
CLIE T SIDE PAGE EDITOR

EVERETI KENYON LOCKHART

Bachelor of Science

Tougaloo College

Tougaloo, Mississippi

1997

Submitted to the Faculty of th
Graduate College of

Oklahoma Stale University
In partial fulfillment of
The requirements for

The Degree of
MASTER OF SCIENCE

December, 2000

CLIENT SIDE PAGE EDITOR

Thesis Appmv~d:

II

PREFACE

Developing World Wide Web, WWW, editing applications require the programmer

to know and understand a variety of web-developing languages and editing tools. Thi

thesis introduces WEB editors to familiarize the reader with the topic discussed.

However, to fully appreciate the developed product, the reader hould obtain a practical

experience with WEB editors and the Internet. This thesis is organized in a way that

even the novice user can understand and follow. Therefore, it is conceivable for readers

to walk away with a general, but complete, grasp of the topic presented. This thesis

ex poses the reader to basic editors available, their differences, and the features offered by

each respective editor. After establishing a sound fuundation for the subject, the Client

Side Page editor is introduced. The design, implementation, and functionality of th

Client Side Page editor are covered to provide the reader with a complete conception of

the presented work.

III

ACKNOWLEDGMENTS

Finally, I would like to thank everyone who has been with me on this long journey.

Dr. George, my advisor and friend, without him none of this would have been po sible. I

would also like to thank my other committee members, Dr. BuneH and Dr. Hedrick for

their views on various aspects of my work. M:v mother and father for their patience in

waiting for me to finish school and finally get a job. Tony and Robert for getting me

over that one hump which gave me problems that only they could solve. Kerry for

traveling right along with me, from st311 to fimsh, through those long hours in the office

and labs. All of my professors, for it was you who taught me what I know and how to

learn more when the situation demands. Leegand, or should I say Dr. Burge Ill, you

taught me more than you will ever know. Ralph, Billy, and all of my friends that have

been there throughout, I thank you also. Bradley, I cannot forget you. You have taught

me more practical material than anyone has. Most of all, I would like to thank the Lord

for allowing me to succeed at yet another level in my life.

IV

Chapter

TABLE OF CO TE TS

Page

1. IN"TRODUCTION 1

Thesis Organization '" 3

IT. RELATED WORKS 4

Current Web Document Struclure 4
Current Page Break Solutions 5
Web Editors 9

m. CSE STRUCTURE & IMPLEMENTATION 19

Design 19
Interface 21
Environment. 24
Capturing & Modifying Document Text. 24
Functionality 25
Security , 26

IV. CO CLUSION AND FUTURE WORK 28

BIBLIOGRAPHy 29

Ii

LIST OF FIGURES

Figure Page

1. CSE Structural Diagram 2

2. IITML Anchor Technique (Web View) 6

3. HTML Anchor Technique (Code View) 7

4. CSS Page Break Technique (Code View) '" 8

5. CSS Page Break Technique (Web View) 9

6. FrontPage Editor Interrace (Code View) 11

7. FrontPage Editor Interface (WYSIWYG View) It

8. HotDog Editor Interface 13

9. Netscape Composer Interrace (WYSIWYG View) 15

10. Netscape Composer Interrace (Code View) 16

11. Dynamic Page Editor Interrace (DPE) 18

12. CSE Infrastructure " '" 20

13. MS Internet Explorer Interface 22

14. CSE Interface 23

15. Sample Code for Positioning Toolbars 23

16. Sample Code for Toolbar Creation 23

17. Sample Code for Recognizing Break Location , 26

VJ

ASP

CSE

CSS

CSSP

DHTML

DPE

HTML

IE

MSJE

URL

VB Script

WEB

WWW

WYSIWYG

OME CLATURE

acti ve server pages

client side page editor

cascading style sheets

cascading style sheet positioning

dynamic hypertext markup language

dynamic page editor

hypel1ext markup language

Internet Explorer

Micro Soft Internet Explorer

uni versal resource locator

Visual Basic Script

World Wide Web

World Wide Web

what you see is what you get

VII

Chapter I

1.0 Introduction

WEB documents are the central component of World Wide Web (WWW)

applications today. Due to the increasing usage of the Internet along with mass

production of WEB sites, pages, etc., the need for useful and efficient WEB

editing tools has grown. In an attempt to satisfy this need, WEB application

developers have developed many useful editing applications. The e applications

are targeted towards a variety of users, and they have various features that provide

them with their own degree of uniqueness [22]. Microsoft's FrontPage editor and

Netscape's Composer are examples of such general-purpose editors. Users now

have the freedom to choose the type of editor that satisfies their needs. These

editors are available in either single or multi-view editing modes. Some have

feature that are defined specifically for their platform, and others simply provide

the basic features needed for WEB document editing. There are several editors

available for users to download either commercially or in the public domain.

Some of the editing tools featured by these editors include: cut, paste, copy,

changing text style and font size, basic html support, etc. However, in their

continued effort to advance technology pertaining to WEB page development and

mamtenance, the page break feature has been overlooked and left without

extensive development. This feature is very important to users who want only to

print and view selected sections of a page. In addition to the page-break feature,

the editor desclibed in this thesis can provide other useful features that are

dIscussed 111 later sections.

In this thesis, we develop an editor that provides the interrace nece ary to

include page breaks and to modify a WEB document at viewing time. The editor

defined page breaks will allow the document to be broken into multiple pages for

viewing and printing. Initially, Joongseok Park addressed this problem in his

thesis [11]. This thesis builds on the work presented by J. Park. Through the use

of DHTML, CSS, and JavaScript, this WEB editor ha the dynamic capability La

break a document into pages for plinting and/or viewing purpose. It pre ents the

user with the freedom to choose any location where he/ he feels a page break

should occur. It produces results almost immediately. Figure 1.1 show the

overall placement of the CSE (Client-Side page editor) in relation to the brow er

and WEB components.

ToolBar

Document transfer
from browser to
CSE lor editing.

Figure' 1 CSE Structural Diagram.

2

FAtitor ToolBarB

1.1 Thesis Organization

The organization of this thesis follows a format that gradually introduce th

reader to the work presented as well as related works. The following de cription

outlines each chapter.

Chapter 1, Introduction. This chapter discusses the need for WEB editing tools, and

it points out the differences between them. It introduces the need for the

editor that we propose, and it illustrates our editor's overall position in the

World Wide Web arena.

Chapter 2, Related Works. This chapter covers some of the more popular

WEB editing tools available in small detail. It discusses features that draw

users to them, and it highlights some of the features that they are missing.

The Client-Side Page Editor, CSE, is also introduced in thIS section.

Chapter 3, CSE Structure & [mplementation. This chapter detai Is the design,

implementation, and functionality of the proposed editor.

Chapter 4, Conclusion. This chapter concludes the thesis work, and it introduces

future possibilities for research in this ar a.

3

CHAPTER II

2.0 Related Work

The classification of the Client-Side Page Editor, CSE, as a WEB editing tool

opens two areas of discussion concerning related work. The first area include

current WEB editors, and the second includes language construction currently

available to enable users to utilize the CSE's specific features. These subtopic

are related directly, but each demands a separate discussion to understand the

relation between the two. This chapter includes sections that discuss the tructure

of current WEB documents, language constructions that implement page breaks in

WEB documents, and WEB editors that are available for WEB editing.

2.1 Current WEB Document Structure

Cun'ently, WEB documents are presented to browser in a format comparable

to a "page" in general terms. By comparable, we mean, this format may appear as

a page in the viewmg area, but, actually, the document is significantly larger than

a printed page. By a printed page, we mean a block of data a standard pnnter can

print on a page. A WEB page is defined to be a block of data available on the

World Wide Web identified by a URL, Universal Resource Locator. In the

simplest, most common case, a web page is a file written in HTML and stored on

a server. It may refer to images, which appear as part of the page when a WEB

browser displays the document [14]i. The problem now becomes defining a feature

4

that provides users with a more familiar concept of a page with document on the

WEB, or WEB pages. This involves interpreting what constitute a page and how

can we relate this to WEB pages. The simplest idea is to say that a page as

defined above, is comparable to one viewing screen via the Internet. This

conclusion now leads us in a proper direction. For, we now can define a definition

for "page break". A page break can be defined as a feature that segments

portions of a predefined WEB page so that it is comparable to a page in normal

terminology. This segmenting should be noticeable in viewing and printing WEB

pages.

2.2 Current Page Break Solutions

Due to limited language constructs that allow a WEB developer to represent

one WEB page from another internally, they must rely on other ways to represent

multiple pages in a WEB document [2,4,7,9,10,18,19,20). [n an attempt to

overcome this non-trivial problem, designers have hown an admirable sense of

creative ingenuity. Creating anchor points, which are links to specified pOl1ions

of lengthy documents, appears to be one of the most widely used techniques by

WEB developers [8). The implementation of this concept requires the developer

to have a pre-defined layout for the beginning of document segments. The

developer must define anchor points to move from one location to the next. They

must Implement these anchor points as hyperlinks, a cross-reference in an

electronic document that, when activated, loads a different section of the

document, (figures 2.21 and 2.22) [J4]. This idea is a reasonable and

straightforward one; it soLves the problem of scrolling through lengthy

documents. However, it does not solve one of the problems on which we are

focusing; namely, printing. Since these documents continue to be represented in a

single file format, the user remains unabLe to identify portions of a document to be

printed once it has been developed [2,4,7,9,10,18,19,20]. To receive specific

contents of a WEB document, the user must print the entire document then sift

through the output to find the desired material. This can be a wa te of printer

resources and ti me.

•-- ---Bottom...

Sample Doc. Text

Top 4-

P

Page Anchor

age Anchor

Figure 2.21. Web document displaying anchor technique.

<html>
<head> <title> Sample Document <ltitle>
<lhead>
<body>
<h I align="center"> Title <lh 1>

 Bottom <la>

6

Sample Document. .

 Top <fa>
<lbody> <lhtmb

Figure 2.22. Sample code for figure 2.21.

Cascading Style Sheets, also known as CSS, provide an alternative method to

represent segments of a lengthy WEB document, but it i a rarely used feature due

to limited exposure. CSS actually defines a "page break" tag that specifies to the

printer the beginning and end of a "non-user" defined page. This feature mu t be

inserted directly into the HTML code, and like the previous technique, it implies

that the user has no control over where a page begins and ends. The page

developer decides the document segmenting points at the time of page creation.

By inserting these tags into a document, the printer is able to buffer a document

until It reaches the tag location. The printer then prints the contents received as a

separate page, and it repeats this process unti I it reache the end of the document,

see figures 2.23 and 2.24. This is a useful feature, but it has some drawbacks

worth mentioning. It does not allow the user the cOJivenience ajspecifying desired

page break points. It is recognizable only by printers, not by browsers. It requires

more preparation during development, and it must be added as a tag attri bute

because it is a CSS feature [9]. The latter implies that this break feature will

cascade throughout the document; therefore, the designer must pay careful

attention to the page's implementation during development. With the page break

provided by the CSS, the user has avoided the problem associated with printing,

7

but not the one associated with document viewing. Of course, it is possible to

implement the two together and alleviate both problems. This requires more

preparation and coding, but it. is a solution. evertheless, the "page break" tag

supplied by Cascading Style Sheets and the anchor implementation described are

somewhat unattractive because most document viewed today were created before

these features were available. To add either of these to a document would require

an unspecified amount of work that not every user would be able to perform.

Furthennore, the solutions mentioned must be implemented by the page de igner,

and the user has no input on the outcome. However, the solution proposed in this

thesis provides the user with the opportunity to select the page breaks.

I Web Document I

C55 break
location

Title

Sample Doc.

.~

Text top section
of document.

'r..
Bottom of Doc.

Figure 2.23. WEB view of the CSS page break feature.

<html>
<head>

8

<title> Sample Page Testing CSS PAGE BREAK <ltitle>
<style type="texUcss">

hr.pageEnd { page-break-before: always}
<lstyle>

<lhead>
<body>
<h 1 align="center"> Title <lh I>

Sample Document Text.
 Top Portion of Document

<hr class=" pageEnd" >

Bottom Section of Sample Document

<!hody>
<!html>

Figure 2.24. Sample code for the CSS page break.

2.3 WEB Editors

As mentioned eat'lIer, several editors that allow document editing are

available. Some of the more popular window editor include: Microsoft's

FrontPage, Sausage Software's HotDog, Netscape's Composer, and many others.

All of these editors have features that either make them unique from each of the

others or make them more appealing to their users [22].

The first editor mentioned, Microsoft's FrontPage, is a software package for

creating and managing WEB sites (figure 2.31 and 2.32). This make it di fferent

from most other editors. Most WEB editors were designed for WEB page

creation and editing only. Microsoft's FrontPage provides the user with both of

these features and more. Some of its special features include testing the WEB

9

site's speed, identifying old pages, and repairing broken Jinks. It allows the user to

see a directory tructure of all pages contained on a site. By running diagno tic

reports, FrontPage presents the user with the opportunity to find out which pages

are slow, then assist in correcting the problem. Also, it allows the u er to identify

any out-dated pages helping to maintain a current and up to date site. In addition

to the above features, FrontPage is a "what you see is what you get", WYSrWYG,

editor that displays exactly what the user enter into the document. Thi i

suitable for many WEB page authors who know little, or nothing, about designing

WEB pages. It also can be used to enter HTML code/tag; this feature is u eful

for the expenenced designers who would rather write the code than simply

generate generic pages. To aid in this area, Microsoft added a feature that allows

the developer to personalize the WEB page code produced. This feature indents

the code based on the settings that user provides, it presents the tags in specified

colors to dIstinguish them from one another, and it provides many other

personalized settings for developers [24]. Adding to it HTML editing features,

FrontPage provides the user with the abi lity to create, edit, and debug scripts [211.

This is useful to the developers that produce dynamic pages for viewing. As a

bonus to all of the above features, it can work directly with Microsoft Office.

This allows user to directly publish word documents on their site, and it opens

opportunities to have database interactions [24].

10

favor~e.htm

I <html>
: <head>
'<mete. http-equiv="Content-Type"
,<title>Fe.vorites</title>
</hee.d>
<body>

I

r:...
HTNL /. Preview

Figure 2.31. Direct HTML coding view.

favolite.htm
<

Fall Sale!

\ Normal AHTML /., Preview I J.JJ

Figure 2.32. WYSIWYG coding view.

11

The second editor mentioned above, HotDog ha been available for WEB

editing since March 1996. It also has the WYSIWYG editing feature along with

the other basic editing features described for FrontPage (figure 2.33). However, it

is liked not because of extra features that it ha , or does not have, but because of

its simple editing environment. The current version of HotDog provides the user

with multiple features that allow easy and efficient creation of WEB documents.

One of its newest features is its ability to drag and drop icons to desired locations

to create documents, almost completely eliminating the need for users to

manipulate the HTML code [16]. These point and click, or drag and drop,

features now include the newer scripting features such as JavaScript, VB Script,

CSS/CSSP, and ASP. These new additions allow the developer to determine the

location where the script should be placed, choose which script desired from a

collection of script source code, and insert it into the document. This eliminates

the need to "re-invent the wheel" while document scripting, and it speeds the

development of WEB pages. HotDog's cun'ent editor also provide the user with

a "Speedy Document Navigation" feature. This feature allows the user to

navigate through a multiple document site in a small amount of time. Through

the use of a directory structured tree view, the user can move from file to file with

a click of the mouse [17]. In addition to all of its new, user friendly features,

HotDog allows the users to use image editing tools, such as Paint Shop Pro, to

provide an even better experience during WEB site creatIOn.

12

· his is Ny Hottlog

i
H

_ i
........1

c,

Figure 2.33. HotDog editor view.

The next editor mentioned, Netscape's Composer, is the last of our examples,

but it is not the last of the editors available for editing. As ar many of the others.

it is a very easy to use WysrwYG editor, once a user becomes familiar with it.

But, unlike the others, it is easier to access. Most of the e WEB developing tools

require the user to download them from various sites, or purchase them, to use.

However, Netscape's Composer comes with the Netscape Browser. which was

once shipped with the computer system [23]. Today. it can be obtained via a

download from Netscape's home site. lls WEB editing environment is Similar to

that of a word processing application (see figure 2.34). The user enters the

document contents as if they were creating a text document, and the published

results would be just as they entered it, WysrwYG. It does not allow the user to

enter raw HTML code directly dunng document development, but it interacts with

13

other applications; i.e., a HTML source editor, to allow the user to enter raw

HTML code (figure 2.35). It supports all of the basic HTML language

constructions, and it allows the user to enter extra code statements to give the

WEB page some added features. Most of these con truction are created and

inserted into the document by Composer. If the u er wishes to enter HTML code

directly, then they must do so through the use of a specified source editor. AI 0,

Netscape's Composer is limited in its support of newer concepts such as

CSS/CSSP, DHTML, and some]avaScript syntax structure. Like Microsoft's

FrontPage, it has a publish feature that assists users in publishing their document

on a specified server. This feature updates the links contained in the document so

that they refer to the relati ve path of the document's location on the server. It

automatically uploads any images and pages associated with each document, onto

the server for publishmg.

1-1

Docwnet't Done

Figure 2.34. Netscape Composer's editing area.

l5

<meta name_-&uthor n cORtent-"Everett LockhartM~

<met..! n.ame-"GEIlERA'fDR" content·"1I0.illa! .13 (eJ1,) ('Ifl.n98: U) [H
<!heat
<body>

'''''sp:
<b~><I-- .e1ection start+ --><1-- selection eN'· --~nb-»;

</botly>
<!ht.1l1l>

ne . ns ne

..cope

f~u..1~R"I

Figure 2.35. Composer with source code editor open.

All of the editors previously discussed have their place in the WEB editing

community, and they satisfy multiple needs for the user. As with any software

product, they each have their drawbacks. However, the mo t visible aspect is that

none have the pre-mentioned page break feature.

In earlier efforts to solve the problem stated earlier, Joongseok Park

introduced a method of segmenting a document into sections to be broken into

pages. By sectioning text through the use of the "<DIV>" HTML tags, Park

concluded that an editor could be implemented that recognizes these tags as

beginning and ending page boundaries (figure 2.36). This tag was inserted into the

1(.

HTML code via the document's code view. His work show that an editor defined

with this feature can manage and maintain graphics, text, and other HfML

constructions [11]. Through the use of Netscape Navigator, Park concluded that

an editor could be implemented using current WEB developing languages. These

languages include: Cascading Style Sheets (CSS), Dynamic HTML (DHTML),

and JavaScript. With the languages mentioned, the editor could be designed as a

client-side application that has dynamic text-modification capabi lity [11].

17

file
. I • I

Dynamic Page
Segments to print a
specific page

Defmition ofPa~e Seement editor

Hypertext systems
proVlde a way to
manage and
browser
information.
Sometimes,
hypertext systems
.... to ,:; • • ~,.,.l

"
,",

2:22PM

Figure 2.36. Dynamic Page Editor (DPE) editing view.

18

-

CHAPTER III

3.0 CSE Structure and Implementation

This chapter details the design overview along with the implementation

detai Is of the page editor implemented in this research. It explains the reasoning

behind the choice of editor structure, coding style, and languages used. Various

editing features are presented, hut the overall focus is directed towards the

proposed page break feature. In addition to a detailed explanation of the

implementation, code and graphs are provided to provide a visual representation

of the editor and its features.

3.1 Design

In the early stages of development, it was necessary to determine an editor

framework to allow the maniplilation of a document's text features and to present

the users with a familiar WEB browsing atmosphere. To accomplish these goals,

a set of design criteria must be determined. The design criteria for the CSE

include the following: a) the editor's base structure should contain, or have the

capability of supporting, exterior features to allow document text manipulation, b)

the structure should support the pre-defined page break tag used, and c) it should

be user friendly. To satisfy the conditions mentioned, Internet Explorer's, fE,

base structure was chosen as our infrastructure, see Figure 3.1.

19

Figure 3.1 CLient-Side Page Editor with IE structure.

This structure gives the application the look and feel of a very familiar browser.

It enables the utilization of text-editing features that are not readily available in

other browsers. In addition to the special text-editing features provided by

Microsoft through the use of Internet Explorer 5.5+, it is also possible to utilize

specific features of DHTML and CSS/CSSP that are not available in Net cape's

Navigator.

Once the application's structure was determined, the next step is to determine

the available tools for implementing the functionality of the page break feature.

Various constructions are available for WEB editing and text manipulation during

document creation; however, it is necessary to detennine whether it is possible to

manipulate the document's features by someone other than the developer [3].

This mampulation includes basic text editing features as well as the insertion of

20

-

the editor defined page break. Again, the overall focal point is directed towards

the page break feature with references to the basic editing features defined for the

eSE.

3.2 Interface

The base structure of the eSE is an instance of Internet Explorer with limited

and modified chrome features, i.e. editor toolbars (figures 3.21 and 3.22). To

provide the editing tools needed for the eSE, some of the base chrome feature

are omitted and replaced with editor defined toolbars. The new toolbar features

allow the user to utilize the features provided by the eSE.

The implementation of the editor's interface includes a number of stages to

reach completion. The first stage includes the creation of the viewing area, the

initial window. In creating the window structure, the default chrome features arc

omitted to provide a more paciou area into which is placed the ditor-defined

tool bar . It is also necessary to omit some of the base features to control what the

user can and cannot do when using the editor.

2J

Figure 3.21 Internet Explorer with default chrome features.

The new toolbar features are created dynamically for each client when the

editor is loaded into the viewing area. Toolbar po itioning is set during document

loading using CSSP, and the actual Loolbar is created lIsing JavaScript code [15].

Once the toolbar has been created and positioned, the editor component are

linked to their corresponding toolbar huttons (figures 3.24 and 3.25). This

provides the user with the ability to interact with the editor and its features (figure

3.22).

22

- ..------------------------------------ ----

Figure 3.22. CSE interface with editor defined toolbars.

<STYLE TYPE="text/css">
#toolbarD { position:absolute; I
#textO { position:absolute; }
#toolbarl { position:absolute; I
#text 1 { position:absolute; }
#toolbarCol { position:absolute: }

<ISTYLE>

Figure 3.24. Code segment for position tool bars [15].

var edit_bar = new Toolbar(document.all.toolbarl, document.all.toolbarCol);
editor_comp.Name = "Editor Tool Bar"
editoccomp.addHem("Retrieve Page", "javascriptGetNewPageO;");
editor_comp.addltem("Add Break Points", "javascript:InsertBreaksO:", 100);

Figure 3.25. Code segment for creating tool bars [15].

23

In addition to the editor-defined toolbar features that are created to replace

specific default window tool bars, the editor provides the user with either a ingle

or a multi-view editing area. Included as a tool bar component, this feature allow

the user to determine whether a single or a multiple viewing area is required for

editing. If users are more comfortable with editing documents in multi-view

environments, then they have the option of opening a separate window that

displays the document's HTML code in one window and the WEB document in

the other. This option is also available for users who prefer a single view option.

3.3 Environment

The implementation phase of the Client-Side Page editor includes a mixture of

JavaScript, DHTML, and CSS programming features, which currently are

available only in Internet Explorer versIons 4.0 and higher [6]. A few problems

deserve special attention to implement the page break feature. Is it possihle to

capture the text ofa WEB document by a IIser other thall the developer? /Iso,

how could it he done without sen.ding adc/it ional requests to the WEB page's

dOl1win? These questions are addressed in the following sections.

3.4 Capturing And Modifying Document Text

In an attempt to dynamically insert a page break into a WEB document, one

goal of this project is to perform this task without sending extra requests to the

WEB page's domain. This goal is Important in reducing the editor's response

24

time when the user chooses the area where a break is to be inserted. Through the

use of DHTML language constructions, the editor can accomplish thi task.

Microsoft's Internet Explorer supports Dynamic HTML (DHTML) function

that allow the capturing and modification of a document's text by clients. The

HTML object of the DHTML language has a predefined method,

createTextRangeO, that provides the editor with part of the functionality stat d

above. This feature allows the CSE physically to obtain the document's text after

it is loaded into the client's viewing area. The task becomes a function of

recognizing and manipulating the area specified as a break location. The regular

expression object and ondoubleClickO event handler, which are features of the

JavaScript language, provide the editor with these capabilities. In addition to the

insertion of page breaks, these features provide the CSE with the basic editing

features visible in rno t text editors. These features include the modification or

~he text's style, font size, and font type.

3.5 Functionality

The external and internal operations of the CSE require an overview so that

the user is able to operate it properly. After the user opens the editor for usage,

the URL of the page to be edited should be entered and retrieved. Once the

document is loaded, the user is free to decide break point locations. To enter a

break point, the user double clicks on a highlighted area desired as a break point.

Once this is done, the document's text is captured, then a regular expression is

25

-

compiled to recognize the user-specified break location (Figure 3.50). After the

location is recognized, the editor inserts the editor-defined breaks into the

document's new page representation. The new page is generated dynamically by

the CSE on the client machine; it contains the break points that the user pecifies

to be part of its contents. Once the user has selected and entered all possible

break-point locations, the original document is broken into separate pages by

clicking on the "publish button" located on the editor's tool bar. After al.1 steps

have been completed, the document is reproduced as multiple pages based on the

llser's break poi nt choices. All of this can be done whi Ie the user continues to

browse the Internet.

re~exp.compile ("\\B<\\s*hr\\s+ ... \\s+color=black\\s+id="+Event+" ... >\\B ");

Figure 3.50. Regular Expression to recognize break location.

3.6 Security

Due to the increasing concern about Internet security, it has become necessary

to give this concept careful consideration when implementing applications for use

over the Internet. The CSE is used both to edit and to modify WEB pages for

viewing; therefore, it could be classified as a helper application. A "helper

application" is an application that allows the user to manage files that are stored

as data types other than the standard types recognized by most browsers. These

26

-

applications bring attention to WEB security when used via the Internet. Some of

the most well-known helper applications include: word proce ing applications,

spread sheets, and any other applications that aid the user in viewing information

stored as non-standard WEB data types [5]. Because most of these applications

are written in languages such as Visual Basic, Visual C++, etc., they place the

user's computer at risk of attacks from malicious program. Through the use of

these applications, an attacker can persuade the user to download a program that

can use these helper applications to execute programs that wi 1I attack their

computer in various ways [5]. The CSE is written in languages that reduce some

of the security risks opened by other applications. The chosen languages Llsed do

not allow either the reading or writing of files to the user's system; therefore, it

reduces some of the major hacking possibilities. Through the use of the CSE,

clients have a user-friendly, page editor that does not open their computer to

additional security violations.

27

-

Chapter IV

4.0 Conclusion & Future Work

The CSE provides Internet users with a basic feature needed to edit WEB

documents, a page break. In its current state, it does not provide the user with the

full functionality of an editor. However, it is possible to include all features

necessary to complete this task. The CSE provides the user with all of the comforts

of other editors cun-ently available_ It gives the added option of breaking the

document into multiple pages as well. It permits the user to have complete control

over where a break occurs, and it allows this to be done on the client's side of the

Internet. Expanding the editor's base functionality could include the addition of

multiple features. One feature could be the generic inclusion of breaks throughout a

document during the i.nitial load. Others could include an option Lo load the cutTent

document being viewed, or to retrieve a new document.

28

Bibliography

[1] Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compi lers -Principles,

Techniques, and Tools. Addison-Wesley Publishing. United States of

America. 1986.

[2] Bradenbaugh, Jerry. JavaScript Application Cookbook. O'Reilly & Associates,

Inc. Sebastopol, CA. 1999.

[3] Bull, G., Gina Bull, and Dave Lewis. "Introducing Dynamic HTML." Learning

and Leading with Technology. 26.2 (1998): 43-45. CML 2000 School.

EJ577901. 31 October 2000.

[4] Flanagan, David. JavaScript "The Definitive Guide", 3rd edition. O'Reilly &

Associates, Inc. Sebastopol, CA. j 998,1997, 1996.

[5] Garfinkel, Simson, and Gene Spafford. Web Security & Commerce. O'Reilly &

Associates, Inc. Sebastopol, CA. 1997.

[6] Goodman, Danny. Dynamic HTML - The Definitive Reference. O'Reilly &

Associates, Inc. Sebastopol, CA. 1998.

[7] Goodman, Danny. JavaScript Bible, 3rd edition. lOG Book Worldwide, Inc.

Foster City, CA. 1998.

[81 Kerven, David, Jeff Foust, and John Zakour. HTML 3.2 plus - The Definitive

HTML 3.2 Problem Solver. Mitchell Waite. Corte Madera, CA. 1997.

[9] Livingston, Dan, and Micah Brown.:. Essential CSS & DHTML For Web

Professionals. Prentice-Hall, Inc. Upper Saddle Ri ver, NJ. 1999.

[10] Moncur, Micheal, and Laura Lemay. JavaScript. Sams.net Pubhshing.

Indianapolis, IN. 1996.

29

[11] Park, Joongseok. "A Dynamic Page Editor." M.S. Thesis. Oklahoma State

University. 1999.

[12] Spainbour, Stephen, & Robert Eckstein. Webmaster]n A Nutshell - A Desktop

Quick Reference, 2nd edition. O'Reilly & Associates, Inc. Sebastopol, CA.

1999.

[13] ClientSide JavaScript Reference.

<http://netscape.comJdocs/manuals/js/clientJjsretJindex.htm.>

[14] Dictionary

<http://www.dictionarv.com/. >

[15] DHTML Toolbars: An Interface Users Will Recognize.

<hup:lldeveloper. netscape .comJdocs/lechnole/d ynht mlltoo Ibarli ndex. html>

[16] HotDog Express

<http://deleclivel.com/holdogXp.htm.>

[17] HotDog Professional

<http://www.sausagc.comJ>

[18] JavaScript Application Cookbook.

<http://w\vw.server.com/hotstyte/.>

[19] JavaScript Documentation.

<http://netscape.co mJdocs/manuals/javascri pI. >

[20] JavaSclipt "The Definitive Guide", 3rd edition.

<http://www.oreilly.com/modbi n/books. mod/webretJupdales/jscripl31i ndex. hIm .>

[21] Microsoft FrontPage 2000 Evaluation

<http://www.microsofl.c()m/fronlpage/evaluation.htm.>

30

[22] There is A Perfect Editor.

<http://wy iwvg:!/153/http://www.cn.netJ-bediger/perfect.edilor.html.>

[23] Using etscape Page Composer.

<http://onli!le.parklanct.cc.i 1.1Is/presentations/nelscapepc/>

[24] Microsoft FrontPage Tour

<http://ww....!.microsofl.comlfrontpage/2000/fp2kPg I.hlm>

31

VITA

Everett Lockhat1

Candidate for the Degree of

Master of Science

Thesis: CLIENT SIDE PAGE EDITOR

Major Field: Computer Science

Biographical:

Personal Data: Born in Montgomery, Mississippi, On September 24, 1974, the
son of Henry and Sandra Brantley.

Education: Graduated from Kosciusko High School, Kosciusko, Mississippi in
May 1993; recei ved Bachelor of Science degree in Mathematics with an
emphasis in Computer Science from Tougaloo College, Tougaloo,
Mississippi in May 1997. Completed the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in December 2000.

Expelience: Course lecturer for C and Unix programming classes, Head
Teaching Assistant for Visual Basic programming cour e, Teaching
assistant for Java and Pascal programming courses, lecturer for summer
science web development program, and researched parallel data structures
two consecutive summers at Oklahoma State University.

Professional Memberships: Alpha Chi and Alpha Lambda Delta honor societies,
Kappa Alpha Psi Fraternity, Inc.

