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CHAPTER I

INTRODUCTION

The hash table is a kind of data structure that has been developed and applied in

data processing since the beginning of the 1950s [7]. Because hash tables take a great

deal of main memory, their applications largely got under way in the 1970's [7]. With

advances in computer hardware, hash tables are becoming more and more popular.

Search techniques for data scattered on two or more dimensional storage,

sometimes referred to as hash techniques, have been developed to provide a means

whereby extemallabels, or keys, may be mapped to unique or nearly unique internal

numbers [7]. Extendible hashing has been widely applied for this kind of data retrieval.

[17]. However, in cases where data patterns are near random, multi-dimensional hash

tables would be more efficient for search and other data processing.

1.1 Background and Motivation

This study of two-dimensional hash tables is directed toward a geographic

contouring map system that is widely used in geology, agriculture, environmental studies,

and other similar applications [10] [18]. Gridding is a set of methods that evaluate the

value of regular grids from irregular known control points in space [1OJ. Gridding forms

a major part of the Contouring Map System (eMS); the other major component is

visualization. Gridding requires enormous search effort. Thus, it requires a highly

efficient data structure for search. Hashing is one of the most efficient and simple search

methods, especially for irregular, near random data. This thesis proposes a new data

1



structure, the M-D hash table, to fonn the basis of search and retrieval of data from multi

dimensional spaces.

1.2 Objectives

The research reported here has three objectives:

• to analyze, develop, and implement 2-D hash tables, including hash table

creation, hash function derivation, and clustering management;

• to improve perfonnance of hash table operations, where sufficient memory is

available, by reducing the number of probes required either to find a record

or to determine that it is absent; and

• to apply M-D hash tables in the context of CMS to improve gridding

perfonnance.

1.3 Organization

The rest of this thesis is as follows. Chapter II reviews related work in existing

literature. Chapter III introduces 2-D hash table features and implementation. Chapter IV

summarizes the perfonnance of two-D hash tables. Chapter V describes applications of

M-D hash tables. Finally, Chapter VI presents conclusions.



CHAPTERll

LITERATURE REVIEW

Data structures for main memory fall into three categories [7]: linearly or

sequentially accessible data structures (time complexity O(n», tree-based structures

(O(log(n» ), and the most efficient class, hash tables (0(1) ) [2].

2.1 The History of Hashing

The basic concepts behind hashing originated in the early 1950s [7], with chaining

widely applied to resolve conflicts; this constituted one of the first applications of linear

linked lists, used to represent buckets that contain more than one element for external

searching [7]. At about the same time the idea of hashing occurred independently to a

group of researchers at IBM, who originated the idea of open addressing with linear

probing for conflict resolution [7]. Developing hash functions by dividing by a prime

number and using the remainder as the hash address emerged in 1956, as did a second

open addressing strategy, that of random probing by independent hash functions [7].

By the late 1970s, most of the important currently recognized hash methods had

been introduced, including extendable hashing, and techniques that permit hash tables to

expand and shrink dynamically [14].

2.2 Hash Table

Hash tables can be viewed as a generalization of the simpler notion of ordinary

arrays. Hashing provides an extremely effective and practical technique for implementing
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basic dictionary operations (search, insertion, and deletion) with an average time

complexity of 0(1) [2].

A hash table T is an array of size m in which, ideally, each element k is stored at

T[h(k)}, where h is the hash function. This scheme permits constant time operations

under two assumptions [2]: (1) computing h is itself a low complexity operation; and (2)

no two keys hash to the same address, that is, h(k) = h(k') if and only ifk = k'. The first

assumption is usually unproblematic. The second, however, is not. When h(k) =h(k') for

two distinct keys k and k', and when both keys occur in the data, the result is called a

collision [2]. Several effective techniques to resolve collision have been developed.

Hence hashing scheme designers focus on two issues [7]: computationally simple hash

functions that reduce collisions; and collision resolution techniques.

2.2.1 Hash Function

There are three common schemes for creating hash functions: ha hing by division,

hashing by multiplication, and universal hashing [2].

• The division method:

The hash function is h(k) = k mod m . which puts a key k into one of m slots

[2]. Good values for m are primes. If m is an even number, h(k) will be even

when k is even and odd when k is odd. In addition, using a prime number for

m can easily avoid incomplete search (some buckets of a hash table cannot be

probed if m is divisible by offset) for collision resolution with open addressing

methods. Since this method requires only a division operation, hashing by this

method is quite fast.
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• The multiplication method:

The hash function is h(k) =Lm(kA mod 1)), where A is a constant in the range

oto 1 [2]. An advantage of this method is that the value of m is not critical

[2]. However, since this method requires two multiplication operations and

one division operation, it is slower than the division method.

• Universal hashing:

The main idea is to choose the hash function randomly in a way that is

independent of the keys that are stored and to select the hash function at

random at run time from a designed class of functions [2]. The advantage of

this method is that any fixed hash function results in an average time

complexity of 8(n). However, it can be difficult to design an ideal class of

functions [2].

2.2.2 Collision Resolution Techniques

• Resolution by Chaining

This technique places all the elements that are hashed into the same slot in a

linked list [2]. In a hash table in which collisions are resolved by this scheme,

an unsuccessful search takes time 80 + a) and a successful search takes time

eo + al2) [2], where a is the hash table load factor. Using this method, the

table size is not critical, and it usually has a good performance [2]. But it takes

more memory than open addressing methods do [7].

• Resolution by Open Addressing
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With open addressing, slots are probed until an empty one is found. The

following three methods are often used:

• Linear probing: h(k, i) =(h rk) +ci) mod m, where h rk) is the hash value

of initial probe; c is the offset for each probe; and i is between 0 and m-l

[2]. This method is easy to implement, but it suffers from a problem,

primary clustering (two keys have the same probe position, then their

probe sequence are the same [2]).

• Quadratic Probing: h (k,i) = (hrk) + c(i+ C2i2) mod m, where hfk) is the

initial probe value; C I and C2 :;t 0 are auxiliary constants [2]. It eliminates

primary clustering, but this method leads to secondary clustering (if two

keys have the same initial probe position, then their probe sequences are

the same [2]).

• Double hashing: h(k, i) =(h](k) + ih2(k» mod m, where h](k) is the initial

hash value; hlCk) is a computed offset of k. This method can eliminates

both primary clustering and secondary clustering [2].

2.3 Major Hashing Schemes

2.3.1 Linear Hashing

Linear hashing (not to be confused with linear probing), proposed by Litwin [8],

permits a hash table to expand and shrink dynamically without requiring an index. It is

mainly used in file structures to handle growth and shrinking of files [4]. Files grow in

two ways: overflow growth and regular growth. Regular growth under linear hashing
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with two partial expansions (LH2P) has two forms [8]: partial expansions and full

expansions. Each full expansion doubles the number of regular buckets in the file, and

consists of two partial expansions. The first partial expansion increases the number of

regular buckets by 50%, and the second increases the number by the same amount. Thus,

after the first partial expansion, nb =3*(m div 2); after the first full expansion, nb =2*m;

and after the second full expansion,. nb = 4*m; where m is the number of buckets for the

initial file or data, and nb is the number of buckets [8].

2.3.2 Extendible Hashing

Extendible hash tables are a dynamic data structure used most often as an

alternative indexing strategy to B-trees [4] [12], for example in databases. In extendible

hashing, locating a key and its associated infonnation never involves more than two

faults (one fault is one probe that did not find target position) [14], even for very large

data sets. In extendible hashing, each bucket records the number of bits of the hash

address that determine which keys are in that bucket. This number is called the bucket

depth. Initially, the number is the number of bits used by the root (thus, the initial number

of buckets =2 b) for all entries; it is increased by one each time a bucket splits [14].

2.4 M-D Space Data Access Methods

Data records in M-D Space Data (MDSD) contain more than one attribute. MDSD

can be accessed either by a single key, most often one on which all other attributes rely,

or by several keys, all used together. Single-key access is much easier than multi-key
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access [11]. The design of balanced data structures must be more difficult for .MDSD

(each record is identified by severa] attributes) than for one-dimensional data, since most

balanced structures for single-key data rely on a total ordering of the set of key values,

and natural total orders of multidimensional data do not exist. This section reviews

several multi-key data access methods.

Data and file structures can be divided into two broad categories: those based on

the specific set of data to be stored, and those based on the embedding space from which

the data set is drawn [11] [6]. Comparative search techniques such as binary search trees

fall into the first category: search directly focuses on the value to be stored. Address

computation techniques such as hash tables belong to the second class: the locations at

which records with a given k.ey may be stored are fixed regardless of the values or

contents of the rest of the data set [11].

2.4.1 Grid File: Multi-Key File Structure

Traditional file structures, such as inverted files, are extensions of file structures

originally designed for single-key access [11]. Grid file structures are designed to address

dynamic aspects of structures that treat all keys symmetrically, that is, data sets that avoid

the distinction between primary and secondary keys [11]. Focus on multiple symmetric

keys leads to the notion of a grid partition of the search space and to that of a grid

directory. These two concepts are the keys to a dynamic file structure [7] [11].

Grid Partitions ofthe Search Space

Each search technique partitions the search space into subspaces, down to the level
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of resolution of the implementation, typically determined by bucket capacity [6]. To

retrieve a data record, correlated attributes that are functionally dependent on each other

are more efficient than independent attributes [11]. Assuming independent attributes,

such as spatial dimensions in a geometric database system, grid partition of the search

space is obviously suited for range and partially specified queries.

We use the following tenninology and notation for the three-dimensional case [11]:

on a record space S =X * Y *Z, we impose a grid partition P =V * V * W by imposing

intervals V = (Vo, VI, ..., VI), V = (Vo, VI, ..., Vm), and W = (Wo. WI, "', Wn) on each axis

and then dividing the record space into blocks called grid blocks [11]. The grid partition

P =V * V * W is modified only by altering one of its components at a time. A one

dimensional partition is modified either by splitting one of its intervals into two, or by

merging two adjacent intervals into one [11].

The Grid Directory

The design of a bucket management system involves three parts [11]:

1. defining a class of assignments of grid blocks to buckets;

2. choosing a data structure for a directory that represents the current assignment;

3. finding efficient algorithms to update the directory when the assignment

changes.

The two-disk-access principle implies that all the records in one grid block must be stored

in the same bucket, although several grid blocks may share one bucket, so long as the

union of these grid blocks forms a rectangular box in the space of records [11]. The

feature of bucket regions obviously affects the speed of range queries, and of update to a

9



modification of the grid partition [6] [11].

The grid directory represents and maintains the dynamic correspondence between

grid blocks in the record space and data buckets. It is a data structure that supports the

operations needed to update the convex assignments (grid blocks to buckets) when a

bucket overflows or underflows [6]. A grid directory consists of two parts: first, a

dynamic k-dimensional array called the grid array, the elements (pointers to data) of

which are in one-to-one correspondence with the grid blocks of the partition; and second,

k one-dimensional arrays called linear scales that define a partition of a domain S [11].

For notational simplicity, let k =2, with record space S =X * Y. As described in [6]

and [11], A grid directory G for a 2-D space is characterized by

1. Integers nx and ny (extent of directory) for nx > 0 and ny > 0;

2. Integers Cx and cy (current element of the directory and current grid block) for

o< Cx < nx• 0 < cy < ny;

3. Grid array: G(O ... nx• 0 ... ny);

4. Linear scales: X(O.... nx). yeO ... , ny);

Operations defined on the grid directory consist of

1. Direct access: G(cX. cy)

2. Next in each direction

Nextxabove(cx) = (cx + 1) mod nx

Nextxbelow(cx) =(cx - 1) mod nx

Nextyabove(Cy) =(c.y + 1) mod ny

Nextybelow(cy) =(cy - 1) mod ny

3. Merge
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mergex:

mergey:

4. Split

splitx:

splity:

given px, 1 =s;; px < nx, merge px with nextxbelow; rename all

elements above px and adjust X-scale.

similar to mergex for any Py, 1 =s;; py < ny.

given px, 0 =s;; px =s;; nx, create new element px + 1 and rename all

cells above px:

similar to splitx for any py, 0 =s;; py =s;; ny.

Record Access

The array G is usually large, and so stored on disk (secondary storage); X and Y of

the linear scales are small, and kept in main memory. To access a record with two

independent attributes, a 2-key access scheme is used. The attribute values are converted

into interval indexes through a search (in main memory) of scales X and Y [l1] [6]. The

interval indexes provide direct access to the correct element of the grid directory, where

the bucket address is located. For example, consider a record space with attributes "date"

(with domain "Monday ... Sunday") and "time" (with domain "lpm ... 5pm"). The grid

partition in the recoru space is:

X =(Mon, Tues, Wed, Thurs, Fri, Sat, Sun);

Y =(lpm, 2pm, 3pm, 4pm, 5pm).

In a search for a fully specified query (rl, r2, ... , ), such as finding a record [Wed,

2:30pm], the attributes of record [Wed, 2:30pm] are converted into interval index 3 in

scale X, and 2 in scale Y. Grid files also handle range queries efficiently, including the

special case of partially specified queries [11].

11



CHAPTERID

M-D HASHING TABLES

Traditional hash tables based on one-dimensional arrays can only hold records

accessed by a single primary key. In fact, database systems frequently rely on compound

data types, such as class, record, and so on, with more than one primary key. For

processing some compound data with multiple primary keys, and in particular for multi

dimensional space data CMDSD), the current research proposes M-D hash tables

CMDHfs). This chapter presents hash table features and collision resolution strategies for

MDHfs.

3.1 2-D Hash Table Features

The studies reported here focus on 2-dimensional hash tables (2DHTs) T[m, n]

(Fig. 3-1); MDHTs of higher dimensionality are a straightforward generalization of the

two-dimensional case. In 2DHTs, key values with compound data types are hashed to

slots.

(0,0) (0,1) ... (O,m)

(1,0) (1,1) ...

... ... ...

(n,O) (I,n) ... (m,n)

Figure 3-1 2-D Hash Table T[m,n]
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2DHfs have the following characteristics:

1. Key K is a scattered point (kx, ky), where x and y are coordinates.

2. Hash value h(K) is between (0,0) and (m-I, n-l).

3. Hash function h consists of hx and hy, where hx is a hash function for key kxo hy is

a hash function for key ky, and 0::; hx(kx ) < m and 0:::; hy(ky) < n.

4. Each hash table has a load factor. a, that is the ratio of the number of elements in

the hash table to the table size.

5. Hashing functions:

General hash function for 2DHf is h(K) = (hx(kx), hy(ky)

Division Method: h(K) =h(kx, ky) = (hx(k)(), hy(ky» = «kxmod m), (kymod n»

Multiplication Method: h(K) = h(kx, ky) = (hx(kx), hy(ky)

= (Lmx(kx Ax mod l)J, Lmy(ky Aymod 1)])

3.2 Collision Resolution

3.2.1 By Chaining

Each element T[i, j] of a 2DHT is a pointer pointing to the head of a linked list,

each node of which contains a key K =[kx, ky] and a pointer the next node. Depending on

the application, nodes may also have additional fields for associated data. For our

purposes, we represent nodes as Node{K, P} where K has kx and ky, and P is the pointer.

We examine the following candidate algorithms.
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Algorithm C 1 (Chained hash table insertion)

Chained-Insert (T, K)

1. i = h(kx), j = h(ky) II hashing

2. IF T[i, j] is NULL THEN II insert

3. T[i, j] := &Node{K, P}, and T[i, j]->P:= NULL

4. ELSE Node{K, P}.P:= T[I,j]' and T[i,j] := &Node{K,P}

Algorithm C2 (Chained hash table search)

Chained-Search(T, K)

1. i:= h(k,,), j := h(ky)

2. IF T[i, j] is NULL THEN

3. unsuccessful search

4. ELSE searching in the linked list T[i, j]

Algorithm C3 (Chained hash table delete)

Chained-Delete(T, K)

1. i:= h(kx), j := h(ky)

2. delete the Node containing the K from the linked list T[i, j]

All of the above algorithms have theoretical time complexities of 0(1) for

insertion, 0(1+Va) for successful search or deletion, and 0(1+a) for unsuccessful

search.

14



3.2.2 Open Addressing

Linear Probing

Linear probing fixes an increment c, where c is a small integer, and m is not

divisible by c, and searches at locations separated by c through the hash table beginning

at the position where the collision occurred and continuing until an empty position is

found or the entire table has been searched. That is, given key K and hash table T[m, nJ,

the first probing position is T[hx(kx), hy(ky)J. Thereafter, if location T(i, j) is probed and

full, the next location examined is T[(i + c) mod m, (j + c) mod nJ, The values of m and n

must be not divisible by c, so that the table can be searched completely if necessary.

We can also probe row-by-row, which proceeds as follows. Let i be the number of

probes so far (where i = 0 represents the initial hash), let Xj be the column of the ith probe,

and let Yi be the row of the itb probe. Then Xo = hx(kx) and Yo =hy(ky). While i ::; m, T[Xi+l.

Yi+d = T[(xj+C) mod m, Yd. Each time i becomes a multiple of m, the current row has

been exhausted. At that point, T[Xi+l. Yi+d = T[(xi+C) mod m, (Yi+1) mod n], moving

search to the next row. If i reaches m*n, the entire table has been searched.

Algorithm L) (Linear probing insertion)

Linear-Probe-lnsert(T, K)

1. i =hx(kx), j =hy(ky)

2. DO LOOP:W~ET[I,j] is not empty OR count < mn-l

3. If i >= m THEN i := i - m, j ++

4. ELSE i := i + c II m % c "* 0

15



5. count ++

6. ENDLOOP

7. IF T[i, j] is empty THEN insert K into T[i, j]

8. ELSE is overflow

Algorithm L2 (Linear probing search)

Linear-Probe-Search(T, K)

1. i = h,,(kx), j = hy(ky)

2. DO LOOP: WHll.E T[i, j] is not empty AND count < ron - I

3. IF key[i, j] = K THEN found = true, BREAK II initial found = false

4. ELSE IF i >= m-I THEN i := i - m, j := j + 1

5. ELSE i := i + c II c is offset

6. count := count + I Ilinitial count = 0

7. ENDLOOP

8. IF found = true THEN successful search K is in T[i, j]

9. ELSE unsuccessful search

Algorithm L3 (Deletion from tables built by linear probing)

After an element is deleted from the hash table at T[m, nl, a gap (an empty bucket

where the key has been deleted) appears in the hash table T[m, nJ. Since search nomlally

halts if the position where gap appears is probed, the result of this search will be incorrect

if the key is in table past the gap. To avoid the gap appearing and maintain the properties

of hash tables with linear probing, the hash table must be searched after deletion for keys
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that would have been inserted at that location had the deleted element not been there. The

last such element will be moved up to this position to eliminate the gap.

Linear-hash-delete(T, K)

1. K is found at T[i, j]

2. delete K from T[i, j]

3. gx = i, gy = j

II gap occurs

" for memorizing the gap position

4. LOOPI: WHll...E T[i, j] is not empty AND count != mn - 1

5. i := i + c

6. IF i >= m THEN i = i - m, j := j + 1 "for next row

7. ENDIF

8. t" := i, t y := j " temporary position

9. LOOP2: WHll..E i != h"(key[t,,, ty].k,,) or j != hlkcy[t", ly].ky) " no first hashed in

10. i := i - c

11. IF i < 0 THEN i := m + i, j := j - 1 "back one row

12. END IF

13. IF i =g" and j = gy THEN BREAK " for inserting to gap

14. END LOOP2

15. IF i = g" andj = gy THEN

16. T[gx, gy] := T[t", ty]

17. delete T[tx, ly]

18. gx:= i := t", gy := i := ty

19. END IF

20. count := count + 1

" move position to gap position

1/ new gap

" count is the number of searches
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21. END LOOPl

There are two problems underlying the linear probe method [7]. The first, primary

clustering, occurs because any key hashed to position h follows the same hashing pattern

as all other keys hashed to h. Secondary clustering occurs because two keys that have the

same initial probing position also have the same probing sequences. To avoid primary

and secondary clustering, we examine next a method that does solve the problem, double

hashing.

Double hashing

Double hashing is an attempt to approximate an ideal strategy that responds to

collisions by jumping randomly to a new table position. This strategy is called random

hashing [2] [7]. The primary problem with random hashing is reproducing the probe

intervals in the subsequent search. To do this, we apply a second hash function to the

original key, using that for an increment. This approximates random hashing, and it

eliminates primary clustering because two distinct keys that are initially hashed to the

same position almost always use different increments derived from the second function.

The values produced by h2 (step size of next hash) must be relatively prime to column

size m of the hash-table to insure that every position of the table is eventually probed.

The process of the probe is repeated unti I the target key or an empty position is found or

until the table is identified to be full and not to have the target key.
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Algorithm Dl (Insertion with double hashing)

Double-Hash-Insert(T, K)

1. i = hxl (kx), j = hy(ky), and c = hx2(kx) II T[i, j] is current probe, c is the step size
II for next probe

2. LOOP: WHILE T[i, j] is not empty AND count < mn-l II count is number of probes

3. IF the (count mod m)= m THEN j := j + 1

4. ELSE i =i + c

5. count := count + 1

6. END LOOP /1

7. IF T[i, j] is empty THEN Insert K into T[i, j]

8. ELSE the table is overflow

Algorithm D2 (Search with double hashing)

Double-Hash-Search(T, K)

II T[i, j] is current probe, c is the step size

2. LOOP: WIllLE T[i, j] is not empty AND count < rnn-l II count is the number of
II probes

3. IF T[i, j] .key is equal to K THEN found is true, BREAK

4. ELSE IF the (count mod m)= m THEN j := j + I II to search next line

5. ELSE i = i + c

6 count := count + 1

7. ENDLOOP

8. IF found is true THEN search is successful

9. ELSE search is unsuccessful
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3.3 Improving on Open Addressing Methods

To improve perfonnance of open addressing methods, especially for unsuccessful

searches, two models are introduced in this paper. Each model uses two flags in each

bucket of the hash table to record hashing states (Figure 3-2). Flags of different models

record different hashing infonnation.

0,0 0,1 ... O,m Record

1, ° 1, 1 ... I,m ... flags key value...

... ... ... ... 'r
I kx ky IN,O N,l n,m...

Figure 3-2 2DlIT T[n,m] with Extra Memory flags

3.3.1 Modell: ffj key value

First, we introduce the concept priority hashing, in which any record that initially

hashes to a bucket has priority to take the bucket over any record that must probe at least

once after initial hash to reach it, even if such a record already inhabits the bucket. The

displaced record probes forward to find a new location. If more than one record initially

hashes to the same bucket, priority is assigned on the basis of the sequence in which the

records appeared.
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In Modell, two flags Ne and Npin each bucket are initialized to O. Ne represents

the clustering factor (the number of Ks which initial by hashed to the same bucket); Np

represents the number of probes of the record or key in the current bucket. Each bucket

contains the following fields: Ne, Np, key (kx, ky) for 2DHT, and other attributes. In

addition, Modell requires priority hashing.

In searching for a record with key K, we compute the position T[i, j] to which K is

first hashed. IfT[i, j].Nc is zero, no record has been first hashed to this position T[i, j],

and the search is unsuccessful. If T[i, j] .Ne is 1, the search is successful if and only if T[i,

j].key =K. Moreover, if T[i, j].Ne is more than one for a table with linear probing, we can

often identify successful or unsuccessful searches based on the values of Nc and Np

before an empty bucket occurs or the whole table has been probed. Suppose P is the

number of probes for the search key K. When P is one (for the first probe), search is

successful just in case T[i;, j].key =K. When P is two (for the second probe), if P is equal

to T[i2, j2].Np, we compare K with T[iz, j2].key; search is successful in the case that K

and T[i 2, j2].key are equal; and so on up to the number of comparisons when K and T[ip,

jp].key equals to T[i, j].Ne, where T[ip, jp] is the position where the record is probed P

times. In this case, T[i, j].Nc is the number of comparisons between K and T[ip, jp] .key;

the search is successful when K =T[ip, jp].key, or unsuccessful if K does not equal to

T[ip, jp].key.

Modification ofLinear Probing with Modell

Algorithm IA (Insertion of linear probing with Modell)
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Insertion with Modell requires priority hashing. In addition, Nc (the number of

keys that hashed to this bucket initially) increases by 1 after initial hash. Finally, when

the target bucket is found, the number of probes is assigned to Np.

Linear-Insert-Model1(T, K)

1. i =hxCkx), j =hy(ky}

2. count:= 1 lito record the probed number

3. IF T[i, j].Np is zero THEN Ilempty position

4. insert K into T[i, j], and set T[i, j].Nc := 1, T[i, j].Np := 1

5. ELSE

6. IF T[i, j].Np is greater THAN 1 then Ilwithout priority record

7. temp=T[i,j]

8. insert Kinta T[i, j], T[i, j].Nc := 1, T[i, j].Np := 1

9. count := temp.Np

10. K := temp.key

11. ELSE

12. count := 1

13. T[i, j].Nc := T[i, j].Nc + 1

14. LOOP: WI-ill..E T[i, j].Np is not zero AND count < mn-1.

15. count := count + 1

16. i := i + c

17. IFi>m-1 THENi :=i-m,j :=j + 1

18. END IF
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19. END LOOP

20. IF T[i, j].Np is zero THEN

21. insert K into T[i, j]

22. T[i, j].Np := count

23. ELSE T[n, m] is overflow

Algorithm L5 (Search of linear probing with Modell)

Linear-Search-Model1(T, K)

1. i:= hx(kx), j :=hy(ky)

2. IF T[i, j].Nc is 0 THEN search is unsuccessful

3. ELSE

4. flag := T[i, j).Nc

5. LOOP: WHILE flag is greater then 0

6. IF count equal to T[i, j].Np THEN IfT[i, j). key and K are primary

7. IF T[i, j].Key equal to K THEN 1/ clustering or same value

8. search is successful

9. break

10. ELSE flage := flag - 1

11. ELSE

12. := i + 1,

13. IFi>m-1 THENi :=i-m,j :=j + 1 END IF

14. count := count + 1 1/ count initial 1

15. ENDLOOP
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16. IF flag is greater 0 TIffiN search is successful

17. ELSE search is unsuccessful

Algorithm L6 (Deletion of linear probing with Modell)

This is similar to Algorithm L3, except that Nc and Np in each position that

undergoes deletion should be updated. In a hash table with open addressing, obviously,

after deleting some keys, search results may not be accurate because of gaps. Without

using extra memory to track the probing state of each record, updating the hash table after

deletion is inefficient. However, with a little additional memory, the problems resulting

from deletion can be resolved efficiently by updating the hash table.

II for memorizing the gap position

II c is step size

Linear-Delete-Modell(T, K)

1. K is found at T[i, j]

2. delete K from T[i, j]

3. gx = i, gy = j

4. i:= i + c

II gap occurs

S. IF i > m - 1 THEN i:= i - m, j := j + j

6. END IF

7. IF T[gx, gy].Nc > 1 THEN 1/ first probe

8. T[gx, gy].Nc := T[gx, gy].Nc - 1

9. count := 2

10. LOOP: WHILE count != T[i, j].Np II to find the primary clustering with K

11. count := count + 1

12. i := i + c lie is step size
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13. IF i > m - 1 THEN i := i - m, j := j + 1

14. END IF

15. ENDLOOP

16. insert T[i, j].key into T[g,,", gy], T[g)(, gy].Np := 1

17. gx :=i,gy:=j

18. END IF

22. LOOPl: WIffi...E T[i,j] is not empty AND count != mn - 1

II temporary position

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

i := i + c

IF i >= m THEN i = i - m, j := j + 1/1 for next row

END IF

tx := i, ty := j

count2 := 0

LOOP2: WHILE i != hxCkey[tx, ty].k)() or j != hy(key[tx, ty].ky) II no first hashed in

1 := )-C

IFi<OTHENi:=m+i,j:=j-lllbackonerow

END IF

count2 : = count2 + 1

IF i = g)( and j = gy THEN break II for inserting to gap

END LOOP2

IF i = gx andj = gy THEN

T[gx, gy] := T[t)(, ty] II move position to gap position

T[gx, gy].Np := T[tx, ty].Np - count2

delete T[t)(, ty]
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39. gx:= i := tx, gy := j := ty

40. ELSE i := tx, j := t,.

41. count!:= count! + 1

42. END LOOPl

II new gap

II count is the number of searching

Modification ofdouble hashing with Modell

The modifications of Modell for double hashing are very simi lar to those for

linear probing. Both methods (double hashing and linear probing) Jet Nc and Np of Model

1 record the clustering factor for each bucket and the number of probes for each key,

respectively. Since the offset of probing for double hashing varies with k, to guarantee m

is not divisible by the offset, row-by-row probing is used in double hashing. In row-hy

row probing, the next row is probed only after all positions of the current row have been

probed, continuing until the whole table has been probed.

Algorithm D3 (Insertion of double hashing with Modell).

Double-Insert-Model1(T, K)

1. i:= hx I (k,), j := hy(ky)

2. IF T[i, j].Np is Zero THEN

3. temp.Nc := 1

4. temp.Np := 1

5. ELSE

6. IF T[i, j].Np is 1 THEN

7. temp.Np := 1
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8. T[i, j).Nc := T[i, j).Nc + 1

9. ELSE

10. temp := T[i, j]

11. T[i, j].Key := K l/insert the key into the position

12. T[i, j].Nc := 1. T[i, j].Np := 1 Ilset flags

13. END IF

14. LOOP: WHlLE T[i, j].Np is not zero AND count is less than nm-l

15. i:= (i + h/(kX» mod m

16. j:= j + count I m

17. count := count + 1

18. END LOOP

19. IF T[i, j].Np is zero THEN

20. T[i, j].Key := K

21. T[i, j).Nc := temp.Nc

22. T[i, j].Np := temp.Np + count

23. ELSE the table overflow

Algorithm D4 (Search of Double Hashing with Modell)

Double-Search-Model1(T, K)

1. i:= hxI (kx), j :=hy(ky)

2 IF T[i, j).Nc is 0 THEN search is unsuccessful II no clustering

2. ELSE

3. flag := T[i, j].Nc
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IF flag is greater 0 THEN search is successful

ELSE search is unsuccessful

LOOP: Wlill...E flag is greater then 0

IF count equal to T[i, j].Np THEN IfT[i, j].key and K are primary

IF T[i, j].Key equal to K THEN II clustering or same value

search is successful

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

BREAK

ELSE flage := flag - 1

ELSE

:= (i + h/(kx)) mod m

j := j + count 1m

count := count + 1

END LOOP

II keep probe in same row

II count initial 1

3.3.2 Model 2: I p~, IPm~ I key I value I

This model uses two integer fields P min and Pmax in each bucket. Pmin is the

minimum number of probes and Pmax is the maximum number of probes among the keys

that initially hashed to this position. So the number of probes for any key with initial

probing position T[i, j] is between T[i, j],Pmin and T[i, j].Pmax . Initially, all P min and P max

fields are zero. Thereafter the values of Pmin and Pmax in any position are updated when

keys hash initially to that position are inserted or deleted. Under linear probing, to search
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for k row-by-row, the first probe position is T[(i + Pmin*c) mod m, j], where c is an offset

that is a constant for the linear probe or a variable with key for double hashing. For any

key, the maximum number of probes past T[i, j] is Pmax - Pmin whether the search is

successful or unsuccessful.

Algorithm L7 (Insertion of Linear Probing with Model 2)

Linear-Insert-ModeI2(T, K)

1. i:= hx(kx), j = hy(ky)

2. temp_x := i; temp_y := j

3. count:= 1;

4. IF T[i,j].key is NULL THEN

5. insert K into T[j, i].p_min := 1, TU, i].p_max := 1

6. ELSE

7. LOOP: WHll.E T[j, i].key is not NULL and count <= mn

8. i := i + c

9. IF i is greater than OR equal to m THEN

10. i := i - m

11. j := U+ 1) mod n

12. count := count + 1

13. END LOOP

14. IF T[j, i].key is NULL THEN

15. insert K into T[j, i]

16. IF count is less than T[temp_x, temp_y].p_min THEN
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17. T[temp_x, temp_y).p_min := count

18. IF count is greater than T[temp_x, temp_y).p_max THEN

19. T[temp_x, temp_y).p_max := count

20. ELSE: overflow

Algorithm L8 (Search of Linear Probing with Model 2 )

Linear-Search-Mode12(T, K)

1. i:= hx(kx), j := hy(ky)

2. min:= T[j, i).p_rnin

3. times:= T[j, i).p_max - Tfj, i].p_min

4. LOOPl: FOR index 1 TO min - 1

5. i := i +c

6. IF i is equal to or greater than m THEN

7. i:=i-m

8. j := (j + 1) mod n

9. END LOOPI

10. LOOP 2: FOR index 1 TO times + 1

11. IF T[j, i).key is K THEN

12. found := 1

13. BREAK

14. i := i + c

15. IF i is equal to or greaterthan m THEN

16. i :=i-m

17. j := U+ 1) MOD n
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18. count := count + 1

19. END LOOP2

20. IF found THEN successful search

21. ELSE unsuccessful search

The procedures of Model 2 for double hashing are similar to those of linear probing.

The difference is that the offset for linear probing is the same constant for all keys,

whereas for double hashing it is the value of the second hash function for the key in

question. In double hashing, most keys with the same primary hash values, have different

second hashing values. Thus, double hashing can avoid both primary and secondary

clustering.
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CHAPTER IV

HASHING PERFORMANCE

4.1 Expected Performance

4.1.1 Average Perfonnances of Various Hashing Methods

The performance of hashing depends on the hashing function that distributes the

set of keys into the hash table if the load factor ex. is fixed. In the worst case, the hash

function hashes all n keys to the same slot, and performance is 8(n). If the hash function

initially distributes each of n keys into a unique fixed position in the hash table with m

slots (n < m), however, the performance of an insertion or a search will be exact by1. In

fact, average performance is much better than the worst case, but a little worse than the

best case. Table 4-1 lists the average theoretical performance of successful and

Table 4-1 Expression of probes expected for successful and unsuccessful
search, as well unsuccessful search with improved Open Addressing in a hash
table ([2] [7] [14]).

Methods Unsuccessful Successful

Linear probe 1[1 I J 1(I 1)
"2 + (l-a)2 "2 + (I-a)

Double I 1 I
-- -In--

hashing I-a a ]-a

1
Chaining l+a l+-a

2

Improved

1

I-a

2 1
-In---l
a I-a
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Unsuccessful searches and the performance of unsuccessful searches improved for open

addressing. These expected perfonnance values assume unifonn hashing [2], i.e., that any

key is equally likely to hash to any slot in the hash table. From the expressions, it is easy

to see that the performance of the various hash methods depend only on load factor a., not

on table size. By providing reasonable values of a, we can calculate precise performance

measures for the various methods. The results in Table 4-2 show various performance

characteristics of different hashing methods.

Table 4-2 The number of probes expected for successful, unsuccessful, and
improved searches in a hash table (C: Chaining, L: Linear Probe, D: Double Probe,
S: Successful Search, US: Unsuccessful Search, P: Improved Unsuccessful search).

Load C-US C-S L-US L-S L-P D-US D-S D-PFactor
0.20 1.20 1.10 1.28 1.13 1.25 1.25 1.12 1.23

0.30 1.30 1.15 1.52 1.21 1.43 1.43 1.19 1.38

0.40 1.40 1.20 1.89 1.33 1.67 1.67 1.28 1.55

0.50 1.50 1.25 2.50 1.50 2.00 2.00 1.39 1.77

0.60 1.60 1.30 3.63 1.75 2.50 2.50 1.53 2.05

0.70 1.70 1.35 6.06 2.17 3.33 3.33 1.72 2.44

0.80 1.80 1.40 13.00 3.00 5.00 5.00 2.01 3.02

0.90 1.90 1.45 50.50 5.50 10.00 10.00 2.56 4.12

4.1.2 Required Memory

One of the most important criteria for the performance of a data structure, memory

requirements, differs for the two collision resolution techniques (chaining and open

addressing). For open addressing, the required memory is constant: the table size

multiplied by the memory occupied by one element. However, for external chaining, the

required memory is a linear function of the load factor.
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Assuming that the table size is T and that each element takes i words of memory,

the memory required by the different hashing methods is shown in Table 4-3.

Table 4-3 The Memory Requirements for Different Methods (T: Table size, i: memory
occupied by one element, n: number of records).

Methods Memory requirements

Open addressing T * I I

Improved Open addressing T*(i+l)

Chaining T+n(i+l)

4.2 Testing for Various Hashing Methods

This section presents testing results concerning actual perfonnance of the search

algorithms discussed in chapter 3. All of the algorithms tested were programmed by the

author in standard ANSI C and tested on the Microsoft Visual C++ 6.0 compiler under

Windows NT and the standard C++ compiler under SunOS 5.7. Performance of various

methods based on two-dimensional hash tables was tested. Performance for higher

dimensional hash tables can be inferred from that of 2DHTs.

4.2.1 Testing Procedures

Three things were considered while testing the various algorithms: load factor,

table size, and test data (keys). In order to make comparisons, the same data were

collected for testing various different methods with various table sizes and load factors.
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Each method was tested with twelve of table sizes (8X4, 8X8, 16X8, 16X16, 32X16,

32X32, 64X32, 64X64, 128X64, 128X128, 256X128, and 256X256), ten load factors

(from 10% to 100% by 10% increments), and with four sets of test data (keys). The four

test data sets were produced by a random number generator to avoid duplicated keys.

Each test data set was generated with a different seed. Within each set of test keys, each

test key must be different from all others. Tests of successful and unsuccessful searches

used test data in different amounts and of different values.

To test performance of successful search for each method, the amount and the

values of test data (keys) should be the same as those that have been inserted in the table.

The number of keys tested is the product of load factor and table size. However, to test

performance of unsuccessful search for each method, all the keys tested are different

from any data inserted into the table. The number of keys of each set depends on the table

size. A set of fifty keys was used the 8X4 table, one hundred keys for 8X8, two hundred

for 16X8 and 16X16, four hundred for 32X16, and five hundred for tables at 32X32 anJ

over.

4.2.2 Test Results

To facilitate analysis and comparison of performance both within and across

algorithms, all test results are listed in the tables in Appendix A. In Tables A-I to A-14,

each number represents an average successful or unsuccessful search time per key for a

specified algorithm, hash table size, and load factor. In Tables A-15 and A-16, each

number is an average number of search probes for a single key for one algorithm and one

kind of hash table size when load factor is less than or equal to 90%, and total average
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perfonnance in searching a single key for all the methods with various hash table sizes.

These tables show that actual search performance, like theoretical performance, does not

depend on hash table size, especially for the chaining method. But with open addressing

hashing, when the table size is less than 32X32, search probes increase with table size,

whereas table size no longer affects performance for 32X32 or larger tables. Figure 4-1

and Figure 4-2 show the relationship between average search time and table size. Since

performance is not stable with small hash tables, to increasing accuracy, all data used for

analysis in this research are obtained from testing with hash tables whose size is greater

than 32X32.

4.2.2.1 Chaining Hashing

~Successful

-0- Unsuccessful

2.50

2.00

; 1.50E
i=
.c
u.. 1.00!

0.50

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Load Faactor

Figure 4-3 Search in Chaining Hash Table
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The test results (Table A-I and Table A-2 in Appendix A) of Algorithm C)

(Chaining hash table insertion) and Algorithm C2 (Chaining hash table search) indicate

the following performance characteristics. The average search times of each key does not

vary with table size. However, search times increased with load factor. For successful

searches, average search times are from 1.0444 to 1.4906 corresponding to load factors

from 10% to 100%, respectively. For unsuccessful searches, the range of average search

times is from 1.1014 to 2.0004. Figure 4-3 shows that search times for chaining hash are

a linear function of load factor.

4.2.2.2 Linear Probing

Tables A-3 and A-4 in Appendix A list successful and unsuccessful search

performance of Algorithm L2 (Linear Probing Search). Successful and unsuccessful

search performance improved by Modell is listed in Table A-5 and Table A-6. Improved

performance by Model 2 can be found in Table A-7 and Table A-8.

Without improvement, successful and unsuccessful search performance of

Algorithm L] (Linear Probing Insertion) and Algorithm L2 (Linear Probing Search) is

listed in Table A-3 and Table A-4 of Appendix A. When the hash table is not full (load

factor under 90%), search performance, whether successful or unsuccessful, is not

affected by table size, but increases load factor as shown on Figure 4-4. However, when

the hash table is full (load factor is 1), the performance of search, especially for

unsuccessful searches, changes with table size.
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Figure 4-4 Search in Linear Probing Hash Table

Table A-5 and Table A-6 in Appendix A list the results of successful and

unsuccessful searches with linear probing improved by Modell; Table A-7 and Table A-

8 are the results of perfonnance of linear probing improved by Model 2. Model I does

not improve successful search at all, whereas Model 2 shows some improvement for

linear probing (Figure 4-5). Figure 4-6 shows the improvement by Modell and Model 2

for unsuccessful search by linear probing. Both Modell and Model 2 give excellent

improvement for unsuccessful search, especially when the hash table is full. Average

unsuccessful search times for linear probing without improvement is18578.2 (in Table A-

4),59.38 with Modell improvement (shown in Table A-6), and 33.05 with Model 2

improvement (Table A-8).
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4.2.2.3 Double Hashing

Table A-9 and Table A-lO in Appendix A show the results of successful and

unsuccessful search perfonnance for double hashing; Table A-II and Table A-12 list the

results of improved double hashing with Modell, and Table A-13 and Table A-14 show

the results of improved double hashing with Model 2. Perfonnance of double hashing is

not affected by table size when the table size is at least 32X32, but is affected load factor.

Figure 4-7 shows that the average number of searches with double hashing

increases nonlinearly with load factor, especially for unsuccessful search.
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Perfonnance of double hashing improved by Modell and Model 2 is shown in

Figure 4-8 for successful search and Figure 4-9 for unsuccessful search. As with linear

probing, Model 1 does not improve the performance for successful search by double

hashing and degrades the performance for successful search when load factor is greater

than 0.6. Model 2 can improve the performance for successful search by double hashing,

and the rate by which performance improves increases with load factor. When load factor

is 0.9, performance is improved by 18%. However, both Modell and Model 2 improve

performance of unsuccessful search, and improvement increases nonlinearly with load

factor. When load factor is 0.9, search times improve by 78 percent of over perfonnance

of unsuccessful searches by unimproved double hashing. When load factor is less than

0.9, Modell is a little better than Model 2 for an unsuccessful search by double hashing.

4.3 Analysis and Comparison

Table 4-4 and Table 4-5 summarize the various hash methods' perfonnance on

successful and unsuccessful searches. The results of testing show that chaining performs

best among the various hashing methods; in addition, separated chaining does not require

contiguous memory for chains. However, chaining needs more memory than open

addressing; in addition, chaining must use pointers to complete various operations.

Among open addressing hash methods, double hashing proves for better than

linear probing in terms of search performance, because double hashing eliminates both

primary and secondary clustering. In linear hashing, it is easy to set up an offset that is

relatively prime with table size of one row for 2DHT. Unlike linear probing, in double

43



Table 4-4 Average Number of Successful Search from Testing

% Ch L D L-M1 D-M1 L-M2 D-M2

0.10 1.0444 1.0519 1.0511 1.0519 1.0509 1.0499 1.0492

0.20 1.0904 1.1222 1.1143 1.1222 1.1135 1.1137 1.1057

0.30 1.1416 1.2111 1.1858 1.2111 1.1858 1.1903 1.1680

0.40 1.1874 1.3336 1.2730 1.3336 1.2733 1.2913 1.2370

0.50 1.2393 1.4974 1.3801 1.4972 1.3798 1.4121 1.3163

0.60 1.2896 1.7438 1.5198 1.7428 1.5205 1.5893 1.4170

0.70 1.3367 2.1853 1.7242 2.1809 1.7296 1.8947 1.5617

0.80 1.3906 3.0072 2.0229 2.9986 2.0332 2.4498 1.7596

0.90 1.4337 5.3654 2.5896 5.3357 2.6059 3.9970 2.1170

1.00 1.4906 69.9121 8.8522 68.5022 8.9408 44.4590 6.0920

Table 4-5 Average Number of Unsuccessful Search from Testing

% Ch L D L-M1 D-M1 L-M2 D-M2

0.10 1.1014 1.1191 1.1153 1.1033 1.0988 1.1029 1.1034

0.20 1.2001 1.2781 1.2526 1.2051 1.1859 1.2032 1.2014

0.30 1.2994 1.5217 1.4384 1.3213 1.2723 1.3152 1.3071

0.40 1.4030 1.9030 1.6791 1.4587 1.3637 1.4433 1.4186

0.50 1.5059 2.4932 2.0157 1.6165 1.4606 1.5752 1.5331

0.60 1.6040 3.6271 2.5137 1.8158 1.5728 1.7427 1.6711

0.70 1.7029 6.1520 3.3789 2.1826 1.7221 2.0366 1.8369

0.80 1.8022 12.7370 5.1298 2.8720 1.9348 2.5229 2.0551

0.90 1.8972 44.0295 10.5758 4.7336 2.3584 3.7540 2.4180

1.00 2.0004 18578.3 18578.3 59.3806 8.3818 33.0554 4.8982

hashing, the value of h2(K) for every key must be set to be a prime compare table and

row size with increment size. This is important because jf the table or row size m and

offset h2(K) for double hashing (or c for linear probing) have a common divisor d > I for

some key K, then a search for key K would search only lId of the hash table. The
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convenient way to resolve this problem is to let m be a power of 2, and to design h2 so

that h2(K) is always odd.

To improve performance for open addressing hash methods, this research

proposes Modell and Model 2. Comparing the Models, Model 2 proves highly effective

for linear probing and double hashing, because it can improve perfonnance not only for

unsuccessful search, as model 1 does, but also improve for successful search. Although

Modell cannot improve performance for successful search, it may be very useful for

special applications. Because Model 1 has a flag Nc recording the number of keys that are

initially hashed to that bucket, and uses priority hashing (the key with initial probe will

take over the bucket occupied by a key with more than one probe), it can retrieve a record

by a known index if the record with the initiaJ probe has particular significance.

Moreover, Modell is better than Model 2 for unsuccessful search with double hashing.

Comparing Table 4-2, containing expected performance results, and Table 4-4

and Table 4-5, containing the results of practical perfonnance for all the hashing

methods, we see that theoretical and actual performances are very similar. Thus, the

practical test supports the algorithms discussed in chapter 3.
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CHAPTER V

APPUCATION IN GRIDDING

5.1 Contour Map System

Contour Map System (eMS) involves three basic operations: Hashing, Gridding, and

Visualizing (Figure 5-1). The visualization module reads in regular matrices and uses

them to produce contour maps; but most data collections are not uniform. Especially in

the natural sciences, observations are usually scattered irregularly across the map area.

Contour Map System

Library

Library

Library

Target Results

Figure 5-1 Contour Map System
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In the CMS visualization module, as in most other contouring programs, graphic displays

can be made only on regular points in every matrix grid. Therefore, in CMS, the second

module, the gridding module, creates such numerical matrices from irregularly

distributed data. In fact, the module that generates a regular grid matrix from scattered

data points is the most important procedure in the graphics package. The first module

contains a set of algorithms for loading the sample data into a data structure that lets

gridding find efficiently. Since this work concentrates on multi-dimensional hash tables,

we refer to the first module as Hashing. The performance of the first module directly

affects the efficiency of the second.

5.2 Gridding in Contour Map System

Gridding, the second module in eMS, is the estimation of values of the surface at

a set of locations arranged in a regular pattern that covers the mapped area. In general, the

values at regular grid points of the surface are not known, and must be estimated from

irregularly located control points where the values of the surface are known. Known

spatial data from various surveys, especially in GIS, consists of randoml y located X-y-z

values with fixed ranges (as in Figure 5-2 a). While X and Y are often geographic

coordinates, they might also be parameters such as temperature or pressure for other

kinds of maps. Z is a value such as elevation, thickness of stone, depth of ocean, saltiness

of water, and so on. Each spatial data point is expressed by (x, y, z); it is also called a

control point or sample data point (shown in Fig 5-2 a).

The grid points (or nodes) are usually arranged in a square pattern (shown in

Figure 5-2 b). The spacing is under user control, and is one of many parameters that must
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be chosen before gridding. The area enclosed by four grid nodes is called a g.rid cell. If a

large size is chosen for the grid cell, the resulting map will have low resolution, but can

be computed quickly. Conversely, if the grid cells are small, the contour map will have

high resolution, but will take more running time and will be expensive to produce.

.Figure 5-2 Procedure of Gridding

Gridding in eMS generates a grid matrix of estimated Z values for regularly

spaced X and Y values from irregularly spaced X, Y, and Z sample data points in three

essential steps [10]. The first step is determining the matrix size and grid cell size. The
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grid matrix size (number of grid nodes) depends on the number of control data points.

Second, the user must choose the mathematical function to use in estimating grid values

[18]. In the third step, users choose search algorithms. Both the search procedure and the

mathematical function have significant effects on the performance of eMS; search

methods are especially important. What kind of search method is efficient depends on the

data structure used to hold control points, which is produced by the first module.

The estimation process estimates the values for every grid node in the mapped

area. Each node is estimated from a collection of nearby control points (shown in Figure

5-2 c). The procedure is repeatedly applied across the map area until the whole map area

is represented by regular grids (Figure 5-2 d).

5.3 Hashing in Contour Map System

In order to improve the performance of gridding in CMS for control data points that

are scattered in a near random fashion, we propose two-dimensional hashing as the data

processing method in the first module. The near random nature of the data, given a

reasonable hash function, produces nearly uniform hashing. Hence the first module

produces a 2DHT holding all the control data for the gridding module. The hashing

module proceeds in two major steps. The first defines hash table size; the second selects a

hashing method. The hash table size depends on the number of control points in the map

area, the grid matrix size, and the maximum effective distance (radius) from the grid of

its control points. Since the load factor is always fixed and is usually between 0.5 and 0.8,

hash table size is Kia, where K is the number of control points and a is the load factor.

Therefore, hash table size ranges between KlO.S and KlO.8, and improved double hashing
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is recommended both for loading data into the hash table and for searching in the

gridding module.

5.3.1 Hashing Function

Since search focuses on control data at an exact location on map area, (as opposed

to range searches, for instance), the hashing function chosen must hash control points for

the same grid cell into the same bucket in the hash table as shown in Figure 5-3. For

example, data located in the (20 ... 40, 10 ... 40) field should be in [0,0] in hash table,

data in the (40 ... 60,40 ... 70) field will be in [1, lJ, and so on. This produces a result

similar to a grid directory (reviewed in chapter 2). But the methods handle data clustering

in different ways. To resolve the clustering problems, the grid file method split the cell;

however, the hashing method probes the key repeatedly until an empty bucket appears.

(20,10) 40 60 80 (10,100)

1

4

7

-------• ....... ~, ~ .ro 2]
0 LV,V'J [0,3]

-- ... ~ --.
~- -

0
L , • J [1, 1] [1,2] [1, 3}

•... .- ...
[2, 3}- , ol"'. VJ L"', l J ... [2,2}

(\j ...
...

...f3,2]- LJ, VJ ... 13. 11 [3,3]..- --
(10,130)

a
(100,130)

b

Figure 5-3 Hashing Sample Data Point to Hash Table: a. map area (X: 20 ... 100,
Y: 10 ... 120), b. two dimensional hash table

50



(5.l)

(5.2)

Division Method:

h(K) = h(kx, ky) = «hx(kJ{), hy(ky))

hxCkx ) = LLK.x - J / Lxmax - xminJ * mJ mod m

hy(ky) = LLK.y - YminJ / Ly max - YminJ * nJ mod n

K.x is the X coordinate value and K.y is the Y coordinate value of the cont.rol data

K. Xmin and Xmax are the minimum and maximum X coordinate values in the map area;

Ymin and Ymax are minimum and maximum Y coordinate values. Thus the map area is

(Xmin ", Xmax, Ymin ... Ymax,).

5.3.2 Collision Solutions

To avoid primary and the secondary clustering, we choose double hashing to

resolve collisions in CMS. Double hashing uses a general hashing function of the

following form [2]:

h(K, i) =(hl(K) + ih2(K)) mod m

where hI and h2 are auxiliary hashing functions. T[h.(K)] is the initial hash position;

h2(K) is the offset for successive probing from the previous position; and m is the hash

table size.

CMS uses collision solution strategies and clustering control for two-dimensional

hash tables based on double hashing theories. However, to reduce the calculation times of

division or multiplication, which are disadvantages in the hashing method, after first

probing with X and Y values, only the X value of each key will be calculated by the

double hashing method, as in Algorithm Dl in chapter 3. Therefore, hashing sequences
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probe row by row. The specific hashing functions for two-dimensional hash tables

referred to in functions (5.1) and (5.2), thus, are as followings:

h(K, i) = ( hx(K.x, i), hy(Ky, i»

hx(K.x, i) = (hxl(K.x) + i hx2(K.x» mod m

hxl(K.x) = LLK.x -XminJ I Lxmax - xminJ * mJ mod m

hx2(K.x) = LK.xJ mod m'

hy(Ky, i) =(hyl(K.y) + L hy2(K.y, i» mod n

hyl(K.y) = LLK.y - YminJ I Lymax - YminJ * nJ mod n

hy2(K.y, i) = 1 /1 (if hxl(K.x) + ihx2(K.x) >= m)

= a /1 (if hxl(K.x) + ihx2(K.x) < m )

This hashing method uses double hashing only for X value of each key. After the

Y value is hashed initially with (hyl(K.y), hy2(K.y), Y only increases by 1 or 0 depending

on how many times the key is probed. In addition, there are two kinds of probing

sequences in 2DHf: one, after all buckets of the current row are completely probed, goes

to the next row by assigning 1 to hy2(K.y, i); the other goes to the next row when hxCK.x.,

i-I) + hx2(K.x.) is greater than or equal to m.

5.4 Analysis and Comparisons

A huge amount of search takes place during gridding. Each grid point usually

needs to search for at least four control points. To find control points for a grid point, the

X and Y values of the grid point should be converted into interval indexes that detennine

which bucket in the hash table contains the target control points. The second step checks
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whether the record in that target bucket initially hashed to that bucket by using the

hashing functions to test the two attributes X and Y in the target bucket. There are three

logical possibilities. If the bucket is empty. search has failed. If the record in the bucket

initially hashed to that position, search has succeeded. However, if it did not, we do not

yet know whether any sample data is located at the area corresponding that bucket. This

logical possibility would pose a problem for gridding. Fortunately, in chaining hash

tables, that problem can not occur. For open addressing hash methods, whether by linear

probe or double hashing, adopting the Model 1 improvement strategy also eliminates that

problem. Modell uses priority hashing (any record with initial hash to a bucket will

replace any record that had to probe to reach it), and a flag (Nc) records the number of

records having initial hash at this bucket. When a target bucket is detennined, we can

learn whether search is successful by simply checking the value of the flag Nc in the

target bucket. If Nc is 0, the search is fails; otherwise, it succeeds. In addition, the value

tells directly how many control points are in the target bucket's region.
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CHAPTER VI

SUMMARY AND CONCLUSION

MDHfs strongly resemble one-dimensional hash tables in tenns of hashing

operations. Two-dimensional hash tables implement the Insert and Search operations in

constant average time. When using hashing tables, it is important to pay attention to

choose an appropriate load factor and to choose a hash function that produces nearly

unifonn hashing.

Although chaining hashing requires more memory than open addressing methods, it

has excellent perfonnance. Its load factor can be large enough to provide some space

efficiency, and it can use fragmentary memory, unlike open addressing, which requires a

single contiguous block.

In open addressing hashing methods, the load factor should not be greater than 80%.

The perfonnance of double hashing is much better than linear probing. Two models

presented in chapter 3 can improve time performance significantly at some cost in space

for unsuccessful search. Model 2 can also improve perfonnance of successful search for

open addressing.

A two-dimensional hash table can be used to implement insert and search operations

for spatial data with two keys, X and Y, recording the infonnation. Using 2DHTs, it is

possible to organize the spatial data in a way that facilitates other types of processing,

such as sequential processing.

In this research, an application model the Contour Map System (CMS), employs a

2DlIT for data processing, and with Model 2, it can improve perfonnance over O(ng) for
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traditional sequential processing to O(g) of 2DHT, where n is the number of spatial data

points and g is the number of grid nodes in the grid matrix required by eMS.
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APPENDIX A
TABLES OF TESTING RESULTS

Table A-I Successful Search with Chainin f{ashin
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0294 1.0453 1.0501 1.0485 1.0508 1.0476 1.0493 1.0444
0.20 1.1667 1.0417 1.0500 1.0735 1.0686 1.0858 1.0960 1.1050 1.0971 1.1001 1.1005 1.0995 1.0904

0.30 1.1667 1.1053 1.1382 1.1217 1.1275 1.1523 1.1421 1.1486 1.1499 1.1474 1.1495 1.1499 1.1416

OAO 1.1667 1.1300 1.1912 1.1838 1.1801 1.1993 1.2045 1.1954 1.1999 1.2001 1.1987 1.1993 1.1874

0.50 1.1875 1.2344 1.2227 1.2500 1.2461 1.2417 1.2493 1.2472 1.2456 1.2485 1.2474 1.2507 1.2393

0.60 1.2368 1.2895 1.2697 1.2843 1.3192 1.2936 1.2911 1.3011 1.2940 1.2978 1.2989 1.2994 1.2896

0.70 1.2500 1.3239 1.3202 1.3408 1.3596 1.3614 1.3414 1.3514 1.3472 1.3471 1.3482 1.3493 1.3367

0.80 1.2800 1.4412 1.3799 1.3836 1.4022 1.4145 1.3933 1.4017 1.3961 1.3972 1.3977 1.3992 1.3906

0.90 1.3750 1.3947 1.4239 1.4152 1.4560 1.4598 1.4445 1.4450 1.4470 1.4450 1.4490 1.4496 1.4337
VI 1.00 1.4688 1.4609 1.4883 1.4873 1.4956 1.5056 1.4966 1.4950 1.4968 1.4930 1.4986 1.5005 1.4906
00

Table A-2 Unsuccessful Search with Chainin Hashin
% 8X4 8X8 16X8 16X16 32x16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
0.10 1.1450 1.1150 1.0625 1.0900 1.0850 1.0950 1.1095 1.1038 1.1038 1.0970 1.1035 1.1069 1.1014

0.20 1.2400 1.2275 1.1638 1.1825 1.1856 1.1965 1.2075 1.1988 1.1944 1.1965 1.2080 1.2006 1.2001
0.30 1.3100 1.3425 1.2650 1.2638 1.2963 1.3065 1.2995 1.2969 1.2988 1.2940 1.3085 1.3106 1.2994

0.40 1.4300 1.4450 1.3738 1.3563 1.4075 1.4040 1.4035 1.4188 1.3856 1.4025 1.4065 1.4031 1.4030

0.50 1.5750 1.5400 1.4900 1.4500 1.5219 1.4965 1.5060 1.5231 1.4781 1.4985 1.4995 1.4919 1.5059

0.60 1.6650 1.6225 1.5775 1.5588 1.6288 1.5865 1.6080 1.6244 1.5906 1.6035 1.5990 1.5831 1.6040

0.70 1.7450 1.7025 1.6888 1.6600 1.7419 1.6835 1.7065 1.7138 1.6988 1.7140 1.7120 1.6688 1.7029

0.80 1.8700 1.7950 1.7725 1.7638 1.8469 1.7770 1.8000 1.8144 1.7975 1.8095 1.8100 1.7694 1.8022
0.90 1.9300 1.9025 1.8763 1.8450 1.9581 1.8820 1.8945 1.9131 1.8931 1.8980 1.9070 1.8669 1.8972
1.00 2.0650 2.0150 1.9938 1.9513 2.0669 1.9835 1.9965 2.0075 1.9913 1.9945 2.0175 1.9225 2.0004



Table A-3 Successful Search with Linear Probin
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0343 1.0515 1.0566 1.0540 1.0568 1.0541 1.0557 1.0519

0.20 1.2083 1.0625 1.0500 1.0882 1.0956 1.1054 1.1210 1.1319 1.1184 1.1268 1.1280 1.1242 1.1222

0.30 1.1944 1.1579 1.1645 1.1809 1.1814 1.2036 1.2044 1.2134 1.2144 1.2128 1.2138 1.2156 1.2111

0.40 1.2083 1.1800 1.2451 1.3137 1.2904 1.3209 1.3492 1.3243 1.3413 1.3356 1.3332 1.3307 1.3336

0.50 1.2656 1.4063 1.3594 1.4824 1.4551 1.4692 1.5176 1.5022 1.4926 1.5016 1.4980 1.5007 1.4974

0.60 1.5263 1.5724 1.5526 1.6503 1.6653 1.6877 1.7614 1.7876 1.7200 1.7606 1.7466 1.7425 1.7438

0.70 1.6818 1.8807 1.7612 2.0084 2.0335 2.2357 2.2027 2.2272 2.1324 2.1741 2.1673 2.1577 2.1853

0.80 2.1900 2.5096 2.3407 2.6544 2.5866 2.9737 3.0968 3.1190 2.9503 2.9873 2.9530 2.9701 3.0072

0.90 2.9196 2.7675 3.4761 4.0033 3.8000 5.0451 5.6084 5.5502 5.3947 5.3494 5.2408 5.3695 5.3654

1.00 4.1250 4.5195 6.9531 9.6934 12.6348 20.4734 31.2942 36.5738 55.1476 81.6992 114.5396 149.6571 69.9121

lJl
\0

Table A-4 Unsuccessful Search with Linear Probin
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.1750 1.1350 1.0738 1.0988 1.0963 1.1070 1.1355 1.1175 1.1219 1.1115 1.1170 1.1231 1.1191

0.20 1.3300 1.2875 1.2113 1.2375 1.2494 1.2640 1.3050 1.2706 1.2588 1.2785 1.2925 1.2775 1.2781

0.30 1.4750 1.5250 1.4588 1.4025 1.4931 1.5105 1.5420 1.5231 1.5138 1.5090 1.5315 1.5219 1.5217

0.40 1.7700 1.7575 1.7500 1.6675 1.9175 1.8715 1.9425 1.9194 1.8844 1.9100 1.8900 1.9031 1.9030

0.50 2.3300 2.2775 2.1838 2.2513 2.4831 2.4565 2.5495 2.6156 2.4188 2.5110 2.4760 2.4250 2.4932

0.60 3.0450 3.5100 2.8725 3.2250 3.4238 3.3895 3.7130 4.0094 3.5569 3.7095 3.6060 3.4056 3.6271

0.70 4.2400 4.4550 3.7750 5.1188 5.2638 6.3420 6.7350 6.4519 5.8550 6.2560 5.9395 5.4844 6.1520

0.80 5.8100 7.4625 8.1613 9.2088 8.8744 12.0380 13.2525 13.5038 13.2050 13.0525 12.5905 11.5169 12.7370

0.90 9.2850 14.2825 15.2588 23.6863 25.7488 37.7470 42.3725 47.3750 44.6131 46.2005 43.6205 46.2781 44.0295

1.00 32.0000 64.0000 128.00 256.00 512.00 1024.00 2048.00 4096.00 8192.00 16384.0 32768.0 65536.0 18578.2



Table A-5 Successful Search with Linear Probin im roved b Modell
% 8X4 BXB 16XB 16X16 32X16 32X32 64X32 64X64 128X64 128X12B 256X128 256X256 Avg*
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0343 1.0515 1.0568 1.0540 1.0568 1.0541 1.0557 1.0519

0.20 1.2083 1.0625 1.0500 1.0882 1.0956 1.1054 1.1210 1.1319 1.1184 1.1268 1.1280 1.1242 1.1222

0.30 1.1667 1.1579 1.1645 1.1809 1.1814 1.2036 1.2044 1.2134 1.2144 1.2128 1.2138 1.2155 1.2111

0.40 1.2083 1.1800 1.2451 1.3137 1.2904 1.3209 1.3492 1.3243 1.3413 1.3356 1.3330 1.3306 1.3336

0.50 1.2656 1.4063 1.3594 1.4824 1.4551 1.4692 1.5176 1.5022 1.4926 1.5010 1.4977 1.5002 1.4972

0.60 1.5263 1.5724 1.5526 1.6503 1,6596 1.6877 1.7596 1.7876 1.7195 1.7583 1.7455 1.7415 1.7428

0.70 1.6818 1.8807 1.7612 2,0084 2.0286 2.2207 2.1999 2.2265 2.1303 2.1709 2.1640 2.1543 2.1809

0.80 2.1900 2.5098 2.3407 2.6544 2.5862 2.9554 3.0951 3.1124 2.9463 2.9747 2.9449 2.9615 2.9986

0.90 2.9196 2.7675 3.4652 3.9989 3.7538 5.0353 5.5807 5.5244 5.3537 5.3135 5.2104 5.3317 5.3357

1.00 4.1250 4.5195 6.9434 9.6758 12.5527 20.3574 30.9094 35.8571 54.2146 80.0414 112.353 145.7826 68.5022

g
Table A-6 Unsuccessful Search with Linear Probin im roved b Modell
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.1450 1.1225 1.0625 1.0900 1.0850 1.0955 1.1105 1.1038 1.1038 1.0970 1.1035 1.1094 1.1033

0.20 1.2550 1.2350 1.1638 1.1838 1.1913 1.1995 1.2125 1.2031 1.1969 1.1995 1.2160 1.2081 1.2051

0.30 1.3250 1.3625 1.2688 1.2763 1.3150 1.3260 1.3210 1.3169 1.3175 1.3065 1.3330 1.3281 1.3213

0.40 1.4650 1.4650 1.3875 1.3900 1.4538 1.4585 1.4725 1.4838 1.4388 1.4640 1.4455 1.4481 1.4587

0.50 1.6400 1.6175 1.5450 1.5150 1.6250 1.6040 1.6450 1.6663 1.5719 1.6315 1.6065 1.5906 1.6165

0.60 1.8250 1.7550 1.6950 1.6713 1.8156 1.7835 1.8500 1.9019 1.7513 1.8235 1.7875 1.8131 1.8158

0.70 2.0500 2.0575 1.9413 1.9613 2.1725 2.2130 2.2470 2.1906 2.1838 2.1845 2.1070 2.1525 2.1826

0.80 2.7200 2.2925 2.2850 2.3863 2.6731 2.8030 2.9345 3.0494 2.7406 3.0325 2.8840 2.6600 2.8720

0.90 3.1650 2.9925 3.1288 3.4075 4.0038 4.6560 5.1530 4.9844 4.7069 4.9635 4.4095 4.2619 4.7336

1.00 4.8850 4.6050 6.6413 7.5938 13.0744 19.5690 28.9310 37.8025 68.9169 98.591 111.286 50.5675 59.3806
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Table A-7 Successful Search with Linear Probin im roved b Model 2
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128256X128 256X256 Avg*
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0319 1.0478 1.0556 1.0525 1.0554 1.0526 1.0534 1.0499

0.20 1.2083 1.0625 1.0500 1.0882 1.0907 1.0919 1.1161 1.1233 1.1117 1.1174 1.1191 1.1163 1.1137

0.30 1.1389 1.1447 1.1513 1.1612 1.1667 1.1857 1.1836 1.1938 1.1926 1.1903 1.1930 1.1933 1.1903

0.40 1.1875 1.1700 1.2353 1.2696 1.2537 1.2873 1.3114 1.2805 1.2937 1.2923 1.2884 1.2857 1.2913

0.50 1.2188 1.3984 1.3242 1.4102 1.3896 1.3838 1.4321 1.4128 1.4080 1.4203 1.4123 1.4154 1.4121

0.60 1.3947 1.5592 1.4671 1.4967 1.5432 1.5533 1.5882 1.6160 1.5684 1.6156 1.5953 1.5881 1.5893

0.70 1.4773 1.8239 1.6376 1.7291 1.7744 1.9581 1.8856 1.9203 1.8566 1.8861 1.8839 1.8726 1.8947

0.80 1.7000 2.2010 2.0196 2.0662 2.1210 2.4936 2.4988 2.4878 2.4044 2.4353 2.4137 2.4151 2.4498

0.90 2.1696 2.3509 2.6565 2.7283 2.8185 3.9254 4.1617 4.0471 4.0711 3.9045 3.9026 3.9665 3.9970

1.00 3.2969 3.5859 5.2578 6.7695 7.9141 13.6423 21.1898 22.8519 35.6000 52.1089 72.1613 93.6590 44.4590

0\.....
Table A-8 Unsuccessful Search with Linear Probin im rove b Model 2
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.1450 1.1225 1.0625 1.0900 1.0850 1.0950 1.1095 1.1038 1.1038 1.0970 1.1035 1.1081 1.1029

0.20 1.2550 1.2350 1.1638 1.1838 1.1894 1.1970 1.2125 1.2019 1.1963 1.1985 1.2110 1.2050 1.2032

0.30 1.3250 1.3550 1.2675 1.2688 1.3106 1.3230 1.3160 1.3125 1.3144 1.3000 1.3185 1.3219 1.3152

0.40 1.4450 1.4575 1.3863 1.3775 1.4406 1.4480 1.4625 1.4688 1.4275 1.4415 1.4255 1.4294 1.4433

0.50 1.6000 1.6100 1.5263 1.4850 1.5969 1.5685 1.6060 1.6175 1.5431 1.5770 1.5585 1.5556 1.5752

0.60 1.7050 1.7425 1.6625 1.6175 1.7763 1.7145 1.7775 1.8081 1.7081 1.7435 1.7130 1.7344 1.7427

0.70 1.8650 2.0100 1.8700 1.8338 2.0569 2.0350 2.1050 2.0406 2.0519 2.0135 1.9985 2.0119 2.0366

0.80 2.2250 2.1925 2.1363 2.1088 2.4106 2.5305 2.6015 2.6188 2.4738 2.5890 2.4745 2.3725 2.5229

0.90 2.4050 2.6625 2.6988 2.7375 3.1388 3.9065 3.9585 3.6788 3.6831 3.8335 3.5200 3.6975 3.7540

1.00 3.8450 3.7450 5.6063 5.1825 9.4144 15.0155 20.2630 20.3106 44.0050 54.6325 53.6920 23.4694 33.0554



l

Table A-9 Successful Search with Double Hashin
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0441 1.0502 1.0526 1.0516 1.0551 1.0514 1.0525 1.0511

0.20 1.2500 1.0625 1.0500 1.0833 1.1029 1.1140 1.1064 1.1175 1.1145 1.1177 1.1150 1.1153 1.1143

0.30 1.2500 1.1316 1.1711 1.1645 1.1765 1.1930 1.1702 1.1832 1.1886 1.1864 1.1897 1.1898 1.1858

0.40 1.2292 1.1900 1.2647 1.2328 1.2782 1.2781 1.2637 1.2654 1.2756 1.2755 1.2750 1.2778 1.2730

0.50 1.2969 1.3516 1.3633 1.3633 1.3838 1.3730 1.3677 1.3740 1.3830 1.3900 1.3847 1.3884 1.3801

0.60 1.4605 1.5395 1.4704 1.4592 1.5269 1.4951 1.5100 1.5255 1.5162 1.5329 1.5316 1.5275 1.5198

0.70 1.5455 1.7102 1.6124 1.6620 1.7228 1.7629 1.6989 1.7240 1.7131 1.7206 1.7286 1.7216 1.7242

0.80 1.7100 2.2157 1.8971 2.0392 1.9994 2.0678 2.0023 2.0206 2.0152 2.0198 2.0226 2.0117 2.0229

0.90 2.1429 2.4737 2.4326 2.6054 2.6255 2.5874 2.6009 2.5929 2.6079 2.5882 2.5854 2.5643 2.5896

1.00 3.3125 4.0742 3.7656 5.2188 5.7705 6.8367 7.4849 7.7368 8.8311 9.6736 10.1471 11.2550 8.8522

'"N
Table A-tO Unsuccessful Search with Double Hashin
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256><256 Avg*
0.10 1.1500 1.1275 1.0700 1.0975 1.0931 1.1085 1.1215 1.1188 1.1150 1.1120 1.1120 1.1194 1.1153

0.20 1.3100 1.2675 1.1950 1.2200 1.2306 1.2445 1.2735 1.2531 1.2500 1.2420 1.2580 1.2469 1.2526

0.30 1.4550 1.4350 1.3975 1.3800 1.4031 1.4470 1.4585 1.4563 1.4213 1.4240 1.4340 1.4281 1.4384

0.40 1.7050 1.6500 1.6488 1.5700 1.6763 1.6845 1.6945 1.7031 1.6500 1.6775 1.7030 1.6413 1.6791

0.50 2.1200 2.0025 2.0338 1.8825 2.0281 2.0055 2.0315 2.0294 1.9850 2.0425 2.0295 1.9863 2.0157

0.60 2.5000 2.5875 2.4325 2.4613 2.5138 2.5345 2.5190 2.5250 2.4900 2.5130 2.5310 2.4831 2.5137

0.70 2.9100 3.4350 3.3038 3.3100 3.3938 3.4985 3.3825 3.4306 3.3188 3.3145 3.3565 3.3506 3.3789

0.80 4.3200 5.7100 4.8725 5.2375 5.0706 5.3820 5.1230 5.2550 5.1156 5.0125 4.9400 5.0806 5.1298

0.90 7.3050 9.7000 10.0688 10.9350 10.5219 11.2235 10.6385 11.2725 10.1600 10.5200 9.8590 10.3569 10.5758

1.00 32.0000 64.0000 128.00 256.00 512.00 1024.00 2048.00 4096.00 8192.00 16384.0 32768.0 65536.0 18578.2



Table A-ll Successful Search with Double Hashin im roved b Modell
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0417 1.0502 1.0526 1.0519 1.0554 1.0517 1.0526 1.0509

0.20 1.2500 1.0625 1.0500 1.0833 1.1103 1.1091 1.1057 1.1175 1.1136 1.1176 1.1152 1.1156 1.1135

0.30 1.1944 1.1316 1.1711 1.1645 1.1797 1.1954 1.1686 1.1816 1.1881 1.1879 1.1890 1.1900 1.1858

0.40 1.2083 1.1900 1.2647 1.2353 1.2733 1.2842 1.2601 1.2663 1.2746 1.2764 1.2737 1.2776 1.2733

0.50 1.3438 1.3438 1.3750 1.3711 1.3818 1.3770 1.3604 1.3800 1.3801 1.3915 1.3825 1.3869 1.3798

0.60 1.5000 1.5329 1.4803 1.4608 1.5391 1.4898 1.5210 1.5311 1.5170 1.5322 1.5258 1.5269 1.5205

0.70 1.5568 1.7216 1.6461 1.6858 1.7605 1.7916 1.7142 1.7200 1.7118 1.7254 1.7225 1.7219 1.7296

0.80 1.7500 2.1961 1.9632 2.0331 2.0733 2.1459 2.0079 2.0076 2.0150 2.0243 2.0164 2.0150 2.0332

0.90 2.1429 2.7412 2.4870 2.6283 2.6880 2.7315 2.5686 2.5937 2.6015 2.5951 2.5859 2.5651 2.6059

1.00 3.1406 3.9648 4.4922 5.6289 5.3799 6.7683 7.5759 8.7968 8.5650 9.7266 10.2444 10.9084 8.9408

0-
w

Table A-12 Unsuccessful Search with Double Hashin 1m rove b Model I
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.1350 1.1075 1.0613 1.0875 1.0844 1.0935 1.1040 1.0994 1.1006 1.0930 1.0975 1.1038 1.0988

0.20 1.2150 1.2150 1.1588 1.1725 1.1744 1.1865 1.1970 1.1813 1.1831 1.1810 1.1855 1.1869 1.1859

0.30 1.2850 1.3200 1.2450 1.2463 1.2681 1.2780 1.2775 1.2694 1.2663 1.2690 1.2690 1.2769 1.2723

0.40 1.4050 1.4125 1.3263 1.3250 1.3713 1.3650 1.3715 1.3738 1.3469 1.3655 1.3595 1.3638 1.3637

0.50 1.5600 1.5125 1.4638 1.4213 1.4831 1.4610 1.4730 1.4788 1.4406 1.4675 1.4530 1.4500 1.4606

0.60 1.7050 1.6400 1.5575 1.5350 1.5869 1.5675 1.5935 1.5900 1.5625 1.5840 1.5655 1.5469 1.5728

0.70 1.8350 1.7675 1.7138 1.6800 1.7550 1.7135 1.7645 1.7425 1.7069 1.7465 1.7185 1.6625 1.7221

0.80 2.1000 2.0725 1.9538 1.9100 1.9894 1.9470 1.9580 1.9513 1.9156 1.9635 1.9195 1.8888 1.9348

0.90 2.3000 2.8075 2.4613 2.3225 2.5131 2.3970 2.4275 2.3544 2.3294 2.3830 2.3740 2.2438 2.3584

1.00 4.2150 4.3350 5.1838 4.7963 5.9500 6.0870 8.6835 8.0163 8.1563 10.7505 8.5455 8.4338 8.3818
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Table A-13 Successful Search with Double Hashin im roved b Model 2
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg*
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0368 1.0502 1.0520 1.0507 1.0531 1.0503 1.0511 1.0492

0.20 1.2083 1.0625 1.0500 1.0735 1.0882 1.0968 1.1002 1.1111 1.1061 1.1094 1.1083 1.1081 1.1057

0.30 1.1389 1.1184 1.1711 1.1480 1.1520 1.1718 1.1559 1.1661 1.1708 1.1685 1.1704 1.1724 1.1680

0.40 1.1875 1.1500 1.2500 1.2157 1.2316 1.2384 1.2274 1.2357 1.2377 1.2411 1.2374 1.2410 1.2370

0.50 1.2188 1.2969 1.3320 1.3164 1.3242 1.3086 1.2986 1.3201 1.3171 1.3255 1.3202 1.3242 1.3163

0.60 1.3421 1.4934 1.4309 1.3971 1.4479 1.3958 1.4041 1.4278 1.4122 1.4304 1.4263 1.4222 1.4170

0.70 1.3750 1.6193 1.5478 1.5349 1.5691 1.5988 1.5464 1.5649 1.5482 1.5605 1.5582 1.5550 1.5617

0.80 1.4700 1.8725 1.7132 1.7586 1.7225 1.8159 1.7442 1.7592 1.7457 1.7558 1.7495 1.7466 1.7596

0.90 1.8304 2.1491 2.1130 2.0783 2.1011 2.1401 2.1145 2.1245 2.1246 2.1119 2.1090 2.0945 2.1170

1.00 2.6563 2.8945 3.1230 4.0557 3.6973 4.8811 5.3027 4.9329 6.3806 6.4426 6.8548 7.8496 6.0920

~

Table A-14 Unsuccessful Search with Double Hashin im roved b Mode12
% 8*4 8*8 16*8 16*16 32*16 32*32 64*32 64*64 128*64 128*128 256*128 256*256 Avg*
0.10 1.1450 1.1225 1.0625 1.0900 1.0850 1.0965 1.1100 1.1038 1.1044 1.0975 1.1040 1.1075 1.1034

0.20 1.2550 1.2350 1.1638 1.1800 1.1894 1.1980 1.2075 1.2000 1.1963 1.1985 1.2085 1.2013 1.2014

0.30 1.3250 1.3500 1.2688 1.2650 1.3069 1.3125 1.3020 1.3038 1.3006 1.2995 1.3150 1.3163 1.3071

0.40 1.4450 1.4525 1.3875 1.3538 1.4344 1.4195 1.4120 1.4413 1.3994 1.4155 1.4210 1.4219 1.4186

0.50 1.6000 1.5800 1.5350 1.4638 1.5575 1.5230 1.5305 1.5750 1.5069 1.5420 1.5310 1.5231 . 1.5331

0.60 1.7450 1.7475 1.6600 1.5900 1.6988 1.6525 1.6765 1.7213 1.6644 1.6885 1.6580 1.6363 1.6711

0.70 1.8650 1.8850 1.8388 1.7463 1.8963 1.8020 1.8435 1.8588 1.8431 1.8830 1.8445 1.7838 1.8369

0.80 2.0750 2.1500 2.0063 2.0063 2.0994 2.0170 2.0490 2.0713 2.0475 2.1220 2.0780 2.0013 2.0551

0.90 2.2550 2.6925 2.4775 2.4988 2.5131 2.3760 2.4505 2.4125 2.3881 2.4495 2.4810 2.3681 2.4180

1.00 3.5200 3.5700 3.9425 3.4988 4.8656 4.2140 5.4525 4.5119 5.2631 4.4505 5.1930 5.2025 4.8982



~

Table A-IS Total averae:e successful search times of one kev with load factor under 0.9
Methods I 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256

Ch 1.23821.24631.25261.25701.26701.27431.2704 1.27411.27221.27271.27361.2747

L 1.5864 1.6199 1.6657 1.8235 1.7916 2.0084 2.1014 2.1014 2.0465 2.0561 2.0372 2.0519

o 1.4409 1.5241 1.4781 1.5155 1.5367 1.5462 1.5300 1.5395 1.5406 1.5429 1.5427 1.5388

L-M1 1.5833 1.6199 1.6645 1.8230 1.7850 2.0036 2.0977 2.0977 2.0412 2.0500 2.0324 2.0461

D-M1 1.4477 1.5513 1.4977 1.5214 1.5579 1.5740 1.5285 1.5389 1.5393 1.5451 1.5403 1.5391

L-M2 1.3976 1.5280 1.5093 1.5533 1.5747 1.7679 1.8028 1.7930 1.7732 1.7686 1.7623 1.7674

D-M2 1.3171 1.42261.40551.39471.40571.42261.4046 1.4179 1.41261.4174 1.41441.4128

Total Avg 1.4302 1.5017 1.4962 1.5555 1.5598 1.6567 1.6765 1.6804 1.6608 1.6647 1.6576 1.6615

Table A-16 Total Averae:e unsuccessful search times of one keY with load factor under 0.9
Methods I 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256

Ch 1.5456 1.5214 1.4744 1.4633 1.5191 1.4919 1.5039 1.5119 1.4934 1.5015 1.5060 1.4890

L 3.3844 4.1881 4.1939 5.4329 5.7278 7.5251 8.2831 8.8651 8.3808 8.6154 8.2293 8.3262

D 2.7528 3.2128 3.1136 3.23263.2146 3.3476 3.2492 3.3382 3.1673 3.2064 3.1359 3.1881

L-M1 1.8433 1.7667 1.7197 1.7646 1.9261 2.0154 2.1051 2.1000 2.0013 2.0781 1.9881 1.9524

D-M1 1.61561.65061.54901.52221.58061.55661.57411.5601 1.53911.56141.54911.5248

L-M2 1.6633 1.7097 1.6415 1.6336 1.7783 1.8687 1.9054 1.8723 1.8335 1.8659 1.8137 1.8263

D-M2 1.6344 1.6906 1.6000 1.5771 1.6423 1.5997 1.6202 1.6319 1.6056 1.6329 1.6268 1.5955

Total Avg 2.0628 2.2485 2.1846 2.3752 2.4841 2.7721 2.8916 2.9828 2.8601 2.9231 2.8355 2.8432

Note:
* The average value is just from the tables with size at least 32X32

Avg
1.2644

1.9075

1.5230

1.9037

1.5318

1.6665

1.4040

1.6001

Avg
1.5018

6.7627

3.1799

1.9384

1.5653

1.7844

1.6214

2.6220
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