
DESIGNING AND BunnING AN EFFICIENT

APPUCATIONON A UNIX NETWORK

FILE SYSTEM

By

JIAN LIU

Bachelor of Medicine

Capital University of Medicine

Beijing, P. R. China

1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2000

DESIGNING AND BUILDING AN EFFICIENT

APPLICAnON ON A UNIX NETWORK

mE SYSTEM

Thesis Approved:

Dean of the Graduate College

lJ

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my thesis advisor, Dr. Jacques

LaFrance, whose intelligent guidance, inspiration, and devotion to his work and students

have made this work possible.

I would also like to thank my committee members, Dr. J. P. Chandler, Dr. H. K.

Dai, for their support and invaluable suggestions.

My thanks go to my parents Maotang Liu and Shujun Yang for their constant love

and support through my educational endeavors and in every aspect of my life. My

gratitude also goes to the rest of my family for their support in everything I do.

My deepest gratitude goes to my wife, Mei Ju, for her never ending love.

Finally, I would like to thank the Department of Computer Science and all of

those whom I befriended for their support whi1e 1 pursued my dream.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION
•• • •••• 0.0 •• 0 •••••

II. LITERATURE REVIEW 4
2.1 Distributed Computing System 4
2.2 Relative Work 7

m. DESIGN AND IMPLEMENTAnON 13
3.1 Implementation Platfonn 13
3.2 Design Features of the Application. 15
3.3 The Architecture of the Application 16
3.4 Load Balancing Algorithm 19

IV. RESULTS AND ANALYSIS 22
4.1 The Algorithm Achieves Better Load Balancing 22
4.2 Test Results '" 23

V. CONCLUSIONS AND FUTURE WORK 30
5.1 Conclusions 30
5.2 Future Work 30

REFERENCES .. 3 J

/\PPENDIX 36

iv

Figure

I.

1.

2.

3.

4.

5.

6.

LIST OF FIGURES

Chapter III

The Architecture of the Application .

Chapter IV

A Sample Summary Log File (Simple) .

A Sample Summary Log File (Better) .

A Simple Load Balancing Result Over 3 Different Hosts

A Better Load Balancing Result Over 3 Different Hosts

Total Turnaround Time vs. Number of Hosts

Computation Speedup Factor vs. Number of Hosts

v

Page

18

25

26

27

28

29

30

VITA

Jian Liu

Candidate for the Degree of

Master of Science

Thesis: DESIGNING AND BUll...DING AN EFFlCIENT APPLICATION ON A
UNIX NETWORK FILE SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Beijing, P. R. China, March 6, 1966, the son of Maotang
Liu and Shujun Yang

Education: Graduated from Beijing No. 35 High School, Beijing, P. R. China In

1984; received Bachelor of Medicine degree from Capital University of
Medicine, Beijing, P. R. China, in July 1989. Completed the requirements
for the Master of Science degree at Oklahoma State University in
December, 1999.

Experience: Employed as a physician in charge at Beijing Goodwill Hospital,
1989-1996.

Professional Membership: China Medical Society.

CHAPTER I

INTRODUCTION

Networks have been called "decentralized" or "distributed" computing, and for good

reason [Comer1997]. It provides many capabilities, and so much is involved. Most

networking systems come with utilities for data transfer, remote program execution, and

message passmg. Under such circumstances, computer programming is no longer

restricted to individual computers. Programmers are expected to design and implement

appJic:ltion software that can communicate with software on other computers. Thus

distributed computing is an emerging technology for creating software applications that

can efficiently use the resources available in a network of computers.

It is the present trend for parallel or distributed computing and will continue for the

foreseeable future. The practical issues involved in distributed computing are much the

same as those of a group of people attempting to work together on a single project It

allows the people to share information and peripheral devices efficiently and

economically. It holds many cost advantages, such as by using existing resources there

are no additional hardware costs, the aggregate power and memory of existing resources

at a site can easily exceed that of a supercomputer and so on. It allows users to run their

applications for the same cost but at supercomputer speeds. Through this way, the

computing power is distributed [Elbert 1994J.

Nowadays large workstation networks are widespread, providing an easy means for

the sharing of computer resources. However, at anyone time-and especially ovemight-a

significant proportion of workstations on a network may either be unused or be used for

lightweight activities such as document editing. These workstations have spare

processing capacity, and can be used to run jobs for users who are logged on at other

workstations and do not have sufficient capacity at their machine. The problem of

making better use of the resources provided by such networks is becoming more and

more important from both the research and practical points of view.

The objective of this study is to design and build an application on a Unix Network

File System (NFS) which could solve this problem and achieves a more efficient

parallelization in a shorter time. The application has the key characters of distributed

systems such as support for resource sharing, concurrency, scalability, fault tolerance,

and so on. It could automatically detect which machine is idle, whIch machine is busy,

dispatches the jobs among the machines, balances the load over the network and frees the

user from the burden of looking for idle or under-utilized machines to use. It actually

provides a facility fur users to take advantage of the shared resources to achieve fast,

reli able, :md cost effecti ve performance. It could be used as a front-end dispatcher to

handle completely independent tasks. The application actually constitutes a general

purpose paraJlelizing mechanism over a Unix Network File System.

This thesis is organized into the following chapters:

• Chapter Il: Overview of distributed computing systems

• Chapter III: The design implementation issues of the application are discussed

2

• Chapter IV: The results obtained are presented and discussed

• Chapter V: Summary and future work are included

3

CHAPTER II

LITERATURE REVIEW

2.1. DISTRIBUTED COMPUTING SYSTEM

Distributed computing refers to the services provided by a distributed computing

system [Umar1993]. A distributed system consists of a collection of autonomous

computers linked by a computer network and equipped with distributed system software

[Coulouris1994]. They are implemented on hardware platforms that vary in size.

Distributed system software enables computers to coordinate their activities and to share

the resources of the system-hardware, software and data. U ers of a well-designed

distributed system should perceive a single, integrated computing facility even though it

may be implemented by many computers in different locations.

The architecture of a distributed system identifies the main hardware and software

components and modules of the system and defines the relationships between them.

Important aspects of this are the types of computers used, their locations in the network

and the locations at which system programs and application programs are executed.

There are three main architectural models for distributed systems that have emerged

to date [Casavant 1994].

4

1. Workstation/server model: In this model each user is provided with a single-user

computer, k.nown as a workstation. Application programs are executed in the

users' workstations. Users share the file servers and peripheral devices like

printer. Sun NFS and Xerox DFS belong to this model.

2. Processor pool model: Programs are executed in a set of computers managed as a

processor serVIce. Users are provided with terminals rather than workstations,

connected to the network via tcrmjnal concentrators and interacting with

programs via a terminal access protocol like Cambridge DCS. Since workstations

are now widely available and are included in most network systems, so a hybrid

model has emerged. It is based on the workstation/server model, but with the

addition of some pool computers that can be allocated dynamically for tasks that

are too large for workstations or tasks that require several computers concurrently,

like Amoeba system.

3. Integrated model: Each computer is provided with appropriate software to enable

it to perform both the role of server and the role of application processor. The

system software located in each computer is similar to an operating system for a

centralized multi-user system, with the addition of networking software, like

Locus system, Newcastle Connection and Unix system.

The key characteristics of distributed systems are support for resource sharing,

openness, concurrency, scalability, fault tolerance and transparency. They are primarily

responsible for the usefulness of distributed systems [Coulouris1994].

5

]. Resource sharing: The resources range extends from hardware components such

as disks and printers to software-defined entities such as files, windows, databases

and other data objects. Resources in a distributed system are physically

encapsulated within one of the computers and can only be accessed from other

computers by communication. Resource manager (a program) offers a

communication interface enabling the resource to be accessed, manipulated and

updated reliably and consistently. The resource users communicate with the

resource managers to access the shared resources of the system and effective

sharing each resource. Like the client-sever model and the object-based model.

2. Openness: It is the characteristic that determines whether the system can be

extended in various ways. Like hardware extensions-the addition of peripherals,

memory or software extensions-the addition of operating system features,

communication protocols and resource-sharing services. The openne of

distributed systems is determined primarily by the degree to which new resource

sharing services can be added without. disruption to or duplication of existing

servIces.

3. Concurrency: 11 means that when several processes exist in a single computer,

then they are executed concurrently. In distributed systems there are many

computers, each with one or more central processors. If there are M computers in

a distributed system with one central processor each, then up to M processes can

run in parallel, provided that the processes are located in different computers.

4. Scalability: Distributed systems operate effectively and efficiently at many

different scales. The smallest practicable system could consists of two

6

workstations and a fjle server, whereas other systems constructed around a single

local-area network may contain several hundred workstations and many file

servers, plint servers and other special-purpose servers. They enable resources to

be shared between all of them.

5. Fault tolerance: Wllen system faults occur in hardware or software, programs

may produce incorrect results or they may stop before they have completed the

intended computation. The design of fault-tolerant computer systems should have

the ability to detect fault and recover them.

6. Transparency: The system is perceived as a whole rather than as a collection of

independent components. The implications of transparency are a major influence

on the design of the system software.

2.2. RELATIVE WORKS

The motivations for distJibuted systems became apparent in the early 1970s, a few

years after the emergence of minicomputers. But the necessary hardware and software to

make single-user computers fully effective, and the communication facilities to enable

them to be used in a cooperative fashion, were absent. The earliest and some of the most

significant developments aimed at filling those gaps were made by a team of researchers

workjng at the Xerox Palo Alto Research Center (Xerox PARC) in the period of 1971

1980. These included the development of the first single-user workstations (Alto), file

and print servers, the first high-speed local network (the Ethernet) and several

experimental distributed systems. Like Xerox DFS, a very early file server distributed

system was developed in 1977 [Mitchell and Dion 1982][Mitchell 1985].

7

Cambridge DCS (Cambridge Distributed Computing System) was the first distributed

system based on the proce sor pool model. It was developed in the Computer Laboratory

at Cambridge University, England [Needham & Herbert 1982] in 1979. There were no

workstations in the oliginal implementation of that system. Users were provided with

simple terminals and were allocated processors from a heterogeneous processor pool.

Developed by Popek and his colleagues at the University of California, Los Angeles

In 1980, Locus was one of the earliest distributed operating systems. It is an advanced

distributed operating system that emulates UNIX [Popek & Walker 1985] and it supports

transparent access to data through a network-wide file system. Known for such features

as transparent process migration and a unifonn distributed shared memory abstraction,

Locus was extremely influential in the early development of paraIlel and cluster-style

computing systems.

Another two distributed systems developed in 1980 were Apollo Domain by Apollo

Computers [Leach et aU 983] and Newcastle Connection by Newcastle University

[Brownbridge et a1.1 982]. Apollo Domain was the largest existing configuration

commercial distributed system, which connected with 1800 workstations. Newcastle

Connection was the precursor to the Sun Network File System.

From the start of the] 980s there was a rapid expansion of research and development

in distributed systems.

Xerox PARC developed Grapevine system in 1981 [Birrell et a1.1982] and Cedar

system in 1982 [Teitelman 1984][Donahu]985]. Grapevine system was at distributed

replicated application-oriented database service. It is an early example of a distributed

system designed to meet specific goals and to offer guarantees of the systems' behavior.

-

Which means it provides guarantees concerning the reliability of the service in the face of

client program errors, hardware failures and network failures. Cedar system was a

research environment for the development of office and personal systems.

The V system was made by Stanford University in 1982 [Cheriton] 984][Cheriton &

Zwaenpoel 1985]. It is a testbed for research in distributed systems. The architecture of

V system consists of four logical components: a distributed Unix kernel, service modules,

runtime support liBraries, and additional user commands. It manages the workstations

(client) and the servers (back-end processors) transparently to give the user an impression

of one large centralized system.

MIT developed Argus in 1983 [Liskov & Scheiner]984]. It is an integrated

programming language and system for implementing distributed programs.

In 1984, Amoeba was developed at the Vrije University in Amsterdam. It is a

complete distributed operating system design, including all the basic facilities that one

would expect from a conventional operating system [Tanenbaum et a1. 1990][Tanenbaum

1992]. It is an example of a system that supports the processor pool model. Other

designs that have incorporated processor pools include Plan9 [Pi ke et al. 1990] and the

Clouds system [Dasgupta et a1. 1991].

SUN Microsystems developed a distributed UNIX system (Sun Network File System)

in 1985 [Coulouris 1994]. It is an extension of the UNIX operating system that provides

a distributed file service based on networked UNIX systems. Now, it has been widely

adopted in industry and in academic environments.

Carnegie-Mellon University developed Accent in 1982 [Rashid 1986] and Mach in

1986 [Boykin et a1. 1993] [Loepere J991]. Accent is a distributed operating system

9

based on message passing and it is the precursor of Mach, which is an operating system

kernel for distributed systems which can run on both multiprocessor and uniprocessor

computers connected by networks. Many of Mach's features are derived from Accent.

The UNIX emulation enables Mach to provide an environment in which users may

continue to use programs that use the UNIX system call interface.

Chorus was made by Chorus Systems company in 1988 [Rozier et al.1988][Rozier el

al. 1990]. It is an object-oriented operating system for distributed computing and it is an

operating system kernel to support distributed and real-time systems. It is architecturally

similar to Mach in many ways such as emulate operating systems, notably UNIX.

The 1990s is the decade of di stributed systems due to the excellent price/performance

ratio offered by microprocessor-based systems and the steady improvements in

networking technologies [Wu 1999]. Distributed computing has become a key

component of high-performance computing [Baker1996]. It has resulted in a major shift

towards distributed systems and away from centralized and multi-user computers. This

trend has been accelerated hy the development of distributed system software, designed

to support the development of distributed applications. Many companies and

organizations as stated above, continued to enhance and upgrade their developed

distributed system. Some of the systems received widespread industrial recognition such

as Mach which is available on many machines, including liM PCs and SUN

workstations [Umar 1993] and Chorus, which has become one of the major vehicles for

commercial UNIX development and for real-time computing products [Birman 1996].

There are also many new systems developed around the world during this period,

such as Delta-4 system which was one of the first systematic efforts to address reliability

10

and fault-tolerant concerns. It was launched in Europe in 1991 [Powell 1991]. The HAS

(Highly Available System) was developed by ffiM's Almaden research laboratory in

1991 and subsequently contributed technology to a number of IBM products [Cristian

1994]. NavTech was developed in 1993 and it is aimed at wide area applications with

real-time constraints, such as banking systems [Verissimo1995]. Phoenix was launched

in 1995 [Malloth1995] and the emphasis of this system is on issues that occur when

process group techniques are used to implement wide area transactional systems or

database systems. Some other systems like Psync developed by the University of

Arizona [Mishra et al 1991], Rampart by AT&T Bell Laboratories [Reiter 1996], Relaces

by the University of Bologna [Babaoglu et a1. 1995], RMP by the University of

California, Berkeley [Callahan 1996], StormCast by the University of Tromso [Asplin

1995] and Transis by Hebrew University of Jerusalem [Dolev1996]. Each of these

systems was innovative in some areas and borrowed ideas from prior systems in other

areas [Singh 1999].

Some research and work have been done in the parallel and distributed computing

system area at Oklahoma State University. Hsiao [Hsiao 1992] designed and

implemented an interactive parallel program slicer for the distributed-memory parallel

programs in 1992. AJabdulkareem [Alabdulkareem 1993] designed and implemented a

development tool [or parallel algorithms by using the Linda approach. It was

implemented on IBM PC with Microsoft Windows and it was one of the first models,

which was developed on PC environment.]n 1994, Duan presented a new scalable

parallel processing architecture called TR-machine, which is based on conventional

machine model and graph reduction. It was implemented by using object-oriented

11

technique [Duan 1994]. Prohmbhadra designed and implemented a distributed license

server by using the concept of k-coteties and a distributed k-mutual exclusion algorithm

to control access to the licenses in 1995 [Prohmbhadra 1995]. Valliere developed a

hypertext system to process and visualize network management data in 1996 [Valliere

1996]. Burge developed a Java-based mobile actor system for heterogeneous distributed

parallel computing in 1998 [Burge 1998].

12

-

CHAPTER III

DESIGN AND IMPLEMENTATION

3.1 IMPLEMENTATION PLATFORM

UNIX [Ritchie1974] is perhaps the best-known example of a multi-user operating

system. Since it was already in widespread use and easily available when distributed

systems were being developed, many distributed system researchers and developers

adopted the model provided by the original UNIX as their goal [BrownI994].

The developments began with the extension of the original UNIX system design to

include SUppOI1 for interprocess communication. It was achieved in the 4BSD versions of

UNIX developed at the University of California at Berkeley in the late 1970s

[Stevens 1990]. Subsequently_ these communication facilities were extended and

exploited as a basis and the necessary components for the development of full-distributed

systems.

The distributed UNIX model has been implemented in several forms. The most

widely used implementation is that developed by Sun Microsystems, a workstation

manufacturer that took the Berkeley BSD UNIX as the stal1ing point for an extensive

software effol1, which Jed to the development of the well known Network File System

(NFS). This software component and its associated Remote Procedure Calling (RPC)

and Network Information Service (NIS) components are now offered by almost every

workstation vendor and are used as the basis for most current distributed UNIX

implementations [Leffler1989].

Using the Network File System, it is possible to work 10caJly with files that are stored

on a remote computer system's disks, as if they were present on your own computer. The

remote system acts as the file server; the local system is the client, making requests. NFS

does not communicate with tbe kernel in the way that Remote File Sharing (RFS) does.

]nstead, it relies on Remote Procedure Calls (RPC), which allows machines to access

services on a remote machine via a network. RPC handles remote requests and then

hands them over to the operating system on the local machine. The local system has

daemons running that attempt to process the remote request. These daemons issue the

system calls needed to do the operations.

Remote Procedure Calls (RPC) were first proposed in White [1976], studied in detai I

by Nelson [1981), and efficiently implemented by Birrell and Nelson [1984]

[Renaud1996]. Sun Microsystems developed the Sun RPC protocol in the mid-1980s.

As with any RPC protocol, its objective was allow development of client/server

applications without having La program at the session or transport (socket) level. The

popularity of Sun Microsystems' public domain RPC protocol has led to wide-spread use

of RPC as a basis for client/server programming. Today, RPC are the major

communications mechanism that underpins most client/server communications

[Kochan1989]. For example, most client/server middleware, such as message queuing,

mail-enabled messaging, TP monitors, network SQL, and distributed object protocols are

built on top of RPC.

14

The application was tested using four Sun workstations in Oklahoma statwide NMR

Facility. One machine was served as the master and distributed jobs to the other three

machines by using the RPC. File sharing between Sun workstations was implemented by

using Unix Network File System protocol.

3.2. DESIGN FEATURES OF THE APPLICATION

1. The interface of this application is transparent to the user. The user just simply

need to specify the input file which contains the names of the jobs and the rest is

automatically taken care of by the application. To the user, it is as though all of

the computations were done on a single machine. It is assumed that all jobs take

the same time interval and all jobs must be available initially.

2. The application makes the best use of the available machines on the network by

using the RPC (Remote Procedure Calls) and system daemons to monitor each

computer; locating and allocating "idle" machines; and balancing the loads on the

network.

3. This application assures the "owners" of the machines have the highest priority

over their own workstations. It will run the jobs in the background at a low

priority (typically a nice value of 10), so that the operating system will

preferentially allocate CPU time to the owner's jobs. If the monitoring status

indicates that a particular machine is "too busy", the application will remove the

background job from that machine and redistribute it to another machine.

15

4. The application is 10ierant to many types of faults like premature terminations of

the computation due to machine crash. In such case, the uncompleted job is

redistributed to another machine.

5. The application can provide a means (through a local host table in the current

working directory) for users to select which hosts to use instead of, by default, all

the hosts on the local network. This allows some machines to be excluded for

various reasons: critical file servers, machines which are too slow to be useful,

machines whose owners don't like their machines to be shared, etc.

6. The application supports a set of optional parameters to provide users with some

flexibility. For example, the user can define what it means for a host to be "idle"

by setting the IDLE-LOAD parameter; likewise, BUSY-LOAD is set to define

"too busy"-when a running job has to be removed. These parameters are defined

in telms of the I-minute load-average on the machine. Other parameters include

the PRIORITY (nice value) at which the job runs in the background and so on.

7. The application can provide some facilities to its users: a progress report while it

is running, a final summary of all critical statistics (like the total turnaround time,

each host's peIiormance data, etc.), and a log file that records what has happened

for each job. The final jobs' result will be collected by the application and stored

at a file which name is P-Iog-d.

3.3 THE ARCHITECTURE OF THE APPLJCATION

The architecture of the application is depicted in Figure 1. The functionality of each

box is briefly summarized as follows:

16

-

1. QUElliNG SYSTEM: It consists of three queues of same type: wait-q, run-q, and

done-q. Each one of them is a linked list of the jobs. wajt-q holds a)) the jobs that are

waiting to be dispatched; run-q lists all the jobs that are currently running on some

hosts; and done-q has the completed jobs. Initially, a)) the jobs are placed in wait-g,

when the system running, these jobs migrate among the queues.

2. CONTROLLER: This is the heart of application's operation. Its responsibilities

include updating the status of hosts, monitoring the progress of running jobs,

balancing the load over the network, and detecting any abnonnal conditions such as

machine crashes and premature terminations of processes, and so on. In particular,

the status of each host is checked and marked as either down, up and idle, or up and

non-idle so that Executor will know whether or not to use a particular host. The

progress of each running job is periodically monitored so that if it is done, it will be

moved to done-q, thus freeing the host for some other jobs. And if any resubmit

condition is satisfied (like the load average on a machine exceeds the user-defined

busy load threshold (via BUSY-LOAD); the job abnonnally terminates before

completion; and so forth), the job is removed from the host and placed on wait-q

again. When a job is aborted for one of these reasons, all the calculations performed

during the process are lost, and upon resubmission the computation is reinitiated from

the beginning.

3. EXECUTOR: According to the host status report generated by Controller, Executor

dispatches jobs on wait-q to ava.iJable idle hosts, which means a dispatched job is

moved from wait-q to run-q.

17

-

Input

Resubmit
Queuing System

c
o
N
T
R
o
L
L
E
A

.•..

...~:~.>::..

Output

Executor

Figure 1. The Architecture of the Application

18

-

3.4. LOAD BALANCING ALGORITHMS

One of the greatest challenges in implementing network parallelization is to effectively

perform load balancing and resource allocation. The problem is essentially different

from that of job scheduling on an internally parallel machine due both to the natural

inhomogeneity of the network metacomputer, as well as to the random and unkn0wn

fluctuations in individual machine availability and performance. This problem would

appear to be a fertile area for future research. One possibility might be to allow for

dynamically varying the batch time size for the jobs. Another approach would involve

waiting for faster machines to perform the last few jobs which to be desclibed later.

1. A SIMPLE ALGORITHM

Even if we do not use any load balancing algorithm, the way that Controller and

Executor were implemented implies that whenever a host is available and there are some

waiting jobs on wait-g, that host will be used to run one job from the waiting queue.

Clearly, if the number of total jobs is many times the number of hosts, the final

completion times on the hosts are expected to be very close, thus balancing the load

among the hosts almost for free. On the other hand, if the batch size of each job is too

sma]] (the amount of execution time is small), then the overhead will increase as a

fraction of the total running time. The overhead primarily involves the time waiting for

the load average on the machines to drop below the IDLE-LOAD value.

19

2. A BEITER ALGORlTHM

Although the load is intrinsically fairly well balanced among the hosts at almost no

cost by using above simple algorithm, the application did implement a better

improvement to the load balancing algorithm: when each job is initiated, the Executor

submits it to the "fastest" one among all available hosts. The speed of each machine is

dynamically detennined from their past performance on the completed jobs. Therefore,

both the machine's intrinsic speed and its availability for running the job are taken into

account. The machines' speed was computed based on assuming that each job has the

equal batch time size (although it is often unrealistic and not a common case). The jobs

were compute the longest common subsequence problem.

Support that there are two machines M1 and M2, and that M1 is r times faster than M2•

Let T] and T2 denote the average run time for M 1 and M 2 for jobs of the same length

(batch ize). Then T2ff l = r. As far as the load balancing between the two is coneemed,

the worst case happens when M2 takes the last job because MI is not yet available (let us

say that M 1 is still ET I minutes from completion). In this case, it would take an additional

T2 minutes for the job to complete. Altematively, if we wait £T I minutes until M l

finishes its current job and then let it take the last job, it would take (1+ E) T} minutes for

the job to complete. C1earl y, the second alternative is preferred when

(1)

or,

1 + £ < r, where, 0 < £ ~ 1 (2)

Thus, we can see that if r ~ 2, then the I:ltter alternative will always produce a shorter

total turnaround time.

20

For another perspective, M2 houlJ never be used if the number of waiting jobs

(denoted by n) is such that

(3)

For example, let r = 1.5, and £ = 0.4. Then if n =1, we should wait for M 1 to finish in

order to take the last job, instead of using M2• As another example, suppose r = 4, and

E =0.9. Then the stop point for M2 is when n = 3.

Clearly, this algorithm can be easily extended to the case in which there are more than

2 hosts. First, one would order the hosts according to their speeds with the fastest host

being the first in the list. Second, before starting off a job on M i , one would compute the

stop point value against all Mj (j = 1,2,... , i-I) using Egn. (3). If the sum of all these

values is greater than the number of waiting jobs, neither Mj nor any of the hosts that

foIlow M j in the order list would be used.

3. EVERY MACHINE'S WAITING TDvIE AT THE END IS AT MOST ITS

AVERAGE EXECUTION TIME OF ONE JOB

PROOF: According to the better algorithm, the necessary condition to not use Mj is that

if it were used, the total turnaround time would be longer. That is, the actual total

turnaround time must be less than that when Mj would be used. Therefore, Mj waits at

most T j (its average execution time per job) for all other machines to finish their last jobs.

21

CHAPTER IV

RESULTS AND ANALYSIS

Even though the worst case with or without the better algorithm is the same, in

practice the better algorithm gives better load balancing among the hosts.

4.1. THE ALGORITHM ACHIEVES BEITER LOAD BALANCING

PROOF: As every machine's waiting time at the end is at most its average execution

time of one job, if any machine steals one more job from another machine, the total

turnaround time would be longer.

1. The improvement on the total turnaround time brought by the better algorithm i

about 10% in general. As an example, Figure 3 is the improved result of the same

task from figure 2, reducing the total turnaround time from 2.60 minutes to 2.33

minutes. lts corresponding graphical representation on the load balancing effect is

depicted in Figure 4 and Figure 5. The machine real time speeds vary from 0.18

minutes to 0.54 minutes for one job. The shorter white intervals represent the average

delays between the completion of the last job and the start of the next one, part of

which is application's own overhead and the rest is because the host was considered

"non-idle" (usually because someone else was using the machine). The large shaded

intervals represent the average computational times for each job. It can be seen that

22

-

each host takes essentially as many jobs as it can and that there is relatively little

dispersion of the final completion times.

2. From many past runs, before the better algorithm was implemented, it was almost

always true that a slower machine finished last just like figure 4 displayed.

3. The average run time per job Ti is dynamically determined, thus accounting for the

machine's intrinsic speed and its dynamic usage.

4. In the real implementation, the delays (overheads) before two successive jobs were

taken into consideration, thus resulting in a slightly different algorithm from what

was described above.

5. In reality, because of the unpredictable nature of machines' usage, the load balancing

performance by the algorithm may be slightly off from the optimum.

6. This algorithm gives a much better balancing effect when the speeds of the machines

very greatly than when they are close (compared with the simple nlgorithm above).

4.2. TEST RESULTS

J. ACCURACY: A necessary condition for this application to be considered useful and

successful is that its final output must be equal to that produced by a sequential

calculation on a single machine. I have confirmed through explicit test that this

application's output is correct.

2. SPEEDUP TEST: Test results for speedup are presented in Figure 6 and Figure 7.

The same number of jobs was run using J, 2, :3 machines. To ensure a fair

comparison, I run the experiment during a period when all the machines were

23

-

virtually idle (mid-night). It can be seen that with the better algorithm. the total

turnaround time is shorter and the speedup factor is greater than without it.

24

-

File: P-Iog-h
(automatically generated log file)

Host running Program: nrnrserv

------ Parameter setting -----
IDLE_LOAD = 2.00
BUSY_LOAD = 4.00
CPU_PERCENT =25
PRIORITY =10
DEBUG =1
LOG_Fll..E_PREFIX = P
------ End of Parameter setting ------

---------- Job statistics ----------

Total time: 2.60 minutes.
From: Wed Nov 321 :05:32 1999

To: Wed Nov 321 :08:08 1999

Total hosts: 3
Used hosts: 3

Unused hosts: 0

----- Itemized statistics for each host --------

Host Done Ahort A vg. Last done Lag Delay DID+A

i400 8
i600 8
g300 4

o
o
o

0.18m Nov 321:07:54 O.12m O.13m 42.3%
0.19m Nov 321:07:54 O.12m 0.12m 38.3%
0.54m Nov 321:08:01 O.OOm O.llm 16.7%

Total: 20 o 0.26m 0.08m 0.12m 32.2%

Figure 2. A Sample Summary Log File (Simple Load Balancing Result)

25

File: P-Iog-h
(automatically generated log file)

Host running Program: nmrserv

------ Parameter setting -----
IDLE_LOAD = 2.00
BUSY_LOAD = 4.00
CPU_PERCENT = 25
PRIORITY = 10
DEBUG =1
LOG_FILE_PREFIX =P
------ End of Parameter setting ------

---------- Job statistics ----------

Tota] time: 2.33 minutes.
From: Wed Nov 3 21:00:26 1999

To: Wed Nov 321:02:461999

Total hosts: 3
Used hosts: 3

Unused hosts: 0

----- Itemized statistics for each host --------

Host Done Ahort Avg. Last done Lag Delay DID+A

i400 8
i600 9
g300 3

o
o
o

a.18m Nov 321:02:30 O.JSm a.09m 32.8%
0.19m Nov 321 :02:39 O.OOm 0.07m 28.6%
0.S5m Nov 3 21:02:09 O.SOm 0.06m 10.0%

Total: 20 a 0.24m 0.22m 0.08m 24.7%

Figure 3 . 1\ Sample Summary Log File (Better Load Balancing Result)

26

File: P-log-h

(automatically generated log file)
Host running Program: nmrserv
--------- --

------ Parameter setting -----
lDLE_LOAD =2.00
BUSY_LOAD =4.00
CPU_PERCENT =25
PR10RITY =10
DEBUG = 1
LOG_FILE_PREFIX =P
------ End of Parameter setting ------

---------- Job statistics ----------

Total time: 2.33 minutes.
From: Wed Nov 321 :00:26 1999

To: Wed Nov 3 21 :02:46 1999

Total hosts: 3
Used hosts: 3

Unused hosts: 0

----- ltemized stati stics for each host --------

Host Done Abort Avg. Last done Lag Delay DID+A

i400 8
i600 9
g300 3

o
o
o

O.l8m Nov 321:02:30 0.15m 0.09m 32.8%
O.19m Nov 321:02:39 O.OOm 0.07m 28.6%
O.SSm Nov 3 21:02:09 O.SOm 0.06m 10.0%

Total: 20 o 0.24m O.22m 0.08m 24.7%

Figure 3. A Sample Summary Log File (Better Load Balancing Result)

26

3

ti
o 2
::t

1

Figure 4.

Total Turnaround Time

A Simple Load Balancing Result Over 3 Different Hosts

27

Total Turnaround Time

Figure 5. A Better Load Balancing Result Over 3 Different Hosts

28

--- Better --A- Simple

5 I

4,5
v
E 4

E= 3,5"0
l:: 3::3
0
~ 2.5
~ 2

f-<- 1,5
~....
0 1f-<

0.5
a

1 2 3

Number Of Host

Figure 6. Total Turnaround Time vs. Number Of Host

29

- Better - Simple

3...
0....
u 2.5~u...
P..
:::l 2"0
iU

8-
tI) 1.5
~
0.-oW 1S
:::l
c..
~ 0.5
u

a
1 2 3

Number Of Host

Figure 7. Computation Speedup Factor vs. Number Of Host

30

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1. CONCLUSIONS

The application I developed enables us to use a UNIX workstation Network File

System as a paranel metacomputer for computation. This application does an efficient

load balancing among hosts over the Network File System. It has the ability to recover

from many types of faults, requires no manual intervention from the user, and provides a

lot of Dexibility to the user. And the real beauty of the application is that adding more

workstations to boost the computational power is easy: simply add new host names to the

host file. Therefore, as more and powerful stations are purchased and installed, the

application will get more power automatically.

5.2. FUTURE WORK

This application can be enhanced along the following several directions.

1. Migrating jobs instead of aborting them when one or more of the resubmit

conditions are met.

2. Upgrading it to different architectures and operating systems.

31

3. Design and construct a divide-and-merge algorithm, then combine it with this

application in order to build a more powerful machine which can run parallel

programs in a parallel distributed system.

4. Design and implement an optimal algorithm which could distribute the jobs

according to the vary batch time size of jobs and the different machine speed to

achieves an optimal loading balance.

32

REFERENCE

[Alabdulkareem 1993] Alabdulkareem, M. A., "A development environment for
parallel algorithms based on linda", 1993, Oklahoma State University, MS thesis.

[Asplin 1995] Asplin, J., "Performance Experiments with the Storm View Distributed
Parallel Volume Renderer", 1995, CompuJer Science Technical ReporJ 95-22.
University ofTromso.

[Babaoglu et a1. 1995] Babaoglu, 0., "Failure Detectors, Group Membership, and
View-Synchronous Communication in Partitionable Asynchronous Systems", 1995,
Technical Report UBLCS-95-18, Department OfCo171puter Science, University of
Bologna.

[Bakerl996] Baker, Lou and Smith, J. Bradley, Parallel Programming, 1996,
McGraw-Hili Companies. Inc.

[Birman 1996] Birman, K. P., Building Secure and Reliable Network Applications,
1996, Manning Publications Co. CT.

[Birrell et a1.1982] Birrell, A. D., Levin, R., Needham, R. M. and Schroeder, M. D.,
"Grapevine: an exercise in distributed computing", 1982, Comm. ACM, Vol. 25,
No.4, pp.260-73.

[Boykin et al. 1993] Boykin. J., Kirschen, D., Langerman, A. and LoVerso, S.,
Programming under Mach, J993, Reading MA: Addison-Wesley.

{BrovmI994] Brown, Chris. Unix-Distributed Programming, 1994, Prentice Hall
International Li mited.

[Brownbridge et al.1982] Brownbridge, D. R., Marshall, L. F. and Randell, B. 'The
Newcastle connection, or UNIXes of the world unite!", 1982, Software Practice and
Experience, Vol.l2, pp.1 147-62.

[Burge 1998] Burge, Legand L., "JMAS: a Java-based mobile actor system for
heterogeneous distributed parallel computing", 1998, Oklahoma State University,
PhD thesis.

[Callahan 1996] Callahan, J., "Approaches to Verification and Validation of a
Reliable Multicast Protoco]", Proceedings of the 1996 ACM International

:':13

Symposium on Sofrware Testing and Analysis, 187-194.

[Casavant 1994] Casavant, Thomas L., Distn'buted Computing Systems, 1994, IEEE
Computer SocIety Press, Los Alamitos, California.

[Cheriton 1984] Cheriton, D. R., "The V kernel: a software base for distributed
systems", 1984, IEEE Software, Va!. 1 No.2, pp.19-42.

[Cheriton & Zwaenpoel 1985] Cheriton, D. R. and Zwaenepoel, W., "Distributed
process groups in the V kernel", 1985, ACM Trans. USENIX Summer Conference,
pp.73-85.

[Comer1997] Comer, Douglas E. Computer Networks and Internets, 1997 Prentice-
Hall, Inc. Upper Saddle River, NJ 07458

[Coulouris1994] Coulouris, George and DoJlimore, Jean and)(jndberg, Tim.
Distributed Systems-Concepts and Design, 1994 Addison-Wesley Publishing
Company Inc.

[Cristian 1994] Cristian, F., "Fault-Tolerant IntemaJ Clock Synchronization", 1994,
Proceedings ofthe '111irteen Symposium on Reliable Distributed System.

(Dasgupta et aJ. 1991] Dasgupta, P., LeBlanc Jr., R. J. Ahamad, M. and
Ramachandran, u., "The Clouds Distributed Operating System", 1991, 1EEE
Computer, Vol. 24, No.11, pp.34-44.

[Dolevl996] Dolev, D., "The Transis Approach to High Availability Cluster
Communication", 1996. Communications of the ACM 39:4:64-70.

[Donahu 1985] Donahu, J., "Integration mechanisms in Cedar", 1985, Proc ACM
SIGPlAN 85 Sym. On Programming Languages and Environments.

[Duan 1994] Duan, J., "An ohject-oriented parallel simulation of TR-machine
architecture", 1994, Oklahoma State University, MS thesis.

[Elben1994] EIben, Bruce and Martyna, Bobby. Client/Server Computing
-ArchiTecture, ApplicaTions, and DiSTributed Systems Management, 1994 Anech
House, Inc. 685 Canton Street, Norwood, MA 02062.

(Hsiao 1992] Hsiao, T., "An interactive parallel program slicer for C programs on the
ipscl2 system", 1992, Oklahoma State University, MS thesis.

[Kochan1989] Kochan, Stephen G. and Wood, Patrick H., Unix Networking, 1989,
Pipeline Associates, Inc.

[Leach et aJ.1983] Leach, P. 1., Levine, P. H., Douros, B. P., Hamilton, J. A.. Nelson,
D. L. and Stumpf, B. L. "The architecture of an integrated local network", IEEE 1.

34

Selected Areas in Communications, Vol. SAC-1, No.5, pp.842-56.

[Leffler1989] Leffler, Samuel J. and Mckusick, Marshall Kirk et al, The Design and
ImplementaTion ofthe 4.3BSD Unix Operating System, 1989, Addison-Wesley
Publishing Company.

[Liskoy & ScheiDer 1984] LiskoY, B. and ScheiDer, R. W., "Guardians and actions:
linguistic support for robust, distributed programs", 1982, ACM Trans. Programming
Languages and Systems, Vol.5, No.3, pp.381-404.

[Loepere 1991] Loepere, K., "Mach 3 Kernel Principles", 1991, Open Software
Foundation and Carnegie-Mellon University.

[Malloth1995] Malloth, C. P., "Phoenix: A Toolkit for Building Fault-Tolerant
Distributed Applications in Large-Scale Networks.", 1995, New York: IEEE
Computer Society Press.

[Mishra et al 1991] Mishra, S., "A Membership Protocol Based on Partial Order.",
1991, Proceedings of 'he IEEE International Working Conference on Dependable
Computing for Critical Applications. 137-145.

[Mitche1ll985] Mitchell, J. G., "File servers In Local Area Networks: an Advanced
Course, Lecture Notes in Computer Science", 1985, Springer- Verlag, pp.221-59.

[Mtchell & Dion 1982] Mitchell, J. G. and Dion, J. "A comparison of two network-
based file servers", 1982, Comm. ACM, Vol. 25, No.4, pp.233-45.

[Needham & Herbert 1982] Needham, R. M. and Herbert, AJ., The Cambridge
Disrribured Computing System, 1982, Wokingham: Addison-Wesley.

[Pike et al. 1990] Pike, R., Presouo, K., Thompson, K. and Trickey, H., "Plan 9 from
Be]] Labs", 1990, Proc. UK Unix Users Group, Summer 1990, Conference, London.

[Popek & Walker 1985] Popek, G. and Walker, B., The LOCUS Distributed System
Archirecture, 1985, Cambridge MA: MIT Press.

lPowe1l1991J Powe]], D., "Delta-4: A Generic Architecture for Dependable
Distributed Computing", 1991, Springer-Verlag ESPRIT Research Reporrs, Vol. 1,
Project 818/2252.

[Prohmbhadra 1995] Prohmbhadra, S., "Distributed license server", 1995, Oklahoma
State University, MS thesis.

[Rashid 1986] Rashid, R. R., "From R1G to Accent to Mach: the eyolution of a
network operating system", 1986, Proceedings ofrhe ACM/IEEE Computer Society
Fall Joint Conference, ACM, November.

[Reiter 1996] Reiter, M. K., "Distributing Trust with the Rampart Toolkit", 1996,

35

Communications of the ACM 39:4, 7J-75.

[Renaud1996] Renaud, Paul E., Introduction to Client/Server Systems-A Practical
Guide for Systems Professionals, Second Edition, 1996, by John Wiley & Sons, Inc.

[Ritchie1974] Ritchie, D. M. and Thompson, K., "The UNIX tjme-sharing system",
1974, Comms. ACM. Vo1.l7. No.7, pp.365-75.

[Rozier et a1.1988] Rozier, M., Armand, F. and Neuhauser, W., "Chorus Distributed
Operating Systems", 1988, Computing Systems Journal, Vol.J, No.4, pp.305-70.

[Rozier et a1.1990] Rozier, M., Abrossimov, V., and Neuhauser, W., "Overview of the
Chorus Distributed Operating System", 1990, Tech. Report CSfTR-90-25. J. Chorus
Systems, France.

[Singh1999] Singh, Harry, Progressing to Distributed Multiprocessing, 1999,
Prentice Hall PTR, Upper Saddle River, NJ 07458.

[Stevens1990] Stevens, W. Richard, UNIX Net....vork Programming, 1990, Prentice-
Hall, Englewood Cliffs, NJ.

[Tanenbaum 1992] Tanenbaum, A. S., Modem Operating Systems, 1992, Prentice-
Hall, Englewood Cliffs, NJ.

[Tanenbaum et aJ. 1990] Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp,
G., MuJ1ender, 5., Jansen, J. and van Rossum, G., "Experiences with the Amoeba
Distributed Operating System", 1990, Comm. ACM, Vol. 33, No.J2, pp.46-63.

[TeiteJman 1984] Teitelman, W., "A tour through Cedar", J984, IEEE Software, Vol.
1, No.2, pp.44-73.

[Umar 1993] Umar, Amjad, Distributed Computing - A Practical Synthesis, J993,
PTR Prentice-HaJJ, Nl 07632.

[Valliere 1996] Valliere, C. E., "Distributed reporting management system", 1996,
Oklahoma State University, MS thesis.

[Verissimol995] Verissimo, P., Real-Time Communication, 1995, Distributed
Systems, 2d ed., Addison-Wesley/ACM Press.

[Wu 1999] Wu, lie, Distributed System Design, 1999, CRC Press LLC, Florida.

36

APPENDIX

/***
* Thesis Project:
* Designing and Building an Efficient Application On A Unix Network File System
* Author: Jian Liu
* Date: December, 1999 (Fall, 1999)

*
* The purpose of this project is to design and build an application, which provides a
* facility for users to run their jobs at idle or under-utilized workstations on a Unix
* Network File System. It can automatically take advantage of the shared resources to
* achieve fast, reliable, and cost effective perfonnance.
* Users just need to load this application on their own machine and run this program.
* There should have 3 files come with this program. One is the hosts file. It contains the
* name of the hosts which will run the program. One file contains the list of the
* program's name on the user's machine and will be distributed to the other host's
* machine to run. One file contains the parameters which user set for the application to
* justify and to distribute the jobs.
* When the users run the program, they should input the file which contains the list of
* programs' name and the output file will be generated automatically.(P-log-d)

*
***/

#defi ne NAJv1E_LEN 80
#define LINE_LEN 160
#define SYS_CALL_LEN 250

#define MODE_MASK 0777 /* octal */
#define DONE_MODE 0777 /* octal */

#define WAITING 0
#define RUNNING J
#define DONE 2
#define ABORTED -1

#define P_OFF 0
#define P_ON J
#define DOWN -1

#define FILE_FAIL_LIMIT
#define HOST_FAlL_LIMIT

4
4

/* have to change later!!!! */
/* have to change later!!!! */

'}.7

stmct host {
char namc[NAME_LEN];
long up;
int users:
float load_I;
float 10ad_S;
float load_IS;
int status;
long last_check_time;
int fails;
struct jobs {

int done;
int abort;
long sum_time;
long lasCtime;

} jobs;
} ;
typedef struct host host;

/* structure for host */
/* host name */
/* uptime in tenns of minutes */

1* number of users on host */
1* load average in last 1 minute *1
/* load average in last 5 minutes */
/* load average in last 15 minutes *1
/* -1: DOWN; 1: MCNP running; 0: MCNP off *1
/* time of last checking */
/* continuous abortion or unsuccess of start */
/* statistics about jobs run on the host */
/* no of jobs done */
/* no of jobs aborted *1
/* sum of time (seconds) for jobs done *1
/* time of last job done */

struct record {
char host_name[NAME_LEN];
int hosCid;
strue! rpss {

int no_ps;
int pid;
int cpu;

} rpss;
int start_hist;
struct Cnames {

char in[NAME_LEN];
char out[NAME_LEN];

} Cnames;
int Cfail_cnts;
long start_time;
long end_time;
int status;
struet record * next;

};
typedef struct record record;

float IDLE_LOAD;
float BUSY_LOAD;
int CPU_PERCENT;
int PRIORITY;
int DEBUG;

/* record for each MCNP job *1
/* host name */
/* host id: index to host table *1
/* remote processes' information *1
/* number of processes *1
/* the process id */
1* cpu ti me used by the process so far *1

1* starting history number */

/* input file name *1
/* output file name */

/* output file inquery failures *1
/* start time, seconds· since Jan.],]970 */
/* end time, seconds since ... */
/* -1: aborted; 0: waiting; 1: running; 2: done; */
/* pointer to the next record */

38

/* log files' prefix */

#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ermo.h>
#include <sysltime.h>
#include <signal.h>
#inc1ude <setjmp.h>
#include "global.h"

main(int argc, char *argv[D
{

int no_hosts, *h_order; /* order of hosts */
host *hosts; /* a list of hosts */
record *waicq, *run_q =Nill...L, *done_q =NULL;
long init;

if (argc != 2){
printf(" -------- Usage: %s & Input -------- \n", argv[O]);
exit(l);

}
init_user.__ parmsO; /* initial the user's paramaters */
hosts = iniChost_table(&no_hosts); /* initial host table */
h_order = init_hosl_order(no_hosts); /* initial host order */
IOR-file_init("h", "parms");
wait_q = construct(argv[l]); /* build up a waiting queue */
in it =geccJockO;
log_file_init("r", "records");
run_q =gecaJecord("dummy", RUNNING);
done_q = get_a_record("dummy", DONE);
parallel_run(waicq,run_q,done_q,init,no_hosts,hosts,h_order);
Jo~fjle_hosts(no_hosts,hosts, h_order, init);
prinCq(stdout, done_q, "DONE Queue");
JOR-file_init("d", "records");
IOR-file_d(done_q->next);

}

/* file for the statistics of hosts */
void log._file_hosts(no_hosts, hosts, h_order, init)
int no_hosts, * h_order;
host * hosts;

39

long init:
{

RLE * fp;
host * h;
long curtime, total_time, lag, latest = 0;
float avg, delay, percent;
char lo~f[NAME_LEN];
int i, used_hosts = 0, dones = 0, aborts = 0;
long total_Jag = 0;
float total_avg = 0, total_delay = 0; .
float total_avg2 = 0, total_delay2 = 0, total_percent2 = 0;

strcpy(lo~f, LOG_FILE_PREFIX);
strcat(lo~f, "_log-h");
fp = fopen(lo~f, "a");

curtime = gecclockO;
total_time = curtirne - init;

fprintf(fp, "\n\n---------- Job stati sties ----------\n \n");
fprintf(fp, "Total time: %.2f minutes.\n", totaLtirne/60.0);
fprintf(fp, II From: %s'o", cctime(init»;
fprintf(fp, " To: %s'o", cctime(curtime»;
fpri ntf(fp, "\n ");
fprintf(fp, " Total hosts: %d\n", no_hosts);
for (i = 0; i < no_hosts; i++) {

if «hosts+i)->jobs.done != 0)
used_hosts++;

if «hosts+i)->jobs.last_time > latest)
latest = (hosts+i)->jobs.last_time;

}
fprintf(fp, " Used hosts: %d\n", used_hosts);
fprintf(fp, "Unused hosts: %d'o", no_hosts - used_hosts);
fpri ntf(fp, "'0----- lterni zed statistics for each host --------\n");
fpri ntf(fp, "-- ------ --\n ");
fprintf(fp," Host Done Abort Avg. Last done ");
fprintf(fp, " Lag Delay D!D+A\n");
fpri ntf(fp, "------- -------------------------------------- ------------ -'0 ");
for (i = 0; i < no_hosts; i++) {

h = hosts + h_order[i];
dones += h->jobs.done;
aborts += h->jobs.abort;
Jag = (h->jobs.Jast_time == O)? 0 : latest - h->jobs.lasCtime;
avg = (h->jobs.done == O)? 0.0 : h->jobs.sum_time* 1.0/h->jobs.done;
delay = (h->jobs.done == O)? 0.0 :

(total_time - h->jobs.sum_time - Jag)* 1.0/h->jobs.done;

40

percent = (delay == O)? 0 : delay * 100.0/(delay + avg);

total_avg += avg * h->jobs.done;
total_avg2 += avg;
total_delay += delay * h->jobs.done;
totaLdelay2 += delay;
total_lag += lag;
total_percent2 += percent;

fprintf(fp, "%lOs %5d %5d %7.2frn %-155 %6.2frn %6.2fm %5. If%%\n II ,

h->name, h->jobs.done, h->jobs.abort, avg /60.0,
(h->jobs.last_time==O)? "-----": cc_short_time(h->jobs.last_time),
Jag 160.0, delay 160.0, percent);

}
fprintf(fp, "---\n ");
fprintf(fp, "%1Os %5d %5d %7.2fm %15s %6.2fm '7c6.2fm %5.1f%%\n",

"Total:", dones, aborts, totaJ_avg /601 dones, "",
total_lag/60.0 fused_hosts, total_delay 160 Idones,
total_delay* 100 l(total_deJay+totaJ_avg));

fprintf(fp, "%225 %7.2fm %235 %6.2fm %5.H%%\n",
"", total_avg2/60/used_hosts, "",
total_delay2/60 fused_hosts,
total_percent2/used_hosts);

fc1ose(fp);
}

void parallel_run(wait_g, run_g, done_g, init, no_hosts,hosts,h_order)
record * wait_g, * run_g, * done_g;
long init;
int no_hosts, *h_order;
host * hosts;
{

int freed_hosts;

freed_hosts =update_hosts_stat(no_hosts, hosts);
printf("Freed_Hosts Before Executor & Controller is %d\n",freed_hosts);

while (wait_q->next != NULL II run_y->next != NULL) {
executor(waicg, run_g, no_hosts, hosts, h_order, init);
freed_hosts = controller(wait_g, run_g, done_g, no_hosts, hosts);
update_host_order(no_hosts, hosts, h_order);

if (down_hosts(no_hosts, hosts) == no_hosts){
printf("No more hosts to llse.\n");
exit(O);

41

/* for every running job on the run_g, checks and sees if it is finished or it should be
removed for various reasons */
int contro]]er(waicq, run_g, done_q, no_hosts, hosts)
record * waicq, * run_q, * done_q;
int no_hosts;
host * hosts;
(

record * p =run_g->next, * q =run_q;
int freed_hosts;
host * h;
int * no_oCrunnin!Lrecords = &(run_q->start_hist);

. f("--------------· C II --------------------------\n").pnnt -------------- In ontra er -------------------------- ,
freed_hosts =update_hosts_stat(no_hosts, hosts);

while (p != NULL) {
h =hosts + p->hosCid;
if (p_done(p» {

q->next =p->next; /* remove p from run_q */
("'no_oCrunnintLrecords)--;
p->end_!ime =gecCmtime(p->Cnames.out);
p->status = DONE;
inserCto_queue(p, done_q); /* move to done_q */
h->jobs.done++; /* update host's info */
h->jobs.sum_tirne += p->end_time - p->start_time;
if (h->jobs.Jast_lime < p->end_time)

h->jobs.lasCtime = p->end_time;
h->fails =0;
if (h->status != DOWN) /* P done */

h->status =P_Off;
if (host_idle(h»

freed_hosts++ ;

p =q->next;
}
else if (high_Joad_or_down(h) II Cfail_too_rnany(p) II

p_terminated_Of_little_cpu(h,p)) {
if (h->status == P_ON)

h->status = P_OFF;
h->fails++;
h->jobs.ahort++;
q->next =p->next; /* remove p from run_q */

42

(*no_oCrunnin~records)--;

resubmit(wait_q, p, h):
p = q->next;

}
else {

q = q->next;
p = p->next;

}
}
pn'nt1'("-------------- End of Controller --------------------------\n").-------------- -------------------------- ,
return freed_hosts;

}

void executor(waicq, run_q, no_hosts, hosts, h_order, inin
record * wait_q, * run_q;
long init;
int no_hosts, *h_order;
host * hosts;
{

int i, newly_runs = 0, no_waits = wait_q->start_hist;
record *run_q_tail_l = run_q, * run_q_tail_2, * p, * r;

printf("! !!! l!!!!! !! Begin of Executor --------\n It);

while (run_q_tail_l->next != .:--JULL) /* find the run_q tail */
run_q_tail_l = run_q_taiLl->next;

run_q_tail_2 = run_q_tail_l; /* store it in run_q_tail_2 */

while (waicq->next != NULL &&
(i=find_idJe_host(no_hosts,hosts,h_order,run_q,no_waits,init» !=-l){

dispatch(waiCq, run_q, &run_q_tail_2, hosts+i, i);
no_waits--;
newly_runs++;

}
if (newly_runs> 0&& newly_runs < 5)

sleep(6 - newly_runs);

/* the reason not to check rshO success in dispatchO: have \.0 wait for 2 or 3 seconds after
each dispatch; which adds up to minutes if no. of hosts is large; thus wasting too much
time there. */

for (p = run_q_tail_l->next; newly_runs> 0; newly_runs--. p = r) (
r = p->next; /* save p's next due to side-effect */
check_rsh_success(waiCq, run_q, p, hosts+p->hosCid);
printf(" ------ Check rsh success finished!!!! ------\n");

}
printf("!! !!!!! !! !!! End of Executor ----------\n It);

43

void dispatch(waicq, run_q, run_q_tail, h, host_id)
record * wait_q, * run_q, ** run_q_tail;
host * h;
int host_id;
{

char sys_call[SYS_CALL_LEN];
record *p = wait_q->next;

strcpy(p->hoscname, h->name);
p->hosCid = hosCid;
make_outjnames(p);

/* shO way (1) or 2>/dev/null) to redirect output or error to /dev/null */
sprintf(sys3all, "rsh %s cd /net/nmrserv/data3/jJiu 1>/dev/null 2>/dev/null \";\"

lusrlbinlnice -%d %s>%s \";\" chmod %0 %s 2>/dev/null &",p->host_name, PRIORITY,
p->Cnames.in, p->Cnames.out, DONE_MODE, p->Cnames.out);

system(sys_call);

p->start_tirne = p->end_time = gecclockO; /* end_time for checking */
p->status = RUNNING;
h->status = P_ON;
waicq->next = p->next; /* remove p from wait_q */
waicq->starchist--; /* no of records in the queue */
run_q->start_hist++;
(*run_q_tail)->next = p;
p->next = NULL
*run_q_tail = p;

I

int down_hosts(no_hosts, hosts)
int no_hosts;
host * hosts;
{

int downs = 0;

for (no_hosts-- ; no_hosts >= 0; no_hosts--)
if «hosts+no_hosts)->status == DOWN)

downs++;
return downs;

/* reorder the hosts according to their past performance so that executorO will choose the
next one in this order */
void update_hoscorder(no_hosts, hosts, h_order)

44

int no_hosts, * h_order;
host * hosts;
{

int i, j, tmp;

for (i = 0; i < no_hosts; i++)
for U = i+ 1; j < no_hosts; j++)

if (higher_orJcr(hosts+h_orderU], hosts+h_order[i])) {
tmp = h_order[i];
h_order[i] = h_order[j];
h_order[j] = tmp;

}

1* if j has not finished any job: j is not better than i (no info) if j has finished some jobs
and i has not: j is better than i if j has finished some jobs and i has also: compare their
speeds */
int higher_orderG, i)
host * j, *i;
{

return U->jobs.done != 0) && (i->jobs.done == 0 II j->jobs. um_time* l.O/j->jobs.done
< i->jobs.sum_time* 1.01i->jobs.done);

void resubmit(waiCq, p, h)
record * waicq, * p;
host * h;
{

printf("»»»»> Begin of Resubmit \n");
if (h->status != DOWN){

kiIl_processes(p); /* kill the running process if any */
}
remove_out_fi les(p);
p->Cfail_cnts = 0;
p->status = ABORTED;
insert_to_gueue(p, wait_g);
log..Ji le_r(p);
printf("»»»»> End of Resubmit \n");

}

char * cctime(time)
long time;
{

char * t_buf:

Cbuf = ctime(&time);

45

I_buf[strlen(t_huf} I] =\0';
return Cbuf;

}

char * cc_shorClime(time)
long time;
{

char * Cbuf;

t_buf = ctime(&time);
l_buf[strJen(Cbuf)-6] = \0';
return Cbuf + 4;

}

1* remove \n at the end *1

/* remove' 1991 \n' at the end *1
/* remove 'Sat' in the front */

void kill_processes(r)
record * r;
{

char sys_call[SYS_CALL_LENJ;

sprintf(sys_call, "rsh %s kill %d 1>/dev/null 2>/dev/n ull &", r->host_name,
r->rpss.pid):

system(sys_calI);
}

int high_Ioad_or_down(h)
host * h;
{

return h->status == DOWN II h->load_J > BUSY_LOAD;

I

int Cfail_too_many(r)
record * r;
{

return r->Cfail_cnts > fILE_FAlL_LIMIT;
}

int p_tenninated_or_little_cpu(h, p)
host * h;
record * p;
{

int pid, tenninated =0;

/* use p->end_time as the last check time variable before it's done */
if (gecc)ockO - p->end_time < 90) 1* to reduce the network traffic */

return 0; /* not check if < 90 seconds *1

46

-

if (get_pid(h, p, &pid, &p->rpss.cpu) == 0)
terminated = 1;

else if (p->rpss.pid > 0)
terminated =(pid != p->rpss.pid);

else { /* fai led last time, but okay now */
terminated = (pid != - p->rpss.pid);
if (terminated == 0) /* back to normal */

p->rpss.pid = - p->rpss.pid;
}
p->end_time =gecclockO; /* update the last check time */

if (terminated == 0) /* not termjnated, check cpu percent */
return p->rpss.cpu *100.0/(p->end_time - p->start_time) < CPU_PERCENT;

/* the job may be just finished between the calls of p_doneO and this function in
contro]]erO; if so, don' remove the job; the next round of checkjng p_doneO will move
the job to done_g. On the other hand, the job may be permanently terminated due to some
errors before it is done; if so, the next time the following code catches it */

if (p->rpss.pid > 0) { /* 1st time detect terminated; not to remove */
p->rpss.pid =-p->rpss.pid;
return 0;

}
else { /* 2nd time detect terminated; report to remove */

p->rpss.pid =- p->rpss.pid;
return 1;

}

void check_rsh_success(wait_q, run_q, p, h)
record * wait_g, * run_q, * p;
host * h;
{

if «p->rpss.no_ps = get_pid(h, p, &p->rpss.pid, &p->rpss.cpu» > 0) {
p->end_time = get_dockO; /* update the last checkjng time */
return; /* rsh successfully started */

}
if (p_done(p») /* finished already before checking */

return;

printf("»»» Unsuccessful start on %s «««\n", p->host_name);
run_q->start_hist--; /* no of records in the queue */
while (run_q->next != p) /* locate p in run_g */

run_q = run_g->next;
run_q->next = p->next; /* remove p from run_q */
remove_out_files(p);
p->start_time =p->end_time =0;

47

-

p->status = WAITING;
insert_to_queue(p, wait_q);
h->status =P_OFF;
h->fails++;

}

/* get process ids and cpu time used on the processes on remote machines */
int geCpid(h, r, pid, cpu)
host * h;
record * r;
int *pid, * cpu;
{

char sys_call[SYS_CAll_LEN], s[SYS_CALL_LEN), tty[4], prgm[AME_LEN];
char tmp_f[NAME_LEN];
Fll..E * fp;
int no_ps =0, minute, second;

sprintf(sys_caIL "rsh %s ps -elgrep %s>%s",r->host_name,r->Cnames.in,tmp_f);

get_host_stat(h); /* to prevent a rare case */
if (h->status == DOWN)

return no_ps;

signal(SIGALRM, alarm_hd);
alarm(l5); /* treat as down if no response in 15 seconds */

if (setjmp(env_buf)) { /* save the stack positions */
remove_fi le(Imp_f);
printf("After 15 seconds ... : get_pidO failed on %s.\n", h->name);
return 0; /* treat as non-success: no_ps = 0 */

}
else {

/* code after normal setjmpO */
system(sys_call);

alarm(O); /* cancel alarms */
signal(SIGALRM, SIG_IGN);

if «fp = fopen(tmp_f, "r")) == NULL) {
printf("Cannot open file %s\n", tmp_f);

}
else {

printf(" -------- Processes IDs and commands ------------ \n");
while (fgets(s, SYS_CALL_LEN, fp) != NULL) {

48

-

sscanf(s, "%d %s %d:%d %s", pid, tty, &minute, &second, prgm);
If (!slrcmp(tty, "?")){ /* tty = "?" means no control terminal */

no_ps = I:
*cpu = minute * 60 + second;
break;

I
}
fclose(fp);

}
remove_fi Je(tmp_f);
return no_ps;

int find_idJe_host(no_hosts, hosts, h_order, run_g, no_waits, init)
int no_hosts, * h_order, no_waits;
host * hosts;
record * run_g;
long init;
{

int i, j;

for (j = 0; j < no_hosts; j++) {
i =h_order[j];
if (hosCidle(hosts+i»{

return stop_use(hosts+i,j,hosls,h_order,run_g,no_waits,init)? -J : i;
}
if «hosts+i)->fails >= HOST_FAIL_LIMIT)

(hosts+i)->fails = «hosts+i)->fails + 1) % (2 * HOST_FAIL_LIMIT);
}
return -1;

}

/* this functions implements a better load balancing algorithm: if machine is slow enough
(from past perfonnance), then it is better not to use it, instead wait for a faster machine to
finish its current job and to take the remaining job(s)
note: this only occurs when the number of waiting jobs are small relative to the hosts'
speed differences. */
int stop_use(h, no_hosts_faster, hosts, h_order, run_g, no_waits, init)
host * h, * hosts;
int no_hosts_faster, * h_order, no_waits;
record * run_g;
long init;
{

int i, j, stop_point = 0;
record * p;

49

-

host * h_i;
float epsilon, avg..Jime_h_i;

if (h->jobs.done == O){
return 0; /* 1st time to use h; no info about its speed yet */

}

for U= 0; j < no_hosts_faster; j++) {
i = h_orderUJ;
h_i = hosts + i;
if «p = search_record_by_hosCid(run_q, i)) == NULL)

continue; /* not running a job; don'1 count on it */
epsilon = 1 - 1.0 * (gecc1ockO - p->start_time)/

(h_i->jobs.sum_time / h_i->jobs.done);
/* use h_i's real avg. run time to calculate epsilon */

if (epsilon < 0) /* h_i already finished its current job */
epsilon =0;

av~time_h_i= 1.0*(h_i->jobs.Jasctime - init)/h_i->jobs.done;
/* include both avg. run time and avg. delay */

stop_point += (int) (1.0 * (h->jobs.sum_time/h->jobs.done) /
av!?.-time_h_i - epsilon);

}
return no_waits <= stop_point;

}

record * search_record_by_host_id(queue, hosCid)
record * queue;
jnt hosCid;
{

for (queue = queue->next; queue != NULL; queue = queue->next)
if (queue->hosCid == host_id)

return queue;
return NULL;

}

jnt update_hosts_stat(no_hosts, hosts)
int no_hosts;
host * hosts;
{

static long lasccheck_time; /* control status inquery interval */
int i, freed_hosts =0;

if (geccJockO - last_check_time < 5) /* < 5 seconds */
return freed_hosts; /* not check */

for (i = 0; i < no_hosts; i++) {

so

-

gechoscstat(hosts + i);
print_hosts(stdout, hosts+i, I);
if (host_idle(hosts + i» /* newly become idle machine */

freed_hosts++;
}
last_check_time = gecclockO; /* update the last check time */
printf(" End of stat report \n");
return freed_hosts;

}

inl hoscidle(h)
host * h;
{

return (h->status == P_OFF) &&(h->fails == O? h->load_l < BUSY_LOAD:
h->Ioad_l <= IDLE_LOAD) && (h->fails < HOST_FAll.._LIMIT);

void 10~Jile_r(p)

record * p;
{

FILE * fp;
char 10g...J[NAME_LENJ, sys_call[SYS_CALL_LEN];

strcpy(lo~f,LOG_FILE_PREFIX);
strcat(lo~f, "-Iog-r");
fp = fopen(lo~f, "a");
fprintf(fp,"---The following processes were killed and resubmitted---\n");
princrecord(fp, p); /* print the record to fp */
fclose(fp);

}

void log_file_d(p)
record * p;
(
Fll..E~: fp;
char l()~f[NAME_LEN],sys_caJl[SYS_CALL_LEN];

strcpy(lo~f,LOG_FlLE_PREFIX);
strcat(lo~f, "-Iog-d");

while (p != NULL) {
fp = fopen(lo~f, "a");
princrecord(fp, p); /* print the record to fp */
fel ose(fp);
sprintf(sys_caIl," cat %s»%s 2>/dev/null", p->Cnarnes.out,"P-log-d");
system(sys_call);

51

-

remove_oul_files(p);
p =p->next;

1* get the last modified time of a file or the current clock time *1
time_t get_Cmtime(file)
char * file;
{

struct stat sbuf;
extern int ermo;

if (stat(file, &sbut) != -1)
return sbuf.st_mtime~

else
return geCclockO;

}

void remove_oul_files(p)
record * p;
{

remove_file(p->Cnames.out);
}

1* checks if job is done according to an predefined agreement on the modes of output
files *1
int p_done(p)
record * p;
{

struct stat sbuf;
extern int ermo;

if (stat(p->Cnames.out, &sbuf) == -1) {
perrorCenor statO: -----»>");
if (ermo == ENOENT) { 1* no file yet *1

p->Cfail_cnts++;
pnntf("lnquery %s: Fail: Counts =%d\n",p->Cnames.out,p->Cfail_cnts);

}
else

perror("Fatal error occuned in statO: ");
return 0:

}
else {

p->Cfail_cnts = 0; 1* reinitialize to 0 whenever success *1
if «sbuf.scmode & MODE_MASK) == DONE_MODE)

printf("-------»> %s finished !!!l!!!!!!!\n", p->Cnames.out);

52

-

return «sbufscmode & MODE_MASK) == DONE_MODE);
}

/* generate a group of unique file names for 0, f. */
void make_oucfnames(p)
record * p;
{

static int fname_generator;

do {
fname_generator =fname~enerator % 999 + I;
name_constructor("tmp", "0", fname_generator, p->Cname .out);

} while (check_Cexist(p»;

/* if any output file already exists, don't use them */
int check_Cexi st(p)
record * p;
{

return Cexists(p->Cnames.out);
}

/* search host id by host name */
int search_host_id(hosCname, no_hosts, hosts)
char * host_name;
int no_hosts;
host * hosts:
{

int i;

for (i = 0; i < no_hosts; i++)
if (slrcmp(hoscname, (hosts + i)->name) == 0)

return i;
return -1:

void print_record(fp, r)
FILE :~ fp;
record * r;
{

fprintf(fp, "------ --------------- ----------------------------\n ");
fprintf(fp, "host name: %s\n", r->hoscname);
fprintf(fp, "host id: %d\n", r->hoscid);
fprintf(fp, "remote processes:: no_ps =%d\n", r->rpss.no_ps);
fprintf(fp, "pid = %d; cpu%% = %.1f", r->rpss.pid, r->rpss.cpu == O? 0:

53

-

r->rpss.cpu* 1OO.O/(r->end_time - r->start_time));
fprintf(fp, "\n ");
fprintf(fp, "program name: %5\n", r->Cnames.in);
fpnntf(fp, "file fail counts = %d\n", r->Cfail_cnts);
fprintf(fp, "start time = %s", ctime(&(r->start_time»);
fprinLf(fp, "end time = %s", ctime(&(r->end_time)));
fprintf(fp, "elapsed time = %.2f min.\n",(r->end_time - r->start_time)/60.0);
fprintf(fp, "status: ");
switch (r->status) {

case -1: fprintf(fp, "Aborted");
break;

case 0: fprintf(fp, "Waiting");
break;

case 1: fprintf(fp, "Running");
break;

case 2: fprintf(fp, "Done");
break;

}
fprintf(fp, "\n------ The Result of the Program As Follow ------\n\n");

}

void prinCq(fp, q, q_name)
FILE * fp;
record * q;
char * q_name;
{

if (!DEBUG) /* debug off */
return;

fprintf(fp, "\n===== There Are %d Jobs On %s =====\n" ,q->start_hist,q_name);
q = q->next; /* skip the dummy head */
fprintf(fp, "-------------- Beginning of %s ------------\n", q_name);
while (q != NULL) {

princrecord(fp. q):
q = q->next;

}
fprintf(fp, "-------------- End Of %s ------------\n \n", q_name);

}

/* builds up a waiting queue */
record * construct(INIT)
char *lNIT;
{

ALE *p_fp;
record *wait_q, *r;
char junk_name[NAr...1E_LEN];
int no_prog;

54

-

if «p_fp =fopen(lNIT, "r")) == NULL) l
printf("There Must Be File Which Contain The Name Of The Programs\n");
exit(1);

}

while (skip_space_or_comments(pjp) != EOF){
fscanf(p_fp, "%s", junk_name); /* counting */
no_prog++;

}
printf("Total Programs Are %d\n", no_prog);
if (no_prog == O){

printf("There Is No Program In %s!! 1'0", lNIT);
exit(O);

}

waicq = get_a_record("dummy", WAITING); /* dummy head */
fseek(p_fp, 0, 0); /* rewind the file */
while (skip_space_or_comments(p_fp) != EOF){

r = geca_record("", WAITING);
r->starchist = no_prog;
fscanf(p_fp, "%s", r->Cnames.in);
insert_to_queue(r, wait_g);

}
fclose(p_fp);
return waicq;

}

/* insert p to queue which has a dummy head! */
void inscrt_to_queue(p, queue)
record * p, *queue;
{

p->next = queue->ncxt:
queue->next =p;
queue->start_hist++: /* save as no of records in the queue */

}

record * get_a_record(hoscname, status)
char * hoscname;
int status;

record * r;

r =(record *) malloc(sizeof(record»;
strcpy(r->host_name, hosCname);
r->hosCid = -1;

55

r->rpss.no_ps =0;
r->rpss.pid =0;
r->rpss.cpu =0;
r->start_hist =0;
r->Lnames.in[O] = \0';
r->Lnames.out[O] =\0';
r->Lfail_cnts =0;
r->start_time =r->end_time =0;
r->status = status;
r->next =NULL;
return r;

}

void lo~Jile_init(suffix, flag)
char * suffix, * flag;
{

Fll..E * fp;
char lo~J[NAME_LEN],hostname[NAME_LEN];

strcpy(logj, LOG_FILE_PREFIX);
strcat(lo~f, "_log_");
strcat(lo~f, suffix);
fp = fopen(lo~f, "a");
fprinrf(fp, "\n---------- -------------- -------- -----------------\n ");
fpIintf(fp, "File: %s\n", lo~f);
fprinlf(fp, II (automatically generated log file)\n");
gethostname(hostname, NAME_LEN);
fplintf(fp, "Host running Program: %s\n", hostname);
fprintf(fp, "----- --\n ");

if (strcmp(flag, "panns") == 0)
print_usecparms(fp, 1);

fclose(fp);
}

int * init_host_order(no_hosts)
int no_hosts;
{

int * h_order, i;

h_order =(int *) malJoc(sizeof(int) * no_hosts);
for (i = 0; i < no_hosts; i++) 1* init to given order in .pmcnp_hosts */

*(h_order + i) = i;
return h_order;

56

/* gets the number of hosts from file .hosts which must exist in the current working
directory in order for program to run; then sets up a host table */
host * init_host_table(no_hosts)
int * no_hosts;
{

FILE *host_fp;
host *hosts, *tmp;
char junk_name[NAME_LEN];

if «host_fp =fopen(".hosts", "r") == NULL) {
printf("There Must Be File .hosts In The Current Directory,\n");
printf("Which Contains A List Of Hosts For Program To Use.\n");
exit(l);

}

*no_hosts = 0;
while (fscanf(hoscfp, "%S", junk_name) != EOF) /* counting */

(*no_hosts)++;

printf("Total Hosts Is %d\n", *no_hosts);
if (*no_hosts == O){

printf("%s", "There Is No Host In .hosts!\n");
exit(l);

}

hosts = tmp = (host *) malloc(sizeof(host) * *no_hosts);
fseek(hoscfp, 0, 0); /* rewind the file */
while (fscanf(host_fp, "%s", tmp++->name) != EOF)

/* get machine names */
fclose(host_fp);
init_hosts_stat(hosts, *no_hosts);
print_hosts(stdout, hosts, *no_hosts);
return hosts;

}

void princhosts(fp, hosts, no_hosts)
FILE * fp;
host * hosts;
int no_hosts;
{

host * h =hosts;

if (!DEBUG)
return;

printf("-------- Host State --------\n");
for (; no_hosts> 0; no_hosts--, h++) {

57

fprintf(fp, "%1Os %8d %6.2f %6.2f %6.2f %3d %3d\n",
h- >name,h->up,h->10ad_l ,h->load_5,h->load_l S,h->status,h->fails);

fpnntf(fp, "\t\t%4d %4d %8.1 f min. %8.1 f\n", h->jobs.done, h->jobs.abort,
(h->jobs.done == O)? 0: h->jobs.sulTI_time/60.01h->jobs.done,h->jobs.last_time);

}
pri ntf(" -------- End of Host State --------\n");

}

void iniChosts_stat(hosts, no_hosts)
host * hosts;
int no_hosts;
{

for (; no_hosts> 0; no_hosts--) {

hosts->lasccheck_time = 0;
hosts->status = P_OFF: /* init to up */
gechoscstat(hosts); /* set to DOWN if down */
hosts->fails =1; /* set fails to 1 first so that for the first time, hostjdleO will use

IDLE_LOAD to test */
hosts->jobs.done =0;
hosts->jobs.abort = 0;
hosts->jobs.sum_time =0;
hosts->jobs.last_time = 0;
hosts++;

}

void alarm_hdO

I
longjmp(env_buf, 0);

}
/* alarm off, return to saved state */

void get_hoscstat(h)
host *h;
{

FILE * fp;
char sys_call[SYS_CALL_LEN], tmp[NAME_LEN], tmp_f[NAME_LEN];

if (get_c1ockO - h->Iast_check_time <= 5){ /* at least 5 seconds */
return;

signaJ(SlGALRM, alarm_hd);
aJarm(l5);
if (setjmp(env_buf)) {

pnntf(" %s Down:(rsh host uptime)\n", h->name);

58

/* if DOWN before, up now */
/* otherwise, don't alter */

down_setup(h);
}
else {

generate_unique_fname("s", tmp_f);
splintf(sys_call, "rsh %s uptime> %s 2>/dev/null", h->name, tmp_f);
system(sys_call);

alarm(O);
signal(SIGALRM, SIG_IGN);

if «fp =fopen(tmp_f, "r"» == NULL)
printf("Cannot open %s\n", tmp_f);

else {
/* read in the information in the following format */
/* 3: 19m up 8 days, 4:24, 1 user, load average: 0.13,0.02,0.01 */

while (1) (
fscanf(fp, "%5", tmp);
if (strcmp(tmp, "average:") == 0)

break;
}
h->up = -1; 1* dummy number, skip the time part */
fscanf(fp, "%f,%f,%f', &h->load_1, &h->Joad_5, &h->load_15);
fc Jose(fp);
if (h->status == DOWN)

h->stalus =P_OFF;

}
remove_fi le(tmp_f);
h->Jasccheck_time = get_clockO; 1* update last checking lime */

}

/* get the clock time in terms of seconds since Jan. 1, 1970 */
time_t get_clockO
{

struct tirneval t;
struct tirnezone tz;

if (gettimeofday(&t, &tz) != 0)
perror("Error Occurred In genimeofdayO: ");

else
return Ltv_sec; /* seconds since Jan. 1, 1970 */

void remove_file(fname)
char * fname;

59

{
char sys_caJI[SYS_CALL_LEN);

sprintf(sys_call, "nn %s 2>/dev/null", fname);
system(sys_caH);

}

void generate_unique_fname(suffix, fname)
char * suffix, * fname;

l
static int fname_generator;

do {
fname_generator =fname~enerator % 999 + 1;
name_constructor("tmp", suffix, fname_generator, fname);

} while (Cexists(fname»;

char * name_constructor(prefix, ~uffix, Ccount, name)
char * prefix, * suffix, * name;
int Ccount;
{

char Ccount_chars fN AME_LEN] ;

jf (Ccount < 10)
sprintfCCcouncchars, "OO%d", Ccount);

else if (Ccount < 100)
sprintf(Ccouncchars, "O%d", Ccount):

else
sprintfCCcouncchars. "%d", Ccount);

spnntflname, "%s%s%s", prefix, Ccount_chars, suffix);
return name;

void down_setup(h)
host * h;
{

h->status =DOWN;
h->up =0;
h->Ioad_l =h->load_5 =h->load_15 =BUSY_LOAD +];
h->users = 0;

. f("M h' u, I D "I\n" h),pnnt ac me /(;s sown....... ,->name,
}

/* initializes the user defined parameters according to file .panns in the current working
directory; otherwise, sets them to defaults. */

60

void inicuser_pannsO
{

FILE *pann_fp;

seCdefault_pannsO; /* set default first */

if «pann_fp = fopen(".panns", "r")) == NULL) {
printf("Because .panns Doesn't Exist In The Current Directory,\n");
printf("AlI The Parameters Are Set To Their Default Values:\n\n");
print_user_parms(stdout, I); 1* always print */

}
else {

while (skip_space_of_comments(parm_fp) != EOF)
read_and_parse_a_parm(parm_fp); /* parse panns */

if (PRIORITY < 10) {
printf("\nYour Priority Changed From %d To 10. Be Nice!\n", PRIORITY);
PRIORITY = 10;

}
princusecparms(stdout, DEBUG);
fclose(parm_fp);

}
}

void read_and_parse_a_pann(fp)
FILE * fp;
{

char p_Jine[LINE_LEN], p_name[NAME_LENJ, p_value[NAME_LEN);
double atofO; /* have to declare it */

fgets(p_line, LINE_LEN, fp);
sscanf(p_line, "%s %s", p_name, p_value); 1* syntax: p_name p_value *1

/* remaider of the line is ignored */

if (strcmp(p_name, "IDLE_LOAD") == 0)
IDLE_LOAD =atof(p_value);

else if (strcmp(p_name, "BUSY_LOAD") == 0)
BUSY_LOAD =atof(p_value);

else if (strcmp(p_name, "CPU_PERCENT") == 0)
CPU_PERCENT =atoi(p_value);

else if (strcmp(p_name, "PRIORITY") == 0)
PRIORITY = atoi(p_value);

else if (strcmp(p_name, "DEBUG") == 0)
DEBUG =atoi(p_value);

else if (strcmp(p_name, "LOG_FILE_PREFIX") == 0)
strcpy(LOG_FILE_PREFIX, p_value);

61

else
printf("Parameter Name: %s Not Defined", p_name);

int skip_space_or_comments(fp)
HLE * fp;
{

int c;
char comments[Lf.\rE_LEN];

while «c=fgetc(fp» == "" c == \t' II c==\n' II c=='W)
if (c == '#)

fgets(comments, LlNE_LEN, fp); /* skip comments */
ungetc(c, fp); /* not comments; push c back onto fp */
return c;

}

void princuser_parms(fp, msg...Jlag)
FILE *fp;
int msg...Jlag;
{

if (!msg..jlag)
return; /* not print */

fprintf(fp, "\n------ Parameter setting ------\n");
fprintf(fp, "IDLE_LOAD =%.2f\n", IDLE_LOAD);
fprintf(fp, "BUSY_LOAD =%.2f\n", BUSY_LOAD);
fprintf(fp, "CPU_PERCENT = %d\n", CPU_PERCENT);
fprintf(fp, "PRIORITY = %d\n", PR10RITY);
fprintf(fp, "DEBUG = %d\n" , DEBUG);
fprintf(fp, "LOG_fILE_PREfIX =%s\n", LOG_FILE_PREFIX);
fprintf(fp, "------ End of Parameter setting ------\n");

}

/* preset default values for various parameters; can be oveniden by the corresponding
parameter in .parms */
void secdefault_parmsO
(

IDLE_LOAD =1.5;
BUSY_LOAD =4.0;
CPU_PERCENT = 20;
PRIORITY = 10;
DEBUG =0;
strcpy(LOG_fTLE_PREFlX, "p");

}

62

int Cexists(Cname)
char * Cname;
{

struct stat sbuf:
extern int ermo;

if (stat(Cname, &sbuf) == -1)
return (enno != ENOENT);

else
return 1;

/* not exist */

/* exists */

63

VITA

Jian Liu

Candidate for the Degree of

Master of Science

Thesis: DESIGNING AND BUll...DING AN EFFICIENT APPUCATION ON A
UNIX NETWORK Fll..E SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Beijing, P. R. China, March 6, 1966, the son of Maotang
Liu and Shujun Yang

Education: Graduated from Beijing No. 35 High SchooL Beijing, P. R. China In

1984~ received Bachelor of Medicine degree from Capital University of
Medicine, Beijing, P. R. China, in July 1989. Completed the requirements
for the Master of Science degree at Oklahoma State University in
May, 2000.

Experience: Employed as a physician in charge at Beijing Goodwill Hospital.
1989-1996.

Professional Membership: Chma Medical Society.

