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PREFACE

This study was conducted to ascertain the possibility of applying n ural networks

to environmental engineering problems. Eutrophication of Lake TenkilLer (Oklahoma)

due to inflow of phosphorus from various point and non-point sources was selected for

this case study. The phosphorus sources are distributed across Oklahoma and Arkansas

and are transported to the Lake by the Illinois River. This study attempts to determine the

contribution of point and non-point sources to the eutrophication of the Lake and

reductions in nutrient inflow required for remediation of the Lake. Further, results

obtained are compared with results from similar studies carried out using different

methodologies.

I sincerely thank my advisor Dr. William F. McTernan and my committee

members, Drs. William W. Clarkson and Greg Wilber - for guidance and support in

completion of this research. I also thank the Environmental Institute, Oklahoma tate

University for providing me with the necessary data to research. Finally, I thank my

parents for making possible higher education at Oklahoma State University.

iii



Table of Contents

Chapter Page

1. Introduction
1.0 Background 1
1.1 Model Selection 3
1.2 Specific Objectives 4

2. Eutrophication
2.0 Introduction 5
2.1 Important Factors in Eutrophication 6
2.2 Nutrients of Concern 7

2.2.1 Phosphorus 7
2.2.2 Nitrogen 8

2.3 Nutrient Availability at Tenkiller 8
2.4 Eutrophication in Reservoirs 14

3. Previous Studies and Background Data 18

4. Neural Network
PART - I
4.0 Introduction 29
4.1 Artificial Neural Network 29
4.2 Artificial Neural Network Structure 32

4.2.1 Neural Network Model 35
4.3 Backpropagation Network 37
4.4 Neural Network Operation 37
4.5 Learning 40
4.6 Genetic Algorithm 46
4.7 Neural Network and GA Nomenclature 47
PART-II
4.8 Neural Network Applications in Environmental

Engineering 54
4.8.1 Case Studies 54

5. Materials and Methods
5.0 Introduction 62
5.1 Model Development 78

iv



Chapter
6. Results and Discussions

7. Summary and Conclusions

Bibliography

Appendix - I

v

Page
87

136

138

142



List afTable

Table

2-1. Land se tor the Illinois River Basin Ba eel 011 1985 Data

2-2. Nutrient Export Coefficients

2-3. List of Permitted Industrial and Municipal Sewage Treatment
Plants along Illinois River Relevant to this Study

2-4. Lake TenkilIer Morphometry

3-1. SW11mary of Point ouree Data at Lak Tenkiller Ferry

3-2. Mean, Maximum alld Minimum of Sampled Parameters

3-3. Estimates of Phosphorus Di charge from Point Sources
for the Period 1991 to 1993

4-1. Computed Aquifer Parameter Values frolTl Different Method.

5-1. Available Data

5-2. Training Data Set for etwork Model - I

5-3. Training Data Set for etwork Model - II

5-4. Training Data Set for Secchi Di k Simulations

5-5. Point Source Contribution at Tahlequah

VI

Page

10

12

13

17

20

26

28

57

63

67

68

71

76



Table Pa e
6-1 . Altern ti ti r Building

genet ic uperl i or)

6-2. Performance ofa 3-layer etwork v ith arying Laming
Rate and Momentum Inputs

6-3. Alternative for Building N twork Model- II (\1'ilh

genetic supervisor)

6-4. Performance of Various Simulations for Dcveloping
twork Model - I

6-5. Network Parameter for Model - I and Model - II

6-6. Chlorophyll a Predictions in the Lak with etwork
Model - 1\

96

98

102

108

1I 1

6-7. Chlorophyll (.{ Predictions at Tahlequah Using etwork Mod I - II
without Point Source Pbosphorus Contribution 113

6-8. Chlorophyll a Predictions at Tahlequah Using eLwork Mod I - II
with 50% Reduced on-Point Source Contribution 115

6-9. Chlorophyll a Predictions at Tahlequah Using etwork Model - I!
with 75% Reduced Non-Point Source Contribution \ 18

6-10. Chloroph 11 a Predictions at Tahlcquah LJsing I etwork Moclel - II
with 80% Reduced Non-Point Source Contribution 119

6-11. Chlorophyll a Predictions at Tahlcquah llsing etwork Model - II
with 85% Reduced on-Point Source Contribution 120

6-12. Secchi dlsk in the Lake Using ctwork Model -Ill 125

6-13. Secchi disk at Tahlequah Using ctwork ;Joc.lcl - rn after
Total Point Source P-reduction from [npuLsl26

6-14. Secchi disk at Tahlequah sing etwork Mod I-III with
50% on-Point Source Reduction in Phosphoru 127

6-15. Secchi disk at Tahlequah Using etwork ;Jadel - fIl with
75% Non-Point Source Reduction in Phospho!"u . 128

6-16. Secchi disk at Tahlequah Using etwork ;Jodel - III with
80% on- Point Source Reduction in Phosphoi'lL 129

VII



-

VIII

Pag



Figure

2-1. Lak T l1killer

List of Fiou rc

Page

1~

3-1. Concentration Probability for Total itrogen and
Total Phosphoru at Tahlequah klah ma \l at r Qualit Gaug 19

3-2. Illinois River Sch matic

3-3. Phosphoru Channel Losses Probability Plot

3-4. MaJlagement Alternatives

4-1. Schematic Drawing of Biological euron

4-2. Multiple-Input euron

4-3. Multi-Layer e d Forward Model

4-4. Backpr pagation etwork

4-5. Sch matic of twork Operation

4-6. Feed Forward eural et

4-7. Differentiable Tran fer Function: ,,,'iRmoid FlInction

4-8. on-Differentiable Transfer Function: Step Function

IX

21

23

24

3

6

38

39

42

48

49



Figure
5-1. Flo

Pa
64

5-2. Probabilit Plot for Phosphoru
P ri d 1991 to 199 at Tahlequah

nc ntrati n ~ r th

~ -3. Probabilit Plot for Monthly Peak Flo Data r r th
Period 1977 to 1985 at Tahl quah 7

5-4. A General Methodology for the D
Neural etwork y terns

I'

elopment of

..
'I

79

6-1. RM rror Plot of Various AJternati

6-2. RM rror Plot of Various Alternativ
Supervisor for etwork Model - 11

jmulated w~th n lic

89

99

-

6-"'. RM Error Plots of Simulation lor etwork ode! - I

6-4. RM Error Plot for etwork Model - TTl

6-5. ChI. ({ Valu with Varying Pho phoru R duction (PI t 1

6-6. Managem llt Alternatives v ith ChI. a Predictions (Pi I

6-7. ChI. a Valli. with Varying Pho. phoru R III tion (pI t_)

6-8. Management Itrnatives with 'hI. a PI' diet; n (pi 2

6-9. Secchi Values with Varying Pho. phoru R dLlction

6-10. Manag m nt Alternatives with S cchi Disk PI' dieti ns

x

104

110

114

117

122

12

132

.13



Chapter 1. Introduction • I

-

1.0 Background

"The escalating costs of environmental cleanup together with conflicting concerns

of various stake holders motivate the search for improved management m t1;lodologi to

reduce costs" (Rogers et al., 1995). Realization that the pristine state at contaminated sites

cannot be restored within feasible economic limits prompted the need for an optimization

of resources utilized in environmental cleanups (Hellman and Hawkins, 1988, Wang

1995). Management approaches are required tQ clean a contaminated site to a level

acceptable depending on its end use. This level should preclude the possibility of any

harmful effects to human populations or to impacted ecosystems. Formulating such

decision making approaches is not simple and must take into account existing

environmental policies, resource constraints and effective allocation of limited re ources,

defining ultimate goals and convincing the public about the efficacy and safety of th

management strategies (Wang, 1995). Stochastic and dete.rministic models are used to aid

in the decision-making process (Gorelick, 1993). A main challenge acing any such

modeling technique is its ability to handle uncertainty relating to inputs and uncertainty

inherent to the particular modeling technique (Freeze et aI., 1990).

This study evaluated the effect of phosphorous (biostimulant) loading in the

Illinois River basin of Arkansas and Oklahoma. This river system leads to Lake Tenkiller,

which has experienced eutrophication. Eutrophication is a natural process of decay of a

water body and is enhanced in the presence of certain macro and trace nutrients

(Schindler, 1977). Excessive algal growth because of high nutrient content in the water



-

body leads to overall deterioration in the water quality. Several nutrients have b n

generally identified as contributors to algal growth. Phosphoru is con id red to b one of

the primary nutrients in the process of eutrophication, and Lake Tenkiller :is con id r d to

be phosphorus limited, as was determined by studies performed arlier (Harton 1989

Haraughty, 1995 and OWRB et al., 1996). Phosphorus is contributed from point a well

as non-point sources of pollution. Point souroes of phosphorus loading include

wastewater treatment plant discharges while non-point sources include surface water

runoffhigh in nutrients from poultry and cattle Htter (OWRB et al., 1996). "A 1989 Soil

Conservation Service inventory estimated there were approximately 230 million poultry

and 300,000 cattle and swine residing in the basin during an average year. These animals

produced an estimated 8.8 billion pounds of manure per year", (OWRB et al., 1996). This

manure is used as fertilizer on forage lands, and a significant fraction is transported to

surface water bodies during runoff events (OWRB et aI., 1996).

The OWRB study also evaluated some general management alternative to s em

the accelerated eutrophication of Lake Tenkiller. Several options of phosphorus load

reductions to the Illinois River system were evaluated. The approach for control of

phosphorus loading to the river was divided into two parts: 1) control from point source

contribution, and 2) control from non-point source contributions. The effectiveness of

each management alternative was judged by simulated chlorophyll a and secchi disk

values obtained after reduction in phosphorus loading to the lake. Chlorophyll a and

secchi disk readings are considered to be indicators ofthe planktonic growth responsible

for accelerated eutrophication (Haraughty, 1995).

2



1.1 Model Selection (I

-

To analyze the effects of phosphorus reduction on utrophicatio pm:am t :r

(measured by chlorophyll a and secchi disk) it was nec ssary to establish relationships

between phosphorus and chlorophyll a concentrations, and phosphoru conc ntrations

and secchi disk values. As eutrophication is a gradual process with a significant time st p,

deterministic steady state artificial neural network models were applied for pr dictions of

phosphorus, chlorophyll a and secchi disk values.

The choice of artificial neural network (ANN) application to the problem was

governed by two factors: 1) the ability of neural networks to "learn" or adapt to n w

conditions or situations and 2) incomplete data sets. ANNs do not assign a particular

technique for modeling a given set of data. The -equations used for making flnal

predictions are totally data dependent. The artificial neural network builds a model with a

combination of linear and non-linear equations which it formulates as it attempt to

model the output data with data inputs. This improvisation technique enables the network

to learn the underlying intricacies between input and output relation hips unique to the

environment. Since artificial neural networks have a data dependent adaptiv 1 arning

approach, which simultaneously preserves Iocational and temporal biases in a data set, it

was chosen as the analytical tool for this environmental problem.

Due to the availability of incomplete data sets, there was a need to generate

phosphorus data for lower reaches of the lake for the period of 1977 through 1985 to

evaluate the resultant trophic state. The network was conditioned on data between 1992 to

1993 collected by OWRB (1996) to establish relationships between phosphorus and

l:hlorophyll a data, and additionally, phosphorus and secchi disk data. The trophic state of

3



the system was then evaluated with data from the p riod of 1977 through 1985. These

different data sets were employed as no single, available data set described all of the

phosphorus discharges and subsequent trophic alterations simultaneously. The

availability of point source data for the period 1977 through 1985 dictated the p riod of

trophic state evaluation. Since there were no sampling data available for the Lake for the

period 1977-1985, an artificial neural net model was conditioned to establish the

phosphorus relationships between the upper and lower reaches of the lake with data

available for the period of 1992 - 1993. This network was then used for phosphorus

predictions in the lower reaches of the reservoir by employing available data for the upper

reaches as input to the model. In this manner a complete data set was generated by the

artificial neural network modeling approach taken for the period 1977 through 1985.

1.2 Specific Objectives

The specific objectives of this study was to develop models for:

1) Characterization ofeutrophic state of Lake Tenkiller,

2) Evaluating reductions in phosphorus loading for controlling eutrophication, and

3) Comparing the performance ofneural network approach with other methodologies

applied to research the eutrophication of Lake Tenkiller.

4
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hapt r 2. Eutr phi ati.on

2.0 Introduction

water body go s through thre tage (trophic level) in th utr phi ation

process. Starting with the cleane t water qualit level these thr tat f

eutrophication are olif{Ol.rophic, mesoLrophic and eutrophic (Re nold 1984). Th re have

been several studies that define the trophic I I of a water b dy based on di:ffi r nt

parameters. Ro as et at. 1993, ba ed the trophic level of a lak on the re pon e of biota to

changing conditions. Other studies have correlated th trophic I I t nutri nt

availability in a water body (Shannon and Brezorlik, 1972). The OklaJloma Water

Resources Board (1996) measured the trophic level by the parameters chlorophyll a and

secchi disk ob ervations. These data were emplo ed in this tudy.

Chlorophyll a has been widely u d a' a COlT I.ativ parameter lor timations of

phytoplankton biomass and productivity (Reynolds, 1984). It accounls for 0.5 to 2% of

algal dry weight (Reynolds, 1984). From an PA ational utrophic Surv y a

chlorophyll a value of lOl-lg/L has b en accepted as the breakpoint between m sotrophic

and eutrophic tate of a lake (Gakstatter et al.. 1974).

Secchi disk is used for mea uring the depth of visibility ora di k I wered in a

water body. Secchi disk i a weighted circular plate 8" in diamet r paint d whit or

alternatively in black and white quadrants (Reynolds 1984). cia 'sification adopted by

the Michigan Department of Environmental Quality (DEQ) of the trophic state of lakes

based on secchi disk values is:



-ml~:1/~.p.r.r..hi.html).

• Oligotr phic - r t r than 4. m t r .

• Me otrophic - Ben L.98 m t r and 4.88 m t r .

• Eutrophic - L ss than 1.98 met r (http://

2.1 Important Factors in Eutrophication

There ha been re earch r laring th ch mical compo ition of at r to th gr wth

and presenc of phytoplankton in a bod of at r. Pearsall r lat d cliat m t 1 Is of

silica, and· ariou kind of algae to I el of iii a. 1ho phoru and nitr g n (R yn ld ,

1984). Other factors uch as optimum t mperature. light availabilit. a r lat d to

photoperiod and intensity and their eft< ct on algal producti ity ha e been well

documented (Haraughty 1995). Routin Iy the ear not taken into account in engineering

studies because of a lack of control over these t~lclors. That is, lor engin ering studies

only those factor that can be manipulated with aVClilable technolog. ar considered.

Phytoplankton growth has b en demon trat-d to be are ult of bio vailabiLity of

nutrient. nutrient cont nt of algal c Us. and bioavai lable macronutrient rati in th

111 dia(Reynold ,1984). The equation forc II sVlllhesi ofalgCle with ammonia as

nitrogen source i :

6.14 CO~ + 3.65 H~O + NH~ = C(,l.IH'010~~1 + ().X50~ (Rich, 19(3)

From the cell synthesis equation. nitrog n compris s 19.3 % of the cell dry weight.

"Algae are chlorophyll-bearing organisms and their growth i influenced greatly by

fertilizing elements in the water" (Sawyer and McCarty, 1978). "Research ha shown that

nitrogen and phosphorus are both essential for growth of algae anclthat limitation in

amount of the e element is usually (h factor that controls th ir rate of growth" (Sawyer



and cCarty, 1 '78). Th th r l m n (h dI nand .. n) ar al a

found in abundanc in t pical en iT nm nand th r fi r

"limiting" nutrient for cell growth. in th ailabiJity fnitr n and ph phoru

form the major limitation for phytoplankton yi Ids (R nol 19 4), th a c pt d ontr I

-

approach ha been to r move either nitrogen or phosphoru fr m at r draining into

lakes and re er oil'. he choice b tw nth contr I of nitrog n and ph ph ru i

normally determined by the ratio of nitrog n to pho phoru . If th nitrog 11 to pho phorus

ratio (N:P) in the lake i' less than 5, algal growth is considered to he nitrogen limited. If

the ratio i betw n 5 and 10, either or both may control eutr phication. If N:P i gr ater

than 10, phosphorus should control eutrophicatioJl ( .S. EP . 1977).

2.2 Nutrients of Concern

The tollowing sections elaborate on the role of important biostimulants in the

proces of eutropbication. They deal with pho phoru and nitrog n ill terms of th ir

nee ssity for algal growth and forms of these nutrients I' quired for growth.

2.2.1 Phosphorus

Pho phorus is an essential element in the production of n rgy m I cui , uch as

ad nosine triphosphate (ATP), u ed ror growth and maintenanc purposes by algae

(Harris, 1986). lUong the available torm of phosphorus Ofthophosphates are the most

readily assimilated form and are 111 tabolized withollt further breakdown (Metcalf and

Eddy, 1991). Oi soJved orthopho phate are the primary sources of phosphorus available

to phytoplankton (Reynolds, 1984). Other forms or available phosphorus ar

polyphosphate and organic phosphate. The torms or phosphorus llsually m asured in

water are total phosphorus (TP) and. oluble rcacti\'e phosphoru (SRP) (Reynold, 1984).

7



rmof

than in r ani

at< rr sur.J:ace

ub tantial part f th tal ph ph m P in

di 01 ed organic pho phorus (DOP). Th D P ma b ID r

orthopho phat and thus can be a m r IInp rtant ph ph ru ur

eutrophication (Chardon et aI., 1997). ince phosrhoru concentration a I was 10 ~gli

can stimulate algal growth, phosphorus input need to be controll d (Ha garth and Jarvis,

1997). Ther for , under tanding the natur and mechanism of pho phoru r 1 as into

waters is int gral to any management controJ strat g (Haygarth an I Jarvi, 1997).

2.2.2 itrogen

Nitrogen is mainly required a a component for synthe i of amino acids and

proteins in aquatic organisms (Reynold, 1984). Commonly occurring forms of nitrogen

available to algae are: nitrate, nitrite, ammonium ions. and certain dis olv d organic

nitrogenous compounds (Reynold. 1984). S veral species of blue-green algae use

ammOl1JUI1l tn c II for fulfiHing nitrogen requirements to manufacture amino acid (Le ,

1(89) and amm nium i consider d a the most energ tically favorahle nitrogen form for

algal growth (Reynolds, 1984)." mrnonium primarily results fr III hact rial d gradation

of organic matter and animal excrement" (Haraughty. 1995). In general, becau e fthe

complex proces e in tll nitrogen cycl , the abundance of nitrogen is much gr ater than

phosphorus. causing phosphorus to otten be considered to be the "Iimiting" nutrient.

2.3 utrient Availability at Tenkiller

Lake Tenkiller is characterized as having g nerally high water quality which

promotes various recreational, power generation. Ilood control <1nclmunicipal uses

(OWRB tal., 1996). The upstream Illinois River is Oklahoma's only state-designated

-



"scenic" ri f, and n rus e i t tba

anthropogenic acti itie in tl e drainag ba in i oc 'urrmg

'th Ink fr m· anou

RB tal., 1996). utrient

-

a ailabili t th 1ak i quantifi dad n nO Il1 p ID ur es and n 11- int

sources.

The drainage area ofthe'lal can ist of 4170 q. kilometer. with appro 'imately

55% in eastern Oklahoma and the r mainder in we. tern Arkan a (OWRB tal., 1996).

'-,and use I:or the IIlinoi River Sa in. derived from map work span ored by .S. EPA

(OWRB et aI., 1996), is listed in Table 2-1. which pre ents perc ntage of land cover

based on land surface d velopment or us . From lh table it i s n that pa tur /range and

forest lands account for 92.88% of the Illinoi Ri er \ atershed, with for t lands

accounting tor 43.48% and pasture/range lands comprising 49.40%. Cropland compnse

1.33% of the ba in and are of limited concern (OWRB et aL 1996).

It has been ob erved that nutrient 10aJing to the lak t'rom I()rest land i tl1 last

of the variou land cover even though maximum land coverage I~dls und r this category

(OWRB et al.. 1996). Thi is because the vegetative cover of the lorest land t ms the

flow of surface water runoff and allows most (I I" it to percolate or eV<lpolranspi re (OWRB

et al.. 1996). Be tdes the dense vegetation, forest lands have a greater water retention

capacity in the layer of mulch and organic debris covering the top s(lillaycr. Water

captured by the organic layers on top soil percolates into the underlying soil layer .

Overall, vegetation cover and organic layer on the soil urface prevent the flow of water

enriched with dissolved and suspended nutrient material to make its way to nearby

surface water bodi s. Pasture and rang.e lands arc a pollution hazard as they provide

9
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Table 2-1. Land Uses for the Illinois River Basin 8a ed on 1985 Data
(OWRB et al., 1996)

Land l \c Illinois Ri, l'r B;1,in OI,lahoma Portion \rl'a. \1"I,an'a, Portion \n'a.
·\rca.lll'l·tarc,("") Iln'larc' ("") Ilcrtan', (" 11 )

Crop 5713.20(1.33) 1675.44(0.72) 4037.76(2.06)

Confmed Animal 1647.99(0.38) 232.65(0.10) 1415.34(0.72)

Forest 186199.20(43.48) 128955.69(55.49) 57243.51(29.24)

PasturelRange 211521.87(49.40) 91679.76(39.45) 119842.11(61.21)

Roads&ROW 1227.15(0.29) 572.40(0.25) 654.75(0.33)

Urban 14980.77(3.50) I 3028.23(1.30) Il952.54(6.10)

Water 6910.09(1.61) 6258.15(2.69) 652.14(0.33)

Totals 428200.47( 100.00) 232402.32(100.00) 195798.15(100.00)

(54.27% of Total) (45.73% of Total)

10



nutrient for f rag growth (Harau ht and urk hi litt r th n becomes

availabl fi r tran p rt t urfae v,at r, eli unn run ff v nl . nii n d animal

-

operation , which i.nclude poultr rarIng, d ir . tlnd h g r arll1, m n 0.38% of the

total basin area, but they are the largest generators of nutri nt in the form of Jitter and

waste produced by animals (OWRB et al .. 1996).

The amount of nutrients reaching the waterway from each Itlnd u op ration i

defined by nutrient export values. Th value i an timate in kilogram p r h ctare per

year (kg/halyr) of a particular nutrient that is transported from a rarticular land use of the

watershed. The corre ponding range of values estimated by OWRB et ai., 1996, for

nitrogen and phosphorus from land use' of concern are given in Table 2-2. From the

ranges presented, it can be seen that the estimated export valuc from pa ture land i

roughly 2 to 3 time that from forest lands and export values !'rom confined animal

operations are order of magnitudc higher. Based on nutrient export valu s it was

determined that confined animal operations lIrc the largest non-point contributor of

nutrients to Lake Tenkiller, while pasture and range land arc the second large 1. Based

on data reported for the period 1991 to 199:1. the average annual total pho phoru load

from upstream land use was 270,557 kg-P/yr and total nitrogen was 2.578,978 kg-N/yr to

Lake Tenki 11 er at the Horseshoe Bend 1110nitori ng station (0WRB cl ai.. 1996).

{Joinl sources

Tahle 2-3 lists the permitted industrial and municipal wastewater treatment plants

along the reaches of Illinois River relevant to the present tudy. Thne arc a total of14

permitted treatment plants in Arkansas and Oklahoma discharging through various creeks

into the illinois River (OWRB et aI., 1996). Based on data reported ror the period of

Ii



Table 2-2. utrient xilort 0 fficient (0 ::II., 1996)

-

Land lise Total Phosphorus (kg/ha/~r) Total Nitrogen (I,g/ha/~r)

R \ ,,~ .9 - " ·l.0 - _1.8rop .-"
Non Row Crop 0.6 - 1.5 4.1 - 6.5

Pasture 0.2 - 2.6 ].-1 - 10.9

Mixed Agriculture 0:-1.4 CJ.-l - 25.5

lJrban 0,6 - 2.7 -l.O - I 1.2

Forest 0.1 - 0.3 '"') '1 ..........
_._ - ."1 ••)

Confined Animal
Operations 120 750

12



Table 2-3. Li t of Permitted Indu trial and
along Illinois River Relevant to tbi

unicipal
tudy (0

wag Tr atm nt Plant
RB et a I., 1996)

-

NPDES Permit Jl) l'\a IlIl'

OKOOOl198 a enham Forest Indu trie

OK0027456 Cherokee Nation of Oklahoma

OK0034070 Cherokee Nari n Of Oklahoma (Sequo ah High School)

OKOO~0341 Stilwell A rea Development A lIthority

01<0026964 City of Tahlequah

01<0028126 CityofWe tville

AR00200 10 City of Fayetteville

AR0033910 USDAFS - Lake Wedington Recreation Area

AR0035246 City of Lincoln

AR0022098 Cily of Prairie Grove

AR0043397 City of Rogers

A R0022063 Cily of Springdale

AR0020273 City of Siloam Spring~

AR0020 184 Cily of Gentry

13



1991-1993,point ourc contribution a 12 47 kg-PI rand61 0 kg- I I nt rin

Lake Tenkiller at Hor sho B nd.

2.4 Eutrophication in Reservoirs

Re ervoir can be classified into three zones (Thornton tal., 1990). B cau of

the changing depth and changing tlo\ 10 iti 'S in the lak . the d 111ami of th

-

eutrophication process differ in the thl" zan kno n as: riverine. transition and

lacustrine zones. The riverine zone i all-mixed stem with pi nty of nutrients and

high turbidity (Haraughty, 1995). High turbidity hind IS light pen tration and therefore

impede the photosynthetic process needed for plankton gro\; tho The transition zone

begins with the flow velocity reduction and v rti aJ mixing becaus of increased depths

(Haraughty. 1995). The nutrients and particle' start settling in this zone. re ulting in

lower turbidity. This zone has high nutrient cont nl and good light renetration and

therefore supports maximum algal growth. Anoxic conditions can he created beau f

improper mixing which also aids in the eutrophication process (Ilarau hty, 1995). Th

lacustrine zone is characterized by clcar water and low algal growth (I-Taraughty, 1995).

Though light penetration is good, nutrient availahility is at its minimum, which terns

exces ive plankton growth.

Construction of Lake Tenkiller began in 1947 for the purrose of nood control and

hydroelectric power generation in the region (OWRB et a1., 1996). The Lake was built by

the United States Army Corp of Eni!ineer and is located in 'herokec and Sequoyah

countie of eastern Oklahoma. It i along the Illinois River with the river Ilowing into and

out of the Lake as shown in Figure 2-1. The Lake is located 20.6 km upstream of the

confluence of the Illinois and Arkansas river. Th re are several lateral tributaries

14
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Figure 2-1. Lake Tenkiller (OWRB et ~ll., (996)
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flowing directly into the lake as h \ n in th tri utari ac unt for 25% of

tb water bed ft11 lak OWRB et al.. t 9 ). or

-

riverine zan of the lake were can idered to b abo Tahlequah, hich i 6 mile

upstream of Horseshoe Bend and is the beginning of the head.. at r f th tak . Th

condition at Tahlequah resemble a well mixed turbid ystem and \ er con id red to

model the riveri ne zone of the lake. The other two zones wer modeled at the locations

marked by OWRB study (stations 4,5,6 and 7 in Figure 2-1). Morphometric data for the

lake, given in Table 2-4, shows the depth of the lake varies ov r a range of 40 fI et, and an

average hydraulic residence time of 1.76 year has been estimated. Additionally. from

Figure 2-1 it is observed that the width of the water body increa s as the river flows into

the lake and moves downstream. Therefore, it is exp cted that tlow velocity reductions

and particle settling will occur as water moves from riverine to lacustrine zones of the

lake. The above observations provid a ba is for dividing Lake Tenkillcr into thr e zones

for studying the effects of eutrophication.

16



Table 2-4. Lake Tenkiller orphometry (0 RB et at., 1996)

~ ... - National Geodetic Vertical Datum

P"nlmctrr Vaillc

Elevation (NGVD··)
{ Conservation pool 6"2.00
@Flood pool 667.00

Capacity (km J
)

@Conservation pool 0.81
@Flood pool 1.52
Area (km 2

)

@Conservation pool .2.2
@Flood pool R4.2

Depth (m)
Mean 15.5
Maximum 46."
Relative 0.57

Shoreline length (km) 209

Shorel ine development R.17

Volume developmenl 1.00

Average hydraulic residence lime (yr) 1.76

..
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Chapter 3. Pre"iou Studies and Background Data

Eutrophication in Lake Tenkiller ha b n a cau for on rn 10 L974 (OWl

et aI., 1996). everal tudies were performed to 3"e t11 trophic tat fthe lake and

provide management solutions for the xi ting problem. Thi chapt r highlight two

study performed on the lake that provided data to thi ffort.

Study I

A stochastic analysis was performed using QUAL2 - Sand exi ting dat

to generate probabilistic phosphoru concentration and Vollenweider eutrophication

plots characterizing the trophic stat of Lake Tenki Iler (Harton, 19R9). The hydraulic

steady state model was applied in a Monte Carlo simulation to generate stochastic outpt

of existing and planned point source, low flow phosphorus di tribution . Hi torical wate

quality data plotted as probability den ity functions (pdfs), are presented in Figure 3-1.

These data were randomly accessed u. ing Monte Carlo ampling techniqu and

combined wi th modeled data to generate a non steady state phosrhorlls d i tribution at t1

Tahlequah station. Pdfs generat d for roint sourcc phosphorus concentration from

(wadable statistical data Cfable 3-1) along the reaches of Illinois River wer used a

inputs to the model. Table 3-1 lists the treatment plants considered inlhis ffort and giv

details on their flow, phosphorus loads and distance from Tenkiller along the river. Figl

3-2 is a schematic of all the point sources evaluated in this study and their river mile

distances from Tenkiller. on-point source di triblltions were determined from in- treal

phosphorus levels and from a stochastic phosphprus loss function dC\'l~I()ped in this

IR
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Table 3-1. Summary of Point Source Data at Lake Tenkiller Ferry (Harton, 1989)

Distance to Distance
Tenkiller Watts

(miles) (miles)
'95%
LCL

Phosphorous Loading Paramet~rs

(mg/l) 95%
Max. Mean std. Dev. OCL

piant
Flow
(MGD) Min.

Tributary
Receiving
Effluent

Location
City

-----------------------------------------~-------------------------------------------------

Fayetteville
Arkansas

Clear: Creek 6 0.00 0.23 0.158 0.054 0.181 0.134 106 47

Rogers
Arkansas

Osage Creek 3.5 0.00 11.05 3:829 2.810 5.031 2.627 95 37

Springdale
Arkansas

Osage Creek 7 0.00 6.05 3:345 1.467 3.972 2.718 95 37

N
o

Siloam Springs Flint Creek 2.4 0.00 4.86 1.609 1.427
Arkansas

2.219 0.999 68

Tahlequah
Oklahoma

Tahlequah
Creek

~.O 0.00 6.58 4.632 1.12~ 5.110 4.150 20

Stillwell
Oklahoma

Caney Creek 0.7 0.00 16.54 8.80 5.129 10.990 6.610 35

._------------------------------------~----------------------------------------------------

~ kl..\S'd3/\\Ntl "3.1..'9'.1..S '9'~OH"""">\O~,.:c..-;r.,.-.::.,~::.::~-:-- _



Watts, Ok. U.S.G.S. Gauge
Water QuaUty/Dtschorge
R.M: 106.2 Gauge No:: 07195500

Savoy, Ark. U.S.G.S. Goug~'
Water auallty R.M: 133.1
Gouge No.: ~)7!94800

Tahleql.!oh, Ok. U.S.G.S. Gauge
·Water QualIty/Dlscharge
R.M: 55.8 Gouge No.: 07196500
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Siloam SprIngs. Ark.
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eM I I
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Arkansas Rlver:
Confiue-nce----

Figure 3-2. D1inois River Schematic (Harton, 1989)
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earlier effort. Thi function is pre ent'd in Figure 3-". Th figure silO\- s a variation of

0.0001 mg/I per mil to 0.04 mg/l per mil.e of phosph ru 10 in th n r. [n- tream

phosphorus level were generated by randomly ace s jng th hann 1 I function.

Stochastic output generat d in the pre iOLlS effort (Harl n, 1989 indud d:

I) Oklahoma point source contribution, 2) Arkansas point source contribution 3)

Oklahoma non-point source contribution .. 4) rkansa non-point .ourc contribution 5)

total point source contribution and, 6) total non-point ource I ads of pho phorus at Lake

Tenkiller.

Vollenweider methods with randomly selected lake morphometric data were u ed

for generating a Vollenweider distribution for cach set of stacha tic phosphorus inputs

employed. This e tablished a relationship between rrobable phosphoru inputs and the

probable trophic state of the water body. Various management alternatives were

subsequently evaluated to suggest methods of stemm ing the eutrophication of Lake

Tenkiller. Some of the management alternatives considered were 501YtI. 70%, and 90%

removal of total non-point source phosphorus loading (Harton, 19R9).

The study concluded that point ource IO(lcling from the individual stat did not

significantly contribute to the eutrophication lcvl:ls observed in thc reservoir. Among the

management alternatives suggested, a 70% to 90% total non-point source phospl1orus

reduction eemed warranted for effective control or eutrophication at Lake Tenkiller.

Figure 3-4 includes pie charts of the effect of arious alternatives or reduction in non-

point source phosphorus loading 011 cutrophication or the lake. The pic chart highlight

that 70% - 90% reductions in non-poilll source phosphorus loading (lrc rcquired for any

significant impact in controlling clilrophication
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Study II

-

Field sampling was perform d in xi nn, tral:l ition and I u, tril zon in the

lake to mea ure pho phorus, nitrog 11, chloroph 11 a, cchi di k and tw:bidi to

determine the trophic tate of Lake Tenkiller h OWRB in 1996. h m an maximum

and minimum of each sampled parameter are given in Table 3-2. Som ofth ampl d

data points us d later for training neural nets are gi en in Chapter 5 on mat rial and

methods. The results obtained showed that for chlorophyll a. 65.6% or all data points

were in the eutrophic range; further, 70.8% of lata points in the lacustrine zone and part

of the transition zone (stations 4, 5, 6. and 7, Figure 2-1) were in the eutrophic range.

Similarly, the percentages of values with secchi disk observations in the eutrophic range

were 79.2% and 65.2% respectively in these amc zones. The e observations confirmed

the highly eutrophic state of the lake (OWRB et al .. 1996).

In this enort to determine the limiting nutrients, total nitrogen to total pho phorus

ratios were correlated to the eutrophication state measured by chlorophyll a and ecchi

di k values. Vollenweider' eutrophication index was al 0 dev loped in thi tudy for

phosphorus loads, to correlate phosphorus conccntrations with thc trorhic state of the

lake.

In the riverine zone (stations I and 2, Figure 2-1) th study concluded a possible

nitrogen limitation to eutrophication (OWRB et al .. 1996). High phosphoru

concentrations but low chlorophyll ({ concentrations supported the above hypothesis. The

planktonic growth in the upper part of the transition zone (station J. i"igure 2-1) was

considered to be dual nutrient limited, where both phosphorus and nitrog n controlled the

rate of planktonic growth. The lower part of the transition zone (station 4. Figure 2-1) and

25



Table 3-2. Mean, Ma imum and inimum of ampled Paramet r

Phosphorus Chlorophyll a Secchi
(mg/l) (pgll) (m)

Mean 0.073 19.5 1.44
Maximum 0.343 47.7 5.50
Minimum 0.007 0.8 0.20

data set conforms to the perwd Oct. 1992 to Sep. 1993
(OWRB et al., 1996)
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the lacustrine zone ( tations 5, 6 and 7 Figure 2-1) r COIl lud d b th OWRB

investigations to b phosphorus limited in t rm of algal growth. \ ith the Harton

tudy this effort concluded that there as no ignifi ant impa t om pint ources and

approximately 70% - 80 % reduction in total pho pharus load a r quired for control of

utrophicati.on of Lake Tenkiller. Table 3-3 lists ph phorus lading valu s from all th

point sources consid red in the OWRB study. A total of 12 pint llrce di charges wa

considered in tllis effort.

Besides providing a barometer to check th performan e ofth current tudy the

data gathered in the two studies w re u ed for cI veloping neural Il t ark models used in

the present study. Data u ed ill the pre ent study included:

I) log-normal distributions developed as probahility density function tor historical

water quality data for the period 1977 - 1985 (figure 3-1).

2) statistical data on roint source flows and rhosphoru concentrations for wastewater

treatment plants along the reaches of the Illinois River Crable 3-1).

3) log-normal distributions developed as prohahility den ity function for channel mil

loss functions or phosphorus (Figure 3-3).

4) field sal11pl ing data for the period of 1992 - 1()()3 to establ ish correlations between

phosphorus and chlorophyll (.( and phosphorus and secchi disk valucs, and

5) point source loading data of phosphorus from wastewater treatmcnt plants along

reaches of the Illinois River Cfable "'-3).
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Table 3-3. Estimates of Phosphorus Discharges from Point Sources for the Period
1991 to 1993 (OWRB et al., 1996)

Estimated Distance to Estimated Corrected Load Estimated
Load Horseshoe at Horseshoe Bend . Anuual Total

at Source Bend Low Flow Medium Flow High Flow Load
--DiscbaI:ger-- _.. ..(kg P/yr) .. (D11) . (k~ P/vr) (k~ P/yr) (let P/yr)' . . " (kg P/yr)...-

Prairie Grove 1200 100 19 28 23 70 I

Rogers 21600 99 355 519 417 1292
..

Favettovillo 4500 97 80 114 90 283
Sonne:daIe 43150 95 820 1150 893 2862

Lincoln 1200 81 38 46 31 115
Gentry 1700 68 85 91 56'" 232

Siloam SpringS 10000 62 623 628 - 362" 1614
Watts 500 62 31 31 18 81

Westville 2900 28 615 441 187 1243
~idweste~ Nurserv 600 14 211 131 49 391

Tahlequah 4700 6 2200 1267 441 3908
. Cberokoe Nation . 530 5 257 147 51 454

Tnl .. l Q')C;~{'l <;,,<; ;\<;0, .,1\10 T.,<;;\7
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Chap c'r 4. UI'al ctworks

Part - I

4.0 Introduction

Two primary trengths of the human brain ar "mas i int rconn tion and

parallel processi ng architecture. ural ne work ar an alternati computational

approach ba ed on uch theorie of the human brain and intelligence'", (Rog r et aI.,

1995). Simllar to the human brain, al1ificial n ural network r I on interconn ctions in

their structure. Parallel processing allow the n t ark to attain high computational peed

because it is able to process the information through various interconn ction at the anle

time like the human brain. Beside th tructur. the similarity b t\· een th human brain

and neural networks is further extended to their method of functioning. Both attempt to

Jearn from a phenomenon and adapt their behavior based on their learning (Rogers et a!.,

1995). Learning is viewed as the e tabli hment of new connections betwe n neurons or

the modif"ication of exi ting connection (Hagan ct al.. 1996). The n uron that ar

considered 1'01' neural network mod Is are developed by computer al 'orithm and are not

biological. Th yare iterative algorithms that are u. ed to develop a combination f lin ar

and non-linear equation tor modeling r al world situations. These computer-based

models are called artiticial neural n tworks or neural networks. as both terms are used

interchangeably.

4.1 Artificial Neural etwork

o
i\

~
o

Artiticialneural networks (A ) are morrhologicalJy v ry different from

network formed by biological neurons. but have some functional similarities to them.

This section briet1y describes those characteristics of a brain' functionality that have

29



in pired the development of artificial n ural n t ork and pr I1t a math matical

viewpoint of s.

The brain is compo ed of a large number (appro imat 10 II) of highly

interconn cted elem nt (approximately 104 onnection per element) call d neurons

(Hagan et aI., 1(96). These neurons have thre principal components: the d ndrites, th

cell body (soma and nucleus) and the axon a hawn in Figme 4-1. I::ach of the

components ha a eparate function. The dendrites (nerve fib r ) behave as r c ptors

carrying inJonnation in the form of electrical signals to the cell bn Iy which proce ses the

information received. The cell body mas age the data through incoming ignals and

passes the output on to the axon. The axon provides u communication route between

cells. It can be thought of as a one-way multilane information high\ ay where response

and pas es it on to receivers or dendrons of other cell over a bridge called a synaptic

from one cell is communicated to variou others. The axon carrie. the output from a cell

depend on [he strength of incoming and outgoing .. ignals. The arrangement of n urons

s comertificial neural network are Ie s intricate than the human brain. A

the functioning of biological neural networks (I-lagan ct a!., 19(6).

and the complex chemical proce ses of communication over synulltic junction tabli h

junction. The communication over synaptic junctions is a complex eh 'mical proe ss and

close to emulating their biological counterpart. hecause of two key characteristics. Both

biological and artiticial neural networks use computational devices (0 process input

signals and develop outputs. The computational devices are highly interconnected and

thereby able to model and understand complex situations. Secondl:v. the behavior of

synaptic junctions (interconnection between neurons) in proccs.. ing the information

-
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Figure 4-1. Schematic Drawing of Biological curon
(http://vv.carleton.c~l/-ncil/neural/neuron-a.html)
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determines the functional ity of both tructur (H agan tal., 19 ). Th tr ngth of

synaptic junctions are called weight 111 t rminology and 'th omputational pow r

of the n ural network lies in the interconn ction \ eight that d ignat the trength ofa

node to produce the Olltput at the node to \ hich it i ' connect d" (Bashe r tal., 1995),

From a mathematical viewpoint it may be helpful to think or artiticial neural

networks ( Ns) as "nonparametric nonli near regre sion tech niq ues" (Roger t a1.

1995). s opposed to traditional data analysi t chniques, where u l1lodel is initially

selected and then appropriate data are applied, un ;\ build the best combination of

-

linear and nonlinear functions to which the data arc r-itted. This is pos ible with neural

nets because of their ability to learn and then apply this learning in a gcn ralized ense to

imilar situation. In this adaptive learning approuch the net unden.!.oes the training

proces and learns the significance a I' all data values. which includes peaks and plateaus.

A neural network not only assigns a significance (or weight) to th magnitude of each

point in the data. but also identifies connections and defines weights to establish u eful

relationship' among all data points. s more opcrations are exccuted \! ilh a neural

network model the base for making decisions increases, Consequently. the precision with

which the network can make predictions increases.

4.2 Artificial eural Network Structure

There are several ways ofalignillg the neurons and connections between the

IZlyers of an alti1icial neural network that can result in several network models, The

starting point for most network models is a model neuron as presented in Figure 4-2. This

neuron consists of multiple inputs P" a hidden layer! and a single output C/. As is

explained in the text by Hagan et a!. (1996). each inputpi is modified by a weight wand a



Input Mutlipl -Input ur 11

b

n f a

a = f (Wp b)

Figure 4-2. Multiple-Input euron (Hagan et. aI., 1996)
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bias b before being passed to the summer ( ). The ummer add all th m dified input to

generate a ingle input value for th hidden la r. ignifi th importance

of every input Pi with respect to the utput. Th bia give th n ork an xtra variabl

that remove the possibility of null inputs that pro id no training. he output from the

summer becomes the net input n for the tran.~Ierjill1cfionforth 'activation ftmction 'in

the hidden layer. The neuron will combine all th \ ighted input and, ith reference to

a threshoLd vaLue ( pecified by the user) and transferfunction, u e them to produce the

caJar neuron output a. In environmental model ing terminology this calar output neuron,

a, is the output answer and the combined structur of the inputs, weights, biase , summer

and transfer functions are the model element . Th e take the place of the y terns of

solved partial differential equations more typical!. used in simulation modeling.

There are a large number of transfer/ill1ctinns that have been employed in neural

network architectures (Hagan et a!. 1996). Tran fer function playa ery important role

in generating accurate neural prediction. They control the outputs and functioning of the

network (Hagan et a!., 1996). Changing the neuron fransferJimcfiol1 wi I! change the

nature and characteristic behavior of the network. Some commonly us d fran.~fer

functions are: the step, the gaussian and the igmoid, among others (Che hire ngineering

Corporation. 1996). The nature and type of transfer function to he s lected for a particular

data set come from experience, although there are some broad guidel ines available.
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4.2.1 cural ctwork Model

Th re is a large number of eXl ting neural n t\ ork mod I \ ith diffi r nt laming

algorithms (Rogers et aI., 1995). Several distinct neural model can be built bas d on the

connectivit.y they share between input layers. hidden layers and output la r (Rogers t

aI., 1995). The following discussion deal with multilayer feed forward n t ork with a

back propagation learning algorithm, which i roulin Iy employed in ncural network

modeling and has been u ed in this rudy.

Multi-laver, feed forward neural nelworkfj

These models consist of a multiple layer or neurons where inlormation i pas ed

through the network in one direction from the inputs to the outputs. in a "forward feed".

The model starts with the input layers and trav rses the hidden layers toward the output

layers. eurons of each layer are connected only tn neurons of a ubsequent layer as

shown in Figure 4-3. Between an input layer receiving external input.s XI and an output

layer generating output )/10 there are several hidden layers. The hidden layers ofn urons

in this type or network model allow the neural network to develop its own internal

representation or input to output. The non-linear hehavior of neurons allow the network

rnodel to learn many cI ifferent types of input-OUlpUl relationsh ips. thereby addressing the

complexity or the underlying data sets. It is observed that ITItiltiiayer network are more

powerful than single layer networks (I-lagan tal.. 1(96). A multilayer network with a

sigmoidal transf r function for the lirst layer and a linear transter runction for the second

layer can simulate Illost functions reasonably well. as opposed to single layer networks

(I lagan et aI., 1996). The back propagation learning algorithm allows the network to

upgrade and optimize its network connections bcfill'e the next input liHward feed. This
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proces has become a tandard in training th multiJa r fI ed for rd n ural network

(Rogers tal.. 1995). The back propagation net ork ilnd th arithm -tic b hind back

propagation i elaborated in the folio ing s ctions,

4.3 Back Propagation Network

A back propagation network ha a number 01" neurons arrayed Lo form a layer as

presented in Figure 4-4, As shown in the figure. each layer ha. all its input connected to

either a preceding layer or inputs from the external v'!orld, but no! within the same layer.

ext, multiple layers are then arrayed one succeeding the other so lhat there i an input

layer, multipl intermediate layers and finally <In output layer, Lnycrs that have no

connection to the external world are called hidden lovers. Input layers are connected to

the external world and are therefore distributors or incoming signals II"om the oLltside

world. The hidden layers process the incoming signals as they categorize them by their

individual signatures. Output layers collect all thc signals and make ;111 appropriate

response to the input signals. Input. hidden and output layers arc also called 'di tributor ,

categorizers and collectors", respel:lively (Cheshire l~ngineerillg Corporation 1996).

4.4 Neural ctwork Operation

The output oreach neuron is a I'unction ol'its inputs as shown in Figure 4-5. This

ligure is a schematil: pr 'sentation o( the manncr in which outputs arc gcnerated, the

errors initially calculated. and are thcn applied to modify the network wcights. In

particular. the output ofthejth neuron ill any layer is described by t\ '(1 sets 01" equation

VJ = I: ( X, * w,,) . and

V, = F~h (U, + I,)

37
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Figure 4-4. Backpropagatioll I etwnrk (Cheshire Engineering Manual, 1996)
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ry neuron) takes inputs from all tIl ill ur n nn ct d t it. 11 rnputXj fr m

the input layer i multiplied to a \ ight, wij The weights are c n tant! updated after

being randomly a signed initially. All weight d input are summ d t th r re uLting in

the internal value, Vj , or net input n. ach resulting internal value from all) neurons are

biased by a value, fj, and passed to an activation function, Ft/,. The output from the

activation flmction, lj, is the neW'aL net respon for the given input.

This operation is repeated several time until the network call produce outputs

within a user-specified tolerance. hi occurs when the network reaches a plateau in it

learning and further training runs do not improve its performance. The process of

repeating the entire sequence of events explained earlier to update the value of weights is

known as training the network. The accuracy of predictions made hy a network depends

on its ability to learn during the training process and can be con idered th critical stage

in the development of the neural network model.

4.5 Learning

Learning or training is a process by which the network becomes l~lIniliar with a

data set in detail. before responding to other, similar situations. Thc driving factor in

Ileural network training is the error computed as the difference between the desired and

the actual response. The error is the sum of the squares of the differences between actual

and desired outputs in each of the nodes in the outrut layer and can be expressed as a

function of the connection weights. A portion of the root-mean- quare or the error (RMS

error) is passed back through the hidden layers of the network to the input 0 that the

connection weights on all previous neurons can he altered in such a manner a to

minimize the quadratic error between desired and actual outputs (I {agan et aI., 1996). For
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a ll1utlilayer feed forward network ith back pI' pagation trainin alg rithrn th I arning

is achieved in three phases:

• Forward propagation or forward feed - input training set, proc ed through network

from layer to layer applying weight. calculate output.

• Calculate total error.

• Back propagation - error is pa sed back through net cau ing each connection weight

to be modified.

The sequence is repeated with next training et and the network is said to have converged

when the error is less than a specified tolerance val ue as defined:

11/

e(W) = L(y,-a;) where m = number of inputs,
1=1

where e( W) is the current error defined as a function of the connection weights, y is the

desired Olltput and a is the actual output. W is a matrix of connection weights (Dowd and

Sarac, 1994). The input to each node consists of the weighted sums or output from the

prevlOLl layer as shown in Figure 4-6.

otation describing the sequence of events 10 develop the network shown in

Figure 4-6 and complete the above chronology is:

(a) Forward Propagation

When x is presented for the eh time:

In the hidden layer:

input are Uk = L; (WkiX, + (k) t7 k E S/-I (over all hidden neurom)
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Xi is the external input to the first or input layer. The external input is modified by a

weight Wk, and bias Ik to generate the input Uk for the hidden laycr. Thc output Yk from

the hidden layer is generated by an activation function F1h(Vk ).

In the output layer:

inputs are Vj = Lk (lIikYk + II) ttj E 5;0 (over all Ihe olltput neurons)

outputs are Gj = F,llU, ) ttj E.\'"

(I; is the input generated for the output layer by ll10difying the output rrom hidden lay I'

Yk by a weight factor lIik and a bias 'i' The output rrom the nctwork is gcn rated by the

activation function FIi,(Ui ) (Dowd and Sarac. I()94),

(h) Back Propagation

The network works backward from the output layer to the input layer and

modifies the weights according to the gradient descent rule (Dowd and Sarac, J994)

which updates weights as a function of the ubsequcnt outputs. In the gradient descent

method the weights are updated proportionally to the first derivative of the error e(W)

with respect to the weights evaluated at the current value. The first dcrivative of the error

gives the direction of increase on the error surl"ace, t\ direction opposite to the derivative

o
o
o

()utput lc,ycl's

et (Dowla et aI., 1996).

Hidden 1cll'cI's

~/'I 0

o

p
o
o

Xi

Input lavers

Figure 4-6. Feed Forward Neural
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i chosen to d cr a e t11 error in ord r to r ach t11 mIntffium IT r"ln r p moo run with

the network.

In the output I.ayer:

u;dt) = u;dt - J) - g(t).di-Qk

where

d; = 2(01 - 0) FIll '(U) Vi E So

the weight in the output layer Uik is modified by an error term dl (derivative of the error

e(W)), a gain term g(t) and the output from the hidden layer VA.

In the hidden layer:

V k E .)'-1, ViE.)1

where

V k E.)I/

WAf = matrix o/weights II'k;

S, = nllmher ofinputs

These weights arc updated using steepesl descent techniques (Dowd and Sarac,

1994) which allow for the quickest convergence or [he error surl'ac ' [0 reach the minima

by specifying a direction of descent opposite to that generated by the derivative. The

connection wcights between nodes i lind i in the currcnt iteration (t) is found by

subtracting a gain term (g(t)) which controls the rate of descent from the rreviou

iteration (t - n. The gain term defines a multiplc oCthe error correclion term that the user

applies to update the current weight in sllccessivc iteration through the network. It

changes over time to allow for changes in the rLlte or descent LInd depends on the error

calculation for each simulation or local error. "The goal is to decrcase (descend) the error

4"



function, a oiding the local minima and rea hin· til actual I' I b'l minimum

(KartalopouJo , 1996).

There are many types of n ural n t ark I Jarning ruLe. ..F ur at n of

network learning that are discLlssed below are: supen ised I arnin '. unsuper i ed

learning, reinforcement (or graded) learning, and competitive I arning. Th t P used

depends upon the type and quality of the data a ell as overall obj eli ofth

modeling exercise.

Supervised Learning

[n supervised Learning, the network is train d to provide outputs with an example

or collected data set (the lraininR set) (Hagan et al.. 1996). There is a tarRet output

specified to which the network is trained. The output of the net\ ork i compared to the

larRet outputs and the weights and biases are modified to move the network outputs

closer to the targets (Hagan et aL 1996). Once the network is abl to make predictions

dose to larget output within specified margins of prediction error the network i

considered trained.

Unsupervised Learning

In unsupervised learning, ther i 110 exampl daLa set or targ t output. The

network work with the input set of clata and weights and biases are modified based on

the inputs only. In unsupervised learning a clustering operation takes place where the net

learns about output by clustering the inputs into categories for recognition. "They learn

to categorize the input patterns into a (·inite number of classes'· (Hagan <::t a1., 1996).
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modifies the network algorithm to improve the grade or performance score.

applied, each output neuron is compared with th other to produce th closest output

this wa. is trained to r spond to a particular stimulus.

at I ast
. .

riling r qwr

number of reasons why slow learning may occur. The gradient descent technique u ed for

The type of learning employed affects the rate at which the net learns. Learning

Reinforcement Learning

timuJus leads to ome other output neuron in th dominant role. Each output neuron in

ignal to the target (Kartalopoulos. 1996). Thi output then b com s th dominant one,

In tbis cheme, several neurons are at the output layer. When an input timulus i

ne of the parameters that indicate the ucces or I~i Iur of a neural n twork. There are a

rate determines the speed at which a neural network is train d (Rogers et a!., 1995). It i

and the other output neurons becomc dormant tor that particular stimulu . A different

determines the performance of the n twork for a given set of inputs. Ev r it ration

output, th network i given a grade of pa /fail. rhi typ of I

This is imilar to supervi ed learning, c pt that. in t ad of b m r pr id d a tar t

graded by the teacher which generates a binar nor ignal of pa /fai I. Th grade

one nemon in the output layer and a teacher (Kartalopoulo 1996). E r output is

Compel/til e Learning

updating weights in back propagation networks consumes signil'icanl tim esp cially

when the gradient is small (Rogers et at., 1995). Learning is slow with large data sets

because the number of function evaluations, the 1110st time consuming operation, is very

large. A large data et. however, is still desirahle <IS itl11ay conlain more complexity

allowing 1'01' a more accurate model (Rogers et al.. 19(5).
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Compl icated network with large number of la r or a large numb r of n urons p r layer

increases the training time of the network. Finall . "contradictor 'l data t might tall

the learning process with a stagnant root-mean-square (RMS) error. D ciding on the

optimal setting of parameters is important in g tting the best and quickest re ult from a

neural network. An optimal set of paran1eters can be achieved through trial and error,

which may be time consuming. "Genetic algorithm :. (GA) have be 'n develop d to

eliminate this trial and error process (Yip and Pao. 1995).

4.6 Genetic Algorithm

The genetic algorithm attempts to build the optimwn n twork by electing the

best alternative from a pool of alternatives. By optimizing the input and training

parameters. subsequent usage of the model can be perlormed with a minimum amount of

training. This reduces the computational load and model dev lopm 'nl li me.

Genetic algorithms evaluate network per!<m11ance ov I' the enlire set of data and

record the paramet r values that generat d th b st results. These vnlues ar continuously

updated as better results are obtain d by varying the parameters. The proces of

parameter value upgrade also involves addition and r moval of interconnection with

changes in Ihe previously recorded parameter values. In this way the algorithm build

better networks by wenning out the weak links in a model as it evolves. I'he analogy can

be drawn h'c m the evolution of ape to man, which pre umably. was a process of selective

evolution to create a better model of an ape by a process of continuous upgrade (Yip and

The numb r f intercOlID ction ttl th n ark model influenc the learning rat.

--

Pao, 1995).
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-L7 Neural Network and GA omenclature

This section deal with the term commonly used in the I"ield of n ural n twork .

The section provides a description of the ignificance of term and their rol in network

d velopmenl.

TransfCr Function: simulates th process 01" biological acti\'ation or firing of

synaptic junctions in a biological neuron, a signals are proce ed .md re. pons

generated in the biological context. The shape and dillerentiability o!"tmn fer functions is

important in d ciding their usability, Tran fer functions in artificial neural networks are

basicaIJy categorized in two ways: differentiable (Figure 4-7) and non-differentiable

(Figure 4-R). A differentiable function is essenticd "or u e in back propagation networks.

The reason is that for modification of the intercollllcction weights LIS LI n-twork undergoes

training. thc error passed back tor upgrading thc weights is a derivative of the difference

between target output and network output. Since network output is lhe output from the

transfer function. it has to be differentiable it)r its derivative to exist.

The other differences are attributed to the shapc of the functional curv ,and

though there arc no set rules for selecting a particular differentiable function; one can

decide between a differentiable and a llon-di1ferelltiabl function. Non-differentiable

functions arc used in boolean situations where the outputs arc in terms or zero and one.

Though differentiable functions can also be used in such situations. their accuracy is not

as high as Ilon-differentiable functions because 0" the range of outputs which are not

close to maximums tor inputs close to zero as is illustrated in Figure 4-7. Therefore, non

difterentiable functions are able to perform much hetter as switch !"unctions, while

differentiable funct iOlls perform much better as cont in uously discri 111 inat ing functions.
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Figure 4-7. Differentiable Transfer Function: Sigmoid FUl1ction
(Cheshire Engineering Manual)
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Figure 4-8. Non-Differentiable Tran fer Function: Step Function

(Cheshire Engineerin~anual,1996)



B tween diffi I' ntiable function th ria La k of t rul s id ntif in uitability of a

n fun tion fit a parti ular t of dataparticular differentiable function.

better tll.an the other, th refore, on ha to be careful in deciding 11 a tr n fi r function.

Epoch: is one complete imulation ov r nil data point. During n twork training

it i one complete proce ing rilll through all d tined training ea es.. 'imilarly, during

network testing it is one complete proee sing run over all te t data roillt .

Learning Rate (LR): determine the am unt of weight adjustment to be made

ba ed on the error passed back. If the factor i s t 10 a large valu , Ih n the neural

network may learn faster, but a large variability in the input data l11a lead to re tricted

learning or no learning at all for the neural net.

Momentum: allows a change to the weights to persist for a number of adjustment

cycles. It determines the existence time of a eorrectlon term, that is. determine the

number of epochs for which a correction term will have a continued inHuence.

Momentum mu t be greater than or equal to (} hut Icss than I. Valu- s of mom ntum

clo er to one result in greater influence of pre iously applied correction t rms. Values of

momentum closer to 0 re uJt in moditication 01" weights by current correction term only.

Momentum help in taking care of the peaks in the data set, which could b aberrant or

faulty data. By applying a momentulll term the model ensures that a reak data value does

not unduly int1uellce the training of the network.

input Noise: imparts a slight variation to e<Jch input value I()r every training

epoch. By providing a different set of inputs to each training epoch we ensure that the

learning process remains dynamic and the network does not mcmnri7.c any situation. This

prevents the network from overtraining (increase in error after the network ha already
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ranges from 10 to 20 and the input no.i IS t to 0.1, then random alu ra.nging from 1

to 2, will be added to or ubtracted from each input alue.

Training Tolerance: provides a ba i tor stopping the training proce . When the

training output falls within the targ t output, plus or minus the training tolerance, the

network tops training on that set of input and score the output as "'Right'". Training

tolerance hould be between 0 and 1. For example. if alues in the turg t colwnns ranged

from 100 to 300 a tolerance of 0.2 corresponding to 20%, would allO\ error of 20% of

200 or 40 (i.e., 0.2(300-100) = 40). The training lolerance value has no effect on the

learning algorithm. However, when the networklinds 100% ··Right'·, as defined by the

training tolerance, it will automatically top training.

Testing Tolerance: it is similar to Training Tolerance, but it is applied only to the

t data. Testing Tolerance is oft n set to ales sningent value compared to training

tolerance ince it is assumed that prediction i more c1ifticu.lt than training to target values

(Cheshire Engineering Corporation. 1996).

Enoch ner Update: control' the numb r 01' epochs between weight modification

To save time the network can be et to update its interconnection weights only after

training for a certain number of epoch. This a es computational ti me while training the

network.

Epoch Limit. sets the maximum number o!'training epochs a neural network will

undergo while training.

Time Limit. ets a time limit to the n ural network training proce s.

t b t'. 11 0 ad 1, ffii aninghouid b

t a a nOls rang

achieved the lOve t po ible error). Input l1J i

0% to 100% of the input range ill b
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Error Limit: et a maximum incr a all din th rr r alu r the 10 e t

aehie ed value adier. nder normal circum tane a neural n tv ork t dil r duce the

training error (RM error) as it undergoe training. This gen ral tren I can b off: et and

the RM error can increase under an of the following condition

1. if the neural network begins ov rtraining, or,

2. if tJ,e neural network has In uffici nl apacity, or,

3. if the networl is illa,ppropriately contigur d.

Genetic algorithms support their 0 n terminology. Th f Ilowing ection deals

with the terms u ed in the application of genetic supervisor in thi study.

The number of desired iterations and the method of new s'ructure (network

architecture) generations were controlled by peci ryi ng two parameter.: popuLation pool

size and the popuLation pooL mode control. The popuLation pool size controlled the

Ilumber of structures created in each generation count (parameter used Lo control the

number of tim s networks with speci ,'jed pool size w re to b evaluated). etting a large

value for this parameter evaluates a larger number or possible s/rJlclures lor optimwn

network contiguration but takes greater computational time. fhe pO/JUla/ion pooL mode

specified one 0 f the three mode or m thods by wh ieh new structures were generated

during genetic simulation. The three modes conSIdered were I) dosed fJ(}ol, 2)

immigration. and 3) emigration. These mode speci fy the replacement strategy used for

generating new population (or structures) of networks.

Closed {Jool: existing population pool evolved with no addition of new structures

except through crossbreeding and mutation. Crosshreeding and mutation are mechanisms

f'or developing genetic networks and are eli cussed later.



mutated.

population and crossbred with t11 new popuJati n.

weake t structures of the current pool ith r maining ·tru fur . bing cr br d and

structures ill r pia thImmigration: in ach n g 11 ration ntir I n

Emigration: the best member of the ClllT I1t pool ar migrated t an ntir ly n

.....

During simulation time each popuLation pool size is e aluated and ach new

structure generated i ranked by it titne s. Th se structures til n vol ve to produce n w

generation with the most fit structures having a great r probabilit of pa sing on their

characteristics (or.!eatures) to new generation. I'here are two mechanism by which

.features are pas ed to successive generations: cmsshreedin}; and II1l1tation.

Cross-hreeding: is determined by a cros over setting which determines the

frequency or intermingling offeatures on the same lring to gen rate new structures.

Mutation: struc/ures and features are chosen at random to be changed to new

values. The mutation rate parameter control the I crcentage orstrllctures that will

undergo a mutation.

To determine the best fit structure there an: lour option: Train errur, Train

epoch, Test error, and Test epoch. hain error Ii nds the structure wi th least RM error

when run on training data. Train epoch (-inds the structure that requires the least number •

of epochs to achieve the error peci tied in titnes . criteria when run Oil training data. Test

error and Test epoch perfOnll the same evaluation as Train error and Train epoch, except

that the evaluations are performed on t t a well as train data. The genetic supervisor

tops at the generation count that is specified by the user. It then reports the be t structure

identified in the current generations.
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Part - LI

4.8 Neural Network Applications in Environmental Engineering

Neural networks have be n gaining a.cc ptancin a m .i fit far ith

r quirements for forecasting or prediction and a cI ci ion upport t m. pplications

in the areas oftinance and managem nt. engine ring. pure sin s. III dicin ,and v n

literatur have been reported (Hagan tal., 1996). However. th r have not b n many

neural nenvork applications reported in the open lit rature in th tield of nvironmental

engineering. This section examines some of the ca. e in which n ural n twork have

been applied for ecological or envirolllll ntall11anag ment issu .

4.8.1 - Case Studies

Farid U. Dowla and Leah L. Rogers. in a hook titled 5;olving Prohlems in

Environmental Engineering and Geosciences 11'i,h Artificial Neural Network<J (1995)

have explored some possible applications of neural network to en ironmental problems.

pattern generation was carried out using a genetic algorithm, which wa. linked to th

pumping patterns.

A N. Based on outcomes describing remedial slice S it art mpted to enerat better

•

f
~a.

wa uggested to be used as an alLernativ to groundwater flow and

transport codes Lo evaIuate pumri ng alternatives in 11 remediation scheme. Pumping

Specifically. A

Back propagation was used to train the AN s with the error calculations made by

the conjugate gradient variation method. The conjullut gradient method has the same

objective of error minimization as steepe t de cent lechniqu except that it is much

faster (Hagan et aI., 19(6). The AN -GA approach was able to generate an effective

combination of28 pumping wells for the groundwater remediation problem.
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[n relat d work. Ranjithan aI., (199 ) ha u dan ural n t rk to ign and

e aluate groundwater remediation alternati e . In th d ign f gr und at r r 111 diation

th uncertaint ari iog from the patial ariabilit fh draulic c ndu ti and oth r

--

aquifer parameters is important. tocha tic model. ba d upon condition I imulation

evaluate equally probable multiple realization of h. draulic condu ti it pan rn to

decide on the critical realization which would intlucllc the outcomc (Freeze tal. 1990).

As an alternati e, an ANN model can be ba ed on th numb r of !lOS. ible hydraulic

conductivity pat! rns that can sati fy an output that i a managem nt ob.icctive (Ranjithan

et ai., 1993). Neural networks with their adaptive learning approach. \ er applied a a

pattern classification technique to id ntify critical hydraulic conducti ity pattern and

yield reliable remediation alternatives for ground water contaminated site.

Rizzo and Dougherty (1994) developed a model called eural Kriging by

applying an artificial neural network to a traditional patial estimation problem. This was

a new method of pattern completion lor geohydrological applications. The m th doJogy

was applied to construct maps of"discrete spati ..J1ly di tributed licld" (e.g .. log hydraulic

conductivity). The network underwent supervised training with a counter-propagation

I"eed-forward learning algorithm on ~iekl amplcd data. The network cmployed an

interpolating algorithm for generating values at ullsal11pled locations. eural kriging

demonstrated the possibility of applying a simple technique to obtain l~st and reasonably

accurate statistical results on aqui fer parameters.

Johnson and Rogers (1995) used the Dowla - Rogers approach for location

analysis in groundwater remediation using neural networks. III groundwater remediation

when a new pumping strategy was consider d. a Ilow and transport model was called to
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evaluate its effectiv n . It is comm L1 f r ptirni ti n n c1u iq ,amm hundreds

$I

of trategies, at the very least, often with the coml utational time becoming prohibitive.

Typical flo and tran p 1"t models I quifer Cdl I' luir h ur to predi t

the effectiven ss of a single prosp cti pumpll1g ·trat gy in pump-and-tr at r m diation.

A method wa developed for speeding the i111ulati n tep 0 that milli n fait rnative

strategies could be evaluated within practical time limits.

The method used artificial neural networks trained to predict :el ct d time and

effectivenes' information that normally were generated by the tochastic now and

transport models. The networks were then link cI to a search t chnique ba ed on the

genetic algorithm to select pumping patterns which balanced the competing goals of

timely and effective cleanup at minimum cost. This method was 8pplied to a 28-location

pump-and-treat Superfund site. The network \,vas trained to predict mass-extraction and

containment information generated b. a 2-D model. Subsequently it \VQS used in an

optimization procedure to identify 250 (out or over 4 million) pumping pattern which

met restoration goals at minimum costs. This study demonstrated the \ ay in which A Ns

enable planners to adopt a hypothesis testing apPl'llllch for analysis ,lIlel design that would

otherwise be cOl11putational1y impractical.

Additionally. the pattern-matching capabilities ofneuralnct vorks have been tried

ror determining aquifer parameter by !\ziz et '11. ( 1(92). The network was trained on

drawdown data as input and corre 'ponding aquilCr parameters as output. Theis and

Ibntu h-Jacob solutions were used to derive aquiICr parameters lor comparison with

neural network outputs.l he advantage with neural network application is the simple

approach ofohtaining aquifer parameters without computational COl1lllcxities. Table 4-1



Table 4-1. Computed quifi r Parameter' alu from
Different ethods (Rash id et al., 1992)

- - (- (
.. - Data wer analyzed by Rli hton and Chan (1976) u ing discrete numerical model.
. - Data were analyzed by Chander et <11. (I 9S I) l\ in u an itcr<lted Kalman tiller.
. - Data were analyzed by Sen (1986) using rhe lope-nwtching method.

Method Transmissh'ity (m-/min) Storage coefficient Leakage faclor (ml

Hantu h 1.156 0.0017 600

Walton 1.20 I 0.0019 900

Discrete I 167 0.0015 850

Kalman I 151 0,0017 668

Slope
,.

1.094 0.Q024 505

Neural network 1.179 0.0018 698

- Data were <1nalyzed by Krllseman and de Ridder 1970) lIsinu, Hantush ,lIlel \,Vallnn 1970 methods.



i a eompari on of aqui£ r param t r alu In b diffi r nt m th d . Th alu

obtained by n ural network compar d ell ith alu obtain d b, th r tati tical

teehniq ue .

l-Hawary (1995) used a multi-layer n 1 ork for pr dieting pollution

concentration levels from electric po r gen ration u ing fo iI fu I. Th

developed could be us d a an aLarm proce or lor sounding warning or it could b u ed

as an analyzer to process data and predict pollution Ie eL . The input to the model

consisted of ite coordinates, plwne di persion mod I parameters relevant to the site,

atmospheric conditions, and active power conditions. The neural n twork model was

shown to be a teasible option by comparing the net output with cc mputational approache

on the test c1ata.

Another paper examined the effectiven ss of usin.g ani ticia I neural networks

(ANNs) for real-time data analysi of a sensor array (Hashem et al.. 1995). The motive

b hind using a n ural network coupled with a sensor array was to enhance th analyzing

capabilities ora ingle sen or to identify contaminanl in the ti Id \0 ilhout r quiring

highly sel ctive sensors. A prototype ensor array that con i ted or Iline tin-oxide sensors,

a temperature sensor, and a humidity n or was used in the study (ilashem tal., L995).

The study showed that u ing a neural network data analysis techniqu enhanced the

selectivity of the sensor array in identi fy ing conlal11 inants.

Researchers at Sandia National Laboratory have completed investigations into the

application of artificial neural network for reliability and risk anal, sis (Robinson, 1995).

The model inputs consisted of probability density functions ofparamcters de cribing

~
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y tern characteri tic and output

performanc . Th

a tati ti I d ripti n f th I

model wa u d to d crit e th boundar b t

tm

n afi and

unsafe sy t m configurations. Thi m thodology \' a in 01 din th c mpari on of

variou low-residue lead-free soldering proce s to minimize wa t ithout

compromising on product retiabilit . The inputs to th model consist d of tati tical

descriptions of material propertie Iik coefficients of thermal xpansion of ub trate and

solder. Model output gave the fatigue Iif of the surface mount d component . The model

was used to make decisions to maximize component life.

In a study by Basheer et al. (1995), neural networks were used for landfill site

identification. eural networks were u ed for mapping the soi I p I'm ability and

delineating boundaries for construction of landtiJ I . Most site xploration tudies involve

arnpling through boreholes at various location and then drawing contour for a

particular material property. Most mapping models. for contouring. enable visualization

of continuity in a property from information d rived from limited horehole data. Th y

depend on the reliability (or probability) oft-inding a certain material or prop rty at an

unknown point given that material or property has heen observed at a known point. 'uch

probabilistic models share some common hortcomings; "th y n ed to estimate many

model parameter (through model calibration) and impose several simplifying

as umption betore use" (Basheeret al.. 1995) This lead to a distortion of the pattern

embedded in the data set of several variables.

Neural network techniques capture thi. pattern through learning. Distortions

induced by simplifying assumptions are therefore reduced. In this study a back

propagation network was applied to c1ata from a site located in Orlando, Florida. An



earthen landfill \ a planned to b

network (4 neurons in hidden Lay r),

i ting natural iL thre]a r

full· u d t d t rmine th patiaJ

distribution of permeabiLity in an attempt to d lin at the b und i ofth arthen

landfill. In this tudy the neural n twork wa 1I d a ad ci in-making t 1that aided in

demarcating additional borehole locations for pr paring a thor ugh sampl ing trat gy.

The U.S. Army Corps of ngin ers procedure to clean up buri d ordnance hay

been designed to proceed with minimum digging (M illhouse and Gillard, 1997). The

Corps and it contractor are develol ing a n ural network m d I thm \i ould I' ad the

input from sensors to identify the presenc of buried ordnance and esti mate the depth of

burial (Millhouse and Gifford. 1997). The m thodology incur minimum risk as the

sensors do not have to be placed below ground, el iminating the possi bi Iity of accidental

detonation. This model can be linked with a g ographic information syst ms (GIS)

package to provide map location and other ite related information 10 help in making

remediation decisions. In the testing phase, the network was used to estimate th d pth of

39 detected. but unknown, pieces of ordinance. Ille net predicted J() out oftl1o e 39

within a weight error threshold of5 pounds and depth error threshold ol"one half foot.

Mukhopadhyay (1999) ha used ANN technology for estimation oftran missivity

values of the Damman Formation in Kuwait. The pattern matching capability of neural

network was used to output transl11i 'sivity values of the Damman formation ba ed on

varying combinations of UTM (Universal Transverse Mercator) well coordinates, height

of'formation above sea level, logarithm of total dissolved solids and (lnrameters

indicating absence or occurrence of loss of circulation as input par~lInders. The outputs

were tested against outputs obtained by kriging technique. It was ohserved that
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correlation b tween e timated and a tual alu kn ldat pint r much b tter

with neural network application (0.8 t 0.97) than krigin (0.7 ).

ural n twork application in en ironm nt I ngin nng ar in th ir incipient

stages. As compared to some mod ling techniques that have a th r ti al b i to which

data are adapted. neural networks work th ther wa. s the n t vo I es on a t of data

it adapts to these data. This adaptabilit of the network is compared to pia tieityof

materials. A plastic materials w1d rgo detormari n ithout losing th ir pia tieity

properties the network hould undergo additional I arning without losing its previous

learning. This creates the plasticity-srahility dilemma (Karayiannis and Venetsanopoulo ,

1993) for the network. i.e., to maintain stability in it's learning and sti 11 be able to

undergo additional learning. With highly di aggregated data presented by environmental

engineering problem. neural network face thi di lemma, At the same time, adaptive

learning capabilities of neural networks hold a lot of']Jromi e 101' environmental

ngineering prohlem . which a1' difficult to describe by et rules and clas ical th orie on

transport phenomena.
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Cha.pter 5. Materi, I and Method

5.0 Introduction

Th trophic state in Lake Tenkiller was checked at station. In the upp r r ache

(at Tahlequah. Oklahoma) and in the lower reaches or lacustrin zone of th lak .

Stations numbered 4. 5, 6 and 7 in Figure 2-1 identi l"y the lower reaches. Th aim of this

exercise was to develop linked neural n twork model to evaluat s ral water hed

phosphorus reduction alternative for controlling eutrophication in th -, Ink, U mg

available data sets tor the period 1977 - 1985.

Three Iinked artificial neural network models were ne ded It1r thi effort to link.

data collected during separate sampling events as shown in Table 5-1. 'I he Harton data

set described instream and point source phosphorus levels at locations upstream from

Tahlequah. OK. These data consisted of pdf'. developed from USC;S water quality

monitoring data which were collectcd l'rom 1977 lhrflugh 1985 (Harton. 1989). OWRB

personnel bctwe 'n 1992 and 1993 coliecLeclLhe other IWO data sets in the lak (OWRB,

1(96). /\n initial neuralnctwork model was rClJuired to establish a rclationship between

phosphorus concentrations upstream and in the 1,lke to generate phosphorus

concentrations in thc lake for the period 1977 - 1()X5. Thi was needed Lo maintain

con istency with the point source and non-point source data studied i11 this effort, which

was available for Lhe period 1977 - 19R5, Further. tn characterize the trophic tate of the

lake ba eel on phosphorus concentrations. relationship had to be estahlished through

neural network models between phosphorus and chlorophyll o. and phosphorus and

secchi disk data. since the two were lIsed as indicators of the trophic state.

" I
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Table 5-1. Available Oat

Source Parameter Lueation Form Time Period

U Phosphoru Tahlequah ValLI 1992 - 1993

OWRB Pho phorus Lak Values 1992 - 1993

Harton Phosphoru Tahl quail Log-norma I cI istribution 1977 - 1985

OWRB Chlorophyll a Lake Values 1992 - 1993

OWRB Secchi disk Lake Values 1992 - 1993

Hartoll Phosphorus Point Sources Values 1977 - 1985

Hartoll Pho phorus Channel Loss Instre(lll1 Log-norma I distribulioll 1977 - 1985

The flow chart of activities employed to study the phosphorus reduction

alt rnatives i given in Figure 5-1. The flow chari highlights the steps lllvolved and data

sets us d in developing the linked artilicial ncuralnclwork models.

Steps I - 4 in Figure 5-1 were used to prepare a larger data ..et of pho phoru

concentrations at Tahlequah for Ihe period 19():2 - 1993 using Latin-Hypercube sampling

on log-normal plots prepared from limited data. rhe Harton data sci (step 7, Figure 5-1)

included statistical density function of total phosphorus at the USCiS gage at Tahlequah,

Oklahoma. These c1istrihutlons included point and non-point sourcc contributions from

the contributing watersheds and were c1eveloped u ing historic l11onitoring and discharge

data as well as modeled data that generated transport losses to the guugi ng station. To be
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P-concenlrmions SRI I<. (Lalin-
1992-199' data at LO"-I onnal

H P rcube
Tahlequah ~ plol 4 ampling)

( I) (2)
( )

P-concentrations -"" P-concentratiolls
1992- 199" in lake "" '\ ~

IClrger data et
data (4)

C) cural network
Model-I for
phosphorlls

P-c(lncentrations ~predictiolls
inlilke data

.....
(6)

'V
( 10)

I P-coneentrations @RISK (LCllin-
1977-1985 Log-

o.
Hypercube)

normal plots ... ampling
(7) (8)

• Chlorophyll a

P-coneen trat ions pred iet ions for
P-eoneentratlons dalaSCI lower reache off---
1992-1993 inlake ~~

(9) lake
data ( 17)
( I I)

cural network
Secchi disk

~ Model-II for
predict i0ns for lowerChi u-concenlrmions chlorophyll (/

~1992-1993 in lak
,.

predictions l'I:a 'ill'S 01" laket--

data (13 ) (I X)

( 1_)

/--- -. Chlorophyll (f

P-coneenlrati(ln~ prell ictions

modi fi cl modified

(20) (21 )

Al-

I'-concenlrations

Channel loss I"unction ilnd modified

reduction (IlternCltives -. (20)
...... ( 19)

~
Secchi disk

eLI I'll I network rredietions
P-concentrmions Seeehi disk Model-III for modified

inlake daw ..... ... inlake data (22)... .. Seechi disk
(14 ) (15 ) predictions

( 16) ....
--,. ....

Figure 5-1. Flow Chart of Activities in Present Study



consistent with these eli tribution the OWRB data collected during the eutrophication

urvey w re cast into a imilar statistical format (Figure 5-2) at ...tep 2 in Figure 5-l.

Figure 5-2 i a probability plot develop d for th sampled OWRB lata and i imilar to

the Harton data set format. The two data sets could then be rand mly ampl d by Latin

Hypercube methods as shown in steps 4 and 8 in Figure 5-1. Th c1ata gen rat d at step 4

was then used as input to train a neural network ( eural Networl 10del-I) for predicting

in-lake phosphorus concentration' using phosphoru concentrations at Tahlequah as

inputs as shown in steps 4,5 and 6 in Figure 5-1 . Thirty-two c1ata points were used for

conditioning the ANN to establi h a relationship between phosphorus concentration in

the upper and lower reaches of the lake. The data set used for conditioning the neural

network is presented in Table 5-2. The table contains input phosphorus concentration

data at Tahlequah and target pho phorus conccntration in the lake for the period 1992 

1993 u ed for training eural Network Model - r. Steps 7, 8 and 9 in Figure 5-1

prepared a data set of phosphorus concentrations at Tahlequah for the p riod 1977-1985

from log-normal phosphorus concentration plots (Harton, 1989) avai lable for th arne

p riod. These data were used as inputs for Neuri.11 etwork Mod -I-I lor predicting in

lake phosphorus concentrations as shown in tcps 9 and 10 in Figurc ~ -I for the period

1977-1985. This data set was u ed to charactcrize the trophic statc (11' the lake as shown

in step 17 of Figure 5-1.

Steps 11, 12 and 13 in Figure 5-1 developed a neural network ( eural Network

Model- [1) for chlorophyll a predictions by using in-lake phosphorus and chlorophyll a

data sets available for the period 1992 - 1993 rrom the OWRI3 study. The training data

et for thi network model is given in Table 5-3. Thc table contains input phosphorus
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Table 5-2. Training Data et for t\ ork od i-I

Serial # Input P-Tahlequah Target P-Lake
(mg/l) (mg/l)

#1 0.0685 0.039
#2 0.0700 0.025
#3 0.0713 0.023
#4 0.0749 0.023
#5 0.1040 0.084
#6 0.0960 0.081
#7 0.0962 0057
#8 01000 0.097
#9 0.1400 0.081

#10 0.1572 0.118
#11 o 1139 0.085
#12 0.1370 0.087
#13 0.0800 0176
#14 0.0823 0124
#15 0.0763 0.078
#16 0.0779 0.067
#17 0.1300 0.081

#18 0.1197 0.064
#19 0.1202 0.040
#20 0.1320 0.033
#21 0.0900 0.086
#22 0.0876 0.041
#23 0.0911 0015
#24 0.0927 0.015
#25 0.1100 0.165
#26 0.1168 0067

#27 0.1120 0.013

#28 0.1068 0.009
#29 00898 0.075

#30 0.0962 0059

#31 0.0911 0164

#32 0.0927 0051

data set conforms tv the period Oel. J992 to Sep. fC) 93
(0 HillB et (d., I C)C)fJ)



Table 5-3. Training Data et for tv rk odel - II

Serial # Input P-Lake Target Chlorophyll a
(mg/l) h1g/ll

#1 0.061 34.3
#2 0.027 15.7

..
#3 0.023 16.5
#4 0.016 9.4
#5 0.058 47.2
#6 0.056 45.6
#7 0.051 39.6
#8 0031 28.0
#9 0.069 31.0

#10 0.034 28.0
#11 0.020 13.3
#12 0.014 121

#13 0.069 33.4
#14 0.057 18.8
#15 0.042 13.4
#16 0.038 10.1

#17 0.057 29.2
#18 0.041 15.8
#19 0.017 11.0
#20 0.025 63
#21 0.039 23.4
#22 0025 11.8
#23 0.023 14.2
#24 0.023 12.6
#25 0.085 1.0
#26 0073 2.7
#27 0.079 3.9
#28 0.081 4.3
#29 0.118 4.1

#30 0.085 9.4
#31 0.087 2.5

#32 0.287 2.6

#33 0.159 1.6

#34 0.146 8.9
#35 0.176 2.7

#36 0.124 5.8
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Table 5-3. Training Data Set for" etwork Model -II
(continued)

#37 0.078 11.9
#38

,

0.067 30.6
#39 0.056 36.4
#40 0056 15.5
#41 0046 5.8
#42 0037 8.5
#43 0.081 38.0
#44 0.064 40.3
#45 0.040 32.4
#46 0.033 39.1
#47 0.059 21.7
#48 0.038 12.6
#49 0.022 3.7
#50 0.020 6.4
#51 0.076 22.9
#52 0.042 26.5
#53 0.023 13.8
#54 0.016 8.2
#55 0.050 31.1
#56 0.034 16.9
#57 0.028 10.5
#58 0.021 70
#59 0.086 28.1
#60 0.041 18.9
#61 0.015 22.3
#62 0015 24.9
#63 0165 26.0
#64 0.067 23.5
#65 0.013 11.6
#66 0009 10.7
#67 0.075 33.9
#68 0059 13.7
#69 0.164 89
#70 0.051 5.7
#71 0056 9.5

#72 0.051 11 4

#73 0.023 53
-

#74 0017 1.3

datll set c(}/~forms to tlte peru}(1 1c)92-1993 (OWRB el al., 1996)
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and target chlorophyll a level data in the lake f r th p riod 19 _ - 19 u ed to train

eural r hloroph II a . di ti n in the

upper and lower r aches of the lak ' using phosphoru concentration gen rat d by

Neural etwork Model - I for the period 1977 - 198 - a shown in st p 9, 17 20 and 21

(Figure 5-1). Predictions at step 17 were used to characterize the trophic tate of the lake

u ing chlorophyll CI as indicator before applying rho phorus reduction alternatives. The

model was further used tor making chlorophyll ({ prediction at Tahlequah to evaluate

the trophic state of the lake again t different input phosphorus reduction alternatives

(step J 9) as shown in steps 20 and 21 (Figure .5-1). Tahlequah wns modeled a upper

reaches of the lake and reduction alternatives ere evaluated at Tahlequah because of

availability of p-concentration data and the abi Iit)' to calculate trnnsport losse and

phosphorus contributions from point and non-point sources at Tahlequah for the period

1977 - 1985.

Steps 14. 15 and 16 (Figure 5-1) developed u neural network ( eural Network

Model - III) (or secchi disk value predictions using in-lake phosphorus and ecchi eli k

value data sets available for the same period (0 WI{ B et aI., 1(96). rhe training data set

lor conditioning this network is given in Table 5-4. The table contains input pho phorus

data and target secchi disk value in the lake t()r the period 1992 - I()93 used to train

I eural etwork Model - [If. The model was then used for predicting sccchi disk values

tor characterizing the trophic state of' the lake before applying phosrhorus reduction and

evaluating the trophic state of the lake against d i ITerenl pho phorus reduction alternatives

as shown in steps 18.20 and 22 (Figure 5- J). Th' input phosphorus values corresponded

with values used for the phosphorus \'s. chlorophyll ({ model, cllnblillg comparison of the
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Table 5-4. Training Data Set for ecchi D" k i.mulatioll

Serial # Input - P Target Secchi
Lake (mgtl) Lake (m)

#1 0.061 1.00
#2 0027 1.60
#3 0.023 1.70
#4 0.016 2.40
#5 0.058 0.70
#6 0.056 1 30
#7 0.051 1.60
#8 0.031 1 60

#9 0.069 0.70
#10 0.034 1 23

#11 0.020 1.65
#12 0.014 1 70

#13 0.069 090
#14 0.057 1 50

#15 0.042 1.70

#16 0038 2.20
#17 0.057 1 00

#18 0.041 1.60
#19 0017 1.80

#20 0.025 2.30
#21 0.039 1.90
#22 0.025 230
#23 0.023 2.60
#24 0023 4.30
#25 0.085 1 70
#26 0073 0.70

#27 0.079 0.75

#28 0.081 0.80

#29 0.118 0.30
#30 0.085 1 70
#31 0.087 1.45

#32 0287 000
#33 0.159 0.30
#34 0.146 027

#35 0.176 030
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Table 5-4. Training Data et for 'ecchi Disk imuhltion
(conlin /.fed)

#36 0.124 0.48
#37 0078 1.20
#38 0.067 1.40
#39 0.056 1.20
#40 0.056 1.40
#41 0046 2.00
#42 0.037 2.20
#43 0.081 0.95
#44 0.064 1 15

#45 0.040 1.55

#46 0.033 1.40

#47 0.059 1 20

#48 0.038 150

#49 0.022 210

#50 0.020 2.00
#51 0.076 0.85

#52 0.042 1.20

#53 0.023 2.10

#54 0.016 3.00
#55 0.050 1.30

#56 0.034 1.95

#57 0.028 2.50

#58 0.021 2.80
#59 0.086 0.80
#60 0041 1 40

#61 0.015 2.30
#62 0.015 200
#63 0.165 0.45

#64 0.067 100

#65 0.013 2.40

#66 0009 3 10

#67 0075 090

#68 0.059 1 40

#69 0.164 2.80

#70 0.051 3.30

#71 0.056 1 10

#72 0.051 220

#73 0.023 210

#74 0.017 2.80

data sel cm~/orms to the period /992 - /993 (OWNB et fIl.. /996)



These nwnber were governed by data availability.

r lation between pho phorus and chi rophyJl G. and pho ph ru and cchi disk data.

Finally, the three neural network models de. cribed thr r lation hip n d d for

. which d .fin dSev nty-four data points were u ed to conditi n the

trophic state a pred icted by the t 0 indicati param t r .

characterizi ng the eutrophication state of the I<Ik ' ,md evaluati ng pho phoru r duction

alternative. All three neural network model weI' oenerated u ing commercially

available software ( euralysl- Che hire Engineering Corporation). The r latiol1ships

established using the A model were:

l. Phosphorus concentration at Tahlequah vel' us phosphoru cone ntration in the lake

(P vs. P model, Neural Net Model I - Figure --I).

2. Phosphorus concentration versus chlorophyll u concentration (P v.. chlorophyll a

model, eural et Model II - Figure 5-1).

-,.....,
='"
'):I,

I:'-,
~I

3. Phosphorus concentration vel' us ecchi disk value (P vs. ecchi <.Ii 'k mod I, N ural

et Model III - Figure 5-1).

Once these models were developed. they were applied to 1'ive alternati.v

phosphoru reduction levels, as illu trat d in steps 13. 16,20.21 and 22 in Figure 5-1,

respectively. A total often predictions were obtained, five each for chlorophyll a and

~~...n
,J
?

3

secchi disk values. These predictions were a signed a serial number o1"C I through C5

and S I through 55, respectively. C I through C - were related to val uution with

chlorophyll a predictions while alternatives S 1 through 55 were related to evaluation with

secchi disk predictions. The phosphoru reduction alternatives evaluated in this tudy

were as follows:

T



('f (lJ1(.! Sf. Complete phosphorus removal t'l'Om point ources. Peak flow data at

Tahlequah and channel phosphorus Josse per mi Ie \. ere required to perform this

analysis. log-normal distribution wa develop d f r peak fl data .t Tahl quah from

available records for monthly peak flow values in cublc feet p r C nd from 1977

through 1985 ( SGS) and is presented in Figure 5- .... The 95 1h p rcenriIe alue wa used

for modeling the reasonable worst-case itnation ofphosphoru loading. Further, the

contribution from point sources at Tahlequah .. a. calculated \. ith the h Ip of 50lh

percentile channel mile loss value adopted from log-normal di tributions of channel loss

function developed in an earlier study and presented in Figure 3-2 (Harton, 1989). The

channel mile 10 s allows calculation of the amount of phosphoru. assimilated and

degraded in the river per mile. Since eutrophication is a gradual proces , the u e ohhe

501h percentile value for channel loss function was considered justified.

The contribution to phosphorus loading from each point source was estimated by

calculating the total mass of phosphorus in the discharge ofindividu<.ll point ources

reported by Harton in 1989. The channel mile loss ,"unction \·vas then used to e tablish the

total amount of point source phosphorus lost in [rnn. mission from the re pectiv point

source to Tahlequah. The phosphorus mass lost W::lS then subtract d ["rom the total

phosphoru load discharged by the individual poi III ouree to calculate the pho phorus

load without point source contribution at Tahlequah. Sample calculations for estimation

of phosphorus contribution at Tahlequah frol11 a point source are provided in Appendix -

r. Point source contributions calculated from available data for all treatment plants

upriver of Tahlequah are given in Table 5-5. The table presents the phosphorus amounts
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Table 5-5. Point Source Contribution at Tahlequah (OWRB et aI., 1996)
~icrht

; I #
\

Name of
Crcd{

Location Amount
Input
(Kg)

Amuunt Lost
in Transport

(Kg)

Amount
Reaching

Tahlequah (I~g)

('oncentnttinn
at Tahh~(luah

(mg/I)

6"
7 .
8~

9*
TO

Clear Fayetteville (Arkansas) 3.5818 3.5818 0 0
Osage Rogers (Arkansas) 50.7245 4.9678 45.7567 0.0014
Osage Springdale (Arkansas) 75.9649 9.9251 66.0398 0.0021

Lincoln (Arkansas) 3.2876 2.9726 0.3151 0.0000099
Gentry (Arkansas) 4.6575 4.0219 0.6356 0.000019

Flint I Siloam Springs (Arkansas) 14.6007 2.1779 12.4228 0.0004
Watts (Oklahoma) 1.3699 1.1479 0.2219 0.0000069

Westville (Oklahoma) 7.9452 4.5397 3.4054 0.0001
-...J

I 0* I Midwestern Nursery (Oklahoma) 1.6438 0.5726 1.0712 0.0000033::;..

Osage (Total) Rogers + Springdale 126.6894 14.8929 111.7965 0.0035
Total 144.8719 20.6526 124.2193 0.0041

-

* - from available data



nowing into the river, amounts 10 t in tran p rt t TaW quah, r idu I n un and

concentration left at Tahlequah from til tr atm nt lants COil id r d in thi tud.

In thi alternati e, the contri.bution from all I int our v a ummed and

subtracted from the total phosphoru concentration at TaW quah. P . hI roph' 11 a and

P vs. secchi disk A models developed earlier ere appli don th modifi d

phosphorus concentration data to pr diet chloroph. II a concentration and cchi disk

values for evaluating the effect of point ource loading on the utrophication of the water

body at Tahlequah.

C2 and .'12 - Fifty percent reduction of pho phorus contribution from non-point

source above Tahlequah. Point source contributions were subtracted from the total

phosphorus concentrations and the val ue obtained wa the non-point source contribution

at Tahlequah. This value was then reduced by 5(}(Xl to obtaintifty percent reduced non

point source phosphOl'u mass at Tahlequah. Total point sourc contributi.on at Tahlequah

\. a then added to the fifty percent reduced nOll-point sourc alue to ohtain th total

phosphorus mass at Tahlequah. corresponding to i1 50% reduction in non-point ource

loading. The reductions were sub equcnlly applied to input phosphorus value for

predicting chlorophyll a (alternative (2) and sccchi disk values (alternative 2). hi

methodology of calculating phosphorus concentrations with non-point ~ource pho phoru

reductions at Tahlequah was applied lor all the remaining alternatives.

C3 and S3 - Seventy-five percent reduction of pho phorus contri but ion from 11011

point sources above Tahlequah. The reductions were applied to input phosphoru values

for predicting chlorophyll a (alternative C3) ami sccchi disk valucs (altcrnative S3).
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(-I and S4 - Eighty percent r duction f ph phoru ontributi n fr m n 11-point

sources above Tahlequah. The reduction wer appli d to input phD phoru alues for

predicting chlorophyll a (altemativ C4) and c hi di k valu (alt rnative 84).

C5 and 85 - Eighty-five percent reduction of pho phoru 0 tribution from n011

point sources above Tahlequah. The reduction were applied to input pho phorus value

"or predicting chlorophyll a (alternative C5) and s cchi disk value. (alternative 5).

Initially. total point source reduction wa. conidered to determine if these sources

had a significant impact on eutrophication of the Iake. This tep \-vas rerformed as a

confirmation of results obtained from previou . studies which showed th insignificance

of point source contribution to overall eutrophication of the lake (Harton. 1989 and

OWRB et aI., 1996). No further work with point source contributions was deemed

necessary.

For non-point sources, the reductions were chosen to match the reductions

evaluated in earlier studies for comparison purposes (75% and 80 IYc»). Fifty perc nt

reduction of non-point source contribution was chosen arbitrarily to provide a b nchmark

for assessing ,'urther reductions that would be required for controlling cutrophication.

:'.1 Model Development

The critical factor in this study was the dcvelopment of swbl c and reliable neural

network for making precise predictions. The How chart in Figure 5-4 presents a

generalized methodology for development of neural network models. The networks for

this study were prepared in four steps a highlighted by the flow chart and discussed

subsequently.



,'T RT
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o

Formulation
Appropriate?

Yes

o

Formulation of
the Problem

System Design

System Realization and
Implementation

STOP

Figure 5-4. A General Methodology for the Development of Neural
Network Systems (Kanlyiannis and Venctsanopoulos, 1993)
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1) Step 1: Problem Formulation: Thi

using a neural network. in the pr ent tud , a ailabl data t

wd b ol eel

t bli h

relationships between pho phorus v . chlor ph 11 a and pho phorus . secchi

disk alues (OWRB et al.. 1996) made the problem am n bl to n ural n twork

anal sis.

2) S'lep 2: System Design: This stepinvol d the data conditioning for neural

network model development. Th model stablished a relationship between

phosphorus in the upper and lower reaches of the lak . The sampled data used for

conditiolllng the network model for e tabli hing this relation. hip between

phosphorus and chlorophyll ({ was edited to include ome ri rine zone data,

entire lacustrine zone or 10\ er reaches of til lake and part of the transition zone

data Crable 5-3). This was done because some data exhibited a negative

relationship between chlorophyll a and pho phorus, where high relative p

concentration produced very low chlorophyll CI reading. Th is se ming anomaly

was explained on reach-specilic and ell mical ba es by OWRB el a!. (1996),

whidl uggested that some reaches may he nitrogen or sUlllight limited. The

majority oftlle other sampling locatiolls. however, was shown to b trongly P

limited (OWRB et aI., 1996). The data from these reaches were employed in thi

effort. This meant that the subsequent eutrophication models more closely

simulated the lacustrine sections of the reservoir (stations 5. 6 and 7 in Figure 2-1)

where OWRB efforts indicated phosphorus limitations (OWRB el aI., 1996).
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3) Step 3: y tem R alizati nand Impl m I1t ti n: Thi P I Iud d . ari u

rmutations andimulations carried out to dip an ptimlUll n tw rk.

combinations were tested for developing the optimum networks.

pecifically, in the P v . chlorophyll (I mod I (Neural et l d I II) the

approach for building a network model ",,las di ided into two part: ith and

without the genetic super isor. ModeJ d elopment \i ithout 1he genetic upervisor

was filrther divided into two phase. In the fir 1. several network architectures

were te ted to arrive at the most appropriate configuration or layers and number

of Jay rs per neuron. Different alternatives were tried by V81"" ing the network

architecture until orne consistency in results in terms of prediction accuracy and

numbers of iterations were achieved. Changing the number ( " hidden layers and

the associated neurons per layer varied the network architecture. This was done to

f-ind an optimum number of interconnections in the network Illodel for the most

accurate training results. This 'tep was nol only important rrom the point of view

of accurate predictions but aloin terms or computational and training tim

utilized. Highly interconnected networks lend to have a very slow learning rat

and carry a computational ti me burden. I>; trel1lely simple nel work have less

computational time but may end up without any learning after training on a data

set. Tile varioLls parameters specitied in the lirst phase ol'model development

were as follows:

Transfer Function: Since the concentrations of chlorophyll 11. secchi disk data

and phosphorus were not discretized, this study required !"unctions with

col1tinuously discriminating OLltputS. Therefore, only differentiahle functions were
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evaluated for p rforrnanc. in th I.gm id f\Jllcti n J a 111m nl' u d

function in neural network application ..it \ a u d for all imuJati n in this

tudy.

Learning Rate (LR): A value of 0.7 was u eel for te ting ral 11 twork

architectures in the first phase of model de lopment. This value i th d fault

value provided by the software. Since there was no basis !()r selecting this value

except by trial and error, it was left uncilang d as a fir t C1ttell1jl tor model

development.

Momentum: A value of 0.9 was used j n til first pha e of model developm nt.

Chis value was chosen based on the a ailable training data 't. which had a lot of

inconsistency (different chlorophyll a value for similar phosphoru values). The

value of 0.9 was chosen so that no particular data point unduly affected the

learning of the network.

Inpur Noise. Input Noise is only in effect hen training u nctworl , and a value

of 0.0 I wa specilied for thel'ir t pha e or model devdopmcllL. Thi valu

'nsured that the j nputs for trai ning to t he network model constantly varied a

input ± input*O.O 1.

Traininl{ ToleraJ7ce: The training tol ranee tor each simulation was tat 0.2,

based on standard experimental errors obtained in measurinl.!. chlorophyll a. This

value was adopted from Standard Methot/sf{JI" Examinatio/1 of Water and

Wastewarer. 18 111 edition (Standard Method.. 1992).
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.2), bas d n guid lin provided in

lu had ton or thi tudy. ThiTesting Tolerance: A al.u

be k pt greater than the training tal ran

the oftwaJe manual.

Epoch per Update: The valu for thi param t r wa et to on a th numb r of

training data points was not very large and updating after very run 0 r the entire

data set was not time con llJ11ing.

Error Limit: A alue of 0.01 was Llsed in thfirst pha e of mod I de lopment

to avoid overtraining of the n twork model. The error limit b ha a a boundary

and terminates training when the limit is exc ded. Time Limit and Epoch Limit

were set to a value of zero (no limit), as each imulation duration wa manually

controlled. The training was stopped wh n it was observ d from error plots that

the network had stabilized (plateau reached in the error vs. epoch graph).

The second phase of model development ithout the genetic supervisor was a

param t r uncertainty analysis to e tablish optimum values r()r th Learning Rate

and Momentum to be used for network dcvc lopment. This phiJse wa contingent

on the j'ir t phase, as the permutations and combinations with the two parameter

were performed on the optimum network architecture developed in til tir t pha e

of study. A range of values were tested for the two parameters \0 disc rn any

underlying trends in network performance with increasing or decreasing values of

\hese parameters.

The next tep was to generate optimum n tworks u ing the genetic supervisor.

In the present study three basic control Iillg parameters or three strings were

available for developing an optimum netv,'oJ-k. The three srf·il1gs controlled:



bI) input column, 2) network configm i n. an

combination of all tluee strin~s wa u d t d tin an uraln tVlork

configuration. Each of the thr e strings mention d abo wa tr t d a afeature.

By manipulating or varying the efeatures th oftwar t cr at n w

generations (different networl s) with th resulting Slruclun' f ach generation

being evaluated tor fitness. The input column string is l11anipulat d by treating

each column of data as an individual candidate for inclusion or exclu ion. Since

there lS a single column of input data (pbo phorus a inputs only). used for this

study this control parameter was rendered redundant. Th nct \ ark configuration

sIring is varied by keeping the "irst (input) and last (output) la er can tant and

changing the number of hidden layers with the number of n lIron per hidden

layer. The network parameters string is varied by changing momentum, learning

rate. and input noise. The software did the variation in string parameters during

imulation time witb no interterence from the u ·er. The user inputs r quir d for

the genetic supervisor were as follows:

Population Pool Size: A value of3 was chosen for Ihis study. Th value wa

chosen atter everal permutations with di Ilerent values. Jtwas observ d that th re

was no increase in percentage of"Right" score by increasing the value above 3.

Exceeding 3 resulted in additional computational times.

Population Pool Mode: Immigration mode was used in this study a il

corresponds to the most versati Ie population manag ment mode. In immigration

mode. weak slruclures are continuously culled. improving the slmc!ure with

every run.
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Crosshreeding: alu f L \i U d mntind

below in th Mutation Rat alu ti 11.

MulCtlion Rale: low valu of 0.1 a. L1. d £ r thi md b cau fthe

randomne s of the method of I cting strllcturefeatures f r mutation.. hances of

losing good tructures dictated a low alue of mutation rat ith mar

consideration as igned to cro breeding (hy s lecting a larg '1' valu ) for

generating a robu t network.

To determine the fitness of a generated structure, Train l!.'rror was pecified for

generation of the best structure with the same basi for .electing an error tolerance

as explained in the section tor developing networks without g netic upervisor.

Generalion Count: A val ue of IOwa spcci lied for the current tudy and this

value was cho en after evaluating the perlormance of n twork generated with

higher and lower generation counts.

.:--:...c:.:-...:..-~=,-,---,-~~::..:.....::...:...:::ce,,--t-,-,M-,-,o""d=.:e~I-,Ic..L): Wi 1h the expe ri cnee ga i ned fro III

developing P vs. chlorophyll (/ and to avoid guessing the optimum combination of

parameters for the best network by trial <lnd error, the genetic sUj1ervisor was

employed for developing the optimum network relationship between phosphoru

concentrations in the upper and lower reaches of the lake. The training tolerance

Llsed in the development of this model was 0.2 again, based Oil standard

experimental errors obtained in measuring phosphorus. This value was adopted

/I'om ,I.,'/Ondord A;ferhod,'./()r Examination (If Wafer and Was((,\1'Ofer. 18 th edition

(Standard Methods, 1992).
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a d elop d to

tabli h a relation hip bet 11 pho ph ru ncentrati 11 and hi di k

valu . The model was develop d u ing the g 11 tic up rvi or. Param t r

specitications for developing thi network model corre ponded with th param ter

pecitication tor P vs. P mod I or P v . chloroph. II a 111 did velop d using

genetic supervisor. The data for P . ecchi disk data obtaincd from the lak w re

not a disaggregated as the P s. chloroph II a data obta in d 1'1'0111 til lake. This

made the model development ta k ea i r, ha ing de I ped thc P . chlorophyll

a model.

4) Step -I: System Verification. The system vcriJication tep eh ck th efficiency of

the network model developed. The percenta.ge of "Right'" scores w used as an

indicator of the model efticiene in ever, phase of mod I development.
.1

"II

.
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Chapter 6. Re uJt and, D· cu ion

R ult 0 btain d are divid d int tWi at ri: 1 tll ith m d I

development, and 2) those obtained b evaluation f managem nt alternativ . ach of

the e j further divided to reflect speeitic aeti ity.

P vs. Chlorophyll a model development without genetic super isor

Table 6-1 lists the model architecture and result obtained in term f number of

layers, neurons per layer, percentage of "Right" scores, and number of training epoch in

thi' first pha e of model development. The percentage of "Right" scores was measured

by the number of predictions within specified tolerance limit or the training data. Among

the 2, 3, and 4-layer back propagatipn network models, the best results measLLred by

percentage of "Right" scores were obtained with three layer network models in terms of

consistency of prediction. A consistent prediction aI' 66% percent "Right" was obtained

with three layer networks. Four layer networks lacked consistency in making right

predictions Cfable 6-1. Serial umber's 6. 7, Rand 10), and a 2 la. cr network xhibit d

little or no learning with the input data set. Predictions from four la_ er networks varied

from 61 % to 69% ·'Right".

Figure 6-1 includes the root-mean-square (RMS) error plots of' the various

alternatives. The RMS error plots arc used to monitor the network training and testing

process. It is a representation of the di fference hetween the actual output and the target

output in case of training data after every simulation. The testing error curve is arrived by

testing the training data after training is done. The error is the root-mean-square oftbe

di llerence between tested predictions and target outputs. These plots serve two purposes:

1) they tell us the maximum learning achieved iJnd 2) they tell us the consistency in the
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Table 6-1. Alternatives for Building eOiVo.'k odel-II (without genetic upervisor;

Serial # # of La~crs Neurons per layer' 0;, Right # or Epochs
I 3 1 7 1 66 4896
2

.., 1 15 1 66 3456.J

:; 2 I I 61 4000
4 .., I 5 I 66 4064.J

5 :; I :; I 66 4016
6 4 I 10 I I 62 8448
7 4 I 1 10 I 69 8000
8 4 155 I 66 4480
') :; I 29 1 66 4064
10 4 I 29 5 I 61 5504

* - each value corresponds to number or neurons in each layer sequentially
Learning Rate = 0.7; Momentum = 0.9' Input oise = 0.01: Training Tolerance = 0.2;
Testing Tolerance = 0.3' Error Limit = 0.01: other parameters hod £!c.:jclUlt values 010.
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learning approach. Th oretically campI t I ammg an b ai urr d hen the

training cur dip to a zero on th -roo. [n that it can b aid that th ntis

predicting the xact target value sp citied and i b having a th ph nom non that it i

suppa ed to learn. If the error curv indicate a valu of 0.2 n th

the predicted value from the net i 20% otf the mark tram target al u II1 of

network training. Secondly, if there ar' harp peaks in the cur and not a gradual

de cent in the eLlrve, it implies that the network pI' diction are not reliabl . In uch a

case, the network learning is inapl ropriate and accurate predictions re mor by chance

than actual learning. "Testing" and ''Training' error wa plott d against the number of

epochs in RMS error plots to evaluate network learning. RM rror plot for 3 layer

networks (Serial # L #2 .. #4, #5, and #9) exhibited similar charact ri tic, with gradual

stabilization of the "Testing" and "Training" error plots. That i . the error curves became

straight lines after an initial variation. The simi larity of error plots ohtained with three

lay r networks also highlighted the consist nco in pr dictions obl<:lined with th

network . The indi fferent behavior of a two lay r network was man Ire t d in the traight

lines of RMS '"Testing" and "Training" data error plot (Figur 6-1. Serial #3) where no

variations were ob erved in the percentage of correct prediction during simulation run-

ti me. Though the four layer network with I, I. 10. and I neurons r r layer produced the

most accurate results. the network lacked tability. as hown in the RMS "T ting Data"

error plot for the network (Figure 6-1, Serial #6). Th pikes and undulations in the curve

established the instability of the network with increased chances ol"crrmic predictions on

'ubsequent use of the network model. From t.his tirst phase of tudy. it was concluded

that a 3-layer network was the most appropriate for this application.
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The numb r of n uron p r la r for pti LlllZ d p rfi rm n , b r, couJd not

be decided in this initial pha e of tlIdy beau e ofth imilarit in I' ult obtain d from

three layer networks, as present din erials #", 1,2 .. 4 5 and 9 in Tabl 6-1. cond

phase of model development without the genetic supervi or:D I' the P . chI r pbyll a

model employed a three layer network model to I 'termine the 1110St appropriat

configuration. Any of the three layer models could hay been cho. n for tbi parameter

uncertainty analysis. as all performed imilarly. For thi effort the thr e lay r mod L

chosen had I. 7. and I neurons per layer. Table 6-2 highlight the er~ ct of modifying the

learning rate and momentum on performance measured by p l'Centage of "Right' core

and number of training epochs required to achieve the carre ponding I ercentage. The

values for the 1 arning rate and momentum were chosen randoml. to cov r a wide range

of typical user-specilied input possibilities. The n twork did flot perform well at values of

0.1 and 0.05 lor learning rate. Similarly, beyond O.IS the network pertormance was

. imilar, with approximately the same number ol'training epochs. This made the sel ction

ora definite value for learning rate extremely dil'licull. Variations in morn ntum had v ry

little en-ect in improving the performance of the lhl'ee layer network. as pr sent d in the

data corresponding to serial # J and erial #'s 1~ Ihrough 20 in Tahle 6-2. It was th refore

concluded that learning rate and momcntum do not have a signitic3nt cflect on network

performance as long as values selectcd did not specil-jcally fall within the ranges

mentioned above where the network performance was noticeably pOOl".

Even with this lack of variation ill model pertormancc given altcrnative operating

configurations. the two phases of this part of the study did provide an idea of general

etlects of network architecture anclnetwork parameters for developing an optimum
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Table 6-2. Performance of a 3-layer envork, ith a."ying
Learning Rate and Momentum Input

Serial # Learning Rate Momentum 'y" Right Epochs
I 0.70 0.90 66 4896
1 0.50 0.90 65 4189
3 0.80 0.90 62 4050
4 0.10 0.90 SS 4063
5 0.15 0.90 68 5989
G 0.20 0.90 66 5084
7 0.27 0.90 66 5578
S 1.00 0.90 6() 5500
9 0.05 090 57 4945
10 0.90 0.90 65 4641
II 0.60 0.90 6(1 5105
12 0.60 0.50 66 5225
13 0.70 0.30 (14 4827
14 0.70 0.70 64 4116
15 0.70 o 10 (14 50 II
16 0.70 0.55 M 4472
17 0.70 0.115 64 4200

18 0.70 005 (16 4175
19 0.70 LOO (15 4467

10 0.70 0.00 64 4503



b trial and rrornetwork. Itwas concl uded that th b t n twor that auld b d v I .

with the given training data was a thr e lay I' networl. The b

network, however, remained unclear. These two pha e of m did velapm nt without

the help of the genetic upervisor did erve a a l asi for evaluating the optimum network

\Nhen the genetic supervisor was mployed.

P \'s. Chlorophyll a Model development with g(;.netic supervisor

Table 6-3 lists the performance of ix imulations in terms or number of layers,

neurons per layer, p rcentage of "Right" scar S,l1ld number or epoch.' developed with

genetic supervisor. The genetic parameters used Ic'll' the simulations arc detailed below

the table and include initial value specifications Illl' momentum, learning rate, input noise,

mutation rate and crossover setting. The variations ill the network size and in

performance were probably due to the method 01' learning emplo. ed hy the neural nets.

The genetic supervisor specified the best model <IS a J-Iayer network with 11 neuron in

the hidden layer, Although there was no signilic<l1l1 dinerence in (he performance of

networks suggested by the genetic supervisor. serial #3 (Figure 6-2) was selected a th

network for chlorophyll (/ predictions hccause ol'lhc highest "Right" prediction core

Smooth curves without spikes charactcrized the sl"hi Iity of the nel work model. The

network architecture and network parameters suggested by the genetic supervisor was

used for training Oil the given phosphorus vs, chlorophyll a training data, This network

was adopt~d for all chlorophyll (/ prediction suhsequently made in this study.

P \'s. P network model

Table 6-4 lists the outputs from several sil1lulations developed with the genetic

supervi:m, Initial parameter specifications are dclai led below the tahle and include
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Table 6-3. Alternati es for buildinG etv o.ok Model -I[

(with crenetic .'iupervi or)

Serial # # of Layers Neurons per layer '1.. Right # of [[lochs
I

.,
I 18 I 66 6272J

:2
,

I 18 I 66 4960J

J J 1 II I 68 7904
4 J I 14 I 64 6912
5 3 I 26 I 64 4352
6 1 I l 61 7424

lclusiol1 Rate = 0.75· Learnincr Rate = 0.5: Momentum = I: 1111Ul Noi e = 0.0(II eo I 1;
Crossovers = I; Mutation Rate = 0.1 (excerl Serial #6 (0.2)): FilI1CS' Limit = 200

(except erial #3 (100)): Pool Size = 3)
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Tab.le 6-4. Performance of m"ious ironIa ions for"
Developing en ork· ode) - J

Serial # # of La}ers Neurons per layer 'Yo Right # of Epochs
I 2 1 1 69 5024

:2 2 1 I 72 5152
3 2 1 I 69 10624
4 2 I I 69 6656
5 2 I 1 69 8000
6 2 I 1 72 10048
7 2 1 I 69 9536

8 2 I I 69 5504
-(uenetic Parameters: IncluSIon Rate = 0.75; l~carnlt1g Rate = 0.): Momentum = I; Input

olse = 0.0 1: Pool ize = 3; CroSSO\! rs = I: Mutation Rate = 0.1: Filne s Limit = 100)
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genetic parameters pecified for building the mod I. Th s includ mutation rat

crossover setting, initial pecification of momentum, learnina rat and input noise. From
t::>

the percentage of "Right ' scores recorded in abl 6-4, whi h . ari d from 69% to 72%.

and the similarities between RM error plot (Figure 6-3), it a concluded that these

simulations could be used interchangeably for making phosphoru prediction in the lake

based on inputs from available data for the minois River at Tahlequah. Oklahoma.

lthough the percentage of "Right" predictions were approximately the same for each of

these runs. the be t scores were recorded with tb 211d and 6th serial runs. ror thi study

the network suggested by serial #2 was chosen tor all phosphoru predictions and was

ba ed on the lesser number of epoch needed to attain the percentage of' Right" cores.

This implied a much lower computational load on the networl modcl and a faster

learning rate.

The network parameters generated for both networks wi 111 the genetic supervisor

are given in Tuble 6-5. The parameter values dil"lCn.:c1 li·om the initial valu sa ign d

before training the network. That is, the number or significant digits to which a gen tic

supervisor generated values was much higher than the values that were specified in the

lirst and second phase of model development without the genetic supcrvisor. This also

implied that the genetic supervi.sOI" provided a bcttcr network with a higher preclsion

level than the trial and error process. This further established the upprorriateness of

selecting the 21ld simulation with the genetic supervisor for all phosphorus predictions in

this study.
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Table 6-5. etwork Pat"ameters for odel- I and 1odel- II

Net\\ ork Model - I I\etnork Model - II
Learning Rate 0.524476 0.589297

Momentum 0.882992 0.379467
Input Noise 0.00992 0.001749

Training Tolerance 0.2 0.2
Testing Tolerance 0.3 0.3
Epochs per Update I I

Epoch Lim it 0 0
Time Lim il 0 0

Error Lim it 0.01 0.01
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P vs. Secchi disk model

The genetic parameters specified for thi m d I had i.d ntical alu those u ed

for the P vs. chlorophyll a model to maintain con i tency in appr ach. Th n twork

obtained from a single simulation with the genetic sup rvisor had a 9 % "Right' core.

Moreover. the horizontal "Training" error curve obtained in th RM. error plot di played

no spik s nor undulations, as shown in f-igure 6-4. implying a highly .table n twork. The

performance results in terms of percentage "Right" and tabilitye tahlished th selection

of this network model for all secchi disk predictions ill this tudy.

Network Models for Eutrophication Potentials under Phosphorus Reduction

Alternatives

These P vs. chlorophyll ({ and P vs. secchi disk value net ork models developed

were used to eva] uate the various phosphorus reduction alternati s. A mentioned, the

aim was to evaluate point and non-point source phosphorus reductions needed to Lower

chlorophyll (/ concentrations and rais' secchi disk alue to level where eutrophication

in Lake Tenkiller would be reduced. Tabl 6-6 gives the results or chlorophyll a

projections li'om the P vs. chlorophyll (/ network model before any phosphorus reduction

were initiated in the lake. The input rhosphorus concentration were obtained by running

the P vs. P network model on the phosphorus data et generated from pdfs prepared by

Harton (1989) for phosphorus concentration· at Tahlequah.

It was observed that for higher values orrho phorus concentrations (> 0.09 mg/L)

the corresponding chlorophyll a values were less than 10J.lg/L. This anomaly was due to

the inclusion ofa tew data points in thc training data set, as explaincd in Chapter 5,

which had negative correlation betwcen phosphorus and chlorophyll (f. A these were
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Table 6-6. Chlorophyll a Predictions in the Lake ing et'Nork od. - II

Serial # Input P (mg/l) Chlorophyll a (~lg/l)

#X1 0.0667000 23.21814209
#X2 0.0726000 21.00621826
#X3 0.0906000 12.18229004
#X4 0.1315756 7.13416016
#X5 0.0745000 20.11732910
#X6 00876000 13.41025635
#X7 0.0747000 20.00007813
#X8 0.1297175 7.16268066
#X9 0.0831000 15.61425781

#X10 0.1394723 7.04859863
#X11 0.0950000 10.70239258
#X12 0.0813000 16.51106934
#X13 0.0792000 1767407227
#X14 0.1060977 8.47462402
#X15 0.0842000 15.05177002
#X16 0.1629305 6.96937500
#X17 0.1709889 6.95828369
#X18 00712000 21.63683838
#X19 0.1124243 7.84558838
#X20 01145910 7.69664795
#X21 0.1091919 8.12604004
#X22 0.1233258 7.30845215
#X23 0.0990000 9.67882324
#X24 0.1195519 7.44154785
#X25 0.1699780 6.95986816
#X26 0.1041196 8.74873779

#X27 0.0686000 22.63822510
#X28 0.0700000 22.12327148
#X29 0.1169611 7.56038330
#X30 0.0925000 11.51364258

#X31 0.1502395 6.99472656

#X32 0.1456125 7.01215576

#X33 0.1558299 6.98046631

#X34 0.1552087 6.98205078

#X35 0.1778595 6.95194580

#X36 0.1247218 7.26884033

#X37 0.1018011 9.12901123

#X38 0.0624000 24.03731445

#X39 0.0773000 18.67070557
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region-specific within the lake til anal i f u d up 1) t11 t11 OWRB

n996) study indicated phosphoru limitation. Overall, chloroph II ({ value in th lake

indicated a Ilight utrophic stat ftll at r b d.

Chlorophyll (.{ predictions obtained with the P v . chloroph II (I model with

phosphorus concentrations modified to remove the arious point ource contributions

(alternative C I) at Tahlequah are given in Table 6-7. Figure 6-5 is ,1 plot f th

chlorophyll (( output obtained with point source reductions in phosphorus loading with

plots of chlorophyll a without any phosphorus reductions and breakpoint Ie elof

chlorophyll a between mesotrophic and eutrophic range. The similarity between

chlorophyll (.{ predictions without phosphorus reductions and with point ourc

phosphorus reductions can be gauged by the similarity of the two plots. Since total point

source contribution did not have any eHect on eutrophication of the lake, it was removed

from additional analysis. The remainder of the phosphorus control alternatives evaluated

[ocu ed on non-point source reductions in phosphorus loading.

Chlorophyll (( predictions obtained with SO(X) reduction in non-point s urce

pho phorus loading (alternative C2) are given in Table 6-8. The value 50% wa cho en to

provide a benchmark for assessing rcductions required in phosphorus loading from non

point sources [-'or controlling eutrophication in the lake. From the ncural network model

predictions. it was concluded that a SO(Yo reduction in non-point sourccs did not improve

the eutrophic ·tate ofthe water body as more than 95% of the randomly simulated

chlorophyll (./ values remained above the threshold level of 1O~Lg/l .. Il is to be noted that

ill terms of number of data points there seems to he an increase ill the number of

simulated output data points greater than 10)..lg/L when we compare chlorophyll a

112



able 6-7. ChlorophyH a Prediction at Tahlequah . ing len ork
Model - II without Point Source Pho phoru Contrihution

Serial # Input-P Tahlequah Chlorophyll a
(mgll) Tahlequah (~lg/l)

#X1 6.28E-02 21.15357422
#X2 6.87E-02 20.28369873
#X3 8.67E-02 15.29894775
#X4 128E-01 7.72675293
#X5 706E-02 19.89391846
#X6 837E-02 16.23854004
#X7 7.08E-02 1985272217
#X8 1.26E-01 7.85509522
#X9 7.92E-02 17.62495361
#X10 1.36E-01 7.34331055
#X11 9.11E-02 1394897705
#X12 7.74E-02 18.15575195
#X13 7.53E-02 18.73883789
#X14 1 02E-01 1108741943
#X15 803E-02 17.29538330
#X16 1.59E-01 6.90916504
#X17 1.67E-01 6.86955322
#X18 6.73E-02 20.53879883
#X19 1.09E-01 9.74061768
#X20 1 11 E-O 1 9.42689209
#X21 1.05E-01 10.46155273
#X22 119E-01 8.43342773
#X23 9.51 E-02 12.80023438
#X24 1.16E-01 8.75982910
#X25 1.66E-01 6.87272217
#X26 1.00E-01 11 .54691650
#X27 6.47E-02 20.93333252
#X28 6.61E-02 20.73368896
#X29 1.13E-01 9.14010254
#X30 8.86E-02 14.70952393
#X31 1.46E-01 707078125
#X32 1.42E-01 7.15951172
#X33 1.52E-01 6.97888184

#X34 1.51E-01 698997315
#X35 1.74E-01 6.85370850

#X36 121 E-01 8.24645996

#X37 9.79E-02 12.06187012

#X38 5.85E-02 21.42451904

#X39 7.34E-02 19.23636230
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Table 6-8. Chlorophyll a Prediction at Tablequah illg etwork ode.1 - II
with 50% Reduced on-Point ource Contribution

Serial # Input-P Output Chlorophyll a
Tahlequah (mg/l) hlg/l)

#X1 3.53E-02 15.71249512
#X2 3.83E-02 17.12742920
#X3 473E-02 21.29617676
#X4 6.77E-02 23.78062988
#X5 3.92E-02 17.55682129
#X6 4.58E-02 20.65446533
#X7 3.93E-02 17.60593994
#X8 6.68E-02 23.99770264
#X9 4.35E-02 19.61029785

#X10 717E-02 22.36094238
#X11 4.95E-02 22.16446777
#X12 426E-02 19.18724365
#X13 415E-02 18.66436768
#X14 5.50E-02 23.82657959
#X15 4.40E-02 19.83846191
#X16 8.34E-02 1392204102
#X17 874E-02 10.07811035
#X18 376E-02 16.78993652
#X19 5.82E-02 24.38114502
#X20 5.92E-02 24.48572021
#X21 5.65E-02 24.12921387
#X22 6.36E-02 24.48572021
#X23 5.15E-02 22.86163574
#X24 6.17E-02 24.57761963
#X25 8.69E-02 10.56612793
#X26 5.40E-02 23.58732422
#X27 362E-02 16.13238037
#X28 3.70E-02 16.50314697
#X29 604E-02 24.55860596
#X30 482E-02 21.66535889
#X31 7.71E-02 19.21417969

#X32 7.48E-02 20.72893555

#X33 7.99E-02 17.04503662
#X34 7.96E-02 1729379883

#X35 9.09E-02 6.83311035

#X36 6.43E-02 24.41441895

#X37 5.29E-02 23.29261230

#X38 3.32E-02 14.76656494

#X39 4.06E-02 18.23180664
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prediction after point ource pho phow redu ti 11 a again t 0% n n-p int ourc

reductions. This is demonstrated by compari on of th two pie diagr, m in Figure 6-6,

which has pie chait repre entations of all the chi roph II a pI" dicti n a utrophic and

non-eutrophic categories for point source reduction. and 50% non-point ourc

phosphorus reduction alternative. Thi can be ascribed to the anomalou points in the

training data set. where higher input ph phorll value had low r chlorophyll a readings

against them. Consequently with reductions in pho phorus input the chlorophyll a values

were higher. This anomaly stabilizes with furth r reductions in phosphorus alues

because with further reductions the ranges of iIlpllt phosphoru values correspond to

training data areas where the anomaly between phosphorus and chlorophyll a relation

was absent.

Table 6-9 gives the simulated chlorophyll (/ values generated with a 75%

reduction in non-point source phosphorus loaclin o (alternative C3). Ev 11 with 75%

reduction in phosphorus loading from the non-point sources. morc than 95% of

chlorophyll (( values obtained were still above the breakpoint level or I0llg/L, betwe n a

eutrophic and me otrophic state.

Table 6-10 gives the chlorophyll a values obtained with an HO% reduction i.n

phosphorus loading from non-point sources (alternative C4). With this reduction in non

point source phosphorus contribution. approximately 72% of the values obtained for

chlorophyll a were above the breakpoint level or IO~lg/L, indicating a significant water

quality problem.

An 85°;11 reduction in non-point source loading of phosphorLIS inputs wa

simulated (,t1lernativ C5). The values generatcd hy this are given in T8ble 6-11, where
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Table 6-9. Chlorophyll a Prediction at TahJequah iog J nvorkModel- II
, itb 75% Reduced on-lloiot ourcc Contr-ibution

Serial # Input-P Output Chlorophyll
Tahlequah (mgtl) a (~tgll)

#X1 196E-02
~ ~

10.14465820
#X2 2.11E-02 10.51542480
#X3 2.56E-02 11.83370605
#X4 3.58E-02 15.94382813
#X5 2.16E-02 10.63267578
#X6 2.49E-02 11 .59286621
#X7 2.16E-02 1064852051
#X8 3.54E-02 15.73467773

#X9 2.37E-02 11.24111328
#X10 378E-02 16.88342041
#X11 2.67E-02 12.19971924
#X12 2.33E-02 11.10801758
#X13 2.27E-02 1094798584
#X14 2.95E-02 13.21378174
#X15 2.40E-02 11.31399902
#X16 4.37E-02 19.68001465
#X17 4.57E-02 20.58950195
#X18 208E-02 10.42669434
#X19 3.11 E-02 13.85232422
#X20 3.16E-02 14.05830566
#X21 3.02E-02 13.50849365
#X22 3.38E-02 1500740479
#X23 2.77E-02 12.55305664
#X24 3.28E-02 14.59385742
#X25 4.54E-02 20.47700439
#X26 2.90E-02 13.01889160
#X27 2.01 E-02 10.25240234
#X28 2.05E-02 10.35063965
#X29 3.22E-02 14.31023682
#X30 2.61 E-02 11 .98264648
#X31 4.05E-02 18.18427246
#X32 3.94E-02 17.62970703
#X33 419E-02 18.85291992
#X34 418E-02 18.78161865
#X35 4.74E-02 21.33895752
#X36 341 E-02 15.16268311
#X37 2.84E-02 12.81291016
#X38 1.86E-02 9.90381836
#X39 2.23E-02 10.82122803
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Table 6-10. Chlorophyll a Predictions at Tabl quah 'ing etwork odel - II
with 80% Reduced on-Point' ource Contribution

Serial # Input-P Tahlequah Output Chlorophyll a
(mgll) hlg/l)

#X1 1.65E-02 9.46967285
#X2 1.77E-02 9.71209716
#X3 213E-02 10.55662109
#X4 294E-02 13.20110596
#X5 180E-02 9.78498291
#X6 207E-02 10.40292725
#X7 1.81E-02 9.79607422
#X8 2.91 E-02 13.06008789
#X9 197E-02 10.17793213

#X10 3.10E·02 1383647949
#X11 2.21 E-02 10.79112305
#X12 1.94E-02 10.09395508
#X13 1.89E-02 9.99413330
#X14 2.43E-02 11.43125000
#X15 1.99E-02 1022546631
#X16 3.57E-02 15.89470947
#X17 3.73E-02 16.64891846
#X18 1.74E-02 9.65347168
#X19 2.56E-02 11.83845947
#X20 2.60E-02 11.97472412
#X21 2.49E-02 11.61821777
#X22 2.78E-02 12.58791504
#X23 2.29E-02 11.01928711
#X24 2.70E-02 12.31380127
#X25 3 71 E-02 16.55226563
#X26 2.39E-02 11.31083008
#X27 1.68E-02 9.53938965
#X28 1.71E-02 960276856
#X29 2.65E-02 12.13158691
#X30 216E-02 10.65485840
#X31 3.32E-02 14.75547363
#X32 323E-02 14.35935547
#X33 3.43E-02 15.25458252
#X34 3.42E-02 15.20229492
#X35 3.87E-02 1731598145

#X36 281E-02 12.68615234
#X37 235E-02 1117931885

#X38 156E-02 9.30805664

#X39 1.86E-02 9.90857178
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Table 6-1 J. Chlorophyll a Prediction at Tablequah in twork od 1- II
with 85% Reduced on-Point ource Contribution

Serial # Input-P Output Chlorophyll a
Tahlequah (mg/l) (~g/l)

#X1 1.33E-02 8.90876953
#X2 1.42E-02 9.05770996
#X3 1.69E-02 9.55681885
#X4 2.30E-02 11.03513184
#X5 1.45E-02 9.10841309
#X6 165E-02 947601074
#X7 145E-02 910841309
#X8 2.28E-02 10.97650635
#X9 1 58E-02 9.34133057
#X10 242E-02 11 .38846924
#X11 1.76E-02 970100586
#X12 155E-02 9.28745850
#X13 1.52E-02 9.23200195
#X14 1.92E-02 10.04958984
#X15 159E-02 936034424
#X16 278E-02 12.59108398
#X17 2.90E-02 1303948975
#X18 140E-02 9.02443604
#X19 2.02E-02 10.28884521
#X20 205E-02 10.36331543
#X21 1.97E-02 10 16842529
#X22 218E-02 1070239258
#X23 1.82E-02 9.82934815
#X24 2.12E-02 10.54077637
#X25 288E-02 12.96026611
#X26 1.89E-02 9.98145752
#X27 1.36E-02 8.95788818
#X28 138E-02 8.99116211
#X29 209E-02 1046630615
#X30 1.72E-02 9.61702881
#X31 2.59E-02 11.93352783
#X32 2.52E-02 11.70377930
#X33 267E-02 1219971924

#X34 2.66E-02 12.16802979

#X35 3.00E-02 13.42927002

#X36 2.20E-02 10.75309570

#X37 1.86E-02 9.91332520

#X38 127E-02 8.81687012

#X39 1A9E-02 9.17971436

120



approximately 50% of the value (Ten rat d w r b low the thr h ld I I of 1O~lglL,

increase the mean trophic respons in approximatel 50% to 75% of pI' .i ct d amples

while having a greater relative impact on eutrophication control in the lacu trine zone of

the lake.

The results of the remaining chlorophyll ({ simulations obtained from the 75%.

80%. and 85% non-point source pho phorus reductions considered me plotted in Figure

6-7. Figure 6-5 demonstrated that the plot obtained by point source removal follows the

chlorophyll a at Tahlequah plot. Thi tells us that point source removal alone can have no

bearing on the overall improvement of the eutrophication state of the lake. Figure 6-7

shows the improvement in the eutrophication statc of the lake wi th gr ater reductions in

non-point source phosphorus contributions at Tahlequah. This is concluded from the fact

that with greater reductions the plots move closer to the threshold line of IO).lg/L. The

maximul11 effect is achieved by 85% reduction in non-point source pho phorus

reductions. I'his deduction is made by observing lhat tile 85(% reduction of non-point

source plot has the maximum consi tency in staying below the breakpoint plot of] O).lg/L.

Similar deductions can be made from Figure 6-8 \vhich is a pie chart rcpre ntation of

chlorophyll ({ predictions distributed into eutrophic and non-eutrophic categories u ing

the breakpoint values ofl O).lg/L for the 75%. 8()'%. and 85% non-poi nt source

phosphorus reduction alternatives. It is observed that the non-eutrophic slice increa es

with greater reductions in non-point source phosphorus loads.

Each of the phosphorus reduction levels was evaluated with thc P vs. secchi disk

model previollsly developed. Secchi disk values greater than 1.98 mcters would establish

a non-eutrophic state in the water body. The initial secchi disk values without phosphorus
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Figure 6-8. Management Alternatives with Chi. a Predktions (Pie 2)
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'dent that

s than the

reductions in the lal< r present din Tabl 6-1 . Fr m Tabl -12 it

the lake was highl eutrophic as 100% [the hi alue pr

threshold value of 1.98 meters.

Results of secchi disk prediction with the removal of point source contribution at

Tahlequah are given in Table 6-1 J (alternati e S I). 11 the predict d alue with the

implementation of this alternative were still les' than the threshold value. again

establishing that point ource contributions had minimal impact on the utrophication of

the lake.

The effect of 50% non-point source phosphorus reduction is given in Table 6-14

(alternative 82). Though 99% of the secchi values were still belo the thre hold level of

1.98 meters. there was a significant improvement in the water quality compared to

aIternati ve S I, as observed by increases in the actual secchi disk va ILIes.

Table 6-15 gives the secchi values predicted with 75% reduction in non-point

source phosphorus loading (alternative S3). Approximately 72% or the secchi disk value

were greater than the threshold value of 1.98 mclers. Contrary to ohservations made by

chlorophyll (( predictions. a 75% reduction in non-point source phosphorus loading

suggested a significant improvement in eutropllicLllion control in the lal e. This goes to

the eutrophication indicator used, as the phosphorus levels used were Ihe same.

Obviously chlorophyll CI is a more re trictive metric.

Table 6-16 gives the secchi disk values predicted with an X()'Ycl reduction in non

point source phosphorus loading (alternative S4). Approximately Xl/Yo of the secchi disk

values were greater than the threshold value. Secchi disk values. if used as an indicator of

the eutrophication state...trongly favored the implementation 01' XO% non-point source

124



Table 6-12. ecchi di k in the Lak ing en ork od I- III

Serial # Input - P (mgtl) Secchi (m)
#X1 0.0667000 '" 1.31754425
#X2 0.0726000 'L', 1, .21794403

#X3 0.0906000 0.94050690
#X4 0.1315756 0.45405365
#X5 0.0745000 1.18763092
#X6 0.0876000 0.98395569
#X7 0.0747000 1.18387787
#X8 0.1297175 0.47180847

#X9 0.0831000 1 05266541
#X10 o 1394723 0.38274567

#X11 0.0950000 0.87858154

#X12 0.0813000 1.07908112

#X13 0.0792000 1.11300293

#X14 01060977 0.73278992

#X15 0.0842000 1.03592102

#X16 0.1629305 0.20837311

#X17 o 1709889 0.15987213

#X18 0.0712000 1.24161713

#X19 0.1124243 0.65628540

#X20 01145910 0.63131317

#X21 o 1091919 0.69468201

#X22 o 1233258 0.53589905
#X23 00990000 082401794

#X24 o 1195519 0.57602783

#X25 0169978 0.16579041

#X26 0.1041196 0.75761780

#X27 0.0686000 1.28564331

#X28 0.0700000 1.26168152

#X29 0.1169611 0.60446442

#X30 0.0925000 0.91437988

#X31 0.1502395 0.29613678

#X32 01456125 0.33207947

#X33 o1558299 0.25571930

#X34 0.1552087 0.26004974

#X35 0.1778595 0.12277466

#X36 0.1247218 0.52146423

#X37 0.1018011 0.78749786

#X38 00624000 1.39101746

#X39 0.0773000 1.14244995
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Table 6-13. ecchi di k at Tahlequah in n ork od 1- III
after Total Point ource P-r du tion fr nl Input

Serial # Input - P Secchi Tahlequah
Tahlequah (mgtl) (m)

#X1 6.28E-02 1.38481049
#X2 6.87E-02 1.28376679
#X3 8.67E-02 0.99795746
#X4 1.28E-01 0.48840851
#X5 706E-02 1.25186585
#X6 8.37E-02 104299408
#X7 7.08E-02 1.24854584
#X8 1.26E-01 0.50847290
#X9 7.92E-02 1.11256989

#X10 1.36E-01 0.41334747

#X11 9.11 E-02 0.93357819

#X12 7.74E-02 1.14100647

#X13 7.53E-02 1.17463959

#X14 1.02E-01 0.78489960

#X15 8.03E-02 1.09524811

#X16 1.59E-01 0.23406708

#X17 1.67E-01 018340088

#X18 6.73E-02 1.30729553

#X19 1.09E-01 0.69713593

#X20 1.11 E-01 0.67317413

#X21 1.05E-01 0.74664734

#X22 1.19E-01 0.58194611

#X23 9.51E-02 0.87742676

#X24 1.16E-01 0.61529053

#X25 1.66E-01 0.18931915

#X26 1.00E-01 0.81117096

#X27 6.47E-02 1.35175476

#X28 6.61 E-02 1.32764862

#X29 1.13E-01 0.64964539

#X30 8.86E-02 0.96995392

#X31 1.46E-01 0.32890381

#X32 1.42E-01 0.36138214

#X33 1.52E-01 0.28314545

#X34 1.51 E-01 0.29050720

#X35 1.74E-01 0.14327210

#X36 1.21E-01 0.56043823

#X37 9.79E-02 0.83917450

#X38 5.85E-02 1.46044891

#X39 7.34E-02 120553009
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Table 6-14. eccbi dO kat Tahl quo h in ork Mod 1- II
with 50% Non-Point ourcc R ducti n in Pho phoru

Serial # Input-P Secchi
Tahlequah (mg/l) Tahlequah (m)

#X1 3.53E-02 1.97476135
#X2 3.83E-02 1.92496124
#X3 4.73E-02 1.77714874
#X4 6.79E-02 1.45149932
#X5 3.92E-02 1.91009338
#X6 4.58E-02 1.80139923
#X7 3.93E-02 1.90836121
#X8 6.69E-02 1.46665588
#X9 4.35E-02 1.83921845
#X10 7.19E-02 1.39087311
#X11 4.95E-02 1.74120606
#X12 4.26E-02 1.85394196

#X13 4.16E-02 1.87039764
#X14 5.49E-02 1.65459717

#X15 4.41 E-02 1.82925842
#X16 8.34E-02 1.22342926

#X17 8.74E-02 1.16742218

#X18 3.76E-02 1.93636475

#X19 5.84E-02 1.59887878

#X20 5.94E-02 1.58314484

#X21 5.64E-02 1.63063538

#X22 6.34E-02 1.52064209

#X23 5.15E-02 1.70887207

#X24 6.19E-02 1.54388214

#X25 8.69E-02 1.17435089

#X26 5.39E-02 1.67047546

#X27 3.63E-02 1.95801697

#X28 3.70E-02 1.94646912

#X29 6.04E-02 1.56741089

#X30 4.82E-02 1.76242523

#X31 769E-02 1.31682251

#X32 7.49E-02 1.34626953

#X33 799E-02 1.27322937

#X34 794E-02 128059113

#X35 909E-02 1 11964294

#X36 6.44E-02 1.50505249

#X37 5.29E-02 1.68635376

#X38 3.32E-02 2.00954926

#X39 4.06E-02 1.88699768



Table 6-15. ecchi di kat Tahlequab in 'ork I od 1- III
with 75% on-Point oure [ duction in Pho phoru

Serial # Input - P Secchi
Tahlequah (mg/l) Tahlequah (m)

#X1 1.96E-02 2.23646454
#X2 2.11E-02 2.21134796
#X3 2.56E-02 2.13628693
#X4 3.59E-02 1.96465698
#X5 2.16E-02 2.20297577
#X6 2.49E-02 2.14797913
#X7 2.16E-02 2.20297577
#X8 3.54E-02 1.97302918
#X9 2.37E-02 2.16804352
#X10 3.79E-02 1.93145691
#X11 2.67E-02 2.11795471
#X12 2.33E-02 2.17468353
#X13 2.28E-02 2.18291138
#X14 2.94E-02 2.07291809
#X15 2.40E-02 2.16299133
#X16 4.37E-02 1.83589844
#X17 4.57E-02 1.80313141

#X18 2.08E-02 2.21640015
#X19 3.12E-02 2.04274933

#X20 3.17E-02 2.03452148

#X21 3.02E-02 2.05963806

#X22 3.37E-02 2.00117706

#X23 2.77E-02 2.10135468

#X24 3.29E-02 2.01445709

#X25 4.54E-02 1.80803925

#X26 2.89E-02 2.08129028

#X27 2.01 E-02 2.22809235

#X28 2.05E-02 2.22145233

#X29 3.22E-02 2.02614929

#X30 2.61E-02 2.12805908

#X31 4.04E-02 1.89017334

#X32 3.94E-02 1.90662903

#X33 4.19E-02 1.86534546

#X34 4.17E-02 1.86880981

#X35 4.74E-02 1.77541657

#X36 3.42E-02 1.99294922

#X37 2.84E-02 2.08951813

#X38 1.86E-02 2.25320892

#X39 2.23E-02 2.19142792
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Table 6-16. eccbi disk at Tahlequah ing ork Model- HI
with 80% on-Point ourc Reduction in Phosphorus

Serial # Input - P Secchi Tahlequah
Tahlequah (mg/l) (m)

#X1 1.65E-02 2.28871858
#X2 1.77E-02 2.26894287
#X3 2.13E-02 2.20860535
#X4 2.95E-02 2.07118591
#X5 1.81 E-02 2.26215851
#X6 2.07E-02 2.21813232
#X7 1.81 E-02 2.26215851

#X8 2.91 E-02 2.07797028

#X9 1.97E-02 2.23415497

#X10 3.11 E-02 2.04448151

#X11 2.21 E-02 2.19402618

#X12 1.94E-02 2.23949585

#X13 1.90E-02 2.24613586

#X14 2.43E-02 2.15793915

#X15 2.00E-02 2.23011322

#X16 3.57E-02 1.96725525

#X17 3.73E-02 1.94083954

#X18 1 74E-02 2.27284027

#X19 2.57E-02 2.13412170

#X20 2.61 E-02 2.12733734

#X21 2.49E-02 2.14740173

#X22 2.77E-02 2.10063294

#X23 2.29E-02 2.18074616

#X24 2.71E-02 2.11131470

#X25 371 E-02 1.94473694

#X26 2.39E-02 2.16457916

#X27 169E-02 2.28222290

#X28 1 72E-02 2.27688202

#X29 2.65E-02 2.12069733

#X30 2.17E-02 2.20210968

#X31 3.31E-02 2.01128143

#X32 3.23E-02 2.02441711

#X33 3.43E-02 1.99121704

#X34 3.41 E-02 1.99381531

#X35 387E-02 1.91832123

#X36 2.81 E-02 2.09399292

#X37 235E-02 2.17136353

#X38 1.57E-02 2.30199860

#X39 1.86E-02 2.25277588
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phosphoru r dllction for utrophi. ati n c ntr I in I rnpar d I thi 9 VcJ liCC

rate in low ring eutrophication ith s cchi di k pr diction a imilar non-p int oure

pho phoru r ducti n i lded onl a 28% 1I e ra a li d a

the metric measurement. To establi h a definite and po itive managem nt ·trat gy.

further r duction in non-point ource pho phoru \ er done for the ..ec hi di k

predictions.

Table 6-17 gives the seecbi value predicted with 85% reduction in non-point

. ouree phosphorus loading (alt mati e S5). II of the alue pr dictcd h P vs. seeehi

di k model value were above the threshold, indicating a non-eutrophic state of the wat r

body. Only 50% of the corresponding chlorophyll CI value wer positi e toward the

non-eutrophic state for the same phosphorus reduction level.

Figure 6-9 is a plot of all the secchi valucs obtained by anou. phosphorus

reductions considered. A observed with chlorophyll value, point sourc removal alone

does not h(\\'c any eff ct on the reduction of ccchi alue. This can hc deduced by

comparison of point sourc remo al plot against the plot of secchi disk alu at

Tahlequah. But there is considerable improvemenl in the eutrophication state of the lak

with any or the other alternatives. This i, reasoned hy ob er ing the mo em I1t fplot

clo er to the breakpoint of secchi value.. It is ohserved that 85% nnn-pnint source

phosphorus reduction has all secchi values above the breakpoint of l.lJR In, implying a

complete remediation or th lake with this alternuti e. The abo e deduction can al 0 be

made from the pie chart representation of results in Figur 6-10. It is ohserv d that the

.. lice corresponding to the non-eutrophic data range increas s rrom a zero to 100% a

pho phorus reductions are applied to the model.
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THbie 6-17. Seccbi di k at Tahlequah ing en ork odel - HI
with 85% Non-Point Source .Reduction in Pho phoru

Serial # Input - P Secchi
Tahlequah (mg/l) Tahlequah (m)

#X1 1.33E-02 2.34097260
#X2 1.42E-02 2.32610474
#X3 1.69E-02 2.28106812
#X4 2.31 E-02 2.17814789
#X5 1. 45E-02 2.32105255
#X6 1.65E-02 2.28814117
#X7 1.45E-02 2.32105255
#X8 2.28E-02 2.18291138

#X9 1.58E-02 2.30012207
#X10 2.43E-02 2.15793915

#X11 1.76E-02 2.27024200

#X12 1.55E-02 2.30401947

#X13 1.52E-02 2.30907166

#X14 1.92E-02 2.24324890

#X15 160E-02 2.29723511

#X16 2.78E-02 2.09991119

#X17 290E-02 2.07999115

#X18 140E-02 2.32899170

#X19 203E-02 2.22520538
#X20 206E-02 2.22015320

#X21 1.97E-02 223516541

#X22 2.18E-02 2.20008881

#X23 182E-02 2.26013763

#X24 2.13E-02 2.20802795

#X25 2.88E-02 2.08302246

#X26 189E-02 2.24815674

#X27 1.36E-02 2.33606476

#X28 1.39E-02 233202301

#X29 209E-02 221510101

#X30 1.72E-02 2.27616028

#X31 258E-02 2.13296692

#X32 252E-02 2.14307129

#X33 267E-02 2.11795471

#X34 266E-02 2.11997559

#X35 300E-02 2.06295807

#X36 2.21 E-02 2.19503662

#X37 186E-02 2.25320892

#X38 1.27E-02 2.35093262

#X39 149E-02 2.31412384
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Figure 6-10. Management AJternatives with Secchi Disk Predictions

133



80% Non-point Source Reduction

10%

85% Non1>Oint Source Reduction

0%

100%

o -Eutrophic _ - Non-Eutrophic

Figure 6-10. (cont'dfrom previous page) Management Alternatives with
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Ithough ecchi disk valu indicat dan im I" m nt.in utr phi ation with

mailer reductions in non-point sourc phosphol"u lading th a cur c and pr ci ion of

the secchi disk measurement had to b taken into account. S cchi di k m a ur ments are

prone to hwml.l1 errors and inconsistencies. The method of data collection do s not follow

a particular standard and the accuracy depend on the individual collecting the data as

well as specific field conditions, such as a sunny PI" overcast condition. Ii ting of some

a f the factors affecting secchi disk Illeasuremen t incl ude:

I. eyesight of the viewer,

2. time of the day the readings are taken,

3. the rdlectance of the disk,

4. the color of the water, and

). clay or other particles suspended in water (h(tp://www.iserv.l1el/~llllsaisecchi.html).



Chapter 7. ummary ~LDd Conclu ion

A detel111i.ni tic neural net ork m del pro id d an ad ane d hnique borrow d

from oth r di eipline for assessing th current ·tate of water quality and e aluating

phosphorus reduction goals for controlling the eutrophication of Lak T nkill r

Oklahoma. The salient features of th model re:

I. few param tel' requirements.

2. simple predictions which eliminated the need f r excessi e sampl ing. and

3. adaptiv learning approach which addressed highly disaggregatecl data.

In thi study the critical factor was model can truetion. Th re were two options

available for model development. which included model construction without a genetic

supervisor and model construction with a geneti.c supervisor. Though the adaptive

learning approach of neural networks helps in model ing disaggregated data the number

of iterations required to develop a robust model would be very large to construct a

network with optimum parameter peci tications. The genetic sup r isor largely r duced

the iterative problem by incorporating the strong\:st link from di ncrcnt network

architectur s evaluated in developing the optimum network. The ability to ero breed

and mutate hetween diff rent network architectures provided the gcnctic supervi or with

the capabilities which helped in reducing the number of iterations. I'he gainful

application of the genetic supervisor wa the hit!.h pOlnt in thi study relative to model

environmental data.

Model election was based on the percentage of "RighC scores made by a model

and the con istency xhibited in the learning process. The consistency in learning was

projected by the gracluaf dip in the testing and training error curves orthe RMS pLots.
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Spikes and udd n dip in the cur e impli d a los in learning r pur Iy coincid ntal

prediction efficiency. Care was taken to ob er th 111 d J p rf nnlC 0 r

epoch before.i udging the model performance.

As illustrated by the previou Iy collected data and corroborat db the model

Lake Tenkiller exhibited highly eutrophic characteristics as indicat d b both chlorophyll

a and secchi di k values. If the pho phorus reducti n utilized secchi disk data alone as the

indicator of eutrophication, non-point source pho phorus reductions 0(: 80% - 85% w re

needed to improve the lake water quality. Chlorophyll a simulations were more

restrictive, suggesting that non-point sou.rce reduction of at lea t 85% were required to

stem eutrophication oftbe Lake Tenkiller. Both parameters were utilized in this effort for

suggesting management goals to eliminate eutrophlcation. The tinal recommendations

from this study are:

1. No additional controls beyond existing rDES limitations are m: ded for point

source discharge for phosphorus, as they have little or no eff 1 on the

eutrophication state of the lake.

2. An overaU reduction of 80% to 85% for non-ruint source lading of phosphorus is

needed to reverse eutrophication in renkillc..:r. These values are consistent with earlier

studies by Harton (1989), and OWRB et al. ( 19l)6). Harton suggested between 70%

to 90% reduction in total phosphorus loading was needed whil the OWRB et a!.

(1996), study recommended between 70% to XO% reduction in lotal rhosphorus

loadlng. The two studies had also indicated that point sources () r phosphorus were of

minimal significance in the trophic condition of Lake Tenkilkr.
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APPE DIX-l

Example c~,lculation for point source contribution at Tahlequah

The calculation i pertanned on Osage Creek (Rogers) data.

Known parameters:

Plant Flow 3.5 MGD
Mean Phosphorus Loading 3.829 mg/I

Distance to Tahlequah 7S miles
95th percentile Peak Flow Value at Tahlequnh 13000 cIs

50'11 percentile Channel Phosphorus Mile Ln.. .005 (mg/I)/mi Ie

Calculations:

Total mount Phosphorus Generated by 1>1<1111 per day =

3.829 (l11g/l) * 3.5 (MOD) * I(y' (gallons/million gallon) * 3.7R I (liters/gallon)
= 50724467 Illg

Channel Loss of Phosphorus in Transporl 10 Tahlequah =

.005 ((l1lg/l)/lllile) '" 75 (miles) '" 3.5 (M(if)) * J OU (gallons/million gallon) *
J.nl (liters/gallon) = 4 l)hnl2mg

[>hosphorus Contribution al I'ahlequah =- )()724467 (l1lg) - 4()() 7R 12 (mg)
= 45703260 mg

Flow at Tahlequah =

13000 (efs) * 28.32 (1/ ft') * 24 (hours/d<'lY) * 60 (min./hour) * 60 (sec.lll1in.) =
".1 R * 10 10 liters per d,l)'

Resulting Concentration at Tahlequah =

4570"260 (mg) / 3.18 * 10 10 liters per day = 0.00141111..'.11 (approx.)
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