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CHAPTER I

INTRODUCTION

The Mesoscopic Physics usually deals with transport properties of the ystem

whose dimensions are order of quantum phase coherence length scale Lt/!. Thi i the

length over which electrons diffuse before making a dephasing collision. In a dephasing

collision, the phase of the electron wave function destructs. It is formally assumed

that processes involving the emission or absorption of a phonon causes dephasing;

on the other hand, collisions with static objects such as chemical impurities or the

walls of sample do not effect or alter the phase of the wave function. Thus the phase

coherence is disrupt when the state of the environment other than dominating random

potentials is taken into account. For interacting disordered systems, the electron­

electron interaction is known to dominate the phase coherence time 7<1> (It/! ex vr;) in

comparison with the electron-phonon interaction at sufficiently low temperature.

Collisions with impurities, phonons, or other electrons alters the mom ntum of

the electron. The average distance traveled before changing the direction of current

flow is the mean free path l. This length scale is order of p,m or larger in high mobility

samples. The modern lithography enables the fabrication of samples whos physi al

dimensions are on the order of their mean free path. Samples whose dimensions are

smaller than l are in ballistic regime.

At low temperatures, electrons are in the ground state and the energy levels up

the Fermi surface with energies E < EF are fully occupied where EF is the Fermi

energy. kF is the Fermi wave vector associated with energy EF . When a linear

dimension of sample is comparable to Fermi wavelength )..F (= 27rIkF ), the electron

motion in that direction becomes quantized. In effect, there are changes in energy

spectrum and in the dynamical properties of the system. A sample with one linear

dimension comparable to (or smaller than) the Fermi wavelength is a dynamically

1
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two dimensional system, for the electron motion is constrained in one dimension. A

quantum wire and quantum dot, likewise, are systems that are constrained in two

and three dimensions.

The conductance of a material whose linear dimensions are relatively greater

than these length scales l, l4>' and ).p obeys the classical Ohm's law; the re istan of

the conductor increases linearly as its length increases. The classical law, howev r, i

not applicable when the linear dimension of a conductor is comparable to th I ngth

scales. These three length scales which are very important for transport processes are

often used to describe the properties oflocalization behavior. Localization phenomena

in disordered systems has been of great interest for decades.

1.1 The problem

The electrical properties of disordered systems have been studied extensively

for decades. The localization effect, magnetic impurities, and electron-electron, and

electron-phonon interactions are responsible for changes in the behavior of conduc­

tance. The traditional scaling theory 1 applies only for a noninteracting system at

the absolute zero temperature. It predicts that the phase coherence length diverg s

at the absolute zero temperature 2,3. Under such conditions, th sy tern becom s a

pure quantum system.

Recent experiments 4,5, however, show the existence of a finite coherence length

scale at the absolute zero temperature. The current study is to investigat the nature

of a mesoscopic conductance behavior at a finite phase coherence length.

1.2 Purpose of the Study

The study of conductance in a quasi-one dimensional system may provide some

understanding of the electrical properties of nanostructures at the finite coherence

length. It is interesting to observe the behavior of a length dependent conductance

with a disorder and dephasing mechanism.
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1.3 Objective of the Study

The objective is to simulate the effect of dephasing by attaching voltage leads at

random sites of a disordered quasi-one dimensional lattice, and thereby to understand

the effect of transitions between a classical and quantum system. The current study i

to characterize both a classical and quantum nature of the noninteracting disordered

system at the absolute zero temperature and zero magnetic field.

1.4 Outline of Work

The study of the conductance of quasi-one dimensional systems at the finit

phase coherence length scale is supplemented with a study of the dephasing mech­

anism and the Anderson localization phenomena 6. Anderson localization and its

scaling theory have been the fundamental concepts for understanding a disordered

system. A brief discussion on the conductance of the Fermi gas is reviewed for

ideal crystalline structures. Although the current study is not focused on the critical

phenomena, the quantum phase transition due to Anderson localization and other

quantum interference effects are emphasized for further study.

The model of the study is based on the Hamiltonian (3.1) of the quasi-on

dimensional lattice. The formation of the quantum wir from the two dimensional

electron system is also discussed.



CHAPTER II

REVIEW OF THE LITERAT RE

2.1 Quantum Wire

The construction of a quantum wire is not the objective or purpose of the study.

This section only provides a method for achieving the one dimensional lectron system

from the two dimensional electron system. The one dimensional electron system of

study can be described in terms of transverse modes or subbands 7. Consider a plane

of conductor with the confining potential U(y) in zero magnetic field (see figure (2.1)

below).

y t
,.------------------,

x-

y

f---- .

f--------- U(y)

f---- ..

I" L ~I

Figure 2.1. A system of conductor with some transverse confining potential U(y).
The electron motion is unconstrained in x direction.

The mesoscopic physics of semiconductors often deals the motion of electrons

in the conduction band. The steady state wavefunction of electrons can be described

by the effective mass equation:

[
(ihf fj2 (j2 ]

E s + 2m ({Px + (J2y) + U(y) \l1(x, y) = E'I!(x, y)

4

(2.1)
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where E s is the band-edge energy. The solution of the equation (2.1) is the form of

the plane wave in x direction:

(2.2)

The effective mass equation (2.1) can be reduced such that it is function of y only.

Let the confining transverse potential U(y), for example, be a quantum well. Bound

states or localized states are produced when the equation (2.1) is solved for

{

0 if Iyl < a/2
U(y) =

00 if Iyl > a/2
(2.3)

The localized wavefunction is finite only over some finite region in space and ap­

proaches zero at large distances. The energy eigenstates and eigenvalues can be

determine exactly for the potential U(y) . The transverse motion can be calculated

from the equation:

(2.4)

The corresponding energy eigenstates and eigenvalues for Iyl :s a/2 are

{
{fcos~

<Pn,k(Y) =
nsin~V 0. a

n odd

n even

n = 1,2,.,.

(2.5)

(2.6)

where a is the width of a quantum well. The equation (2.5) is subject to boundary

conditions such that it vanishes if Y > la/21. The figure (2.2) which is represented by

the parabola indicates the energy for given n.
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E(k)

n=3

n=2

n=1 _________

k

Figure 2.2. Energy-wavevector (E(k) vs k) diagram shows the subbands due to
electrostatic confining potential in zero magnetic field. Each subbands
are labeled with the different index n.

Electrons are confined in each of the subbands at low temperatures. Thus the

motion of electrons under such circumstances is restricted in transverse direction This

assumption is provided that the transport takes places only in the same energy channel

given n. Therefore, the two dimensional electron system becomes a dynamically one

dimensional electron system.

2.2 A Noninteracting System

It is known in the classical theory of solid 8 that all energy levels are filled up to

Fermi level at absolute zero temperature. When Fermi energy EF lies in a region of

localized or extended states, the three dimensional electron system becomes insulator
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or metal respectively. Insulators are materials for which all energy bands are com­

pletely occupied or empty. However, metals have partially filled one or more energy

bands. The conductivity of insulator at absolute zero vanishes. The conductivity of

a metal in three dimension, however, obeys the classical Drude theory:

0"0 = (ne2 /m)r, (2.7)

where r is the relaxation time (the mean free time) and n i the electron d n ity.

Since·r = l/vp = ml/pp, equation (2.7) can be written as

(2.8)

The energy of an electron having a wave vector kp at the Fermi surface is

(2.9)

Consider a free electron gas confined in a cube of the edge L, the free electron wave­

function is the form of the plane wave:

(2.10)

(2.11)

The equation (2.10) satisfies the periodic condition such that each of the thre om­

ponents of the wavevector k(= 2Z (nxex + nyey + nzez) take the value 2mr/ L (n i

any integers). The total number of free E'lectrons in Fermi sphere is

4~k~/3 V 3
N = 9s' (21r/L)3 = 9s' 6~2kF'

where 9s is the spin factor. Thus the electron density is

(2.12)

where 9s = 2 for the electron (spin ! particle). By substituting this expression into

equation (2.8), the conductivity of a metal at absolute zero temperature then is

(2.13)

The Boltzmann transport theory is applicable in the weak disorder limit:

(2.14)
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The lower limit of the conductivity can be estimated for which the Drude approxi­

mation is valid:

(2.15)

Thus the minimum metallic conductivity is

(2.16)

In strong disorder limit, the mean free path becomes of the order of lattice pac­

ing a (microscopic length scale and ~ kf.I) , so that PFl/h rv 1. Consequently the

usual Boltzmann transport equation becomes inapplicable. The minimum metallic

conductivity does not depend on either the lattice structure or the nature of di order.

2.3 Scaling Theory of Localization

Most real materials contain impurities. The energy levels and wave functions

of electrons in disordered materials generally differ from those in an ideal materials.

In pure crystalline structure with a periodic potential, the electron wave function is

easily described by Bloch functions. In weak disorder, although the wave function

alters at the scale of the order of mean free path l, the scattering of Bloch wav

typically remains extended plane-wave-like. The concept of el ctron localization is

essential for understanding disordered materials.

Metal-Insulator transition (MIT) is the transition state where the wave function

goes from being extended (Bloch wave-like) to being localized. The limit of disorder

is crucial for understanding the critical phase transition from metallic to insulating

states. Anderson localization 6 profoundly describes the nature of the wave function

of a single electron which scatters by a random potential. In the Anderson model,

the disorder is brought about by varying the random site potential energy. The

random potential acts as a mirror such that the initial momentum of a electron p
ends up with its final momentum being -p, and the consequent backscattering of the

electronic wavefunction leads to a spatial localization. It has been well known that

the state of the electron can be localized due to a strong disorder. In this case, the

amplitude (envelope) of the wave function decreases exponentially from the center of
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localization rl, i.e.,

(2.17)

and f, is the localization length.

The physical interpretation of localization can be described by coherent tun­

neling. However, Anderson localization states that no such tunneling is possible at

absolute zero temperature, for states with the same energy are generally too far in

space.

The above microscopic description of Anderson localization leads to it con­

sequent scaling theory. The scaling theory of localization 1,2 which is based on the

one-parameter scaling assumption is valid for a noninteracting electron sy tern at

absolute zero temperature (T = 0) and zero magnetic field (B = 0). The main

physical idea is that the transformation of parameters of the initial Hamiltonian is

approximated by a series of scale transformations from smaller to larger blocks in

coordinate space. The conductance G of a macroscopically homogeneous conductor

of a d-dimensional hypercube of linear dimension L in the limit of weak disorder

(2.18)

It is assumed that L > l, so that the classical Ohm's law (J = (jE) is valid. It an

then be normalized by the quantity e2 In, so equation (2.18) can b express d in th

dimensionless conductance of hypercube as

G(L)
g(L) = (e2/n)' (2.19)

In scaling theory, it is assumed that the dimensionless conductance g(L) solely deter­

mines the conductivity behavior of a disordered system.

The coherent electronic transport takes place between states of the system with

the same energy. Since the degenerate states, however, which are in the limit of strong

disorder are very far apart in space, the transition (hopping) matrix elements between

different electronic states drop exponentially on the order of localization length ~. The

effective conductance for L » ~ is then exponentially small:

g(L) ex exp( -LIO (2.20)



The conductance of a hypercube of length L generally satisfi

differential scaling function {3:

(3( (L)) = d(lng(L))
9 d(lnL)

10

the one-parameter

(2.21)

For (3(g(L)) > a (metallic state), the conductance of the block of length L will

increase upon enlarging the system, and visa versa for (3(g(L)) < 0 (insulating tate).

In other words, the scaling function {3 describes the phase transition of the finit

electron system that is scale length dependent. Equation (2.21) thus describes the

transport properties at that degree of disorder in the limit of infinite volume.

In the metallic regime, the limiting behavior of the scaling function can be

calculated from equation (2.18):

(3(g)=d-2, g»l (2.22)

An asymptotic limit depends only on the dimensionality of the system. (3(g) van­

ishes in two dimensional system; the conductance is independent of its size. In the

insulating regime, the scaling function is derived from equation (2.20):

(3(g) = Ing + c, g« 1 (2.23)

where c is a constant. It is independent of the dimensionality of the yst m.

The scaling function (3(g) is a monotonous nonsingular function connecting the

two asymptotic limits. In three dimensions, MIT occurs at some critical conductance

gc such that (3(gc) = O. However, based on the one parameter scaling argurn nt,

two dimensional systems exhibit insulating behavior since (3(g) < 0 as it is in one

dimension.

In contrast to the traditional scaling theory, a recent experiments and theories

LO-19 clearly show the existence of Metal-Insulator Transition in two dimensional

electron systems. Based on these experimental results, the electron density is the key

parameter which determines the phase transition between two distinct phases; states

whose densities are lower or higher than some critical density are localized (insulator)

or extended (metal). It is surprising to discover that the resistivity of these high
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mobility samples at low densities decreases approximately an order of magnitude as

temperature decreases. The resistivity obeys the empirical law:

p(T) = Po + PI exp( - (To/T)P) (2.24)

where p rv 1. This remarkable evidence contradicts the long held belief in the scaling

theory of localization 1.

2.4 Dephasing

The quantum interference effect in mesoscopic system may alter the phase co­

herence of the electronic wavefunction. The coherent transport keeps the record of

the initial phase of all single electron wavefunctions. On the other hand, dephasing

refers to a noncoherent transport which loses all phase memory. A complete loss of

phase information on the system is equivalent to a collision process that changes the

state of environment. This is true when the possibility of recovering the effects of

phase coherence by the environment is neglected.



CHAPTER III

METHODOLOGY

3.1 Method of Computing the Total Conductance

The method of the study is to use a tight binding Hamiltonian to simulate a

quasi-one dimensional lattice,

NL
1

L 2 j R

i

3

Figure 3.1. - Lattice system of the study. • denotes a lattice site where a
phase-breaking voltage lead is attached.

A figure (3.1) represents a quasi-one dimensional lattice system of five channels.

The width is assumed to be much smaller than the length of the lattice system.

The model for the study is based on the Anderson model (or a nearest neighbor

tightbinding model) of a quasi-one dimensional lattice system,

1lQ = I>iC!Ci + 'I>ij(e!ej + e}c;)
ij

(3.1)

where the e's represent fermion creation and annihilation operators and where the

electron spin is ignored. The static disorder is introduced by taking ti (on site en­

ergies) and tij (the nearest neighbor hopping matrix element) to be random. A

12



13

random energy Ei is uniformly distributed in the range -W/2 to W/2. Th hoping

matrix element assumes the value 1 for i,j nearest neighbors and zero otherwis .

For n lattice sites, the summation index i and j (i =1= j) in equation (3.1) runs from

i, j = 1,2,3, .. " n. It is assumed that there is only one orbital per site. The subscrip

a denotes the dimensionality of the Hilbert space which depends on a numbers of lat­

tice sites. The dephasing mechanism 7 in this model is brought about by attaching

current-conserving voltage leads at random lattice sites (. sites in Fig. 3.1).

L

voltage lead
(1=0)

incoherent

R

).
,,.

..

system conductor
I
I
1 _

coherent

Figure 3.2. The net current flows from L to R through the conductor that is attached
to a voltage lead.

The voltage lead is attached to the noninteracting system in order to randomize

the phase of the coherent transport. The figure (3.2) above illustrates the phase­

breaking process. Consider the net current flows from L to R with initial phase
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coherence. Part of the electrons make a smooth transition to L without 100 ing

coherence. The remaining electrons find a path to the voltage lead. Since the total

sum of all current at the voltage i assumed to be zero, electrons that enter the voltag

lead lose their coherence; electrons are then reinjected to the sy tern conductor. Some

of reinjected electrons reache R, and the rest flow back into L.

There are four parameters which are important in current study. Parameters

for dephasing mechanism are Pv and tv' Pv is the probability for the voltage lead.

Pv = 0.1, for example, indicates that 10% of lattice sites have attached to voltage

leads. tv is the coefficient for hopping between the lattice and voltage lead. The

disorder in this study is controlled by the parameter W which represents the amount

of disorder. The last quantity is the energy eigenvalue E associated with the electron.

The multi-lead current-voltage relation is derived 10 using Keldysh formalism 7:

.....,
~,

N

Ii = L LoijVj,

i=l

where the conductance tensor is

i, j = L, R, 1, 2, ... , N L, (3.2)

.....

and

i =I- j, (3.3)

O"ii = - L O"ij

j=f.i

For n lattice sites, the n x n matrix representation of Green's function is

(3.4)

(3.5)

where TjQ (TQi ) represents the n x N (N x n) matrix elements. In general, N is

the number of channels per voltage lead, but N = 1 for the current simulation. The

hopping matrix elements TjQ are non zero (= tv (the coefficient for hopping between

voltage leads and lattice system)) if jth lead and lattice sites are connected and zero

otherwise. G~~) (G~o: = [G~o:Jt), and Pi = Imgi' (gf is the advanced Green's function

of the i'th voltage lead) are retarded (advanced) Green's function ofthe lattice system,

and density of states matrices for the voltage leads and measurement leads Land R.
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G~Q can be visualized as the amplitude of an arbitrary path from j to i. It is as urn d

that the total sum of current through the ith voltage lead to be zero:

The total conductance between Land R is

i=l=LR (3.6)

(3.7)

(3.8)

where O"iR is the direct conductance (can be determined from equation (3.3) by setting

i = Land j = R), and O"iR is the indirect conductance:

( )

-1 ( )

0"11 O"lN O"lR

O"iR = - (O"LI ... O"LN): : :

O"NI O"NN O"NR

The direct conductance O"iR represents the the direct quantum hopping (a coherent

transport) between the measurement electrodes. The indirect conductance, which is

the conductance of the qauntum lattice model, accounts for the sequential hopping

(a noncoherent transport).

3.2 Research Methodology

The simulation is based on the original percolation program 10, and that pro­

gram is modified such that all the nearest neighboring sites are occupi d in the quasi­

one dimensional lattice for the current research. The systematical Monte Carlo simu­

lations were done by varying Pv (the probability for a voltage lead), tv (the coefficient

for hopping between a voltage lead and the lattice system), W (on-site disorder), and

E (the electron energy). In each simulation runs, the Monte Carlo method simply

selects random sites for given parameters. The program then calculates the equa­

tions (3.5), (3.8), (3.3), and (3.7). For N' runs, the average conductance is
N'

1 " Ig-::=-,~g
N n=l

3.3 Research Instruments

The computer simulation has performed on IBM compatible PC. The program

is written and compiled using Fortran 77.

) I.



CHAPTER IV

Results and Discussions

4.1 Methodology

Two and five channels in the quasi-one dimensional lattice systems are tudied

under the influence of localization and dephasing effects. The consistent method of

simulations on two and five channels is used to obtain the data. The ensemble of the

data for two and five channels is then expected to give the average effect or result

of analysis. Data which is collected by computer simulation reflects the localization

and dephasing effect on conductance (or resistance) at finite phase coherence length.

The total conductance (resistance) 9 (g-l) is contributed by both the quantum and

classical behavior. The phase coherence length scale lrp is approximately determined

by inspecting where the signature of the resistance g-1 <X L2-d (wh r d '::::: 1 for

quasi-one dimensional lattice system) starts.

4.2 Chapter Overview

Data are plotted for the total resistance (g-1(h/e2 )) versus the ystem length

scale L. A figure corresponding each variation of parameters are separated by ach

sections. Figures in the following sections are corresponding to four parameters.

16

•
•
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4.3 Variation of the probability for a voltag I ad

RESISTANCE OF QUANTUM WIRE

o P=M5v

o P=D. Iv

~ P=D.2
v

A P=D.25
v

P
y
=D.5

).
•

soo400300

o 0 0
o 0

o 0 IJ
IJ Cl 0

o

200100o

0.5

,-...
C\J

Q)
"-..c
"--",...,
OJ

L

Figure 4.1. two channels at tv = 0.4, W = 0.1, and E = 0.0

The figure (4.1) shows the the total resistance versus system length scale for

variation of the probability of the voltage lead Pv for two channels. The phase coher­

ence length scale is the approximately the length scale in which the length dependent

resistance does not obey the classical law (see equation (2.18)). It clears shows that

the phase coherence length iif> decreases as Pv increases. The phase breaking voltage

leads mainly effects the quantum regime on resistance.
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RESISTANCE OF QUANTUM WIRE

o P=0,05
y

o P =0.1
y

~ P=0,2
y

A P=0,25
y

P
y
=O.5

0.5

o 100 200

L

300

oo 0

400

o !J 0
o

500

•

Figure 4,2. five channels at tv = 0.4, W = 0.1, and E = 0.0

The figure (4.2) shows the same dependence on L for five channels as for two

channels (see figure (4.1).
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4.4 Variation of on-site di order

RESISTANCE OF QUANTUM WIRE

0.5

,-....
(IJ

(l)......
..c 04....., ....,

OJ

o W=O.O
D W=O.\
~ W=O.2
A W=OJ

W=O.4
v W=O.5

100 200

L

300 400 500

)a.

Figure 4.3. two channels at tv = 0.4, Pv = 0.1, and E = 0.0

The figure (4.3) shows that the variation of on-site disorder W hardly influences

on the conductance of the system of two channels. The presence of the amount of

disorder is small such that the quantum regime is dominated by the dephasing effect.
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RESISTANCE OF QUANTUM WIRE

0.5

---.
(\J

(l)
.......
:S 0.4...,

OJ

o W::D.O
D W::D.l
o W::D.2
t. W::DJ

W::D.4
v W::D.5

100 200

L

300 400

/

500

)i.

Figure 4.4. five channels at tv = 0.4, Pv = 0.1, and E = 0.0

The figure (4.4) indicates the effect on the conductance of five channels; the

results almost coincide with the case of two channels (see figure(4.3)).
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4.5 Variation of the coefficient for hopping between a voltage lead and lattice

system

RESISTANCE OF QAUNTUM WIRE

0 t~.1y

0 1~.2
y

0.5 ~ I ~.3
y

t. I ~.4
y

1~.5
y

0.4
----C\J
Q}
"'-.r:.....,...,
OJ

OJ
/

t.

0
0.2 g 0

()

8 (\ 0 v II

0

8 8 a 0

0.1
0 100 200 300 400 500

L

Figure 4.5. two channels at W = 0.1, Pv = 0.1, and E = 0.0

The figure (4.5) shows that the phase coherence length l¢ decreases with the

higher tv (the coefficient for hopping between a voltage lead and the lattice system)

for two channels. tv is another also a phase breaking source. For tv = 0.1, 0.2, it is

noted from the equation (2.20) that the localization length scale ~ is much greater

than the system length L.
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0.2

o t =0.1y

[] t =0.2
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Figure 4.6. five channels at W = 0.1, Pv = 0.1, and E = 0.0

The figure (4.6) show the similar results for five channels.
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4.6 Variation of the electron energy

RESISTANCE OF QAUNTUM WIRE
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Figure 4.7. two channels at W = 0.1, Pv = 0.1, and tv = 0.4

The figure (4.7) shows that the effect of varying the electron energy is negligible

compared to the effects due to a dephasing parameters.
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Figure 4.8. five channels at W = 0.1, Pv = 0.1, and tv = 0.4

The figure (4.8) shows the similar behavior for five channels.



CHAPTER V

CONCLUSIONS

5.1 Discussion of Research Findings

The phase coherent length It/J is effected mainly by parameter Pv and tv. The e

are responsible for the phase-breaking mechanism in the model of the study. The

contribution from the amount of disorder Wand electron energy E are negligible

compared to Pv or tv' The exact relationship between It/J) Pv , and tv is not determined

yet. As Pv decreases at constant tv, the system evolves to a pure quantum sy tern

(l¢ ~ 00). The quantum regime on resistance is dominated by mainly by the phase

breaking effect rather than the localization effect. In the absence of the dephasing

parameters Pv and tV) the system becomes the pure quantum system; the resistance

of the quantum system increases exponentially on L.

5.2 Summary and Conclusion

The phase coherence l</J' based on the current data, defines the the cutoff length

scale beyond which the resistance (g-1(hle 2 )) of the system increases linearly with

increasing the system length L. For L < l</J) the conductance has to be determined

quantum mechanically. In the opposite limit, the classical transport is valid. A real

conductor whose length is much greater than the phase coherence length l</J' it could

be viewed as the average many coherent segments N = LIl</J 7. Each segments then

can be treat as a single resistor R. Defining a resistance R for the segment, the total

resistance Rtot (L) of the system length L is obtained by summing the series elements

of resistors. The total conductance g(L) then is just inverse of Rtot(L).

For interacting electron system, the phase breaking is caused by electron­

electron and electron-phonon interaction. In such system, the phase coherence length
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depends on temperature (lep(T) ex T-P) 2,3 and diverges at absolute zero temperature.

However, the recent experiments and theories suggest the existence of the finite

phase coherence length at absolute zero temperature 4,5 to which the current study

may be applicable. The effect of dephasing, based on the result, clearly shows the

deviation from the pure quantum system.

The quantum interference effects are essential for determining the transport

properties of low dimensional electron system and are responsible for the condu ­

tance fluctuations as the Fermi wavelength of the electrons changes.
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