A COMPARISON OF Z AND UML:
TWO CASE STUDIES

BY

BINGDONG LI

Bachelor of Science
Beijing Agricultural University
Beijing, China
1989

Master of Science
The Graduate School of Chinese Academy of
Agricultural Science
Beijing, China
1996

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December 2000

A COMPARISON OF Z AND UML:
TWO CASE STUDIES

Thesis Approved:

Thesis Advisor

J

Dean 5 the Graduate Coége

PREFACE

Specification languages usually can provide simple abstract descriptions of
complex behaviors of software systems. A large number of specification languages have
been introduced for software development. One categorization of specification languages
is formal vs. informal. Z and UML are the well-known formal and informal object-
oriented specification languages, respectively. In this thesis, related work on Z and UML
is reviewed. An overview of Z and UML is also provided. Z and UML are compared
from the language aspects based on a set of criteria. In order to provide a practical basis,
Z and UML are also compared, based on another set of criteria, using two classic case
studies: the library database system and the elevator concurrent control system.

The results of the comparison carried out in this thesis are listed. Z is a formal
specification language. Specifications in Z are abstract and are based on mathematical
definition. Z is mature and there are lots of tools to support it. UML is an informal object-
oriented specification language. UML notations are icons, graphics, and English.
Specifications in UML are easy to understand, but have the potential to be ambiguous.
UML is getting more popular now and there are lots of tools to support UML. In addition
to the theoretical comparison, Z and UML are compared using two classic case studies:
the library database system and the elevator concurrent control system. The practical
experience revealed that UML provided a good approach to modeling the main concepts

using use case diagrams, collaboration diagrams, and state diagrams, while Z provided a

i

precise model for specification of the problem. Z and UML appear to be complementary.

Combining Z and UML in different phases and aspects is the recommended approach.

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor Dr. Mansur H.
Samadzadeh. He provided guidance through my thesis work. He spent a lot of time
reviewing my thesis and providing suggestions for refinement.

I would like to thank my other committee members, Drs. John P. Chandler and
Blayne E. Mayfield. Their time and effort are greatly appreciated.

Great thanks also go to my parents and other family members for their understanding

and encouragement.

TABLE OF CONTENTS

Chapter Page
LINTRODUECTION oo i nsimmia s s e st v sess ssan sssaysnssias 1
LT Related WOrK. ...ooviiii e e e 3
1.1.1 Comparison of Specification Languages............cc.ovveiiiiiieiiiinieiniieanannn 3
RIS PR st 5 1 L Uy 5
113 Nianbaation OF & ooy nrmahnssss fo s Sraits s ST RS A WAL A S L Bh R st e 6

1.1.4 Combination of Formal and Informal Specification Languages.................. 6

1:2 Research ObJeohIVES:: cisisimssianmnsnsisaumenmni svaiidis s spamasssssrasss s omaavsas cinvinsava 7
1.3 Organization 0f the ThESiS.uintieii et et et eeen e eenns 7
I OVERVIEW OF ZAND TIML . - oo cioiisis susisnissisnsisme s mssnsons saisin s o somins aim e i 8
2:1 OVEEVIEW GE 2y vinsvsiiniss sy s s s T i e e s s e A e e sbv s 8

2 1L B R ASEENT . .cscummins s onh ko 1360 B R B ARG AW M AR S S K S WA 8

2 L L BASIS. .o e s vms s i o snim s i By A T B A SRR A AR RN RS 8

2.1. 3 Basic BIBments: oo conmmeinsnimassas e s ans s b s shsvia e s vss iuevs 9

e AR MU0 . s o8 R T A RSB S F N RS S R A LSS 10

2.1.5 Development ProCesS.o.uiuuiiiiiiiiiit it v aea e 10

2.2 Overview 0f UML. ... convcrsonsumssnamssssmsnssmmusemnesmansssays ssswoamenssmvmwes sassss 11
2:2:1 Brel HISIOTY. . .cvzuvisinssnsissiinmiass s s aiss s i sass sans onerass sasasasns 11

DB D BRRTIS G im0 A SR A SO 9 R R O R B S R 11

2.2.3 Basic EI@MEents.c.ooniii e 12
2.2.3 1 BUllGIng BIooKS i v s ria s 12

BT PRI s s o oo kA A SRS M OB 13

2.2.3.3 MEChANISIMS. ..\ uvt ittt e et e et e e et e e e e 13

224 BValUabION o0 womirsmmmvins srs i s v e s S s e s G suih e 14

2.2 S YN B IODITIBIE PYOCEES. e ncmioons o ssitm snkossinsis s s bt o R A RO AR A A S 14
2.2.3.) Creatinp VB 8888, . . couremmrnmrtnns sonor eyt s b S B 6as et 16

22,52 Jaentihing Behaviors: .. s smmmins s Shoversssaiessmisas vasawiii 16

2.2.5.3 Checking the Model...........ccoviiiiiiiiiiiiiii e 17

vi

Chapter Page

4.3:2.1.2 Stateg oT thie QYBIEN. . voves iivssmnnsnaminsimss iavrosmaisuass 69

4.3.2.1.3 Operations of the System..............oovviiieiiiiiinin.n. 70

4.3.2.2 Discussion of the SpecificationinZ..............oooovvveiiiiininn, 72

4.3.3 UML APDIOACH. < saussasmsacueninesssiss asmsmsssiiemate ssnissavass v s 73

4.3.3.1 Specification in UML..... ..ot 73

43:3.1.1 Tdentifying Use CaBes..... .vvsiiavvs svnvmmmsinavn s s s 74

4.3.3.1.2 Identifying Behaviors of the System........................ 78

4.3.3.2 Discussion of the Specification in UML..................c..ooooie 81

4.3.4 Comparison of Z and UML Approaches.cvu.sisiimiisiscvinsimsmisisaiss 81

B3 BB BIATREN: o rvimcaiim s momso s R aom B SRR A RS S BRI AN SSRGS 81

B8 A DD AT oor > drensr/on S13msrert ng S s A P e b AR W e R AR AL S 81

4.3:4.3 Levels of Abstract { EXpressibility. ... couavmmssnimminmsinimis 82

4.3.44 Veriflability. ... oviiriii it e 82

4345 Redundanicy . cousainmmnmsmiimmss i s st 82

4.3.:8.6 REUSADINLY. ..uivsiniimmisvininsnamiimmsmaaisios svasaass cesssssms Masemss 82

Vi SUMMARY AND FUTURE WORK oo i e s s oy 83
Sl SUMIMIATY . ettt e e et et e e 83
5.2 FUIES WIOTIC. -« covnsmnsmon s i s s min s 5w s S SR Mo S M D SR S TS5 SR ST 84
REFERENCES...cocummmmmmmmumiismsaims s smm o s s s ts s emats e e e e Mas 4358 85
APPENDIX A: GLOSSARY i ciaismmmmsss i s 88
APPENDIX B: Z NOTATION. ...ttt ettt eae e e e 90
APPENDLX s VML N O T AT TN im0 5001005808750 w81 8 DAY 92
APPENDEX D Z TOOLS SUPPORT. v aivavwansssivasivisvsse e deiimcsey 95
APPENDIX E: UML TOOLS SUPPORT.rccunescoonsonromssmnbosasss sbponss sntsnmnssrarss 98

viil

LIST OF TABLES

Table

4.1 Ambiguities of Specifications in Z and UML

...

LIST OF FIGURES

Figure Page
2:1 Sehemia DERRIHONIN Z . uvvvovianiummiig sovivisnmssissssesvs s3 s suis v s s e s s e 9
4.1 The Library System CompPONents .- uciasiaiimsem rrsiasysasriaisisssssiad s 46
4.2 Main Use Case Diagram of the Library Problemooooiiiiiiiiinnn, 47
4.3 Sequence Diagram Scenario of Check Out a Copy of a Bookcooiviiie 49
4.4 Sequence Diagram Scenario of Return a Copy of a Bookcccoviviiininnn 49
4.5 Subsystem Use Cases Diagram of Add a CopyofaBookoevviinnnnn. 50
4.6 Sequence Diagram Scenario of Add a CopyofaBook 51
4.7 Subsystem Use Case Diagram of Remove a CopyofaBook ..., 52
4.8 Sequence Diagram Scenario of Remove a Copy of aBook53
4.9 Sequence Diagram Scenario of Search Books....................o.54
4.10 Subsystem Use Case Diagram of List Books Borrowed by a Given Borrower....... 54
4.11 Sequence Diagram Scenario of List Books Borrowed by a Given Borrower..55

4.12 Sequence Diagram Scenario of Find Out Who Last Borrowed a Given Copy56

4.13 Collaboration Diagram of Check Out a Copy ofa Book............cccvvviiviiiinnnnnn, 57
4.14 State Diagram of Check Out'a Copy of 2 BOOK .. uvivicicavivamissmminiimesvassamsinses 57
4.15 Collaboration Diagram of Return a Copy ofa Booko...58
4.16 State Diagram of Return a Copy of @ Book...........covviviiiiiiiiiiiiiiceen, 58

Figure Page

4.17 Collaboration Diagram of Add a Copy of a BooK...........ccoeevvvininiieinininnnennnn. 59
4.18 State Diagram of Add a Copy of @ BoOK........c.oviiiniiimiie it e 59
4.19 Collaboration Diagram of Remove a Copy of a Book..........cocvvviviicniiiininnnn. 60
4.20 State Diagram'of Remove'a Copy of 8 Book....iuimiasssensissiissmiesseras s 60
4.21 Collaboration Diagram of Search Books............coiiiiiiiiiiiiiiiiiiereann, 61
4.22 State Diagram of Search BooKS..........oooiiriiiiiiiii i 61
4.23 Collaboration Diagram of List Books Borrowed by a Given Borrower............... 62
4.24 State Diagram of List Books Borrowed by a Given Borrower.......................... 62
4.25 Collaboration Diagram of Find Out Who Last Borrowed a Given Copy.............. 63
4.26 State Diagram of Find Out Who Last Borrowed a Given Copy..............c.ovenne. 63
4.27 Main Use Case Diagram of the Elevator Problem...............cccccoviiiiiiiiiiiniinn. 74
4.28 Sequence Diagram Scenario of Make a Floor Request...............ccoovvvviniiinnnnn. 73
4.29 Sequence Diagram Scenario of Make a Destination Request...............occvviinn. 77
4.30 Sequerice Diagram Scenano of Take aRide: ..cvicwimmiissimmminsssssssmsasiimaviae T
4.31 Collaboration Diagram of Make a Floor Request...............c.cooviiiiiiiiiiniiinnnn 78
4.32 State Diagram of Make a Floor Request.............coooiiiiiiiiiiiiiiie 78
4.33 Collaboration Diagram of Make a Destination Request...................ooiivinnnnn. 79
4.34 State Diagram of Make a Destination Request...............ccocooviiiiiiiiiiiiinin., 79
4.35 Collaboration Diagram of Take @ Ride.........iecissivsiiinissaienipvssavasimsssmsmm 80
4.36 State Diagram of Take @ Ride...........oeviiiiiiiitiiae e 80

X1

CHAPTER 1

INTRODUCTION

Specification languages provide simple abstract descriptions of complex
behaviors of software systems [Cooke et al. 96]. A large number of specification
languages have been introduced in software development. Some of these languages target
only one phase in the software life cycle, providing the necessary constructs to support a
specific abstraction level, while others target more than one phase. One categorization of
specification languages is formal vs. informal.

Formal specification languages are based on well-developed mathematical
concepts. They support the creation of precise models of system behaviors and reasoning
mechanisms. They allow users to derive logical consequences from the explicitly
modeled properties. The advantages of formal specification languages can be listed as
follows: 1) precision and conciseness of specification can be achieved, 2) mathematical
proof procedures can be used to test (and prove) the internal consistency and syntactic
correctness of the specifications, and 3) the completeness of a specification can be
checked. The drawbacks of formal specification languages can be listed as follows: 1)
they require users to be trained in mathematics and in the formal notations, 2) large

specifications quickly become unmanageable and unreadable, and 3) they lack the visual

and intuitive appeal of graphical techniques. Z is one of the well-known formal
specification languages.

Informal specification languages usually use a graphical interface along with
structures that use some forms of a *“‘natural language”. The graphics and the “English-
like” nature of these languages make them easy to understand for clients, specifiers,
designers, and implementers. However, these informal specification languages tend to be
imprecise and ambiguous [France et al. 98]. UML (Unified Modeling Language) is one
of the well-known informal specification languages. UML supports object-oriented (OO)
design and analysis, and was standardized by the Object Management Group (OMG) in
1997 [Booch et al. 99].

The formal method and the object-oriented software development method (OOM)
are regarded as the two main streams in future software engineering [Lano 90]. In the
thesis work, Z was the formal spccification language that was used because it is a mature
formal specification language, also UML was the informal specification language that
was used because it supports OO design and analysis.

Choosing the right modeling language for developing a system may be a difficult
task which might influence the cost and qualify of the subsequent development process.
When choosing a specification language, some significant and relevant questions can be
given as follows. Which is a specification language suitable for a specific project? Can
we combine the advantages of both Z and UML? Which software development phase can
UML be used for without ambiguities, and which software development phase can Z be

used for while retaining understandability? What kinds of projects can UML be used for

(§9]

despite its general lack of precision? The answers to these questions can be used to help
decide which specification language is suitable for a particular project.

In the rest of this chapter, the related work of Z and UML is reviewed in Section
1.1. The research objectives are given in Section 1.2, and the organization of this thesis is

given in Section 1.3.

1.1 Related Work

In this section, four research trends are briefly reviewed as follows. The
comparison of specification languages is reviewed in Section 1.1.1. The formalization of
UML is reviewed in Section 1.1.2. The visualization of Z is reviewed in Section 1.1.3,

and the combination of Z and UML is reviewed in Section 1.1.4.

1.1.1 Comparison of Specification Languages

Many specification languages have been developed and are in use today. For a
particular application, it is hard to choose the best language because there are significant
differences among these languages. Several research efforts have attempted to compare
two or more specification languages based on various criteria.

One way to compare specification languages is to use them to specify well-known
problems. Numerous specifications exist for the library problem, and twelve of them

were compared by Wing [Wing 88]. Four of these 12 specifications used informal

approaches, and the other eight used formal approaches. Wing discussed the 12
specifications with respect to these criteria: software life cycle phase(s) applied,
modularity, readability, ambiguity, and incompleteness. This paper showed that benefits
could be obtained by properly applying formal or informal specification methods.

Ardis et al. [Ardis et al. 96] used Modechart, VFSM, ESTEREL, Basic LOTOS,
SDL, Z, and C to specify AT&T’s SESS® telephone switching systems. These
specification languages were compared by the authors based on several criteria that were
classified as fundamental and important. Their fundamental criteria included
applicability, usability in embedded system, implementability, maintainability,
modularity, level of abstraction/expressibility, verifiability, and tool maturity. Their
important criteria included looseness, leaming curve, language maturity, data modeling,
and discipline.

A formal specification language, Knowledge-Based System (KBS), was evaluated
under the following criteria: expressibility, errors in the formalization process,
redundancy and repetition, locality of changes, reusability, and guidelines [Harmelen et
al. 96]. These criteria can also be used to compare other specification languages.

Bicarregui and Ritchie [Bicarregui and Ritchie 95] compared the VDM and B
notations through a communication protocol case study with respect to these criteria:
invariance, operation definitions, and framming. Another study compared OPEN and
UML with respect to process and lifecycle support, meta-model, and notation

[Henderson-Sellers and Firesmith 99].

1.1.2 Formalization of UML

While UML reflects some of the best OO modeling experiences available [Booch
et al. 99], it suffers from a general lack of precise semantics that is necessary if one is to
use the UML notation to model systems precisely and to reason rigorously about models.
Several efforts have tried to formalize UML [Bourdeau and Cheng 95] [France et al. 98].
Two general approaches to formalizing OO modeling concepts were supplemental [Cook
and Daniel 94] and OO-extended formal languages [Lano 90].

In the supplemental formal language approach, an elaborate example was given
by Cook and Daniel [Cook and Daniel 94]. In their paper, the semantics of the static data
model was also defined.

In the OO-extended formal language approach, Lano extended an existing formal
notation with OO features [Lano 90]. From a practical perspective, a problem with the
notations developed using this approach is lack of analysis tool. Also, the models created
using these notations are not easy to read, understand, and modify because of the large
semantic gap between real world concepts and their mathematical representations in the
formal notations [France et al. 98].

Shroff and France [Shroff and France 97] demonstrated a method to formalize
primary UML constructs using Z notation. Also, a precise semantics for UML was

proposed by France [France et al. 98].

1.1.3 Visualization of Z

Z has shown its ability to improve the quality of software systems by reducing
possible faults in various ways [Bowen 96]. The most often stated limitations of Z are
difficulties in using and understanding its formal notation. Various graphical notations
have been used to visualize formal specifications written in Z [Kim and Carringto 99]. It
seems that the scope of their visualization was limited, since it is hard to visualize all

aspects of a Z specification.

1.1.4 Combination of Formal and Informal Specification Languages

Work on the combination of OO and formal methods appeared in the 1990’s.
Informal modeling techniques are made more precise and amenable to rigorous analysis
by combining them with a suitable formal specification notation. A number of efforts
have been proposed [France et al. 97]. Bourdeau and Cheng [Bourdeau and Cheng 95]
presented formal semantics for Rumbaugh’s OMT Object diagrams using Larch as the
formal notation. Researchers at Swinbume University, Australia, have proposed an
integration of MOSES, a graphical OO modeling notation, with Object-Z called FOOM
(Formal Object-Oriented Modeling) [Henderson-Sellers and Edwards 94]. These works
focused on the generation of formal specification from less formal OO models, and

focused on mapping UML primary constructs to Z primary constructs.

1.2 Research Objectives

The objectives of this thesis work included comparing Z and UML in different
domains, and finding a suitable mode for using Z and UML. The contributions of this
work arc that the research results can help software specifiers to decide which of Z and
UML is more appropriate for a given problem depending on the characteristics of the
problem, and for which software development phase it is more appropriate to use Z or
UML. It also can provide background information for designers who will design new

specification languages or design tools for either formalizing UML or visualizing Z.

1.3 Organization of the Thesis

The rest of this thesis report is organized as follows. An overview of Z and UML
is provided in Chapter II. A comparison of Z and UML is provided in Chapter IIl. Two
case studies are given in Chapter IV. Summary and suggested future work are provided in

Chapter V.

CHAPTER Il

OVERVIEW OF Z AND UML

Z and UML are overviewed in Sections 2.1 and 2.2, respectively. A brief history,

basis, basic elements, brief evaluation, and development processes of Z and UML are

discussed.

2.1 Overview of Z

2.1.1 Bnef History

The specification language Z was originally developed by Jean-Raymond Abrial.

It cvolved from research at the Oxford University Computing Laboratory (OUCL) in

1970°s [Schach 97].

2.1.2 Basis

Z is a model-based specification language that relies strongly on set theory and

first order predicate logic [Hayes 87]. Mathematical theories such as set theory, relations,

functions, sequences, bags, and models are its foundations.

2.1.3 Basic Elements

A specification in Z consists of a sequence of definitions for global set names,
global variables, and schemas. A global set name is an entity of the system defined by
users or by Z. A global variable is an object of entities and is used in schemas. A schema
1s a collection of variable declarations (or signatures) and predicates for relationships
among the variables (Figure 2.1). The rules of operations on schemas are inheritance,
composition, and information hiding. Pre-conditions and post-conditions typically are not
labeled explicitly. Z describes both the state space and the transitions on the states, and
places no restrictions on the style of specifications.

The basic set operations in Z are set membership (€), set union (U), domain

subtraction (<), and function override (D).

Variables may end with “?”, indicating that the variable is to be input, or with *“!”,
indicating that the variable is to be output.

By convention, the unprimed variables stand for the state before the operations
and the primed variables stand for the state after the operation. Placing the delta symbol
(A) in front of an existing schema name, indicates that the operation of the schema will

change some of the variables of the state.

The Z notations can be found in Appendix B.

--------- Schema Name-----------=--enennemevev (Schema box)
variable declarations
- -—- (Such that)

predicates

Figure 2.1 Schema Definition in Z

2.1.4 Evaluation

Specifications written in Z are precise, unambiguous, concise, and amenable to
proof. Z seems to be well suited for defining modules at the requirement analysis level
[Neil et al. 98]. It emphasizes both presentation and specification reuse. A specification
written in Z typically needs informal explanatory comments in a natural language such as
English to make it more readable and understandable.

Z was originally designed to be read by humans rather than by computers [Bowen
96], thus it is not executable. Z is not ideal for all problems.

Z has been used in the academia and the industry. For example, IBM Customer
Information Control System (CICS) was specified using Z [Bowen 96]. Many academic

examples are also available [Hayes 87].

2.1.5 Development Process

Specifications written in Z usually involve specifying the problem in both English
and Z. They are usually composed of global entities, states of the system, and operations
of the system. The two case studies in Chapter IV follow this process.

In designing a state model, software engineers look for the minimum number of
state variables that describe states of the system and operations on them. The types of
variables also need to be identified. A type is a collection of objects. Types are similar to

sets, in the sense that they are collections of values that share similar characteristics.

10

There are a number of standard types in Z such as the type of natural numbers. It is also
possible to introduce user-defined types for specific systems.

A state is a collection of sets and objects, and some predicates defined on those
entities. The choice of state model depends on the functions the system is expected to
perform.

Operations are the functions of the system that need to be carried out step by step.
Each operation on the systems states has to be specified. Operations are usually specified

using schemas with names, declarations, and predicates.

2.2 Overview of UML

2.2.1 Brief History

The Unified Modeling Language (UML) was initially created by the merger of
ideas mainly from three approaches [Booch et al. 99]: Booch, Jacobson’s Object-
Oriented Software Engineering (OOSE), and Rumbaugh’s Object Modeling Technique
(OMT). The critical mass of ideas started to form by the mid 1990s, and it was

standardized in 1997.

2.2.2 Basis

UML is an informal specification language. It consists of meta-models and

notations [Booch et al. 99]. It is built on OO concepts.

11

2.2.3 Basic Elements

There are three basic elements in UML [Booch et al. 99]. They are: UML’s basic
building blocks, the rules that put basic building blocks together, and some common

mechanisms that apply throughout UML.

2.2.3.1 Building Blocks

There are three kinds of building blocks in UML: thing, relationship, and
diagram. Things in the UML include structural things, behavioral things, grouping things,
and annotational things. Structural things are the nouns of UML models. They are class,
interface, collaboration, use case, active class, component, and node (see Appendix C). A
class is a description of a set of objects that share the same attributes and operations. An
interface is a collection of operations that specify a service of a class or a component. A
collaboration defines an interaction and is a society of roles and other elements that work
together to provide some cooperative behaviors. A use case represents how to use the
system. An active class is just a class except that its objects represent elements whose
behavior is concurrent with other elements. A component is a physical and replaceable
part of a system that conforms to and provides the realization of a set of interfaces. A
node is a physical element that exists at run time and represents a computational resource.
Behavior things are the verbs of UML models. They include interaction and state
machine (see Appendix C). An interaction is a behavior in which a set of objects

exchange messages. A state machine is a behavior that specifies the sequences of states

12

of an object or an interaction. A package is the grouping thing that groups elements
together. A note is the annotational thing that explains UML models in English.

Relationships include dependency, association, generalization, and realization. A
dependency is a relationship between two things in which a change to one thing may
affect the other thing. An association is a relationship that describes a set of links among
objects. A generalization is a specification/generalization relationship that generalizes a
super-class from a subclass or specializes a subclass from a super-class. Realization is a
semantic relationship between classifiers, that is, one classifier specifies a contract that
another classifier guarantees to realize.

Diagrams group interesting collections of things, and are the graphical
presentation of a set of elements. There are nine kinds of diagrams: class diagram, object
diagram, use case diagram, sequence diagram, collaboration diagram, statechart diagram,
activity diagram, component diagram, and deployment diagram.
2.2.3.2 Rules

UML has semantic rules for name, scope, visibility, integrity, and execution in
order to be understood by different people.
2.2.3.3 Mechanisms

Common mechanisms in UML are: specification, adornment, common division,
and extensibility. Specifications provide a textual statement of the syntax and semantics
of the building blocks. Adormments specify the notation with additional meanings.
Common divisions distinguish the things in different ways.

Extensibility mechanisms include stereotype, tagged value, and constraint. A

stereotype extends the vocabulary of UML, allowing users to create new kinds of

13

building blocks that are derived from the existing ones but that are specific to the user’s
problem. A tagged value extends the properties of a UML building block, allowing users
to create new information. A constraint extends the semantics of a UML building block,

allowing users to add new rules or modify an existing one.

2.2.4 Evaluation

The original developers of UML usually introduce it with claims of wide-ranging

applicability as follows [Booch et al. 99].

The UML is appropriate for modeling systems ranging from enterprise

information systems to distributed Web-based applications and even to hard real

time embedded systems.
However, UML is an informal specification language. It still suffers from a general lack
of precision [Shroff and France 97]. Developers may waste considerable time resolving
disputes over the usage and interpretation of the notation. Rigorous semantic analysis is
difficult. These problems have been widely recognized [France et al. 98].

UML is not executable. However, there are several CASE tools that support

UML, the most well-known one is Rational Rose [France et al. 98].

2.2.5 Development Process

The UML standard specifies a notation for several different diagrams, but it does

not describe how to create and apply each diagram. There are three well-known software

14

processes in UML [Booch et al. 99]. The first one is use case driven, the second one is
architecture-centric, and the third one is iterative and incremental. In the use case driven
process, use cases are the primary artifacts of establishing the desired behavior of the
system, for verifying and validating the system’s architecture, for testing, and for
communicating among the stakeholders of the project. In the architecture-centric process,
the system’s architecture is used as the primary artifact for conceptualizing, constructing,
and managing the system under development. In the iterative and incremental processes,
each new release 1s focused on attacking and reducing the most significant risks to the
success of the project.

These three processes (the use case driven process, the architecture-centric
process, and the iterative and incremental process) can be structured along two
dimensions: time and process components. Structuring a project along the time dimension
includes the following time-based phases: inception, elaboration, construction, and
transition. In the inception phase, the project version is specified. In the elaboration
phase, the necessary activities and the required resources are planed, the features of the
system are specified, and the architecture is designed. In the construction phase, the
product is built as a series of incremental iterations. In the transition phase, the product 1s
supplied to the user community. Structuring the project along the process component
dimension includes the following activities: requirement capture, analysis and design,
implementation, and test. Requirement capture is a narration of what the system should
do. Analysis and design is a description of how the system will be realized.
Implementation is the product of the code that will result in an executable system. Test is

the verification of the entire system.

15

This thesis report concentrates on the use of UML as a specification language to
capture requirement and analysis, and to design during the inception and elaboration
phases of software development. The three subsections that follow outline a brief
introduction of the process that will be used by the two case studies included in Chapter
V.
2.2.5.1 Creating Use Cases

The use case model starts in the inception phase with the identification of actors
and principal use cases for the system. Use cases model diagrams between actors and the
system. Actors represent anyone or anything that must interact with the system. They are
usually not part of the system. The collection of use cases for a system constitutes all the
defined ways the system may be used. A use case diagram is a graphical view of some or
all of the actors, the use cases, and their interactions identified for a system. Each system
typically has a main use case diagram. Other use case diagrams may be created as
needed. Documentation of a use case includes main course, alternative course,
precondition and post-condition. Sequence diagram scenarios describe the interactions
between the external actors and the system.
2.2.5.2 Identifying Behaviors

There are two types of interaction diagrams: sequence diagram and collaboration
diagram. A sequence diagram shows object interactions arranged in time sequence.
Sequence diagrams typically are associated with use cases in the model of the software
system under development. Boundary classes are added to sequence diagrams to show
the interaction with a user or with another system. A collaboration diagram shows object

interactions organized around the objects and their links to each other. In syntax,

16

sequence diagrams and collaboration diagrams are analogous and can be transferred to
each other. In this thesis report, collaboration diagrams will be emphasized over sequence
diagrams because of their ability to convey more contextual information, and their
relative spatial economy. State diagrams are another diagrams of UML to describe the
dynamic aspects of a system. State diagrams describe a system changing from one state
to another state or from one activity to another activity.
2.2.5.3 Checking the Model

In order to make the model homogeneous, great care needs to be paid. Classes
may need to be combined, split, or eliminated. New methods may need to be added later

on. Consistency of all diagrams needs to be checked.

17

CHAPTER 11

A COMPARISON OF Z AND UML

In this chapter, the formal specification language Z and the object-oriented
specification language UML are compared from various language aspects. The
comparison criteria are introduced in Section 3.1. The comparison results and detailed

explanation are given in Section 3.2.

3.1 Comparison Criteria

Numerous comparison criteria exist to compare different specification languages
from various aspects [Wing 88] [Ardis et al. 96] [Harmelen et al. 96] [Bicarregui and
Ritchie 95] [Henderson-Sellers and Firesmith 99]. The criteria used to compare Z and
UML in this chapter are: formality, life-cycle phases applied, modularity, notation,
specification style, tool support, language maturity, and orientation. The description of
each criterion follows.

Formality: A specification language is formal if it has a precise and unambiguous
syntax. A precise and unambiguous syntax is given by mathematical definitions usually

in the form of a set of definitions, a set of logical formulas, or an abstract model.

18

Life-cycle Phases Applied: The life-cycle phases applied by a specification
language can be one or more of these phases: specification, analysis, design, and detailed
design.

Modularity: Whether or not the method uses simple composition operators that
allow a large specification to be more easily written and understood by decomposing it
into smaller parts. Whether or not it is possible to make conceptually small additions,
changes, and generalizations to a specification without major rewriting.

Notation: Notation impacts the communication among software developers,
domain experts, users, customers, managers, and quality assurance personnel.

Specification Style: Specification style refers to the main elements of the
specification and the appearance of the specification.

Tool Support: Tool support is an indication of the popularity of a language in
industry. The more the number of tools, the more popular the specification language is.
Users can have more choices when they search for support tools.

Language Maturity: How much development has the language undergone in terms
of certification, amount and quality of training available, user base size, and industrial
deployment.

Orientation: Orientation refers to what the process is based on and what rules the

process follows (e.g., data orientation, operation orientation, or control orientation).

3.2 Comparison of Z and UML

In the following subsection, Z and UML are compared based on the criteria

identified in Section 3.1.

19

3.2.1 Formality

Z 1s a formal specification language because it uses set theory, first order
predicate logic, functions, etc.

UML is an informal specification language because UML uses graphical notations
and plain English. UML uscs stercotypes to extend vocabularies in order to specify

mathematical operations, but it still has the potential to be ambiguous.

3.2.2 Life-Cycle Phases Applied

Experiences in Z specifications have showed that Z is suitable for requirement
specifications [Hayes et al. 93]. It is very helpful when proof is needed in the design
phase.

UML is largely process independent, and it is claimed that it is suitable for any
software development life cycle phase [Booch et al. 99]. However, it has been argued that
UML is not suitable for all life cycle phases for business issues [Henderson-Sellers and

Firesmith 99].

3.2.3 Modularity

The structuring of functionality between Z schemas is arbitrary [Neil et al. 98]. In

particular, schemas are frequently tightly coupled, have weak cohesion, and have

20

duplicate functionality. Z schemas are more like macros than models, so the body of a
schema may refer to items that are not declared directly in the schema. So, specifications
in Z generally seem clumsy when Z is used to specify large systems.

UML is based on meta-models, graphical notations, and OO concepts. These
characteristics make UML modular and easier to use and understand for a large

specification.

3.2.4 Notation

The Z notation is provided in Appendix B. Z uses mathematical notation and
remains rather strict. The advantages are that the mathematical notations have precise and
defined semantics. Z notations are easy to understand for people who have a strong
mathematical background. For other people, they are hard to understand.

The UML notation is provided in Appendix C. UML uses graphical notation with
plain English explanation. The UML notation is easy to understand. A disadvantage is

that the notation has the potential to be ambiguous.

3.2.5 Specification Style

Specifications in Z typically consist of definitions and schemas. Schemas are used

to describe not only states but also operations. Schemas are used as building blocks to

21

construct descriptions of states. A specific target programming language is needed when
specifications are refined for implementation.

Specifications in UML consist of graphical icons, diagrams, lines, and plain
English. Classes and objects are the basic building blocks. They are used to draw
different diagrams with relationships, time, and dynamic states. They can also be grouped
together as packages. There is no specific target programming language needed when

specifications in UML are refined for implementation.

3.2.6 Tool Support

Tool support for Z and UML are listed in Appendix D and Appendix E,
respectively. Both Z and UML have lots of support tools available. Most of Z support
tools follow the standard Z notation and force users to obey the standard rules. In
contrast, most of UML support tools follow different notations. These tools are generally

not compatible.

3.2.7 Language Maturity

Z was developed in the 1970’s. A reference manual for Z was published in 1989
[Spivey 89], and it was recognized as the standard Z notation.
Object-oriented modeling languages appeared in mid 1970’s and 1980’s. The

critical ideas of UML started in mid 1990’s. The UML effort started officially in October

22

1994, and version 0.8 draft of UML was released in October 1995. There are still lots of

researches trying to make UML more formal by using Z.

3.2.8 Orientation

Z is operation oriented. Schemas are the basic building blocks that are used to
specify operations. Typically, given a system to be modeled using Z, the system variables
are identified and treated as globally accessible, also the system functions must be
identified and the behaviors of the functions are either left unspecified or described
through simplistic models. Initial conditions are typically stated explicitly.

UML is data oriented. Class is the basic OO data type. A system’s functionality is
either left unspecified or indirectly described through interactions of operations of the
different data types. Initial conditions are typically stated implicitly through creating

operations on objects.

23

CHAPTER IV

TWO CASE STUDIES

In this chapter, two case studies are discussed in order to lend some practical
perspective to the comparison of Z and UML. A brief introduction of the comparison
criteria for the two case studies is provided in Section 4.1. The library problem is given in

Section 4.2. The elevator control problem is given in Section 4.3.

4.1 Introduction of Comparison Criteria

The comparison criteria used to compare specifications in Z and UML in this
chapter are: readability, applicability, levels of abstraction / expressibility, verifiability,
discipline, redundancy, reusability, and ambiguity. The descriptions of these criteria are
given below.

Readability: Whether or not graphics or diagrams are used to aid readability.

Applicability: Whether or not the technology describes real world problems and
solutions in a natural and straightforward manner.

Levels of Abstraction / Expressibility: How closely and expressively the

specification can describe, from the user’s point of view, the objects and the environment

24

in the domain. How large the ratio is between the amount of interesting properties of a
system and the amount of extra information.

Verifiability: Whether or not it is possible to demonstrate formally that a
specification satisfies the properties stated at the same or a higher level of abstraction.

Discipline: Whether or not the language forces users to write reasonably well-
behaved specifications.

Redundancy: Whether or not a piece of knowledge is represented more than one
way in the same model.

Reusability: Whether or not we can reuse parts of a model specification in
formalizing other modecls.

Ambiguity: Whether or not a specification specifies the relevant issues in a given

problem precisely.

4.2 Library Problem Case Study

An introduction to the problem is given in Section 4.2.1. The Z approach and the
UML approach are given in Sections 4.2.2 and 4.2.3, respectively. A comparison of these

specifications is provided in Section 4.2.4.

4.2.1 Introduction to the Library Problem

The library problem is a classic problem in software specification [Wing 88]. It

was first discussed by Kemmerer in 1981 as part of his class lecture on formal

25

specification at the University of California at Santa Barbara. Later on several authors
used it as a case study in their teaching or research. The problem attained broader
prominence in 1986 when it appeared in the Fourth International Workshop on Software
Specification and Design as one of a set of four problems.

The requirement of the library problem is stated as follow [Wing 88].

Consider a small library database with the following transactions.

(1) Check out a copy of a book /return a copy of a book.

(2) Add a copy of a book to / remove a copy of a book from the library.

(3) Get the list of books by a particular author or in a particular subject area.
(4) Find out the list of books currently checked out by a particular borrower.
(5) Find out what borrower last checked out a particular copy to a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1,

2,4, and 5 are restricted to staff users, except that ordinary borrowers can perform

transaction 4 to find out the list of books currently borrowed by themselves. The

database must also satisfy the following constraints.

(1) All copies of the books in the library must be available for check out or be
checked out.

(2) No copy of a book may be both available and checked out at the same time.

(3) A borrower may not have more than a predefined number of books checked
out at one time.

4.2.2 Z Approach

4.2.2.1 Specification in Z

This specification does not intend to show all aspects of Z. It is the author’s view
of the problem and it has been modified from the specifications given by Diller [Diller
90] and King and Sorensen [King and Sorensen 89]. Z notations and textual English are

mixed in order to explain the problem more clearly. The development process follows a

26

process of which an overview was presented in Section 2.1.5. Global entities, states of the
system, and operations of the system are the three main components.
4.2.2.1.1 Global Entities

This specification makes use of the following given types: [Book, Copy, Person,
Author, Subject, Report, MaxCopiesAllowed] as explained below. Book is the set of all
possible books. Books are considered to be abstract objects. Copy is the set of all possible
copies of books, and is a physical object. Person is the set of all possible people in this
system. Author is the set of all possible authors including institutions. Subject is the set of
all conceivable subjects that books can be about. Report is the set of all necessary
messages. MaxCopiesAllowed is the maximum number of copies of books anyone can
borrow.

[PERSON]
staff: P PERSON
borrower: P PERSON
staff 1 borrower = {}

[COPY]
stock: P COPY
available: P COPY
checked-out: COPY —'9 PERSON
(dom checked-out) Y available = stock
(dom checked-out) 1 available = [}
¥V p: PERSON e # (checked-out) > [p} < MaxCopiesAllowed
last-checked-out: COPY —I% PERSON
checked-out o last-checked-out
(ran checked-out) c (staff Y borrower)

For the type Book, the subset [Title, Author, Subject] is introduced.

' Book R
title: Title
authors: F Author
subject: F Subject

27

Report = ‘Okay’
| ‘Unauthorized requestor’
| “ Not registered’
| ‘Copy checked out’
| ‘Cannot borrow any more copies’
| ‘Copy available'
| “ This book is not new to the library’
| ‘This book is new to the library’
| ‘This copy is owned by the library’
| ‘This book is not owned by the library’
| * This is the only copy in the library’
" This is not the only copy in the library’
Unknown borrower’
| * Copy not previously borrowed’

f

4.2.2,1.2 States of the System
The library system is split as LibrarySystem, LibraryDB, and Library states. Each

state is specified as follows.

---------- LibrarySystem-- --- -
instanceof: Copy —|-> Book
writtenby : Book F Author

about: Book _|9 F Subject

dom writtenby — ran instanceof

dom about — ran instanceof

The LibrarySystem schema contains information relating to the books in the
library. The function instanceof tells which book a copy is an instance of. The function
writtenby tells who writes a particular book. It returns a set of authors that may be empty.
Some books may be journals associated with the empty set of authors. The function about
tells what a book is about. The predicate dom writtenby —~ ran instanceof tells us that the

database does not contain author information about books that are not in the library, and

28

the predicate dom about - ran instanceof tells us that the database does not contain

subject information about books which are not in the library.

------------ LibraryDB
borrower, staff: F person

available, checked-out: F Copy

previouslyborrowedby, borrowedby: COPY _|9 PERSON

borrower | staff = {}

available 1 checked-out = { }

dom borrowedby = checked-out

ran borrowedby c borrower

dom previouslyborrowedby — available Y checked-out

ran previouslyborrowedby borrower

Y p: Person | p € borrower » # borrowedby ' (| {p} |) <MaxCopiesAllowed

The finite sets of borrower and staff contain people who can use the library and
those who manage it, respectively. The predicate horrower 1 staff = { } tells that the
identifiers of borrowers and staff are disjoint.

The finite sets of available and checked-out contain all the copies of the books
that are either available for checkout or have actually been checked out. The predicate
available 1 checked-out = { } captures the following constraint from the statement of
requirements:

e No copy of a book may be both available and checked out at the same time.

The function horrowedby tells us who has currently borrowed a particular copy of
a book, and the function prevouslyborrowedby tells us who is the last person borrowing a
copy of a book. For example, let ¢ be a particular copy of a book that is currently on loan.
Then, borrowedby(¢) is the current borrower of ¢, and previouslyborrowedby(¢) is the

person, if any, who borrowed ¢ immediately before the person horrowedby(c).

29

The predicate dom borrowedby = checked-out tells us that the set of copies that
have been borrowed by people is the same as the set of copies that are checked-out. The
predicate ran borrowedby c borrower states that every checked-out copy must have been
borrowed by a borrower.

The predicate dom previouslyborrowedby < available Y checked-out states that
previously borrowed copies are either available for checkout or have been checked out
again. The predicate ran previouslyborrowedby C borrower states that the last borrower
of every copy must be a registered user. The final predicate V p: Person | p € borrower
o # borrowedby ' (| {p} |) <MaxCopiesAllowed captures the constraint:

e A borrower may not have more than a predefined number of books checked

out at one time.

The complete state of the library is given by means of Library:

---- --Library-- ---- ---
LibrarySystem

LibraryDB

dom instanceof = available Y checked-out

dom instanceof = available Y checked-out tells us that the database does not
contain information about copies of books which are not in stock.

The schemas A LibrarySystem, A LibraryDB, and A Library are defined in the
usual way:

A LibrarySystem = LibrarySystem A LibrarySystem’

A LibraryDB = LibraryDB A LibraryDB'’
A Library = Library » Library’

30

The schemas = LibrarySystem, = LibraryDB, and E Library are defined in the

standard way:

= LibrarySystem = A LibrarySystem
| instanceof” = instanceof
Awrittenby ' = writtenby
Aabout’ = about

= LibraryDB = A LibraryDB
| borrower ' = borrower

A staff’ = staff

A available’ = available

A checked-out’ = checked-out

A previouslyborrowedby’ = previouslyborrowedby
A borrowedby " = borrowedby

= Library= = LibrarySystem n Z LibraryDB
In the initial state, every variable is an empty set.

InitialLibrarySystem' = LibrarySystem’
| instanceof” = { }
Awrittenby' = { }
A about' ={)}

InitialLibraryDB' = LibraryDB’
| borrower’ = {}

nstaff’ = {}

A available’ = { }

A checked-out’= [}

A prevouslyborrowedby’ = { }
A borrowedby’ = [}

InitialLibrary’ = InitialLibrarySystem' A InitialLibraryDB’

4.2.2.1.3 Operations of the System

There are eight operation models in this system. They are described one by one as

follows.

31

1) Checking-out Copies of Books

---------- CheckQutCopy
A Library

= LibrarySystem

n?: Person

c?: Copy

n? € borrower

c¢? € available

#horrowedby ' (| { n? } |) < MaxCopiesAllowed
available' = available | { ¢? }

checked-out’ = checked-out Y { ¢? }
borrowedby ' = borrowedby Y {c¢? — n?}

previouslyborrowedby ' = previouslyborrowedby
borrower’ = borrower

staff” = staff

The preconditions of the schema CheckOutCopy are the three predicates: n? e
borrower, ¢? € available, and #borrowedby L | { n? } |) < MaxCopiesAllowed. The
predicate n? € borrower states that only registered users can borrow copies. The
predicate ¢? € available states that only available copies can be borrowed. . The
predicate #borrowedby ' (| { n? } |) < MaxCopiesAllowed states that a borrower can
only borrow copies if the number of copies he currently has borrowed is strictly less than
the maximum number allowed.

The following schema, AuthorisedRequestor, is used to record the fact that the
person requestor? is allowed to perform those transactions which only staff members of

the library can perform.

-------- AuthorisedRequestor------ -
staff: F Person
requestor?: Person

requestor? € staff

32

The successful operation of checking out a copy is specified by the schema:

AuthorisedRequestor n CheckOutCopy
The schema UnauthorisedRequestor specifies what happens when an

unauthorized person tries to perform the transaction of checking out a copy of a book.

The state of the database is unchanged, but an error message is displayed.

---------------- UnauthorisedRequestor
= Library

requestor?: Person

rep!: Report

requestor? & staff
rep! = ‘Unauthorized requestor’

The schema Unregistered specifies what happens when someone not registered

with the library tries to borrow a copy.

---------------- Unregistered
= Library

n?: Person

rep!: Report

n? ¢ borrower
rep! = '‘Not registered’

The schema CopyNotOwned specifies what happens when someone tries to

borrow a copy that is not in the library, meaning that the library does not own a copy.

——————————————— CopyNotOwned-
= Library
c?: Copy
rep!: Report

c? & available Y checked-out
rep!: = " This copy is not owned by the library’

33

The schema CopyCheckedOut specifies what happens when someone tries to

borrow a copy that is owned by the library but currently has been checked out.

+-----CopyCheckedOut -
= Library

c?: Copy

rep!: Report

c? € checked-out
rep! = ‘Copy checked out’

The schema TooManyCopies specifies what happens when someone tries to

borrow a copy of a book when he has already borrowed the maximum number of copies

he is allowed to.

—————— TooManyCopies
= LibraryState

n?: Person

rep!: Report

n? € borrower

I ; .
#thorrowedby " (| [n? }'|) = MaxCopiesAllowed
rep! = ‘Cannot borrow any more copies’

The schema Success just outputs a confirmatory message that the operation being

performed has been successfully completed.

i Success
rep!: Report

Thus, the complete specification of the transaction of borrowing a copy of a book

is captured by the schema DoCheckQutCopy:

34

DoCheckOutCopy = AuthorisedRequestor
A CheckOutCopy
A Success
v UnauthorisedRequestor
v Unregistered
v CopyNotOwened
v CopyCheckedOut
v TooManyCopies

2) Returning a Copy of a Book

---------- Return --- mmmmmmm s
A Library

= LibrarySystem

c?: Copy

c¢? € checked-out

available’ = available Y { c¢? }
checked-out' = checked-out \ { c? }
borrowedby’ = [c? } _Q_ borrowedby

previouslyborrowedby’ = previouslyborrowedby @© { ¢? — borrowedby (c¢?)}

borrower' = borrower

staff’ = staff

The precondition of Return is the single predicate ¢? € checked-out. The post-
condition is captured by the middle group of four predicates. The first two of these state
that the copy ¢? is transferred from actually being borrowed to just being available for
loan. The third removes the information relating to ¢? from borrowedby’, and the fourth
predicate records the information that the last person to borrow ¢? was borrowedby (¢?),
overriding any information about who previously borrowed ¢?.

The schema CopyAvailable captures that the copy is available for the library.

35

-------------- CopyAvailable
= LibraryState

c?: Copy

rep!: Report

c? € available
rep! = ‘Copy available’

The total specification of the transaction of returning a copy of a book is given by
means of the schema DoReturn.
DoReturn = AuthorisedRequestor n Return A Success
v UnauthorisedRequestor
v Unregistered
v CopyNotOwned
v CopyAvailable
3) Adding a Copy of a Book to the Library
In adding a copy of a book to the library, we need to consider two cases: when the
book is new to the library and when the library already owns a copy of the book.
Adding a New Book to the Library
One of the preconditions of AddNewBook is b? ¢ ran instanceof. This
precondition states that we can only add an entirely new book to the library if the library

does not contain this book. The situation in which it is attempted to add a new book to the

library, but the book is not new to the library, is captured by the schema NotNewBook.

36

--—-----AddNewBook
A Library

c?: Copy

b?: Book

A?: F Author

§?: F Subject

b? & ran instanceof
c? ¢ available Y checked-out

available’ = available Y { ¢? }
instanceof " = instanceof Y {c? — b?}
writtenby' = writtenby Y [b? — A?}
about’ = about Y [b? —» §?)

checked-out’ = checked-out
previouslyborrowedby’ = previouslyborrowedby
borrowedby ' = borrowedby

borrower’ = borrower

staff’ = staff

--------- NotNewBook --- -
= Library

b?: Book

rep!: Report

b? € ran instanceof
rep! = ‘This book is not new to the library’

The precondition ¢? ¢ available Y checked-out states that the copy ¢? that we
are adding to the library must not already be owned by the library. This situation is

captured by the schema CopyOwned.

37

----CopyOwned.
= Library
c?:Copy
rep!: Report

c¢? € available Y checked-out
rep! = ‘This copy is owned by the library’

Thus, the total specification of the transaction of adding a book entirely new to
the library is given by the schema DoAddNewBook.

DoAddNewBook = AuthorisedRequestor n AddNewBook A Success
v UnauthorisedRequestor
v Unregistered
v NotNewBook
v CopyOwned

Adding Another Copy of a Book

------------ AddAnotherCopy
A LibraryState

c?: Copy

b?: Book

c? g available Y checked-out
b? € ran instanceof

available’ = available Y [c¢? }
instanceof” = instanceof Y [¢? — b?}

checked-out’ = checked-out
previouslyborrowedby ' = previouslyborrowedby
borrowedby' = borrowedby

borrower' = borrower

staff” = staff

writtenby ' = writtenby

about’ = about

38

The schema BookNewToLibrary and the schema CopyOwned capture what

happens when the preconditions of the operation AddAnotherCopy are violated.

BookNewToLibrary -—- -
= Library

b?: Book

rep!: Report

b? & ran instanceof

rep! = ‘This book is new to the Library’

The total specification of adding a copy of a book to the library is given by the
schema DoAddAnotherCopy as follows.
DoAddAnotherCopy = AuthorisedRequestor n AddAnotherCopy A Success
v UnauthorisedRequestor
v BookNewTolLibrary
v CopyOwned
4) Removing a Copy of a Book from the Library
The operation of removing a copy of a book from the library is split into two
cases: removing a copy of a book while leaving other copies of the same book in the
library and removing the only copy of a book from the library.
Removing One of Several Copies
The precondition ¢? € available states thal we cannot remove a copy that is
currently checked out. The predicate # (instanceof —1 (| { instanceof (¢?) } |)) > 1
states that there is more than one copy of the book.
The operation RemoveOther can go wrong in the following cases: ¢? € checked-
out, c? & available n ¢? & checked-out and #(instanceof —1 (| { instanceof (¢?)} |))

= 1. ¢? € checked-out is captured by CopyCheckedOut, ¢? ¢ available n ¢? ¢ checked-

39

} 1)) = 1is captured by the schema OnlyCopy.

out 1s captured by the schema CopyNotOwned , and #(instanceof -1 (| { instanceof (¢?)

-------------- RemoveOther
A Library

E LibrarySystem

c?: Copy

c? € available
#(:’nstanceof"’ (| { instanceof (¢?)} |)) > 1

available’ = available \ [¢? }

checked-out’ = checked-out
borrowedby " = borrowedby
borrower’ = borrower

staff’ = staff

previouslvborrowedby’ = { ¢? } —Q— previouslyborrowedby

------------ OnlyCopy--- ---
E Library

c?: Copy

rep!: Report

#(instanceof ' (| { instanceof (¢?) }|)) =1
rep! = ‘This is the only copy in the library’

Thus, the total specification of the operation of removing one of several copies of

a book from the library is given by the schema DoRemoveOther as follows.

DoRemoveOther = AuthorisedRequestor n RemoveOther A Success

v UnauthorisedRequestor

v CopyCheckedOut
v CopyNotOwned
v OnlyCopy

40

Removing the Only Copy of a Book

---------- Removelast
A Library
c?: Copy

¢? € available
#(instanceof_" (| {instanceof (c?)} |)) =1

available’ = available \ { ¢? }

previouslyborrowedby' = { ¢? } —Q— previouslyborrowedby
instanceof” = { ¢? } instanceof

writtenby " = { instanceof (c?) } —Q— writtenby

about’ = { instanceof (¢?) } —<} about

checked-out’ = checked-out
borrowedby ' = borrowedby
borrower' = borrower

staff” = staff

The operation RemoveLast can go wrong in the following ways: ¢? € checked-
out, c? & available n ¢? & checked-out, and #(instanceof —1 (| { instanceof (¢?)} |)
) > 1. The predicate ¢? € checked-out is captured by BookCheckedOut, ¢? ¢ available
A ¢? & checked-out is captured by the schema CopyNotOwned, and the predicate #(

instanceof —1 (| { instanceof (¢?) } |)) > I is captured by the schema NotOnlyCopy.

--------- NotOnlyCopy --
= Library
c?: Copy
rep!: Report

#(instanceof ' (| { instanceof (¢?) }|)) > 1
rep! = 'This is not the only copy in the library’

The total specification is captured by the following schema.
DoRemoveLast = AuthorisedRequestor

A RemoveLast
A Success

41

v UnauthorisedRequestor
v CopyCheckedOut

v CopyNotOwned

v NotOnlyCopy

5) Getting the List of Books by a Particular Author

---ByAuthor o
= Library

a?: Author

out!: FF Book

out! = { x: Book | a? € writtenby x }

DoByAuthor = ByAuthor A Success

6) Getting the List of Books on a Particular Subject

------ BySubject e
= Library

s?: Subject

out!: F Book

out! = { x: Subject | s? € about x }

DoBySubject = BySubject n Success

7) Finding out the List of Books Currently Checked out by a Particular Borrower

= Library
n?: Person
out?: F Copy

n? € borrower

out! = borrowedby "(1fn?}))

42

L . ——n ‘;‘l.ﬁi..-_‘ua-ﬂl

This transaction can be performed by a staff user for any borrower or by a

borrower for himself or herself.

—————————— SelfRequestor----
E Library
n?, requestor?: Person

n? = requestor?

This transaction is unsuccessful if one tries to get information about someone’s

borrowings if they are not registered users.

------ UnknownBorrower
= Library

n?: Person

rep!: Report

n? & borrower
rep! = * Unknown borrower’

This transaction can go wrong if it is requested neither by a staff member of the

library nor by a registered user.

----- NotAuthorisedRequestor---
= Library

n?, requestor?: Person

rep!: Report

n? = requestor?
Requestor? & staff
Rep! = 'Not authorized requestor’

43

The total specification is given by the following schema.

[

BooksBorrowedBy A AuthorisedRequestor A Success
v BooksBorrowedBy A SelfRequestor A Success

v UnknowBorrower

v NotAuthorisedRequestor

DoBooksBorrowedBy

8) Finding out Who Last Checked out a Particular Copy of a Book

= Library
n!: Person
c?: Copy

c¢? € available Y checked-out
{c¢? — n!} e previouslyborrowedby

This transaction fails if either the copy ¢? is not owned by the library or the copy

¢? has never been borrowed.

--------- CopyNotPreviouslyBorrower mmmmmeemeen --
= Library
rep!: Report

c? & dom previouslyborrowedby
rep! = ‘Copy not previously borrowed’

Thus, the total specification of the operation is given as follows.

DoPreviousBorrower = PreviousBorrower n AuthorisedRequestor n Success
v UnauthorisedRequestor
v CopyNotOwned
v CopyNotPreviouslyBorrower

4.2.2.2 Discussion of the Specification in Z

The specification in Z is built from near orthogonal components. Users look for
ways of splitting the state of the system so that operations on the required state can be
specified.

For the library problem, the specification is split into three parts: entities, the
states of the system, and the operations of the system. Global entities provide static type
check. The states of the system are defined using schemas and global entities. It is clear
that the library system includes the library management system and the library database.
The initial states are defined. In the operation part, eight transactions of the library
problem are specified one by one. The states were divided into small groups of
components and sub-operations in order to define the full operation. For a large
specification with many state components, this approach would be clumsy.

The precondition of an operation characterizes exactly these inputs and initial
states such that there exists at least one possible combination of outputs and a final state

that satisfies the operation specification.

4.2.3 UML Approach

4.2.3.1 Specification in UML
In this section, textual English and UML notations are used to specify and analyze
the library system. Identifying use cases and behaviors of the system follow the

previously overviewed process in Section 2.2.5.

45

There are eight transactions, two kinds of users, and three constraints in the
library system. The system needs to present the functions with a representation that can
be a graphical user interface. The system also needs a persistent storage mechanism, such
as an object-oriented or a relational database. Finally, it is important that the system
needs an application system that drives this system. Figure 4.1 shows components of the

system that interact with each other.

The Library System

Librarian —
' Application

User
Interface

s
Database

Borrower

Figure 4.1 The Library System Components

The following specification will focus on the application part in order to specify
the requirement and to have a fair comparison with Z.

4.2.3.1 Identifying Use Cases

Identifying use cases includes identifying actors and use cases, drawing use case
diagrams, documenting use cases, and representing each use case using sequence diagram

scenarios.

46

/

"\-

N
Librarian

The Library System

Check out a Copy of A BOOD
Return a Copy of a BD

Add a Copy of a Book

Remove a Copy of a B(D

Search Books >~.~

List Books Borrowed by a Given
Borrower

Find Who Last Borrowed a Given
Copy

I

:

.

ik

|

[~
Borrower

/

Figure 4.2 Main Use Case Diagram of the Library Problem

In this system, there are two actors: a borrower and a librarian. There are seven

use cases that are represented in Figure 4.2. These use cases describe the functionality of

the library from the actor point of view. The boundary of this system is the system

software in the library.

47

A librarian refers to any person who is a staff of the library, and responsible to do
all transactions. A borrower refers to any person who is legal to borrow books from this
library. The following is the documentation of seven use cases.

1) Check out a Copy of a Book

This use case starts when a borrower arrives at the system with a copy of a book
to check out. A librarian shows he/she is a valid librarian with an identification card. The
system gives him/her permission to do this transaction. The librarian makes sure that the
borrower is a valid borrower and that the book is available, makes sure that the borrower
has not borrowed more than the maximum number of copies, records this copy on the
borrower’s list, and finally records that this book has been borrowed. This use case ends.

Alternative courses: The librarian cannot show he/she is a valid librarian, the
system stops this transaction. The borrower cannot show she/he is a valid borrower, the
system stops this transaction. The book is not available, the system stops this transaction.

The sequence diagram scenario is given in Figure 4.3.

2) Return a Copy of a Book

This use case starts when a borrower arrives at the system with a copy of a book
to return. A librarian shows he/she is a valid librarian with an identification card, and the
system gives him/her permission to do this transaction. The librarian makes sure that the
borrower is a valid borrower, this copy belongs to the library, and is now available to the
library. Then the librarian records this copy as available to the library and removes this

copy from the borrower’s list. This use case ends.

48

2, |
/K Librarian LibrarySystem |
- Bl T

| |
1: validLibrarian(id)

2: givePermission()

3: validBorrower(id)

4: validBook(callNo)

5: processInformation()

T 1

Figure 4.3 Sequence Diagram Scenario of Check out a Copy of a Book

/K Librarian LibrarySystem

I I
| [

1: validl.ibranan(id)

2: givePermission()

3: validBorrower(id)

4: validBook(callNo)

5: processInformation()

Figure 4.4 Sequence Diagram Scenario of Return a Copy of a Book
Alternative courses: The librarian cannot show he/she is a valid librarian, the

system stops this transaction. The borrower cannot show she/he is a valid borrower, this

49

transaction is stopped. The book is not available, the system stops this transaction. The
sequence diagram scenario is given in Figure 4.4.
3) Add a Copy of a Book

This use case starts when a librarian shows he/she is a valid librarian and the
system gives him/her permission to do this transaction. The system checks the book
status. If the book is new to the library, the system initiates Add a New Book use case,
otherwise the system initiates Add Another Copy of a Book use case. This use case ends.
Figure 4.5 represents the subsystem use case diagram.

Alternative courses: The librarian cannot show he/she is a valid librarian, this

transaction is stopped. The sequence diagram scenario is given in Figure 4.6.

'The Library System

.—"/‘—4\
(1 dd a copy of a book

a
\\-‘

Librarian
<< yse>>

add another copy of a book

e

add a new book

Figure 4.5 Subsystem Use Case Diagram of Add a Copy of a Book

50

f Librarian LibrarySystem

I |

1: validLibranan(id)

2: givePermission()

3: bookStatus(callNo)

4: addNew() or addCopy()

5: processInformation()

Figure 4.6 Sequence Diagram Scenario of Add a Copy of a Book

The Subsystem Use Cases of Add a Copy of a Book is given below.
Add a new book

This use case starts when the system has verified that the book is new to the
library. The librarian adds this book as one copy in the library database, adds the author
and subject to the book, and finally adds it as available to the library. This use case ends.
Add Another Copy of a Book

This use case starts when the system has verified that the book is not new to the
library. The system finds the book and increases the number of copies. The system finally
adds it as available in the library. This use case ends.
4) Remove a Copy of a Book

This use case starts when a librarian shows he/she is a valid librarian, and the

system gives him/her permission to do this transaction. The system finds how many

51

copies the book has. If there is only one copy of the book, the system initiates Remove
the Only Copy use case. Otherwise, the system initiates Remove Another Copy use case.
This use case ends. Figure 4.7 represents the subsystem use case diagram.

Altemative courses: The librarian cannot show he/she is a valid librarian, this

transaction 1is stopped. The sequence diagram scenario is given in Figure 4.8.

The Library System

remove a copy of a book

i\%_ﬁﬁ___“

Librarian << pge=

—
remove another copy of a book)

remove the only copy

Figure 4.7 Subsystem Use Case Diagram of Remove a Copy of a Book

The Subsystem Use Cases of Remove a Copy of a Book is given below.
Remove the Only Copy of a Book

This use case starts when the system finds that this book has only one copy. The
system removes the copy from the available copies of the book, removes the author and

subject from the book, and removes the book from the database. This use case ends.

52

Remove Another Copy of a Book

This use case starts when the system has showed there are more than one copy of

a book. The system removes the copy from the available list. This use case ends.

T Librarian Library System
. | |

1: validLibrarian(id)

2: givePermission()

3: bookStatus(callNo)

4: removeOnlyCopy() or
removeCopy(Q

5: processInformation()

r |
Figure 4.8 Sequence Diagram Scenario of Remove a Copy of a Book

5) Search Books

This use case starts when a user wants to search for a specific book. The user can
choose the author as the key or the subject as the key. The system outputs a list of books
that match the key. This use case ends. The sequence diagram scenario is given in Figure
4.9,
6) List Books Borrowed by a Given Borrower

This use case starts when a user wants to list books borrowed by a given
borrower. The system requires the user to show his/her status. If the user is a librarian,

the system initiates List by a Librarian use case. If the user is a borrower, the system

53

initiates List by a Borrower use case. Otherwise the system stops this transaction. This

use case ends. Figure 4.10 represents the subsystem use case diagram.

f Librarian LibrarySystem
~ T |
| |

1: validUser()
2: inputBorrower()

3: dasplay ()

Figure 4.9 Sequence Diagram Scenario of Search Books

The Library System

h-_\-'_‘_‘——‘._‘_‘___‘———_N -
(list books of a borrower

Librarian
<< use>>

list by a librarian

list by a borrower

Figure 4.10 Subsystem Use Case Diagram of List Books Borrowed by a Given Borrower

54

The sequence diagram scenario for the use case of List Books Borrowed by a

Given Borrower is in Figure 4.11.

T | Librarian LibrarySvystem |
>
| |

[1
1: validUUser()

2 mputBorrower()

3. displav(Q

Figure 4.11 Sequence Diagram Scenario of List Books Borrowed by a Given Borrower

The Subsystem Use Cases of List Books Borrowed by a Given Borrower is given
as below.
List by a Librarian

This use case starts when the system finds the user is a librarian. The librarian
inputs the borrower’s id and the system outputs a list of books borrowed by the borrower.
This use case ends.
List by a Borrower

This use case starts when the system finds the user is a borrower. The system

outputs a list of books borrowed by the borrower. This use case ends.

39

7) Find out Who Last Borrowed a Given Copy
This use case starts when a user shows he/she is a librarian. The librarian inputs
the copy number and the system outputs the last borrower or outputs a message that the

copy is not owned by the library. This use case ends. The sequence diagram scenario is

given in Figure 4.12.

| |
= [|

1: validLibrarian(id)

i Librarian LibrarySystem

2: givePermission()

3: inputCopy(callNo)

4: displayBorrower()

Figure 4.12 Sequence Diagram Scenario of Find out Who Last Borrowed a Given Copy

4.2.3.1.2 ldentifying Behaviors of the System

In this section, a collaboration diagram and a state diagram for each use case are
drawn to show the behaviors of the use cases. The collaboration diagrams describe the
collaboration of objects to realize the functions of the system. Only the main methods are
showed to simplify the diagrams. The arrow represents the direction. The state diagrams

describe the different states of the systems.

56

1) Check Out a Copy of a Book

checkout(id1.id2 callNo)

LibrarySystem

1:create()

l 3:validUser()

UserDB

.

CheckOut

2:createChe ckout=0

l 6:validCopy ()

BookDB

LibrarianDB || BorrowerDB

Book

)) 7:findBook()
4: findLibranan()| 5: findBorrower() ¢

1 i
Checkoutltem

9: recordcheckedout()

.

8: findCopy()
Copy |

10: addCheckedOutList()

Figure 4.13 Collaboration Diagram of Check out a Copy of a Book

¥ checkoutCopy
Waiting valicate: Ready =~ CheckoutCopy
4 'y
completeCheckout checkoutCopy

Figure 4.14 State Diagram of Check out a Copy of a Book

'

2) Return a Copy of a Book

return(id1.id2,callNo) - - =
LibrarySvstem 1:create() CheckOut 2:createReturn()
l 3:validUser() l 6:validCopy()
UserDB BookDB 1 _l
Returnltem
4: findLibrarian() 5: findBorrower() | 7:findBook()

.

'

,

LibrarianDB

BorrowerDB

Book

;; recordAvailable()

:

8: findCopy()

(@ |
[S)

I

10: removeFromList()

Figure 4.15 Collaboration Diagram of Return a Copy of a Book

Waiting

validate

Ready

returnCopy

ReturnCopy

completeRetum

returnCopy

Figure 4.16 State Diagram of Return a Copy of a Book

58

3) Add a Copy of a Book

addACopy(id.callNo) . -
Lit Svtam 1:create() AddACo 7b:createCopy()
lZ:va]idUser() 4:validCopy() l‘?a: createANew()
7a.1: addBook()
UserDB BookDRB AddANew || AddAnotherCopy
3: indLibranian()
l l S:findBook()
l 7a.2: addABook()
LibrarianDB | | BorrowerDB Book
6: findCopy()

H

7a.3: addTheCopy()

Copy

7b.1: addAnotherCopy()

Figure 4.17 Collaboration Diagram of Add a Copy of a Book

validate

addCopy

Waiting

Ready

1

AddCopy

completeAdd

addANew
9

\\/
addAnoﬂier-i;opy

AddANew

AddAnother

Figure 4.18 State Diagram of Add a Copy of a Book

59

4) Remove a Copy of a Book

removeACopy(id,callNo)
LibrarySystem | L:ereateQ [RemoveACopv !mﬂ
l 7a.l: removeBook()

UserDB BookDB RemoveOnlyCopy || RemoveAnotherCopy

2:validUser() 4:validCopy () l‘?a: createOnlyCopy()

3: findLibrarian()
| ll 5:findBook()
7a.2: removeABook()

LibrarianDB || BorrowerDB Book

6: findCopy()
¢l 7a.3: removeTheCopy()

Copy

7b.1: removeOneCopy()

Figure 4.19 Collaboration Diagram of Remove a Copy of a Book

validate removeCopy

Waiting Ready RemoveCopy

completeRemove

removeOnlyCopy removeOneColJy
Y

Remove Remove
OnlyCopy OneCopy

Figure 4.20 State Diagram of Remove a Copy of a Book

60

5) Search Books

listBorrowedBooks()

| LibrarySystem [L:create()

2:validUser()

Y

UserDB

3a.1:findLibrarian()

LibrarianDB | | BorrowerDB

ListBorrowed Books

Ab:createByBorrower()

& '1'3b. 1:findBorrower

3a: createByLibrarian()
l <<user=librarian>> <<user=borrowea=>

ByLibraran ByBorrower

3a.2: display()i

l 3b.2:display()

l

Display

Figure 4.21 Collaboration Diagram of Search Books

Waiting vahdate, Ready | lstBomowerBooks ListBorrowerBooks
| l
complete /
¥ " . N
listByLibrarian IistByBorm\l'er
ByLibranan ByBottower
v A
DisplayBooks

Figure 4.22 State Diagram of Search Books

61

6) List Books Borrowed by a Given Borrower

searchBooks()

LibrarvSystem

1:create

SearchBooks | 2b:createBySubject()

J 3:findBook()

BookDB

l 4: findCopy

Book

l 2a: createByAuthor()

ByAuthor BySubject
4a: display() l * 4b:display()
Display

Figure 4.23 Collaboration Diagram of List Books Borrowed by a Given Borrower

?

Wai

searchBooks

ting

= SearchBooks

completeSearchBooks

1

searchByAuthor
IR

ByAuthor

o
P searchBySubject

BySubject

:

:

DisplayBooks

Figure 4.24 State Diagram of List Books Borrowed by a Given Borrower

62

findLastBorrower

7) Find Out Who Last Borrowed a Given Copy

l 2:validUser() l

LibrarySystem

1 :t.:re:ate()'.=

FindLastBorrower

UserDB

4:findBook() l

7:displauBorrower()

3: findLibrarian()

.

BookDB

Display

l S:findCopy()

LibrananDB

BorrowerDB

Book

l 6:findLastBorrower()

Copy

Figure 4.25 Collaboration Diagram of Find Out Who Last Borrowed a Given Copy

Waiting

validate Ready findLastBorrower FindLastBorrower
outputBorrower
complete y
DisplayBorrower

63

Figure 4.26 State Diagram of Find Out Who Last Borrowed a Given Copy

4.2.3.2 Discussion of the Specification in UML

The use cases and use case diagrams illustrate the basic requirements of the
library system, and how the system will be used.

The collaboration diagrams describe the sequence and collaboration between
objects. The state diagrams describe the transition of state or activities of the use case.
These are easy to understand. But in contrast to the specification in Z, they are neither

precise nor concise.

4.2.4 Comparison of Z and UML Approaches

Z and UML are compared based on the criteria identified in Section 4.1.
4.2.4.1 Readability

The specification in Z uses semi-graphical schemas and mathematical symbols,
The textual English style makes it hard for the reader to understand the entire system. In
contrast, the specification in UML uses graphical notations and meta-model diagrams.
The library use case diagram and the sequence diagram scenario for each use case specify
the problem requirements well. The collaboration diagrams and state diagrams describe
the entire system and, the related relationships clearly.
4.2.4.2 Applicability

Both specifications in Z and UML are expressed in a natural and straightforward

manner. This means both Z and UML are applicable to specify the library problem.

64

4.2.4.3 Levels of Abstract / Expressibility

The specification in Z is in a lower abstract level. Entities, states, and operations
are used to specify the library problem. This specification does not specify the external
environment. The specification in Z is quite detailed about the system. So, a lot of textual
English sentences are used to explain the abstraction structuring.

In contrast with the specification in Z, the specification in UML is at a higher
abstract level. Classes are the basic building blocks. Meta-model diagrams represent the
entire system and the relationships. A few English sentences are used to explain the
specification. The external environment is specified using actors.
4.2.4.4 Verifiability

The specification in Z can be verified using first-order predicate logic and set
theory. Does this specification meet the requirements of the library problem? The best
way is to implement it and test it. But we find this specification is far away from
implementation. In contract, the specification in UML is closer to the implementation.
But the specification cannot be proved to be correct.
4.2.4.5 Discipline

The specification in Z forces users to write reasonably well-behaved
specifications. Users have to use mathematical notations and strict first-order predicate
logic to explicitly and implicitly describe the preconditions and the post-conditions.

The specification in UML does not necessarily help users to write modular

specifications. Users just use the notation and the diagram to describe the system.

65

4.2.4.6 Reusability

Z and UML both have mechanisms to reuse parts of the respective model
specifications in formalizing other models. Specifications in Z use the symbol = to
represent the specification operations that do not change the state and use the symbol A
to represent the specification operations that change the state. Specifications in UML use

classes to represent a set of objects and aggregates to indicate the composite of whole and

part relationships.
4.2.6.7 Ambiguity

A set of questions is posted to help evaluate the ambiguity of specifications in Z
and UML. Table 4.1 summarizes how each specification treats the five major ambiguity
areas.

Table 4.1 Ambiguities of Specifications in Z and UML

Specifications Z UML
Library Specified Not specified
User Specified Not specified
Book Specified Specified
Available Specified Not specified
Last Checked out Specified Not specified

The five questions are as follows.
1. What is the difference between the library system and the library database? The
specification in Z clearly distinguishes a library database from the entire library system.

The specification in UML fails.

66

2. What is a user? The specification in Z and UML both declare that there are two kinds
of user: librarians and borrowers. The specification in Z declares.

{ librarian } 1 { borrower } = { }.
The specification in UML does not specify it.
3. What is a book? Both specifications in Z and UML declare a book and a copy of a
book as different entities.
4. What does *‘available” means? The specification in Z clearly distinguished between
“available” and “‘checked out”. The specification in UML fails.
5. What does “last checked out” mean? The specification in Z clearly distinguished
between “last” and “current”, but the specification in UML fails.

From the above comparison, it is clear that Z is more precise than UML.

4.3 Elevator Control Problem Case Study

An introduction to the problem is given in Section 4.3.1. The Z approach and the
UML approach are given in Sections 4.3.2 and 4.3.3, respectively. A comparison of these
specifications based on the criteria given previously (see Section 4.1) is provided in

Section 4.3.4.

4 3.1 Introduction to the Problem

The elevator control problem, like the library problem, is a classic problem of

software specification. It first appeared in Don Knuth’s book in 1968 (as cited in [Schach

97]).

67

The problem attained broader prominence in 1986 when it appeared in The Fourth
International Workshop on Software Specification and Design as one of a set of four
problems [Schach 97].

This problem has been used as a case study in several references [Schach 97].
This problem is used in this thesis as a case study. The problem was specified by Evans
[Evans 94] as follows.

A lift controller system is required to control a single lift in a multi-story building.
Requests for the lift can either be made by customers waiting on different floors
of the building, or by customers traveling in the lift. The task of the controller is
to service these requests by moving the lift to the required floors. The lift must
only service requests in the direction it is currently traveling in. When there are no

longer any pending requests in this direction, it will change direction to service
any requests in the opposite direction.

4.3.2 Z Approach

4.3.2.1 Specification in Z

This specification has been modified from the one given by Evans [Evans 94].
Textual English and Z notations are mixed in order to explain the problem. The
development process follows the previously overviewed process in Section 2.1.5. Global
entities, the states of the system, and the operations of the system are the three main
components.
4.3.2.1.1 Global Entities

This specification makes use of the following given types: [MultiFloors,

FloorNumber, Direction, State, Door, RequestType] as explained below. MultiFloors is a

68

constant which stands for the number of floors of the building. FloorNumber= =1 ...

MultiFloors it is a type representing the possible floors used by the elevator.

Direction : : = up | down
State : : = stopped | moving
Door : : = open | closed

RequestType: . = upRequest | downRequest | passengerRequest

4.3.2.1.2 States of the System

The elevator problem is split into Elevator, Request, ElevatorSystem,

InitializeElevatorSystem states. Each state is specified below.

p-----Elevator

position: FloorNumber
direction: Direction
state: State

door: Door

----- Request E -
type: RequestType
floor: FloorNumber

------ ElevatorSystem -

elevator: Elevator
requests: P Request

----- InitializeElevatorSystem

ElevatorSystem

elevator’ . position = 1 A elevator . direction =
elevator state= stopped

elevator’.door = open

request’ = {}

69

up

and

R

4.3.2.1.3 Operations of the System
There are five operations in this system. They are: MakeRequest,
MoveElevatorUp, OpenDoor, CloseDoor, and MoveElevatorDown. Each Operations is

specified below.

A ElevatorSystem
r?: F; Request

requests’' = requests Y r?

left’ = lift

At any moment in time, a number of requests may be made for the elevator. This
is specified by the operation MakeRequest, which adds the new requests to the set of
requests currently pending in the elevator system. It is assumed that this operation is
deterministically selected by the users of the elevator. This operation illustrates how two
independent components of the concurrent system can communicate with each other via

the shared variable requests.

------------ MoveElevatorUp - -—- -
A ElevatorSystem

elevator.door = closed
elevator.position < MultiFloors
—(3 r: Requests o r.floor = elevator.position)
3 r: Requests e r.floor > elevator.position A
(r.tvype =passengerRequest v r.type = upRequest)
(elevator.direction = up v (elevator.direction = down A —(3 r: Requests
r.floor < elevator.position A (r.type =passengerRequest v
r.type = downRequest))))

elevator ' position = elevator.position + 1
elevator . direction = up

elevator’.state = moving

elevator.door = closed

requests ' = requests

70

The MoveElevatorUp describes this situation: there are pending requests for the
elevator above its current position and the elevator is currently travelling upward, or the
elevator is travelling downward and there are no remaining downward requests, then this
operation will move the elevator up by one floor. This operation will only proceed if

there is no request to be serviced at the current floor and the elevator door is closed.

--------- OpenDoor
A ElevatorSystem
elevator.door = closed

3 7: Requests e r.floor = elevator.position

elevator . position = elevator.position
elevator " direction = elevator.direction
elevator . state = stopped
elevator’.door = open

requests’ = requests

This operation opens the elevator door when there are floor requests to be serviced and

the elevator door is closed.

----------------- CloseDoor - o
A ElevatorSystem

elevator.door = open
elevator.state = stopped
3 r: Requests » r.floor # elevator.position

requests’ = requests \ { r: Requests | r.floor = elevator.position }
elevator’ position = elevator.position

elevator’.direction = elevator.direction

elevator'.state = moving

elevator’.door = closed

71

This operation closes the elevator door if there are requests at other floors that need
service and the elevator door is open. Existing requests that have been serviced by the
elevator are now removed from requests.

MoveElevatorDown describes the following situation: there are pending requests
for the elevator below its current position and the elevator is currently travelling
downward, or the elevator is travelling upward and there are no remaining upward
requests, then this operation will move the elevator down by one floor. This operation
will only proceed if there is no request to be serviced at the current floor and the elevator

door is closed.

------ MoveElevatorDown----------- - emmmmm e
A ElevatorSystem

elevator.door = closed
elevator.position >
—(3 r: Requests o r.floor = elevator.position)
3 r: Requests o r.floor < elevator.position A
(r.type =passengerRequest v r.lype = downRequest)
(elevator.direction = down v (elevator.direction = up A —(3 r: Requests o
r.floor > elevator.position ~ (r.type =passengerRequest v/
r.type = upRequest))))

elevator '.position = elevator.position - |
elevator .direction = down

elevator '.state = moving

elevator ".door = closed

requests ' = requests

4.3.2.2 Discussion of the Specification in Z
The elevator control system is a concurrent real time embedded system. A

concurrent model is needed to specify this system. The specification in Z starts in a state

that satisfies the initial conditions of the system. At each step in the execution of the
system, an operation is selected and executed non-deterministically according to the
following rule: any operation that is continuously enabled will eventually occur. In this
model, two or more operations can be thought of as being concurrent if they are enabled
at the same time. This model is specified by the operation MakeRequests which adds the
new requests to the set of requests currently pending in the elevator system. At any
moment in time, a number of requests may be made for the elevator.

The specification in Z is precise and concise. The drawback is that it is relatively

hard to understand.

4.3.3 UML Approach

4.3.3.1 Specification in UML

In this section, textual English and UML notations are used to specify and analyze
the elevator concurrent control problem. Identifying use cases and behaviors of the
system follow the previously overviewed process in Section 2.2.5.

In the requirement of the elevator system, the actor is the passenger. There are
two cases to activate this system: either on the floor or in the elevator. Both can happen at
the same time. The constraint is that the elevator will service all requests in the same
direction. It only changes direction if all requests in the current direction have been

serviced completely.

73

4.3.3.1.1 Identifying Use Cases

Figure 4.27 is the main use case diagram of the elevator control problem. A
passenger refers to any person who uses the elevator either on the floor or in the elevator
to take a ride. A potential passenger refers to any person who makes a floor request when

the elevator is servicing.

Elevator
i\ (Take a nde ;
Passenger % CE g
N
A <<use=>>
Make a destination request
Q \\“
. |
o e
ol [N

Passenger

Figure 4.27 Main Use Case Diagram of the Elevator Problem
The following is the documentation of the above three use cases: Make a
destination request, Make a floor request, and Take a ride in the elevator system.
1) Make a Floor Request
This use case starts when a passenger pushes the floor button. The elevator

controller accepts the request. The elevator controller moves the elevator to the current

74

floor if the elevator is not on this floor. The elevator controller opens the door. The
passenger enters the elevator. The elevator door closes. This use case ends.

Alternative Courses: the elevator is idle on the current floor now, the elevator is
idle on another floor now, the elevator is servicing the same direction and will pass
through this floor, the elevator is servicing the same direction and will not pass through
this floor, or the elevator is servicing the other direction.

The sequence diagram scenario of this use case is represented in Figure 4.28.

K.

Passenger ElevatorSystem
) [|
I |

1: pushFloorButton()
2: openDoor()

3: closeDoor()

4

Figure 4.28 Sequence Diagram Scenario of Make a Floor Request

75

2) Make a Destination Request

This use case starts when a passenger pushes the destination button in the
elevator. The elevator controller accepts the request then it moves the elevator to the
destination floor and opens the door. The passenger goes out of the elevator. The
controller closes the door. This use case ends.

Alternative Courses: the elevator is servicing the other direction, this request will
be pending until all requests in the current direction have been serviced.

The sequence diagram scenario of this use case is represented in Figure 4.29.
3) Take a Ride

This use case starts when a passenger makes a floor request and then makes a
destination request. This use case ends.

Alternative Courses: a passenger just Make a Floor Request, the elevator just
services the floor request.

The sequence diagram scenario of this use case is represented in Figure 4.30

76

i Passenger ElevatorSystem

I I
[|

1:pushDestinationButton(No.)

2: moveElevator(number)

3: openDoor()

A: closeDoor()

Figure 4.29 Sequence Diagram Scenario of Make a Destination Request

Passenger ElevatorSystem

I I
| |

1: makeFloorRequest()

2: makeDestinationRequest(]

Figure 4.30 Sequence Diagram Scenario of Take a Ride

17

4.3.3.1.2 Identifying Behaviors of the System

In this section, a collaboration diagram and a state diagram for each use case are
drawn to show the behavior of the system. It follows the same conventions as in Section
4.2.3.1.2.

Make a Floor Request

makeFloorRequest

1:updateRequest() FlevatorCaniteles 3b:openDoor()

3a.1:openDoor()
3a: move() l 4:closeDoor() l
Elevator Door

Figure 4.31 Collaboration Diagram of Make a Floor Request

floorRequest

service Tum

A h 4

= s g Pending
Idle finishService Servicing Request
L b
service pendingRequest

Figure 4.32 State Diagram of Make a Floor Request

78

Make a Destination Request

makeDestinationRequest

| DestinationButton i—fmﬂﬁ;%lmo ElevatorControler |32:0PenDoor()

3a.1:openDoor()

3a: move()
4:closeDoor() l

Elevator Door

Figure 4.33 Collaboration Diagram of Make a Destination Request

destinationRequest

serviceTurn
Y 4
- 2 35 -
Idle finishService | Servicing Fendig
Request
b A
service pendingRequest

Figure 4.34 State Diagram of Make a Destination Request

79

Take a Ride

3b:openDoor()
AR s 7b:openDoor()
ceARide l:updateRequest -
FloorButton —— ElevatorControler
:z_ﬂjmnmate() 3a.1:0penDpor()
7a.1:0penDpor()
Si?dateRequestO 3a: move() 4:closeDoot()
- H Ta:move() 8:closeDoor()l l
g:gummate()
DestinationButton Elevator Door

Figure 4.35 Collaboration Diagram of Take a Ride

Figure 4.36 State Diagram of Take a Ride

&0

4.3.3.2 Discussion of the Specification in UML
There are notations, and mechanisms, collaboration diagrams, and state diagrams
to describe concurrency in UML. The specification in UML more clearly describes

concurrency than the previous specification in Z did.

4.3.4 Comparison of Z and UML Approaches

In this section, the comparison follows the same convention as before (see Section
3.2), i.e., the rclated facts in the specifications in Z and UML are compared and listed.
There is no simple quantitative result to show. Discipline and ambiguity criteria are not
compared because there is no additional information provided.
4.3.4.1 Readability

The specification in Z uses schemas as a concurrent model to describe the
concurrent elevator control system. It is not very clear and easy to follow or understand.
Readers need to carefully analyze the specification. In contrast, the specification in UML
is clear using stercotype concurrent syntax and state diagrams.
4.3.4.2 Applicability

The specification in Z does not describe the elevator system in a natural and
straightforward manner. Abstract entities and schemas are used to describe the elevator
system.

The specification in UML describes the elevator system in a natural and

straightforward manner from the user’s point of view. Classes are real world objects.

81

Concurrent events are described using state diagrams. The state diagrams like flowcharts
are easy to understand. UML is more applicable to the elevator system than Z.
4.3.4.3 Levels of Abstraction / Expressibility

The specification in Z is typically abstract and it is therefore relatively harder to
understand. Entities and schemas are not closely and expressively described. The users of
the system are not described. The specification in UML closely and expressively
describes the system. It is more natural and easier to understand. The external system is
also described.
4.3.4.4 Verifiability

The specification in Z can be proved to be correct using preconditions and post-
conditions, but the specification in UML cannot be proved to be correct.
4.3.4.5 Redundancy

The specification in Z is precise without redundancy. In contrast, the specification
in UML represents a piece of knowledge more than once from different views.
4.3.4.6 Reusability

Both specifications in Z and UML reuse parts of the respective models to

represent other models as the previous case study involving a library system.

82

CHAPTER V
SUMMARY AND FUTURE WORK
5.1 Summary

In this thesis, the formal specification language Z and the informal object-oriented
specification language UML were compared based on a set of criteria from language
aspects. Then two classic case studies (the library database system and the elevator
concurrent control system) were specified in Z and UML, and were compared based on
another set of criteria from application aspects. The results of comparison have been
listed in each part of the thesis report. There is no clear “winner” between Z and UML, in
the sense that neither Z nor UML dominates in all criteria.

This thesis revealed that UML provides a good approach to modeling the main
concepts of the considered cases aﬁd the relationships among them using UML use cases.
However, it seems that UML is not suitable to the specification phase when we want to
precisely address the problem. In contrast, Z seems to be more suitable to the
specification phase than the design phase.

Z and UML appear to be complementary. A recommended approach to specifying

a problem would be choosing the language after a careful analysis of the problem to be

&3

solved, or combining Z and UML in different phases and aspects based on the differences

between Z and UML.

5.2 Future Work

Formal methods and object-oriented methods appear to be the main streams of
software development. Z and UML are two of the successful methods. Developing and
combining Z and UML seem to be the preferred trends. Quantitative criteria and more
complex case studies are needed to compare Z and UML in all aspects thoroughly.

This thesis showed that Z and UML appear to be complementary. Combing Z and
UML in different phases and aspects for particular projects is a recommended approach.

Methods and rules for combing and or integrating Z and UML are needed.

84

REFERENCES

[Ardis et al. 96] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G.
Staskauskas, and J. V. Olnhausen, “A Framework for Evaluating Specification
Methods for Reactive Systems - Experience Report”, IEEE Transactions on
Software Engineering, Vol. 22, No. 6, pp. 378-389, June 1996.

[Bicarregui and Ritchie 95] J. Bicarregui and B. Ritchie, “Invariants, Frames and
Postconditions: A Comparison of the VDM and B Notations”, /[EEE Transactions
on Software Engineering, Vol. 21, No. 2, pp. 79-89, February 1995.

[Booch et al. 99] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley Longman, Inc., Reading, MA, 1999,

[Bourdeau and Cheng 95] R. H. Bourdeau and B. H. C. Cheng, “A Formal Semantics for
Object Model Diagrams”, IEEE Transactions on Software Engineering, Vol. 21,
No. 10, pp. 799-821, October 1995.

[Bowen 96] J. Bowen, Formal Specification & Documentation Using Z, International
Thomson Computer Press, Boston, MA, 1996.

[Cooke et al. 96] D. Cooke, A. Gates, E. Demirdrs, O. Demirors, M. M. Tanik, and B.
Kramer, “Languages for the Specification of Software”, The Journal of Systems
and Software, Vol. 32, No. 1, pp. 269-308, January 1996.

[Cooke and Daniel 94] S. Cooke and J. Daniel, “Let’s Get Formal”, Journal of Object-
Oriented Programming, Vol. 7, No. 4, pp. 22 — 24, July—August 1994.

[Diller 90] A. Diller, Z: An Introduction to Formal Methods, John Wiley & Sons, Wesl
Sussex, England, 1990.

[Evans 94] A. Evans, “Specifying and Verifying Concurrent Systems Using Z7,
Proceedings of the Second International Symposium of Formal Methods, Europe,
pp. 366-388, Barcelona, Spain, October 1994.

[France et al. 97] R. B. France, J. M. Bruel, and M. M. Larrondo-Petrie, “An Integrated

Object-Oriented and Formal Modeling Environment”, Journal of Object-Oriented
Programming, Vol. 10, No. 7, pp. 16-23, November-December 1997.

&5

[France et al. 98] R. France, A. Evans, K. Lano, and B. Rumpe, “The UML as a Formal
Modeling Notation”, Computer Standards & Interfaces, Vol. 18, No. 5, pp. 325-
334, March 1998.

[Harmelen et al. 96] F. van Harmelen, M. Aben, F. Ruiz, J. van de Plassehe, “Evaluating
a Formal KBS Specification Language”, JEEE Expert (see also IEEE Intelligent
Systems), Vol. 11, No. 1, pp. 56-61, February 1996.

(Hayes 87] 1. Hayes, Specification Case Studies, Prentice-Hall International, Inc., Upper
Saddle River, NJ, 1987.

[Henderson-Sellers and Edwards 94] B. Henderson-Sellers and J. M. Edwards, Object-
Oriented Knowledge: The Working Object. Prentice Hall, Sydney, Australia,
1994.

[Henderson-Sellers and Firesmith 99] B. Henderson-Sellers and D. G. Firesmith,
“Comparing OPEN and UML: The Two Third-Generation OO Development
Approaches”, Information and Software Technology, Vol. 41, No. 3, pp. 139-156,
February 1999.

[Kim and Carrington 99] S. K. Kim and D. Carrington, “Visualization of Formal
Specifications”, Proceedings of the Sixth Asia Pacific Software Engineering
Conference, pp. 102-109, Takamatsu, Japan, December 1999.

[King and Sorensen 89] S. King and 1. H. Sorensen, “From Specification, Through
Design to Code: A Case Study in Refinement”, In Formal Methods: Theory and
Practice, edited by P. N. Scharbach, CRC Press, Inc., Boca Raton, FL 1989,

[Lano 90] K. C. Lano, “Z++, An Object-Oriented Extension to Z”, Proceedings of the
Fifth Annual Z User Meeting, pp. 34-46, Oxford, England, December 1990.

[Neil et al. 98] M. Neil, G. Ostrolenk, M. Tobin, and M. Southworth, “Lessons from
Using Z to Specify a Software Tool”, IEEE Transactions on Software
Engineering, Vol. 24, No. 1, pp. 15-23, January 1998.

[Schach 97] S. R. Schach, Software Engineering with JAVA, Time Mirror Higher
Education Group, Chicago, IL, 1997.

[Shroff and France 97] M. Shroff and R. B. France, “Towards a Formalization of UML
Class in Z”, Proceedings of the Twenty—first Annual International Computer
Software and Applications Conference (COMPSAC’97), pp. 646-651,
Washington D. C., August 1997.

[Spivey 89] J. M. Spivey, The Z Notation: A Reference Manual, Prentice Hall,
Englewood Cliffs, NJ, 1989.

86

[Wing 88] J. M. Wing, “A Study of 12 Specifications of the Library Problem”, IEEE
Software, Vol. 5, No. 4, pp. 66-76, July 1988.

[Yourdon and Argila 96] E. Yourdon and C. Argila, Case Studies in Object-Oriented
Analysis and Design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

87

APPENDIX A: GLOSSARY

B --- A generic term given to a method of software development, the B-Method, its
process and notation and its supporting toolset, the B-Toolkit.

Bag --- Bags sometime are known as families or multi-sets. A bag of things is similar to a
set where the order of the elements is not significant; but, unlike a set, the number
of occurrences of each object in the bag is significant.

CASE --- Computer-Aided Software Engineering

ESTEREL --- ESTEREL is both a programming language, dedicated to programming
reactive systems, and a compiler which translates ESTEREL programs into finite-
state machines. It is one of a family of synchronous languages. (hitp:/www-
sop.inria.fr/meije/esterel/esterel-eng.html, July 29, 2000).

FOOM --- Formal Object-Oriented Modeling
KBS --- Knowledge-Based System

Larch --- A multi-site project methods, languages, and tools for the practical use of
formal specifications (http://wind.lcs.mit.edu/spd/larch).

LOTOS --- Language Of Temporal Ordering Specifications, an international formal
specification technique for specifying concurrent and distributed systems.

ModeChart --- ModeChart is a synchronous language designed for the specification of
real-time systems.

MOSES --- Methodology for Object-Oriented Software Engineering of Systems, a
complete life cycle method that has evolved from and refined the work reported in
Henderson-Sellers and Edwards [Henderson-Sellers and Edwards 94].

OMG --- Object Management Group, responsible for the development of object-oriented
languages and their standardization

OMT --- Object Modeling Technique

0O --- Object-Oriented
OOM --- Object-Oriented Method

88

OOSE --- Object-Oriented Software Engineering
OPEN --- OO Process, Environment, and Notation, an informal specification method.

SDL --- Specification and Description Language, a modemn, high-level programming
language. It is object-oriented, formal, and graphical. SDL is intended for the
description of complex, event-driven, and real-time communicating systems.

Software Life Cycle --- Software development generally includes eight phases:
requirement establishing, specification analysis, planning, design,
implementation, integration and system testing, maintenance, and retirement.
These phases are collectively called the software life cycle.

Specification Language --- A necessary prerequisite for efficient and effective
communication among users, requirements engineers, and
designers/implementers. It also provides frames within which problems can be
defined and solved.

UML --- Unified Modeling Language, an informal specification language that was
initially created by the merger of ideas mainly from three approaches: Booch,
Jacobson’s OOSE (Object-Oriented Software Engineering). and Rumbaugh’s
OMT (Object Modeling Technique).

VDM --- Vienna Development Method, a formal specification language. VDM originated
in the research on formal semantics of programming languages at IBM's Vienna
Laboratory in the 1960s and 70s, including the VDL and Meta-IV notations.
VDM is their modern descendent, now used well beyond the bounds of language
semantics in industrial system development as well as academic research. A
number of other specification languages extend or were inspired by VDM
including VDM-SL, RSL, VVSL and VDM++ (http://www.cs.tcd.ie/FME/FAQ
/vdm/part2.html, June 5, 2000).

VFSM --- Virtual Finite State Machine Methodology, a formal specification method.

Z --- A formal specification language that is properly pronounced “zed”. The name Z was
given by its inventor Jean-Raymond Abrial in honor of the great set theorist Emst
Friedrich Ferdinand Zermelo. It was developed at the Oxford University
Computing Laboratory in 1970’s [Schach 97].

89

APPENDIX B: Z NOTATION

This appendix summarizes the standard Z notation as defined by Spivey [Spivey
89]. They appear in the order of set theoretic symbols, logical connectives, schemas,
predicates, relations, functions, and sequences.

Set Theoretic Symbols

empty set

set braces
cardinality

set definition, predicate definition
set membership
non-membership
set union

set intersection
power set

finite set

set difference
proper subset
subset

_,
5
=i

—~— T m -
.
—~

NN ™MN)cmn

Logical Connectives

and

or

not

equality
inequality
implies
equivalence
such that

-guﬂﬂj<>

w1
O
a
3
7

changeable
unchangeable
schema disjunction
schema conjunction

> < Il

90

Predicates

3
3!
v

Relations

>
dom
ran
R
<

-

>

b

»

Functions

—>

£

o
@

Sequences

< .5
front
head
last
rev
seq
tail

schema definition

existential quantification
unique quantification
universal quantification

relation

domain

range

reverse relation
domain restriction
domain anti-restriction
range restriction

range anti-restriction
relation composition

total function
partial surjection

maplets
function overriding

sequence
front

head

last
reverse
definition
tail

91

APPENDIX C: UML NOTATION

This appendix summarizes the elements of UML notation: things, relationships,
extensibility, and diagrams.
Things: Things include structural things, behavioral things, grouping things, and
annotational things.

Structural things include classes, interfaces, collaborations, use cases, active

classes, components, and nodes.

Class Name

Attributes

Methods

Responsibilities

O i |l

use case actor multi-object
e [PR = |
collaboration component Node
[1
Note package

92

Behavioral things include interaction diagrams and state diagrams.

Interaction Diagram:

Objectl :Class|1 Object2: Class?2
="
message Jl | lifeline
sequence label :message callbagkloop
(handleexception)
=) I J (return)
I |
l focus of controll |
i 1
State Diagram:
initial state
state | i
r s
1
. = b I i - -
v St join

nested state | == fork

final state "

93

Grouping things include packages. Annotational things include notes. Both are
provided in above figures.

Relationships: Relationships include dependency, association, and generation.

Dependency:
Name of Dependency
Source -——--—--—mmm e -» Target
Association:
Name of Association
0...1
end > end
interface specifier role name

Generalization:

discriminator
child [> parent

Extensibility: Extensibility includes stereotypes and tagged values and constraints.

Stereotypes: <<..,>>
Tagged values and constraints: | ... }
Diagrams: Diagrams include class diagrams, object diagrams, use case diagrams,

sequence diagrams, collaboration diagrams, statechart diagrams, and activity diagrams.

94

APPENDIX D: Z TOOL SUPPORT

This appendix summaries some of the support tools available for Z. The detailed

descriptions of these tools can be found at: http://www.comlab.ox.ac.uk/archive /z.html.

Mike Spivey's original style file for writing Z documents using the LaTeX document
preparation system (see also the MiKTeX system for Windows users) which is
available as zed.sty together with a guide in LaTeX source or compressed PostScript
format.

FuZZ is a Z type-checker which is available commercially, together with an
associated fuzz.sty LaTeX style file which has better fonts for the more esoteric Z
symbols. The type-checker runs on Sun workstation, PC, and VAX/VMS equipment.
It is compatible with zed.sty and the ZTC type-checker LaTeX-Zed input format. It
requires the latexsyms.sty style file.

Object-Z LaTeX Macros for LaTeX 2.09 (oz.sty) and 2e (oz2e.sty) including
documentation. zed-cm.sty have been further developed to work with LaTeX2e,
together with some documentation files.

Alcoa: Alloy Constraint Analyzer based on a Z-like language for object models.
CADIZ provides support for Z using troff and LaTeX on Unix systems and Microsoft
Word on PCs from York Software Engineering Ltd.

Cogito is a methodology and tool set for formal development of software. It uses the

Sum specification and development language based on Z notation.

95

HOL mechanical theorem proving system is based on Higher-Order Logic and
provides some support for Z.

HIPPO Z type-checker uses ML in compressed Unix tar format. HOL-Z tool is a
shallow embedding of Z in the higher-order logic theorem prover.

JAPE (Just Another Proof Editor) by Bernard Sufrin and Richard Bornat supports
typed set theory (Z).

Mathias Mathematics in Animation Suite includes advice on animating Z and
references to papers on Suzan (the Surrey Z Animation project).

Moby/OZ is a graphical editor to build Z and Object-Z specifications.

Nitpick is a freely available tool for fully automatically analyzing software
specifications in a subset of Z.

OOZE is an object-oriented Z environment.

PiZA is a Prolog Z animator.

Possum is an interpreter/animator of Z.

PRECC Z with the PRECC compiler tool is available under Unix and MS-DOS.
ProofPower is an industrial strength Z theorem prover based on higher order logic,
which is available from ICL.

RoZeLink is the Rose Formaliser Link, from Headway Software. It combines the
Unified Modeling Language (UML) and Z notations for formal modeling.
TrueType Z fonts are available under MS Windows (in pkzip format). Zed font is for
Windows and Macintosh developed by Richard Jones.

Wizard is a type-checker for Object-Z specifications in LaTeX.

96

ZETA is an open environment based on Z, and provides an integration framework for
tools to edit, browse, analyze, and animate Z specifications. Tools currently
integrated into ZETA are the type checker ESZ, the Z compiler ZAP, and adaptors for
third-party tools such as the prover Isabelle/HOL-Z and the model-checker SMV.
ZAST (Z Abstract Syntax Tree Viewer) is based on a PreCC Z grammar, and runs
under Microsoft Windows 95 and Window NT.

Z Browser is available under Windows on PCs.

Zeus WYSIWYG toolset is based on Framemaker and Z/EVES.

Zola is a commercial WYSIWYG editor, type-checker, and tactical prover for Z from
IST, UK.

ZTC is a Z type-checker. It is available free of charge for educational and non-profit
uses. [t is intended to be ZRM2 compliant. It accepts LaTeX with zed or oz styles and
ZSL - an ASCII version of Z. ZANS is a Z animator. It is a research prototype that is
still very crude. Both ZTC and ZANS run on Linux, SunOS 4.x, Solaris 2.x,
Windows 95 and NT 4.0. They are available on-line in the directories of ZANS and

LI,

97

APPENDIX E: UML TOOL SUPPORT

This appendix summaries some of the support tools available for UML.
Microsoft VisioR 2000 is a visual language for business. It enables users to
communicate effectively with easy-to-assemble drawings and diagrams to create
organizational charts and flowcharts, to draw technical schematics and annotate CAD
drawings, and to build Web site maps. It can also be used to draw UML.
(http://www.microsoft.com/office/visio/)
MagicDraw is a visual UML modeling and CASE tool designed for the business
analyst, software analyst, programmer, QA engineer, documentation writer, or
corporate executive. This tool allows the developer to draw, design, and view UML
diagrams of object oriented systems. The development tool is oriented towards one
user desktop development, and it integrates with Rational Rose 98 easily. MagicDraw
runs on a wide variety of operating systems such as Windows 98/NT, Solaris, OS/2,
Linux, HP-UX, and AL (http://www.nomagic.com/magicdrawuml/)
Visual Thought enables users to create technical and documentation graphics,
network diagrams, flowcharts, software design diagrams (UML, Booch, OMT,
Objectory, etc.), circuit & logic diagrams, and business and presentation graphics.
(http://www.confluent.com/)
The ArgoUML is an object oriented design tool for designers when they are making

design decisions. This tool follows UML standards. (http://argouml.tigris.org/)

98

GDPro is a complete UML visual modeling solution for accelerating software design
and collaborative development. It allows application developers to create and
communicate across the enterprise using simple, comprehensive visual blueprints of
Java, C++, and IDL. (http://www.advancedsw.com/)

[-Logix is a provider of design automation solutions for developers of real-time
embedded systems. [-Logix' products allow engineers to graphically model the
behavior and functionality of complex embedded systems, analyze and validate
system behavior through simulation and animation, and facilitate design level
debugging. (http://www.ilogix.com/fs_home.htm)

The Objecteering CASE tool concentrates on the real force within business. It is the
only European player to contribute to the evolution of UML.
(http://www softeam. fr/us/index.htm)

ObjeXion UML Prototyping Suite for Rational Rose™ is for prototyping UML
models, and it is tightly integrated with Rational Rose. (http://www.objexion.com/)
PLATINUM Paradigm Plus is a UML-based component modeling tool that enables
organizations to design and visualize complex applications. Paradigm Plus also
provides round-trip engineering support without data loss or code markers for the
most popular component software development tools including Java, Microsolt
Visual Studio 08, PLATINUM Alon, Forte, and PowerBuilder.
(http://www.cai.com/products/platinum/appdev/pplus_ps.htm)

Rational Rose is a leading visual modeling tool in the UML field. The three major
contributors constituted the Rational Rose to develop and standardize UML.

(http://www.rational.com/products/rose/index.jsp)

99

Princeton Softech's Select Enterprise® is an advanced tool set for modeling,
designing, and building enterprise applications. (http://www.princetonsoftech.com/)
Software through Pictures® for the Unified Modeling Language (StP/UML) is the
implementation of UML 1.1. StP/UML 1s a graphical, object-oriented modeling
environment to analyze and design critical systems and business applications.
(http://www.aonix.com/Products/SMS/StP_ UML.html)

Telelogic Tau UML Suite is a multi-user solution for object-oriented application
development, supporting UML 1.3. Its team modeling features enable the
management of object-oriented modeling components as corporate assets that drive
the analysis, design, and construction of large-scale applications.

(http://www_telelogic.com/solution/tools/Uml.asp)

100

VITA

Bingdong Li
Candidate of the Degree of

Master of Science

Thesis: A COMPARISON OF Z AND UML: TWO CASE STUDIES

Major Field: Computer Science

Biographical:

Personal Data: Bomn in Henan, P. R. China, on December 17, 1965, son of Mr.
Zhixiang Li and Ms. Lanying Niu.

Education: Received Bachelor of Science in Biology from Beijing Agricultural
University, Beijing, P. R. China in July 1989; received Master of Science in
Biology from the Graduate School of Chinese Academy of Agricultural
Science, Beijing, P. R. China in July 1996; completed the requirements for
the Master of Science Degree in Computer Science at the Computer Science
Department at Oklahoma State University in December 2000.

Experience: Employed by Beijing Agricultural Bureau, August 1996 to April 1998,
by Oklahoma State University, Plant and Soil Science Department,
September 1998 to July 1999.

