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CHAPTER I

RESEARCH PROBLEM

Introduction

Two health problems facing the world today are iron intakes leading to iron

deficiency or iron excess and osteoporosis (West, 1996). Iron deficiency is a world wide

health problem, and iron excess is increasingly possible with the avai labi Iity of nutrient

supplements and with national food fortification policies. There are many factors

involved in the pathophysiology of osteoporosis Therefore, prevention must take a

comprehensive approach to include all factors. Studies have suggested that bone mass is

affected by dietary factors and that minerals in addition to calcium may be factors (Angus

et al 1988, Medeiros et al 1997) Previously, there has been little research investigating

the association between bone metabolism and dietary iron. This study may propose

dietary iron as one of the factors that can assist in preventive measures.

Bone Development

Bones are in a state of continual renewal consisting of resorption and formation

Osteoclasts resorb old, damaged and underused bone. Osteoblasts replace the damaged

bone and form new bone (Heaney, 1996). From infancy up to the age of 30, bone

formation dominates, resulting in accumulation of bone mass (Matkovic, 1996). inety

percent of peak bone mass is achieved by the age of20, and the remaining 10% is

achieved between the age 20 and 30 Beginning at about age 40, the rate of bone

resorption surpasses the rate of bone formation resulting in a slow bone loss (Gallo,
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1996). Comparing two populations with a difference in starting bone mass showed that

with age, bone resorption occurred at the same rate. However, those with a higher initial

bone mass suffered fewer hip fractures. This is attributed to a larger bone reserve

provided by a high peak bone mass. Currently it is believed that the degree of attainment

in peak bone mass during adolescence is a determinant for osteoporotic fracture later in

life (Matkovic, 1996).

Osteoporosis

Osteoporosis is a chronic debilitating disease defined as skeletal fragility signified

bv a loss in bone mass and a deterioration in the microarchitectural tissue of the bone

(Heaney, 1996). The effects of the disease are manifested in the elderly but the problems

begin in adolescence.

Osteoporosis is very common and affects millions worldwide. Women are

affected twice as frequently as men (Gallo, 1996, Barrett-Connor, 1995). This is due to

the fact that men have 30% greater peak bone mass than women. Another factor is

women experience bone loss at a faster rate during the first five to ten years after

menopause because of estrogen deficiency. By the age of 70, men will lose 25% of

cancellous and cortical bone, whereas women lose approximately 50% of cancellous

bone and 35% of cortical bone (Fleming, 1992). Fractures are also more common among

women because they live longer than men and they may reach the age of vulnerability

more frequently (Barrett-Connor, 1995).

The most common fracture sites are the femoral neck, vertebrae, and wrist

(Nichols et ai, 2000). When calculating the economic costs of osteoporosis, fractures of
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the hip are the main focus (Barrett-Connor, 1995). Hip fractures are easier to count

because almost all cases are reported, hospitalized, and surgery is often required (Barrett­

Connor, 1995, Lindsay, 1995). It was estimated that over 28 million Americans were

affected equaling 1.5 million fractures and totaling $13.8 billion in 1995 (National

Osteoporosis Foundation, 2000). With an increase in the elderly population it is

predicted that this cost will also increase to $240 billion by the year 2040 (Cummings et

ai, 1990). This estimation is grossly underestimated. This total cost is not inclusive of

fractures that do not require hospitalization or fractures other than the hip (Lindsay,

1995). Acute care costs were used to determine total cost, but acute care is only a

fraction of the cost for overall recovery, which further underestimates economical costs

associated with osteoporosis.

Osteoporotic hip fractures are associated with an increase in mortality rate

(Barrett-Connor, 1995) Approximately 20% die within the first year of a hip fracture,

and 13% die the next year (White et aI, 1987). Each year 50,000 deaths are attributed to

osteoporosis (Nichols et ai, 2000). Those that live beyond 18 months following a hip

fracture have a similar mortality rate as an individual equal in age that has never suffered

a fracture (White et ai, 1987).

In addition to economical costs, there are human costs that are often over looked.

These two costs can overlap. This overlap occurs when hospital costs places financial

burdens on the individual and then causes emotional stress (Barrett-Connor, )995).

Quality oflife may greatly decrease. Activities of daily living that were once

accomplished with little effort may become difficult to perform after fractures. This is

partly due to the pain that one experiences and partly due to the fear of falling again
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Patients who undergo vertebral fractures have reported difficulty in carrying, lifting,

shopping, and doing housework. Their physical appearances change and reports of low­

self esteem have been high. All of these problems lead to a decreased social life (Barrett­

Connor, 1995).

One of the solutions to reduce the risk of osteoporosis may be development of

high peak bone mass in adolescence. Achievement of peak bone mass is a result of

nonnal growth, and is influenced by many factors that are often interrelated These

factors include genetics, age, body mass, gender, pubertal stage, physical activity, race,

and nutrition (Matkovic, 1996). Many studies have shown the importance that calcium

and vitamin D have on bone growth, but other minerals such as iron, copper and

magnesium in addition to calcium and vitamin D have been demonstrated to influence

bone growth (Angus et al 1998, Jones et al 1993, Mederios et al 1997).

lr911

Iron is an important component in the hydroxylation of collagen matrix, the

connective tissue foundation of bone (O'Dell, 1981). It is this very matrix upon which

insoluble mineral salts of hydroxyapatite are deposited (Koletzko et al, ]998). This

allows the structure of bone to provide support to the body.

Iron Deficiency

Dietary iron intakes, both inadequate and excessive, have increasingly become a

world wide problem. The most common micro-nutrient deficiency is iron (West, 1996).

Looker et al (1997) estimated from data collected in the third National Health and
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Nutrition Examination Survey (NHANES ill) that about 700,000 children aged I to 2

years and 7.8 million adolescents and women in their childbearing years suffer from iron

deficiency in the United States.

Those at risk for developing iron deficiency anemia are seen in particular

subgroups in periods in life in which iron needs increase. Generally, this is also the

period in which iron intakes are reported to be inadequate. Infancy and childhood are

periods of inadequate iron intakes (Marx, 1997). Iron deficiency at such an early age can

delay growth, mental and psychomotor development (Filer, 1990).

Adolescence is a period in which erythrocyte volume and muscle mass increase.

For females, menstrual blood loss further increases iron needs of 0.5 to 1 mg per day of

absorbed iron (Marx, 1997). Adolescent females often limit their food intake to maintain

weight. Results from the Total Diet Study indicate that adolescents met less than 80% of

the recommended dietary allowance (RDA) for iron (Pennington et ai, 1989). Iron

requirements tor pregnancy increase due to the expansion of blood volume for the growth

of the fetus, placenta and other tissues during the second and third trimesters

(Anonymous, 1998) Iron supplements must be taken during pregnancy to meet this

increased demand.

Iron Excess

Currently, health awareness has popularized the use of nutritional supplements

(Greger, 1987). National surveys indicate that populations with higher incomes typically

use supplements to achieve perceived ultimate health and fitness (Stewart et ai, 1985). It

has been estimated from the 1987 and 1992 National Health Interview survey that
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approximately 24% of the population use supplements (Slesinski et al 1995). Nationwide

food fortification policies are also seen as an answer to nutritional deficiencies. Toxic

factors need to be considered when consuming supplements and fortified foods

Research has revealed complications ofover consumption of vitamins such as vitamin A.,

B-6, C and D, and nicontinic acid (Greger, 1987). The toxic symptoms occurred from

supplemental use rather than from food. Iron can become toxic to the body due to the

fact that once absorbed, excretion is very slowly (Finch and Monsen, 1972) To maintain

balance, iron absorption must keep pace with iron loss (Conrad et al, 1994) Any

alteration to this balance leads to iron overload as well as iron deficiency As seen in the

patient with hemochromatosis, iron overload can cause damage to the liver, heart,

pancreas and may even lead to death (Finch and Monsen, 1972). The problems

associated with iron deficiency are recognized, but problems of iron excess have been

underestimated (Conrad et aL 1994)

Osteoporosis is a chronic disease associated with many economical and human

costs. To be able to prevent this disease, it is necessary to include all factors into a

comprehensive approach. In an attempt to correct the problems of both osteoporosis and

undesirable iron intakes, a common link may be found. This research has the potential to

propose iron deficiency and iron excess as one of the many contributing factors leading to

osteoporosis.

Purpose and Objectives

The purpose of this study was to detennine the effects of inadequate,

recommended, and excessive amounts of iron on bone density, bone strength, and
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biochemical indicators of bone metabolism in young mature rats. The following

objectives were developed for this study:

1. To determine the effect of inadequate, recommended, and excessive amounts of

iron on bone density in young mature rats.

2. To determine the effect of inadequate, recommended, and excessive amounts of

iron on bone strength in young mature rats.

3. To determine the effect of inadequate, recommended, and excessive amounts of

iron on biochemical indicators of bone metabolism in young mature rats

Hypotheses

The following hypotheses were developed for this study

1. There will be no statistically significant effect of dietary iron on bone density.

2. There will be no statistically signitlcant effect of dietary iron on bone strength.

3.rhere will be no statistically significant effect of dietary iron on alkaline

phosphatase extracted from bone.

4. There will he no statistically significant effect of dietary iron on insulin-like

gro\\1h factor-l (lGF-I).

5. There will he no statistically significant effect of dietary iron on urinary excretion

of deoxypyridinoline crosslinks.

6. There will be no statistically significant effect dietary iron on urinary

hydroxyproline



Assumption

It is assumed the diets contained the calculated amount of iron (6 ppm, 12 ppm,

35 ppm and 150 ppm) after adjusting for iron content in cellulose.

It is assumed that the effects seen in bone densities, bone strength and

biochemical indicators on bone metabolism were due to dietary iron.

Limitation

Rats lack Haversian systems; therefore, rats do not have the same pattern of bone

remodeling as humans.



Abbreviations

ALP- Alkaline phosphatase

BMC- Bone mineral content

RMJ- Body mass index

BMD- Bone mineral density

BD- Body weight

DXA- Dual energy x-ray absorptiometry

DPA- Dual-photon absorptiometry

Dpd- Deoxypyridinoline crosslinks

DZ- Dizygotic twins

IGF-I- Insulin-like growth factor

MZ- Monozygotic twins

NHANES III- the third National Health and Nutrition Examination Survey (1988-1994)

PBM- Peak bone mass

Pyd- Pyridinoline crosslink::;

RDA- Recommended Dietary Allowance

SPA- Single-photon absorptiometry
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Definitions

Bone mineral content- the amount of bone mineral per unit ofarea (grams).

Bone mineral density- grams ofBMe per square centimeter of bone (g/cm2
).

Collagen- the protein substance of the white fibers of skin, tendon, bone, carilage, and all

other connective tissue.

Endosteum- the tissue lining the medullary cavity of a bone.

Osteoblast- a cell that originates in the embryonic mesenchyme and during the early

development of the skeleton and differentiates from a fibroblast to function in the

formation of bone tissue. Osteoblasts synthesize the collagen and glycoproteins

to form the matrix and with growth, develop into osteocytes

Osteoclast- also called osteophage. A large type of multinucleated bone cell that

functions in the development and period of growth or repair, such as the

breakdown and resorption of osseous tissue.

Periosteal bone- bone that forms in the perichondrium of the cartilaginous template

Proteoglycans- any of a group of polysaccharide-protein conjugates occurring primarily

in the matrix of connective tissue and cartilage, composed mainly of

polysaccharide chains, particularly glycosaminoglycans, as well as minor protein

components.
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CHAPTER II

REVIEW OF LITERATURE

There are many factors that influence the development of osteoporosis such as

genetics, diet, mechanical loading, and environment. Therefore, prevention must take a

comprehensive approach to include all factors. Useful indicators of bone growth and

biomechanical measurements help to identify those at risk for developing osteoporosis

and to monitor the effectiveness of treatment. Extensive research has been conducted on

many of these risk factors; however, some areas are still lacking. Previously, there has

been little research investigating the association between bone metabolIsm and dietary

iron. This study uses a young rat model to detennine the effects dietary iron has on bone

density, bone strength, and biochemical indicators of bone metabolism.

Bone Development

Bone growth and the deposit of minerals begin at fetal development and continue

throughout life (Koletzko et aI, 1998). The structure of the bone is made up of collagen,

proteoglycans and other non-collagenous proteins. This structure, bone matrix, is

mineralized with insoluble mineral salts of hydroxyapatite (CalO(P04)6(OH)2) and small

amounts of magnesium, sodium carbonate and citrate.

The matrix is controlled by two bone cells, osteoblasts and osteoclasts (Koletzko

et al, 1998). Osteoblasts form bone and organize min~ralization. Osteoclasts are

responsible for bone resorption during which old damaged or dead bone is broken down

and replaced with new bone (Heaney, 1996, Koletzko et al 1998) This process adjusts

bone shape and density. The cycle of formation and resorption maintains bone



12

(Koletzko et ~ 1998). The period from birth until longitudinal bone growth is achieved

is characterized by continual bone modeling (Matkovic, 1996). This changes the

structure and shape of the bone. Following this period, little change in bone volume

occurs. The existing bone structure goes through the remodeling process of being formed

and resorbed.

Bone mineral density (BMD) usually has reached its peak by age 18 in humans

(Pocock et al 1987). However, bone mineral content (BMC) continues to increase

between the ages of20 and 40 years. Bone mineral density and BMC are influenced by

many factors such as genetics, mechanical loading, diet, and environment

(Chesnut, 1991).

Genetics

Genetic factors accounts for 80010 of the variance in BMD. The remaining 20% is

related to environmental factors (Pocock et al 1987, Matkovic, 1996). Genetics can

theoretically affect the development of osteoporosis in two ways (Smith et aI, 1973).

Genetics can affect the amount of bone mass achieved at skeletal maturity with those

with a low bone mass being more susceptible to osteoporosis. Genetics can also affect

the rate of bone loss during aging.

Lonzer et al (1996) studied 28 children between the ages of 5 and 20 years, and

24 parents from 16 families. Interviews were conducted to determine medical histories

and family history of osteoporosis. Body mass index (BM!) was determined from height

and weight measurements. Three-day food records estimated calcium intake. Dual

Energy X-Ray Absorptiometry (DXA) scans detennined BMC and BMD. Factors such
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as BMI, height, weight and age of the children were significantly correlated with the

children's BMD. There was a significant correlation between mean parental BMD and

the mean of their children's BMD. When two postmenopausal mothers were excluded,

there was a significant correlation between BMD of mothers and their children. Studies

measuring the degree of family resemblance do not demonstrate the strength that genetics

play in this resemblance (Chesnut 1991).

Another study supported genetics as a strong factor by looking at 31 adolescent

females aged 14 years along with their biological parents (Matkovic et al L990) Thirty

premenopausal mothers aged 35-56 years and 24 fathers aged 38-53 years were measured

for anthropometries and bone mass at baseline. The adolescents were measured at

baseline and again at 10, 18, and 24 months later. X-rays of second, third and fourth

metacarpal bone were obtained on both hands to detennine the external and internal

metacarpal diameter as well as length From these values total area, medullary area, and

cortical area were calculated. B()n~ mass of the spine was detennined by dual-photon

absorptiometry (DPA) There was a high correlation for height and metacarpal length

between mean values for parents and the daughters indicating a high genetic influence

from the fathers as well as the mothers. This correlation of size and mass variables were

higher than the correlation of density variables.

At age 14, the daughters' proportion of mothers' measurements were as follows

99% of their mothers' height and bone length, 90% of mothers' cross-sectional area of

the metacarpal, 85% of mothers' cortical area of metacarpal, 87% of mothers' bone

mineral content of the spine, 80% of mothers' bone density at distal radius, and 95% of

mothers' metacarpal and lumbar spine bone densities. At age 14 longitudinal bone
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growth diminishes, however consolidation continues to increase. This observation

supports early attainment of peak bone mass. At age 16 years these percentages

increased to 93% of mother's cross sectional area of the metacarpal, 90% to 97% of

mother's bone mass, 91 % of bone density in distal radius, 98% of bone density at the

metacarpal and 101% bone density in the spine. This study suggests that longitudinal

bone growth diminishes at the age of 14 years while consolidation of bone continues.

From these results it appears to be beneficial to look at pediatric patient's family histories

of osteoporotic fractures to ensure adequate calcium intake and counseling on avoidance

of risk factors related to osteoporosis.

Twin studies provide an effective way to investigate the influence that genetics

have on BMD (Pocock et ai, 1987 and Smith et al, 1973). Intrapair differences of

monozygotic (MZ) twins and of dizygotic (DZ) twins were compared. In analyzing the

data it was assumed that any intrapair variation among MZ twins is considered to be due

to environmental factors and measurement error Intrapair variation among DZ twins is

not only due to environmental factors and measurement error but also to genetic factors.

The juvenile group contained 28 female and 20 male MZ twin pairs and 11 female and 12

male DZ twin pairs (Smith et ai, 1973). The adult group were all men consisting of38

MZ twin pairs and 42 DZ twin pairs. Using single photon absorptiometry (SPA),

measurements of bone mass and width on the right midshaft radius was obtained. For

MZ and DZ groups in juvenile and adult twins, the variation of intrapair differences in

height, weight, bone mass and width were computed and compared by analysis of

variance. In the juvenile group, bone mass and width increased with age. The regression

coefficients were significantly higher for DZ twins than for MZ twins. There were no
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significant differences in mean bone mass or width in the MZ and OZ twins. For mass

and width, the variance within OZ juvenile twins was four times greater than within the

MZ juvenile twins. Similar results were found among the adult twins for variance within

the DZ and within the MZ twins~ however, the intrapair variance was greater in the adult

twins than in the juvenile twins. This provides evidence that genetics influence both bone

mass and bone width.

Sixty-five twin pairs, monozygotic (MZ) and dizygotic (OZ), were studied by

Pocock et al (1987). Approximately half of the female twins were postmenopausal

Bone mineral density and BMC were measured in various sites using DP3 dual photon

absorptiometry and single photon densitometry. The sites measured were lumbar spine

(L2-L4), right femur, distal radius and ulna. Anthropometries such as weight, height and

BMI were measured and calculated. Physical fitness was measured as subjects exercised

on a bicycle ergometer at a known work load. The work load was used in conjunction

with a pulse rate that was steady for 2 minutes to assess the V01max. Results showed no

difference in BMI and physical fitness between MZ twins and OZ twins, Bone mineral

density correlation was greater at all sites between MZ twins than OZ twins. In

premenopausal women all sites had a greater correlation between MZ twins than between

DZ twins, In determining heritability at different skeletal sites in premenopausal women

there were significant correlations for the spine, forearm, and two sites in the proximal

femur; however, at the femoral neck there was not a significant correlation. This

indicates that genetics influence BMD in the spine and that environmental factors have a

greater influence on variation of bone mass in the femur (Pocock 1987).
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Mechanical Loading

Mechanical stimulation is shown to be a key factor in promoting bone health and

is dependent upon the mode, duration and intensity of the exercise (Wheeler et at 1995).

Those that have engaged in weight-bearing exercises have been shown to increase their

BMC and BMD between 5% to 20%. This positive effect on BMD is directly by

affecting the skeleton and indirectly by increasing muscle mass (Keen 1999). Muscle

bulk and activity applies more loading to the bone. A cellular appartus (within the

osteocytes) senses the degree of bending placed by mechanical loading or exercise

(Heaney, 1996). This degree of bending leads to a deformation of 0.1% to 0.15% in any

given dimension. Signals are sent to adjust the cycle of bone formation and resorption to

either increase or decrease the bone mass. As bone renews itself it not only replaces old

tissue, but allows for optimal density.

Yeh et al (1993) studied the effects of exercise and immobilization on bone

formation and resorption in young growing rats After a week of adaptation to diet and

environment the rats were injected with 15 IlCiJd 45Ca for 2 days. After the last injection

six rats were killed to determine baseline values. The remaining animals were

randomized into control, immobilization, and exercise groups. Part one of the

experi ment ended after 21 days and part two of the experiment ended after 42 days.

Exercise rats started at moderate exercise and gradually increased in intensity and

duration to a final speed of20 m/min for 60 minutes on a flatbed treadmill. Bilateral

sciatic denervation at day 0 was performed for the immobilization group. Consecutive

urine and fecal collections from day 1 to day 36 were obtained. The feces were ashed

and then diluted to determine the excretion of 45Ca. The results represented urine and
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fecal radioactivity for excretion of three days. Atomic absorption spectrophotometry

measured urine calcium and represented the average daily urine excretion. Both femurs

were removed and ashed to determine calcium, phosphorus, and 4SCa radioactivity. By

using these values calculations were made to determine percent ofbasal bone resorption,

the amount of calcium released, and the amount of calcium deposited. The left tibia was

removed for histomorphometry. Cancellous bone area was measured in the mid­

metaphysis below the growth plate. By dividing the mean distance from the two

tetracycline bands by the days in the labeling period, longitudinal bone growth (~ml!day)

was calculated. Cortical bone parameters obtained were medullary area, cortical bone

area, periosteal suface measuring osteoblast number, endosteal resorbing surface and

tetracycline-labeled areas at the endosteal and periosteal surfaces. Periosteal bone

formation rate (amount of mineralized bone formed/day at periosteum), endosteal bone

formation rate (amount of mineralized bone formed/day at the endosteum), and periosteal

bone apposition rate (reflecting osteoblast actiVIty and measures the width of mineralized

bone added/day) were all determined from tetracycline-labeled area.

The immobilized rats were lower than control and exercise rats in body weight,

femoral dry weight, ashed weight, calcium and phosphorus content. The 4SCa retention

was lower at 6 weeks for the immobilized rats than control rats. Estimated bone

resorption was significantly higher in the immobilized rats than the control group

throughout the entire study. Estimated bone formation in exercise rats was not different

from control group after 3 weeks: however. after six weeks bone formation was

significantly higher by 23% and bone resorption decreased to only 60% of the control

group.
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Excreted levels of 45Ca were consistent with formation and resorption results.

Urinary and endogenous fecal paths were combined to represent the 4SCa from the entire

skeleton. Levels of 4sCa in whole body were significantly higher in the immobilized

group than the control group throughout the experiment. During the first 2 weeks,

excretion was higher in exercise rats than control rats, and then continued to significantly

decrease below those of the control group after 5 weeks.

Exercise rats had an increase in cortical bone area, and the length of the tibia was

greater. At the periosteal surface the bone formation rate of exercise rats was not

significantly different from the control group until during days 32-4. There was a

decreased rate of periosteal bone formation in immobilized rats than in control rats during

the first 31 days, but there were no differences from 32-41 days between the groups

Studies demonstrate that bone formation decreases with age; however, these results

suggest that resorption is accelerated during periods of inactivity with exercise delaying

this aging induced bone change. The response of bone to immobilization occurred

immediately whereas effects of exercise were not seen until one month after exercise.

The reason for this delay is unknown; however, it may be due to the amount of

mechanical loading Because exercise increased in intensity and duration throughout this

study, the initial amount might not have exceed the minimum stimulus level that altered

bone formation

The exact amount of intensity, duration, frequency and mode of exercise needed

to increase BMD is not known (Wheeler et al 1995). Therefore, investigation of the

effects ofvarious intensities and duration of exercise was conducted. Eight-four female

Sprague-Dawley rats at 120 days old, weighing :::::233g were randomized into nine
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exercise training groups. Three intensities of low (:::: 55%V02max), medium (::::: 65%

V02max), and high (:::::75% V02max) were subdivided into duration of30, 60, and 90 min/d

to total nine exercise groups for a duration often weeks. Twelve rats refusing to run

were used as the control group and activity was limited to walls of their cages.

Both femurs and right tibia were collected. The biomechanical parameters

(torque at failure, twist angel at failure, energy absorbed at failure, stiffness and stress at

failure) were either measured using a rapid loading torsional testing machine or were

calculated. Morphometric measurements (total bone tissue area, marrow area, cortical

bone area, mean cortical thickness, and polar moment of inertia) were calculated from

outer and inner perimeters of cross-section from the left tibia. Dual energy x-ray

absorptiometry measured BMD of vertebral segments and the left tibial diaphysis

There was no significant difference in weight gain among rats; therefore, the

differences noted in bone changes were results of exercise and not of weight gain or loss.

When exercise rats were analyzed collectively, total bone tissue area, cortical bone area,

and mean cortical thickness had an overall trend of significantly greater values than the

control groups. Rats exercising at a high intensity had significantly smaller angles of

twist before failure and less energy absorbed at failure and than control rats. The torque

at failure and stress at failure were significantly lower for the high intensity rats than the

Jow and medium intensity rats. The rats exercising for 90 minute duration exhibited

statistically greater stiffness and statistically lower angle oftwist at failure and energy

absorbed at failure. The BMD for all exercise rats when analyzed collectively was

significantly higher than the control rats for both the tibia and vertebral segment.

Adaptive changes in bone mineral density, mechanical response and morphology



-
20

was seen in the exercise groups; however, it appears than repetitive high intensity

exercise may have a negative effect due to a small recovery time of bone. The increase in

cortical bone mass and cortical thickness showed that the exercise rats were able to adapt

to their loading environment. The measurements of bone mineral density showed an

increase in bone mass.

Malnutrition is associated with delays in skeletal growth (Caulfield et al 1995).

The Institute of Nutrition of Central America and Panama (INCAP) conducted a

longitudinal study from 1969 to 1977 to study the effects of nutritional supplements on

child growth and development in four rural communities in Gautemala. Children from

the age of 0-7 years were divided into two supplemental groups Two of the villages

received Atole which was a high caloric, high protein drink while the other two villages

received Fresco which was a low caloric, no protein drink Only Atole contained

phosphorus and calcium but both supplements contained the same amount of iron,

tlouride and some vitamins. Children could consume as much supplement as they

wanted, and the amount was measured daily. In 1988 a follow up study was conducted

(Caulfield et al 1995) The subjects were then II to 27 years. Bone mineral content,

radial bone width and bone density were measured using SPA. Height and weight were

measured. Mean measurements appeared to be greater among those that consumed Atole

than Fresco; however, the only significant differences were for mean energy intake for

both boys and girls and for stature and radial bone width for girls. In comparison to

NCHS reference data of children not in the study both supplements significantly
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increased all measurements. When controlling for age, gender, and supplement type

these measurements are still significantly greater for those consuming more calories;

however, they were diminished by this adjustment. This is important to note because

33% - 65% of the variation in bone mineralization was accounted for these three factors.

The amount ofcalories consumed, irrespective of supplement type, showed statistically

significant effects on bone mineralization. The effects of supplementation on bone

mineralization were no longer statistically significant once weight and height were added

into the regression models. There was a positive association with weight and stature and

the amount of supplemental energy when controlling for age and gender but not

supplemental type. This suggests that the increases in weight and stature due to

supplementation had the effect on increase bone mineralization and not the type of

supplement.

Calcium

Calcium is the most studied nutrient in respect to bone studies (Angus et al 1988).

Ninety-nine percent of total body calcium exists in the skeleton (Sandler et al 1985). It

has been suggested that calcium intake throughout life affects peak bone mass (Angus et

al 1988) If available calcium is inadequate for physiological needs, the body draws

calcium from the skeleton to support serum calcium homeostatsis (Sandler et al 1985).

The Total Diet Study conducted in 1982 through 1989 estimated the average

intake of adolescent female ages 14 to 16 years in the United States was 733 mg. This

intake is a concern since it was 61.1% of the RDA (Pennington et ai, 1989)

A two year longitudinal study was performed to detennine the effect of calcium
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on bone status (Matkovic et at, 1990). Using a 3 day food record the girls were stratified

into two groups; the control group was placed on a diet containing <850 mg Cald and the

calcium supplemented group was placed on a diet containing >850 mg Cald. Dietary

interviews were conducted at six months, and anthropometerics and bone mass were

measured at baseline, 10, 18 and 24 months. Over the two-year longitudinal study both

groups had significant gains in bone mass and bone density; however, there was a trend

for the variables to increase as calcium increased. A significant difference between the

two groups was not seen possibly due to the small sample size.

A retrospective study assessed the association between adolescent consumption of

milk and postmenopausal bone density (Sandler et aI, 1985). Inclusion criteria was at

least one year postmenopause without estrogen replacement therapy. Two hundred fifty­

five white, middle to upper class women aged 49 to 66 years participated. A three-day

diet record estimated current calcium intake. A food frequency questionnaire estimated

calcium intake through various stages of life: childhood, adolescence, early adulthood

(20-35 years), late adulthood (36-50 years), and periods of pregnancy or lactation. For

each stage milk consumption was classified into the following categories: consumed with

every meal, sometimes with every meal or never or rarely with meals. Current mean

calcium intake was 720 mg Cald, hut 70% were below the RDA for postmenopausal

women. There was no significant correlation between baseline bone density and current

calcium intake Half of the population reported milk consumption with every meal;

however, with each successive stage, milk consumption decreased to only 6% in mid­

adulthood drinking milk with every meal. Those that drank milk with every meal during

childhood and adolescence had significantly higher bone densities than those that
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sometimes drank milk with meals. There was a positive linear relationship between bone

density and the frequency of milk consumption. This study suggests that calcium intake

in childhood and adolescence has protective qualities against adult bone loss.

One-hundred sixty Caucasian women aged 23-75 including pre and post

menopausal women were studied to examine the influence of dietary factors on bone

mass in sites more prone to fractures due to osteoporosis (Angus et al 1988). Bone

mineral density was measured by DPA in the second to fourth lumbar vertebrae and three

sites in the right proximal femur: the femoral neck, the Ward's triangle within the

femoral neck, and the greater trochanter. Using SPA, BMC was measured in the distal

radius of the forearm. Four consecutive food and fluid records were obtained along with

a semiquantitative food frequency questionnaire to provide usual food habits and to

cross-check the four-day food record. Food records were analyzed for nutrient content

The questionnaire provided an estimate of calcium intake during childhood, adolescence

and early adulthood. Body mass index was calculated from height and weight

measurements.

Food records indicated that the mean calcium intake for the pre and

postmenopausal women was 759 and 717 mg/day, respectively. Sixty-five percent

premenopausal women and 83% postmenopausal women failed to meet the Australian

Recommended Dietary Allowances (RDA) of 800 and 1000 mg of calcium/day The

majority of women failed to meet the RDA for zinc, magnesium and iron. The

questionnaire and measurements of foreann BMC revealed postmenopausal women who

drank more than 600 ml of milk/day before the age of20 had a significantly higher BMC

than those that drank less than 300 ml of milk/day. In premenopausal women,
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magnesium and iron had a positive correlation with forearm BMC. This study suggests

that bone mass is affected by dietary factors and that minerals in addition to calcium may

be factors.

Iron and Bone Development

About 90% of collagen is Type 1 collagen and is found in bones and tendons to

give tensile strength and rigidity (O'Dell 1981). The collagen molecule is made up of a

coil of three polypetide units known as O-chains. Procollagen is first produced during

the biosynthesis of collagen. From the O-chains, peptide extensions from the amino and

carboxy ends are removed by a process known as hydroxylation. Within Type 1 collagen

the amino acid content is about 14% hydroxyproline with lesser amounts of

hydroxylysine. Hydroxyproline and hydroxylysine must be incorporated into the

peptides. This is done by post-translational hydroxylation. There are three enzymes used

to catalyse the hydroxylation of specific amino acid residues in the -chains which are

proloyl-4-hydroxylase, lysyl hydroxylase and prolyl-3-hydroxylase Ferrous iron is

required as a cofactor by all these enzymes Hydroxylation must occur before helix

formation can take place. Proline hydroxylation is necessary for triple helix formation,

which is necessary for cellular secretion of collagen.

Effects of Iron Deficiency on Bone

There is little research to support the hypothesis that iron deficiency affects

collagen metabolism (O'Dell 198]). This may be due to the fact that other pathologic

signs, such as anemia, are manifested before changes in collagen hydroxylation
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takes place.

Rothman et aJ (1971) induced anemia in rats to investigate the effect iron may

play in fracture healing. Rats were randomly assigned into two groups. The

experimental group received a low iron diet and had four milliliters of blood withdrawn

weekly for four weeks to induce anemia. The control group had the same diet with

adequate iron. Hematocrit and serum iron levels verified iron deficiency anemia in the

experimental rats. The right fibula was surgically fractured in the mid-shaft for the

experimental and control rats. The three time periods studied after the fracture were 3, 6,

and 8 weeks. At each time period forty rats were sacrificed. Fracture healing was

evaluated by tensile strength and by microscopic examination of histologic serial sections

of the site of fracture.

Tensile strength at three weeks showed the fractured fibula of the control group to

be 89% of the geometric mean compared to the normal intact fibula The fractured fibula

of the anemic group did not have enough strength to bear the minimum load of the

instrument. At 6 weeks the control group was 98% of the geometric mean and the

anemic group was 36% of the geometric mean compared to the normal intact fibula for

tensile strength. Eight weeks showed the control group to be 96% of the geometric mean

and the anemic group was 66% of the geometric mean compared to the normal intact

fibula for tensile strength These differences were significant.

The stages of healing begin as the initial site of injury shows the presence of the

hematoma, which notes the damage to the bone and soft tissue (Rothman et aJ, 1971).

Then during the second stage beginning in only a few days, the hematoma organizes, and

after a week a fibrocartilaginous callus forms. Slowly this fibrocarilaginous callus is
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converted to bony callus. The histologic examination of the control group at three weeks

showed the cartilaginous callus had begun transfonnation. At the fracture site the

cartilage had formed a plate where active osteogenesis had started with the formation of

trabeculae of fibrous bone. At six weeks the transformation to bony callus was complete,

and the process toward normal configuration by remodeling and reorganization was

occurring. Remodeling continued at 8 weeks with wideness of the fracture site fading.

The anemic group did not follow similar stages of healing. The fracture site closed off

from the medullary canal and showed non-union After 3 weeks osteogenesis occurred

but to a lesser extent. At six and eight weeks, retardation of fracture healing remained.

Similar results were found on fractures of rabbits when induced with

normovolemic or with hypovolemic anemia (Heppenstall and Brighton 1977). Thirty

rabbits were divided into three groups after fracture of the fibulae occurred. Group A had

20 ml of blood removed and then reinfused into the same animal. Group B had the same

amount of blood drawn; however, only the plasma was re-injected into the animal. rn

group C the blood was removed and discarded. After 21 days the animals were sacrificed

and a three point bending test was perfomed on the fibulae. Reoentgenograms and

histology were performed. The control group (A) results were compared to groups Band

C. Groups B and C had a mean hemacocrit statistically lower than group A indicating

anemIa. Evidence from the roentgenograms revealed healing among groups A and B

though C showed a delay The strength of the fibula in group C was significantly lower

than that of groups A and B which were similar. It appears from this study that if iron

deficiency anemia exists and the blood volume is maintained, then oxygen delivery does

not change. Group C was unable to repair the fracture due to decreased oxygen delivery
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secondary to blood loss as well as to loss of plasma constituents

Effects of Iron Excess on Bone. Many diseases that exhibit iron overload have

demonstrated signs ofosteoporosis (de Vemejoul et al 1984). A study involving ten

female pigs in which five pigs were treated daily with 300 mg of iron dextran was

conducted to detennine whether iron overload triggers bone changes. After 36 days of

treatment the pigs in the treatment and control groups were killed. Blood samples, urine,

and two epiphyses of main metatarsal bones for bone mineral evaluation were collected.

The pigs had been double tetracyline labeled, and a fragment of trabecular bone from the

iliac crest was taken for measurement of trabecular bone volume, osteoblast surfaces,

osteoclast resoption surfaces, depth of the lacunae, mean osteoid thickness and

appositional rate. Using these measurements, total labeled surfaces, formation at the

tissue level, and duration of the formation period were calculated.

Iron treatment had no effect on 24-hour urine calcium, phosphate and

hydroxyproline, or on serum 25-0HD and serum 1,2S-(OHhD levels Bone minerals and

ash content were unchanged except an increase in bone iron content in treated pigs.

Histomorphometry showed that there was no difference in trabecular bone volume and

osteoid thickness between the groups Osteoblast. appositional rate and formation rate at

tissue level decreased in treated animals. The duration of the formation period was not

significantly different. The osteoclast surface and the depth of lacunae resulting from

resorption showed no difference in treated pigs.

From these results there appeared to be an imbalance between bone formation and

bone resorption. However, this imbalance did not decrease bone mass as indicated by

trabecular bone volume and bone ash content The length of the experiment may explain
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why a decrease in bone mass was not observed. The experiment may have been too short

to give an opportunity to see changes in these values.

Dietary Iron

Iron Deficiency. Dietary iron intakes, both deficiencies and excesses, have

increasingly become a world wide problem. The most common nutrient deficiency is

iron. It was estimated from data collected in NHANES III that about 700,000 children

aged 1 to 2 years and 7.8 million adolescents and women in their childbearing years

suffer from iron deficiency in the United States (Looker et ai, 1997).

Those at risk for developing iron deficiency anemia are seen in particular

subgroups of the population. There are periods in life in which iron needs increase.

Generally, these are also the periods in which iron intakes are reported to be inadequate

Infancy and childhood are one of these periods of inadequate iron intakes. A full term

infant has iron stores that will meet the body's requirements until four to six months of

age. During this stage oflife growth is rapid and iron intake is inadequate, therefore, iron

deficiency anemia is usually seen around age nine months for a preterm or low-birth­

weight infant the risk of iron deficiency anemia is even greater due to lower iron stores.

Iron deficiency at such an early age can delay growth, mental and psychomotor

development (Marx, 1997)

Adolescence is another period of rapid growth in which erythrocyte volume and

muscle mass increase (Marx, 1997). For females, menstrual blood loss further increases

iron needs of 0 5 to I mg per day of absorbed iron. Adolescent females often limit their

food intake to maintain weight (Anonymous, 1998). The National Health and Nutrition
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Examination Survey (NHANES Ill) data indicate that only 25% of adolescents meet the

RDA for iron. Eleven percent of non-pregnant women from ages 16 to 49 are iron

deficient (Anonymous, 1998). Iron requirements for pregnancy increase due to the

expansion of blood volume for the growth of the fetus, placenta and other tissues during

the second and third trimesters. Iron supplements must be taken during pregnancy to

meet this increased demand.

Iron Excess. Currently, health awareness has popularized the use of nutritional

supplements (Greger, 1987). National surveys indicate that populations with higher

incomes typically use supplements to achieve perceived ultimate health and fitness. It has

been estimated from the 1987 and 1992 National Health Interview survey that

approximately 24% of the population use supplements (Slesinski et al 1995) Nationwide

food fortification policies are also seen as an answer to nutritional deficiencies (Greger,

1987) Toxic factors need to be considered when consuming supplements and fonified

foods. Research has revealed complications of over consumption of vitamins such as

vitamin A. B-6, C and D, and nicontinic acid. The toxic symptoms occurred from

supplemental use rather than from food. Iron can become toxic to the body due to the

fact that once absorbed, excretion is very slow To maintain balance iron absorption must

keep pace with iron loss. Any alteration to this balance leads to iron deficiency as well as

iron overload (Conrad et a1, 1994) As seen In the patient with hemochromatosis, iron

overload can cause damage to the liver, heart, pancreas and may even lead to death

(Finch and Monsen 1972). The problems associated with iron deficiency are recognized,

but problems of iron excess have been underestimated (Conrad et aI, 1994).
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Adolescents

The highest level of bone mass is achieved during adolescence and is the result of

normal growth (Matkovic, 1996). It is important to understand the age of peak bone

mass (PBM) attainment to prevent osteoporosis.

The Saskatchewan Pediatric Bone Mineral Accrual Study began in 1991 (Bailey

1997). The purpose of this study was to examine bone mineral accretion in growing

children. Two hundred twenty-eight students from age of eight to fourteen years

participated. The objective was to develop bone mineral density and bone mineral

content standards for normal developing children based on information on bone mineral

accretion. Each year BMC of the whole body. lumbar spine (LI-L4) and proximal femur

were measured by DXA. Twenty-four hour recalls and physical activity questionnaires

were administered three times a year for the first three years, then twice a year for the

remainder of the study. Macro- and micronutrient intakes including calcium were

determined from analyzing the 24-hour recalls. Distance and velocity growth curves !(If

height and BMC for the lumbar spine, the femoral neck and the total hody were

developed by using the data collected over a 5 year period The results (when pooling by

1 year age groups) showed that the boys reached peak linear grolNth at age 13.5 years and

girls reached it at age 11.6 years At these ages hath boys and girls attained 90% of adult

status in height, 70% tn BMC at the femoral neck, and 60% for the total body and lumbar

spine. One year after peak linear growth the rate of bone mineral uptake peaked for both

males and females showing a dissociation between linear growth and bone mineral

accrual Two years before and after peak linear growth is the period known as the growth

spun and is a critical time for bone mineral accretion. During this four year period, over
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35% of total body and spine bone mineral and over 27% of the bone mineral at the

femoral neck were deposited, The bone mineral content accumulation during this time is

more than the amount most people will lose during adult life, Peak skeletal mass attained

during the growth years accounts for 50% ofthe variability in bone mass in the elderly,

Therefore, the growing years determine much of the fracture risk in the elderly

Matkovic et al (1994) found similar resu Its to the Saskatchewan Pediatric Bone

Mineral Accrual Study when determining the timing of PBM, Other multiple skeletal

sites such as spine, proximal femur, neck, Ward's triangle, trochanter, and forearm were

measured in the same subject. All measurements of bone mass were measured by DXA

with exception of the forearm which was measured on a SPA Two hundred sixty-five

premenopausal Caucasian females from eight to 50 years were studied, Subjects with a

BMl above 29.9 were excluded from the study, At several sites, accumulation of bone

minerals continued to increase one to seven years after skeletal height had been reached

at the age of 16 years, The attainment of peak height by 16 years of age indicates

decrease in longitudinal bone growth; however, accumulation of bone mass continues at

various sites. Between the ages of 11 and 15 years 37% of total skeletal mass had been

accumulated as compared to 35% found in Bailey's study (1997) Between the ages of

eight and 16 years the average gain in height was 2.4% of the peak adult height for

women per year, and the accumulation of total bone mineral between these ages was 6%

per year Between the ages of 18 and 50 years the BMC and BMD changed only slightly

and was not a statistIcally SIgnificant change, Peak bone mass of the proximal end of the

femur appeared to be :::::: I 7 years of age, and older premenopausal women had

significantly lower BMD than the younger women, This suggests that once PBM of the
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proximal end of the femur was achieved there was an immediate decline in BMD.

At the age of 14, females had similar values to their mothers' for bone size, mass

and density. Longitudinal growth ceased while consolidation continued to increase.

Most epiphyses closed at the age of 16. For both male and female, 95-99% of PBM was

achieved by the age of 18 (Koletzko et aI., 1998).

The risk of developing osteoporosis was lower for those who had higher bone

mass as young adults. When the two communities with different calcium intakes were

studied they found that the rate at which bone loss occurred was the same; however, the

risk of hip fracture for those that started with a greater PBM was lower (Matkovic, 1996)

Osteoporosis

Osteoporosis is defined as skeletal fragility characterized by low bone mass and

by a degeneration of structural bone tissue (Heaney, 1996). As defined by The World

Health Organization, a bone mass value more than 2.5 standard deviations below a

normal young adult mean is considered to be at risk of fracture (Nichols et aL 2000,

Heaney, 1996). The assessment of bone health is accomplished through measurements of

BMC. Bone mineral content is expressed as the amount of bone mmeral per unit of area

(grams). Bone mineral density is expressed as grams of BMC per square centimeter of

bone (glcm\ The spine, hip and wrist are sites commonly measured because these are

the sites most common for fracture risk in osteoporosis.

The pathophysiology is multifactorial (Nichols et ai, 2000). Factors that increase

the risk of osteoporosis are diseases (anorexia nervosa, HIV, hyperparathyroidism,

insulin-dependent diabetes, renal failure, hyperthyroidism, inflammatory bowel disease,
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and multiple sclerosis), inherited factors (race, gender, and familial history of

osteoporotic fracture), and environmental factors (low body weight, cessation of

menstrual period. low calcium intake, inactivity, corticosteroid use, smoking, alcohol,

and caffeine). Treatment of osteoporosis depends on the cause.

Osteoporosis is a major public health concern (Nichols et aI, 2000). It is related

to significant increases in morbidity, mortality and economic burden. Despite the

advances made in the last few year in understanding of prevention strategies, screening,

detection and treatment, osteoporosis continues to escalate. One out of two women is

affected by osteoporosis at some time in her life. It affects 25% of white,

postmenopausal women in Western countries (Angus et al 1988). Each year medical

costs associated with osteoporosis are close to $13.8 billion (National Osteoporosis

Foundation, 2000). Each year 50,000 deaths are attributed to osteoporosis (Nichols et aJ,

2000).

Indicators of Bone Growth

A focus on decreasing the cost of osteoporosis has interested many In developmg

and improving indicators of bone remodeling (Calvo et al 1996) By usi ng

hisomorphometry of a biopsy specimen, bone status can accurately be assessed (Calvo et

al 1996 and Russell 1997). This technique is invasive, however Ideal measurements

should be easily and frequently obtained without risk or discomfort; biochemical markers

of serum and urine could function in this manner. These indicators should identify those

at risk, diagnose early. and determine effective therapy for those with osteoporosis.

Indicators must be unique to bone, reflect total skeletal metabolism and be validated by
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Bone Specific Alkaline Phosphatase

Bone specific alkaline phosphatase is a biochemical marker of bone formation. It

is an enzyme found in the membrane of the osteoblasts and is an indirect measure of

osteoblast activity (Delmas] 993, Bikle 1997, Russell, 1997). Alkaline phosphatase

expression starts once cessation of cell proliferation occurs and it reaches a maximum

during matrix maturation and decreases as matrix mineralization declines (Risteli and

Risteli, 1993) Several roles have been proposed for alkaline phosphatase in bone

formation: increased local concentrations of inorganic phosphate destroy inhibitors of

mineral crystal growth, transport phosphate, or act as a calcium binding protein (Calvo et

al ]996).

Demineralized bone matrix powder was implanted subcutaneously into the shaved

upper chest of rats of various ages (Nishimoto et al 1985). Alkaline phosphatase activity.

total calcium and histological examinations were measured at the site of implants ITl

1-,3-, 10-, and 16-month-old rats to assess bone formation. Results showed thaL alkaline

phosphatase activity peaked two weeks after injection in 1- and 3- month old rats and was

significantly different from 10- and 16-month-old rats In the 16-month-old rats alkaline

phosphatase levels were nearly half the alkal ine phosphatase levels in ]- and 3-month-old

rats. There was a significant reduction of bone formation between] - and 3-month-old

rats as measured by total calcium accumulated in demineralized bone matrix powder

implants. Bone histology at 2 weeks postimplantation showed new bone in I-month old

rats. while evidence of new bone was lacking in 16-month old rats. These results
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demonstrate that indicators of osteogenic activity decrease with age. The most surprising

result was the significant decrease in bone-forming capacity between 1- and 3-month-old

rats.

Insulin-Like Growth Factor

Bone growth and development are directly affected by insulin-like growth factor

(IGF-I). IGF-I is known to stimulate chondrocytes in the growth plate and to increase the

synthesis of DNA, proteoglycan, protein and collagen leading to an increase in long bone

growth (Thompson et ai, 1996 and Burtis and Ashwood, 1994). The circumference of

long bones increased as IGF-I stimulated osteoblastic periosteal bone formation. An

increase in skeletal and serum IGF-I levels has been shown to be parallel to increases in

bone mass growth during childhood (Mora et al 1999). Other studies have demonstrated

that the increase in bone mass is mainly due to the increase in bone size. Even though

high levels ofIGF-I results in an increase in size the bone mineral density tends to be

unaffected.

Skeletal parameters were compared to IGF-I levels to determine an aSSociation

between the two (Mora et al 1999) One hundred ninety-seven healthy white children

and adolescents participated in this study. Blood was drawn aHer an overnight fast to

determine serum IGF-I levels. Cortical bone density, cross-sectional area, and cortical

bone area were measured at the midshaH of the femur by computed tomography (CT)

The results showed that a direct relationship between serum IGF-I levels and age, weight,

and other anthropometric measurements, as well as femoral conical bone and femoral

cross-sectional area. Even after accounting for the confounding variables of femoral
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length and body weight there was still a positive correlation between IGF-I and femoral

cross-sectional and cortical bone areas. There was no correlation between IGF-I levels

and cortical bone density. These results are in conformity with other studies that

suggested that IGF-I is a determinant of bone geometry, but not of bone density.

Growth hormone (GH) stimulates the largest of the IGF binding proteins (IGFBP-

3). Thompson et al (1996) studied the effects ofIGF-I on bone growth by injecting

neonatal rats with monosodium glutamate (MSG) to deplete hypothalamic growth

hormone-releasing hormone (GHRH) producing neurons and chronically decrease serum

GH levels. Of interests were the changes in size, mineral and connective tissue density

and content in rat femurs. Results demonstrated that naso-anal length, femur length and

humerus length ofMSG injected rats were significantly lower than controls. This

suggests that the decrease in GH levels due to a deficiency in hypothalamic GHRH, leads

to diminished production and activity of circulating growth factors such as IGF-I which is

GH dependent.

Urinary Deoxypyridinoline Crosslinks

Organic matrix of bone is 90% type 1 collagen which is crosslinked by specitic

molecules to give rigidity and strength. These crosslinking amino acids are the

pyridinium crosslinks, pyridinoline (Pyd) and deoxypyridmoline (Dpd) (Branca et aI,

1992, Riis 1993, Delmas 1993). The highest concentration of Pyd is found in type II

collagen of cartilage and lower concentrations are found in type I collagen of bone;

however. Dpd is found only in type I collagen of bone (Riis, 1993, Seibel et al 1992).

Dpd is formed during the maturation of collagen fibrils in cartilage and bone. During the
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bone resorption process Dpd is released into the cirulation and excreted unmetabolized in

urine. Because urinary excretion is unaffected by diet, Dpd is a suitable marker for

assesing resorption and providing analytical data on the rate of bone metabolism. In

patients with vertebral osteoporosis, Dpd levels were correlated with bone turnover

measured by bone histomorphometry (Delmas 1993).

Thirty-six postmenopausal women with vertebral fractures were studied to

compare values obtained from pyridinoline assay to histomorphometry (Delmas et al

1991). None of the patients were being treated for osteoporosis at the time. The

proximal and distal forearm bone mass measured by SPA was observed to be

significantly lower than in sex- and age-match controls of postmenopausal women

without vertebral fractures. Pyridinoline and Dpd were measured on fasting urine

samples. An iliac crest biopsy after labeling with demethylchlortetracycline and

oxytetracycline was performed. The following parameters were measured: the eroded

surface and the osteoclast surface, bone formation ratio (BFR), BFRs (surface based),

BFRv (volume based), and BFRt (tissue based).

When compared with normal healthy premenopausal controls, Pyd and Dpd were

higher in 50% of the osteoporotic patients. There was a positive correlation between

urinary Pyd and Dpd and both osteoclast surface and bone formation. There were

significant correlations between the osteoporotic patients and osteoclast surface and bone

formation rate. Possibly a decrease in the ma1l1tcnance of some coupling between

resorption and formation may explain these results. It is believed that there are

limitations of histologic parameters of resorption that decrease the validity of the

assessment of the rate of resorption. Histologic parameters are static, and they are limited



-
38

to the cancelous envelope and not cortical bone, which is 80% of the skeleton. Despite

these limitations, urinary Pyd and Dpd, especially Dpd, were significantly correlated with

the osteoclast surface suggesting that it is a useful bone resorption marker

Hydroxyproline

Hydroxyproline is found in collagen and is an indirect meausre of bone

breakdown (Rao and Rao 1980). Urinary excretion is used to measure the changes in

collagen metabolism. Since the breakdown products of collagen are not reused for

collagen biosynthesis it has been shown to be a reliable index of collagen catabolism.

Any changes in urinary hydroxyproline were due to changes in collagen synthesis rate,

the conversion rate of one form of collagen to another, or the rate at which either form is

degraded (Rao and Rao 1980).

Urinary hydroxyproline is expressed as a ratio to urinary creatinine to provide

estimates of excretion rates in relation to lean body mass ( Horowitz et al 1984). This

ratio also corrects for bladder emptying error detected in short, timed urine collections

Horowitz et al (1984) used urinary hydroxyproline to measure the effects of

calcium supplementation on bone resorption. Fourteen postmenopausal women were

admitted after a 12 hour overnight fast, had blood and urine samples collected on

admittance, and then were fed a diet containing 800 mg of calcium plus a 1000 mg

calcium supplement for eight days. Blood and urine samples were collected eight days

later after an overnight fast Plasma calcium, phosphate, creatinine, alkaline phosphatase

and urinary phosphate, creatinine, and hydroxyproline were measured. Results

demonstrated that daily supplemental calcium had a protective effect on bone resorption.

I.

(

I



-
39

The hydroxyproline/creatinine ratio significantly decreased from 0.022 to 0.017 in a

matter of eight days.

Male and female rats varying in age 4,8, 12, 16 and 20 months were studied to

establish the influence of age on urinary hydroxyproline (Blanusa et al 1978).

Hydroxyproline was measured from 24-hour urine samples. Results from analysis of

variance showed that urinary hydroxyproline significantly decreased with age in both

sexes. This may reflect a decrease in metabolic activity of coHagen.

Measurements of Bone

Dual Energy X-Ray Absorptiometry COXA)

In the past dual-energy projection methods (DPA) were used to estimate body

composition (Going et al 1993). Dual photon absorptiometry was originally developed to

estimate bone mineral content but was also able to estimate total and regional-body soft

tissue fat and fat free mass. The accuracy was good but there were precision errors. Dual

photon absorptiometry was replaced with dual energy x-ray absorptiometry (OXA) to

provide better precision while accurately estimating lean mass of soft tissue, fat fi'ce mass

of soft tissue and total-body bone mineral (Going et al ]993, Svendsen et aL I ()91)

Seven pigs were studied to compare DXA with chemical analysis (Svendsen et ai,

1993). After DXA measurements the pigs were killed and homogenized with a total

body grinder and a total-body peUetizer Random samples of approximately 500 g were

taken divided to analyze for percent fat determined by chemical fat extraction and the ash

weight Calculations made from percent fat determined fat mass of soft tissue and tota1­

body bone mineral. Results showed total-body bone mineral measured by OXA was
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highly correlated with ash weight, and percent fat, fat mass of soft tissue, and lean body

mass was highly correlated with chemical analysis. The fatty and lean elements of the

body were directly measured by DXA. Dual energy x-ray absorptiometry measurements

had high accuracy with chemical analysis.

Densitometry estimates of fat have shown significant errors due to fluctuations in

body water and in bone mineral. Going et al ( 1993) investigated whether DXA was able

to detect small changes in soft-tissue composition induced by changing the hydration

status of 17 males and females. Over three consecutive days, patients were placed in

dehydration-rehydration periods to induce changes of approximately two percent of body

weight. Body composition measurements ofstanding height (SHt), body weight (BW),

body density (BD), total-body water, total body bone mineral content, and soft-tissue

composition, were taken at baseline after a 12 hour fast with out exercise and on the

following two days during the dehydration period. For eight hours they ate and drank ad

libitum, A second 12-hour period without food and exercise prepared them for the

following day's measurements. After day two, subjects were maintained without liquid

and exercise for 24 hours to induce weight loss by dehydration. The last 12 hours food

was also withheld, and measurements were taken at the end of the 24-hour fast The

rehydration period began on day three; a volume of water equal by welght to 75% of the

weight lost during the dehydration period was replaced After a complete void I Y2 hours

later, BW was measured again. Water was ingested equal to 120% of the weight

difference from baseline plus the amount equal to the volume lost during urination, All

measurements were repeated after a final void one hour later, Urine specific gravity was

measured to confirm changes in hydration status, Dual energy x-ray absorptiometry
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measurements were compared with measurements from hydrodensitometry. A high

correlation was found between baseline measurements ofBW and total mass from DXA

After the dehydration and rehydration periods the same relationship was found between

BW and total mass. At baseline there was also a high correlation between percent fat and

fat free mass (FFM) from the densitometry and DXA (percent fat in males, r = 0.92 and

FFM, r = 0.95; percent fat in females r = 0.98 and FFM, r = 0.99). The same correlation

was seen after the dehydration and rehydration periods. During the dehydration and

rehydration periods total-body bone mineral remained approximately unchanged

Because water is found primarily in lean tissue, the change found in BW should be equal

to the changes seen in lean tissue mass, and bone mass would remain unchanged. These

findings supported DXA as an accurate measure for estimating small changes in

individual components of body composition

Biomechanical Measurements

Biomechanical testing provides information on mechanical integrity of bone

(Turner and Burr 1993). A useful way to measure the mechanical properties of small

animal bones is by conducting bending tests. Both tensile and compression stresses are a

result of bending. Tensile stress occurs when the material is stretched Compression

stress occurs when the material is compacted The fracture usuallv occurs on the tensile

side, because bone is weaker in tension.

Either a three-point or a four-point bending test can be perfonned (Turner and

Burr 1993). In a three-point bending test the force is applied perpendicular to the long

axis of the bone at the mid-shaft by a crosshead moving at a constant speed, while fulcra
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support the two ends of the bone (Kiebzak et al 1988). Three-point bending is the

preferred method when using rodent bones (Turner and Burr 1993) due to it's simplicity.

A four-point bending test requires that the force at all four loading points be equal, and

this is difficult to ensure when using irregularly shaped bones from rodents.

Second moment of area is a mechanical parameter used to describe the geometry

of the cross-sectional area of the bone (Kiebzak et al 1988). The equation is as follows:

Second Moment of Area (for an ellipse) (cm4
) = TI [(803

) - (bdJ
)]

64

B = outside diameter perpendicular to the point of applied force.

o = outside diameter parallel to the point of applied force.

b = inside diameter perpendicular to the point of applied force.

d = inside diameter parallel to the point of applied force.

This equation is necessary when calculating bending stress

A second mechanical parameter is stress, which is expressed as force per unit area

of bone. The equation is as follows:

Stress (kgf/cm2
) = force x length x C

4 x second moment of area

force = the force used by the mechanical testing instrument at the yield point

C = Yz of the bone diameter (D) that is parallel to the direction of applied force

Stress takes into account geometry of the cross-sectional area of the bone and the distance

between the two supports. It is dependent on the tissue compositIOn of the bone rather

than it's structure. Therefore stress measurements allow comparisons of tissue strength

of different bone sizes and shapes

The mechanical properties of bone vary according to the method of preparation

......
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and hydration. Freezing the bone at -2QPC in saline-soaked guaze has been shown to be

an effective method of long term preservation (Turner and Burr 1993). A human femur

frozen at -20°C for 20 days rather than -70°C exhibited no change in bending properties

of the bone. Peng et al (1994) tested the effects of freezing on femur and tibia in 20 of

the 30 rats. The remaining ten rats were selected to measure the strength of fresh bone.

The contralateral leg was stored at -200C in plastic test tubes with some soft tissue

remaining for one week. The leg was then thawed at room temperature and cleaned of

adhering tissue. In both frozen and fresh bones, all femur fractures occurred at the basal

part of the femoral neck. Measurements included inner and outer diameters of cross

section, transectional areas of the marrow cavity and cortical bone, and failure loads of

the femoral neck, and three-point bending of the tibia. There were no significant

differences between fresh and frozen bones for all measurements.

A dry bone will increase in strength but decreases in toughness making it brittle

(Turner and Burr 1993). For test results to be accurate, hydration is necessary. This can

be achieved by soaking the bone in physiological saline.

Copper is a mineral that is also involved in collagen formation (Jonas et ai, 1993)

Copper is the cofactor for lysyl oxidase, an enzyme needed for intra- and inter-molecular

cross-links in collagen. A deficiency of copper has been shown to be associated WIth

bone fragility in man and in animals. To determine whether a decrease in bone strength

is due to changes in the inorganic material or due to a collagen defect, copper deficiency

was induced in seven pairs of weanling Wistar rats, and mechanical strength was tested.

One of the rats in each pair was fed a copper deficient diet while the other rat was fed a

copper sufficient diet. To control for significant differences in weight, the animals were



pair fed. Copper deficiency may decrease appetite and may result in lower growth rate

than the control rats. The rats were killed after 56 days, and both femora were cleaned of

soft tissue and tested on a torsional loading instrument. The liver was also collected to

analyze copper content. The torsional loading method was used because it produced the

same type of loading found in humans during trauma (Burstein and Frankel, 1971).

Measurements (length of femur, outside diameters at the midshaft, and cortical thickness

measured at midshaft once bone was fractured) were obtained to estimate biological

variability. From the load-deformation graphs, the maximal torque, the torsional

stiffness, the ultimate angular deformation, and the absorbed energy was determined.

The bones were ashed to measure ash weight and calculate percentage of ash in fat-free

dry bone. The calcium content of bone was also determined. Rats were similar in

weight, femur length, measures of midshaft external diameter, and cortical thickness at

the midshaft. Severe copper deficiency was confirmed by liver copper assays The

maximal torque, ultimate angular deformation and energy absorption during bone loading

was significantly lower in the femora of the copper-deficient rats as compared to the

control rats. There were no significant differences in percentage bone ash or calcium

content, showing that the decrease in bone strength was not due to changes in inorganic

material. The decrease in bone strength was possibly due to changes in the coHagen

matrix of the bone.

The effects of copper and iron deficiency on mechanical strength and mineral

composition of bone were studied (Medeiros et ai, 1997) Three week old, male rats were

randomly assigned to either copper deficient diet, iron deficient diet or the control diet

Rats remained on diet for six week and then were killed for analysis. Femurs were dried
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to constant weight in an oven at 3-rC before testing for breaking strength using an

Instron. The force was applied at a rate of200 mm/min. Radiograms of the left femur

were used to calculate total area, cortical area and medullary area. Single photon

absorptiometry was used to measure BMC and BMD of femurs. Cortical area was

significantly lower in the copper and iron deficient rats than controls. Medullary area

was significantly greater in the copper and iron deficient rats. There were no significant

differences in the copper and iron deficient diet groups compared to controls in total area,

BMC and BMD. Fracture force was significantly lower in both the copper and iron

deficient rats than controls. Fracture force in copper deficient rats was similar to the

results found by Jonas et al (1993). It appeared that the decrease in bone strength was

possibly due to inability to form collagen crosslinks rather than to a decrease of inorganic

material.

Hogan et a1 (2000) evaluated different methods for testing mechanical properties

of cancellous bone in the proximal tibia. With most methods of testing bone strength,

cortical bone is tested along with cancellous bone; however, with estrogen deficiency

osteoporosis the greatest loss occurs in the cancellous bone. The proximal tibia

metaphysis was tested using two different methods: whole slice compression that

compresses the entire specimen (cortical and cancellous bone) and reduced-platen

compression that compresses only the cancellous bone in the center of the sample A

three-point bending test was performed on the femur, and all three methods were

compared. Twenty six rats aged 15 weeks were dIvided into two groups; half were

ovariectomized (OVX) and half were sham operated for controls. The rats were killed at

19 weeks, and femurs and tibias were collected, cleaned, weighed, and measured. Both
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extrinsic and intrinsic measurements were made. Extrinsic measurements refer to the

whole bone considering the tissue material properties in addition to bone size and shape.

Extrinsic measurements include maximum force, stiffness, displacement or deformation

at maximum force and energy to maximum force. Intrinsic measurements refer only to

tissue material properties. Intrinsic measurements include ultimate stress, elastic

modulus, and strain at ultimate stress. The mean weight of the OVX group was

significantly greater than the sham group. There were significant increases in length of

the femur and tibia in the OVX group. and cross-sectional moment of inertia of the femur

was significantly higher indicating continued modeling of cortical bone and longitudinal

bone growth. All extrinsic and intrinsic measurements, except for displacement at

maximum force, were significantly lower in the OVX group compared to the sham group

in the reduced-platen compression test. In the whole-slice compression test all

measurements (except displacement at maximum force, specimen thickness, and total

cross-sectional area) were significantly lower in OVX than sham; however, the values

were half of the values from the reduced-platen compression test. From the three-point

bending test, only maximum force was significantly higher in OVX than sham, this result

is expected because three point bending also tested cortical bone. The effects of

ovariectomy were minimal on cortical bone. After comparisons of testing methods it was

clear that cortical bone decreased the sensitivity of the test's ability to detect changes in

the cancellous bone. Therefore, a test in which only the strength of cancellous bone is

determined, such as reduced-platen compression test, is more sensitive to changes in bone

than the three point bending test.
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Rat Model

Animal models should have anatomic and physiologic similarities to humans

(Aufdemorte et aI, 1993). Animal models should parallel closely to humans in disease

pathogenesis and progression, have similar exposure to risk factors, and be able to be

manipulated to induce disease or control for disease. Convenience, relevance and

appropriateness are characteristics an animal model should possess (Aufdemorte et aI,

1993 and Kalu, 1991).

Convenience

Convenience refers to the ease of using the animal model (Kalu, 1991). The rat

model is convenient to maintain and work with. In comparison to other models such as

dogs and non-human primates rats are relatively inexpensive and are associated with

fewer ethical constraints

Relevance

Relevance refers to comparisons made from animals to humans concerning a

phenomenon being studied (Kalu, 1991) There are many skeletal similarities between

rats and humans. In aged ovariectomized rat models, bone loss was greater in the

vertebra than in the femur (cancellous loss was greater than cortical loss), thi s loss was

similar to that in postmenopausal women, (Kalu, 1991 and Hogan et aI, 20(0) In both

aged ovarectomized rats and postmenopausal women hIgh levels of biochemical markers

of bone turnover with bone resorption exceeding formation occur immediately after

menopause, and increase medullary area have been shown (Kalu, 1991) Other
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characteristics shared by the ovarectomized rat model and postmenopausal women are

decreased intestinal calcium absorption, rapid loss of cancellous bone followed by a

slower steady decrease, and response to treatment. The effects of treatment (estrogen,

bisphosphonates, calcitonin, vitamin D and its analogs, tamoxifen, parathyroid hormone,

and exercise) had similar preventive effects on bone loss in ovariectomized rats and

postmenopausal women. These similarities among others provide evidence that the rat

model is suitable for studying osteoporosis.

The human skeleton consists of 80% cortical bone and 20% trabecular bone

(O'Flaherty 1991). Following the blood flow through rat bones demonstrates these

percentages also apply to rats. Microshpere technique was used to measure the blood

flow in bone of a rat (Buckberg et ai, 1971). The blood flow rate was highest in

trabecular and hematopoietic marrow and lowest to cortical bone showing a pattern of

flow to immature, growing bone greater than to mature bone. It has been estimated that

3% of cardiac output flows through the skeleton. It was further estimated that the blood

flow rate is 35 ml/min/ 1OOg to trabecular bone and 5 mllmin/ 1OOg to cortical bone.

Using these estimates the skeleton was further compartmentalized to show that 80% by

weight was cortical bone and 20% was trabecular bone.

Appropriateness

Appropriateness refers to other factors that make a model acceptable for studying

a particular phenomenon (Kalu, 1991). Rat models follow the pattern of groVvth similar

to humans. From 1-3 months of age rapid increases in length, weight, density and

calcium content of femurs were found that were similar to childhood and adolescence in
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humans. During this period there was enormous modeling, remodeling and growth

occurring. From six months of age on, the increase was more gradual. There were

minimal changes in the femur calcium content or density from six months to 12 months

similar to adulthood. All bone parameters reached a plateau at 12 months of age and no

further change up to 24 months of age occurred.

Acheson et al (1959) studied similarities of skeletal development between human

development and rat models. Ten male and 13 female Sprague-Dawley rats were weaned

on the 20th day, separated by sex, and feed ad libitium. Measurements of total-length,

tail-length and weight were obtained between the 16th and 11 Oth day of life. Animals

were anesthetized during radiography in which standard Kodak 'no-screen' film was

used. For assessing skeletal maturation the principles of the Oxford method was used.

The Oxford method was based on the fact that there are irreversible processes during

maturation, and certain changes occur in the shape of the epiphyses oflong bone, or in

round bones. These changes were seen radiographically, and they occurred in a defined

order. These changes were referred to as maturity indicators. Each indicator was given

point values to total 100 at the age of 110 days. Serial radiograms were taken at 10 day

intervals and given a maturity score. Similarities in skeletal development were seen

among the rat model and humans. The female rat matured more quickly than the male

rat Between the 70tr. and 80th day the rate body length increase of the female rat

decreased while the male rat continued to grow for a longer period of time The male rats

were heavier and longer than the female rats during all stages of growth Beside~ these

similarities it is important to note that the rat and man are both skeletally immature at

birth. At birth the skeleton is incompletely mineralized (O'Flaherty 1991). The skeleton
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consists mainly of cartilage which is considerably less dense than fully mineralized bone.

Mineralization continues after birth when body calcium rises rapidly and steadily during

growth and then stabilizes during sexual maturity. Since much of the transformation of

cartilage into bone happens outside of the uterus this makes the rat an appropriate model

for studying the effects that environmental stress plays on skeletal development.

Associated Problems with the Rat Model

Many feel that because osteoporosis is not a rare disease there are many people

available for studying osteoporosis instead of using a rat model (Kalu, 1991). However,

there are ethical constraints that limit the ability to test new hypothesis or potential

therapies.

Another problem is that the skeletal mass of a rat is stable tor a prolonged period

during life (Kalu, 1991). The estrus cycles continue to about 19 months ofage spanning

most of the animal's life. Bone mass is still maintained during this period due to the

amount of sex hormones that are still being secreted by the ovaries. However, rats can be

ovarectomized to induce an ovarian hormone deficiency.

It has been stated that rats are continuously growing (Kalu, 1991) When rats

were fed ad libitum they continued to grow and increase in body weight, but this increase

in weight was a result of more deposition of fat than increase in lean body mass Once

rats began to age they lost both adiposity and lean body mass. Several studIes have

shown that there is a decrease in osteogenesis in the epiphyseal growth plate of a rat at

age six to 18 months. Rats suffer from seni Ie bone loss 1f they live long enough

Rats lack a Haversian system and do not have the same pattern ofbonc

1)...\
:I)......



remodeling as humans (Kalu, 1991). Remodeling activities of activation, resorption, and

formation found in several sites were found to be similar to the remodeling activity of

cancellous in humans (Baron et aI, 1984). This suggests that rats have the same

mechanisms of bone turnover that exists in humans. The rat model has been shown to

possess the characteristics of convenience, relevance and appropriateness to validate it's

use in studying bone.

Rat Model and Iron Absorption

Iron absorption is higher in rats than in humans limiting the ability to predict the

absorptive response of iron in humans (Reddy and Cook, 1994). Human studies have

demonstrated that ascorbic acid enhances iron absorption. The differences in iron

absorption among rats and humans can possibly be due to the fact that rats can synthesize

ascorbic acid; therefore, provide an effective substrate for increasing iron absorption in

this species.
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CHAPTERlll

MATERlALS AND METHODS

Experimental Design

Forty weanling female Sprague-Dawley rats (Sasco, Kingston, NY) were received

at 21 days ofage. A completely random design with four dietary regimens was used in

this experiment. Animals were fed an AIN-93-G diet for seven weeks post weaning and

then diets were changed to an AIN-93-M fonnulation for the remainder of the experiment

(eight weeks) At 18 weeks of age at which point the rats had reached skeletal maturity,

the rats were killed for analysis of bones and tissues. The project was approved by the

Institutional Animal Care and Use Committee protocol #709 (Appendix A)

Treatment Protocol

Housing

The animals were housed in the Oklahoma State University Laboratory Animal

Resource Center (LAR) where proper care for the animals was monitored. The rats were

caged in individual plastic cages with raised plastic floor grids that were changed weekly

The light, temperature and humidity were controlled by the animal facility.

Each group was fed a purified diet based on AIN-93 ( Reeves et aI, 1993)

recommendations except for iron (Tables I and 2) 1\"'0 groups had iron inadequate diets

J...,..
t),
...,..

­......::,
::::.

..



-
53

calculated at 6 ppm, and 12 ppm, one control group calculated at 35ppm and one excess

level of iron calculated at 150ppm. Previously the cellulose was lot tested for

contamination of trace minerals. The same lot numbers for all ingredients were used for

all diets. Mineral mixes were prepared by weighing macro and micro-nutrients, then

combining and mixing in a burundum-fortified porcelain jar on a roller type mill for 6

hours. Mineral mixes were prepared one kilogram at a time to equal 2.5 kg sufficient for

the entire experiment

Feeding Schedule

Animals were fed late in the afternoon to minimize spilling of the diet

Remaining diet and animals were weighed twice a week. In order to match animal

weights, diet fed was based on feed consumption of animals that gained the least weight.

Deionized water ad libitum was provided to ensure adequate hydration.

Necropsy

Animals were fasted for 12 hours in individual plastic metabolic cages with

access to deionized water. Urine was collected for the 12 hours, volume determined,

centrifuged, and frozen for future analysis. Animals were anesthetized with 50 mg/kg of

body weight ketamine and 2.5 mg/kg of body weight xylazine based on last LAR weight

and were weighed immediately prior to body composition determinants. Body

composition, whole body BMD and BMC were determined by Dual Energy X-ray

Absorptiometry (DXA) (Hologic QDR 4500A, Waltham, MA) using the small anImal

analysis mode.

...



Table 1

Mineral Mixes

Levels of dietary iron for AIN93-G and AIN93-M
(corrected for amount of iron in cellulose)

Component

Calcium Carbonate
Potassium Phosphate
Potassium Citrate
NaCI

Potassium Sulfate
Magnesium Oxide
Zinc Carbonate
Manganous Carbonate

Cupric Carbonate
Postassium iodate
Sodium selenate
Amonium paramolybdate
Sodium meta-silicate
Chromium potassium sulfate
Lithium chloride
Boric acid
Sodium Flouride
Nickel carbonate
Ammonium vanadate

AIN93-G g/kg

357
196

70.78
73.275

46.6
24

1.65
0.63

0.3
0.01

0.01025
0.00795

1.45
0.275
0.0174
0.0815
0.0635
0.0318
0.0066

AI N93-M g/kg

357
250
28

73.275

46.6

24
1.65
0.63

0.3
0.01

0.01025
0.00795

1.45
0.275

0.0174
0.0815
0.0635
0.0318
0.0066

Ferric Citrate g/kg
6 ppm
0.88

12 ppm
1.86555

35 ppm
5.8883

150 ppm
25.8126

Powdered sucrose corrected for amount in titrated minerals for AIN93­
G/AIN93-M

Sucrose g/kg 217.37/ 216.38/ 212.36/ 191.98/
206.15 205.16 201.14 181.21

l _



Table 2

Composition of the Diet

Al -93M
g/kg

582.\

\40.0

155.0

100.0

40.0

50.0

35.0

10.0

1.8 ::-
:i

2.52.5

3.0

10.0

35.0

70.0

50.0

-93G
glkg

132.0

100.0

200.0

397.5

Dextrinized com starch3

CholineJO

L-Cystine9

Mineral mix (AIN-93G/93M-MX)7

Vitamin mix (AIN-93G/93M-VX)8

Cellulose6

Soybean oils

I Harlan Teklad, Madison, WI Lot # 98302
2 Harlan Teklad, Madison, WI. Lot # 98308
3 Clo-Dex 10 - Maltodextrin Lot # 98227
4 Great VaJue Extra Fine Granulated Sugar
S Crisco All Natural Pure Vegetable Oil
6 Harlan Teklad, Madison, WI. Lot # 98197
7 Mineral mix was prepared in the lab
8 Harlan Teklad, Madison, WI. R.X 892395
9 Harlan Teklad, Madison, WI. Lot # 98295
10 Harlan Teklad, Madison, WI. Lot # 98101

Sucrose4

Casein2

Component

Com starch I

•
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Blood was collected by abdominal aorta puncture. EDTA treated syringes were

used for hematological analyses, and syringes without anticoagulant for serum. Once the

blood was collected for serum it was clotted on ice, centrifuged and distributed to tubes

for either freezing or immediate analysis. Hematology values were obtained using the

ABX Pentra 120 Retic instrument (Irvine, CA.).

Tissues were perfused with saline using a peristatic pump through the aorta

puncture site. Those tissues that were collected were the heart, kidneys, liver and spleen.

They were trimmed, weighed and then frozen for future mineral analyses. The heart,

kidneys, and spleen were stored in plastic tissue bags and placed in a -20°C freezer. The

liver was divided into three portions: the Isl portion was frozen in a plastic tissue bag at

-70°C for enzyme assays, the 2nd portion was also frozen in a plastic tissue bag at -70°C,

and the 3rd was frozen in a plastic tissue bag at -20°C for mineral analysis

Bones collected were femurs, tibias and lumbar vertebrae. At necropsy all bones,

except vertebrae and sterum were cleaned of adhering flesh carefully as not to remove the

periostium and to avoid mineral contamination. Clean bones were stored appropriate for

the specific analysis. The left tibia was stored in a scintillation vial with 70% ethanol and

left at room temperature. The right tibia and left femur were frozen in plastic bags at -

20°C The spine was frozen whole in a SOmL centrifuge tube at -20°C Later the spine

was cleaned to separate lumbar J, 4, and S vertebrae and placed into individual plastic

tissue bags and refrozen at -20°C The right femur was frozen in liquid nitrogen and

stored in a plastic tissue bag at -70°C

...
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Analyses

Growth, nutritional status, bone mineral content and bone metabolism were

evaluated. These measures v.ill help to explain the effects that inadequate, adequate and

excessive dietary iron have on skeletal growth in young mature rats

Nutritional Status

Albumin, glucose, serum urea nitrogen, calcium, magnesium, and phosporus were

measured in serum for overall nutritional status. The presence or absence of hepatic

damage was measured by the enzymes alanine aminotransferase (ALT) and aspartate

aminotransferase (AST). All analyses were performed on the COBAS Fara II clinical

analyzer using appropriate reagents from Roche Diagnostics (Roche Diagnostic Systems,

Indianapolis, IN).

The analysis of albumin uses a modification of Doumas' bromocresol green

binding assay (Doumas et al 1971). Once bromocresol green binds to albumin there is a

spectral shift that occurs in the absorbance at 630 nm. The change in absorbance is

directly proportional to the concentration of albumin in the sample.

The analysis of glucose is determined as glucose is phosphorylated by hexokinase

to produce glucose-6-phosphate and adenosine diphosphate (Neeley, 1972) Glucose-6-

phosphate is oxidized by glucose-6-phosphate dehydrogenase to 6-phosphonogluconate

and nicotinamide adenine dinucleotide (NAD) is reduced to nicotinamide adenine

dinucleotide (NADH). One micromole ofNADH is produced for each micromole of

glucose The NADH absorbs light at 340 nm and is directly proportional to the

concentration of glucose in the sample.

'.
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The analysis of serum urea nitrogen depends upon hydrolyzing urea by urease to

ammonia and carbon dioxide (Tiffany et ai, 1972). Ammonia and a-ketoglutarate are

catalyzed by glutamate dehydrogenase to glutamate and water with concurrent oxidation

ofNADH to NAD. For each mole of urea present two moles ofNADH are oxidized

The decrease in absorbance at 340 nm is proportional to the urea concentration in the

sample.

The analysis of calcium is determined by a highly specific and sensitive reagent.

Arsenazo III binding to calcium forming a colored complex with absorbance maxima at

600 nm and 650 nm (Michaylova and IIIkova, 1971) The absorbance levels are

proportional to calcium concentration in the sample. Addition of the EDTA reagent

corrects for nonspecific absorbance interference hy removing calcium from the calcium-

Arsenazo III complex and allows for an accurate sample blank measurement. The

difference in absorbance between the calcium-Arsenazo HI complex and the EDTA

complex is the absorbance caused by calcium alone

The analysis of magnesium depends upon a sensitive dye, chlorophosphonazo III

(CPZ III) which binds to magnesium causing an absorbance decrease at 550 nm and an

absorbance increase at 675 nm (Ferguson et ai, 1964). Calcium is inhibited from binding

to CPZ III by EDTA used in reagent I Nonspecific absorbance interferences are

decreased by the EDTA reagent which removes magnesium from the magnesium-CPZ III

complex allowing for an accurate sample blank measurement. The differenence in

absorbance between the magnesium-CPZ III complex and the EDTA complex is the

absorbance caused by magnesium alone.

The analysis of phosphorus is determined by using the reagent hased on
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modification of the procedure developed by Daly and Ertingshausen (1972). Phosphorus

reacts with ammonium molybdate in dilute sulfuric acid and forms the unreduced

phosphomolybdate complex and is measured at 340 nm.

The analysis of ALT depends upon the transfer of an amino group between L-

alanine and a-ketoglutarate to fonn pyruvate and L-glutamate (Bergmeyer and Horder,

1980). Pyruvate reacts with NADH in the presence of lactate dehydrogenase to fonn

NAD. NAD reacts with glucose-6-phosphate in the presence of glucose-6-phosphate

dehydrogenase and NADH is generated. The rate of oxidation ofNADH is measured at

340 nm to detennine the ALT activity.

The analysis of AST depends upon the transfer of an amino group between L-

aspartate and a-ketoglutarate to form oxaloacetate and L-glutamate (Bergmeyer and

Horder, 1986). In the presence of malate dehydrogenase, oxaloacetate reacts with NADH

to form NAD. When NAD reacts with glucose-6-phosphate in the presence ofglucose-6-

phosphate dehydrogenase NADH is generated. The rate of oxidation ofNADH is

measured at 340 nm to determine the AST activity

Hematology included total leukocyte counts and differentials, hemoglobin,

hematocrit, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration,

reticulocytes, and platelet counts. All variables were measured on an automated

hematology instrument (ABX Pentra 120 retic, Irvine, CA).

In preparation for femur analyses, the left femur was soaked in 9% saline in a

scintillation vial at room temperature over night. Each bone was placed in a weigh boat
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with saline and then individually scanned by DXA to obtain bone mineral density and

bone mineral content. The DXA instrument was standardized to a known phantom

before measuring the bones.

Bone length and diameters were measured with calipers. The midpoint was

marked for fracture testing. Fracture force was detennined by an Instron Universal

Testing Machine (Model TM-S, Instron Corporation, Canton, MA.) at a loading rate of I

mm/min with a three-point compression bend test. Force value is the minimum amount

of force required to fracture the femur applied parallel to the mid-shaft diameter

(Thompson et ai, 1996). Once the femur was fractured, the marrow was cleaned from the

bone by rinsing with a syringe and Type 1 water. The inside and outside diameters were

measured to use in the calculations of second moment of area, stress, cortical area and

medullary area (Kiebzak et aI,1988).

The bones were soaked in Type I water over night and then placed in the

dessicator with vacuum for 1 hour. Wet weight and air weight were measured using a

Density Determination Kit Mettler ME-33340 (Mettler Instruments, Grelfensee,

Switzerland), and density by displacement was calculated using Archimedes' principle.

The fractured, cleaned femurs were then transferred to an acid washed, labeled and pre-

weighed tube and placed in the drying oven for 48 hours at 100° C. After the bones

cooled in the dessicator the dry weight was then recorded, and bones were ashed by wet

and dry ashing using a modification of the method of Hill et al ( 1986) The tubes

containing the bone samples were placed in a heating block and wet ashed at 105° C with

I00111 each of double distilled concentrated nitric acid (GFS Chemicals, Columbus. 011 ).

and 30% Ultrex hydrogen peroxide (I.T Baker, Phillipsburg, NJ) and Tvpe I water An
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additional 100/11 of hydrogen peroxide was repeatedly added until bubbling ceased. The

tubes were dried in the heating block until liquid evaporated, and then placed in a muffle

furnace at ashing temperature of 375° C for 48 hours. The cycle of wet and dry ashing

was repeated until bones were completely ashed. Once ashed, the bones were analyzed

for calcium, phosphorus, magnesium, iron, copper, zinc and manganese by flame or

graphite furnace atomic absorption spectroscopy as appropriate using a Perkin Elmer

5l00PC AAS with deterium and Zeman background correction.

Bone Metabolism

Bone formation was assessed by alkaline phosphatase extracted from L3 vertebra

and serum insulin-like growth factor I (IGF-I). The third lumbar was measured for

density by displacement using a Density Determination Kit Mettler ME-33340 (Mettler

Instruments, Grelfensee, Switzerland) and calculated using Archimedes' principle. A

detailed method for extraction and analysis of alkaline phosphatase extracted from L3

vertebra followed from Farley et al (1992) is listed in Appendix B

Insulin-like growth factor-I was measured using a RIA method The IGF-) kit

(Nichols Institute Diagnostics, San Juan Capistrano, CA.) was used and extraction

followed formic acid-acetone extraction procedure from Kalu et al (1994).

Urinary excretion of deoxypyridinoline (Dpd) crosslinks and hydroxyproline

(Bergman et aI, 1970) were measured as indicators of bone resorption. The final

overnight fasting urine was used to assess Dpd using a competitve ELISA method (Metra

Biosystems, Montain View, CA) The results were corrected for urinary concentratIOn by

urinary creatinine A detailed method for extraction and analysis of urinary
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hydroxyproline is listed in Appendix C.

Urinary excretion of calcium, magnesium, phosphorus and creatinine were

assessed spectrophotometrically using the COBAS Fara II clinical analyzer. Urinary

minerals were corrected for concentration by urinary creatinine.

Statistical Analyses

Data were analyzed using SAS (version 7.0, SAS Institute, Cary, NC). The

completely random model was analyzed using the generalized linear model (GLM)

procedure in SAS to analyze for effects of dietary iron on bone and growth. Significance

level was set at 0.05. Difference of means was tested by LS means testing
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CHAPTER IV

EFFECTS OF DIETARY IRO ON BONE IN

YOUNG MATURE RATS

L. McDonald, D. Kukuk, A.B. Arquitt, M.J. Fisher

ABSTRACT

The effects of inadequate, recommended and excessive amounts of iron on bone

density and strength and on biochemical indicators of bone metabolism were investigated

in young mature female rats. Forty weanling female Sprague Dawley rats were

randomized into four levels of dietary iron as iron citrate; control (AIN-93; 35 ppm), two

iron deficient levels (calculated to be 6 ppm and 12 ppm), and iron excess (calculated to

be 150 ppm). After 15 weeks of treatment the rats were fasted for 12 hours, anesthetized,

scanned via Dual Energy X-Ray Absorptiometry (OXA), exsanguinated, and blood and

tissues of interest were collected for various analyses. There were no significant

differences in body weight among the treatment groups initially or at the end. Red blood

cell numbers (p< 0.001) and hemoglobin concentration (p< 0.000 1) were significantly

lower in the 6 ppm than 12,35, and 150 ppm groups. Reticulocyte numbers were

significantly (p< 0.01) higher in 6 ppm compared to 12,35 and 150 ppm diets. lnsulin-

like growth factor was significantly (p< 0.05) higher in 6 ppm than all other diets.

Whole body bone mineral density as shown by DXA was significantly (p< 0.05)

lower in 6 ppm than 12 ppm and 150 ppm diets. Femur bone mineral content was

significantly (p< 0.05) lower in the 6 ppm than all other diet groups, and the 12 ppm diet
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was significantly (p< 0.05) lower than the 150 ppm diet group. Femur bone mineral

density was significantly (p< 0.01) lower in the 6 ppm diet group than in the 35 and ISO

ppm diet groups, and the 12 ppm diet group was significantly (p< 0.05) lower than 150

ppm diet group. Density as measured by Archimedes' principle in L3 vertebrae was

significantly (p< 0.01) lower in 6 ppm than 35 and 150 ppm, and significantly (p< 0.05)

lower in 12 ppm than 150 ppm. Iron deficiency appeared to delay bone growth.

Adequate iron intake may be one factor in achieving peak bone mass

INTRODUCTIO

Bones are in a state of continual renewal consisting of resorption and

formation (8). Osteoclasts resorb old, damaged and under used bone, and osteoblasts

replace the damaged bone and form new bone. From infancy up to the age of 30, bone

formation dominates, resulting in accumulation of bone mass (14). It is bel ieved that the

degree of attainment of peak bone mass during adolescence is the determinant of

osteoporotic fracture later in life, and may delay the onset of osteoporosis (14).

Osteoporosis is a chronic debilitating disease de.fined as skeletal fragility signified by a

loss in bone mass and a deterioration in the microarchitectural tissue of the bone (8). It

was estimated that over 28 million Americans were affected by osteoporosis equaling 1.5

million fractures and totaling $138 billion in 1995 (18). With an increase in the elderly

population it is predicted that this cost will also increase to $240 billion by the year 2040

(4). Achievement of peak bone mass is a result of normal growth but is influenced by

many factors that are often interrelated. Many studies have demonstrated the importance

that calcium and vitamin 0 have on bone growth, but other minerals such as iron. copper
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and magnesium in addition to calcium and vitamin D have been demonstrated to

influence bone growth. (1, 10, 16).

Iron is an important component in the hydroxylation of collagen matrix, the

connective tissue foundation of bone (19) upon which insoluble mineral salts of

hydroxyapatite are deposited (13) allowing the structure of bone to provide support to the

body. Dietary iron intakes, both deficiencies and excesses, have increasingly become a

world wide problem. Results from the Total Diet Study indicate that adolescents met less

than 80% of the recommended dietary allowance (RDA) for iron (20). Currently, health

awareness has popularized the use of nutritional supplements (6). It was estimated from

the 1987 and 1992 National Health Interview survey that approximately 24% of the

population used supplements (24). Nationwide food fortification policies are also seen as

an answer to nutritional deficiencies and contribute to excess intakes (7). Toxic factors

need to be considered when consuming supplements and fortified foods.

Osteoporosis is a chronic disease associated with many economical and human

costs. To be able to prevent this disease, it is necessary to include all factors into a

comprehensive approach. Diet has been demonstrated as one of the many factors

influencing peak bone mass. Iron is necessary for the hydroxylation of collagen matrix

(19) and is also the most common micronutrient deficiency (26). In an attempt to correct

the problems of both osteoporosis and undesirable iron intakes, a common link may be

found. The purpose of this project was to investigate the effect of iron in bone

metabolism, attainment of bone density and on strength during growth.
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MATERIALS AND METHODS

Forty weanling female Sprague Dawley rats at 21 days of age (Sasco, Kingston.

NY.) were randomized into four levels of dietary iron as iron citrate; calculated iron

concentrations were control (35 ppm), two iron deficient levels (6 ppm and 12 ppm). and

iron excess (1 SO ppm). All other minerals were at AIN-93 (21) recommendations

including the potentially beneficial mineral elements. The rats were fed the iron modified

AIN-93 G for 7 weeks and then switched to the respective mineral concentration AIN-

93M diets for the remainder of the experiment (eight weeks) Animals and remaining

diet were weighed twice a week. In order to match animal weights, diet fed was based on

feed consumption of animals that gained the least weight Deionized water ad libitum

was provided to ensure adequate hydration

Necropsy

At IS weeks of treatment the rats were fasted with access to deionized water in

plastic metabolic cages for 12 hours for urine and fecal collections Animals were

anesthetized with ketamine/xylazine (SO and 2.5 mg/kg of body weights, respectively).

Bone mineral density, bone mineral content, percent lean tissue, and percent body fat

were detennined by DXA (Hologic QDR 4500 A, Waltham, MA). Animals were

exsanguinated via abdominal aorta puncture. The tissues were then perfused with cold

saline (9 gIL) before collection. Bones were cleaned of adhering flesh and stored

appropriately for the specific analysis. The left femur was frozen in plastic tissue bags at

-20°C. The spine was frozen whole in a 50 mL centrifuge tube at -20°C. Later the spine
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was cleaned to separate lumbar 3,4, and 5 vertebrae and placed into individual plastic

tissue bags and refrozen at -20°C.

Analyses

Nutritional Indicators: Albumin, glucose., serum urea nitrogen, alkaline

phosphatase, calcium, magnesium, and phosphorus were measured in serum for overall

nutritional indicators. The presence or absence ofhepatic damage was measured by the

enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). All

analyses were performed on the COBAS Fara II clinical analyzer using appropriate

reagents from Roche Diagnostics (Roche Diagnostic Systems, Indianapolis, IN)

Hematological parameters included leukocyte counts, red blood cells.

reticulocytes, and hemoglobin to assess iron status. All variables were measured on an

automated hematology instrument (ABX Pentra 120 retic, Irvine, CA).

Bone and bone metabolism analyses: Bone density and total area were analyzed

for whole body, left femur and L3 vertebrae by DXA and/or Archimedes' principle.

Fracture force was determined by an Instron Universal Testing Machine (Model TM-S,

Instron Corporation, Canton, MA) using the left femur. Second moment of area,

cortical area, medullary area and fracture stress were calculated. Alkaline phosphatase

(ALP) extracted from the L3 vertebrae and serum insulin-like growth factor (IGF-I) were

analyzed for bone metabolism. IGF-I was measured using a RIA kit (Nichols lnstitute

Diagnostics, San Juan Capistrano, CA) following extraction using the formic acid-

acetone extraction procedure from Kalu et al (11). Alkaline phosphatase was extracted

from L3 vertebrae following a modified method from Farley et al (6) The L3 vertebrae
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were incubated with 3 ml of phosphate buffered saline with 0.02% sodium azide for 12

hours at 40 C to remove contaminants. The L3 vertebrae were then crushed and

transferred into another tube containing 3 ml of 0.01% triton-X 100 with 0.02% sodium

azide in Type I water and incubated for 72 hours at 40 C for extraction of ALP. The

supernatant was tested for ALP using the COSAS Fara II clinical analyzer and reagents

from Roche Diagnostic

Urinary deoxypyridinoline crosslinks (Dpd) and hydroxyproline, bone excretion

products, were also analyzed along with urinary minerals. Dpd was measured using a

competitve ELISA method (Metra Biosystems, Montain View, CA). Hydroxyproline

was determined following the method by Bergman et aI (2). Urinary minerals were

analyzed on the FARA II clinical analyzer using Roche Diagnostics reagents and controls

from Sigma Chemical Co and BioRad.

Data were analyzed using PC SAS (version 7.0, SAS Institute, Cary, NC). The

data from this completely random design were analyzed using the generalized linear

model (GLM) procedure in SAS to analyze for effects of dietary iron on bone and

growth. Difference of means was tested by LS means testing.

RESULTS

Nutritional Indicators. Weight gain was similar (p> 0.05) in all diet groups

(Figure I). The 6 ppm diet group was significantly (p< 0.001) lower than all other diet

groups in hemoglobin and in red blood cell count (Table 3). The 6 ppm diet group had

significantly (p< 0.0 I) higher reticulocyte counts than all other diets. All red cell

indicators confirm iron inadequacy. ALT was significantly (p< 0.05) higher in b ppm
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than 12 ppm and 150 ppm diet groups (Table 3). AST was significantly (p< 0.05) higher

in 6 ppm than 35 ppm and 150 ppm diet groups. Alkaline phosphatase activity, an

enzyme involved in bone metabolism, was significantly (p< 0.05) greater in the 6 ppm

diet compared to the 35 ppm control diet. There were no significant (p> 0.05) differences

observed either in the remaining serum nutritional indicators or in urinary mineral

excretion.

Bone and Bone Metabolism. Whole body BMC was significantly (p< 0.05) lower

in 6 ppm than 150 ppm diet groups (Table 4). Whole body BMD was significantly (p<

0.05) lower in 6 ppm than 12 ppm and 150 ppm. Whole body BMC and BMD in the 35

ppm diet was not significantly different from the 6 ppm and 150 ppm diet groups. There

were no significant differences in other body composition measures (percent lean tissue.

and percent body fat) measured by DXA among any of the groups (data not shown)

BMC of femur was significantly (p< 0.05) lower in the 6 ppm than in all other diet

groups, and the 12 ppm diet was significantly (p< 0.05) lower than ISO ppm diet. BMD

of femu r was signifi cantly (p< 0.01) lower in the 6 ppm than in the 35 ppm and ISO ppm

diet groups, and the 12 ppm diet group was significantly (p< 0.05) lower than the 1SO

ppm diet group. The significant differences seen in BMD and BMC offemur measured

by DXA were not verified by density by displacement (Table 4). There was no

significant difference found in density when femur was measured by Archimedes'

principle. Using Archimedes' principle. the density of L3 vertebrae was significantly (p<

0.01) lower in 6 ppm than 35 ppm and 150 ppm, and significantly (p< 0.05) lower in 12

ppm than 150 ppm. These indicators suggest that iron defici ency during growth affects

the attainment of maximal density
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Bone growth and fracture strength differed among diet groups, While there were

no significant differences in femur length or medullary area, femur area was significantly

(p<O,OI) lower in 6 ppm than 150 ppm Cortical area was significantly (p< 0,05) lower

in 6 ppm than all other diet groups. Second moment of area was significantly (p< 0,05)

lower in 6 ppm than in 35 ppm and 150 ppm. The 6 ppm diet was lower but not

significant than all other diet groups in fracture force. Fracture stress was higher in 6

ppm diet than all other diet groups; however, this difference was not significant (Table 4)

Bone metabolism indicators are included in Table 5. IGF-I was significantly

(p< 0.05) higher in 6 ppm than all other diets. ALP extracted from L3 vertebrae was

higher but not significantly in 6 ppm and 12 ppm than 35 ppm and ISO ppm. There were

no significant differences between diets for urinary crosslinks excretion or

hydroxyproline,

DISCUSSION

We were successful in inducing iron deficiency in the 6 ppm diet as indicated bv

hemoglobin. red blood cell count and reticulocyte counts. The higher concentrations in

ALT and AST in 6 ppm diet were also similarly seen in a study by Rodriguez-Matas et al

(23), Significantly higher levels of AST, but not ALT, were seen in their iron deficient

rats from ten to 30 days after an iron deficient diet. The reason for the increase in AST in

iron deficient rats is unknown. The higher concentrations of AST and ALT in our study

indicates that iron deficiency influences liver function

Whole body and femur BMD and RMC as shown by DXA scans in 6 ppm diets

were significantly lower than in 150 ppm diets, which was not different than the control

.
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diet This agrees with the finding from Angus et al (1) who demonstrated iron intakes

were positively correlated with forearm BMC in postmeopausal women. The lower BMD

and BMC did not result in weaker bones as shown by fracture force, but the three point

bending test is not a sensitive test because it assesses cortical bone as well as trabecular

bone (9, 10). In our study, there was no significant difference in fracture force between

the diet groups. Medeiros et al (16) found a decrease in femur strength in iron deficient

rats. Our results in mechanical strength were not in agreement with this study. Several

reasons may be attributed to our findings. Currey (5) suggested that using a higher speed

to account for the limiting factor of bone deformation was more sensitive. Medeiros et al

(16) used a rate at 200 mm/min in comparison to the rate of 1 mm/min used in this study.

However, Medeiros et al (16) prepared bones for fracture by first drying at 3'JOC to

constant weight before breaking strength was determined. Drying has been known to

decrease toughness and increase brittleness (25). Thus, the bones of iron deficient rats in

Medeiros et al (16) study may have been more brittle than control rats.

In our rats total area, second moment of area and cortical area were significantly

lower in 6 ppm diet than in the 35 and 150 ppm diet groups, showing a similar pattern as

DXA measurements. When fracture force is adjusted to account for bone gemetry it is

referred to as fracture stress (12). Others (12,9) have reported that geometric distribution

of bone influences fracture force; however, when adjustments were made for geometry of

the bone significant differences was seen in fracture stress When we adjusted for

differences in the geometric distribution of bone in our results, fracture stress was not

significant, in fact fracture stress was higher in 6 ppm than all other diet groups. Kiebzak

et al (12) saw no significant difference in fracture force in rats between the ages of six
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and 24 months; however, when adjusting for geometry of bone, fracture stress was

significantly lower in the 24 month old rats than in the six month old rats. Hogan et al (9)

found fracture force was significantly higher in ovariectomized rats than in sham

operated rats, but when adjusting for cross-sectional area the ovariectomized rats were

lower but not significant than sham operated rats. Even though the 150 ppm diet is

significantly higher than 6 ppm diet in total area. second moment of area and cortical

area, the integrity and quality of the bone may be diminished. Matkovic et al (15)

reported that bones compensate for a decrease in trabecular volume by increasing bone

mass from periosteal expansion and maintenance. Kiebzak et al (12) stated that

adjustment in architecture of bone was an attempt to maintain strength. Therefore, a bone

that has lost it's integrity may appear strong due to adjustment in increasing cross-section

area, total area, cortical area and medullary area

There were no differences seen in the bone resorption indicators urinary Dpd

crosslinks and hydroxyproline. In growing animals these metabolites should be low due

to bone formation, which dominates over bone resorption during this age.

Mora et al (17) studied children and found that high levels ofIGF-I did not result

in an increase in bone mineral density; however, the length, cross-sectional area and

cortical area of the femur was greater. Our results were inconsistent with Mora et al (17)

findings. The 6 ppm diet group had IGF-l levels significantly higher than all other diet

groups; however. cross-sectional area and cortical area were significantly higher in 35

and 150 ppm diet group and all diet groups, respectively than in the 6 ppm group. IGF-I

enhances the synthesis of collagen and proteoglycans, which also has positive effects on

the homeostasis of calcium., magnesium and potassium (3). The increased levels of IGF-J
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in the 6 ppm diet may be in an attempt to overcome lower BMC, BMD, and smaller bone

geometry.

Serum alkaline phosphatase activity was significantly higher in 6 ppm than 35

ppm suggesting increased bone formation in the 6 ppm group. Risteli and Risteli (22)

stated that alkaline phosphatase expression started once cessation of cell proliferation

occurred, reached a maximum during matrix maturation, and decreased as the rate of

matrix mineralization declined. Higher serum ALP and IGF-I in the 6 ppm group

indicates that the bone matrix may still be maturing in an attempt to increase bone while

the 35 ppm diet may have approached matrix maturation. Similar but not significant

results were found when alkaline phosphatase was extracted from L3 vertebra. IGF-I

levels agree with serum alkaline phosphatase as the iron deficient diet is higher than in

the control. Perhaps the higher values in the 6 ppm diet is leading to catch up growth

In summary, dietary iron played a role in bone metabolism during growth. The

two indicators of bone formation measured, IGF-I and alkaline phosphatase, indicated

that there was an increase in bone metabolism in the iron deficient rats. Perhaps this was

an attempt to overcome the slower growth that was apparent by a lower BMD, BMC and

bone measurements in the 6 ppm diet group. The lack of difference found in

measurements of biomechanical strength indicated that iron deficiency or iron excess did

not impede strength as measured by three point bending. Even though J50 ppm diet was

significantly higher in BMD, BMC and bone measurements than 6 ppm diet they

appeared to be weaker, but not significantly, when fracture force was adjusted for cross-

sectional area and geometry of bone. The length of this study may have been too short

for the impact of iron deficiency and excess to be definitive A study examining all
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stages of life in the rat could be conducted to determine if the higher levels in the 6 ppm

diet for IGF-I could lead to catch up growth increasing the BMC, BMD and bone

measurements. Iron deficiency appeared to delay bone growth. Adequate iron intake

may be one factor in achieving peak bone mass.
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Figure 1. Initial and Final Weights of Young Mature Female Rats

1a. Initial Weights *
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Table 3 Effects of Dietary Iron on Indicators of Nutritional Adequacy, Biochemical
Measurements and Hemotology in Young Mature Rats 1.2.3

80

Indicators of Nutritional 6 ppm 12 ppm 35 ppm 150 ppm
Status

Serum Albumin (gIL) 37±1 3S±1 38±1 37±1
Serum Glucose (mmolfL) 1O.0±1.6 9.S±28 13A±1.7 10.S±2.5
Serum Urea Nitrogen O.5 3±O.O O.7b±O I O.6a

•
b±0.O 06a

.
h±O.1

(mmoVL)
Serum Alkaline Phosphatase l.i±O.l lO1.2±O.l 0.a1±O.1 0.91.2±0.1

(uKatfL)
Serum Calcium (mmol/L) 9.2S±0.76 8.98±0.80 8.10±O.820 8.90±O 74
Serum Magnesium 1.00±O.24 1.02±0.22 0.89±0.22 O.92±O.24

(mmoIlL)
Serum Phosphorus 6.69±O.70 6.64±0.70 6.1S±0.70 6.15±O.75

(mmoIlL)
Alanine Aminotransferase O.41 1±O.O2 O.332±O.O2 037 1±0.O2 0302±0.O2

(uKatfL)
Aspartate Aminotransferase l.SS'±O.ll 1.341.1±O.11 1.142±() 1] I.072±O II

(uKatfL)
Urinary Calcium O.12±O.O2 O.11±O.O2 0.11±O.O2 O.11±0.02
(llmollllmol creatinine)
Urinary Magnesium o 23±003 031±O.O3 O.26±OO3 O.28±0.04

(llmollllmol creatinine) :-
Urinary Phosphorus O.17±O02 O.I9±O.02 O.14±OO2 0.14±0.O2

(llmollllmol creatinine)
~

Leukocyte counts (103/mm3) 2.75±0.66 243±O.66 273±069 3.22±0.57
Red Blood Cells (lOo/mm3) 8Qi± 0.24 7.51 2±O.26 70S2±027 7.322±022
Reticulocytes (1 06/mm3) 4AS 1±OA2 2.572±0.56 2022±0.52 2642±OAO
Hemoglobin gIL 11.19 1±0.33 13.732±O.36 14.062±0.38 14592±0.31

1LS Means ± SE
2 Variables in rows with different numerals are significantly (P< OOS) different
3 Variables in rows with different characters approach significance (p=O.0568)
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Table 4 Effects of Dietary Iron on Properties of Whole Body, Femur and L3 Vertebrae1.2

Property 6 ppm 12 ppm 35 ppm 150 ppm

Whole Body
BMC (grams) 7.73 1±O.19 7.9i±O.18 8.091.~±O.19 8AO~±.J 18
BMD (glem2

) o 1481±O.OO2 O.154:±O.OO2 O.1531.~±O.OO2 O.158:±O.O02
Femur

BMC (grams) O.33 I ±O.OI O.36~±O.OI O.37:·~±O.O I o 39J ±O.OI
BMD (glem2

) O.21i±O.OO4 0.220 I '"±O.OO4 O.227~·3±{).OO4 O.233·'iO.OO4
Density by Displacement

(glem3
) 1.4832±O.04166 1.4672±O.04166 14794±O.04166 1.4791±.D.(4166

Femur Length (ern) J.51±O.02 3.52±O.O2 3.51±<UI2 3.58±O.O2
Total Area (em2

) 1.5i±O.03 I 65 1
•
2±OOJ 163 1

•
21{)03 1.6~±O.OJ

Second Moment of Area
(em:) 3.86 I ±O.23 4.481.:±O.2J 4.60"±O.23 4.1)3~iO.2J

Cortical Area (mm2
) 5.501±O.19 6.20:±O.19 6.11:±O.19 6.24:±O.1 C)

Medullary Area (mm~) 240±O.15 2.J5±O.15 2.48iO.15 2.65iO.15
Fracture Force (mm/min) 941±O.46 1O.36±OA6 9.88±OA8 10 75±O.4()
Fraeture Stress

(kgfl ern:) 3.17±O. I I 3.08±<U 1 2.97±O.12 1.08±{).12
L3 Vertebrae

Density by Displacement
(gjem) 1.2521 1±O.OO9 127J41.2±O.OO'J U925",3±O.OO9 l. 3064'±<>.o09

I LS Means ± SE
2 Variables in rows with different numerals are significantly (p 0.05) different

.-



Table 5 Effects of Dietary Iron on Biochemical Markers of Bone Formation and
. 12ResorptIOn .

Biochemical Marker 6 ppm 12 ppm 35 ppm 150 ppm

lnsulin-like Growth Factor
(IGF-l) (nglmL) 652.101±37.58 505.40:±39.67 537.62:±37.58 538.02~±3967

Alkaline Phosphatase
extracted from L3
vertebrae (uKat/g bone)

17. 77±3.22 22.72±3.22 13.80±3.22 16.66±3.22

Urinary Deoxypyridinoline
Crosslinks
(mmol/L/12 hours)

2.50±0.33 2.57±O.33 2.57±O3) 2.25±O.33

Hydroxyproline
(mmollL!l2 hours) O.20±0.O3 O.19±O.O3 o 16±O.m O.17±O.O3

1 LS Means ± SE
2 Variables in rows with different numerals are significantly (p<O.OS) different
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CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

Forty weanling female Sprague Dawley rats were randomized into four levels of

dietary iron as iron citrate; control (AIN-93), two iron deficiency levels (calculated at 6

ppm and 12 ppm), and iron excess (calculated at 150 ppm). At 18 weeks of age the rats

were fasted for 12 hours, anesthetized. DXA scanned, and exsanguinated via abdominal

aorta puncture. Blood, urine, tissues, the femurs, tibias and the spine were collected for

analyses.

Whole body BMC was significantly (p< 0.05) lower in 6 and 12 ppm than 150

ppm. Whole body bone mineral density was significantly (p< 0.05) lower in 6 ppm than

12 and 150 ppm. Femur BMC was significantly (p< 0.05) lower in the 6 ppm than all

other diet groups, and the 12 ppm diet was significantly (p< 0.05) lower than 150 ppm

diet. BMD oftemur was significantly (p< 0.01) lower in the 6 ppm than in the 35 and

150 ppm diet groups, and the 12 ppm diet group was significantly (p< 0.05) lower than

the 150 ppm diet group. There was no significant difference in fracture force in rat

femur Serum alkaline phosphatase, an enzyme involved in bone metabolism, was

significantly (p< 0.05) higher in the 6 ppm diet compared to the 35 ppm control diet.

Alkaline phosphatase extracted from L3 vertebrae tended to be higher but not signi ft cant

in 6 and 12 ppm than 35 and 150 ppm. Insulin-like growth factor was significantly

(p< 005) higher in 6 ppm than all other diets. There was no significant differences

between diets for urinary crosslinks excretion or hydroxyproline.



Results of Hypothesis Testing

The following hypotheses were developed for this study:

1. There will be no statistically significant effect of dietary iron on bone density.

Hypothesis #1 was rejected because DXA scans showed significantly lower

whole body bone mineral density (p< 005) and bone mineral content (p< 0.05)

in 6 ppm than 150 ppm diet group as well as significant differences in the low iron diets,

6 ppm and 12 pp~ compared to 35 and 150 ppm for bone mineral density (p< 005)

and bone mineral content (p< 005) in rat femur. Using Archimedes' principle. the

density ofL3 vertebrae was significantly (p< 001) lower in 6 ppm than 35 and 150

ppm, and Iess in 12 ppm than 150 ppm.

2. There will be no statistically significant effect of dietary iron on bone strength.

Hypothesis #2 failed to reject because there was no significant difference in

fi-acture force in rat femur between levels of dietary iron; however, 6ppm diet was lower

than 150 ppm. Cortical area was significantly (p< 0.05) lower in 6 ppm than all other

diet groups. Second moment of area was significantly (p< 0.05) lower in 6 ppm than

in 150 ppm. After adjusting for cross-sectional area (second moment of area) and

geometry of bone, fracture stress was higher, but still not significant in the 6ppm diet

than the 150 ppm diet.

3 There will be no statistically significant effect of dietary iron on alkaline

phosphatase extracted from bone.

Hypothesis #3 failed to reject because there was no significant difference in

alkaline phosphatase extracted from L3 vertebrae among dietary iron groups The £) ppm

diet was significantly (p< 005) higher than 35 ppm in the serum alkaline phosphatase,

:.
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while alkaline phosphatase extracted from bone was higher in the 6 and 12 ppm groups

the difference was not significant from 35 and 150 ppm.

4. There will be no statistically significant effect of dietary iron on insulin-like

growth factor-I (IGF-I)

Hypothesis #4 was rejected because IGF-I was significantly (p< 0.05) higher in 6

ppm than all other diets indicating increased bone metabolism in

the 6 ppm diet.

s. There will be no statistically significant effect of dietary iron on urinary

deoxypyridinoline crosslinks

Hypothesis #5 failed to reject because there was no significant effect of dietary

iron on urinary deoxypyridinoline crosslinks. In young mature animals this metabolite

should be low due to bone formation, which dominates over bone resorption during this

age.

6. There will be no statistically significant effect of dietary iron on urinary

hydroxyproline

Hypothesis #6 failed to reject because there was no significant effect of dietary

iron on urinary hydroxyproline. In young mature animals this metabolite should be

low due to bone formation, which dominates over bone resorption during this age.

Conclusions

In this experiment dietary iron played a role in bone metabolism during the

growth phase. The two indicators of bone formation measured, IGF-I and alkaline

phosphatase, indicated that there was an increase in bone metabolism in the iron deficient

:.
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rats. Perhaps this was in an attempt to overcome lower BMD, BMC and bone

measurements (total area. second moment ofarea and cortical area) which were higher in

the 35 and/or 150 ppm groups. The two indicators of bone resorption measured, urinary

deoxypyridinoline crosslinks and hydroxyproline were not significantly different among

diet groups. This was expected because bone fonnation exceeds resorption during this

age of the animals Bone metabolism appears to be greater in the 6 ppm diet than in the

150 ppm diet.

Bone mineral content and BMD measured in whole body using DXA revealed the

6 ppm diet group was significantly lower than the ISO ppm diet. which was not different

than the control. Bone mineral content and BMD measured in the femur using DXA

revealed the 6 ppm diet group was significantly lower than 35 and 150 ppm diet. Density

by displacement in the L3 vertebrae also revealed the 6 ppm diet group was significantly

lower than the 35 and 150 ppm. Total area, cortical area and second moment of area all

reveal the 6 ppm diet to be significantly lower than the ISO ppm diet. Bone metabolism

in the 6 ppm is higher than the J50 ppm diet as indicated by IGF-l and alkaline

phosphatase. The higher bone metabolism and the lower BMC, BMC and bone

measurements suggest that iron deficiency delays bone growth. If IGF-I and alkaline

phosphatase levels continued to be elevated perhaps catch up growth might occur.

Fracture force was not significant among diet groups but there was a tendency for

fracture force to increase as dietary iron increased This supports the significant findings

in higher BMC, BMD. and bone measurements in the J50 ppm diet. Once fracture force

was adjusted for cross-sectional area and geometry of bone, the opposite occurred.

Fracture stress was greater but not significantly in the 6 ppm diet than all other diets
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Even though BMC, BMD and bone measurements were greater in the 150 ppm the

quality and integrity of the bone may be poor. Histomorphometric analysis would reveal

if there is a reduction in trabecular volume. When there is a decrease in trabecular

volume the bone will compensate by increasing in cross-sectional area, total area, cortical

area and medullary area. These results suggest that the 1SO ppm diet may have

compensated by increasing the architecture of the bone in an attempt to maintain strength.

In conclusion, iron deficiency affects bone density, mineral content and geometry

Adequate iron intake is one factor in achieving peak bone mass during adolescence. This

study has found a common link between bone development and undesirable iron intakes

Recommendations

The following recommendations for future research were developed from

this study.

1) Experiments similar to the present experiment should be conducted directly

measuring the iron dependent enzymes prolyl and Iysyl hydroxylase necessary for

hydroxylation of the matrix.

2) Long tenn studies are needed to evaluate whether results seen in bone density will

reflect on bone strength over a longer period oftime.
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Your protocol, #709, entitled "Effects of Iron on Bone in Growing and in Mature Rats", has been
approved for 108 rats by the Institutional Animal Care and Use Committee. The protocol is
approved through January 31, 200 I

A modification must be submitted to the committee for approval prior to any changes in the
protocol.

Institutional Assurance number A3722-0 I
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I·,
, .
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DATE:

TO

FROM:

SUBJECT:

August 21, 1998

Dr. Andrea Arquitt
Nutritional Sciences

Dr. Archie Clutte~
IACUC Chairman

Modification Approval

The modification to protocol, #709, entitled "Effects of Iron on Bone In Growing and in Mature
Rats", for addition of 12 rats has been approved by the Institutional Animal Care and Use
Committee,
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Appendix B

Method for Alkaline Phosphatase Extracted from Bone

The determination of alkaline phosphatase extracted from bone i measured by a

modified method from Farley et at (1992).

• The lumbar vertebra was removed from _20° C freezer and placed in tube for

extraction with 3 ml of phosphate buffered saline with 0.02% sodium azide at

a pH of7.2 and incubated for 12 hours at 4° C to remove contaminants

• The bones were then placed in Type I water and a dessicator with vacuum for

one hour.

• Wet weight and air weight were measured using a Density Determination Kit

Mettler ME-33340 (r...1ettler Instruments, Grelfensee, Switzerland) and density

by displacement was calculated using Archimedes' principle.

• Using a mallet the vertebrae were crushed.

• Vertebrae were weighed in preweighed acid washed tubes to express alkaline

phosphatase per gram of crushed bone.

• 3 ml of 0.01 % triton-X 100 with 0.02% sodium azide in Type I water was

added to the tube containing the crushed vertebrae and incubated for 72 hours

extraction at 4° C.

• The tubes were centrifuged for 15 minutes at 1500xg and then decanted.

• The supernate was tested for alkaline phosphatase using the COBAS Fara II

clinical analyzer and reagents from Roche Diagnostic (Roche Diagnostic

Systems, Indianapolis, IN)
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The analysis of alkaline phosphatase is detennined as orthophosphate monoesters

are hydrolyzed by alkaline phosphatases into inorganic phosphate and alcohol (Tietz.

1983) Some alkaline phosphatases can form a new ester by transferring a phosphate

from the substrate to an alcohol. This is accomplished at a faster rate than the rate of

hydrolyzing the substrate. The Roche reagent for alklaline phosphatase uses 4-nitro­

phenylphospate as the orthophospate monoester and the phosphate acceptor and buffer is

2-amino-2-methyl-I,3-propanediol. The 4-nitrophenoxide ion has a strong absorbance at

~05nm and is proportional to the enzyme activity.
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Appendix C

Determination of Hydroxyproline

The determination of hydroxyproline in the urine is measured by a method from

Bergman et al (1970).

• Mix 1.0 mL of urine and 10 mL of 12 N hydrochloric acid in marked polypropylene

tubes.

• The tubes are placed in an oven overnight (at least 16 hours) at 100-105° C.

• Let the tubes cool down to about 400C before adding one drop of phenolphthalein

solution ( I%phonolphthalein - 0.1 g in 10 ml alcohol) and solid lithium hydroxide

slowly to each sample until phenolphthalein turns pink

• Vortex until solids are in solution.

• Hydrochloric acid is added until the solution is clear again.

• Distilled water is added to the solution to make 10m l.

All samples can be prepared up to this point The following steps were completed on

40 samples at a time due to the lengthy duration of procedures

• Centrifuge for 10 minutes at 1500xg

• Six tests tubes are marked as a, b (for duplicate samples), I, 2, 3 (for standards), and

B (for blank)

• Transfer 250~1 of the neutralized hydrolysate into the six test tubes

• In the blank tube 250~1 of distilled water is added

• Add 0.5 ml isopropanol to tubes labed a, b, and B



• Standard solutions are prepared by O.IOOg of hydroxyproline diluted to 100 ml

distilled water. Then the standard is diluted to different concentrations:

Standard 1- 0.5 IJglm1 (50 IJI of stock diluted to 100 ml with isopropanol)

Standard 11- 1.0 IJglml (loa IJI of stock diluted to 100 ml with isopropanol)

Standard III - 2.5 IJglml (250 IJI of stock diluted to 100 ml with isopropanol)

• Add 0.5 ml of standard I to the tube labeled I, 0.5 ml standard 11 to the tube labeled 2,

and 0.5 ml standard III to the tube labeled 3

• The oxidant is made with one part of 7% aqueous chloramine-T and four parts of

buffer. The 7% aqueous choramine-T is made fresh daily. It consists of 0.7 g

chloramine-T added with distilled water to make a 10 ml solution. The buffer

consists of 57 g of sodium acetate, 37 5 g of trisodium citrate, 5.5 g of citric acid and

385 ml of isopropanol. Distilled water is added to make 1 liter of buffer. Add 0.25

ml of oxidant solution to all tubes except the blank tube. Each tube is vortex for 3

seconds, then wait for 4 minutes before adding Ehrlich's reagent

• Ehrlich's reagent is prepared by dissolving 17 6 g of p-dimethylamino-benzaldehyde

in 40.8 g of 60% perchloric acid and adding isopropanol to make up 100 ml This is

made just before use. Add 0.5 ml Ehrlich's reagent to all tubes

• Then add 0.25 ml oxidant solution to the blank and vortex all tubes for 10 seconds.

• The tubes are then placed in a 600
( water hath for 21 minutes. Incubate the tubes for

one hour at room temperature and then vortex each tube for 5 seconds

• The spectrophotometer (Beckman DU 640, Fullerton, CA) is warmed up 15 minutes

before the end of the hour and set at 562 nm to read the absorbance of all tubes. Thi s
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i.s accomplished by reading one at a time. This method relies on the formation of

pyrrole upon oxidation of hydroxyproline (Prockop and Undenfriend, 1960) Pyrrole

forms a chromophore with the p-dimethylarninobenzaldehyde in the Ehrlich's

reagent
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