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Chapter 1

Introduction and Review of Literature

Scope and Purpose

The detection of bacteria is a problem of both medical and economic importance.

Food related pathogens such as Staphylococcus and Salmonella can cause serious

illnesses while recent outbreaks of Escherichia coli and Listeria occuring in commonly

eaten foods such as hot-dogs and lunch meats, show there is a need for quickly,

efficiently, and economically detecting bacteria (16). Increased government regulations

of the food industry have prompted a need for better tests for microbiological

contamination.

Escherichia coli and Salmonella typhimurium are two of the serious food related

pathogens chosen for this study. Food poisoning by E. coli involves the ingestion of

contaminated water, raw vegetables, cheeses, and raw or rare beef (36). Recently, there

have been reports of E. coli outbreaks due to contaminated, unpasteurized apple cider.

S. typhimurium can be a contaminant of water, poultry, eggs, dairy products, and

meats(36).

Both E. coli and S. typhimurium are members of the Enterobacteriaceae family

and have many common characteristics. Both are gram-negative, nonspore-fonning

facultative anaerobes that are motile with peritrichous flagella. They vary in length from

I to 8 j.Lm and ferment glucose, but do not produce oxidase (23). Pathogenicity of the

Enterobacteriaceae family comes from complex surface antigens and on the basis of

immune responses. Antigens are classified H for the flagellar antigen, K for the capsule

and/or fimbrial antigen, and 0 for the cell wall antigen (36). E. coli classification by



serotype is difficult because there are over 160 0 antigens, over 80 K antigens and over

55 H antigens. Pathogenicity can also be due to endotoxins. E. coli produces two

endotoxins: heat-labile toxin (LT) and heat-stable toxin (ST). These two endotoxins

initiate severe diarrhea.! illnesses by stimulating secretion and fluid loss. E. coli can be

divided into four groups based on pathogenicity: enterotoxigenic. enteroinvasive,

enteropathogenic, and enterohemorrhagic. All of these groups are transmitted through the

ingestion of contaminated food or water. Enterotoxigenic E. coli is the major cause of

infant diarrhea and traveler's diarrhea. Virulence factors assocoated with this group are

LT and ST endotoxins, and fimbrial adhesion called colonization factor (CFA).

Enteroinvasive E. coli causes diarrhea in adults and infants and resembles Shigella in its

pathogenicity because it causes epithelial cell death. Virulence factors associated to this

group are several outer proteins that are similar to Shigella and the production of a Shiga

like toxin. Enteropathogenic E.coli is not well defined. It is the most important cause of

infant diarrhea in some countries. This group does not produce any toxins and the

adherence factor seems to be responsible for the illness. Enterohemorrhagic E. coli

(EHEC) is the most virulent of the four groups. It is the major cause of gastrointestinal

illness in the United States, Canada, and Great Britain. All of the serotypes for this group

produce a Shiga-like toxin (6).

Salmonella can lead to gastroenteritis, enteric fever, and bacteremia.

S. typhimurium, which is one of the more invasive species, is involved in bacteremia,

which can lead to metatastic infections that involve the bones and joints, the

cardiovascular system, and the meninges(6).
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Staphylococcus aureus is the third bacterium used in this study. Some strains ofS.

aureus produce an enterotoxin that is associated with food poisoning. This toxin is

excreted into foods and is extremely heat stabile; the enterotoxin can withstand 30

minutes of boiling. Food poisoning from S. aureus occurs through ingestion of

contaminated foods, especially in foods high in protein (6).

S. aureus is a member of the Micrococcaceae family. The genus Staphylococcus

is a gram-positive, non-sporeforrning, facultative anaerobe (36). Morphology of

Staphylococcus consists of spherical cells ranging from 0.5 to 1.5~m in diameter

occurring singly, in pairs or tetrads. They lack flagella and are sometimes encapsulated.

They are usually catalase-positive and can grow in temperatures between 18 and 40°C

(35). Most of the members of this genus are considered to be part of the nonnal human

microflora. Three species are considered pathogenic: S. aureus, S. epidermidis, and S.

saprophyticus (36).

Pathogenicity of Staphylococcus is dependent on coagulase, hemolysins,

leukocidin and protein A. Coagulase is a plasma clotting protein that coats staphylococci

with fibrin and may prevent phagocytosis (6). S. aureus is the only coagulase-positive

species of Staphylococcus (36). Hemolysins or exotoxins are cytotoxic to rcd blood cells

and are classified alpha.. beta, gamma, and delta. Only alpha and della toxins are of major

importance in human infections. Leukocidin differs from hemolysin hy increasing the

permeability ofleukocytes to cations. This results in the release of cyotplasmic granuals

and cell disruption. Protein A is a surface toxin linked to the peptidoglycan layer of the

cell wall. It is believed that protein A acts as an antiphagocytic component for S. aureus

because it competes with neutrophils by binding immunoglobin.



E. coli, S. typhimuril4m, and S. aureus were chosen for this study not only because

of their pathogenic features, but because they are also available as fairly noninfectious

strains. These three bacteria are also easy to grow and maintain in a laboratory setting.
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Enumeration Techniques

There are several methods for enumerating bacteria, but plate counts remain the

most common method for estimating viable cells (20). In this method, dilutions of

bacteria are plated on agar plates, incubated for at least 24 hours, and then colonies are

counted. The original concentration can then be determined by calculating the original

cell density. Although there are improved plate-counting techniques, this procedure is

still time consWTling and expensive (30). Also, bacteria must compete for nutrients, thus

inhibiting colony formation and growth (20). Besides these limitations, plate counting is

also very labor intensive due to preparation of media and the allotted time needed for cell

growth (3, 20, 21, 30). One alternative method that shows promise is the use of a

fluorescence to identify and count bacteria.

Two things can occur when a wavelength of light strikes a molecule: it can be

scattered or absorbed. A molecule can only absorb a certain wavelength of light. When a

particular wavelength of light cannot be absorbed, the molecule re-radiates or scatters

that wavelength. The light can be scattered in any direction. The light scattered by a

molecule is inversely dependent on the fourth power of the wavelength oflight.

Turbidimetry and nephelometry are two methods that utilize scatter for the detection of

bacterial concentrations.

Turbidimetry measures forward scatter from the bacteria. The larger the

concentration of the bacterial suspension, the more light is scattered. Most instruments

that measure turbidity use absorbance scales or optical density (00) and is proportional

to the log of the percent transmittance(28). Nephelometry measures the light scattered at
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a 90° angle. This process can use a spectrofluorimeter set so that the excitation and

emission monochromator are set to the same wavelength.

Another instrument that utilizes scatter for detection purposes is a Klett

Summerson colorimeter. The Klett-Summerson colorimeter was one of the first

photoelectric instroments used for the detection of bacteria and measures the forward

scatter oflight. This instrument differs from turbidimetry instruments in that it does not

use an absorbance scale, but rather a Klett scale.

Flow cytometry utilizes both scatter and fluorescence to detect and count bacteria.

This method involves the use of fluorescent rRNA-targeted probes, fluorescent

antibodies, or the gfp marker gene (20). Flow cytometry detects the bacteria based on its

fluorescent intensity and scatter (38). In Flow cytometry, the fluorescent probe attached

to the bacteria is excited and then side scatter and forward scatter are recorded (20).
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Optics in Biology

The amount of light a molecule can absorb at a particular wavelength can be

expressed by the Beer-Lambert law, where absorbance (A) equals the log of incident light

(Io) divided by transmitted light (1): A=log WI. Once a molecule absorbs a wavelength of

light, it becomes promoted to an excited state. This means that an electron in the atom has

been moved to an outer orbital. This is a very unstable state for a molecule and therefore

the molecule must dissipate the excitation energy (39).

A Jablonski diagram 1s the best way to illustrate the process that occurs between

absorption and emission (Figure 1) (24). Internal conversion is a process by which the

excitation energy is dissipated as vibrational energy or heat. Luminescence occurs when a

molecule emits light after becoming electrically excited and can be divided into

fluorescence and phosphorescence. Light emitted from a triplet excited state is referred to

as phosphorescence. Phosphorescence emission rates are very slow and lifetimes can be

milliseconds to seconds. Fluorescence occurs when light is emitted from a singlet excited

state molecule. Fluorescence emissjon rates occur much faster and have lifetimes of

about 10ns. 11 was observed by Sir G.G. Stokes that ihe emission energy is typically less

than the energy absorbed by the molecule. Therefore, fluorescence emission is always of

lower energy or longer wavelength than the absorbed wavelength. This difference is

known as Stokes' Shift (24).

There are several problems in the detection of fluorescence from a molecule. One

of these is predicting the wavelengths at which the molecule is going to fluoresce.

Quenching is another problem that can arise in detecting fluorescence. Fluorescence

quenching is any process that decreases fluorescent intensity and can occur by several
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different mechanisms. Molecular interactions such as excited-state reactions, molecular

rearrangement, or energy transfer can result in quenching. Quenching can also occur due

to optical properties of the sample such as turbidity. Tlus occurs when unexcited

molecules absorb the fluorescent emission from an excited molecule, thus decreasing

fluorescent intensity (24).
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Fluorescent Techniques

Fluorescence-based detection of cells typically has a high signal to noise ratio (8.

9). That is, bacteria could be detected at very low concentrations. This is because

measurements are taken at a 90° angle and only scanered light and fluorescence emission

from the molecule at a selected wavelength are detected. In current fluorescent

enumeration techniques, a dye is added to the bacteria. The dye is excited and

fluorescence of the dye and anached bacterium is detected (41). Three dyes that have

been used are the BacLight Viability Kit, Di-8-ANEPPS and eTC dye.

The BacLight Viability Kit allows for the detection of both Jive and dead cells by

staining dead cells red and live cells green (19). At an excitation wavelength of 480nm,

dead cells fluoresce between emission wavelengths of 600 and 650nm while live cells

fluoresce between emission wavelengths of 500 and 550nm. Because this dye does not

penetrate intact cell membranes, it is commonly used in flow cytometry to measure

complement activity. Terzieva et al. found that the BacLighl dye underestimates the

actual viable cell concentrations. Cells with compromised membranes that can still

reproduce are often stained red (37).

The Di-8-ANEPPS is often used in studying changes in membrane potentials, and

is routinely applied in vertebrate studies (10, 11, 19). It is an electrochrornic probe that is

suitable for monitoring membrane potential changes by an electrochromic shift and has

spectral properties that are largely dependent on its environment (0, 11). There are two

major drawbacks of Di-8-ANEPPS. First, there can be fluctuations in staining of the cell

membrane (10, 11). Secondly, the addition of the dye can result in the production of

reactive oxygen species that can damage the cell membrane (J 1).
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The eTe dye (5-cyano-2,3-ditolyl tetrazolium chloride) is used in the

enumeration of active cells by measuring electron transport chain activity. Active cells

are detected by the intracellular formation of insoluble formazan crystals. The eTe dye is

a class of monotetrazol1um redox dyes that produces fluorescent formazan when reduced.

It gives a bright red fluorescence when illuminated by long-wave UV light.

Unfortunately, eTC dye has the tendency to change colors depending on the oxidative

state of the cell. It is also an irritant and very toxic if ingested (19).

Fluorescing dyes can be expensive, somewhat toxic, and at times, give inaccurate

results. An ideal method for detecting and quantifying bacteria would be one that does

not require the use of fluorescing dyes. Self-fluorescence or autofluorescence would be

detected as opposed to a dye.
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Autofluoresceoce

Autofluorescence is the fluorescence of a molecule without the addition of a dye.

The first recorded observation of fluorescence was made in 1565 by Nicolas Monardes.

Monardes described an unusual wood that when shredded and put into a solution of water

emitted a blue tinge when exposed to room lighting (18). This solution was called

"Lignum NephJiticum", the same solution described by Robert Boy!. Neither Boyl nor

Monardes understood the phenomenon because marunade excitation sources were

unavailable for the observations of the blue fluorescence in the dark (5, 32).

Equipment for such observations became available in 1852. The equipment

clearly established that radiation was first absorbed and then reemitted at a wavelength of

lower energy. Since then many organic compounds have been found to be

autofl uorescent.

Aromatic amino acids, lysosomes, and mitochondria are examples of fluorescing

organic compounds (2, 8). Most fluorescent organic molecules emit in the 300 to 500nm

region and appear violet or blue. The aromatic amino acid tryptophan is one of the more

dominant fluorophores, emitting near the wavelength of 340nm (24). Proteins containing

anyone of the aromatic amino acids, such as tryptophan, tyrosine or phenylalanine,

fluoresce in the region of 340nm (32).

The autofluorescence oflysosomes is due to lipofuscin, an autonuorescent age

pigment. The major component of bpofuscin is malonaldehyde. which is a major product

of lipid peroxidation in the Iysosomes (2).

The intramitochondrial NADH pool is responsible for a majority of the

autofluorescence of mitochondria, but FAD contributes some as well (2). NADH has an

II



absorption maximum at 340nrn and an emission maximum at 460nm. FAD absorbs

around 450nm and emits around 525nrn (24).

The use of autofluorescence is one of the oldest techniques and still one of the

most active research fields in science (18). This technique has a wide range of uses from

medical detection of diseases to biochemical analyses of proteins. Britton Chance and his

colleagues were the first to rely on autofluorescence as a diagnostic tool by measuring the

oxidation-reduction states of respiratory earners. The oxidized form of NADH, NAO+, is

non t1uorescent. Also, fluorescence intensity of NADH increases when it becomes bound

to a protein (24). Chance et al used these spectral properties to measure the metabolic

response of rat tissues to various oxygen concentrations and to the addition of respiratory

inhibitors (12).

Measurement of autofluorescence in lenses is a noninvasive technique for the

measurement of advanced glycation end products (AGE) levels. Levels of AGE are

generally higher in diabetic patients and are related to the degree of long-tenn glycemic

control. Increased levels of AGE in lenses of diabetic patients have higher

autofluorescence than that oflenses with normal AGE levels (1). AGEs are produced by

the nonenzymatic reaction of glucose and other aldoses.

Autofluorescence has been used to detect dysplasia in colonic mucosa and to

identify adenomatous polyps in the early detection of colon cancer (13,40).

Autofluorescence of nonnal cells is much higher than for cells with abnormalities. The

autofluorescence spectra can be collected during colonoscopy by small non-imaging

optical fiber probes.
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Another technique relying on autofluorescence is one that invo~ves Ouorophores

of dental caries. Caries lesions contain long-lived fluorophores that emit in the red

spectral region. Healthy tissues contain only short-lived fluorophores whose decay time is

much shorter than that of carious tissues. This autofluorescence is being used in the early

detection of dental caries (22).

Autofluorescence can also be used for the detection of bacteria. A number of

microorganisms have been found to fluoresce. Among these are several strains of

thermophilic sulfate reducing Archaebacteria, Streptomyces griseus, several other

Actinomycetes, and Legionella species. Archaebacleria, Streptomyces griseus, and

Actinomycetes all exhibit a greenish fluorescence (14,33,42). Bacteria that possess the

coenzyme F420 also exhibit a greenish fluorescence and is a very common occurrence in

methanogens (42). Three Legionella species exhibit a bluish white autofluorescence

while two others exhibit a red autofluorescence (7).

This study shows that E. coli. ,{,;. typhimurium and S. llureus also have an

auto tl uorescence and that the autofluorescence spectrum detects bacteria in water and

differentiates among these three bacteria. This study also compares the au10Duorcsccncc

of E. coli to fluorescent dye techniques.
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Chapter 2

Autofluorescence of Escherichia coli, Salmonella typhimurium,
And Staphylococcus aureus

Introduction

Detecting the presence of pathogenic bacteria is a problem with both medical and

economic importance (3, 17). Plate counts are widely used for enumeration and remain

the most common method for estimating viable cells, but plate counts do not detect

donnant microorganisms or those with lag periods greater than incubation times.

Although there are improved plate-counting techniques, this procedure is still time

consuming and expensive (30). Also, bacterial colonies must compete for nutrients, thus

inhibiting colony fonnation and growth (20). Besides these limitations, plate counting is

also very labor intensive due to preparation of media and the aJlotted time needed for cell

growth (3, 20, 21, 30).

Fluorescence-based detection of cells typically has a high signal to noise ratio (8,

9). That is, bacteria could be detected at very low concentrations. Current fl uorescent-

based techniques use expensive dyes to stain cells so that the cells can be easily detected.

In some studies, dye-based fluorescence has resulted in inaccurate data (11,25,29,34)

(21,27). Another type of fluorescence is autofluorescence occurring when a bacterium

absorbs a wavelength of light and emits a photon without the addition of fluorescing dyes

(41 ).

Autofluorescence is a useful method applied in chemistry and biochemistry, and

we propose that it can also be applied to the detection of microorganisms (1, 2, 8, 13, 22,

40). Autofluorescence has been observed in many of the archaebacteria. Archaeoglobus

fulgidus Strain Z exhibits a greenish fluorescence (42). A greenish fluorescence also
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occurs in methanogens, Streptomyces griseus and several other AcNnomycetes (14, 42).

At least seven species of LegioneJ/a exhibit a bluish white fluorescence while two species

of Legionella exhibit a red fluorescence (7). Thermoplasma acidophilum possess a pale

yellowish-green fluorescence when viewed by UV fluorescence microscopy (33). This

study shows that E. coli, S. ryphimurium, and S. aureus have an autofluorescence and that

autofluorescence differentiates among these bacterial genera.
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Metbods and Materials

Bacteria

E. coli C600, S. aureus ATCe #27697, and S. choleraesuis with serotype

Typhimurium ATee #29630 were used for this study. Tryptic soy broth was prepared

from a mix provided by OIFeO laboratories; 5ml aliquots were distributed into vials and

then autoclaved. Vials of prepared and autoclaved broth were inoculated with E. coli, S

uureus, and S typhimurium and incubated at 37°e for 24hrs. Bacteria. in stationary

phase, were centrifuged in a Fisher Scientific MICROl4 microcentrifuge by distributing

3ml of inoculated broth into three 2.0ml-microcentrifuge tubes and centrifuging for 5 min

at 5x 1000g. Supernatant was decanted and the cells washed with sterile reverse osmosis

water (RO water). The cells were vortexed and centrifuged again for 5mi n at 5xl OOOg.

Supernatant was decanted and the cells were resuspended in sterile RO water. Next, the

3m1 of washed bacteria cells, along with 500ul of sterile RO water. were placed into a

4ml-quartz fluorimeter cuvette. The contents of the fluorimeter cuvette were then mixed

to ensure unifonnity by inverting the cuvette four to five times.

Flu orescence Characterization

To investigate autofluorescence of the bacteria, emission of the bacteria was

detected at a fixed wavelength while the excitation wavelength was scanned. Each

emission scan from the bacteria was compared to a negative control of sterile RO water

or Tryptic Soy broth dilution by subtracting the control scan from the emission scan.

The data analysis was based on the collection of fluorescence data into data

records. Each data record represented the scan of excitation wavelengths from low
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wavelength to high wavelength and one speci fie emission wavelength. A scan number

identified the data record.

in this study no fluorescing dyes or reagents were added to the bacteria.

All data points represent the mean ± SEM for three independent experiments. Statistical

analysis was performed using One-way ANaYA with Tukey's multiple comparison test

with GraphPad Prism version 3.00 for Windows 95, GraphPad Software, San Diego

California USA, VlWw.graphpad.com.

Instrumentation

Fluorescence characterization used a spectrofluorimeter (Figure 2). This

spectrofluorimeter consi.sted of one excitation monochromator and one emission

monochromator (Oriel). A tungsten halogen lamp was mounted so that it faced the

entrance slits of the excitation monochromator. Both monochromators had manually

controlled slits that selected the bandwidth. A sample chamber (Oriel) was mounted on

the output of the excitation monochromator. This sample chamber held the 4111l cuvette

and had emission ports at 900 angles to the illumination. It was also equipped with filter

holders to place blocking filters in the emission/excitation light-path. The emission

monoclvomator was connected to a photomultiplier tube (PMT - Hammamatsu R955).

Emissions from the sample chamber were wavelength-selected by the emission

monochromator, captured by the PMT, converted to a voltage, and collected by an

attached computer. S-plus (MathSoft, Seattle, WA USA) was used to process the data and

produce the graphical output.
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Results

Fluorescent emission scans were perfonned on supernatants to rule oUllhe

autofluorescence of tryptic soy broth. Supernatant one was from the first centrifugation of

bacteria, and should have only contained tryptic soy broth. There was no fluorescence

detected for supernatant one. Supernatants from fOUf washes were scanned for

fluorescence. Only the fifth supernatant had detectable fluorescence.

Fluorescence emission of the bacteria was detected at a fixed emission

wavelength while scanning the excitation wavelength. Emission wavelengths were

scanned from 400 to 800nrn in 25nm increments. Excitation wavelengths were scanned

from 200 to 550nrn in 1run increments. Three emission wavelengths, 425nm, 550nm, and

650nm, were chosen for representation ofbacterial fluorescence. Fig 2 represents the

Ouorescent excitation spectra of E. coli, S. typhimurium, and S. aureus at a fixed emission

wavelength of 425run. Bacteria were prepared as described in the Methods ano placeo in

4rnl-quartz-fluorimeter cuvettes; cuvettes were then placed in the sample chamber. The x

axis of Fig 2 represents the excitation wavelength(200 to 350nm). The y-axis represents

the relative fluorescence intensity. Fluorescence intensity is not an absolute metric: it is

dependent on illumination, monochromators, and PMT characteristics. For Figs 2,3,4,5,

and 6, these variables were kept constant. For each emission and excitation wavelength

scanned, a negative control of sterile RO water was also acquired. This negative control

was then subtracted from the corresponding fluorescence of E. coli, S. typhimurium, or

S. aureus. This process was repeated for all experiments. The data represents the mean ±

SEM of three identical experiments for each bacterial species. Tukey's comparison of the
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three bacteria revealed significant differences in fluorescence at 425nrn emission

wavelength among the three bacteria, with p-values less than .001 for all three. S. aureus

had the highest peak fluorescence in all of the Figures, although at certain excitations the

fluorescence values coincided for the three genera while at other wavelengths the

fluorescence differed. In this Fig, S. typhimurium and E. coli appear similar even though

Tukey's comparison of means show significant differences between the two; but if we

reduce the y-axis to 0.5, many differences appear, particularly between the excitation

wavelengths of200 and 350nm. Fluorescence intensity is stronger in this region for E

coli than it is t:or S. ~yphimurium.

Fig 3 represents the fluorescence emission of the three bacteria with the emission

wavelength at 550nm. As for Fig 2, the bacteria were treated as described in the methods

and the data represents the mean ± SEM of three identical experiments for ea-ch bacteria.

The x-axis represents the wavelength of excitation from 200 to 500nm. Tukey's

comparison ofthe three bacteria showed significant differences in bacterial spectra with

p-values less than 0.00 I for all three comparisons, The fluorescence pattern of S. (lureus

between excitation wavelengths of200 and 350nm differs from E. colt and

S. typhimurium spectra in the same area. Fluorescence intensity gradually decreases for

S. aureus up to an excitation wavelength of 350nm, but then increases after 350nm.

Fluorescence of E. coli and S. typhimurium remains fairly constant up to 350nm

excitation, and then gradually increases after 350nm excitation. Also, The fluorescence

peak for S. aureus beginning at 400nm has an upward curve to it while those peaks for

E. coli and S. typhimurium are flatter.
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Fig 4 represents the fluorescence emission of the three bacteria with the emission

wavelength at 650nm. Again, the bacteria were treated as described in the methods and

the data represents the mean ± SEM of three identical experiments for each bacteria. The

x-axis represents the wavelength of excitation fTOm 300 to 55Onm. Tuckey's comparison

of the three bacteria showed signi ficant di fferences among the three bacterial spectra with

p-values less than 0.001. Fluorescence intensity is much lower at 650nm emission for all

three bacteria than at 550nm emission. As with Fig 2, S. typhimurium and E. coli look

very similar even though statistical analysis says otherwise. By reducing the y-axis to 0.5,

the differences between these two become clearer. E. coli has a prominent peak that

appears just after 450nm that is not present in S. typhimurium. There is also another peak

between excitation wavelengths of 500 and 550nm for E. coli that is not present in

S. typhimurium.

Statistical analysis was perfonned using GraphPad program with a one-way

nonparametric ANOVA with Tukey's comparison of means in order 10 insure

repeatability of the experiments. Tukey's comparison of the means revealed no

significant differences among the three experiments for E. coli. with p-values greater than

0.05. The same statistical analysis was performed for three identical experiments of

S. zvpllimurium and three identical experiemnts of S. aureus. Both revealed no significant

di fferences among expl:riments.

Fluorescence of E. coli grown to stationary phase in Tryptic Soy broth, Lactose

broth and Malt Extract was detected in order to see if fluorescence changed due to growth

medium. E coli cells were treated as described in the methods and suspended in a 4ml

quartz-fluorimeter cuvette. The excitation wavelength was scanned from 300 to 400nm
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with the emission wavelength held constant at 420nm. Statistical analysis was performed

after data had been normalized by GraphPad to account for cell concentration. The data is

represented in Fig 5. The x-axis represents the excitation wavelength from 350 to 400nm.

There was no significant difference in fluorescence among E. coli grown in the different

media. Tukey's comparison of means gave a p-value greater than 0.05 for all three.

Spectral analysis was also perfonned on E. col; cells taken at different times

during growth phase. E. coli cells collected every 30min were treated as described in the

methods and suspended in a 4ml-quatrz-fluonmeter cuvette. The excitation wavelength

was scanned from 300 to 420nm while holding the emission wavelength constant at

420nm. The data was then nonnalized to adjust for cell concentration. Fig 6 represents

the fluorescence spectra of E. coli cells taken at 120, 180 and 240min. Based on Tukey's

comparison of means, the fluorescence of E. coli did not differ among cell growth stages

with p-values greater than 0.05, with the exception of cells taken at 60min. E. coli cells

taken at 60min were unmeasurable.
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DiscussioD

The results of this study show that autofluorescence of bacteria is a quantifiable

phenomenon and probably not due to artifact from media or other obvious sources. The

three genera in this study each fluoresced at di ffering but easily differentiable intensities.

There were several emission and excitation wavelengths that could be used to

express the differences among E. coli, S. typhimurium, and S. aureus. We chose the best

three emission wavelengths to simplify the figures. Data expressed as a three-dimensional

graph shows that the fluorescence of these three bacteria is much more complex, but

three-dimensional figures are difficult to understand and analyze statistically. Figs 2, 3.

and 4 showed statistically that there are differences among the bacterial autofluorescence

among E. coli, S. typhimurium, and S. aureus and that these differences may permit

identification of bacteria at the genera level. These quantifiable differences may lead to

bacterial tluorescence fingerprints through which an unknown bacterium could be

identi fied by its autofluorescence signature.

We believe that this study opens a new door into [he identification of

microorganisms by a fluorescent signature. We do not yet understand the source of the

Ouorescent spectrum nor do we understand cause of the di fferences among spectra.

Methanogens greenish flLlorescence is due to a fonnate dehydrogenase coenzyme known

as F420. F420 has a maximal fluorescence emission peak at 455nm(31, 42). NADH also

has a fluorescence peak at 460nm while FAD has a fluorescence peak at 525nm (24).

E. coli, S. typhimurium and S. Qureus all have strong fluorescence peaks in the same

regions as F420 coenzyme, NADH, and FAD. We can only speculate that one or more of
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these enzyme cofactors are responsible for bacterial fluorescence in this region of the

spectra. Tryptophan has a fluorescence emission peak at 353nm when excited at 295run

(24). This could be responsible for the peaks present in Fig 3 just after 350nrn. Further

research should elucidate the causal relationship between bacteria and autofluorescence.
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Figure 2: Syntopic diagram of spectrofluorimeter used in this study. Light from a 75W
tungsten-halogen lamp enters the excitation monochromator; the selected bandwidth of
the light then enters the sample chamber. Light scattered from the sample and
fluorescence from the sample enter the emission monochromator. Light at the selected
wavelength is then captured and amplified by the photomultiplier tube and converted to a
digital signal and processed by a data acquisition computer (not shown).
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Figure 3: Fluorescent excitation spectra of E. coli, S. typhimurium, and S. aureus with the
emission wavelength held constant at 425nrn. The squares represent data from E. coli; the
triangles represent data from S. typhimurium; the circles represent data from S. aureus.
The y-axis is the relative fluorescent intensity while the x-axis is the excitation
wavelength scanned from 200 to 350nm by increments of 1nm. P-value less than 0.001
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Figure 4: Fluorescent excitation spectra of E. coli, S. typhimurium, and S. aureus with
emission wavelength held constant at 55Onm. The y-axis represents the relative
fluorescent intensity. The x-axis represents the excitation wavelength scanned from 200
to 500nm by increments of Inrn. Squares represent data from E. coli, triangles represent
data from S. typhimurium, and circles represent date from S. aureus. P-values less than
U.OO1. Note that the maximum fluorescence scale differs from 3, 5,6 and 7.

27



1.0

0.8

Q)
u
c:::: 0.6Q)
u
I/)
Q)...
0
~ 0.4u.

0.2

0.0 .....--=-=T--'---.lr----"------,r---------,---------.---------,

350 400 450

Excitation

500 550

Figure 5: Fluorescent excitation spectra of E. coli, S. typhimurium, and S. aureus with
emission wavelength held constant at 650nm. The y-axis represents the relative
fluorescent intensity. The x-axis represents the excitation wavelength scanned from 300
to 550nm by increments of Inm. Squares represent data from E. coli, triangles represent
data from S. typhimurium, and circles represent data from S. aureus. P-values less than
0.001.
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Figure 6: Fluorescent excitation spectra of E. coli grown in Tryptic Soy Broth, Lactose
Broth and Malt Extract. The y-axis represents the relative fluorescence intensity. The x
axis represents the excitation wavelength from 350 to 400nm while holding the emission
wavelength constant at 420nm. Squares represent date from E. coli grown in Tryptic Soy
Broth. Triangles represent data from E. coli grown in Lactose Broth and circles represent
data from E. coli grown in Malt Extract. Data was normalized by GraphPad before
graphing. P-values greater thab 0.05.
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Figure 7: Fluorescent excitation spectra of E. coli cells taken at different stages in growth
phase. The y-axis represents the relative fluorescence intensity. The x-axis represents the
excitation wavelength scanned from 300 to 400nm by Inm increments while holding the
emission wavelength constant at 420nm. Triangles represent the fluorescence ofcells
taken at 120min, up-side-down triangles represent the fluorescence of cells taken at
180min, and circles represent cells taken at 240min. The data was normalized by
GraphPad. P-values greater than 0.05.
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Chapter 3

Effect of Dilutions on Fluorescent Dyes and Autofluorescence

Introduction

Detecting the presence 0 f pathogenic bacteria has both medical and economic

importance (3, 17). Although there have been improvements, current techniques such as

plate counting are still time consuming and expensive (3,20,21, 30). Fluorescence-based

detection ofcells has a high signal to noise ratio (8, 9). That is, bacteria could be detected

at very low concentrations. Current fluorescent-based techniques use expensive dyes to

stain cells so that the cells can be easily detected. Three dyes used are eTc, Di-8

ANEPPS and the BacLight Viability Kit. In some studies, dye-based fluorescence has

resulted in inaccurate data (11,21,25,27,29,34). For example, Terzieva et a1. found that

the BacLight dye underestimates the actual viable cell concentrations. They noticed that

cells with compromised membranes that can still reproduce are stained nonviable (37).

Inaccurate data has also been obtained while using the eTC dye because this dye has a

tendency to change colors depending on the oxidative state of the cell (19, 21, 34).

Another type of fluorescence is autof1uorescence occurring when a molecule

absorbs a wavelength of light in or on the surface and emits another wavelength of lower

energy (41). Autofluorescence occurs without the addition ofdye. In a previous study, we

showed that E. coli, S. typhimurium, and S. aurel-ls autofluoresce. We also demonstrated

that autofluQrescence spectra detects hacteria in water and di ffcrcntiatcs among these

three bacteria. This study shows the effect of bacterial dilutions on fluorescent intensity

values of E. coli and compares the autofluorescence of E. coli to fluorescent dye

teclmiques.
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Metbods and Materials

Bacteria

E. coli C600 was used for fluorescence detection. Tryptic soy broth was prepared

from a mix provided by DIFCO laboratories; 5ml aliquots were distributed into vials and

then autoclaved. Vials of prepared and autoclaved broth were inoculated with E. coli and

incubated at 37°C for 24hrs. Bacteria in stationary phase, were centrifuged in a Fisher

Scientific MICR014 microcentrifuge by distributing 3ml of inoculated broth into three

2.0rnl-microcentrifuge tubes and centrifuging for 5 min at 5x I OOOg. Supernatants were

decanted and the cells washed with sterile reverse osmosis water (RO water). The cells

were vortexed and centrifuged again for 5min at 5x 1000g. This wash process was

repeated twice. Supernatants were decanted and the cells were resuspended in sterile RO

water. Next, the 3ml ofwashed bacteria cc]ls, along with 500ul of sterile RO water, were

placed into :J. 4ml-quartz fluorimeter cuvette. The contents of the fluorimeter cuvette were

then mixed to ensure uniformity by inverting the cuvette four to five times. Serial

dilutions were made from the original cuvette. A 50% dilution was prepared by taking

I .75011 from the original cuvette and mixing it with 1.75ml of sterile RO water into a

second 4ml-quartz fluorimeter cuvette. A 75% dilution was prepared by taking 1.75011

from the 50% dilution and mixing it with 1. 75ml of sterile RO water into a third 4011

quartz fluorimeter cuvette.

Plate Counts

Plate counts were performed by making serial dilutions from the cuvette

containing 3.5m\ of bacteria. An aliquot of 0.1 ml from each dilution was pipetted all
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Tryptic Soy agar plates. The plates were then incubated for 24hrs at 37°C. Colonies were

counted and the original cuvette concentration was determined by calculating the original

cell density (26).

Original cell density = number of cells counted (l/dilution factor)
ml plated

Dye Preparation

Two dyes were used for autofluorescence comparison experiments: The BacLight

Viability kit (Molecular Probes L-70 12) and Di-8ANEPPS (Molecular Probes D-6925).

The BacLight dyes were thawed and 20ul ofeach dye (equal portions) were added to a

microcentrifuge tube for a final volume of 40u1. An aliquot of9.5ul of the mixed dye was

added to each dilution and to the negative control of sterile RO water. Cuvettes were then

incubated in the dark for 15min. The emission spectrum was measured by scanning the

emission wavelengths from 500 to 675nm by increments of Inm and holding the

wavelength of the excitation monochromator at 480nm. A negative control of stained

sterile RO water was subtracted from the scan of the treated E. coli. An aliquot of IOul of

Di-8ANEPPS (Molecular Probes D-6925) was added to a new set of dilution cuvettes.

The cuvettes were incubated in the dark for 15min. Fluorescence was measured with the

emission monochromator set at 630nm and excitation from 470nm to 550nm. A negative

control of stained sterile RO water was suhtracted from the scan of the treated E. coli.

Fluorescence Characterization

To investigate autofluorescence of the bacteria, emission of the bacteria was

detected at a fixed wavelength while the excitation wavelength was scanned by a
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spectrofluorimeter. Each emission scan from the bacteria was compared to a negative

control of sterile RO water or Tryptic Soy broth dilution by subtracting the control scan

from the emission scan.

The data analysis was based on the collection of fluorescence data into data

records. Each data record represented the scan of excitation wavelengths from low

wavelength to high wavelength and one specific emission wavelength, A scan number

identified the data record.

All data points represent the mean ± SEM for three independent experiments.

Statistical analysis was performed using One-way ANOYA with Tukey's multiple

comparison test with GraphPad Prism version 3.00 for Windows 95, GraphPad Software,

San Diego California USA, ",.',"y\\,. fa h ad.com.
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Results

We first tested the relationship between concentration and autofluorescence. Fig 8

describes the response from a dilution-response experiment for E. coli. Fluorescence

emission was detected using a monochromator at a fixed wavelength of420nm and

scanning the excitation wavelengths from 300 to 400nm by increments of Imn. Each data

point in Figure 8 represents the mean ± SEM of three identical experiments and

represents the fluorescence intensity at an excitation wavelength of358nm. Fluorescent

intensity, the vertical axis, was the Ji [Ference between the experimental data and the RO

water control. A one-way ANOVA with Tukey's multiple comparisons of the three

dilutions revealed significant differences among mean fluorescent intensity values with

the pvalues < 0.01 for all three comparisons.

Next, we compared the autofluorescence of E. coli to fluorescence from

commercial dyes. Di-8-ANEPPS was the first fluorescent dye used in this study. Oi-8

ANEPPS is often used in studying changes in membrane potentials. It is an

electrochromic probe that is suitable for monitoring membrane potential changes by an

electrochromic shift (9, 1]). This dye has spectral properties that are largely dependent on

its environment, and has also been used in vertebrate studies (4, 10, II, 19). Dilutions of

E. coli were prepared as described in the methods. We measured the autofluorescence of

E coli before treatment with Di-8-ANEPPS; this data is represented in Fig 9. The x-axis

represents the wavelength of the excitation monochromator scanned from 300 to 400 by

increments of 1nm while holding the emission wavelength constant at 420nm. The data

represented in Fig 9 is of a solution containing 105 cells per m!. We then exposed the

solution of E coli used in Fig 9 to Oi-R-ANEPPS for 15min; Fig 10 represents the
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f1uorescent emission ofE. coli treated with Di-8-ANEPPS. Fluorescence emission was

detected using a monochromator set to 63Onm.The excitation wavelengths were scanned

from 475 to 550nrn. Note that the scaling of the vertical axis varies between Fig 9 and Fig

10. The autofluorescence in Figure 9 was greater than the fluorescence in Figure 10, Di-

8-ANEPPS.

The BacLight Viability Kit was the second fluorescent dye used in the

autofluorescence comparison study. The BacLight Viability Kit is used to detect both live

and dead cells by staining dead ceUs red and Jive cells green (19). Because this dye <.laes

not penetrate intact cell membranes, it is commonly used in flow cytometry to measure

complement activity (37). Fig 11 represents the fluorescent emission of E. coli before

treatment with the BacLight Viability Kit. The horizontal axis represents the wavelength

of the excitation monochromator scanned from 300 to 400nm by increments of 1nm

while holding the emission wavelength constant at 420nm. As with Figs 9 and 10, the

data represents a solution of 105 cell per ml. Fig 12 represents the fluorescence emission

spectra of E. coli treated with BacLight dye as described in the methods. The hori/.OntaJ

axis represents the wavelength of the emission monochromator scanned from 500 to

675nm by increments of Inm with the wavelength of the excitation monochromator sello

480nm. As with Fig II, the data represents a solution of 105 cells per mJ. Cells stained

green will give a fluorescent peak between the emission wavelengths of 500and 550nm.

Cells stained red will give a fluorescent peak between the emission wavelengths of 600

and 650nm (19). All of the experiments were performed with stationary phase E. coli.

The strongest peak present in Fig 12 is between emission wavelengths of 600 and 650nm

and represents nonviable cells.
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Discussion

The results of this study show that autofluorescence of bacteria is a quantifiable

phenomenon probably not due to artifact. Dilution experiments showed that fluorescent

intensity does decrease upon a decrease in cell concentrations.

This study also shows that the autofluorescence is a useful bacterial detection

technique. Autofluorescence detects bacteria as well as, or in some cases better than, the

fluorescent dyes Di-8-ANEPPS and BacLight. E. coli treated with Di-8-ANEPPS was not

even detected by the spectrofluorimeter. That is, the fluorescence was in the noise.

Autofluorescence of bacteria was actually greater than the fluorescence of the treated

bacteria. In the experiments dealing with the BacLight Viability Kit, the autofluorescence

of the bacteria may not have been greater than the fluorescence of the treated bacteria, but

it was still detectable. Also, the largest peak present in Fig 12 is at the wavelengths that

reflect dead bacteria. There should have been two peaks of equal height present if the

bacteria were in stationary phase. It is possible that some of the cells that were stained red

had damaged membranes due to centrifugation and wash treatments.

We do not yet know if there are differences between autofluorescent spectra or

culturable bacteria and autofluorescent spectra ofviable-but-nonculturable bacteria.

Further research should elucidate the source or sources of autofluorescence and

detennine how different bacterial treatments affect autofluorescence.
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Figure 8: Fluorescent emission from dilution response study for E. coli. The x-axis
represents bacterial concentrations while the y-axis represents the relative fluorescent
intensity with emission wavelength set at 420nm and the wavelength of excitation at

358nm. The filled circle represents 5.68x I08 cells per ml, the filled triangle represent
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Chapter 4

Conclusion

The main objective of this study was to show that E. coli, S. typhimurium, and

S. aureus autofluoresce, and that the bacterial autofluorescence is quantifiable,

discriminating, and concentration dependent. We suspected that fluorescence spectra

would discriminate between gram-negative and gram-positive bacteria. We did not

believe it possible to discriminate between two closely related bacteria such as E. coli and

S. typhimurium. The emission wavelengths used for Figs 3,4, and 5 are not the only

emission wavelengths that show differences among these three bacteria. When graphed

three-dimensionally, the spectra of E. coli, S. typhimurium, and S. (Jureus have a definite

topographical structure and is more complex than the emission wavelengths 425, 550 and

650nm can express.

Dilution experiments reflected that bacterial fluorescent intensity is dependent on

concentration and reassures us that autofluorescence of bacteria is not an artifact because

fluorescence is a linear function. Fluorescent emission scans performed on supematants

added greater reassurance to the autofluorescence coming from the bacteria and not

another source such as the growth medium. Fluorescence did not change during cell

growth phases or in cells grown ill different media. This also assures us that the

autofluorescence is not an artifact.

In experiments that compared autofluorescence to fluorescence of commercial

dyes, we found that autofluorescence works as well as nuorescent dyes in detecting

bacteria. Fluorescence of E. coli was not even detected when treated with Di-8-ANEPPS.

The data collected from BacLight treated £. coli raises doubts to the reliahility of the
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BacLight Viabiltiy Kit as well. E. coli has fluorescent peaks at the same emission and

excitation wavelengths used for detecting cells stained with the BacLight Viability Kit

(see Figures 4 and 5). There is a strong possibility that bacterial autofluorescence could

be contributing to the fluorescent intensity of Figure 12.

The verification of the autofluorescence of E. coli, S. typhimurium, and S. aureus

has opened a Pandora's box of questions. These questions are leading our research into

many different directions. We do not yet know the source of the autofluorescence or why

these three bacteria have different autofluorescent spectra. Preliminary experiments

suggest that the autofluorescence is due to a number of factors, such as cell wall

components or cytochromes. Future research will elucidate the causal relationship

between the bacteria and autofluorescence. We are also curious about identifying viable

but-nonculturable bacteria. Viable-but-nonculturable bacteria pose a threat particularly in

the food industry because these bacteria can't be plated out, but can still cause serious

illness (6, 15, 17, 27). We are very interested in seeing di fferences in autofluorescence

spectra between viable-but-nonculturable and stationary phase bacteria and how this can

be used as a tool in identifying bacteria.
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