forces for a Runge-Kutta procedure time step.

The interatomic potential used in the simulation to model the materials plays an

important role in determining the accuracy of simulation results. The modified embedded

atom method is used in the present calculations, which is explained in the next chapter.

4.3 CHOICE OF THE MODEL

The following are some of the important considerations in the choice of the model

for MD simulations:

1. The number of differential equations to be evaluated for a system of N atoms, which

is 6N. So, if there are 1000 atoms, we need to integrate 6000 first order coupled

differential equations. This provides a restriction on the computer memory and

computational time. So, we need to choose a model within these restrictions

2. Number of terms in the potential energy hypersurface that are to be considered. For

example, in a pair potential it is N(N-l )/2 and for a many body potential like the

Modified embedded atom method, it is N(N-l)

3. Size convergence should be considered so that the results are independent or our

choice ofN.
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Chapter 5

POTENTIAL MODEL

The choice of the potential model to be used in the trajectory calculation is very

important since it has to represent the properties of materials in bulk. The modified

embedded atom method is a good choice in the sense that in represents the properties of

bulk materials better than other pair potentials, like Morse or Lennard Jones potentials.

5.1 MODIFIED EMBEDDED ATOM METHOD

The total energy £ of a system of atoms given by the embedded atom method is:

I
£/u/ = L F; (P, (R;)) + - L ¢J(R,1 )

I 2'J·
(5.1 )

The first term in the right side of the equation is the embedding function, i.e., the energy

to embed an atom of type i into the background electron density at site i, P" and the

second term is the pair interaction between the atoms i and j, whose separation is given

by Ri}. According to the embedded atom method, P; is the linear supposition of

spherically averaged atomic electron densities. In the modified embedded mdhod. it is

augmented by an angularly dependent term. The energy for an individual a10111 is given
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(5.2)

The background electron density is renonnalized by dividing it by the number of nearest

neighbors Z;.

The pair interaction is given by the equation

¢;; (R) =2 {E/ (R) - F, (Pi
O
(R) I Zj)}

Zj

From the above three equations the energy of an atom Ej is given by

(5.3)

(5.4)

IJ· ,j
\ I ,,

The first part of the above equation is the average of the energy per atom, of the reference

lattice at each of the nearest-neighbor distances. The second part is the difference

between the embedding energy at the background electron density actually seen by the

atom i and the average embedding energy of this atom in the reference lattice, at each of

the nearest-neighbor distances.

5.2 DETERMINATION OF PARAMETERS

The equation (5,3) has three tenns and each of the tenns can be detennined in the

following way. In the first term Zj is the number of nearest neighbors and Et is given by

o
a*=a,(RIRj -I)

Where
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ai = exponential decay factor for the universal energy function 7
Et = sublimation energy (eV)

R = distance between the atoms (A~

RiD = equilibrium nearest neighbor distance (A0)

In the second term, the function F is given by

So the second part becomes

Where

Pi = total background electron density

Ai = scaling factor for embedding energy

Ei
D

= sublimation energy (eV)

The total background electron density is given by

J

(Pi)2 ="Lt/'\p//)2
1=0

Where

f/I) = weighting factors for the atomic densities

The first partial background electron density at site i is given by

(0) = '"' 0(0) (R )P, LJPJ IJ
j(.,i)

(5.7)

(5.8)

(5.9)

(5.10)

Where the atomic electron density oftype-j atom at a distance Rij from site i is given by

0(1) (R ) = -h'Pj ij e

e-h' = f3 (/)(R / RO -1)
) IJ I
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f3 j (I) =exponential decay factors for the atomic densities

RIO = equilibriwn nearest distance (A0)

RIj = distance between atoms i and} (Ao)

Similarly the second, third and fourth partial electron densities are given by

2 2

(2) 2 "[" a fJ (2) )] 1[" U(2)(R)](Pi ) = L. L.Xij Xij Pu (Rij - 3" L.Pj ij
a.fJ K"i) )(,<ij

(5.13)

(5.14)

(5.15)

Where Xij a =Rij a / Rij , and Rij a is the a component of the distance vector between atoms

i and j. The above equations are chosen so that the partial background electron densities

are invariant to lattice translation and rotation, scale simply with atomic electron density

for homogeneous deformation, and equal zero for a cubic lattice,

In the third term, the function F is given by

Where

1

( -O(R))2 = ~t(/) (/),o( . U(l)(R ))2P, IJ L. I S, P, 'I

I~O

Sf (1),0 =geometry factors

The rest of the terms are the same as explained above.

25

(5.16)

(5.17)



-

All the prior tenns are put together to obtain the final equation, i.e., the total potential of

the system. The next step is to detennine the forces between the atoms from the potential

function.

5.3 DETERMINATION OF FORCES

The detennination of forces is crucial and time consummg because of the

complexity of the potential function. The force on an atom i due to atom} is obtained by

differentiating the total potential with respect to x, y, and z-components of the distance

between the atoms i and}, to get the force in x, y and z directions respectively.

Force in x-direction,

Fx. = _ av,o/
IJ Ox ..

I)

Similarly, in y and z-directions

F = _ av/o/

Yij rh'
VYlj

(5.18)

(5.19)

(5.20)

Once the potential and forces are obtained, the model is to be tested to validate the

accuracy of the model.
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Chapter 6'

VALIDATION OF THE POTENTIAL MODEL

Once the software for the MD simulation is developed, i.e., the potential and the

forces are determined; it has to be tested before it is used. There are many ways of testing

the model for different parameters like numerical vs. analytical forces test for the

validation of the forces, the conservation of energy test and the back integration test.

6.1 NUMERICAL vs. ANALYTICAL FORCES

The first and foremost thing is to validate the force function. This is done by

comparing the analytical forces, got from the derivatives of the potential, to the numerical

forces derived from the formula:

dVIde f~'n =0.75 x 5 1 -0.15 x 5 2 + 0.01666666667 x 53

51 = [V(xo+ Lli) - (xo- Lli)]/ Lli

52 = [V(Xo + 2Lli) - (Xo - 2Lli )]/ ~x

53 = [V(Xo+ 3Lli)- (xo - 3Lli)]/ Lli
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The testing sample contains five atoms, which are placed in the following configuration

(2.0,2.0,0.0), (2.0, -2.0, 0.0), (-2.0, 2.0, 0.0), (-2.0, -2.0,0.0), (0.0, 0.0, 2.0). The atom 1

is moved to 1 AO in steps of 0.1 AO and the forces are calculated at each step. The

numerical and analytical forces agree well, demonstrating that the analytical forces are

right. The tables 6.1 through 6.3 show the comparison between analytical vs. numerical

forces in x, y and z directions respectively

6.2 CONSERVATION OF ENERGY

After the validation of the force function, it is necessary to check if the system

conserves energy. If there are no external forces acting on the system, and if the model is

allowed to integrate for the given period of time, the sum of potential and kinetic energies

which is the total energy must remain constant. This test is necessary, as it not only

validates the accuracy of the potential and forces functions but also the integration

procedure, i.e., the Runge-Kutta procedure.

For this test, the sample is one lattice of Nickel, which has 14 atoms. This sample

is allowed to integrate for 10 time units and the values are given in the table 6.4. The total

potential is constant for up to 12 significant digits. The same is shown in the figure 6.1
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Table 6.4 Conservation of energy test
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Figure 6.1 Conservation of energy test
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6.3 BACK INTEGRATION

Back integration is the most sensitive of all the tests. In this test, the model, which

is an isolated system, is allowed to integrate over a period of time, and then the time step

is made negative, and the model is allowed to back integrate for the same period of time.

The model should trace the same potential, kinetic and total energy curves in both the

forward and backward integration. Also the atoms must trace the same path in both the

forward and backward integration.

For this test, one Lattice of Nickel is taken and allowed to integrate for a period of

100 time steps. Then the time step is made negative and the structure is allowed to back

integrate for the same period of time. The potential, kinetic and total energy curves for

both fonvard and backward integration are given in the figure 6.3. The curves overlap

each other almost exactly and look as if they are the same curve. Also the position of one

of the atoms in the structure is plotted against time and it traces the same path in both the

directions and can be seen in the figure 6.2. These three tests validate the potential and

force functions and also the integration procedure.
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Chapter 7

RESULTS AND DISCUSSION

7.1 INTRODUCTION

The potential model developed is good for any material with FCC, BCC, diamond

structure, and HCP metals. The values are given for some of these materials in the paper

by Baskes (1992). Of these, nickel, copper, and iron are selected and subjected to uniaxial

tension.

7.2 TENSION TESTS

Table 7.1 shows the conditions in which the experiments are conducted.

Configuration 3 Dimensional

Potentials Used Morse, MEAM

Wark Material Dimension 4a x 4a x 6a (a = lattice constant)

Tensile Loading Condition Uniaxial

Tension Rate 500 m/s

Bulk Temperature 293 K
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The specimen has boundary (which are fIxed) atoms at the top and bottom surfaces.

Immediately after the boundary atoms, is a layer of peripheral atoms. The rest are moving

atoms. The tension simulations are conducted at the rate of 500m/s to achieve reasonable

computational time. Consequently the system temperature will increase significantly

which is dissipated by means of the peripheral atoms. The motion of the atoms in the

moving zone is determined solely by the forces produced by the interaction potential and

the direct solution of the classical Hamiltonian equations of motion. The motion of the

peripheral atoms is also calculated from the solution of Hamiltonian equations, but

modifIed by the presence of velocity reset functions associated with each atom in the

peripheral zone. In this method, the Cartesian velocity components of each peripheral

lattice atoms is reset at periodic time intervals, !:!.t, using the following algorithm:

new = (1- )112 old 112V(T J=)Val W Val +W .,=, (8.1)

Wh old. there VailS e a-component (a=x, y, or z) of velocity of lattice atom

resulting from the solution of the Hamiltonian equations of motion, and va/
cw is the reset

a velocity component. 'w' is a parameter that controls the strength of the reset with w=o

corresponding to no reset and w= I being a complete reset. V (T, ~) is a randomly chosen

velocity from a Maxwell-Boltzmann distribution at temperature T. ~ is a random number

whose distribution is uniform on the interval [0,1] that controls the random selection.

This procedure simulates the thermostatic effect of the bulk and guarantees that the

equilibrium temperature will approach the desired value, which is 293 K in these

calculations.
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The animations for nickel using the MEAM and the Morse Potentials are given in

figures 7.l(a)-(d) and 7.2(a)-(d). After relaxation, a light bulge in the specimen is

observed, using the Morse potential as well as the MEAM potential. This is because,

when the crystal relaxes, it tries to take the minimum energy position and tries to attain a

spherical shape. But, since it is constrained at the top and bottom layers by boundary

atoms, it bulges only on the +ve and -ve x and y-directions. The bulge is more in the case

of the Morse potential than the MEAM potential. MEAM potential represents crystal

surfaces better than the Morse potential. This is because MEAM potential involves

calculations using electron densities and allows realistic treatment of impurities in

structures that include cracks, surfaces, and alloying additions. When the tension test

begins, similar behavior is observed in both the cases. The bulge decreases gradually and

the specimen starts to neck. Because of the high tension rates and also because the

specimen is very small, the crystal becomes amorphous almost immediately after the

experiment begins. The necking continues and the diameter of the neck decreases with

the increasing strain. This process continues until the specimen fails due to fracture. The

stress-strain curves for the tension test of nickel using the Morse and the MEAM

potentials, is given in the figure 7.3. The curves behave almost similarly until reaching

the peak of the tension curves. After that, the tension curve of nickel, using the MEAM

potential drops rapidly when compared to the one using the Morse potential. This can be

attributed to the fact that the atoms in the tension test using the Morse potential are

bonded by a pairwise potential and these bonds exist until the all the bonded pairs in the

center of the specimen are out of the cutoff radius. But, in the case of the MEAM

potential, the volume of the material is represented well, because the calculations are
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done using the electron densities. This results in the rapid drop down in the tension curve

simulating the behavior of the bulk material. Using the MEAM potential, the ultjmate

tensile strength is 44.46 OPa approximately at a strain of 0.31 and in the case of Morse

Potential the ultimate tensile strength is 54.25 OPa approximately at a strain of 0.232.

The stress-strain curves using the MEAM potential for nickel, copper, and iron

are shown in figure 7.4. The animations for the tension tests of copper, and iron using the

MEAM potential, are given in figures 7.5(a)-(d) and 7.6(a)-(d). For FCC materials, nickel

and copper, the simulations show reasonable behavior. Copper has a lesser ultimate

tensile strength than nickel as is shoVv11 in figure 7.4. It is 25.280Pa approximately at a

Ultimate Tensile Ultimate Tensile Ultimate Tensile
Strength values Strength values Strength values
quoted by Hertzberg obtained by obtained by MEAM
(1996) Komanduri et al Potential

(2000)
(OPa) (OPa) (GPa)

Nickel 33.4 36.0 44.46

Copper 19.1 28.0 26.20

Iron 31.8 29.0 32.16

Table 7.2 Comparison of ultimate tensile strength values obtained by using the MEAM

potential with those obtained by Komanduri et al (2000) and those quoted by Hertzberg

(1996)

strain of 0.159. The strain to fracture is 0.49.The fact that the copper has lesser strength

than nickel is clearly illustrated by these observations. The ultimate tensile strength of

iron is 32.16 OPa approximately at a strain of 0.133 and the strain to fracture is 0.455.
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Iron is found to have lesser ultimate tensile strength than Nickel but more than Copper.

The ultimate tensile strength values of nickel, copper, and iron are compared with those

obtained from Komanduri et al (2000) and those quoted by Hertzberg (1996) in the table

7.2. The values obtained from MEAM have the same ranking as the above

7.3 SHEAR TEST OF NICKEL

Horstemeyer and Baskes (1999) conducted a shear test of a nickel specimen of

dimensions 4a x 2a x 2a at a speed of 1.0mJs and observed the shear stress vs. shear strain

curves for these samples (figure 7.8). The shear stress was normalized by the elastic shear

modulus of nickel (124.8 GPa). They observed a spatial size scale effect on yield stress.

They used the embedded atom method as the potential model. Since embedded atom

method is supported by strong physical arguments, shear of Nickel using the MEAM

potential was done to compare and validate the results with those obtained by

Horstemeyer et al.

A nickel sample with dimensions of 4a x 4a x 6a is taken and is subjected to shear

at the speed of 500 mJs (this speed is chosen to keep the computational times reasonable),

until a shear strain of 0.3. The animations are shown in figures 7.7(a)-(d). The shear

stress/elastic modulus vs. the shear strain is shown in figure 7.8. It is observed that both

the curves reach a peak ofO.l(approximately) for a shear strain of 0.125 (approximately).

After that, the curve obtained by Horstemeyer (1999), drops down rapidly when

compared to the one obtained by using the MEAM potential. This is because the shear
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test of nickel using the MEAM potential is conducted at the speed of 500 mJs and this

generates a lot of heat. This causes the material to become more ductile and hence

increases the value of strain to fracture. The maximwn shear stress/elastic modulus

values are in reasonable agreement for both the curves.

The software developed is good for single crystal materials. The

development and validation of the MD using MEAM was done along with Mr. David

Stokes. The project consisted of five important steps, developing the code for potential

function (done by me), developing the code for force function (50% by me and 50% by

David), validating the potential model (50% by me, 50% by David). conducting the

tension tests (done by me), and conducting the shear test (done by me). This software can

be used to model other manufacturing applications like cutting, milling, and indentation

by using the Morse potential as the interface potential between the tool and workpiece.
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Figure 7.la

Figure 7.lc

Figure 7.1 b

Figure 7.ld

Figures 7.1 (a)-(d) Snapshots of animation during tension test of nickel using

the MEAM potential
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Figure 7.2 a

Figure 7.2 c

Figure 7.2 b

Figure 7.2 d

Figure 7.2(a)-(d) Snapshots of animation during tension test of nickel using the
Morse potential
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Figure 7.3 Tension test of nickel using the Morse potential and the
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Figure 7.4 Stress vs. strain curves of nickel, copper, and iron using
the MEAM potential
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Figure 7.5a

Figure 7.5e

Figure 7.5b

Figure 7.5d

Figures 7.5(a)-(d) Snapshots of animation during tension test of copper
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Figure 7.6a

Figure 7.6c

Figure 7.6b

Figure 7.6d

Figures 7.6(a)-(d)Snapshots of animation during tension test of iron
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Chapter 8

CONCLUSIONS

8.1 TESTING FOR ACCURACY OF THE SOFTWARE

The "Modified Embedded Atom Method" developed by Baskes (1992) was used

In the Molecular Dynamics Simulation. The following tests were conducted for

determining the accuracy of the software:

1. Numerical vs. analytical forces test for the validation of the forces: A system of five­

Nickel atoms was taken and one of the atoms was moved in increments of 0.1 AU and

both the analytical and numerical forces were calculated. They were in excellent

agreement up to 12 significant digits

2. Conservation of energy test: Based on the fact that an isolated system should

conserve energy, one lattice of Nickel was taken and allowed to integrate for a time

period of 10 time steps. The total energy (sum of potential and kinetic energies)

remained constant up to 12 significant digits.

3. Back Integration test: One lattice of Nickel was taken and allowed to integrate up to

100 time units and then the time step was changed to a -ve value and the system was

hack integrated. It traced back the same curve for kinetic, potential and total energies

and the same path for the atom positions.
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Based on above tests it was proved that the software developed was accurate and ready to

be used.

8.2 UNIAXIAL TENSION

Uniaxial tension experiments were done on four materials: two FCC (nickel, copper) and

a BeC (iron) material at SOOmJs using the MEAM potential. Also, uniaxial tension of

nickel, using the Morse potential, was performed and compared with the resuJts obtained

from the MEAM potential. The foHowing observations were made:

1. The measured ultimate tensile strengths were 26.20 OPa (copper), 44.46 OPa

(nickel), and 32.16 GPa (iron). These values have the same ranking as the theoretical

\'alues of defect free whiskers given in Hertzberg (] 998) and also as those obtained

by Komanduri et al (2000).

2. Copper has the least strength (26.20 GPa) while nickel has the highest strength (44.46

OPa) among the three materials. In bulk also, copper has the least strength of the

three materials and nickel has the highest.

3. The strain to fracture at room temperature for Cu, Ni, and Fe, 0.493, 0.43. and 0.461

respectively. Copper exhibited the maximum ductility undergoing a maximum strain

0[0.493 before failure.

By the above observations it is clear that the MEAM potentials represent both the FCC

and BCC materials fairly well and can be used to perform tensile testing of these

materials,
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8.3 SHEAR TEST OF NICKEL

Shear test of Nickel was conducted at a speed of SOOm/s and the shear stress, which

was nonnalized by dividing it with the elastic shear modulus of Nickel (124.8 GPa) vs.

shear strain was plotted. The curve reached a maximum of -0.1 at a shear strain of

~O.125. The value of maximum shear stress/ elastic modulus was in reasonable

agreement with that obtained by Baskes and Horstemeyer (1999). After reaching the

peak, the curve obtained by MEAM dropped less rapidly than that obtained by

Horstemeyer. The difference is attributed to the fact that the shear test conducted by

using the MEAM potential was conducted at a high speed, and this increased the

temperature of the specimen. This lead to higher ductility and increased value of strain to

fracture.

8.4 FUTURE WORK

I. The existence of stray atoms might be because of the small specimen sizes. Due to

time constraint on this project, the experiments were conducted with smaller sizes.

Experiments must be conducted using large sizes to find out the size-scale effects on

the ultimate tensile strength and strain to fracture.

2. The model developed above is good for single crystal materials. It can be used to

define the potential between like atoms. An alternate potential model like the Morse

potential can be used to define the potential between unlike atoms. Then this model

can be extended to other manufacturing applications like cutting, milling, and

indentation, where the Morse potential can be used to define the interactions between

tool and workpiece (unlike atoms).
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3. Crystals with defects and cracks can be modeled using the MEAM potential. This can

be done by introducing a defect by removing few atoms randomly from the

workpiece to simulate a defect, or by removing few atoms from the workpiece in the

shape of the crack to be studied to simulate a crack. Uniaxial tension and shear

experiments should then be conducted on materials to study their effects on the

tensile properties.
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