
BUILDrNG AN EXPERT SYSTEM

BY INTEGRATING CLIPS WITH VISUAL BASIC

By

YUNHUI LU

Bachelor of Science

Shanghai Post and Telecommunications College

Shanghai, China

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIE CE
July, 2000

Oklahoma State Univer ity Library

BUILDING AN EXPERT SYSTEM

BY INTEGRATING CLIPS WITH VIS AL BASIC

Thesis Approved:

/ Thesis Adviser

II

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor Dr. Jacques LaFrance

for his counsel, encouragement, trust and friendship throughout my graduate program.

Also, my sincere appreciation is extended to the other committee members Dr. John

P. Chandler and Dr. Jane Terry Nutter, whose constructive guidance, instruction, and

friendship are also invaluable. Completion of this thesis would not have been possible

without their diligent supervision.

I would also like to give my special appreciation to my parents, sister and brother-in

law, for their loving encouragement, support and understanding while working on my

master degree. This endeavor would not have been possible without their love and belief

in my abilities.

Moreover, I wish to express my sincere gratitude to those friends who provided

assistance and encouragement for this study, especially to my classmate Xiao Zhen Wang

for his precious suggestions, Their friendship made the ending of this study go so

smouthly.

Finally, I would like to thank the Department of Computer Science for providing me

the opportunity and knowledge during these three years of graduate study.

III

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

Background...... 1
Intent of Study.. 2
Project Phases.. 4

II. LITERATURE REVIEW 6

Development of Expert Systems... 6
CLIPS... 8
Features of VB Interface 10
Dynamic Link Library... 12

III. DESIGN AND IMPLEMENTATION 13

Program Design 13
Implementation of the GUI 14
Embedded CLIPS within VBS by DLL 17
Facilities of VB GUI 20
Implementation of the Rule-based Expert System " .. . 23
Implementation of the Inference Engine.. 2S
Design of Facts and Templates.. 27
Formulation of Rules. 28
Database Supplement. 33

IV. SUMMARY AND CONCLUSIONS 3S

BIBLIOGRAPHy.... ~7

APPENDIX 39

iv

Figure

TABLE OF FIGURES

Page

1. Overview of Core Components of the Expert System 3

2. Basic Concept of An Expert System Function 7

3. Food Guide Pyramid ~

4. The Interface of the Expert System in CLIPS Shell 10

5. The Main Application Window 14

6. A List of Attributes and Methods with VB5 15

7. Attributes and Methods of Personalinfo Object 15

8. The Interface for the User to Input Actual Daily Intake 19

9. The Interface of the CLIPS Expert System Embedded into YB5 L9

10. Structure of a Rule-based Expert System 25

11. Nutrition Decision Tree with Multiple Branches 26

12. Rules in Agenda with CLIPS 29

13. Watch Rules and Facts with CLIPS 32

14. Comparison of the Result of Food Servings that the User Provided 34

v

CHAPTER I

Introduction

Background

As a branch of Artificial Intelligence, expert systems are computer systems that

emulate the decision-making ability of human experts. They have been used as "expert

consultants" to solve real world problems which normally would require a specialized

human expert but stem from the shortage of human experts. In addition, expert. systems

have played an important role in distance education, and to provide expert knowledge

readily when and where users need it. Hence, experts will no longer just provide their

services in a face-to-face way, but distribute their expert knowledge through the

application of expert systems.

Expert systems are developed to improve users' ease in accessing the expert

information without experts present. They imitate the interaction between experts and

users so as to identify the requirement of users and the solution of the problems.

Originally, users could only interact with the program by using on-line commands to

communicate wi.th the knowledge base in a standard expert system environment. These

expert system programs could often be well accessed by human experts, but it may be not

easy for the less-trained users to access or use these programs. In today's environment,

with a great variety of computer systems and different operating systems in use, data

sharing between computer systems becomes more difficult and costly. How can expert

systems help to distribute expertise infonnation to various novice users, to allow them to

interact with the knowledge-based systems, and to access the required infonnation in an

easy way? In view of this, it is important to establish a link between some efficient

graphical user interfaces (QUI) and expert systems in order to support the novice users'

access to al1 expertise information without remembering the unfamiliar textual

commands.

Intent of study

The primary objective of this study is to develop an integrated application using an

embedded CLIPS rule-based expert system within a Visual Basic application using a

customized user interface application. This rule-based expert system has been developed

in a Windows environment by using CLIPS (C Language Integrated Production System).

It is developed with an example expert system of nutrition assessment for this thesis. The

expert system is executed by the inference engine that is built in the CLIPS system as a

statement interpreter. So nonnally, the CLIPS program should be run under the CLIPS

shel1 interface.

The VB application acts like a Windows environment application to enhance the

nutrition problem-solving and service-support functions ofthe example expert system.

The VB application is an even-dri ven program. It is created lIsing VB GUI technology to

2

achieve the interaction between the expert system and users. Recently, Visual Basic 5.0

has become a strong tool to develop a Gill for different Windows applications. It makes

the design of the Gill easy and efficient.

Rule-based
Expert System

Figure 1. Overview of Core Components of the Expert System

A block diagram (Fig. 1) illustrates the configuration of this application.

• The VB Gill is the users' view of the system. It allows the user to supply

answers for the expert system. This data is passed to the CUPS program

through the DLL message routing mechanism. The OUI also shows the result

of the reasoning session to the user.

• The CLIPS DLL allows information to be exchanged between the VB OUI

and the rule-based expert system.

• The CLIPS rule-based expert system contains a set of rules that implement the

"match" reasoning strategy to achieve the nutrition assessment.

• The Access database allows the user to access more nutrition information.

Therefore, it enhances the knowledge base and facilities of the expert system.

• The VB modules are used to call the CLIPS DLL functions and to connect

with the Access database.

3

Finally, all components are incorporated into a VB interface. Then users are able to

interact with the CLIPS inference engine in a Windows-based environment to obtain the

desired answers and conclusions. The major accomplishment of this study has been to

develop a visual user interface with the CLIPS rule-based expert system so as to make the

CLIPS program more efficient and user-friendly.

Project Phases

As mentioned before, the expert system in this study is comprised of three main

components, a rule-based expert system, an expert knowledge base and an efficient

graphical user interface. The process of developing this expert system is provided as

follows:

I. The development of the rule-based expert system employed an expert ystem

development shell CLIPS 6.10. The CLIPS 6.10 compiler with an editor is

595KB in size. Hence, the use of the CLIPS Shell to write expert systems would

generally reduce the cost and time of developing software for multiple-platform

use. It provides a complete environment consisting of an inference engine, a user

interface, an explanation system, and a knowledge base editor for the construction

of the rule-based system.

2. The design of an expert system graphical user interface for nutrition assessment

has been done by the Visual Basic development tool, VB5.0.

3. The design and set up of a nutrition information database is completed by using a

relational database tool Microsoft Access 7. It contains six entities namely grain,

4

vegetable, fruit, meat, fats and oil and milk. The entities possess certain attributes.

These attributes correspond to the fields in the table of the database.

4. The provision of four facilities of this expert system to users are: the interaction

between the expert system and users, the evaluation of personal daily intake, the

analysis of calories needed for individual, and the acquisition of nutrition

knowledge.

5. The testing of the usahility and consistency of the Gill has been done accordingly.

6. The integration and the testing of the sample expert system have been done.

5

I.

CHAPTER II

Literature Review

Development of Expert Systems

An expert system is a computer program. It is used as an Artificial Intelligence (AI)

tool to model and aid human decision making in a highly specialized problem domain.

The concept of an expert system was spawned in the early seventies [Waterman. 19861.

In the sixties, AI scientists tried to simulate the complicated process of thinking by

finding general methods for solving broad classes of problems. Despite some interesting

attempts, this strategy produced no breakthroughs in general-purpose programs. The

more classes of problems a single program could handle, the worse it seemed to do on

any i.ndividual problem. AI scientists decided that there must be another way to make a

computer program more efficient in AI fields. The conceptual breakthrough in achieving

that was made in the late seventies. The point was that AI programs should focus on some

special problem areas that usually require human expertise's knowledge. They should

also have lots of high-quality, specific knowledge about the special problem areas. This

evolution made the expert systems to a higher platform.

6

..

In a nonnal expert system environment, there are three basic elements, namely the user

interface, the inference engine, and the expert knowledge base. The user interface may

use menus, natural language or any other style of interactions. The inference engine is

used to draw conclusions with both the expert knowledge and data specific to the

particular problem being solved (See Fig. 2).

,-----------1
Facts : Knowledge-Base :

... 1______, _____ -'

User
... I

I

Expertise

, _____ .1 ___,__1
: Inference Engme :
1____________ -'

Figure 2. Basic Concept of An Expert System Function

Expert systems have been used to solve a wide range of problems in domains such as

medicine, mathematics, engineering, geology, computer science, business, law, defense

and education. Within each domain, they have been used to solve problems of different

types, such as disease diagnosis, chemical analysis, computer system design, geological

data interpretation, wine selection, and annored vehicle identification.

In recent years, many expert system applications have been developed in nutrition

assessment, consultation and education. According to the references for this study, most

of the expert system applications in the nutrition domain need a special knowledge base

for emulating expert functions. For the nutrition assessment, the basic dietary standard

such as Recommended Dietary allowances (RDA) is issued by the U.S. Federal

Government. Another standard is Dietary Recommendations, which is quite different

7

from the RDA. While RDA deals with specific nutrients, Dietary Recommendations

discuss specific foods and food groups that will help individuals meet the RDA. The most

recent set of U.S Dietary recommendations is referred to as the Food Guide Pyramid. (See

Fig. 3)

Milk Groups
2 servings a day

Grain Group
6 servings a day

Meat Groups
2 servings a day

Fruit Group
2 servings a day

Vegetable Group
3 servings a day

Figure 3. Food Guide Pyramid

CLIPS

CLIPS is a productive development and delivery expert system tool introduced by

NASA in 1985. CLIPS is written in C for speed and portability, and it uses a powerful

pattern matching process called the Rete Algorithm and a forward chaining rule-based

language. The algorithm does not iterate over the set of rules, it just processes the changes

and updates the elements associated with the patterns. Any compiler that supports the

standard Kernighan and Ritchie C language can be used to install CLIPS [Giarratano and

Riley. 1989]. The basic elements of a CLIPS program are:

• Fact-list: working memory for data

• Knowledge-base: contains all the rules

• Inference engine: controls overall execution

Facts are the first component of a CLIPS program. Facts are the information needed

for the decision making process. They are made up of fields that are either a word, string,

or number. The first field of a fact is normally used to indicate the type of information

stored in the fact, and is called a relation. If some facts are asserted in the fact-list, the

inference engine will search the fact-list to match the rules. Then the actions of the rule

will be executed and new facts will be provided for next process.

Rules are the second component of a CLIPS system. A rule is divided into the left hand

side (LHS) and the right hand side (RHS). The LHS in a rule can be thought of as the IF

portion, it contains some matching patterns. The RHS can be thought of as the THEN

portion. It contains some actions. A rule can have multiple patterns and actions.

The third component of CLIPS is the inference engine that applies the rules. In an

inference structure, rules will be placed into the program's agenda after they have been

activated. The activation of the nIles is based upon the satisfaction of the pattern

matching by various facts. The activated rule will be fired if its patterns are matched by

the facts, and the actions of that rule will be executed, therefore new facts are asserted.

The inference process will continue until the last rule is reached.

The generic interface of a CLIPS program is a simple, interactive, text-oriented, and

command prompt interface. Similar to a DOS or UNIX environment, CLIPS has its text

oriented property, while the text may be rapid, it would appear boring to the users. Also,

the representation of numbers on the screen would not be easily interpreted by the users if

9

not accompanied with a visual representation of the output. In addition, users would need

to have some minimal knowledge of using CLIPS before they could meaningfully utilize

the software, especially when CLIPS requires specific commands to run. This knowledge

would not be known by the general public other than the experts (See Fig. 4).

The Nutrition Diagnosis Expert System

Do you know the Food Guide Pyramid with fiue major food groups (yes/no)? y
Do you haue the number of seruings from the groups that are right For

ou? (yes/no)? y

Suggested intake:

Your daily intake is balanced and nutritious.

CLIPS>

Figure 4. The Interface of the Expert System in CLIPS Shell

Therefore, subsequent enhancements to CLIPS are extended to incorporate CLIPS with a

widely-adopted graphic representation program such as Windows based Visual Basic 5.0.

This integration will provide for a more convenient tool for the general public using the

CLIPS expert system application.

Features of VB Interface

Visual basic is designed to make user-friendly programs easier to develop. The

sequence of procedures executed in the VB program is controlled by the "event" that the

10

user initiates [Schneider 1998]. Objects in Visual Basic recognize events like mouse

movements, and respond to these events depending on the instructions to be written.

VB provides two features different from other programming tools. Instead of writing

many sequences of function calls, the VB interface can be designed by dragging controls

onto a fonn. The program displays the Windows style interface with command buttons,

text boxes and other objects that will initiate actions when the user moves the mouse,

clicks, and strikes keys. These objects provide a visual guide to what the program can do.

The well-designed VB user interface insulates the user from the underlying technology,

making it easier to perfonn the intended task.

To design a Visual Basic interface program, there are several important conventional

principles to ensure a good user interface. First, an important principle is to keep an

interface simple. The second principle is the detennination of which controls are needed.

It can be achieved by determining how the input will be obtained and how the output will

be displayed, then creating objects to receive the input and display the output. Also some

appropriate command buttons need to be created to allow the user to control the program.

Meanwhile, it is necessary to ensure the more important elements are readily apparent to

the user. Third, the consistencies between these controls are very important to usability.

Fourth, the interface should prompt the user for missing infonnation before continuing

the input session. Lastly, it should have a standard Windows look and feel [Wolke 1997].

11

Dynamic Link Library

The Dynamic Link Library (Dll) contains executable code and data bound to a program

at load time or run time. The code and data in a DLL can be shared by several

applications simultaneously. It has the following advantages:

1. Applications would link to this code library, thus saving greatly on duplication of

effort and storage space.

2. Applications that used the same DLL system would behave identically.

3. If a problem arose, or a new feature was desired, the DLL would only need to be

edited/written once to benefit all related software. In this sense, the DLL system is

a weak version of the object-programming paradigm.

There are some other advantages to using the DLL. DLL is a standalone object and

need not be built; all of the functions may still be directly called from the application.

12

CHAPTER III

Design and Implementation

Program Design

This expert system application consists of three components, namely the graphic user

interface, the system database, and the rule-based inference mechanism. The interface of

the application has the greatest impact on the user's opinion. It should let users discover

the various features of the application easily without instructions. A customized Visual

Basic Gill of the expert system has been created to access the database, and it will pass

the message between CLIPS and users. To use this example expert system, the users

need merely to load the VB ".exe" program into their PC even without the CLIPS

software. Fig. 5 illustrates the main interface designed for this expert system application.

As the "brain" of the whole system, the inference mechanism searches the matched rules

through the knowledge base containing all the rules so as to arrive at a decision. To

facilitate the functions of CLIPS, the rules are written in a file with a ".c1p" extension. In

order to enlarge the nutrition knowledge base, the nutrition expert knowledge data is

contained in the Access database file with a ".mdb" extension.

13

Figure 5. The Main Application Window

Implementation of the Gill

Before construction of the rule-based inference engine, the first concern is to provide a

graphic user interface by Visual Basic 5.0 for the execution of the entire application. The

Windows-based Visual Basic is a comprehensive object-oriented programming tool. A

number of VB built-in tools can be used to develop objects. Hence VB5 is chosen to

develop the code for the Gill design of this expert system application.

In object-oriented programming, objects contain elements, such as variables, attributes,

and methods. Each object is responsible for performing some duties depending on the

methods and attributes encompassed within the object. In Figure 6, the right hand column

indicates the object members (which includes attributes and methods) of the

"personalinfo" object. The "flying box" icon indicates the methods (each method is

responsible for a specific task), and the "pointing hand" icons indicate the attributes. For

14

example, "personalinfo" is responsible for getting the personal data such as sex and

weight, so that it can determine the proper calorie intake according to the personal inputs.

Also, the method "getactivity" is responsible for acquiring information related to the

different physical activity level (See Fig. 7).

ca L~.~.!g.~.~.!.~.~ _ ..
Form1
Form2
Form3
Form4

I· Form5
,-a HLLDECL

I
Meal

-a Module1
!~ Personalinfo
I

Figure 6. A List of Attributes and Methods with VB5

Figure 7. Attributes and Methods of Personalinfo Object

15

The pseudocode of the "getactivity" function is shown as follows:

Public Function getactivityO As String
Dim actvt As String,
Let actvt =m_activity,
getacti vity =actvt

End Function

Based on the features of the objects in object-oriented programming, one object can

access the methods of another object by creating an instance of the other object using the

command Set instance_oCobjectA =New objectA. The object instance_ oC objectA is

now an instance of objectA, and it can access some methods of objectA as long as these

methods are declared to be publicly accessible. Objects can communicate and exchange

information by the virtue of this feature. The sample code written in YB5 is presented

below:

Private Sub ResulcClickO
Set personal = New Personalinfo
Let persona1.activity =Combol(O)
Let at =persona1.getactivity
Text2.text ="Your choice for physical activity is " & at

End sub

Various objects contain their own relevant methods for performing duties, but the next

immediate question is how to coordinate these objects to work with a CLIPS ruled-based

expert system to transfer the input data and retrieve the output data. This issue wi II be

dealt with in the following section.

16

Embedded CLIPS within VB5 by DLL

In order to let the user interact with the expert system easily, the actions of a rule

deduced from the inference engine need to be carried out by the object-orient module.

The objects in the VB5 module are able to carry out the questions and monitor the status

of the rules fired from the rule-based inference engine. In order to ensure smooth and

efficient exchange of information between the rule-based inference engine and VB5

module, it is important that they are working under the same operating environment. In

this study, the rule-based inference engine is developed within the CLIPS shell, while the

ohject-orient module is developed with the VB5 tool; these two development tools do not

naturally "talk" to each other. In this respect, it is important that these two modules must

be integrated so as to achieve efficient forward and backward information transfer.

For implementing the tasks, some DLL files are necessary. Fortunately, in Microsoft

Windows, a Dynamic Link Lihrary (DLL) can be easily developed to link Windows

based products to achieve information exchange among the software applications. As a

matter of fact, a DLL for CLIPS 6.0 is also available.

For integrating CLIPS to VB5, a special module named IlllDECL is written. It is

used to call two DLL files: the clips.dll (32 bit), and the interface DLL - clipshll.dll (32

bit). The clips.dll file contains all the common CLIPS functions and the clipshll.dll

simply provides a handy way that let VB5 application to access the CLIPS functions. It

integrates the WINAPI (Window Application Program Interface) with the routines in

17

CLIPS. It is achieved by those function declarations in the ID...J..DECL module. Note that

some of the declarations are function declarations and others are subroutine declarations.

All parameters are called by value. One of the declare function is shown as follows:

Declare Function HLL_LOAD Lib "CLIPSHLL.DLL" (ByVal FileName As
String, ByVal FileNameLen as integer) As Integer
Parameters:
FileName: String containing full filename/path of CLP file to load
FileNameLen: Length of the File Name. (i.e. For the file c:\rules.clp this
paramter is 12)

Return values:
-2 :bad filename
-1 :string buffer containing filename is no valid
o :load failed
1 :Parse Failed
2 :Load OK
3 :Bad Load name
4 :lnit not called (should never happen in ffi.L_)
Comments: load a CLP file from disk into CLIPS

For communication between VB5 modules and CLIPS program, CLIPS I/O routines

must be named by the use of logical names. The use of logical names allows CUPS to

ignore the specifics of an I/O request. There are also several logical names predefined by

CLIPS, such as "wdisplay", "stdout", "werror", "wwaming", "wdialog", "wagenda", and

"wtrace". When a condition that requires user input is met, the program will examine the

agenda conditions to see what new information is needed and then gather the answers

from the user. Fig. 8 shows the user can input the data through the dialog interface. The

program will then capture a specific router, and send the answer to the route. Then the

related information is pushed back into the agenda through the route. This will cause

more rules to be placed on the agenda and the new facts will be asserted as new values.

With these Dll.. applications added to VB5, the inference mechanism of CLIPS

becomes a part of VB5, thus enabling free and automatic data exchange between these

18

t\\lO applications. Fig. 9 illustrates the interaction between the user and this expert system

in the Windows-based GUI.

'Expert System fol'" Nutritional Assessment

Figure 8. The Interface for the User to Input Actual Daily Intake

au do not need further advlco. CangratulaUans!

If you haven't clicked FinIsh button, Please click It now.

Figure 9. The Interface of the CLIPS Expert System Embedded into VB5

19

L

Facilities of VB GUI

As the inference engine is embedded in the object-oriented programming environment.

the list of questions generated by the CLIPS program is directly sent to the VB5 program.

The "Start" button should be clicked first by the user to activate the program. The text

box will display the questions, then the program requests the user to select one answer at

a time.

In a CLIPS shell, there is no opportunity to go back and alter the previous input. After

the program gets the answer from the user, the next questions will be generated according

the previous answer. If the user inputs a wrong answer, he or she needs to restart the

program all over again with a set of execution commands.

In order to make this application more user-friendly. the check box for "yes" or "no"

answer is used and filled by the user. When the user clicks on a certain answer, then the

answer will be entered into the system. When the user is satisfied with the answer, he or

she just needs to click the "Send" button followed by the "Next" button to get to the next

step. The check box will be cleared and the answer can be entered again for next

question. The questions will be presented and the answers will be collected one by one,

and saved into the input files. If the user inputs a wrong answer, the "Reset' button is

designed specially for the user to clear the wrong answer and start the questions again

without restartIng the program. Finally, a command button in VB5 called Finish is used

20

L

to mask a set of CLIPS program commands, such as load, reset and run. To execute the

CLIPS program. The code in VB5 is shown below:

Private Sub Finish_ClickO
Dim retval As Integer
Dim FileName As String
Dim Showresult As String
Dim textline As String
Dim Ret As String * 256
Dim rctint As Integer
Dim retfloat As Single
Dim retlong As Long
Dim retstring As String * 256
Dim path As String, name As String
path = Dirl.path
name = path & "\resulttxt"
FileName =path & "\Nutrition.CLP"
Close #1
Form5.Text2.Text = ""
retval = lll.L_LOAD(FileName, Len(FileName»
If retval < 1 Then

MsgBox ("Can not Load 11 & FileName)
Exit Sub

End If
lll..L_RESET
lll..L_CLEARROUTE "wdisplay", 8
lll..L_CLEARROUTE "stdout", 6
lll..L_CLEARROUTE "wen-or", 6
lll..L_CLEARROUTE "wdialog", 7
HLL_CLEARROUTE "wagenda", 7
lll..L_CLEARROUTE "wtrace", 6
lll..L_CLEARROUTE "wclips", 6
HLL_CLEARROUTE "wwarning", 8
retval =lll..L_SETGLOBALINT("w", 1,3)
retfloat =3.3
retva! =HLL_SETGLOBAlFLOAT("x", 1, retfloat)
retfloat =0
retval =HIL_SETGLOBALLONG("y" , 1, 999999)
retval =HLL_SETGLOBALSTRING("z", 1, "asdasd", 6)
retval =HLL_RUN(-l)
If retval <= 0 Then

MsgBox "File doesn't not run."
Exit Sub

End If

21

Showresult =" === The Assessment from the Expert System ====" _
& vbCrLf & vbCrLf

Fonn5.Text2.Text = Showresult
Open name For Input As #2
Do While Not EOF(2) 'Loop until end of file.

Line Input #2, textline 'Read line into variable.
Showresult =Showresult & textline & vbCrLf

Loop
Close #2
Fonn5.Text2.Text =Showresult

End Sub

'Close file.

Every question would be in a yes-no format, or in a multiple-choice format. Any

answer from the user would invoke the corresponding rules to fire. The function for the

assignment of questions consists mainly of a Select Case statement. All the possible

questions are included to carry out the task. The code of this function is shown below:

Private Sub Next_ClickO
Dim flag As Boolean
flag = False
Select Case (question)
Case 0

Text2.Text = "Do you know how to keep a healthy dietary habit
for daily servings (yes/no)? "

answer =getyesnoO
If answer ="yes" Then

question =1
ElseIf answer ="no" Then

question =2
End If code continued ...

End sub

As shown above, the Select Case block can be used as part of a decision-making

structure because it helps to simplify the choosing among several questions. After the

user has finished the whole program process, the user can click on the "Exit" button to

exit the program. The user is in control in VB. Therefore, the CLIPS program has been

successfully embedded within VB application to fonn a fully integrated expert system for

nutrition assessment.

Implementation of the Rule-based Expert System

Rule-hased programming is one of the most common techniques for developing expert

systems. Typically, rules are used to represent heuristics in nature, based on useful "rules

of thumb" which specify a set of actions that can be applied to a given situation. A rule

based expert system includes knowledge base, facts and data. The expert system

knowledge base will typically be encoded as a set of IF-THEN rules that expresses how

the facts can be evaluated. The case-specific data includes the input data provided by the

user, the partial conclusions, and the output data produced by the program. In a simple

forward chaining rule-based system, the case-specific data will be stored in working

memory. The working memory is used to store transient and dynamic information data

values such as the rules that have been fired upon the instantiation of the facts within, and

so on.

A rule is composed of an IF portion on the LHS and a THEN portion on the RHS of a

rule. The IF portion of a rule is a series of matching patterns. These patterns specify

which fact would cause the rule to be applicable. The process of matching facts to

patterns is called "pattern matching". The Expert system provides a mechanism, called

the inference engine, which automatically matches facts against patterns, and detennines

which rules are applicable. The IF portion of a rule can actually be thought of as the

"whenever" portion of a rule since a pattern matching always occurs whenever facts list

23

are changed. The THEN portion of a rule is the set of actions to be executed when the

rule is applicable. The general format of a rule looks like below:

(defrule <rule name> [<optional comment>] ; Name of a rule

<<patterns>>
=>

«actions»)

; the left-hand Side (LHS) of the rule, or the IF portion

; the right-hand Side (LHS) of the rule, or the THEN
portion

The actions of an applicable rule are executed by inference engine. When the inference

engine is instructed to execute, it selects a rule, and then executes the actions of the

selected rule. The inference engine will select another rule and executes its actions, until

no applicable rules remain.

For example, a set of the possible inference processes in the nutrition expert system is

shown below:

IF: Question: "Do you have the servings that are right for you ., = "Yes"

Then: Next rule = diet intake normal

IF: Question: "Do you have the servings that are right for you" = "No"

Then: Next rule = diet intake abnormal

In a rule-based system, the inference engine determines which rules are satisfied by the

facts. Two general methods of inference are commonly used as the problem solving

strategies of expert systems: forward chaining, and backward chaining. The forward

chaining method is a data-driven process that is deduction from facts to the conclusions.

The backward chaining method is a goal-driven process that involves reasoning in reverse

from a hypothesis up to the facts that support the hypothesis. To establish and support this

24

hypothesis, a series of questions is asked. If the response is yes, then the hypothesis is

proven true and would become a fact (See Fig. 10).

Knowledge
Base

(Rules)

ExpLanatory
Facility

Inference
Engine

IAge~~]

Working
Memory
(Facts)

Knowledge
Acquisition

Facility

- -IUser
Interfac=--

Figure 10. Structure of a Rule-Based Expert System

Implementation of the Inference Engine

The inference engine is the core of the CLIPS expert system program. The inference

mechanism, through its use of the knowledge base to arrive at the goal, is able to fire a

series of rules that would provide for an educated diagnosis of the problems. To

implement the inference engine, a decision tree is used. Each decision node represents a

question or decision which, when answered or decided, detennines the appropriate branch

of the decision tree to foHow. A decision structure is both a knowledge representation

scheme and a method of reasoning. It can be used to construct all the rules in the

inference structure. Every rule is represented by a node in the decision tree, with each

node linked to one another by the branches, resulting in a cascading chain of rules fired in

2.'i

the inference process. Rules are extracted from a decision tree by tracing the path from a

leaf node to the root node of the tree. The dependent-attribute value assigned to this node

becomes the right-hand side of a rule, and the independent attributes and values in one

node on the path to the root become the conditions on the left-hand side to that rule. One

useful feature of the decision tree is that it can be self-learning. During the query process

of the user for the answers by the expert system, after the user has provided the first

answer, the decision tree would use this answer from the user to select the next

appropriate question. Then new nodes, branches and leaves can be created dynamically

and added to the tree. In the expert system program, the inference process is initiated by

setting the first rule to the root node of the decision tree (See Fig 11).

Yes

Y~
------------ ------Daily intake

nonnal

Does-not-know

Does-not-measure

Figure 11. Nutrition Decision Tree with Multiple Branches

For example, if the question in the decision tree is "Do you know the Food Guide

Pyramid?", then the left branch of the node would represent the path to follow the answer

"yes", and the right branch of the node would represent the path to follow the answer

"no".

26

Design of Facts and Templates

The templates have a well-defined structure. They are basically used in writing rules. In

the process of the breakdown of a user's request, templates should be designed to suit the

overall requirements, particularly taking into consideration the operations of the inference

process. Groups of facts can be described by using a template. A fact in the CLIPS

program consists of one or more fields enclosed in matching left and right parentheses,

and facts can be represented in a meaningful manner such as «relation name><valuel>

... <valueN». An example is the (fats low), (fats not-low) which explicitly declares the

relationships between various values. Facts are normally asserted during the start of the

inference process that operates with selecting the rules, matching the symbols of facts,

and then "firing" the rules to establish new facts. The assertion of facts is analogous to the

initializing of a structured program, where the variables are assigned with certain values.

In this rule-based program, the facts make use of the templates, such as answer-value,

activity, phase, f-age and m-weight are shown as below examples: (answer-value ?value),

(activity get-Ievel-f)(activity get-Ievel-m), (phase read-data) (phase close-files), (f-age

50)(f-age30)(f-age20), (m-weight 200)(m-weight 150)(m-weight 120), and so on.

It should be noted that during the inference process, the attrihutes of the facts are

changing continuously depending on which rules are fired. For example, the fact (phase

read-data) in first rule "open-files" indicates that at the beginning of the program, the first

rule without any patterns will be automatically assigned a pattern (initial-fact) to its LHS,

27

and thus the rulel will be placed on the agenda when a command "reset" is performed.

Then new facts (phase read-data) and (phaseD start) will be added to the fact-list. Another

point that needs to be explained here is that only new facts that are entered will be seen by

the rule. The rule does not fire otherwise.

Formulation of Rules

In any rule-based expert system, rules are necessary to infer new facts from lhe data in

the knowledge base, and the facts are asserted and modified during the inference process.

In most cases and also in this program, the assertion of the facts starts at the time when

the first rule is fired. The pseudo-code for one of the possible rules in this expert system

is shown below:

IF you have the number of servings from the food groups that are right for you

THEN your daily intake is normal

Shown following is the rule expressed in CLIPS syntax:

(defrule know-FGP-yes
?phase5 <- (phase5 know-FGP)
?data <- (answer-value ?yesno&:(eq ?yesno "yes"»

=>
(retract ?phase5 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "Do you have the right number of servings from the

groups(yes/no)?" crlt)
(assert (phase6 intake-normal»
(assert (phase read-data»)

The CLIPS 6.10 main menu allows the user using the "load" command to load the

rules. The CLIPS program will not start running unless there are rules whose LHS are

28

satisfied by some facts. The "reset" command asserts a default startup fact that is

generated by reset. This fact is called as initial-fact. Also the "reset" command removes

all previous activated rules from the agenda and all old facts from the fact-list. When a

CLIPS program is run by using the "run" command, the rule with the highest salience in

the agenda is fired first. Fig. 12 illustrates the activation of the rules in the working space.

I CLIPS (U6.10 07/01/98)
IClI PS> (load "C: /luyunhui/Hutdtion . ClP")
iClIPS> Defining deffunction: print-result-1
IDefining deffunction: print-result-2
jDefining deffunction: print-result-3
~efining defrule: open-files +j

IDefining defrule: read-data +j
Defining defrule: close-files +j
~efining defrule: start-question +j
'IDefining defrule: beginning-yes +j+j
Defining defrule: beginning-no =j+j
~efining defrule: get-analysis-yes +j+j
~efining defrule: get-analysis-no =j+j
~efining defrule: information-need-yes +j+j
!Defining defrule: information-need-no =j+j
~efining defrule: know-FCP-yes +j+j
~efining defrule: know-FGP-no =j+j

- - i~tflWL,(.xi~fi~:~.J.l;~l,wi.ft4¥a~~}:j:~·iLB;~:/:,:~~;5:0j/'!8ii.:~;dl~{j;~~:;I±;~X:':;::S·.:.·:·:ji:·:U::WjJ·

Figure 12. Rules in Agenda with CLIPS

For providing a clear picture of the inference procedures of the rules, a description of

the start processing in execution of the rule-hased program is included in the following

context.

The startup rule of this program contains the assertion of the "read-data" and "start"

facts. This action then would invoke the next rule "start-question", and would invoke the

"read-data" rule to read the data from an opened file. The code of this startup rule is as

follows:

(defrule open-files
=>

(open "yesno.dat" finput "r")

29

-

(open "result.txt" foutput "w")
(assert (phase read-data»
(assert (phaseO start)))

Because there is no pattern needed in the LHS of the "startup" rule, the statements of

actions after "=>" are executed. As the assigned matching pattern of the LHS changes

according to the input, the following rules satisfy the condition and therefore it is fired

almost at the same time as the first firing rule and the second firing rule: (despite the

startup rule)

(defrule start-question
?phaseO <- (phaseO start)

=>
(retract ?phaseO)
(printout foutput "Do you know how to keep a healthy dietary habit for daily

servings(yes/no)?" crlf)
(assert (phasel begin»
(assert (phase read-data»)

(defrule read-data
?phase <- (phase read-data)

=>
(retract ?phase)
(bind ?value (read finput»
(if Ceq ?value EOP)
then (assert (phase close-files»
else (assert (answer-value ?value»»

The two rules above are fired because the matching patterns on their LHS are satisfied.

Therefore, the actions of their RHS are executed. Pirst, the startup rule results in the

action which is to start the question and change the action to "begin" yes-no answering.

The second fired rule results in another action which is to obtain the value of input data

from an opened file.

The third and fourth rule to be fired is due to the begin rule and are shown below:

(defmle beginning-yes

30

?phasel <- (phasel begin)
?data <- (answer-value ?yesno&:(eq ?yesno "yes"))

=>
(retract ?phasel ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "You needn't to get further advice, Congratulation!" crlf)
(assert (phase read-data»))

(defrule beginning-no
?phasel <- (phasel begin)
?data <- (answer-value ?yesno&:(eq ?yesno "no"))

=>
(retract ?phase1 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "So, do you need me to give you an analysis that according to

your personal infonnation (yes/no)?" crlf)
(assert (phase2 get-analysis))
(assert (phase read-data)))

Either of the previous two rules is fired due to the two statements on the LHS of the

rules are satisfied. The "beginning-yes" rule wi II be fired only when a fact "begin" and an

answer "yes" are asserted. In this case, the result is a new action which would provide a

some advice to the user, and the read-data fact is asserted again. Notice that this is similar

as the first fired rule, but the value of the variable "?value" is changed from "yes" to

"EOF' since there is no more input data. Therefore the "read-data" rule will be fired

again and assert the new facts "close-files". In order to update a fact in the inference

process, a "retract" is used. Every time, a new fact has been match to a rule, the facts

should be retracted by the rule. The variables "?phase 1" and "?data" used for storing facts

are retracted when the "beginning-yes" rule is fired. It means that the facts stored in

"?phasel' and "?data" are removed so that both variables can be reused to store new

facts. If the answer "no" is asserted, and the two statements on the LHS of the

"beginning-no" rule are satisfied, and the rule will be fired. The inference process is

31

CLIPS)
FIRE
==) f-1
==) f-2
FIRE
(== f-2
==) f-3
FIRE
(== f-1
==) f-4
FIRE
(== f-3
(== f-4
==) f-5
FIRE
(== f-5
==) f-6

manifested in the change of actions from one rule to another, and the chaining action will

continue until the ultimate goal is satisfied. The recommended conclusion will then be

deduced as a result of the inference mechanism. In this program, a total of 102 rules are

used in the inference process (See Fig. 13).

(run)
1 open-files: f-O

(phase read-data)
(phaseO start)

2 start-question: f-2
(phaseD start)
(phase1 begin)

3 read-data: f-1
(phase read-data)
(answer-value "Yl'S")

,. beginning-yes: f-3.f-4
(phase1 begin)
(answer-value "yes")
(phase read-data)

5 read-data: f-5
(phase read-data)
(phase close-fill's)

Figure 13. Watch Rules and Facts with CLIPS

In a CLIPS program, a fact is the basic method for controlling the execution of the

inference process. Another control method in CLIPS is to provide a direct way through

salience. Salience allows more important rules to stay at the top of the agenda regardless

of when the rules were added to the agenda, so that the rules with a lower salience are

pushed onto the agenda below the rules with a higher salience. The salience is set by

assigning a numeric value to the rules, ranging from the smallest value of -10,000 to the

highest of 10,000. If a rule has no salience explicitly assigned, CLIPS assumes its salience

as O. The salience is used in this program in order to ensure the "close-files" rule will be

fired as the ultimate rule, since this rule will close all the input and output files.

32

Database Supplement

The basic nutrition infonnation for this system is applied to a sample nutrition

assessment based on the Food Ouide Pyramid (FOP), a guideline for daily food choices

developed by the United States Department of Agriculture (USDA). FOP helps users to

put the dietary guidelines into action, so that the users can decide what kind of food to eat

and how much of the food to eat to have all the nutrients needed without excess calories.

To set up the expert knowledge base of the program, this study first involves extracting

the FGP servings data based on the statistics from USDA and the Depaltment of Health

and Human Services (HHS), and putting it into the Access database of this expert system.

The basic infonnation for the standard nutrients in food is stored in a relational

database file which is developed by Microsoft Access 7. The application then can use

this database to do some caloric intake calculation for users. Normally, to an expert

system, the larger its knowledge base is, the more efficient its problem solving ability will

be. But to a CLIPS program for a large knowledge base, it may require more memory

space and overhead. The use of the Access dat.abase enhanced this expert system

application without more memory space and overhead.

Six tables refer to the six types of food groups in this database. Each table lists some

nutrient values for specific, real-life servings of many different foods and beverages. Each

entry in the table is a snapshot of a specific food serving that shows how much the

serving weighs and how great the calorie counts.

33

eiM

Expert System 'for NutFitionai Assessment

Comparing you. actual intake with recommended inta

!!!! Standard

~Actual

12

The grapH sho_ the actual total amoun' of calorlos ..
ou have 'aken dally. Please click the Result bunon,
.ou will aae another,graph 'hat indicates 'he

Figure 14. Comparison of the Result of Food Servings that the User Provided

Fig. 14 illustrates a sample that displays the result of the comparison between the

recommended and the actual caloric intake of the individual in a particular day. This

comparison is based on the information in the database. In order to access the database,

some control objects are placed on the several forms in the YB5 program. Therefore the

nutritional information database is bound to a data control in YBS by setting the

DatabaseName to the specific database file and RecordSource properties of the objects to

the field of the database. Then the program will calculate and analyze the caloric intake

according to the user's input and expert knowledge in the database.

:14

CHAPTER IV

Summary and Conclusion

The purpose of this study was to develop a visual user interface for an expert system.

This was done by the integration of programs developed by different tools, such as CLIPS

and Visual Basic. The example expert system used to illustrate this thesis was an expert

system for nutrition assessment that can be usefully deployed in a nutrition consultation

and education field.

It comprises a rule-based inference mechanism by using the CLIPS shell as the

development tool, and a VB GUI program developed by the Visual Basic 5.0. as an

object-oriented programming tool. The two development tools CLIPS and VB5 do not

naturally "talk" to each other, so the Dynamic Link Library and Active Data Objects are

used to integrate CLIPS with VB5 successfully so as to achieve an efficient forward and

backward data transfer between the two programs. Also a relational database is developed

using Microsoft Access as a component of the application.

By approaching the queries designed for this application, this expert system can help

users to access some expert knowledge such as the Food Guidelines. Also it enables the

users to seek some expert nutrition advice easier when the human experts are expensive,

unavailable, overburdened, or scarce. It would therefore benefit both the experts and

35

,
:I'

users. Also, this expert system can be used simultaneously in many sites, and can provide

consistent and uniform assessment and advice. In addition, this expert system is able to

explain the line of reasoning it used for each problem it solved. The user will then be able

to study the rationale on which the advice is based, and is free to accept the advice or

reject it. As a result, the user will "get the best from their food". Moreover, it is necessary

that novice users can access the required information without the knowledge of using the

CLIPS program and remembering all the textual commands to access a CLIPS expert

system.

This paper provides an insight into the development of the CLIPS program and VB

GUI, and the technology of integrating the CLIPS program and the VB program to form a

Windows-based product. The main technique used is the DlL that lets the application

achieve an efficient information exchange between different software components.

36

..
)

)

)

....

...

p,...

BIBLIOGRAPHY

[Barnes 1988] Linda Woodring Barnes. "Expert System for Computer Assisted Floristic
Classification", M. S. Thesis, Computer Science, Oklahoma State University, 1988.

[Bhargava 1993] Dipti R. Bhargva. "Building An Expert Database System in C Using
CLIPS and Paradox", M. S. Thesis, Computer Science, Oklahoma State University,
1993.

[Carrico, Girard and Jones 1989] Michael A. Carrico, John E. Girard and Jennifer P.
Jones. Building Knowledge Systems, New York: McGraw-Hill Book Companies, Inc.,
1989.

[CNPP 1999] Center for Nutrition Policy and Promotion, U.S. Department of
Agriculture, The Food Guide Pyramid, 1999.
URL: http://www.pueblo.gsa.gov/cictextJfood/food-pyramid/main.htm

[Drummond 1997] Karen Eich Drummond. Nutrition for the Foodservice Professional,
New York: Van Nostrand Reinhold, 1997.

[DuPuy 1995] Nancy A. DuPuy. Focus on Nutrition, St. Louis: Mosby-Year Book, Inc.,
1995.

[Fisher and Rinzler 1997] Lynn Fischer and Carol Ann Rinzler. Healthy Eating On-the
go for Dummies, Foster City: lOG Books Worldwide, Inc., 1997.

[FNIC 1999] The Food and Nutrition Information Center (FNIC), "Database of Food and
Nutrition Software and Multimedia Programs", 1999.
URL: http://www.nal.usda.gov/fnic/software/software.hlm!

[Giarratano and Riley 1989] Joseph Giarratano and Gary Riley. Expert Systems, Boston:
PWS-KENT Publishing Company, 1989.

[Hayes-Roth, Waterman and Lenat 1983] Frederick Hayes-Roth, Donald A. Waterman
and Douglas B. Lenat. Building Expert Systems, Massachusetts: Addison-Wesley
Publishing Company, Inc., 1983.

37

,
)

)...
)

,...

-.".l'..
";j...

[Koh 1992] Swee-Hyong Koh. "An Advisory Expert System on Computer Procurement"..
M. S. Thesis, Computer Science, Oklahoma State University, 1992.

[Kolasa 1997] Kathryn M. Kolasa. "New developments in nutrition education utilizing
computer technology", Nutrition Education for the Public, (62), pp.179-209,
1997.

[Lau, Tso and Ho 1998] H. C. W. Lau, S. K. Tso and J. K. L. Ho. "Development of an
intelligent task management system in a manufacturing information network", Expert
Systems with Applications, 15 (2), pp.165-179, 1998.

[Lee and Nieman 1996] Robert D. Lee and David C. Nieman. Nutritional Assessment. St.
Louis: Mosby-Year Book, Inc., 1996.

[Leigh and Doherty 1986] William E. Leigh and Michael E. Doherty. Decision Support
and Expert Systems, Cincinnati: South-Western Publishing Co., 1986.

[Li 1999] Lynn Ling X Li. "Knowledge-based problem solving: an approach to health
assessment", Expert Systems with Applications, 16 (1), pp.33-42, 1999.

[Piper 1996] Brenda Piper. Diet and Nutrition, San Diego: Chapman & Hall, 1996.

[Riley 2000] Gary Riley. URL: hup://www.ghgcorp.t:am/c1ips/download

[Schneider 1998] David I. Schneider. An Introduction to Programming Using Visual
Basic 5.0, Upper Saddle Ri ver: Prentice Hall, Inc., 1998.

[Silberschatz, Korth and Sudarshan 1999J Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan. Database System Concepts, Boston: McGraw-Hili Book Companies, Inc.,
1999.

[Wardlaw and lnsel 1996] Gordon M. Wardlaw, Paul M. lnsel. Perspective in Nutrition,
St. Louis: Mosby-Year Book, Inc., 1996.

[Waterman 1986] Donald A. Waterman. A Guide to Expert Systems, Massachusetts:
Addison-Wesley Publishing Company, Jnc., 1986.

[Wolke 1997] George Eric Wolke. "A Rule Based Expert System Which Configures Gas
Chromatographs", M. S. Thesis, Computer Science, Oklahoma State University, 1997.

38

2
:..
),..
)

~

"I')...
)...
)

),
1...-:;
'1
P,..

APPENDIX

;==
Building an Expert System by

Integrating CLIPS with Visual Basic

Yun Hui Lu

Advisor: Jacques LaFrance

Computer Science Department
Oklahoma State University

May 31, 2000

This is the part of CLIPS code to implement
the inference engine for this expert system.

; ;==

i===
;deffunctions
;===================================~=======

(deffunction print-result-l (?nl
(printout foutput "For your caloric level, every day you should have

the following servings: " crlf)
(printout foutput "6 servings for grain group;" crlfl
(printout foutput "3 servings for vegetable group;" crlf)
(printout foutput "2 servings for fruit group;" crlfl
(printout foutput "2 servings for milk group;" crlfl
(printout foutput "5 ounces for meat group;" crlfl
(printout foutput "53 grams for total fats;" crlfl
(printout foutput "6 teaspoons for total added sugars. " crlf))

(deffunction print-result-2 (?n)
(printout foutput "For your caloric level, every day you should have

the following servings: " crlf)
(printout foutput "9 servings for grain group;" crlfl
(printout foutput "4 servings for vegetable group;" crlfl
(printout foutput "3 servings for fruit group;" crlfl
(printout foutput "3 servings for milk group;" crlf)
(printout foutput "6 ounces for meat group;" crlf)
(printout foutput "73 grams for total fats;" crlf)
(printout foutput "12 teaspoons for total added sugars. " crlf»)

(deffunction print-result-3 (?n)
(printout foutput "For your caloric level, every day you should have

the following servings: " crlf)

39

2.-,
r,
J
)

').,.
)...
)

-,.....
)

",
3---:r.,
IJ,

(printout foutput "11 servings for grain group;" erlf)
(printout foutput "5 servings for vegetable group; II erlf)
(printout foutput "4 servings for fruit group;" er1f)
(printout foutput "3 servings for milk group;" erlf)
(printout foutput "7 ounces for meat group;" erlf)
(printout foutput "93 grams for total fats;" erlf)
(printout foutput "18 teaspoons for total added sugars. " erlf))

;===
;ruleD open-files
;===

(defrule open-files
=>

(open "yesno.dat" finput "r")
(open "result. txt" foutput "w")
(assert (phase read-data))
(assert (phaseD start)))

;==
;rulel read-data
;==

(defrule read-data
?phase <- (phase read-data)

=>

(retract ?phase)
(bind ?value (read finput))
(if (eq ?value EOF)

then (assert (phase close-files))
else (assert (answer-value ?value))))

;==
;rule2 close-files
;==

(defrule close-files
(declare (salience -99))

?phase<- (phase close-files)
=>

(retract ?phase)
(assert (phase1DD endrule))
(close finput))

;==
;rule3 start-question
;==

(defrule start-question
?phaseD <- (phaseD start)

=>

(retract ?phaseD)
(printout foutput "Do you know how to keep a healthy dietary habit

for daily servings (yes/no)?" crlf)
(assert (phase1 begin))
(assert (phase read-data)))

40

)-..,
)

t
)

..
).,.,

i==
;rule4 beginning-yes
;==

(deErule beginning-yes
?phasel <- (phasel begin)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

=>
(retract ?phasel ?data)
(printout foutput "The answer is ?yesno erlf erIf)
(printout foutput "You needn't get further advice, Congratulations!"

crlf)
(assert (phase read-data)))

;==
;rule5 beginning-no
;==

(defrule beginning-no
?phasel <- (phasel begin)
?data <- (answer-value ?yesno&: (eq ?yesno "no"))

=>
(retract ?phasel ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "So, do you need me to give you an analysis

according to your personal information (yes/no)?" crlf)
(assert (phase2 get-analysis)
(assert (phase read-data))

;==
;rule6 get-analysis-yes
;==

(defrule get-analysis-yes
?phase2 <- (phase2 get-analysis)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

=>
(retract ?phase2 ?data)
(printout foutput "The answer is" ?yesno erIE erIE)
(printout foutput "Since you do not know the right number of serving

for you," crlf)
(printout foutput "This test needs you to answer the following

question, if you are a female," crIf)
(printout foutput "please click yes, otherwise click no." erlf)

(assert (phase3 gender-need»
(assert (phase read-data)))

;=================~========================

;rule7 get-analysis-no
;==

(defrule get-analysis-no
?phase2 <- (phase2 get-analysis)
?data <- (answer-value ?yesno&: (eq ?yesno "no") I

=>
(retract ?phase2 ?data)

41

)-':.0.
t...
t
)

')

"")
po

•..-~
) ,..,
t
-
?
lOt

J,

(princout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "Well, do you need me to provide you some other

nutrition information(yes/no)?" crlf)
(assert (phase4 information-need»
(assert (phase read-data»)

;==
;rule8 information-need-yes
;==

(defrule information-need-yes
?phase4 <- (phase4 information-need)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"»

=>
(retract ?phase4 ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "Do you know the Food Guide Pyramid with six major

food groups (yes/no)?" crlf)
(assert (phaseS know-FGP»
(assert (phase read-data»)

;===================~======================

;rule9 information-need-no
;==)...
(defrule information-need-no

?phase4 <- (phase4 information-n8ed)
?data <- (answer-value ?yesno&: (eq ?yesno "no")

....
I...

=>

;==

;==
;rulelO know-FGP-yes

(defrule know-FGP-yes
?phaseS <- (phaseS know-FGP)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"»)

....

·),
)

1-"

:r,
)
:3

')
too

•to
•...,..

?yesno crIf crIf)
right number of servings from the

=>

(retract ?phase4 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "If you need to know more later, you are welcome to

use this expert system again." crlf)
(assert (phase read-data»)

(retract ?phaseS ?data)
(printout foutput "The answer is
(printout foutput "Do you have the

groups (yes/no)?" crlf)
(assert (phasen intake-normal»
(assert (phase read-data))

;==
;rulell know-FGP-no
;==

(defrule know-FGP-no
?phaseS <- (phaseS know-FGP)
?data <- (answer-value ?yesno&: (eq ?yesno "no"»

42

=>

(retract ?phase5 ?data)
(printout Eoutput "The answer is ?yesno erIE erIE)
(printout Eoutput "I will give you some guidelines about FGP." erIE)
(printout Eoutput "The Food Guide pyramid is made up of six food

groups. and" erIE)
(printout Eoutput "the placement oE these groups corresponds to the

recommended" erlf)
(printout foutput "number of daily servings. The base of the pyramid

is made up" crlf)
(printout foutput "of the largest group - breads. cereals, rice, and

pasta, and" crlf)
(printout foutput "y ou should strive to eat the most servings from

this particular II crlf)
(printout foutput "group. The tip of the triangle is formed by the

smallest group _" crlf)
(printout foutput "fats, oils. and sweets. which you should consume

sparingly. II erlf)
(printout foutput "If you follow the pyramid and make wise choices,

you will most" erlf)
(printout foutput "likely follow a lowfat eating plan." crlf)
(assert (phase read-data)))

;==
;rule12 intake-normal-yes
;==

(defrule intake-normal-yes
?phase6 <- (phase6 intake-normal)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

(retract ?phase6 ?data)
(printout foutput "The answer is" ?yesno crlf erlf)
(printout foutput "Good. your daily intake is nutritious." erlf)
(assert (phase read-data)))

;==
;rule13 intake-normal-no
j==

(defrule intake-normal-no
?phase6 <- (phase6 intake-normal)
?data <- (answer-value ?yesno&: (eq ?yesno "no"))

=>
(retract ?phase6 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "If you want to know more information about your

daily intake," erlf)
(printout foutput "Please click yes, otherwise click no." erlf)
(assert (phase7 more-details))
(assert (phase read-data)))

;=======================================~==

;rule14 more-details-yes
;===~

(defrule more-details-yes

43

)

-•..

-
f
")
~

?phase7 <- (phase7 more-details)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

=>

(retract ?phase7 ?data)
(printout foutput "The answer is 11

(printout foutput "Do your know how
good nutrition (yes/no)?" crlf)

(assert (phase8 measure-intake»
(assert (phase read-data)))

?yesno crlf crlf)
to measure your intake to get

;==
;rule15 more-details-no
i==

(defrule more-details-no
?phase7 <- (phase7 more-details)
?data <- (answer-value ?yesno&: (eq ?yesno "no"»)

=>

(retract ?phase7 ?datal
(printout foutput "The answer is
(printout foutput "Thank you for
(assert (phase read-data))}

?yesno crlf crlf}
using this expert system!" crlf)

;==
;rule16 measure-intake-yes
;==

(defrule measure-intake-yes
?phase8 <- (phase8 measure-intake)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"»

=>

(retract ?phase8 ?data)
(printout foutput "OK, you've got some knowledge already, the

recommended number of daily servings for you is: "crlf)
(printout foutput "Grain group 6-11 servings" crlf)
(printout foutput "Vegetalbe group 3-5 servings" crlf)
(printout foutput "Fruit group 2-4 servings" crlf)
(printout foutput "Meat group 2-3 servings" crlf)
(printout foutput "Milk group 2-3 servings" crlf)
(printout foutput "Fat & Sweets use sparingly" crlf)
(printout foutput "No more information, please click finish button."

crlf)
(assert (phase read-data))}

;==
;rule17 measure-intake-no
;==

(defrule measure-intake-no
?phase8 <- (phase8 measure-intake)
?data <- (answer-value ?yesno&: (eq ?yesno "no")

=>

(retract ?phase8 ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "Do you get at least 6 servings per day of Grain

(yes/no)?" crlf)
(assert (phase9 get-grain})

44

)

...,.-

)

••

•,
)

;.

-

(assert (phase read-data)}}

i===============================;==========
;rule18 get-grain-yes
i==

(defrule get-grain-yes
?phase9 <- (phase9 get-grain)
?data <- (answer-value ?yesno&: (eq ?yesno "yes")}

=>
(retract ?phase9 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout foutput "Good! You have got carbohydrates for your energy

from Grain." crlf)
(printout foutput "Do you get at least 3 servings of vegetable daily

(yes/no)?" crlf)
(assert (phaselO get-vegetable))
(assert (phase read-data)))

;==
;rule19 get-grain-no
;=================================~===~====

(defrule get-grain-no
?phase9 <- (phase9 get-grain)
?data <- (answer-value ?yesno&: (eq ?yesno "no"))

=>
(retract ?phase9 ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "Please get at least 6 servings of grain daily."

crlf)
(assert (phase read-data)))

;==
;rule20 get-vegetable-yes
;==

(defrule get-vegetable--yes
?phase10 <- (phaselO get-vegetable)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"})

=>
(retract ?phaselO ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "Good! You have got Vitamins. minerals and Fiber

from vegetable" crlf)
(printout foutput "Do you get at least 2 servings of fruit daily

(yes/no)?" crlf)
(assert (phase11 get-fruit)}
(assert (phase read-data)))

;==
;rule21 get-vegetable-no
;==

(defrule get-vegetable-no

45

)

.
: ..

....
~,
)

:3

?phase10 <- (p~aselO get-vegetable)
?data <- (answer-value ?yesno&: (eg ?yesno "no"))

=>

(retract ?phaselO ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "Please get at least 3 servings of vegetable

daily." crlf)
(assert (phase read-data)))

;==
;rule22 get-fruit-yes
;==

(defrule get-fruit-yes
?phasel1 <- (phase11 get-fruit)
?data <- (answer-value ?yesno&: (eg ?yesno "yes"))

=>
(retract ?phasel1 ?data)
(printout foutput "The answer is ?yesno erlf erlf)
(printout foutput "Good! You have got Vitamins. minerals and Fiber

from fruit." erlf)
(printout foutput "Do you get at least 2 servings of meat daily

(yes/no)?" crlf)
(assert (phase12 get-meat))
(assert (phase read-data)))

;==
;rule23 get-fruit-no
;==

(defrule get-fruit-no
?phase11 <- (phase11 get-fruit)
?data <- (answer-value ?yesno&: (eg ?yesno "no"))

=>
(retract ?phasell ?data)
(printout foutput "The answer is" ?yesno erlf erlf)
(printout foutput "Please get at least 2 servings of fruit daily."

erlf)
(assert (phase read-data)))

;==
;rule24 get-meat-yes
;==

(defrule get-meat-yes
?phase12 <- (phase12 get-meat)
?data <- (answer-value ?yesno&: (eg ?yesno "yes"))

=>
(retract ?phase12 ?data)
(printout foutput "The answer is ?yesno erlf erlf)
(printout foutput "Good! You have got Protein, Vitamins and Calcium.

Iron and Zinc from meat." erlf)
(printout foutput "Please choose lean meat. poultry without skin to

keep your total fat and saturated fat low." erlf)
(printout foutput "Do you get at least 2 servings of Milk daily

(yes/no)?" erlf)
(assert (phase13 get-milk))

46

:)-

....

I.
I

•
,.."-r:.,
)

:!

(assert (phase read-data)))

;==
;rule25 get-meat-no
;==

(defrule get-meat-no
?phase12 <- (phase12 get-meat)
?data <- (answer-value ?yesno&: (eq ?yesno "no"))

=>
(retract ?phase12 ?data)
(printout foutput "The answer is ?yesno erlf erlf)
(printout foutput "Please get at least 2 servings of meat daily."

erlf)
(assert (phase read-data)})

;==
;rule26 get-milk-yes
;==

(defrule get-milk-yes
?phase13 <- (phase13 get-milk)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"})

=>
(retract ?phasel3 ?data)
(printout foutput "The answer is ?yesno erIE erlf)
(printout Eoutput "Good! You've got protein, Vitamins and Calcium

from milk." erlf)
(printout foutput "Do you eat less fats and sweets daily (yes/no)? "

erlf)
(assert (phase14 get-fats-Sweets))
(assert (phase read-data)))

;==
;rule27 get-milk-no
;==

(defrule get-milk-no
?phase13 <- (phase13 get-milk)
?data <- (answer-value ?yesno&: (eq ?yesno "no"))

=>
(retract ?phase13 ?data)
(printout foutput "The answer is ?yesno erlf erlf)
(printout foutput "Please get at least 2 servings of milk daily."

erlf)
(assert (phase read-data)))

;==
;rule28 get-fats-Sweets-yes
i==

(defrule get-fats-Sweets-yes
?phase14 <- (phase14 get-fats-Sweets)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

=>
{retract ?phase14 ?data}
(printout foutput "The answer is" ?yesno erlf erlf)

47

)

...

......

....

(printout foutput "Good! Please use fats, oils and sweets sparingly."
crIt)

(printout foutput "Do you know how many calories will be consuming on
average per day (yes/no)?" crlf)

(assert (phase15 calories-consume»
(assert (phase read-data»))

;==
;rule29 get-fat-Sweets-no
;==

(defrule get-fats-Sweets-no
?phase14 <- (phase14 get-fats-Sweets)
?data <- (answer-value ?yesno&: (eq ?yesno "no"»)

=>
(retract ?phase14 ?data)
(printout foutput "The answer is" ?yesno crlf crlf)
(printout Eoutput "Please balance to use it. Saturated fat and

cholesterol are closely connected with heart disease." crlf)
(assert (phase read-data»))

;==
;rule30 calories-consume-yes
;==

(defrule calories-consume-yes
?phase15 <- (phase15 calories-consume)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"))

=>
(retract ?phase15 ?data)
(printout foutput "The answer is" ?yesno crlf erIE)
(printout Eoutput "Good! Now you can follow the pyramid and make wise

choices when you are eating." erIE)
(printout Eoutput "The information is ended here, please click finish

button." crlf)
{assert (phase read-data»))

;========================~=================

;rule31 calories-consume-no
;==

(defrule calories-eonsume-no
?phase15 <- (phase15 calories-consume)
?data <- {answer-value ?yesno&: (eq ?yesno "no"»

=>
(retract ?phase15 ?data)
(printout foutput "The answer is ?yesno crlf crlf)
(printout foutput "The average you will be consuming is 2000 calories

a day, so please intake based on that." erIE)
(printout foutput "The information is ended here, please click the

Einish button .. " erlf)
(assert (phase read-data»)

;==
;rule32 gender-female
;==

48

...

...

(defrule gender-female
?phase3 <- (phase3 gender-need)
?data <- (answer-value ?yesno&: (eq ?yesno "yes"»

=>

(retract ?phase3 ?data)
(printout foutput "The answer is" ?yesno erlf erlf)
(printout foutput "Please choose your weight in pounds (above

145/bewteen 145-120/below 120)." erlf)
(assert (phase16 female-weight»)
(assert (phase read-data»))

;==
;rule33 gender-male
;==

(defrule gender-male
?phase3 <- (phase3 gender-need)
?data <- (answer-value ?yesno&: (eq ?yesno "no")

=>
(retract ?phase3 ?data)
(printout foutput "The answer is ?yesno crlf erlf)
(printout foutput "Please choose your weight in pounds (above

170/bewteen 170-145/below 145)." erlf)
(assert (phase17 male-weight»)
(assert (phase read-data)))

i==
;rule34 female-weight1
;==

ldefrule female-weightl
?phase16 <- (phase16 female-weight)
?data <- (answer-value ?yesno&: (eq ?yesno "145"»

=>
(retract ?phase16 ?data)
(printout foutput "The answer is above 145." erlf erlf)
(printout foutput "Please choose your age range (above 50/bewteen 50-

20/below 20) ." erlf)
(assert (f-weight 145»
(assert (phase18 get-age-female»
(assert (phase read-data»)

;==
;rule35 female-weight2
;==

(defrule female-weight2
?phase16 <- (phase16 female-weight)
?data <- (answer-value ?yesno&: (eq ?yesno "130"»)

=>
(retract ?phase16 ?data)
(printout foutput "The answer is between 145 and 120." crlf erlf)
(printout foutput "Please choose your age range (above 50/bewteen 50-

20/below 20) ." crlf)
(assert (f-weight 130»)
(assert (phase18 get-age-female»

49

:t\
..

·f..

...

(assert (phase read-data)))

;==
;rule36 female-weight3
;==

(defrule female-weight3
?phase16 <- (phase16 female-weight)
?data <- (answer-value ?yesno&:(eq ?yesno "110"»

=>
(retract ?phase16 ?data)
(printout foutput "The answer is below 120." crlf erlf)
(printout foutput "Please choose your age range (above 50/bewteen 50-

20/below 20)." erlf)
(assert (f-weight 110»
(assert (phase18 get-age-female))
(assert (phase read-data)))

;==
;rule37 get-age-female-5D
;==

(defrule get-age-female-50
?phasel8 <- (phase18 get-age-female)
?data <- (answer-value ?yesno&: (eq ?yesno "50"»

=>
(retract ?phase18 ?data)
(printout foutput "The answer is above 50." crlf crlf)
(assert (f-age 5D)
(printout foutput "Please choose your activity

level (light/moderate/heavy) ." crlf)
(assert (activity get-Ievel-f»
(assert (phase read-data»))

;==
;rule38 get-age-female-30
;==

(defrule get-age-female-30
?phasel8 <- (phase18 get-age-female)
?data <- (answer-value ?yesno&: (eq ?yesno "30"»)

=>

h
'.

'.

"...
"

..~

...
(retract ?phase18 ?data)
(printout foutput "The answer is between 50 and 20."
(assert (f-age 30)
(printout foutput "Please choose your activity

level (light/moderate/heavy) ." crl f)
(asserL (activity get-Ievel-f))
(assert (phase read-data))

;==
;rule39 get-age-female-20
;==

50

crlf crlf)

(defrule get-age-fernale-20
?phase18 <- (phase18 get-age-female)
?data <- (answer-value ?yesno&: (eq ?yesno "20"))

=>
(retract ?phase18 ?data)
(printout foutput "The answer is below 20." crlf erIE)
(assert (f-age 20))
(printout foutput "Please choose your activity

level (light/moderate/heavy) _" crlf)
(assert (activity get-level-f))
(assert (phase read-data)))

;==============;===========================
;rule46 activity-level-f-light-145-50
;==

(defrule f-light-145-5G
?activity <- (activity get-level-E)
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 145) (eq ?age 50)))

=>
(retract ?aetivity ?data)
(printout foutput "The answer is light." erlf crlf)
(print-result-2 "1")
(assert (phase read-data)))

;==
;rule47 aetivity-Ievel-f-light-145-30
;==

(defrule f-light-145-30
?activity <- (activity get-level-f)
?data <- (answer-value ?yesno&: leq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 145) (eq ?age 30)))

=>

(retract ?activity ?data)
(printout Eoutput "The answer is light." crlE crlE)
(print-resul t-1 "1")
(assert (phase read-data)))

;==
;rule48 activity-level-f-light-145-20
;==

(defrule f-light-145-20
?aetivity <- (activity get-level-f)
?data <- (answer-value ?yesno&: (eq ?yesno "light"»)
(E-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 145) (eq ?age 20)))

=>
(retract ?aetivity ?data)
(printout Eoutput "The answer is light." erlf erlf)

.'i1

"

.,
-.
.~

"':

-..

(print-result-2 "IR)
(assert (phase read-data)))

;==
;rule49 aetivity-level-f-light-130-50
;==

(defrule f-light-130-50
?aetivity <- (activity get-Ievel-f)
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 130) (eq ?age 50)))

==>
(retract ?aetivity ?data)
(printout foutput "The answer is light." erlf erlf)
(print-result-1 "1")
(assert (phase read-data)))

;==
;rule50 activity-Ievel-f-light-130-30
;==

(defrule f-light-130-30
?activity <- (activity get-Ievel-fl
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 130) (eq ?age 30)))

=>

(retract ?activity ?data)
(printout foutput "The answer is light." erlf erIE)
(print-result-1 "1")
(assert (phase read-data)))

;~=~=======================================

;rule51 aetivity-level-E-Iight-130-20
;==

(defrule f-light-130-20
?aetivity <- (activity get-Ievel-f)
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 130) (eq ?age 20)))

=>

(retract ?activity ?data)
(printout foutput "The answer is light." erIE erIE)
(print-result-2 "1")
(assert (phase read-data)))

;==
;rule52 activity-level-f-Iight-110-50
;==

52

.,.
".

".
:

F

(defrule f-light-llO-50
?activity <- (activity get-level-f)
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 110) (eq ?age 50)))

=>
(retract ?activity ?data)
(printout foutput "The answer is light." crlf crlf)
(print-result-l "1")
(assert (phase read-data)))

;==
;rule53 activity-level-f-light-llO-30
;==

(defrule f-light-llO-30
?activity <- (activity get-level-f)
?data <- (answer-value ?yesno&: (eq ?yesno "light"))
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight 110) (eq ?age 30)))

=>
(retract ?activity ?data)
(printout foutput liThe answer is light." crlf crlf)
(print-result-l "I")
(assert (phase read-data)))

;==
;rule54 activity-level-f-light-llO-20
;==

(defrule f-light-llO-20
?activity <- (activity
?data <- (answer-value
(f-weight ?weight)
(f-age ?age)
(test (and (eq ?weight

=>

get-level-f)
?yesno&: (eq ?yesno "light"))

110) (eq ?age 20)))

(retract ?activity ?data)
(printout foutput "The answer is light." crlf crlf)
(print-result-1 "l")
(assert (phase read-data)))

;==
;rulelOO end-rule
i==

(defrule end-rule
(declare (salience -100))
?phaselOO <- (phaselOO end-rule)

=>
(retract ?phaselOO)
(printout foutput crlf crlf)
(printout foutpu~ liThe expert system is finished. II crlf crlf)
(assert (phaselOl close-output)))

53

:

•

;==
;rulelOl close-output
;==
(defrule close-output
(declare (salience -1000))
?phaselOl <- (phase101 close-output)

=>
(retract ?phase101J
(close foutput))

54

:

-

'===

\ The Part of Visual Basic code implemented as object-oriented module
\ for achieving user interaction with CLIPS expert system.

'===

Form3 (MealEntry.frrn)

Option Explicit

Dim unitarray(1 To 6) As Variant
Dim qtarray(l To 6, 1 To 5) As Single
Dim foodarray(l To 6, 1 To 5) As String
Dim flag(l To 6) As Boolean
Dim i As Integer
Dim j As Integer
Dim re As Integer
Private getentry As Meal
Canst gr = 1, ve = 2, fr = 6, mi 3, mea

Private Sub combnum_Click()
qtarray(i, j) = Val (combnum)

End Sub

Private Sub Comb01_Click()

foodarray(i, j) = Comb01
combnum. Text " "

End Sub

Private Sub Combo1_dropdown()
Static count As Integer

unit.Clear
Me.unit.AddItem "bird", 0
Me.unit.AddItem "cup", 1
Me.unit.AddItem "1/2 chicken", 2
Me.unit.AddItem "large", 3
Me.unit.AddItem "4 large", 4
Me.unit.AddItem "leg", 5
Me.unit.AddItem "6 medium", 6
Me.unit.AddItem "3 oz", 7
Me.unit.AddItem "20 small calms", 8
Me.unit.AddItem "slice", 9

4, tip 5

:

If flag(mea)
count = 0
flag (mea)

End If

False Then

True

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than 5 items.", vbOKOnly)
Exit Sub

55

l •

End If
i mea
j = count

Textl.Text

End Sub

Private Sub Combo3_Click()
foodarray(i, j) = Combo3
combnum.Text ""

End Sub

Private Sub Combo3_dropdown()
Static count As Integer
Me.unit.Clear

Me.unit.AddItem "bagel", 0
Me.unit.AddItem "biscuit", 1
Me.unit.AddItem "cup", 2
Me.unit.AddItem "euphrates", 3
Me.unit.AddItem "large", 4
Me.unit.Addltem "large slice", 5
Me.unit.Addltem "medium", 6
Me.unit.Addltem "muffin", ?
Me.unit.Addltem "roll", 1
Me.unit.AddItem "slice", 0
Me.unit.AddItem "small stick", 5

If flag(gr) = False Then
count = 0
flag (gr) True

End If

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than 5 items.", vbOKOnly)
Exit Sub

End If
i = gr
j .0= count

Textl.Text

End Sub

Private Sub Combo4_Click()
foodarray(i, j) = Combo4
combnum.Text

End Sub

Private Sub Combo4_dropdown()
Static count As Integer
unit.Clear

Me.unit.AddItem "cup", 0
Me.unit.Addltem "fruit", 1

56

- ---or:

Me.unit.AddItem "large", 2
Me.unit.AddItem "medium", 3

If flag(fr) = False Then
count = 0
flag (fr) True

End If

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than 5 items.", vbOKOnly)
Exit Sub

End If
i fr
j = count

Text1.Text

End Sub

Private Sub ComboS_Click()
foodarray(i, j) = ComboS

combnum.Text
End Sub

Private Sub Combo5_dropdown()
Static count
unit.Clear

Me.unit.AddItem "1/2 cup", 0
Me.unit.AddItem "cup", 1
Me.unit.AddItem "oz" , 2
Me.unit.AddItem "Tbsp" , 3

If flag(mi) = False Then
count = 0
flag(mi) True

End If

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than S items.", vbOKOnly)
Exit Sub

End If
i mi
j = count

Text1.Text
End Sub

1111

Private Sub Combo6_Click()
foodarray(i, j) = Combo6
combnum.Text

End Sub

Private Sub Combo6_dropdown()
Static count As Integer

57

unit.Clear

Me.unit.AddItem "bottle", 0
Me.unit.AddItem "can", 1
Me.unit.AddItem "cup", 2
Me.unit.AddItem "fl oz", 3
Me.unit.AddItem "glass·, 4
Me.unit.AddItem "oz", 5
Me.unit.AddItem "packet", 6
Me.unit.AddItem "Tbsp", 7
Me.unit.AddItem "tsp", 8

If flag(tip) False Then
count = 0
flag(tip) True

End If

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than 5 items.", vbOKOnly)
Exit Sub

End If
i tip
j = count

Text1.Text
End Sub

Private Sub Combo7_Click()
foodarray(i, j) = Combo7
combnum.Text

End Sub

Private Sub Combo7_dropdown()
Static count As Integer
Me.unit.Clear

Me.unit.AddItem "baby ear", 0
Me.unit.AddItem "1/2 cup", 1
Me.unit.AddItem "cup", 2
Me.unit.AddItem "large", 3
Me.unit.AddItem "patoto" , 4
Me.unit.AddItem "pepper", 5
Me.unit.AddItem "small spear", 6

If flag(ve) = False Then
count = 0
flag(ve) True

End If

count = count + 1
If count > 5 Then

re = MsgBox("You can not select more than 5 items.", vbOKOnly)
Exit Sub

End If
i ve
j = count

S8

Textl.Text ""
End Sub

Private Sub Commandl_Click()

Dim count As Integer, item As Integer

Listl.AddItem "You have eaten the following items daily:"

For count = 1 To 6
For item = I To 5

If qtarray(count, item) <> 0 Then
Listl.AddItem foodarray(count, item) &" "&

qtarray(count, item)
End If

Next item
Next count

End Sub

Private Sub Command2_Click()

Load Forml
Forml.Show
Forml.Command2.Enabled
Forml.Commandl.Enabled
Unload Form3

End Sub

True
False

Private Sub Cornmand3_Click()
Dim i As Integer
Dim 1 As Integer
Dim call As Integer
Dim ca12 As Integer
Dim ea13 As Integer
Dim ca14 As Integer
Dim ca15 As Integer
Dim ca16 As Integer

Dim sublcal As Integer
Dim sub2eal As Integer
Dim sub3cal As Integer
Dim sub4eal As Integer
Dim sub5eal As Integer
Dim sub6cal As Integer

Dim svl As Integer
Dim sv2 As Integer
Dim sv3 As Integer
Dim sv4 As Integer
Dim sv5 As Integer
Dim sv6 As Integer

Dim tteal As Integer, name As String, path As String

59

path
name

Dir1.path
path & "\info.txt"

Open name For Output As #1
List1.Clear

sub1cal 0

For i 1 To item1.Recordset.RecordCount
For 1 1 To 5
If foodarray(gr. 1) <> "" Then

If item1.Recordset.Fields(O} .Value & " / " &

iteml.Recordset.Fields(l} .Value = foodarray(gr, l} Then
call = item1.Recordset.Fields(3) .Value
sub1cal = sub1cal + call * qtarray(gr. 1)

End If
End If

Next 1
item1.Recordset.MoveNext

Next i

svl sub1cal / 80
Listl.AddItem "Your intake for calories and servings are calculated

according to your input:"
List1.AddItem "grain calories:" & sublcal
List1.AddItem "grain serving:" & svl

sub2cal = 0
For i = 1 To item2.Recordset.RecordCount

For 1 = 1 To 5
If [oodarray(ve. 1) <> "" Then

If item2.Recordset.Fields(O) .Value & " / " &
item2.Recordset.Fie1ds(1) .Value = foodarray(ve. 1) Then
cal~ = item2.Recordset.Fields(3) .Value
sub2cal = sub2cal + ca12 * qtarray(ve, 1)

End If
End If

Next 1
item2.Recordset.MoveNext

Next i

sv2 ~ sub2ca1 / 25
Listl.AddItem "vegetable calories:" & sub2cal
Listl.AddItem "vegetable serving:" & sv2

sub3cal 0
For i = 1 To item3.Recordset.RecordCount

For 1 = 1 To 5
If foodarray(fr, 1) <> "n Then

If item3.Recordset.Fields(O} .Value & n / " &
item3.Recordset.Fields(1) .Value = foodarray(fr, 1) Then

ca13 = item3.Recordset.Fields(3) .Value
sub3cal = sub3cal + ca13 * qtarray(fr, 1)

End If
End If

Next 1
item3.Recordset.MoveNext

60

Next i

sv3 = sub3cal / 60
Listl.AddItem "fruit calories:" & sub3cal
Listl.AddItem "fruit serving:" & sv3

sub4cal = 0
For i = 1 To item4.Recordset.RecordCount

For 1 = 1 To 5
If foodarray(mea, l} <> "" Then

If i tem4 . Recordset. Fields (0) .Value & " / " &

item4.Recordset.Fields(1) .Value = foodarray(mea, 1) Then
cal4 = item4.Recordset.Fields(3) .Value
sub4cal = sub4cal + ca14 * qtarray(mea, 1)

End If
End If

Next 1
item4.Recordset.MoveNext

Next i

sv4 = sub4cal / 55
Listl.AddItem "meat calories:" & sub4cal
Listl.AddItem "meat serving:" & sv4

sub5cal = 0
For i = 1 To item5.Recordset.RecordCount

For 1 = 1 To 5
If foodarray(mi, 1) <> "" Then

If item5.Reeordset.Fields(O) .Value & " / " &
item5.Reeordset.Fields(1) .Value = foodarray(mi, 1) Then
ea15 = item5.Reeordset.Fields(3) .Value
sub5ea1 = sub5eal + ea15 * qtarray(mi, 1)

End If
End If

Next 1
item5.Recordset.MoveNext

Next i

sv5 = sub5eal / 90
Listl.AddItem "milk calories:" & sub5eal
Listl.AddItem "milk serving:" & sv5

sub6cal = 0
For i = 1 To item6.Reeordset.ReeordCount

For 1 = 1 To 5
If foodarray(tip, l} <> "" Then

If item6.Reeordset.Fields(O) .Value & " / " &
item6.Reeordset.Fields(l} .Value = foodarray(tip, 1) Then
eal6 = item6.Recordset.Fields(3) .Value
sub6eal = sub6cal + ca16 * qtarray(tip, 1)

End If
End If

Next 1
item6.Recordset.MoveNext

Next i

sv6 = sub6cal / 45

61

List1.AddItem "fats & sweets calories:" & sub6cal
Listl.AddItem "fats & sweets serving:" & sv6

tteal = sub1eal + sub2cal + sub3cal + sub4cal + subseal + sub6cal
List1.AddItem "Your total intake for calories:" & tteal & " keal"

If fg = 1 Then
Write In, "grain", 11, sv1
Write #1, "veg" , 5, sv2
Write #1, "fruit", 4, sv3
Write #1, "milk", 3, svS
Write #1, "meat", 7, sv4
Write #1, "sugar", 18, sv6

ElseIf £g = 2 Then
Wri te #1, "grain", 9, sv1
Write #1, "veg" , 4, sv2
Write #:1, "fruit", 3, sv3
Write #1, "milk", 3, svS
Write #:1, "meat", 6, sv4
Write #1, "sugar", 12, sv6

ElseIf fg = 3 Then
Wri te #1, "grain", 6, sv1
Write #1, "veg" , 3, sv2
Write #1, "fruit", 2, sv3
Write #1, "milk", 2, svS
Write #1, "meat", 5, sv4
Write #1, "sugar", 6, sv6

End If
Close #1

End Sub

Private Sub Command4_Cliek()

For i = 1 To 6
flag (i) = False
For j = 1 To 5

foodarray(i, j)
qtarray(i, j) = 0

Next j
Next i
Listl.Clear
Combol.Text "none"
Combo3.Text "none"
Combo4.Text "none"
ComboS.Text "none"
Combo6.Text "none"
Combo7.Text "none"
combnum.Text = tIll

iteml.Recordset.MoveFirst
item2.Recordset.MoveFirst
item3.Reeordset.MoveFirst
item4.Reeordset.MoveFirst
itemS.Reeordset.MoveFirst
item6.Recordset.MoveFirst

rt It

62

End Sub

Private Sub Form_Load(}
Let flag(6) = True
Let flag(l) True
Let flag(2) True
Let flag(3) True
Let flag(4) True
Let flag(5) True
Dim name As String, path As String

path = Dirl.path
name = path & "\Nutritioninfo.mdb"
iteml.DatabaseName name
item2.DatabaseName name
item3.DatabaseName name
item4.DatabaseName name
item5.DatabaseName name
item6.DatabaseName name

End Sub

Private Sub Textl_Change()

qtarray(i, j) = Val (Textl.Text)

End Sub

Private Sub unit_click()

unitarray(i) = unit.Text

End Sub

Form4 (IntakeAny. frm)

Dim numitems As Integer, maxdata As Single
Dim label(l To 6) As String
Dim actual(l To 6) As Single
Dim statis(l To 6) As Single
Dim diff(l To 6) As Single

Private Sub Cornmandl_Click()

Load Forml
Forml.Show
Forml.Command3.Enabled
Forml.Commandl.Enabled
Forrnl.Command2.Enabled
Unload Me

End Sub

True
True
True

Private Sub Cornmand2_Click()

numitems = 6

Call readdata(label(), actual(), statis(), numitems, maxdatal

63

Call drawAxes(numitems, maxdata)
Call drawdata(actual(), statis(), numitems)
Call showtitle(maxdata)
Call showlabels(label(), numitems, maxdata)
Call showlegend(maxdata)
Imagel.Visible = False
Picturel.Visible = True
Text3.Text = "This graph shows the amount of calories you have taken in
a day. Please click the result button again, you will see another
graph that indicates the improvement you need to take for each items."
End Sub

Private Sub readdata(label() As String, actual() As Single, statist) As
Single, numitems As Integer, maxdata As Single)

Dim i As Integer, path As String, name As String
path = Dir1.path
name = path & "\info.txt"

Open name For Input As #1
Let maxdata = 0
For i = 1 To numitems

Input #1, label(i), actual(i) , statis(i)
If actual(i) > maxdata Then

Let maxdata = actual(i)
End If
If statis(i) > maxdata Then

Let maxdata = statis(i)
End If

Next i
Close #1

End Sub

Public Sub drawAxes(numitems As Integer, maxdata As Single)

Picture1.Scale (-1, 1.2 * maxdata)-(numitems + 1, -0.2 * maxdata)
Picture1.Line (-1, O)-(numitems + 1, 0)
Picture1.Line (D, -0.1 * maxdata)-(O, 1.2 * maxdata)

End Sub

Public Sub drawdata(actual() As Single, statis() As Single, numitems As
Integer)

Dim i As Integer
For i = 1 To numitems

Let Picturel.FillStyle = 1
Picturel.Line (i - 0.3, actual(i))-(i, 0), QBColor(D), BF
Let Picturel.FillStyle = 4
Picturel.Line (i, statis(i))-(i + 0.3, 0), QBColor(u), B

Next i

End Sub

Public Sub locate(X As Single, Y As Single)

64

Let Picture1.CurrentX X
Let Picture1.CurrentY Y

End Sub

Public Sub showtitle(maxdata As Single)

Call locate(0.4, 1.2 * maxdata)
Picture1.FontSize = 10
Picture1.FontBold = True
Picture1.Print "Comparing your actual intake with recorrunended intake"

End Sub

Private Sub showlegend(maxdata As Single)

Picture1.FillStyle = 1
Picture1.Line (2, 1.05 * maxdata)-(2.9, 0.95 * maxdata), QBColor(O),

BF
Call locate(3. 1.05 * maxdata)
Picture1.Print "Standard"
Picture1.FillStyle = 4
Picture1.Line (2, 0.9 * rnaxdata)-(2.9, 0.8 * rnaxdata), QBColor(O}, B
Call locate{3, 0.9 * maxdata}
Picture1.Print "Actual"

End Sub

Public Sub showlabels(label() As String, numitems As Integer, rnaxdata
As Single)

Dim i As Integer, Ibl As String, lblwid As Single
Dim lblhght As Single. tickfactor As Single

For i = 1 To numitems
Let lbl = label(i)
Let lblwid = Picturel.TextWidth(lbl)
Let tickfactor ~ 0.02 * rnaxdata
Picturel.Line (i, -tickfactor)-(i, tickfactor)
Call locate(i - Iblwid / 2, -tickfactor)
Picturel.Print Ibl

Next i
Let lbl = Str(maxdata)
Let lblwid = Picture1.TextWidth(lbl)
Let lblhght = Picturel.TextHeight(lbl)
Let tickfactor = 0.01 * numitems
Picturel.Line (-tickfactor, maxdata)-(tickfactor, maxdata)
Call locate(-tickfactor - lblwid, maxdata - lblhght / 2)
Picturel.Print Ibl

End Sub

Private Sub Corrunand3_Click()

Picturel.Visible
Picture2.Visible

False
True

65

Call readin(label(), diff())
Call DrawX
Call drawdiff(diff(}}
Call showtt
Call showlb(label(})
Text3.Text =
Text3.Text = "This graph shO'..,rs how you can improve for your daily

intake. The up and down points indicate the range that your daily
intake should be increase or reduce for each item in servings."

End Sub

Private Sub DrawX(}

Picture2.Scale (-0.2, maxdata + 4)-(numitems + 1, -((maxdata + 4) /
2))

Picture2.Line (-I, l)-(numitems + I, 1)
Picture2.Line (0, -(maxdata + 4))-(0, maxdata + 4)

End Sub

Private Sub readin(label() As String, diff() As Single)

Dim i As Integer, path As String, name As String
path Dir1.path
name = path & "\info.txt"

Open name For Input As #1
Let maxdata = 0
For i = 1 To numitems

Input #1, label(i) , statis(i) , actual(i}
diff(i} = statis(i) - actual(i)
If statis(i) > maxdata Then

Let maxdata = statis(i)
End If

Next i
Close #1

End Sub

Private Sub drawdiff(diff(} As Single)

Dim i As Integer
For i = 1 To numitems
If i < numitems Then

Let Picture2.DrawStyle = °
Picture2.DrawWidth = 2
Picture2.Line (i, diff(i) + i)-Ii + 1, diff(i + 1) + 1), vbRed

End If
Picture2.Circle (i, diff(i) + 1), 0.01 * numitems
Picture2.Print Str(diff(i))

Next i

End Sub

Private Sub showtt()

66

Call location(1.5, maxdata + 1)
Picture2.FontSize = 10
Picture2.FontBold = True
Picture2.Print "Improvement trend for your daily intake"

End Sub

Private Sub location (X As
Let Picture2.CurrentX
Let Picture2.CurrentY

End Sub

Single, Y As Single)
X

Y

Private Sub showlb(lable() As String)
Dim i As Integer, Ibl As String, Iblwid As Single
Dim lblhght As Single, tickfactor As Single

For i = 1 To numitems
Let Ibl = label(i)
Let Iblwid = Picture2.TextWidth(lbl) + 2
Let tickfactor = 0.02 * maxdata
Picture2.Line (i, -tickfactor ~ l)-(i, tickfactor + 1)
Call locate(i - Iblwid / 2, -tickfactorl
Picture2.Print lbl

Next i

Let lbl = Str(maxdata - 2)
Let Iblwid = Picture2.TextWidth(lbl)
Let Iblhght = Picture2.TextHeight(lbl)
Let tickfactor = 0.01 * numitems
Picture2.Line (-tickfactor, maxdata)-(tickfactor, maxdata)
Call locate(-tickfactor - Iblwid, maxdata - Iblhght / 2)
Picture2.Print Ibl
Let Ibl = Str(-(maxdata - 2))
Picture2.Line (-tickfactor, -maxdata / 2)-(tickfactor, -maxdata / 2)
Call locate(-tickfactor - Iblwid, -maxdata / 2)
Picture2.Print Ibl

End Sub

67

VITA

YUI1 Hui Lu

Cand idate for the Degree of

Master of Science

Thesis: BUILDING AN EXPERT SYSTEM BY INTERGRATING CLIPS WITH
VISUAL BASIC

Major Field: Computer Science

Biographical:

Personal D<lta: Born in Shanghai, the People's Republic of China, August 2, 1964
The daughter of Jian Yan Lu and Yi Qiao Ni.

Education: Received Bachelor of Science degree in Shangh;li Post ;lnd
Telecommunication College. Shanghai, China in July IlJin. COlllplcled the
requircmcnts for the Master or Science degree wilh il IlWjOl ill COlllpulcr
Science at Oklahoma Stale University in July, 20(JO.

Professional experience: Software Engineer, Raymond Karsan Associales,
Nebraska, USA, September 1999 to January 2000; Office dministralor,
ARCO Chemical China Ltd. Shanghai Representative Ollice, Shanghai,
China, November [<-;91 to April 1997; Sales and Marketing Represenlative,
Shanghai Ocean HOlel, Shanghai, China, March 19H9 10 May Il)91;
Technical Representative, Shanghai Long Distance Td~conlll1unication

Bureau, Shanghai, China. August InJ to February IlJi-i9.

