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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

An accurate process model is an essential tool for engineers to improve the
process, such as enhancing control system performance, enabling automatic process
monitoring and fault detection. But it is always not easy to get an accurate process
model.

There are generally two basic types of process models: first-principles and
empirical. First-principles models are developed by applying material balance, energy
balance and momentum balance, together with thermodynamic and transport relations,
etc. The main advantage of using first-principles models is that the resulting model is
intended to be generally applicable and rigorous, thus having good interpolation and
extrapolation properties. However, the necessary knowledge for a specific system is
usually not fully available, so that most of the effort in the modeling strategy is devoted
to determining all relevant mechanisms and quantifying these mechanisms correctly.
This usually requires an extensive research program (including experiments) which is in
conflict with the desire for a short development time of the model.

On the other hand, empirical models, such as a neural network model, are
developed by data measured from the actual system that has to be modeled. The main
advantage of empirical model development strategy is in the fact that, within a reasonable

amount of time, one can obtain a highly accurate mathematical model without detailed



knowledge of the process. However, empirical models are not reliable for extrapolation.
Therefore, in the model development phase, the identification experiments should cover
the whole application domain of the model to avoid the need for extrapolation during the
application of the model. Such a wide application range data that must be available
means a time consuming and a money consuming experimental program is needed to
obtain the necessary identification data.

This research is to find a suitable combination of first-principles model, empirical
(neural networks) model, and historical data, which lead to accurate process model with
low cost. Meanwhile, this research is also intended to evaluate the proposed modeling

techniques based on the residual errors of the developed model.

1.2 Significance of the study

Practical benefits of the project include:

e Reduced model development cost. First, since lots of @ priori information can be
used for model development, the model development process is much easier than
that without any a priori information. If the final model is first-principles based,
since the difficult-to-model parts can be substituted by neural network trained by
historical plant data, or, the residual errors in first-principles model can be
corrected by neural network, first-principles model need not be rigorously
developed. On the other hand, if the final model is neural network based, some a
priori information, such as process gain, either obtained from personal experience
or from not-so-rigorous first-principles model, can be used to train neural

networks. The number of data points that required to train neural network can be
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greatly reduced. Secondly, since only not-so-rigorous first-principles model need
to be developed or fewer experiment data for neural network training, less
research program need to be carried out to explore the intrinsic mechanism of the
process or less experiment need to be done. Both lead to low cost with less time

and money investment.

e Improved distillation column model. This research provides attractive distillation
process modeling methods that are readily adapted to any distillation column.
Improved distillation control based on the proposed model will have a significant
impact on reducing energy consumption, improving product quality, and
protecting environmental resources.

e [Enhanced student experiment apparatus. The automated data acquisition and
control system built for the distillation column is also available for undergraduate
students Unit Operations Lab and Process Control Lab. Students can benefit from

the system for the next few years.

1.3 Organization of the thesis

This thesis comprises the following parts: [n Chapter 2, the problem background
is discussed. In Chapter 3, the hybrid modeling method concept is developed. Hybrid
serial approach and hybrid parallel approach is applied to the modeling of experimental
distillation column. Chapter 4 addresses the experimental distillation column setup, data
collection, detailed modeling methods and the resulting hybrid model qualities. Chapter

5 are the conclusions and recommendations.



CHAPTER 2

PROBLEM BACKGROUND

A first-principles model is derived from first-principles. In Chemical
Engineering, first principles refer to material balances, energy balances, momentum
balances, together with other properties of the process such as thermodynamic and
transport relations. The main advantage of developing a first-principles model lies in the
fact that it is more reliable and more accurate than empirical model, provided that all
process information is available. However, first-principles model also has its
disadvantages. In many cases the equations describing the plant may be inaccurate due to
incomplete plant knowledge. Incomplete plant knowledge can lead to both structural and
parametric model errors. Structural model errors are characterized by simplified model
equations, due to the omission of physical effects. Parametric errors are simply errors in
the value of parameters that characterize the behavior of the plant. Parametric errors are
caused mainly by insufficient and inaccurate experiment data. For example, in a
Continuous Stirred Tank Reactor (CSTR) process, the reaction rate is usually determined
by lab scale experiment. If the reaction rate measured from experiment is inaccurate, the
first-principles model that uses this reaction rate parameter will have parametric error. In
other cases the plant itself or the environment will change over time, thus making the
equations and noise characteristics time-dependent.

On the other hand, empirical models describe input-output relations solely on the

basis of the measured data. The advantage of developing the empirical model is that it is



casy to construct, as long as enough experiment or historical data are available. But, the
internal structures and parameters of empirical model can not be interpreted in terms of
physical effects or plant parameters. Moreover, empirical models can only be applied
within the operating regime for which they have been identified, thus having unreliable
extrapolation capability. Examples of empirical models are NARMAX models (Chen
and Billings, 1989) and neural networks (Chen, Billings and Grant, 1990).

Another model type — hybrid model is just attracting lots of researchers. Since
both first-principles model and empirical model have their advantages and disadvantages,
as mentioned before, researchers are investigating how to incorporate the two model’s
advantages and overcome the disadvantages. This lead to the creation of the third type of
model - hybrid model. Depending on the starting point of the modeling phase, the hybrid
modeling method is divided into two directions. If the model development starts with
first-principles model, and some difficult-to-model parts of the first-principles model are
substituted by empirical model, or outputs of first-principles model are corrected by
residual errors predicted by empirical model, semi-mechanistic model is built. If the
model development starts with empirical model, and some a priori knowledge is
incorporated into the empirical model, gray-box model is built.

Neural network model is one class of the generally adopted empirical models.
Neural network model is proved to be a powerful tool for representing complex nonlinear
processes (Narendra and Parthasarathy, 1990; Pollard, Broussard, Garrison and San,
1992; Su and McAvoy, 1992; Simutis, Havlik, Dors and Lubbert, 1993: van Can, te

Braake, Hellinga, Krijgsman, Verbruggen, Huyben and Heijnen, 1995). Therefore, the



empirical model part of our proposed modeling techniques is restricted to neural

networks.

2.1 Semi-mechanistic model

Semi-mechanistic model is also denoted as “hybrid model” in some literature,
which had a narrower meaning than that we discussed before. According to Thompson
and Kramer (1994), there are two types of semi-mechanistic models. One type is called
“serial approach,” which uses neural networks to model unknown parameters in first
principles model. The other is called “parallel approach”, in which neural network is
used to compensate errors between the real process outputs and first principles models

outputs. These two methods will be discussed individually.

2.1.1 Serial Approach

The serial approach is to use a neural network to model unknown parameters
(usually those parameters which are difficult to obtain or contain uncertainties) in the first
principles model. The structure is shown in Fig. 2.1. Process inputs are supplied to both
first-principles model and neural network model. The outputs of neural network model
are the unknown parameters of first-principles model. First-principles model calculates
the model output by applying first-principles rules, along with the parameters predicted
from neural network model.

Psichogios and Ungar (1992) first proposed this idea in 1992. They applied this

hybrid model scheme to a simulated fed-batch bioreactor. Neural network model was



used for estimating bacterial growth rate with a standard 3 layer feed forward neural
network trained with Back Propagation (BP) algorithm. Simulation results indicated an
excellent prediction and satisfactory adaptation for noisy data. For all cases studied.
hybrid serial model was better than the equivalent empirical model, based on the
interpolation and extrapolation capabilities, easiness for analysis and interpretation, and
number of training examples.

Serial approach has applications in many different areas, such as biochemical
engineering (Psichogios and Ungar, 1992; Dors, Simutis and Lubbert, 1995; Geeraderd,
Herremans, Cenens and Vanimpe, 1998; van Can, te Braake, Hellinga, Luyben and
Heijnen, 1997; van Can, Tebraake, Dubbelman, Hellinga, Luyben and Heijnen, 1998; Fu
and Barford, 1996; Schubert, Simutis, Dors, Havlik and Lubbert, 1994; Thompson and
Kramer, 1994; de Azevedo, Dahm and Oliveira, 1997; Prion, Latrille and Rene, 1997:
bioengineering (Tan, Li, Gawthrop and Glidle, 1997), chemical engineering (te Braake,
van Can and Verbruggen, 1998; Cubillos and Lima, 1998; van Can, Hellinga, Luyben,
Heijnen and te Braake, 1996; Wilson and Zorzetto, 1997, Tulleken, 1991), environmental
engineering (Conlin, Peel and Montague, 1997), metallurgical engineering (Reuter and
van Deventer, 1991; Reuter, Van Deventer and Van Der Walt, 1993; Cubillos and Lima,
1997; Cubillos and Lima, 1998; Cubillos, Alvarez, Pinto and Lima, 1996), thermal
engineering (Guo, Shen, Li and Zhao, 1997), power engineering (Alessandri and Parisini,
1997; Lo, Peng, Macqueen, Ekwue and Cheng, 1997), semi-conductor industry (Nami,
Misman, Erbil and May, 1997) and paper industry (Funkquist, 1997; Funkquist, 1997.

Allison, 1saksson and Karlstrom, 1997).



Inputs First-Principles Outputs
Model

v

Unknown
Parameters

Neural Network

Fig.2.1  Serial Approach Model Structure

(Neural network is used to model unknown parameters in first-principles model)

Perhaps because serial approach was first generated in the biochemical
community (Psichogios and Ungar, 1992), lots of applications were reported in this area.
Dors et al. (Dors, Simutis and Lubbert, 1995) applied serial approach to model the
repeated fed-batch production of a recombinant therapeutic protein from mammalian
cells. Data used to build the model were from the real process. Results showed the model
can well predict the process. But no comparison was made between this serial hybrid
modeling method and other modeling methods.

Other applications were: modeling of bacterial growth in chilled food products
(Geeraderd, Herremans, Cenens and Vanimpe, 1998); pH effects on the enzymatic
conversion of penicillin G (van Can, te Braake, Hellinga, Luyben and Heijnen, 1997: van
Can, Tebraake, Dubbelman, Hellinga, Luyben and Heijnen, 1998); cell metabolism (Fu
and Barford, 1996); fed-batch yeast cultivation (Schubert, Simutis, Dors, Havlik and

[ubbert, 1994); fed-batch penicillin fermentation (Thompson and Kramer, 1994); baker’s




veast production in a fed-batch fermenter (de Azevedo, Dahm and Oliveira, 1997);
crossflow microfiltration (Prion, Latrille and Rene, 1997); a neutron intensity control
system used in bioengineering (Tan, Li, Gawthrop and Glidle, 1997).

[n the field of chemical engineering, serial approach also has some applications.
te Braake et al. (te Braake, van Can and Verbruggen, 1998) applied serial approach to the
modeling of a first order exothermic reaction. All the known parts of the process were
based on first principles, and the remaining unknown parts were modeled by neural
network model. The comparison showed that for this particular example, both prediction
and extrapolation capability of semi-mechanistic modeling technique (specifically, serial
approach) outperformed the straightforward nonlinear black-box model. Results were
based on simulation.

Other applications were Continuous Stirred Tank Reactor (CSTR) (Cubillos and
L.ima, 1998), pressure vessel (van Can, Hellinga, Luyben, Heijnen and te Braake, 1996),
pilot scale process involving three tanks in series (Wilson and Zorzetto, 1997), and
linearized chemical reactor model (Tulleken. 1991).

In environmental engineering, serial approach was used to model the filter
pressure drop. Conlin et al. (Conlin, Peel and Montague, 1997) reported that serial
approach was better than empirical model on modeling the first stage filter pressure drop
in water treatment process. Rate of reaction was predicted by neural network, and then
supplied to first-principles model. Concerning model prediction accuracy, results showed
that serial approach was much better than empirical model (neural network and

polynomial), and was better than parallel approach.



In metallurgical engineering, serial application also has lots of applications,
although the applications were still on simulation stage. Reuter et al. (Reuter and van
Deventer, 1991; Reuter, Van Deventer and Van Der Walt, 1993) implicitly proposed this
strategy to model a series of metallurgy and mineral processes described by kinetic terms.

The serial approach in this paper was called Generalized Neural-Net Rate Equation

(GNNRE). Neural network was used to estimate the kinetic parameters, which together
with conservation equations to construct the generalized model. The GNNRE is process-
independent and was applied to simulate adsorption and reduction processes (Reuter and
van Deventer, 1991), flotation, leaching and precipitation processes (Reuter, Van
Deventer and Van Der Walt, 1993). The leaching and precipitation processes were also
validated by industrial kinetic data. The deficiency of this paper is the model validation.
Without specific training algorithm dealing with over-parameterization, the number of
training data sets from industrial kinetic data was smaller than that of adjustable
parameters in neural network, thus making the generalization unreliable.

Other applications were a rougher flotation process (Cubillos and Lima, 1997:
Cubillos and Lima, 1998), a direct flow rotary dryer and a batch fluidized bed dryer
(Cubillos, Alvarez, Pinto and Lima, 1996).

In thermal engineering, Guo et al. (Guo, Shen, Li and Zhao, 1997) applied serial
approach to model coal gasification process. Neural network was used to identify a
parameter for the overall reactivity of char named “Active Char Ratio (ACR)”. The
hybrid serial model was trained with experiment data for two coals and gave good

performance.



[n power engineering, there are also some applications. Alessandri and Parisini
(Alessandri and Parisini, 1997) modeled a section of an actual 320 MW power plant.
First, all the known parts were modeled by first principles model. Secondly, neural
networks modeled all unknown parts. Thirdly, a stochastic method, Smoothed
Simultaneous Perturbation Stochastic Approximation (SPSA), was used to identify the
first-principles model parameters. Simulation results showed this was an effective
method.

Another application is to use a hybrid counter-propagation neural network and
Ward-type equivalent (the equivalent concept as “first-principles model™) approach for
power system network reduction (Lo, Peng, Macqueen, Ekwue and Cheng, 1997). Test
results demonstrated that the serial approach was very efficient and highly accurate
compared to the external system equivalent.

In semiconductor industry application, Nami et al. (Nami, Misman, Erbil and
May, 1997) showed an example in Metal-Organic Chemical Vapor Deposition
(MOCVD). Serial approach was applied to the model that characterizes the MOCVD of
titanium dioxide (T;0,) films through the measurement of deposition rate over a range of
deposition conditions. Neural network predicted outputs - diffusion coefficient,
activation energy, and a pre-exponential factor related to the molecular “attempt rate™ of
the growth process, were fed into the physical deposition rate expression, then the
predicted deposition rate was computed. Data for training the neural network were from

real experiment.



In paper industry, reports showed that serial modeling approach was applied to a
continuous digester (Funkquist, 1997; Funkquist, 1997) and a Thermal Mechanical
Pulping (TMP) refiner (Allison, [saksson and Karlstrom, 1997).

Lindskog and Ljung (Lindskog and Ljung, 1994) reported the SEMI software tool
for semi-mechanistic modeling. In SEMI, Maple and Matlab, which were running as
separate processes, provide the symbolic and numerical services. These processes were

invoked via a Graphical User Interface (GUI).

2.1.2 Parallel Approach

Parallel approach is the use of neural network to predict residual errors in first-
principles model. The structure is shown in Fig. 2.2. Process inputs are supplied to both
first principles model and neural network model. The outputs of the neural network are
the residual errors of first-principles model. First-principles model outputs and neural

network outputs are added together as the hybrid model outputs.

Inputs First-Principles Outputs
Model —pg?_———h

Residual
Adjustment

Neural Network

Fig.2.2  Parallel Approach Model Structure

(Neural network is used to compensate first-principles model prediction error)
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Parallel approach was first proposed by Kramer et al. (Kramer, Thompson and
Bhagat, 1992) in 1992. A radial basis function neural network was trained to learn the
residuals of the default model (a terminology used by Kramer et al. (Kramer, Thompson
and Bhagat, 1992), which is equivalent to “first-principles model™), the output of the
hybrid parallel model was the sum of the output of default model and the output of neural
network model. The network contribution to the output would be small if either the data
conform to the default model (in which case there was no residual for the neural network
to model), or upon extrapolation. The approach was applied to a CSTR simulation
problem. Later in 1994, the same research group published a well-known paper
(Thompson and Kramer, 1994) in 1994. The modeling method was applied to a fed-
batch penicillin fermentation process. The process state variables were supplied to both
detault (first-principles) model and a Radial Basis Function Network (RBFN). RBFN
output was added to the default model output to predict specific rates. The specific rates
were then supplied to an output (first-principles) model to get new state variables. In this
paper, parallel approach was combined with the serial approach to reach a better model
prediction.

Cote et al. (Cote, Grandjean, Lessard and Thibault, 1995) applied the parallel
approach to improve the accuracy of an existing first-principles model of the activated
sludge process. Neural network models successfully predicted the remaining errors of
the optimized first-principles model. Pettersson et al. (Pettersson, Gutman, Bohlin and
Nilsson, 1997) treated residual error of first-principles model as disturbance. Instead of
using neural network, a stochastic model, extended Kalman filter, was used to model the

disturbance. The approach was tested on a bending stiffness model for paper-board




manufacturing. One other application was the simulation study of a pH-neutralization
tank (Johansen and Foss, 1992)

Applying parallel approach alone to a process modeling seems not so attractive as
the serial approach according to some researcher. van Can et. al (van Can, Hellinga.
Luyben, Heijnen and te Braake, 1996) compared different modeling methods. A pressure
vessel modeling using real-time experimental data was carried out. Four approaches were
used: neural network model, serial approach with polynomial function as parameter
prediction tool, serial approach with neural network as parameter prediction tool, and
parallel approach. Based on extrapolation property, parallel approach showed no
advantage over neural network model. Both parallel approach and neural network model
were much worse than the serial approach. Conlin et al. (Conlin, Peel and Montague,
1997) also reported the same conclusion on the modeling of pressure drop in water
treatment.

There were not so many applications reported using parallel approach as those

using serial approach.

2.2 Gray-box model

Gray-box modeling strategy starts with the building of a empirical model (neural
network is one of the most popular empirical model), a priori knowledge is then
incorporated into the building of the model. The model development can be divided into
two phases, design phase and training phase. In each of the phase, a priori knowledge

can be incorporated to make the model more accurate.




Design Phase
In design phase, it is necessary to know the type and structure of the neural
network. For example, the following questions must be answered.

1) Is the process continuous or discrete? The answer to this question lead to the
selection of a continuous-type network or discrete-type network.

2) Is the process dynamic or static? The answer to this question lead to the selection of
a dynamic-type network or static-type network. Some intrinsically static network can
also be used to model dynamic process by treating delayed process inputs as different
neural network inputs.

3) How many input variables and output variables are required for the process? The
answer to this question lead to the determination of the number of input nodes and
output nodes of the neural network.

These questions seem trivial, but they are important a priori knowledge to
determine the type and structure of the neural network.
Dimopoulos and Kambhampati (Dimopoulos and Kambhampati, 1998) proposed

a method to determine the number of minimum neurons required for Dynamic Recurrent

Neural Networks. The authors used relative order of systems as a priori knowledge to

specify network topology before training, thus greatly reducing the training effort.

Another application (Schender and Agarwal, 1991) is to adopt state space concept into

neural network structure.
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Training Phase

In the training phase, there is much information that can be treated as a priori
knowledge for network training. Examples are process stability (Tulleken, 1993;
Craddock, Kambhampati, Tham and Warwick, 1998), constraints on the model
parameters or variables (Joerding and Meador, 1991), the smoothness of the system
behavior (MacKay, 1992; Foresee and Hagan, 1997), and derivatives of process variables
at certain points (Tulleken, 1993; Lampinen and Selonen, 1995; Kosanovich,
Gurumoorthy, Sinzinger and Piovoso, 1996; Hartman, 1998).

Train neural networks to model the process with only sparse plant data is a very
practical issue in the real world. In such situations, a priori information must be
incorporated to generate “pseudo data”. The derivative information of process variables
at certain points can be used as a priori information. The derivatives not only can serve
to generate “pseudo data.” but also the derivatives can make the trained neural networks
comply with a priori rules (Martinez and Wilson, 1998).

Lampinen and Selonen(Lampinen and Selonen, 1995) used inaccurate derivative
information to train 3 layer feed forward neural networks. A revised Back Propagation
(BP) algorithm was derived and used to train the neural network. Simulation results
showed that this network had a better representation of the system than a standard 3
Layer feed forward neural network trained with traditional BP algorithm.

Kosanovich et al. (Kosanovich, Gurumoorthy, Sinzinger and Piovoso, 1996)
proposed to use information from first-principles model, which designated as “time rate

of change of the error”, along with the training data, to train feed forward neural network.




The simulation results for a chaotic process showed that such trained neural network had
better performance than conventional network.

Lee and Oh (Lee and Oh, 1997) took “Jacobian of mapping”, which is similar to
derivative information, as a priori knowledge of the system. Neural network learning
was the hybridization of the error back propagation and the Jacobian learning. The
method showed good performance in accelerating the learning speed and improving
generalization. From simulation, results showed that using the Jacobian synthesized from
noise-corrupted data could accelerate learning speed.

Although the idea is still under development, Pavilion Technologies Inc.
(Hartman, 1998) applied gain-constrained training into its product Process Insights® and
has already filed a patent on this idea. Whether or not this idea is already mature enough
on the stage of commercialization, only Pavilion can show the results now, if any.

[nstead of using neural network as the black-box part in gray-box modeling,

stochastic method is also frequently reported. Tulleken (Tulleken, 1991; Tulleken, 1993)

proposed a bayesian approach. Given a prior distribution, associated with the physical
knowledge (process stability, sign of stationary gains, etc.) and data likelihood, a
posterior distribution was constructed. Explicit solutions were given for special cases of
Gaussian likelihood and a priori, which is uniformly or piece-wise linearly distributed on
a linearly constrained gray-box model class. Simulation was applied to the kinetic
parameter estimation of a continuous and a batch reactor model in (Tulleken, 1991).
Simulation results to a distillation process showed (Tulleken, 1993) the advantage of the
constrained estimates under realistic experiment conditions. Considerable variance can

be reduced at the cost of a somewhat larger bias.
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Sadegh et al. (Sadegh, Melgaard, Madsen and Holst, 1994) used probability
distribution function in system parameters as prior partial information for optimal
experiment design. A continuous time physical model of the heat dynamics of a building
was considered and the results showed that performing an optimal experiment
corresponding to a Maximum A Posteriori (MAP) estimation results in a considerable
reduction of the experimental length.

Bohlin and Graebe (Bohlin and Braebe, 1994) reviewed the strategy for stochastic
gray-box identification and surveyed experiences and lessons of applying it to a number
of industrial processes. The industrial processes applied were yeast production (Fan,
1990), rinsing of strip steel (Sohlberg, 1991; Bohlin, 1994), mould level control (Graebe
and Bohlin, 1992; Graebe and Goodwin, 1992), recovery boiler(Bohlin, 1993), pulp
digester (Funkquist, 1993; Funkquist, 1997a; Funkquist, 1997b). A tool kit, IdKit, and a

user’s shell, IKUS, was developed and reported.
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2.3 Summary

Recently, combination of @ priori knowledge with black-box modeling techniques
is gaining considerable interest. However, there are still lots of issues need to be
considered. First, most applications are still in simulation stage. The very limited cases
of industrial application were very simple process. No complicated process such as
distillation column has been the subject. Secondly, all the reported applications were
case studies. No systematic modeling method is developed that can be applied to almost

all processes. Thirdly, no criteria are developed to guide the modeling, to tell under
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which conditions which model can and is best to be developed. This research is intended

to do further investigation, applying the modeling method to distillation column.

19




CHAPTER 3

CONCEPT DEVELOPMENT

In order to develop accurate process model with least amount of time and money,
one need to maximize the usage of available prior information of the process. If most of
the mechanisms of the process are known, a model starting from physical mechanism
very likely to be developed. Then the unknown mechanism can be empirically correlated
by additional experimental data. On the other hand, if little of the mechanism of the
process is known, but rich process history data are available, a gray box model is likely to
be developed. The ideal situation is that one does not need to do any experiment and use
all the available prior information to create a process model.

This chapter comprises three parts: first, the hybrid model development strategy is

proposed. Secondly, hybrid serial modeling method is applied to experimental

Aueiqr] Apsioaly) SiBIS BLuIowyEsIO

distillation column. Thirdly, hybrid parallel modeling method is applied to model the
same experimental distillation column. Lastly, model evaluation criteria are developed to

evaluate the model.

3.1 Hybrid Modeling Method Development Strategy

At the very first step, a model developer must make it clear that which kind of
model needs to be built to meet the requirement of the model. For example, if the model
is to be used in an on-line control application, a dynamic model is necessary. In control

applications, accurate one step ahead prediction may be the defining performance criteria.
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On the other hand, if the model is to be used in a plant-wise optimization purpose, then a
simpler, lumped model for individual process units is enough. In optimization, accurate
steady-state prediction may be the most important to address.

The second step is the prior knowledge analysis. Prior knowledge is knowledge
about the process that exists prior to the synthesis of the model. The prior knowledge
includes hard constraints and soft constraints imposed on the process by first principles or
design considerations, historical plant data and much more.

The “hard” or “‘soft” constraints depend on their precedence with respect to the
data. Hard constraints must be strictly obeyed. Examples of hard constraints are valve
openings. which is limited from 0% to 100%; tank levels, which is limited from zero to
the height of the tank; safety limits, such as the limit of pressure of a tank; product quality
needs, such as the sterility, purity limits.

On the other hand, “soft” constraints are those that “preferably” to be obeyed. For
example, process response under step change preferably is first order plus dead Lime, with
small time constant and dead time. Model preferably can be extrapolated beyond the
training data set. Model is also desired to have some qualitative behavior such as
smoothness.

Historical plant data are important prior knowledge. Plant data reflect the
intrinsic material and energy balance, physical restrictions due to equipment limitations,
and real process behavior, etc. But plant data in most chemical processes are corrupted
by measurement noise and calibration error. In addition, because the processes usually

work on some certain set point, the all-range process behaviors are usually unavailable.
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When applying prior knowledge to the modeling process, in most cases it is
difficult to meet all the requirement of the process. Some compromise must be made.
The relationship between “hard” constraints, “soft” constraints and historical data is that
“hard™ constraints should take precedence over historical plant data, and historical plant
data should take precedence over “soft” constraints.

The third step is to select a starting point to develop the model. The ultimate
purpose of research is to reveal the intrinsic mechanism of the process. One should
incorporate as much physical mechanism in the model as possible. This logically lead to
the conclusion: If first principles model is possible, then develop the first principles
model. But if only partial mechanism is available, depend on how much the priori
knowledge is available, a hybrid serial model or hybrid parallel model can be developed.
At a worse situation, if only some intuitive knowledge, such as process gains at certain
points, process smoothness, is available, one can only develop a gray box model. The
worst situation is that one know nothing about the process, but only some input-output
data are available, the only choice is to develop a empirical model.

[f only small amount of experiment work is enough for empirical model fitting,
semi-mechanistic model is likely to be developed. Furthermore, hybrid serial model is
likely to be developed if most mechanism of the process are known, and model
coefficients are unknown but can be estimated from process variables. If in some region,
parts of the mechanism are unknown, but historical data are available to do the
correlation, hybrid parallel model is likely to be developed.

On the contrary, if little mechanism of the model is known, and rich plant history

data are available, gray box model is likely to be developed. If only sparse plant data are
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available, some technique like gain constraint training method may be employed to fill
the data gap.
The last step is to develop the model. Since most of the work is done in the first

three steps, this step is only a routine work that needs to be done.

3.2 Hybrid Serial Modeling Method

Hybrid serial model has better prediction over first-principles model. The reason
lies in the fact that neural network can use all influencing variables, thus leading to better
parameter prediction capacity. In distillation column modeling, column efficiency is
difficult to model by first-principles model, while it can be inferred from process
operating conditions. Neural network can be used as the mapping between process
variables and column efficiency.

As the schematic diagram shown in Fig. 3.1, serial approach is a hybrid model.
which consists of two sub-models, i.e., neural network model and first-principles model.
Neural network model is used to predict overall column efficiency. All trays are assumed
to have the same Murphree vapor phase efficiency, which equals to the overall column
efficiency. Neural network model inputs are process variables that can determine the tray
efficiency, such as feed flow rate, feed composition, feed preheat temperature, reflux
flow rate, reboiler temperature and top tray temperature. The final inputs to the neural
network should be determined by trial and error, only the variables that have close

correlation to the output are selected. Neural network model output is the overall column

efficiency.
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Hybrid Model
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Feed Composition P__——_" Principles xp (dist)
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—»  Neural
: Network
>
——»
Top Tray Temp
' B

Fig. 3.1  Distillation Column Model Structure in Serial Approach

(Neural network is used to model tray efficiency)

A standard feed forward neural network is applied. The neural network consists
of one input layer, one hidden layer and one output layer. The proposed training
algorithm is Levenberg-Marquardt with bayesian regularization (Foresee and Hagan,
1997). which requires fewer experimental data points while still overcoming the
overfitting problem. Bayesian regularization ensures smoothness in the output of the
neural network. Optimum number of hidden neurons can be determined as follows: Train
neural network with 1, 2, ... hidden neurons, record the effective number of parameters
in each neural network, which is automatically reported in the training results. Starting
from a neural network with n hidden neurons, all the neural networks with n+1, n+2. ...

hidden neurons will have the same number of effective number of parameters. Choose
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|
the neural network with n hidden neurons as the one that to be used in hybrid serial %
modeling. The experiment data need to cover the whole operating range in order to avoid
neural network extrapolation. Otherwise neural network need to do extrapolation, which
is totally unreliable.

First-principles model takes reflux temperature, feed flow rate, feed composition,
reflux flow rate and reboiler temperature as principal inputs, and predicted overall
column tray efficiency from neural network model as secondary input. First principles

model applies material balance, energy balance, thermodynamics, etc., to calculate

distillate composition, which is the outputs for both first principles model and hybrid
serial model.

Bottom composition is also a candidate output for the hybrid serial modeling, but
distillate composition is preferred. The value of bottom composition are mostly in the
range of 0 - 10 mol% MeOH, and the value of distillate composition are mostly in the

range of 60 - 90 mol% MeOH. If the absolute measurement error for composition

Areaqri Ausioniun) aleis

remains the same, the relative error for distillate composition would be much less than

that for bottom composition.

3.3 Hybrid Parallel Modeling Method

Hybrid parallel model has the possibility of reducing the mathematical model size
by allowing a somehow larger modeling error because of the unaccounted process
mechanism. The model error is later corrected by neural network. When this approach
applies to distillation column modeling, first principles model part can be assumed

working at fixed column efficiency, although the actual process works at varied column
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efficiency. The induced error can be corrected by neural network part of the model. The
neural network corrects not only the error induced by column efficiency, but also various
other first-principles modeling errors.

As the schematic diagram shown in Fig. 3.2, parallel approach is also a hybrid
model, which consists of two sub-models, i.e., neural network model and first-principles
model. The proposed parallel approach is a variation of the parallel approach discussed

previously, in which neural network does not exactly have the same inputs as first

principles model has.
Hybrid Model
Reflux Temp
FeedRate -
’| First- Xp (dist purity
z " 40 st purity)
'F:dd ,E;’r:’g““"“" P Principle .? >
Reflux Rate > Model Residual
Reboiler Temp b error
—P
_ 'I Neural
5 Network
) L P
Top Tray Temp
—P

Fig. 3.2  Distillation Column Model Structure in Parallel Approach

(Neural network is used to compensate first-principles model prediction error)

First-principles model takes reflux temperature, feed flow rate, feed composition,

feed temperature, reflux rate and reboiler temperature as inputs, then first principles

26

Areaqri AusiaAiun) i8IS ewoyee




(material balance, energy balance, thermodynamics relationships, etc) are applied to

calculate distillate composition, which is the first principles model output. Neural
network model takes process variables, such as feed flow rate, feed composition, feed
temperature, reflux rate, reboiler temperature and top tray temperature, as inputs. The
final inputs to the neural network is determined by trial and error, only the variables that
have close correlation to the output is selected. Neural network model serves for error
correction to first-principles model, since first-principles model outputs have errors
comparing to the actual process outputs. Neural network model output (residuals) is then
added to first principles model output (distillate composition). The sums serve as the
hybrid model output. A standard feed forward neural network is used. The neural
network structure and training algorithm is the same as that used in hybrid serial model,
that is, one input layer, one hidden layer and one output layer, training algorithm is

Levenberg-Marquardt with bayesian regularization.
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3.4 Model Evaluation

The distillation column can be viewed as a stochastic process. A stochastic
process consists of two parts: one is the deterministic part, which is predictable. The
other is the random part, which is unpredictable. A well-modeled stochastic process
model should include all the predictable factors, and leave the unpredictable factors as
residual error, i.e. noise. If the residual errors are biased noise, then the noise part
contains something that is predictable, and the model has to be improved. The residual

error mean value should be zero. Also, the residual errors in a well-modeled stochastic
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process should only contain white noise, i.e., “a sequence of independent (identically
distributed) random variables with a certain probability density function” (Ljung, 1999).

There are several ways to test the whiteness of the noise. One common way is the
auto-correlation method (Box, Jenkins and Reinsel, 1994). One can visually tell whether
the residuals are white or not from plots of auto-correlation function. A more rigorous
way is to use y” test (Ljung, 1999). In this research, only the auto-correlation test was
used.

For auto correlation method, if infinite number of data points are available, the
normalized auto correlation function for white noise equals to 1.0 at lag k=0, i.e., no lag.
At all other points, auto correlation function equals to 0. In reality, since only limited
amount of data is available, the auto correlation function is only close to 0 at lag k=0.

The data can be arranged in experiment sequence, provided that the experiment 1s
planned in such a way that adjacent experiment data points are close to each other in the
multi-dimensional process variable space.

The residual error auto correlation function at lag k can be expressed as:

o, = El(e, —p)(e, ., —1)] (3-1)
VEI(e, -0 1ElCe,., —1)*]

Where py — auto correlation function at lag k.
¢,. e;+x — residual error at time instant t and t+k, respectively.

i — mean value of e,.

E[ | — mathematical expectation of the random variable(s) in

the bracket. E[e]= p.
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p can be estimated from the data set by

.
u=ﬁZe, (3-2)

1=l

pk can be estimated from the data set (Box, Jenkins and Reinsel, 1994) by

- c
Py == (3-3)
Cy
where
1 & A .
. Z —f)(e,., —f) (3-4)
1=

(i and p are the estimate of mean and auto correlation function, respectively. N

is the total number of points.

In this research, residual errors are the difference between experiment distillate

composition and hybrid model predicted distillate composition.

-
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CHAPTER 1V

EXPERIMENT RESULTS

The application of semi-mechanistic model (hybrid serial model and hybrid
parallel model) and gray box model reported in the literature was restricted to either
simulation studies or simple processes. The applicability of the modeling strategies to
complex process is still under investigation. In this chapter, the proposed methods are
applied to model distillation column.

Distillation column modeling is a challenging problem for both testing the
proposed modeling methods and for practical reasons. The difficulty of distillation
column modeling provides a good example for testing the modeling methods. As we
know, distillation column is a complex chemical process, which has complex
characteristics including severe non-linearity, large dead-time, interactions, and
subjection to many constraints and disturbances.

For practical reasons, accurate distillation column model is always needed.
Distillation is the most important separation technique in chemical process industries
around the world and constitutes a significant fraction of chemical plant capital
investment. The operating costs of distillation columns are often a major part of the total
operating costs of many chemical plants. Within the U. S., there was an estimated 40,000
columns which consumed approximately 3% of the total all-purpose energy usage
(Humphrey, Seibert, and Koort, 1991). Improved distillation control based on more

accurate model can have a significant impact on reducing energy consumption,
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improving product quality, and protecting environmental resources. Hence, accurate
distillation column model is necessary.

This chapter is organized as follows: Section 1 introduces the experimental
distillation column setup, including column instrumentation, Data acquisition and control
system, and interfacing program development. Section 2 is the step by step hybrid serial
modeling method and the resulting model performance. Section 3 is the step by step
method for hybrid parallel modeling and the resulting model performance. Section 4

shows the model evaluation results.

4.1 Experimental System

4.1.1 Experimental Setup

Figure 4.1 depicts the experimental distillation column in Unit Operations Lab of
the School of Chemical Engineering, Oklahoma State University. The column consisted
of 6 sieve trays, one direct heated reboiler and one total condenser. Feed was pumped (P-
1) from Feed Tank (TK-1), electrically preheated (E-1) and then fed into the column.
Reboiler (E-3) was also electrically heated. Bottom product was cooled through bottom
cooler (E-2) before flowed to bottom product tank (TK-2). Vapor from the top tray was
first condensed (E-1) before flowed to reflux drum (D-1). Part of the condensate
overflowed to distillate tank. Part of the liquid was pumped (P-2) back to the column as
reflux. An electric heater preheated the reflux before it was fed back to the column.
Water from municipal water supply pipeline was used as coolant. Cooling water was

first used in the condenser (E-1) to condense the vapor, and later was fed into bottom

31

Areiqri Ausieniuf) 9ieis ewoyesio



K1
Feed Tank

K3

Bk
Cooler K2 n
g |
Sever m
\B}

Fig 4.1 Instrumentation Diagram of Experimental Distillation Column
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cooler (E-2) to lower the bottom product before the bottom product went to bottom

product storage tank (TK-2).

4.1.2 Instrumentation

There were totally 13 temperature measurement points. Each tray temperature
was measured (TI-01, TI-02, TI-03, TI-04, TI-05 and TI-06). Cooling water

temperatures were measured before it entered the condenser (TI-08) and after it left the

condenser (TI-07). Condensate temperature (TI-09) out of the condenser was measured.

Feed temperature (TIC-10) after the preheater was measured, and controlled through
SCR. Reflux temperature (TIC-11) after the preheater was measured, and controlled
through SCR. Reboiler temperature (TIC-12) was measured, and controlled through
SCR. All the above temperatures were measured by type K thermocouples. All the
temperatures were also indicated in the computer and recorded in an ASCII-format
logging file.

There was also a local temperature indicator directly mounted on the reboiler to
measure the reboiler temperature (TI-13).

Feed flow rate (FIC-01), reflux flow rate (FIC-02) and cooling water flow rate
(FIC-03) were measured and controlled. The measurement devices were Differential
Pressure (DP) cells (the integration of orifice meter and pressure transducer). All the
above flow rates were controlled by control valves. All the above flow rates were also
indicated in the computer and recorded in an ASCII-format logging file.

Feed flow rate (F1-04) and reflux flow rate (FI-05) were also indicated by two

rotameters, respectively.
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Four liquid levels were measured: feed tank (LI-01), bottom product tank (L.1-02),
distillate tank (LI-03), reboiler level (LI-04). All measured levels were indicated in the
computer and recorded in an ASCII-format logging file.

Only one pressure point, the reboiler pressure (PI-01), was measured and
indicated in the computer. At the same time, the value was recorded in an ASCII-format
logging file.

Methanol compositions (feed composition, bottom product composition and
distillate composition) were sampled at steady state and measured off-line by
refractormeter.

All other necessary process variables were inferred from the above measured
variables. Distillate flow rate was calculated from the distillate tank level change in 5
minutes intervals, the cross sectional area of the tank and the density of the liquid.
Bottom product flow rate was calculated by the same method.

Fig. 4.2 and Fig. 4.3 shows the front view and back view of the distillation
column, respectively. From Fig. 4.2, one can see the 6-sieve-tray distillation column,
reboiler at the bottom and condenser at the top.

From Fig. 4.3. one can see SCR (Silicon Rectifier) at the up-front position. feed
flow rate transducer and feed valve at the middle-back position, feed pump at the bottom-

front position, and feed tank at the bottom-back position.
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Fig 4.2

Front View of Distillation Column

Fig 4.3

Back View of Distillation Column
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4.1.3 Data acquisition and control system (Camile Products, LLC, 1997, 1998)

Camile 2200 hardware, along with Camile TG 3.7 software, was selected to meet
the specific data acquisition and control needs of this research.

Camile 2200 is a nine-slot Camile chassis with an optional integrated PC (not
installed for this application). [n this application, 6 boards were installed. One controller
board (PN 564) was to perform control action calculation and scheduling data collection
and transmission. One terminator board (PN 554) was installed to minimize system noise
by damping resonant frequencies in the bus. One network communication board (PN
565) was used to communicate with the host PC. One thermocouple board (PN 525) was
for thermocouple inputs signals. One analog input board (PN 525A1I) was for analog
input signals (flow rates. levels, and pressure). One analog output board (PN 522) was
for analog output signals (to control valves, SCRs).

Fig. 4.4 shows the front view of the Camile 2200 unit with board installed.

Fig. 4.4 Camile 2200 (with boards installed)

A network communication board (PN 566) was installed in host computer to

communicate with camile box.
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Camile TG 3.7 software was installed in a host PC, which was used to configure
the process, perform control, programming user interface, data logging, and data
retrieval.

Fig 4.5 shows the computer screen while the experiment was running. The
computer can be configured to display trends of any process sampled variables. The

scale can be as small as millisecond, or as large as days.
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Fig. 4.5 Trends of Process Variables Displayed on Host Computer Screen
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Figure 4.6 is the graphical configuration of the process. The graphical interface

provides the flow sheet for the process.

.+~ Camile TG
F r -

MBI E DS EEEERs

™ Process_Diagram

Fig. 4.6 Process Diagram Displayed on Host Computer Screen
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4.2 Hybrid Serial Modeling Method

4.2.1 Modeling procedure

The modeling of distillation column can be described in the following 5 steps.

Step 1: Collect Experiment Data.

148 steady state data points were collected. When process reached steady state,
the experiment continued to run for additional 30 minutes in steady state. Process
variables were measured every 30 seconds during this 30-minutes steady state period.
Process variables (except for liquid level and level related variables, such as distillate
rate, bottom rate) were averaged over this 30 minutes time period to reduce measurement
noise.

For hybrid serial modeling, 88 data points from the whole data set were used. All
data points where column efficiency equals or close to 1.0 was eliminated. The 88 points
used for hybrid serial modeling can be found in Appendix E.

The operating limits and operating points of process variables is shown in Table
4.1. Operating limits is the physical limitation of each process variable for this specific
distillation column. The lower limits of feed rate and reflux rate were determined by
measurement device, which would give large measurement error if the flow rates were

below the lower limits.

Manipulated variables were feed rate, feed composition, reflux rate, reboiler duty.

Originally, 3 to 5 operating points were selected for each manipulated variable. For
example, feed rate was operated at 15, 24 or 30 lbm/hr for each experiment.

Theoretically, 3*3*5%3=135 experiment points need to be carried out. In reality, some
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points were out of feasible operating region. As the result, those points were eliminated
from the experiment. For example, at point where feed rate equals to 30 Ibm/hr, feed
composition equals to 40%, reboiler duty equals to 60%, reflux rate equals to 80 Ibm/hr,
because of the high feed flow rate and the low reboiler duty, the distillation column could
not operate at this point. In addition, in some operating region, distillate rate was
sensitive to one or more of the manipulated variable. When this situation occurred, more

experiments were carried out to fill the gaps.

Table 4.1 Operating Limits and Points of Process Variables

(Feed Temperature set to 35 °C, Reflux Temperature set to 50 °C)

17 AUSIBAILYT FIEIS BUIOYBIO

Process Variables Operating Limits | Operating Points
Feed Rate (Ibm/hr) 10-36 15, 24, 30
Feed Composition (mol% MeOH) 16 - 40 20, 30, 40 Ef’
\]
Reboiler Duty (% of Full Power) 60-100 60, 70. 80, 90, 100 :‘E}
Reflux Rate (Ibm/hr) 10— 82 15, 40, 80
[ Distillate Composition (mol% MeOH) 54-95
| Bottoms Composition (mol% MeOH) 0-28

Feed and reflux temperatures were originally set to be at 35 °C and 50 °C. In
reality, due to the inadequate feed preheater heating capacity, reboiler preheater heating

capacity, and cooling water cooling capacity, both feed temperature and reflux
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temperature were “out-of-control” in some points. All these points were kept in the

experiment data set.

Step 2: Reconcile Data

The characteristics of the experiment distillation column determines that bottom
product flow rate and distillate flow rate were measured with least confidence. The
training data must agree with overall material balance and component material balance.

Overall material balance:

F=D+B (4-1)

Component (methanol) material balance:

Fx. =Dx,+ Bx, (4-2)
where
F — feed flow rate (Ib/hr)
D — distillate flow rate (1b/hr)
B — bottom product flow rate(lb/hr)
xr— feed composition (mass% methanol)
xp — distillate composition (mass% methanol)

xp — bottom product composition (mass% methanol)

Adjust bottom product flow rate and distillate flow rate to comply with the

balance equations. That is, solve a and P in the following equation:

F=(D +a)+(B +B) (4-3)
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Fx, =(D'+a)x, +(B'+P)x, (4-4)

where
D’ — measured distillate flow rate (1b/hr)
B’ — measured bottom product flow rate (1b/hr)
The values of a and P tell how much the experiment errors are. The reconciled
distillate and bottom product flow rates are
D=D"+u (4-5)
B=B"+p (4-6)
This step was done in Microsoft Excel. The “equation solver” function in Excel

helped in solving balance equations.

Step 3: Run ChemCAD to Determine Column Efficiency.

ChemCAD is one of the most popular commercial simulation software for
chemical processes. ChemCAD Simultaneous Correction Distillation Simulation (SCDS)
model was served as first-principles model in this research.

ChemCAD inputs were from reconciled data set. The inputs were: feed
temperature, feed pressure (14.7 psia), feed methanol flow rate, feed water flow rate
(calculated from feed flow rate and feed composition), subcooled delta T (calculated
from reflux temperature), reflux flow rate, bottom product flow rate. Other less
important inputs were: distillate flow rate, reflux flow rate, top tray temperature, second
top tray temperature. All of the less important inputs were just estimated values for
convergence purpose. Then over all column efficiency was adjusted to make the

ChemCAD predicted distillate composition match experiment distillate composition.
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Column efficiencies were adjusted by trial and error to the second significant digit, which
were enough to keep difference of the distillate composition from ChemCAD and the
distillate composition from experiment less than 0.3 mol% of MeOH (results can be
found in Appendix E). Double check again to see if the predicted bottom product
composition matches experimental bottom product composition. The difference of the
bottom composition from ChemCAD and the bottom composition from experiment is

less than 0.6%. In most cases, the difference is less than 0.1%.

Step 4: Train Neural Network to Predict Column Efficiency

Till this step, all the measured process variables and the corresponding tray
efficiency were available. The neural network output was the column efficiency. But
which variables should be the neural network inputs need to be determined. First, all
measured variables were used for training neural network. These variables were: feed
flow rate, feed composition, feed temperature, reflux flow rate, reflux temperature,
reboiler temperature, tray 1 — tray 6 temperature. Then, reduced the inputs one by one. If
the reduced variable made the prediction error significantly large, this variable was then
kept as the true neural network input. Otherwise this variable was not used for neural
network input. Based on the selection procedure described above, the final inputs to
neural network were: feed flow rate, feed composition, feed temperature, reflux rate,
bottom product flow rate and top tray temperature.

Experiment data need to be scaled to [-1 1] before used for training. Each
variable scaling were based on the following equation:

measured — min _ scaled — (-1) (4-7)

max— min 1-(-1)
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where “max”and “min” were the minimum measured value and maximum
measured value, respectively.

All experiment data were divided into training set and test set. Based on the
sequence number, the training set include 2/3 of all the data, which included data points
1.2.4.5,7.8, ... The test set included 1/3 of all the data, which included data points
3,6,9...

The 3-layer neural network structure is 6-5-1. The input layer consists of 6 nodes.
The hidden layer has 5 nodes, each node has hyperbolic tangent sigmoid transfer
function. The output layer consists of 1 node with linear transfer function. There are
totally 41 adjustable parameters. 'The neural network was trained by Levenberg-
Marquardt algorithm with bayesian regularization (MacKay, 1992; Foresee and Hagan,
1997). The algorithm requires fewer experimental data points for training while
overcoming the overfitting problem. Regularization ensures smoothness in the function
approximation performed by the neural network. The training was stopped when any of
the following criterion was met: value of objective function less than the performance
goal (goal set to 0.0), minimum gradient reached (minimum gradient set to 1e-10),
maximum epochs reached (maximum epoch set to 2000), maximum time elapsed

(maximum time set to infinity), maximum p reached (maximum p set to lel0, pis a

parameter in Levenberg-Marquardt algorithm). Details of the neural network training can

be found in Appendix A and B.

Neural network output was then scaled back from [-1 1] to its real range.
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Step 5: Test Hybrid Serial Model.

Various tests were taken to show the performance of the hybrid serial model.
First, the prediction error of the neural network was examined. Secondly, hybrid serial
model predicted distillate composition vs. the true distillate composition was compared to
fixed efficiency first-principles model vs. the true distillate composition. Thirdly, the
prediction capability between hybrid serial model and fixed efficiency first-principles
model was compared. Lastly, in each experiment run, the prediction error between X

hybrid serial model and fixed efficiency first-principles model was compared. .

/)
4.2.2 Experimental results %

In hybrid serial modeling, the improved model prediction accuracy over fixed -

AlLS

efficiency first-principles model depends heavily on the neural network. As a result. D

]

{

neural network prediction accuracy must be examined. The error (ChemCAD column

A

/

efficiency minus neural network predicted column efficiency) has a mean of 0.003 and cr

AL2

standard deviation of 0.032. It is a nice prediction result. Fig. 4.7 is the plot of neural
network predicted efficiency vs. ChemCAD column efficiency. ChemCAD predicted
column efficiency is assumed to be the true column efficiency. The closer the diamond
point to the diagonal line, the better the neural network prediction is. From the figure, it
also shows that neural network gives nice prediction result.

The next step is to test hybrid serial model predicted distillate composition vs. the
true distillate composition with fixed efficiency first-principles model predicted distillate
composition vs. the true distillate composition. First-principles model was run under

fixed column efficiency. which was the average column efficiency of all runs. In this
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research, fixed column efficiency was chosen to be 40% (mol % of methanol), which is
the average column efficiency for the whole experiment runs. This is the key test to see

whether the hybrid model is better than first-principles model or not.
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Fig. 4.7 Serial Approach: Neural Network Predicted Column Efficiency

vs. ChemCAD Column Efficiency

Table 4.2 shows the prediction error of hybrid serial model and fixed efficiency
first-principles model. The average error (mean error) of hybrid serial model is ~1.31
mol% MeOH, which is smaller than —1.67 mol% MeOH, mean error of fixed efficiency
first principles model. Standard deviation of hybrid serial model is 4.70 mol% MeOH,

which is much smaller than 7.88 mol% MeOH, standard deviation of fixed efficiency
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first-principles model. Table 4.2 tells that hybrid serial model provides better model

prediction accuracy for the distillation column modeling.

Table 4.2 Comparison of Prediction Error between Hybrid Serial Model

and Fixed Efficiency First-principles Model (unit: mol% MeOH)

Hybrid Serial Model Fixed Efficiency Model

D
Mean Error 131 -1.67 ;
)
~r

Standard deviation 4.70 7.88 Q:
B

0

A

N

Fig. 4.8 is the model predicted distillate composition vs. actual distillate }:_;"
composition. The circles are the first-principles model predicted distillate composition -:E:
%,

(at fixed column efficiency) vs. actual distillate composition. The diamonds are the <
hybrid serial model predicted distillate composition vs. the actual distillate composition. t::f
AN

The closer the points to the diagonal line, the better the model prediction accuracy is. <!

Iig. 4.8 tells that hybrid serial model does provide better model prediction accuracy than
fixed efficiency first-principles model.

Hybrid serial model takes unmodeled parameter — column efficiency into account,
which makes the model able to predict distillate composition at any column efficiency.
On the other hand, fixed efficiency first-principles model only takes average column
efficiency as its parameter. First-principles model should give good distillate
composition prediction if the column runs at that efficiency. But first-principles model

would give bad distillate composition prediction if the true column efficiency deviate
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Fig. 4.8 Hybrid Serial Model Predicted Distillate Composition

vs. True Distillate Composition

from the average column efficiency. Fig. 4.9 shows this conclusion. Fig. 4.9 is the plot
of distillate composition predicted errors vs. column efficiency. The diamonds are the
hybrid serial model distillate composition predicted errors vs. column efficiency. The
trend line of hybrid serial model is almost flat, with square of correlation coefficient
equals to 0.0105. At different column efficiency, hybrid serial model gives statistically
the same prediction error. The circles are the first-principles model distillate composition
predicted errors vs. column efficiency. The error trend line is skewed, with square of

correlation coefficient equals to 0.5951. At low column efficiency, the model predicted
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distillate compositions are statistically always lower than the actual distillate

compositions. If the actual column efficiency is close to the average column efficiency,

which was used by first-principles model all the times, first-principles model gives good

prediction of distillate composition. At high column efficiency, the model predicted

distillate compositions are statistically always higher than the actual distillate

composition.
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Fig. 4.9 Serial Approach: Distillate Composition Predicted Error at Different

Column Efficiency

The prediction of hybrid serial model and first-principles model was also

compared at each experiment run. Fig 4.10 is the plot of distillate composition predicted
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errors vs. experiment number. The diamonds are the hybrid serial model distillate
composition predicted errors vs. experiment number. The circles are the first-principles
model distillate composition predicted errors vs. experiment number. Since data from
experiment number 44 — 72 retlect some errors, they were not used in the hybrid serial
modeling. One can see from the figure that there are some data “missing” from
experiment number 44-72. Figure 4.10 tells that statistically hybrid model gave better

distillate composition prediction than first-principles model at each experiment run.

20%
IO hybrid serial model ~
@ fixed efficiency model [ ]
15%
s %
10% *
° . P
8 - e . ¢ *
- o 2 g i .
° °
g L Ry @ o S
— L ] ‘. ] ‘
B e e P e * ® L] = "
& %= "o ..0 * e *® ®
S o ° & eet_, 3° . e °
= [ . AT 5 °
o® ¢ Q * * *
§- -5% - ° ot ¢ ¥ e
E : [] ‘ . 0, *
3 ° ° .
- » [ ®
£ : &0 e
= -10% P LS
2 ° ®
a e o
°
L/ ]
-15% L s °
®
-20% [ ]
-25%
0 20 40 60 80 100 120 140 160
Experiment Number

Fig. 4.10 Serial Approach: Distillate Composition Predicted Error

vs. Experiment Number
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4.3 HYBRID PARALLEL MODELING METHOD

4.3.1 Modeling procedure

The modeling can be described in the following 5 steps.

Step 1: Collect Experiment Data.

148 steady state data points were collected for model evaluation. Which was the

same data set collected for hybrid serial modeling. For hybrid parallel modeling, 131 }i:?'
data points from the whole data set were used. The 17 data points that were not used é;‘
contained some significant experiment errors. Some data points, especially where the E:)
column efficiency equals or close to 1.0, contained some not-so-significant experiment g:
errors, were still used for the hybrid parallel modeling. The 131 points used for hybrid E;
parallel modeling could be found in Appendix F. Z:
4

Step 2: Reconcile Data. :f'
2

This step was essentially the same as that in hybrid serial modeling, except that 2‘

the total number of data points was different.

Step 3: Run ChemCAD to Get Distillate and Bottom Product Composition at Fixed

Column Efficiency.

ChemCAD inputs were from reconciled data set. The inputs were: feed
temperature, feed pressure (14.7 psia), feed methanol flow rate, feed water flow rate
(calculated from feed flow rate and feed composition), subcooled delta T (calculated

from reflux temperature). reflux flow rate, bottom product flow rate. Other less
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important inputs were: distillate flow rate, reflux flow rate, top tray temperature, second
top tray temperature. All of the less important inputs were just estimated values for

convergence purpose. Over all column efficiency was set to 40%, which was the average

efficiency in all runs.

Step 4: Train Neural Network to Predict Residual Error

Till this step, all the process measured variables and residual errors were
available. The neural network output was the residual error in first principles model.
But neural network inputs should be selected. First, all measured variables were used for
training neural network. The procedure of sclecting input variables were the same as that
for hybrid serial modeling. Based on the selection procedure, the final inputs to neural
network were: feed flow rate, feed composition, feed temperature, reflux rate, reboiler
temperature and top tray temperature.

Neural network structure is 6-5-1, which happens to be the same structure as
hybrid serial modeling. All the other procedures for training neural network, such as data
scaling, training set and test set selection, neural network training algorithm selection,

output scaling, were essentially the same as that in hybrid serial modeling.

Step 5: Test Hybrid Serial Model.

Various tests were taken to show the performance of the hybrid parallel model.
First, the prediction error of the neural network was examined. Secondly, hybrid parallel
model predicted distillate composition vs. the true distillate composition was compared to

fixed efficiency first-principles model vs. the true distillate composition. Thirdly, the
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prediction capability between hybrid parallel model and fixed efficiency first-principles
model was compared. Lastly, in each experiment run, the prediction error between

hybrid parallel model and fixed efficiency first-principles model was compared.

4.3.2 Experimental Results

In hybrid parallel modeling, the improved model prediction accuracy over first-
principles model totally depends on the neural network. As a result, neural network
prediction accuracy is so important that must be examined first. The error (error of fixed
efficiency model minus error of neural network predicted distillate composition) has a
mean of 0.11 (mol% of MeOH) and standard deviation of 2.81 (mol% of MeOH). Fig.
4.11 is the plot of neural network predicted distillate composition residuals vs. the true
distillate composition residuals. “True distillate composition residuals™ equal to
experiment distillate composition minus fixed efficiency first-principles model predicted
distillate composition. The fixed efficiency was chosen to be 40%., which was the
average column efficiency. Then the true distillate composition residuals were used as
the training set to train the neural network. Neural network outputs were the “neural
network predicted distillate composition residuals”. The closer the diamond point to the
diagonal line, the better the neural network prediction is. From the figure, it shows that
neural network gives nice prediction results.

The next step is to test hybrid parallel model distillate composition prediction
capability vs. the true distillate composition with first-principles model prediction vs. the

true distillate composition. As in hybrid serial modeling, first-principles model was run
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under fixed column efficiency at 40% (mol% of methanol), which was the average

column efficiency of all runs. This test shows whether the hybrid parallel model is better

than first-principles model or not.

Neural Network Predicted Distillate Compositio
Residual (mol% MeOH)

Fig. 4.11

30%
Actual distillate composition residual = experiment distillate &
composition - fixed efficiency first-principles model predicted .
20% distillate composition o
® | |Neural network Predicted Distillate Composition is neural o
network output
2]
10%
0%
-10%
-20%
-30%
-30% -20% -10% 0% 10% 20% 30%

Actual Distillate Composition Residual (mol% MeOH)

Parallel Approach: Neural Network Predicted Distillate Composition

Residual vs. True Distillate Composition Residual
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Table 4.3 shows the prediction error of hybrid parallel model and fixed efficiency
first-principles model. The mean error of hybrid parallel model is 0.10 mol% MeOH,
which is smaller than 1.55 mol% MeOH, mean error of fixed efficiency first principles
model. Standard deviation of hybrid parallel model is 2.80 mol% MeOH, which is much
smaller than 9.54 mol% MeOH, standard deviation of fixed efficiency first-principles
model. Table 4.3 shows that hybrid parallel model provides better model prediction

accuracy.

Table 4.3 Comparison of Prediction Error between Hybrid Parallel Model

and Fixed Efficiency First-principles Model (unit: mol% MeOH)

Hybrid Serial Model Fixed Efficiency Model
' Mean Error 0.10 1.55
Standard deviation 2.80 9.54

Fig. 4.12 is the model predicted distillate composition vs. actual distillate
composition. The circles are the first-principles model predicted distillate composition
(at fixed column efficiency) vs. actual distillate composition. The diamonds are the
hybrid parallel model predicted distillate composition vs. actual distillate composition.
From the plot, one can see that hybrid parallel model does provide better model
prediction accuracy.

Hybrid parallel model uses neural network to predict residual errors between the
process and first-principles model. Residual errors come from different sources, such as

unmodeled parameters, unaccounted process mechanism, inaccurate thermodynamic
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correlation, etc. In this research, first-principles model residual error mainly came from
unmodeled column efficiency. First-principles model assumed the distillation column
always works at the condition where column cfficiency is fixed. First-principles model
should give good distillate composition prediction if the column runs at that efficiency,
and it would give bad distillate composition prediction if the true column efficiency
deviate from the average column efficiency. Fig. 4.13 shows this conclusion. Fig. 4.13

is the plot of distillate composition predicted errors vs. column efficiency. The diamonds
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are the hybrid parallel model distillate composition predicted errors vs. column
efficiency. At different column efficiency, it gave statistically the same prediction error.
The squares are the fixed efficiency first-principles model distillate composition
predicted errors vs. column efficiency. The fixed efficiency first-principles model is the
same as that in hybrid serial model section, except that more operating points were added,

especially the points where column efficiency equals or close to 1.0, which can be

reflected from the cluster of points at efficiency equals to 1.0. _i;'
g
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The prediction of hybrid parallel model and first-principles model is also
compared at each experiment run. Fig 4.14 is the plot of distillate composition predicted
errors vs. experiment number. The diamonds are the hybrid parallel model distillate
composition predicted errors vs. experiment number. The circles are the first-principles
model distillate composition predicted errors vs. experiment number. Fig. 4.14 tells that
statistically hybrid parallel model gives better distillate composition prediction than first-

principles model at each experiment run.
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4.4 Model Evaluation

Mean and Standard Deviation

Two of the criteria of comparing different models are to evaluate mean and
standard deviation of residual errors and error. Table 4.4 lists the mean and standard
deviation of hybrid serial model and hybrid parallel model. The mean error of hybrid
serial model predicted distillate composition is —1.31 mol% of MeOH, significantly
larger than that of hybrid parallel model. The standard deviation of hybrid serial model
predicted distillate composition is 4.70 mol% of MeOH, larger than that of hybrid
parallel model. Both criteria shows that hybrid parallel model is better than hybrid serial

model in distillation column modeling.

Table 4.4 Mean Error and Standard Deviation of Hybrid Models

(unit: mol% MeOH)
‘ hybrid serial model hybrid parallel model
Mean Error -1.31% 0.10%
Standard Deviation 4.70% 2.80%

“Whiteness” of Residual Error

Another important criterion to evaluate the model is to test the whiteness of
hybrid model residual error. The data were arranged in experiment sequence since the
experiment was carried out in such a way that the adjacent experiment data points were

close to each other in the multi-dimensional process variable space.
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Fig. 4.15 shows the residual error auto-correlation function in the hybrid serial
model. Since auto-correlation function is even symmetric along the y axis, only the right
part of the auto-correlation function is shown. The ideal white noise shape should show

that auto-correlation function equals to 1.0 at lag k=0, and 0 for all other k value. The
95% significance level is 0.21 (1.965/+/88 = 0.21, where variance 6 =1.0), but the auto-
correlation function were greater than 0.21 for k <4. So, the residual error is not white.
The shape is also similar to a damped sine wave, which means that part of the residual

noise is predictable, probably by ARMA model. Fig. 4.15 tells that the residual errors in

hybrid serial model are not a white noise.

1.2

O.B_l
08|

04|

auto comelation function

Fig. 4.15 Auto Correlation Function of Residual Error in Hybrid Serial Model

Fig. 4.16 shows the residual error auto-correlation function in hybrid parallel
model. Only the right part of the auto-correlation function is shown because of the
symmetric characteristic of the function. The ideal white noise shape should show that

auto-correlation function equals to 1.0 at lag k=0, and 0 for all other k value. The 95%
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significance level is 0.17 (1.965 /4131 =0.17, where ¢ =1.0). Fig. 4.16 tells that the
residual errors in hybrid serial model are a white noise, which means that the model fit

the experiment data well, thus leading to a satisfactory model.

08|
06|
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auto comrelation funlion

02| |

Fig. 4.16 Auto Correlation Function of Residual Error in Hybrid Parallel Model

This result is not surprising. In hybrid serial modeling, all factors that led to
model inaccuracy in first-principles model were lumped into one model parameter —
column efficiency. Even though neural network may predict the true column efficiency,
true column efficiency could not correct all other factors that lead to model inaccuracy.
On the other hand, in hybrid parallel modeling, neural network was used to correct the
residual errors in first principles model, in which situation that neural network can

compensate all factors that led to model inaccuracy.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This work outlined a framework of how to incorporate first-principles model.
empirical model and historical data into process modeling. There are generally two
approaches, i.e., hybrid modeling and gray box modeling. Emphasis was put on the
hybrid modeling technique. More specifically, hybrid serial modeling and hybrid parallel
modeling. In hybrid modeling technique, the modeling procedure starts from building a
rough first-principles model. Neural network (or other forms of empirical correlation)
and historical data provide prior information to enhance the accuracy of first-principles
model. Generally speaking, the hybrid modeling techniques can be applied to any
process, provided that a “rough” first-principles model is available and related process
information is available for neural network to “fine-tune” the first-principles model to get
a better hybrid model.

Distillation column was used for testing the proposed modeling methods. An
experimental distillation column was set up and automated. 148 steady state operating
data points were collected as “historical data” for hybrid modeling methods validation.
From the data set, 88 points were used for hybrid serial modeling method, 131 data points
were used for hybrid parallel modeling method.

Some conclusions can be made as follows:
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Hybrid serial model provided better prediction capability for distillate composition
than standalone fixed efficiency first-principles model did. Hybrid serial modeling
was to use neural network to predict unmodelled parameters in first principles model.
[n experimental distillation column modeling application, a feed forward neural
network was used to predict the column efficiency from the experiment data
collected, which was then provided to first-principles model to predict distillate
composition.

Hybrid parallel model provided better prediction capability for distillate composition
than standalone fixed efficiency first-principles model did. Hybrid parallel modeling
was to use neural network to predict residual errors in first-principles model. In
experimental distillation column modeling application, a feed forward neural network
was used to predict the residual errors, which were resulted from the inaccuracy of
first-principles model, from the experiment data collected.

In distillation column modeling, the hybrid parallel model was better than hybrid
serial model. First, both mean error and standard deviation of hybrid parallel model
were much less than those of hybrid parallel model. Secondly, the prediction errors
of the hybrid serial model were “biased”, which meant hybrid serial model still had
room for improvement under the same process information. On the other hand, the
prediction errors of the hybrid parallel model were “white”, which was the desired
situation.

Ideally, a first-principles model is preferred in process modeling. Hybrid serial model
employs more process mechanism in the model, thus “clearer” than hybrid parallel

model. This led to the conclusion that under the same process information, hybrid
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serial model was preferred. But in this research, hybrid parallel model is better than
serial model. This was partly caused by lump all first-principles model inaccuracy
factors into column efficiency. A hybrid serial-parallel model may be able to fix this
problem. That is, after the hybrid serial model was built, put another neural network

to correct the residual errors from hybrid serial model.

* A better model can be achieved if only few unidentifiable parameters by hybrid serial

)

model. Otherwise, a parallel model is preferred. : ;
3

f

5.2 Recommendations !\
-

e All the modeling techniques were validated by experimental size distillation .
column data. It is better that the modeling technique be validated by industrial .

i

.

distillation column data before it is extended to industrial distillation column i
modeling application. By the time of this writing, no such work was done due -

to the unavailability of the industrial quality data. .

LR dlahs

e One gray box modeling method, gain constrained training, which was still on
the simulation stage at the time of this writing, provided promising alternative
to hybrid modeling, thus worth of further development. When historical data
were sparse in the whole operable region, and process gain information were
available at any or most of the points in the operable region, which may came
from first-principles model or operator’s experience, Gain Constrained
Training was better applied. Gain Constrained Training modeling process
started from building a neural network structure. Neural network was trained

by both sparse historical data and process gain information. Gain Constrained
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Training provided an improved neural network for prediction, especially in
the regions where the historical data were unavailable.

Incorporating other prior information in neural network training is worth of
further investigation. A priori information incorporated in the neural network
can somehow light up the totally “black™ box characteristic to “gray”. Some
of the candidate prior information are derivatives (such as mentioned above in

“gain constrained training”), probability distribution of parameters,

smoothness, etc.

65

T
el g

A

S

e
L™ .

et s



BIBLIOGRAPHY

CamileTG User's Guide, Camile Products, LLC (1997).
Camile Hardware User's Guide, Camile Products, LLC (1998).

Alessandri, A., and T. Parisini, “Nonlinear Modeling of Complex Large-scale Plants
Using Neural Networks and Stochastic-Approximation. " JEEE Transactions on Systems,
Man and Cybernetics, Part A - Systems and Humans, 27(6), 750-757 (1997).

Allison, B. J., A. J. Isaksson, and A. Karlstrom, “Grey-box Identification of a TMP
Refiner.” Pulp & Paper — Canada, 98(4), 50-53 (1997).

Bohlin, T., “Experience from Three Applications of Grey-box Identification to Industrial
Processes,” Swedish-Italian Workshop on New Perspectives in Modeling and
Identification with Applications, Stockholm (1993).

L el g e L

Bohlin, T., “A Case Study of Gray Box Identification.” Automatica 30, 307-318 (1994). 2

Bohlin, T., and S. E. Braebe, “Issues in Nonlinear Stochastic Grey-box Identification,” Vi
Proc. of the IFAC SYSID '94 conf., Copenhagen, Denmark (1994).

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: forecasting and
control, Prentice-Hall (1994).

e ML R

Chen, S., and S. A. Billings, “Representation of non-linear systems: the NARAMX
model,” Int. J. Control, 49(3), 1013-1032 (1989).

Rl St

Chen, S., S. A. Billings, and P. M. Grant, “Non-linear System Identification Using Neural
Networks,” Int. J. Control, 51(6), 1191-1214 (1990).

Conlin, J., C. Peel, and G. A. Montague, “Modeling Pressure Drop in Water Treatment,”
Artificial Intelligence in Engineering, 11(4), 393-400 (1997).

Cote, M., B. P. A. Grandjean, P. T. Lessard, and J. Thibault, “Dynamic Modeling of the
Activated Sludge Process: Improving Prediction using Neural Network.” Wat. Res.. 29,
995 (1995).

Craddock, R. J., C. Kambhampati, M. Tham, and K. Warwick, “A Practical Approach for
Training Dynamic Recurrent Neural Networks: Use of a-priori Information,” UKACC
International Conference on Control ' 98 (1998).

Cubillos, F., P. Alvarez. J. Pinto, and E. Lima, “Hybrid-neural modeling for Particulate
Solid Drying Process,” Powder Technology, 87, 153 (1996).

66



Cubillos, F. A., and E. L. Lima, “Identification and Optimal Control of a Rougher
Flotation Circuit Using an Adaptable Hybrid-Neural Model.” Minerals Engineering .
10(7), 707-721 (1997).

Cubillos, F. A., and E. L. Lima, “Adaptive Hybrid Neural Models for Process-Control.”
Computers & Chemical Engineering, 22(SS), 989-992 (1998).

de Azevedo, S. F., B. Dahm, and F. R. Oliveira, “Hybrid Modeling of Biochemical
Processes - a Comparison with the Conventional Approach,” Computer & Chemical
Engineering, 21(SS), 751-756 (1997).

Dimopoulos, K. P., and C. Kambhampati, “A Priori Information in Network Design,”
UKACC International Conference on Control " 98 (1998).

Dors, M., R. Simutis, and A. Lubbert, “Advanced Supervision of Mammalian Cell
Cultures Using Hybrid Process Models,” Computer Applications in Biotechnology: a
Postprint volume from the 6th International Conference, Garmisch-Partenkirchen,
Germany (1995).

Fan, P., “Modeling and Control of a Fermentation Process,” Automatic Control,
Stockholm, Sweden, Royal Institute of Technology (1990).

Foresee, F. D., and M. T. Hagan, “Gauss-Newton Approximation to Bayesian Learning,”

Proceedings of the International Joint Conference on Neural Networks (1997).

Fu. P.C., and J. P. Barford, “A hybrid Neural Network-First Principles Approach for
Modelling of Cell Metabolism,” Computer & Chemical Engineering, 20(6-7), 951-958
(1996).

Funkquist, J., “On Modeling and Control of a Continuous Pulp Digester,” Automatic
Control, Stockholm, Sweden, Royal Institute of Technology (1993).

Funkquist, J., “Grey-box Identification of a Continuous Digester, A Disributed-Parameter

Process,” Control Engineering Practice, 5(7), 919-930 (1997a).

Funkquist, J., “Grey-box Identification of the Continuous Digester,” Pulp & Paper
Canada, 98(11), 32-36 (1997b).

Geeraderd, A. H., C. H. Herremans, C. Cenens, and J. I'. Vanimpe, “Application of
Artificial Neural Networks as a Nonlinear Modular Modeling Technique to Describe
Bacterial-Growth in Chilled Food-Products,” International Journal of Food
Microbiology, 44(1-2). 49-68 (1998).

Graebe, S. F., and T. Bohlin, “Identification of Nonlinear Stochastic Grey Box Models,”

Preprints of IFAC International Symposium on Adaptive Systems in Control and Signal
Processing. Grenoble (1992).

67

TEmE—-mITIN



Graebe, S. F., and G. C. Goodwin, “Adaptive PID design exploiting partial prior
information,” Preprints of IFAC International Symposium on Adaptive Systems in
Control and Signal Processing, Grenoble (1992).

Guo, B.. Y. Shen, D. Li, and F. Zhao, “Modeling Coal-Gasification with a Hybrid
Neural-network,” Fuel, 76(12), 1159-1164 (1997).

Hartman, E., “Gain-Constrained Training: Combining Process Knowledge with Neural
Network Modeling,” Technical Report, Austin, TX, Pavilion Technologies, Inc (1998).

Humphrey, J. L., Seibert, A. F., and Koort, R. A., “Separation Technologies — Advances
and Priorities.” DOE Contract AC07-901D12920 (1991).

Joerding, W. H., and J. L.. Meador, “Encoding A Priori Information in Feedforward
Networks.,” Neural Networks, 4, 847 (1991).

Johansen, T. A., and B. A. Foss, “Representing and Learning Unmodelled Dynamics with
Neural Network Memories,” Proc. Amer. Control Conf (1992).

Kosanovich, K., A. Gurumoorthy, E. Sinzinger, and M. Piovoso, “Improving the
Extrapolation Capability of Neural Networks,” Proceedings of the 1996 I[EEE
International Symposium on Intelligent Control, DearBorn, Ml (1996).

Kramer, M. A., M. L. Thompson, and P. M. Bhagat, “Embedding Theoretical Models in
Neural Networks,” Proc. Amer. Control Conf (1992).

Lampinen, J., and A. Selonen, “Multilayer Perceptron Training with Inaccurate
Derivative Information,” Proceedings of the 1995 IEEE International Conference on
Neural Networks (ICNN '95), Perth, WA (1995).

Lee. J., and J. Oh, “Hybrid Learning of Mapping and its Jacobian in Mutilayer Neural
Networks,” Neural Comp, 9, 937-958 (1997).

Lindskog, P., and L. Ljung, “Tools for Semi-physical Modeling,” Proc. of the [FAC
SYSID '94 conf., Copenhagen, Denmark (1994).

Ljung, L.. System Identification: Theory for the User, 2" Ed., Prentice Hall PTR (1999)
Lo, K. L., L.J. Peng, J. F. Macqueen, A. O. Ekwue, and D. T. Y. Cheng, “Hybrid
Approach Using Counterpropagation Neural-Network for Power-system Network
Reduction,” IEE Proceedings-Generation Transmission and Distribution, 144(2), 169-

174 (1997).

MacKay, D. J. C, “Bayesian Interpolation,” Neural Computation, 4, 415-447 (1992).

6H8

"M TN

IWJ — ===

T L
L .

¢ sy



Martinez, E. C., and J. A. Wilson, “A Hybrid Neural Network First Principles Approach
to Batch Unit Optimization,” Computers & Chemical Engineering, 22(ss), 893-896
(1998).

Nami, Z., O. Misman, A. Erbil, and G. S. May, “Semi-empirical Neural-Network
Modeling of Metal-Organic Chemical-Vapor-Deposition, ” IEEE Transactions on
Semiconductor Manufacturing, 10(2), 288-294 (1997).

Narendra, K. S., and K. Parthasarathy, “Identification and Control of Dynamical Systems
Using Neural Networks.” IEEE Trans. Neural Networks. 1, 4-27 (1990).

Pettersson, J., P.-O. Gutman, T. Bohlin, and B. Nilsson, “A Grey Box Blending Stiffness
Model for Paper Board Manufacturing,” Proceedings of the 1997 IEEE International
Conference on Control Applications, Hartford, CT (1997).

Pollard, J. F., M. R. Broussard, D. B. Garrison, and K. Y. San, “Process [dentification
Using Neural Networks,” Comp. Chem. Eng., 16, 253-270 (1992).

Prion, E., E. Latrille, and F. Rene, “Application of Artificial Neural Networks for Cross-
Flow Microfiltration Modeling Black-box and Semi-Physical Approaches,” Computer &
Chemical Engineering, 21(9), 1021-1030 (1997).

Psichogios, D. C., and L. H. Ungar, “A Hybrid Neural Network-First Principles
Approach to Process Modeling,” AIChE Journal, 38(10), 1499-1511 (1992).

Reuter, M., J. van Deventer, and P. Van Der Walt, “A Generalized Neural-net Rate
Equation,” Chem. Eng. Sci., 48, 1281 (1993).

Reuter, M. A., and J. van Deventer, “Knowledge-based simulation and identification of
various metallurgical reactors,” Metall. Trans. B, 22B, 514-555 (1991).

Sadegh, P., H. Melgaard. H. Madsen, and J. Holst, “Optimal Experiment Design for
Identification of Grey-Box Models,” Proceedings of the American Control Conference,
Baltimore, Maryland (1994).

Schender, B., and M. Agarwal, “Using a-priori Information in Networks, "' 2nd
International Conference on Artificial Neural Networks (1991).

Schubert. J., R. Simutis, M. Dors, 1. Havlik, and A. Lubbert, “Bioprocess Optimization
and Control: Application of Hybrid Modeling,” J. Biotechnol, 35, 51-68 (1994).

Simutis, R., I. Havlik, M. Dors, and A. Lubbert, “Training of Artificial Neural Networks

Extended by linear Dynamic Subsystems,” Process Control and Quality, 4, 211-220
(1993).

69

s <) Fa 2 5

T T
' .



Sohlberg, B., “Conputer Aided Modeling of a rinsing process,” IMACS symposium
MTCS, Casablanca (1991).

Su, H. T., and T. J. McAvoy, “Long-term Predictions of Chemical Processes Using
Recurrent Neural Networks: A Parallel Training Approach,” Ind. Eng. Chem. Res., 31,
1338-1352 (1992).

Tan, K. C., Y. Li, P. J. Gawthrop, and A. Glidle, “Evolutionary Grey-Box Modelling for
Practical Systems,” Genetic Algorithms in Engineering Systems: Innovations and
Applications (1997).

te Braake, H. A. B., H. J. L. V. van Can, and H. B. Verbruggen, “Semi-mechanistic
Modeling of Chemical Processes with Neural Networks,” Engineering Applications of
Artificial Intelligence, 11(4), 507-515 (1998).

Thompson, M. L., and M. A. Kramer, “Modeling Chemical Processes Using Prior
Knowledge and Neural Networks,” AIChE Journal, 40(8), 1328-1340 (1994).

Tulleken, H. J. A. F., “Application of the Grey-Box Approach to Parameter Estimation in
Physicochemical Models,” Proceedings of the 30th Conference on Decision and Control,
Brighton, England (1991).

Tulleken, H. J. A. F., “Grey-box Modeling and Identification using Physical Knowledge
and Bayesian Techniques,” Automatica, 29, 285-308 (1993).

van Can, H. J. L., C. Hellinga, K. C. A. M. Luyben, J. J. Heijnen, and H. A. B. te Braake,
“Strategy for Dynamic Process Modeling Based on Neural Networks in Macroscopic
Balances,” AIChE Journal, 42(12), 3403-3418 (1996).

van Can, H. J. L., H. A. B. te Braake, C. Hellinga, A. J. Krijgsman, H. B. Verbruggen, K.
C. A. M. Huyben, and J. J. Heijnen, “Design and Real Time Testing of a Neural Model
Predictive Controller for a Nonlinear System,” Chem. Eng. Sci., 50, 2430 (1995).

van Can, H. J. L., H. A. B. te Braake, C. Hellinga, K. C. A. M. Luyben, and J. J. Heijnen,
“An Efficient Model Development Strategy for Bioprocesses Based on Neural Networks
in Macroscopic Balances: Part 1,” Biotechnology and Bioengineering, 54(6), 549-566
(1997).

van Can, H. J. L., H. A. B. Tebraake, S. Dubbelman, C. Hellinga, K. C. A. M. Luyben,
and J. J. Heijnen, “Understanding and Applying the Extrapolation Properties of Serial
Gray-box Models,” AIChE Journal, 44(5), 1071-1089 (1998).

Wilson, J. A. and L. F. M. Zorzetto, “A Generalized-approach to Process State

Estimation Using Hybrid Artificial Neural-Network Mechanistic Models,” Computer &
Chemical Engineering, 21(9), 951-963 (1997).

70

Vit

i

) ==



APPENDIX A

MATLAB PROGRAM FOR

HYBRID SERIAL MODELING METHOD

tHYBRID SERIAL MODEL

tqTEZP 1: COLLECT EXPERIMENT DATA

o o o oP oP
" o oP of

-]

148 steady state data points were collected for model evaluation.

In each experiment, after the distillation column reached steady
state, continue to run for additional 30 minutes, collect data every
30 seconds, Process variables (except liquid level and level related
variables, such as distillate rate, bottom rate) were averaged over
the 30 minutes period, to reduce measurement noise.

QSTEP 2: RECONCILE DATA

4

Qo
B0

the characteristics of the experimental distillation
column determines that bottom product flow rate and
distillate flow rate were measured with least confidence,
because those two variables were inferred from distillate tank
and bottom tank level.
The training data must agree with overall material balance
and component material balance as follows:
overall material balance: F=D+B
component material balance: F*xf=D*xd+B*xb
where: F - feed flow rate (lb/hr)
D - distillate flow rate (1b/hr)
B - bottom product flow rate (lb/hr)
xf - feed composition (mass% of MeOH)
xd - distillate composition (mass% of MeOH)
#b - bottom product composition (mass% of MeOH)
adjust B and D to comply with the balance equations.
this step is done in Microsoft Excel. The tool "solver"
in Excel was used.

'qFTP 3: RUN CHEMCAD TO DETERMINE COLUMN EFFICIENCY

ChemCAD inputs were from reconciled data set.

The inputs were: feed temperature, feed pressure(l4.7 psia),

feed methanocl flow rate, feed water flow rate(calculated from
reflux flow rate and feed composition), subcooled delta T
(calculated from reflux temperature), reflux mass flow rate, bottom
product mass flow rate, and some less important variable estimates,
which are only for convergence purpose.

Overall tray efficiency was adjusted to make ChemCAD predicted
distillate composition match experiment distillate composition,

and bottom product composition match experiment bottom product
composition.
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$STEP 4: TRAIN NEURAL NETWORK TO PREDICT COLUMN EFFICIENCY
%% load the reconciled data (text format)

©% expSerialData.dat has the following format:

%% column =[1: serialNumber

% % 2: feedRate (lb/hr)

%9 3: feedComp (mol% meOH)
b7 4: feedTemp (C)
% 5: refluxRate (lb/hr)

¢ 6: refluxTemp (C)

% 7: TReboiler (C)

% 8: TTrayl (C)

% 9: TTray2 (C)

10: TTray3 (C)
11: TTrayd (C)
% 12: TTray5 (C)
: 13: TTray6 (C)
% 14: trayEfficiency ]

o° of oF of of of o o o
it S0 o

%IF YOUR DATA FILE NAME IS NOT CALLED "expSerialData",
#MAKE CHANGES IN THE FOLLOWING TWO LINES.

load expSerialDataall.dat;

data=expSerialDataall;

%% scale all data to [-1 1]
%% each wvariable scaling was based on the following equation:

%3 (actual-min) / (max-min)=(scaled+1)/2;
%% where min and max are the minimum measured value
3% and maximum measured value, respectively.

expDataMax=max (data) ;

expDataMin=min (data) ;

[r,c]l=size(data);

expDataScale(:,1l)=data(:,1);

for i=2:c
temp=expDataMax (i) -expDataMin (i) ;
expDataScale(:,i) =2/ (expDataMax (i)-expDataMin(i))...

*(data(:,i)-expDataMin(i))-ones(r,1);
end

t%neural network training

%“textract neural network inputs from experiment data set matrix.
%% network inputs are:

% feedRate, feedComp, feedTemp, refluxRate, TReboiler, TTray6
inputs=expDataScale(:,2:13)";

inputs(7:11,:)=[];

inputs(5,:)=[];

ttextract neural network desired output from experiment data set
% matrix.

tsneural network output: trayEfficiency
outputs=expDataScale(:,14)"';

ttdivide expData into training set and test set
ttbased on the seguence number:

#% training set include:1,2,4,5,7,8...

%% test set include: 3,6,9...
[r,c]=size(inputs);

trainInputs=[];
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testInputs=[];
trainOutput=[];
testOutput=[]:
for i=l:c
if (mod(i,3)==0)
testInputs=[testInputs,inputs(:,i)];
testOutput=[testOutput,outputs(:,i)];
else
trainInputs=(trainInputs, inputs(:,i)];
trainQutput=[trainOutput, outputs(:,i)];
end
end

iticreate neural network
numHiddenLayerNode=5;
numOutputLayerNode=1;

net=newff (ones(6,1)*[-1 1], [numHiddenLayerNode, numQutputLayerNode], ...

{'tansig', 'purelin'}, 'trainbr');

%%set training parameters and train neural network
net.trainParam.epochs=2000;
net.trainParam.show=20;

net=train(net, trainlnputs, trainOutput);

tiget network predicted tray efficiency from training set
trainPredict=sim(net, trainInputs):

“tget network predicted tray efficiency from test set
testPredict=sim(net, testInputs);

ttchange scale back to experiment value
trainPredictReal=(trainPredict+1) * (expDataMax(14)-
expDataMin(14)) /2+expDataMin(14) ;
testPredictReal=(testPredict+l)* (expDataMax (14)-
expDataMin(14)) /2+expDataMin(14);
trainOutputReal=(trainOutput+l) * (expDataMax (14)-
expDataMin(14)) /2+expDataMin(14);
testOutputReal=(testOutput+l) * (expDataMax(14) -
expDataMin(14))/2+expDataMin(14);

if predicted efficiency is greater than 1.0, set the effciency
1 equals to 1.0. if predicted efficiency is less than -1.0, set the
%% effciency egquals to -1.0.
[r,c]l=size(trainPredictReal);
for i=l:c
if trainPredictReal (i)>1.0
trainPredictReal (i)=1.0;
end
if trainPredictReal (i)<-1.0
trainPredictReal (i)=-1.0;
end

[r,cl=size(testPredictReal);
for i=l:c
if testPredictReal (i)>1.0
testPredictReal (i)=1.0;

73

¥ o s



end

if testPredictReal (i)<-1.0
testPredictReal (i)=-1.0;

end

#SETP 5: TEST HYBRID SERIAL MODEL

t%plot experiment efficiency vs. predicted efficiency
$%%training set

close;

figure(l);

plot (trainPredictReal, trainOutputReal, '+"');
line([0,1],([0,1]);

title('training set');

xlabel ('neural network predicted efficiency'):

yvlabel ('true experiment efficiency');

tt3test set

figure(2);

plot (testPredictReal, testOutputReal, '+");
line([0,1]1,(0,1]):

title('test set');

#label ("neural network predicted efficiency');
ylabel ('true experiment efficiency');

%%tsum sguared error

errTrainReal=sumsqgr (trainOutputReal-trainPredictReal)
errTestReal=sumsqr (testOutputReal-testPredictReal)

74



APPENDIX B

MATLAB SLIDE SHOW FOR

HYBRID SERIAL MODELING METHOD

function slide=SSlideShow
% This is a slideshow file for use with playshow.m and makeshow.m
¢ To see it run, type 'playshow SSlideShow',

i1f nmargout<l,
playshow SSlideShow

fommmce—ec— Olide 1 sesoaonmms

slide (1) .code={

'slideData=nnslides(''start'',slideData, "'Hybrid Serial Modeling
Method''):; "',

'disp(''STEP 1: COLLECT EXPERIMENT DATA'');' };

slide(1l) .text={

'STEP 1: COLLECT EXPERIMENT DATA',

'148 steady state data points were collected for model evaluation.
When the process reached steady state, the experiment continued tc run
for additional 30 minutes in steady state. Process variables were
measured every 30 seconds during this 30-minutes steady state period.
Frocess variables (except for liquid level and level related variables,
such as distillate rate, bottom rate) were averaged over this 30
minutes time period to reduce measurement noise.'};

LEEEEEEEEEE Sllde 2 —

slide (2) .code={

'disp(''STEP 2: RECONCILE DATA''});"' };

slide(2) .text={

'STEP 2: RECONCILE DATA',

'The characteristic of the experiment distillation column determines
that bottom product flow rate and distillate flow rate were measured
with least confidence. The training data must agree with overall
material balance and componenet material balance. i.e.',

1 P=D+B',

! F*xf=D*xd+B*xb"',

: where F,Dand B are feed, distillate and bottom product flow
rate, respectively.',

! xf,xd and xb are feed, distillate and bottom product
composition, respectively.',

'Adjust D and B to comply with the balance equations.',

'This step is done in Microsoft Excel. The "equation sovler"

function in Excel helps in solving balance equations.',
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slide(3) .code={
'disp(''STEP 3: RUN CHEMCAD TO DETERMINE COLUMN EFFICIENCY'');"',
Uk

slide(3).text={

'STEP 3: RUN CHEMCAD TO DETERMINE COLUMN EFFICIENCY',

'ChemCAD inputs are from reconciled data set.',

'The inputs are: feed temperature, feed pressure (14.7 psia), feed
methonal flow rate, feed water flow rate (calculated from feed flow
rate and feed composition), subcooled delta T(calcualted from reflux
temperature), reflux flow rate, bottom product flow rate. Overall tray
efficiency was adjusted to make ChemCAD predicted distillate
composition match experiment distillate composition. Double check to
see 1f the predicted bottom product composition matches experiment -~
bottom product composition.*®, g

'This step is done in ChemCAD.‘',

B

slide (4) .code={
'disp(''STEP 4: TRAIN NEURAL NETWORK TO PREDICT COLUMN
EFFICIENCY*" )",

(]
’

'load expSerialDataall.dat;’',
'expSerialData=expSerialDataall;’',
LN ]
'expbDataFirstSet=expSerialData(l,:);"',
‘out=evalc(''expbataFirstSet"'');"',
'slideData=nnslides(''text"'',slideData,out);"',
LI} }’.

slide (4).text={
'STEP 4: TRAIN NEURAL NETWORK TO PREDICT COLUMN EFFICIENCY',
'load the reconciled data file.',
'file "expSerialDatal.dat" has the following format:',

'column =[ 1: serialNumber 2: feedRate (lb/hr)’',

! 3: feedComp (mol% meOH) 4: feedTemp (C)°',

! 5: refluxRate (lb/hr) 6: refluxTemp (C)',

. 7: TReboiler (C) B: TTrayl (C)%Yy

! 9: TTray2 (C) 10: TTray3 (€)',

! 11: TTrayd (C) 12: TTray5 (C)',

! 13: TTrayé (C) 14: trayEfficiency ]°',

'load expSerialData.dat;',

vay

slide(5) .code={
‘disp("’ scale all data to [-1 1]''"); ",

LN}
r

'expDataMax=max (expSerialData);',
'expDataMin=min (expSerialData);"',
'[r,c]=size(expSerialData);"',
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'expDataScale(:,1)=expSerialData(:,1);",

*for i=2:c’,

! temp=expDataMax (i) -expDataMin(i);"',

expDataScale(:,i)=2/(expDataMax (i) -

expDataMin (i) ) * (expSerialData(:,i)-expDataMin(i))-ones(r,1);"',
'end',

LI}
’

'expDataFirstSetAfterScale=expDataScale(1l,:);"'
'out=evalc(''expDataFirstSetAfterScale'');",
'slideData=nnslides(''text'',slideData,out);"',

T
i
L}

r

| &

slide(5) .text={
'STEP 4 (Cont''d):',
'scale all data to [-1 1]°', ﬂ

'for each variable v (corresponding to each column of expSerialData,
except for the first column, which is the experiment serial Number),
perform the following scaling:’,
"(v-vmin) / (vmax-vmin)=(vscale+l) /2",
'where v-unscaled experiment data, vscale-scaled experiment data, 3
vmax-maximum value of variable v, vmin-minimum value of wvariable v;',
!
'expDataMax=max (expSerialData); ",
'expDataMin=min (expSerialData);",
'[r,c]=size(expSerialData);"',
'expDataScale(:,1)=expSerialDatal(:,1);"',
‘for i=2:e";
! temp=expDataMax (i) -expDataMin(i); ",
'expDataScale(:,1i)=2/(expDataMax (i)~
expDataMin(i) ) * (expSerialData(:,i)-expDataMin{i))-ones(r,1);"',
‘end’',

Ve e

slide (6) .code={
rdispi(t ! prepare neural network training inputs and output'');',
'inputs=expDataScale(:,2:13)'';",
tinmputs(7:1Ll,:2)=[1: "%
'inputs(5,:)=[1:",
'outputs=expDataScale(:,14)"''; ",

LI}
v

'nn.inputsFirstSet=inputs(:,1);"',

'nn.outputsFirstSet=outputs(1l);"',

'out=evalc(''nn'"');"',

'slideData=nnslides(''text'',slideData,out);"',

I!’

L

slide (6) .text=({

"STEP 4 (Cont''d):",

'extract neural network training inputs and output from experiment
data sets',

'neural network inputs: feedRate, feedComp, feedTemp, refluxRate,
TReboiler, TTray6',

‘neural network output: trayEfficiency’',

77



LI ]
r

"inputs=expDataScale(:,2:13)'';",
"inputs(7:11,:)=[];",
"inputs(5,:)=[1:",
'outputs=expDataScale(:,14)"'";"',
'l};

slide(7) .code={

'‘dispi(*" divide expData into training set and test set'');',

L
’

'"[z,c]=size(inputs);",

'‘trainInputs=[];"',

'testInputs=[(];"',

'trainOutput=[];"',

'testOutput=[];"',

Vfor i=l:ec',

! if (mod(i,3)==0)",

testInputs=[testInputs, inputs(:,i)];"',

testOutput=[testOutput, outputs(:,i)];",

else',
trainlnputs=[trainlnputs,inputs(:,i)];’,
trainOutput=[trainQutput,outputs(:,i)]:"',

end',

'end',

T

r
LI}

r
'totalPoints.trainingSet=length(trainOutput);"',
'totalPoints.testSet=length(testOutput);"',
'out=evalc(''totalPoints'');"',
'slideData=nnslides(''text'',slideData,out);"',
beb iz
lide (7) .text={

YSTEP 4 (Cont''d)’,
‘divide expData into training set and test set',

LI}
r

'lr,cl=size(inputs);"',

'trainInputs=(];"',

'testInputs=[];"',

'trainOutput=[];"',

‘testOutput=[];"',

fer i=lsel;

! if (mod(i,3)==0)",

! testInputs=[testInputs,inputs(:,i)];:"',

Y testOutput=[testOutput,outputs(:,i)];"',
' else',

: trainInputs=(trainInputs,inputs(:,i)];',
trainOutput=[trainOutput,outputs(:,i)]:;"',
! end',

n

slide(B) .code={
'disp("" create neural network'');',
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L
r

‘numHiddenLayerNode=5; ',

'numOutputLayerNode=1; "',

'net=newff(ones(6,1)*[-1 1], [numHiddenLayerNode, numOutputLayerNode],
{''tansig'', ''purelin''}, '"trainbr'");"',

LI |
r

LI |
!

'nnetNodes.numHiddenLayerNode=numHiddenLayerNode; ',

'nnetNodes.numOutputLayerNode=numQutputLayerNode; ',

‘out=evalc (' 'nnetNodes'');"',

'slideData=nnslides(''text"'',slideData,out);"' };

slide (8) .text={

'STEP 4{(Cont*''d)"’,

'create neural network',

'numHiddenLayerNode=5; "',

"numOutputLayerNode=1; "',

'net=newff (ones(6,1)*[-1 1], [numHiddenLayerNode, numQutputLayerNode],
("'tansig' ', " "purelin''}, ""trainbr" "},

slide(9) .code={
'disp ('’ neural network training'');',
'slideData=nnslides(''axes'',slideData);"',
'net.trainParam.epochs=2000;",
'net.trainParam.show=20;"',
'net=train{net, trainInputs, trainOutput);',
we e

slide (9).text={
'SETP 4: (Cont''d)"',
'neural network training’,
'net.trainParam.epochs=2000;",
'net.trainParam.show=20;",
'net=train(net, trainlnputs, trainOutput);"',

R £

slide (10) .code={
Tdisp (" get network predicted tray efficiency from training
satt )t ;

re
i

'trainPredict=sim(net, trainlnputs);"',
{1 )
i

L
f

'trainPredictScaledFirstl0Pts=trainPredict (1:10);"',
‘out=evalc(''trainPredictScaledFirstl1l0Pts'"');"',
'slideData=nnslides(''text'',slideData,out);",
"‘
LA T

slide (10) .text={
'STEP 4({Cont''d)’,
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'get network predicted column efficiency from training set.',
LA |

r
'trainPredict=sim(net, trainInputs);"',

L

slide(11) .code={
'disp("'’ get network predicted tray efficiency from test set'');’',

L8 |
r

'testPredict=sim(net, testInputs);"',
Il,

'testPredictScaledFirst10Pts=testPredict(1:10);"',

'out=evalc(''testPredictScaledFirst10Pts'"');"',

'slideData=nnslides(''"text'',slideData,cut);"' };
slide(1l).text={

'STEP 4(Cont''d)"’',

'get network predicted column efficiency from test set.’,

LI ]

'testPredict=sim(net, testInputs);"',

it g

slide(12) .code={
‘daspi(™" set upper and lower bound for efficiency'');',

LI
i

r

'[r,c]=size(trainPredict);"',

vEor a=liel;

: if trainPredict(i)>1.0"',

Y trainPredict(i)=1.0;"',

¥ end',

; if trainPredict(i)<-1.0"',

! trainPredict(i)=-1.0;",

' end’',

'end',

'[r,c]=size(testPredict);"’,

‘for i=l:c',

! if testPredict(i)>1.0",

! testPredict (i)=1.0;",

! end’',

' if testPredict(i)<-1.0",

! testPredict (i)=-1.0;"',

' end',

‘end' };

slide(12).text={

'STEP 4(Cont''d)",

'set upper and lower bound for efficiency. If predicted efficicency
is greater than 1.0, set the efficiency equals to 1.0; If predicted
efficiency is less than -1.0, set the efficiency equals to -1.0.°,

‘[r,c]l=size(trainPredict);"’',

'for i=l:c’',

J if trainPredict(i)>1.0',
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! trainPredict(i)=1.0;",
! end’',

v if trainPredict(i)<-1.0"',
! trainPredict (i)=-1.0;"',
! end',

‘end’',

"
’

'[r,c]=size(testPredict);’,
"For i=lie";

L if testPredict(i)>1.0",

' testPredict (i)=1.0;",
. end',

' if testPredict(i)<-1.0",
! testPredict(i)=-1.0;"',
' end’',

'end',

"}

slide(13) .code={
'‘disp('’ change training set scale back to experiment value'');',

LI}
r

'trainPredictReal=(trainPredict+l)* (expDataMax(14)-
expDataMin (14)) /2+expDataMin(14);",

'trainOutputReal=(trainOutput+1l) * (expDataMax (14) -
expDataMin(14)) /2+expDataMin(14);",

‘trainPredictReal trainExperiment FirstlOPts=[trainPredictReal(1:10);tr
ainQutputReal (1:10)];°',

'out=evalc(''trainPredictReal trainExperiment FirstlOPts'');',

'slideData=nnslides(''text'',slideData,out);’',

L

slide(13).text={

"STEFP 4 (cont''d):"*,

'change training set scale back to experiment value',

r

'trainPredictReal=(trainPredict+l) * (expDataMax (14)-
expDataMin(14)) /2+expDataMin(14);"',

r

"trainOutputReal=(trainOutput+l)* (expDataMax(14)-
expDataMin(14)) /2+expDataMin(14); "',

I

slide(14) .code={
Y dispi( ! change test set scale back to experiment value'');',
;
'testPredictReal=(testPredict+l) * (expDataMax (14) -
expDataMin(14)) /2+expDataMin(14);',
"testOutputReal=(testOutput+l)* (expDataMax(14) -
expDataMin(14)) /2+expDataMin(14);"',

L]
I

LI
’
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testPredictReal testExperiment Firstl0Pts=[testPredictReal (1:10);testOu
tputReal (1:10)1]1:"',
‘out=evalc(''testPredictReal_ testExperiment FirstlOPts'');’,
‘slideData=nnslides{"text",slideData,out)?',

T r
LI}
LI}
L
slide(14).text={
'STEP 4(cont''d):’',

'change test set scale back to experiment value',
(I

- m o= =

'testPredictReal=(testPredict+l)* (expDataMax (14)-
expDataMin(14))/2+expDataMin(14);",

'testOutputReal=(testCutput+l) * (expDataMax(14) -
expDataMin(14))/2+expDataMin(14);"',

L ¥

slide (15) .code={
'disp(''STEP 5: TEST HYBRID SERIAL MODEL'');',
*dispi(™" plot experiment efficiency vs. predicted efficiency from
training set'');:',
"
'figure(2);',
'plot (trainPredictReal, trainOutputReal,''+''); "',
'line([0,1],[0,1]):';
'title(''training set'');"',
'xlabel (' 'neural network predicted efficiency'');',
'ylabel (''true experiment efficiency'');"' };
slide(15) .text={
'STEP 5: TEST HYBRID SERIAL MODEL',
'plot experiment efficiency vs. predicted efficiency from training
set’,

LI}
L}

'figure(2);',

'plot (trainPredictReal, trainOutputReal, ''+'"'); "',
'‘line([0,1],[0,1]):",

'title(''training set''});"',

'xlabel (' 'neural network predicted efficiency'');',
‘ylabel(''true experiment efficiency'');',

||};

slide (16) .code={

'disp(''plot experiment efficiency vs. predicted efficiency from
test set'');:"',

||‘I

‘figure(3);',

'plot (testPredictReal, testOutputReal, ''+'"');"’,

'line([0,1],(0,1]): ",

'title(''test set'');:"',

‘xlabel (' '‘neural network predicted efficiency''):',
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'ylabel (''true experiment efficiency''):’,

LI
r

S
slide(16) .text={
'STEP 5 (Cont''d)"',
'plot experiment efficiency vs. predicted efficiency test set’,
'figure(3);"',
'plot (testPredictReal, testOutputReal,''+"''); "',
"Iine([0,1], [0,1]):",
'title(''test set'");',
'xlabel (' 'neural network predicted efficiency''):"',
'yvlabel (''true experiment efficiency'');',

e

slide(17) .code={
'disp(''sum squared error'');',

L
r

'‘errTrainReal=sumsqgr (trainOutputReal-trainPredictReal);',
'errTestReal=sumsqgr (testOutputReal-testPredictReal); "',

L
’

'err.TrainReal=errTrainReal;’,
'err.TestReal=errTestReal; "',
'out=evalc(''err'');"',
'slideData=nnslides(''text'',6slideData,out);"',
v i

slide(17) .text={
*STEE 5 (Cont''d)'ys
'sum squared error',

L}
r

'errTrainReal=sumsqgr (trainOutputReal-trainPredictReal) ',
'errTestReal=sumsqr (testOutputReal-testPredictReal) ',
Rk T

end
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APPENDIX C

MATLAB PROGRAM FOR

HYBRID PARALLEL MODELING METHOD

$HYBRID PARALLEL MODEL

+tSTEP 1: COLLECT EXPERIMENT DATA

% 148 steady state data points were collected for model evaluation.

% In each experiment, after the distillation column reached steady
state, continue to run for additional 30 minutes, collect data every
30 seconds, Process variables (except liquid level and level related
variables, such as distillate rate, bottom rate) were averaged over
the 30 minutes period, to reduce measurement noise.

YSTEP 2: RECONCILE DATA
% the characteristics of the experimental distillation
column determines that bottom product flow rate and
17 distillate flow rate were measured with least confidence,
because those two variables were inferred from distillate tank
and bottom tank level.
The training data must agree with overall material balance
and component material balance as follows:
overall material balance: F=D+B
component material balance: F*xf=D*xd+B*xb
where: F - feed flow rate (lb/hr)
D - distillate flow rate (lb/hr)
B - bottom product flow rate (lb/hr)
xf - feed composition (mass% of MeOQH)
xd - distillate composition (mass% of MeOH)
#b - bottom product composition (mass% of MeOH)
adjust B and D to comply with the balance equations.
this step is done in Microsoft Excel. The tool "solver"
in Excel was used.

LSTEP 3: RUN CHEMCAD TO GET DISTILLATE AND BOTTOM PRODUCT

2 COMPOSITION AT FIXED COLUMN EFFICIENCY

:%ChemCAD inputs are from reconciled data set.

:%The inputs are: feed temperature, feed pressure(14.7 psia),
feed methanol flow rate, feed water flow rate(calculated from
reflux flow rate and feed composition), subcooled delta T
(calculated from reflux temperature), reflux flow rate, bottom

:% product mass flow rate, and some other less important variables
estimates, which are only for convergence purpocse.

%%0verall tray efficiency was set to 40%, which was the average

ttefficiency in all runs.
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$STEP 4: TRAIN NEURAL NETWORK TO PREDICT RESIDUAL ERROR
OF DISTILLATE COMPOSITION

t load the reconciled data

t expParallelData.dat has the following format:

% column =[l: serialNumber

feedRate (lb/hr)

feedComp (mol% meOH)

feedTemp (C)

refluxRate (lb/hr)

refluxTemp (C)

TReboiler (C)

TTrayl (C)

TTray2 (C)

%% 10: TTray3 (C)

%% 11: TTray4d (C)

%% 12: TTray5 (C)

5% 18% TTray6 {€)

%% 14: trayEfficiency (%)

%% 15: residual error (%) ]

3
%
%
%2
g ¢

WO ooyt e W

%“IF YOUR DATA FILE NAME IS NOT CALLED "expParallelData",
*MAKE CHANGES IN THE FOLLOWING TWO LINES.

load expParallelDataall.dat;

data=expParallelDataall;

t%scale all data to [-1,1]
%% each variable scaling was based on the following equation:
%% (actual-min) / (max-min)=(scaled+1)/Z;
%3 where min and max are the minimum measured value
(3 and maximum measured value, respectively.
expDataMax=max (data) ;
expDataMin=min (data);
[r,c]=size(data);
expDataScale(:,1)=data(:,1);
for i=2:c
temp=expDataMax (i)-expDataMin(i);
expDataScale(:,1)=2/(expDataMax(i)-expDataMin(i))...
*(data(:,1)-expDataMin(i))-ones(r,1);
end

neural network training
tiextract neural network inputs from experiment data set matrix.
neural network inputs are:
feedRate, feedComp, feedTemp, refluxRate, TReboiler, TTray6
inputs=expDataScale(:,2:13)"';
inputs(7:11,:)=[];
inputs(5,:)=I[];

t*extract neural network desired output from experiment data set
- matrix.

%*neural network output: residualError

outputs=expDataScale(:,15)";

,:divide expData into training set and test set
ttbased on the sequence number:

training set include:1,2,4,5,7,8...
%% test set include: 3,6,9...
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[r,c]l=size(inputs);
trainInputs=[];
testInputs=[];
trainOutput=[];
testOutput=[];
for i=l:c
if (mod(i,3)==0)
testInputs=[testInputs,inputs(:,i)];
testOutput=[testOutput,outputs(:,1i)];
else
trainInputs=[trainInputs,inputs(:,i)];
trainOutput=[trainOutput, outputs(:,1i)]:
end
end

“4Create neural network
numHiddenLayerNode=5;
numOutputLayerNode=1;

net=newff (ones(6,1)*[-1 1], [numHiddenLayerNode, numOutputLayerNode], ...

{'tansig', 'purelin'}, 'trainbr');

ttset training parameters and train neural network
net.trainParam.epochs=2000;
net.trainParam.show=20;

net=train(net,trainInputs, trainQutput);

“iget network predicted residual error from training set
“%if predicted residual error is greater than 1.0, set the
t%residual error equals to 1.0. If the predicted residual
“%error is less than -1.0, set the residual error equals to -1.0
trainPredict=sim(net, trainIlnputs) ;
[r,c]l=size(trainPredict);
for i=l:c
if trainPredict({i)>1.0
trainPredict (i)=1.0;

end
if trainPredict(i)<-1.0
trainPredict (i)=-1.0;
end
end

%iget network predicted residual error from test set
%tif predicted residual error is greater than 1.0, set the
“iresidual error equals to 1.0. If the predicted residual
%ierror is less than -1.0, set the residual error equals to -1.0
testPredict=sim(net, testInputs);
[r,c]l=size(testPredict);
for i=1l:c
if testPredict{i)>1.0
testPredict(i)=1.0;
end
if testPredict(i)<-1.0
testPredict (1)=-1.0;
end
end

%“wchange scale back to experiment value
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trainPredictReal=(trainPredict+1l)* (expDataMax (15)-
expDataMin(15) ) /2+expDataMin(15);
testPredictReal=(testPredict+l) * (expDataMax (15) -
expDataMin(15) ) /2+expDataMin(15);
trainCutputReal=(trainOutput+l) * (expDataMax(15)-
expDataMin(15))/2+expDataMin(15);
testOutputReal=(testOutput+1l) * (expDataMax (15) -
expDataMin(15) ) /2+expDataMin(15);

#3ETP 5: TEST HYBRID SERIAL MODEL

tiplot experiment efficiency vs. predicted efficiency
Littraining set

close;

figure(l);

plot (trainPredictReal, trainOutputReal, "+');
line([-30,30],[-30,30]):

title('training set');

xlabel ('neural network predicted residual error');
ylabel ('true experiment residual error');

tt%test set

figure(2);

plot (testPredictReal, testOutputReal, '+');
line([-30,30]1,([-30,301):

title('test set');

xlabel ('neural network predicted residual error');
vlabel ('true experiment residual error'):

t%sum sgquared error

errTrainReal=sumsqr (trainOutputReal-trainPredictReal)
errTestReal=sumsqgr (testOutputReal-testPredictReal)
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APPENDIX D

MATLAB SLIDE SHOW FOR

HYBRID PARALLEL MODELING METHOD

function slide=PSlideShow

This is a slideshow file for use with playshow.m and makeshow.m
To see it run, type 'playshow PSlideShow',

if nargout<l,
playshow PSlideShow

========== §lide ] —=====—=====

slide(l).code={

'slideData=nnslides(''start'',slideData, ''Hybrid Parallel Modeling
Methed''): ',

'disp(*''STEP 1: COLLECT EXPERIMENT DATA'');' };

slide(l) .text=({

'STEP 1: COLLECT EXPERIMENT DATA',

'148 steady state data points were collected for model evaluation.
When the process reached steady state, the experiment continued to run
for additional 30 minutes in steady state. Process variables were
measured every 30 seconds during this 30-minute steady state period.
Frocess variables (except for liquid level and level related variables,
such as distillate rate, bottom rate) were averaged over this 30
minutes time period to reduce measurement noise.'};

slide(2) .code={

'disp(''STEP 2: RECONCILE DATA'');' };

slide(2) . text={

'"STEP 2: RECONCILE DATA',

'The characteristic of the experiment distillation column determines
that bottom product flow rate and distillate flow rate were measured
with least confidence. The training data must agree with overall
material balance and component material balance. i.e.',

! F=D+B',

' F*xf=D*xd+B*xb"',

' where F,Dand B are feed, distillate and bottom product flow
rate, respectively.’,

! xf,xd and xb are feed, distillate and bottom product
composition, respectively.',

'Adjust D and B to comply with the balance equations.’,

'This step is done in Microsoft Excel. The "equation sovler"
function in Excel helps in solving balance equations.',

Y
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slide(3).code={

'disp(''STEP 3: RUN CHEMCAD TO GET DISTILLATE AND BOTTOM PRODUCT
COMPOSITION AT FIXED COLUMN EFFICIENCY'');',

L

slide(3).text={

'STEP 3: RUN CHEMCAD TO GET DISTILLATE AND BOTTOM PRODUCT
COMPOSITION AT FIXED COLUMN EFFICIENCY',

'ChemCAD inputs are from reconciled data set.',

'The inputs are: feed temperature, feed pressure (14.7 psia), feed
methonal flow rate, feed water flow rate (calculated from feed flow
rate and feed composition), subcooled delta T(calcualted from reflux
temperature), reflux flow rate, bottom product flow rate. Overall

column efficiency was set to 40%, which was the average efficiency in

all runs.',

L
r

'This step is done in ChemCAD.',
itz

slide (4) .code={
'disp(''STEP 4: TRAIN NEURAL NETWORK TO PREDICT RESIDUAL ERROR OF
DISTILLATE COMPOSITION'');',
'load expParallelDataall.dat;',
'expParallelData=expParallelDataall;’',
'expDataFirstSet=expParallelData(l,:);"',
'out=evalc (' 'expDataFirstSet'');',
'slideData=nnslides(''text'',slideData,out);’',
slide (4) . text={
'STEP 4: TRAIN NEURAL NETWORK TO PREDICT RESIDUAL ERROR OF
DISTILLATE COMPOSITION',
'load the reconciled data file.',
'file "expParallelData.dat" has the following format:',

'‘column =[ 1: serialNumber 2: feedRate (lb/hr)',
2 3: feedComp (mol% meOH) 4: feedTemp (C)°',
: 5: refluxRate (lb/hr) 6: refluxTemp (C)',
! 7: TReboiler (C) B: TTrayl (C)°',
! 9: TTray2 (C) 10: TTray3 (C)',
11: TTrayd (C) 12% TTEays (€)Y,

! 13: TTray6 (C) 14: Efficiency’',
! 15:residualError(%) 1°',

'
r

'load expParallelData.dat;',

slide(5) .code={
'disp('' scale all data to (-1 1]1'");',

e

'expDataMax=max (expParallelData);',
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'expDataMin=min (expParallelData);"',

'[r,c)]=size(expParallelData);"',

'expDataScale(:,1)=expParallelData(:,1):"',

for i=2:¢',

! temp=expDataMax (i) -expDataMin(i);"',

expDataScale(:,1i)=2/ (expDataMax (i) -

expDataMin(i))* (expParallelData(:,i)-expDataMin(i))-ones(r,1);"',
‘end',

T
L}

'expDataFirstSetAfterScale=expDataScale(l,:);",
'out=evalc(''expDataFirstSetAfterScale'"');"',
'slideData=nnslides(''text'',6slideData,ocut);",
{ I §
"'};

slide(5) .text={
'STEP 4 ([(Cont'‘d):"',
'scale all data to [-1 1]°',

L
’

'for each variable v (corresponding to each column of
expParallelData, except for the first column, which is the experiment
serial Number), perform the following scaling:',

'(v-vmin) / (vmax-vmin)=(vscale+l)/2',

'where v-unscaled experiment data, vscale-scaled experiment data,
vmax-maximum value of variable v, vmin-minimum value of variable v;',

'expDataMax=max (expParallelData);"',

'expDataMin=min (expParallelData);"',

'[r,c]=size(expParallelData);’',

'expDataScale(:,1)=expParallelData(:,1);"',

‘for i=2:c',

! temp=expDataMax (1) -expDataMin(i):"',

'expDataScale(:,1)=2/(expbDataMax (i)-
expDataMin(i)) * (expParallelData(:,i)-expDataMin(i))-ones(r,1);"',

'end',

! R

slide (6) .code={
‘disp('' prepare neural network training inputs and output'');’',
(]
'inputs=expDataScale(:,2:13)"'';"',
'inputs(7:11,:)=[]):",
'inputs(5,:)=[];"',
'outputs=expDataScale(:,15)'";",

LI}
!’

'nn.inputsFirstSet=inputs(:,1);"',

'nn.outputsFirstSet=outputs(1l);"',

'out=evalc(''nn'');"',

'slideData=nnslides(’''text'’',slideData,out);’',

ra

11 }’.

slide(6) .text={

'STEP 4 (Cont''d):',

'extract neural network training inputs and output from experiment
data sets',
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'neural network inputs: feedRate, feedComp, feedTemp, refluxRate,
TReboiler, TTrayé',

'neural network output: residualError',

'inputs=expDataScale(:,2:13)'";",

inputs(7a11l, 2y=[0]",

'inputs(5,:)=[]:",

'outputs=expDataScale(:,15)"'"';",

tElE

slide(7) .code={
‘disp{*" divide expData into training set and test set'');',
LI
'[r,c)=size(inputs);’',
'trainInputs=[];",
'testInputs=[];"',
'trainOutput=[];"',
'testOutput=[];",
tfor i=l:c";
d if (mod(i,3)==0)"',
! testInputs=[testInputs, inputs(:,i)];',
! testQutput=[testOutput, cutputs(:,i)]1;"',
: else’,
trainlnputs=[trainInputs, inputs(:,1)];"',
trainOutput=[trainQutput,ocutputs(:,i)];"',
' endt'
'end’',
(]

r

tr
I

'totalPoints.trainingSet=length(trainOutput);",
'totalPoints.testSet=length(testOutput);’',
'out=evalc(''totalPoints'');"',
'slideData=nnslides(''text'',slideData,out);"',
A
lide (7) .text={
'STEP 4 (Cont''d)’',
'divide expData into training set and test set based on the sequence
number: "',

'training set include: 1,2,4

G s

r
'test set include: 3,6, sviaeies
[ |

w

By dpBries by

'[r,c]l=size(inputs);"',

'trainlnputs=[];",

'testInputs=[];"',

‘trainOutput=[];"',

‘testOutput=[};"',

'for i=l:c',

! if (mod(i,3)==0)",

' testInputs=[testInputs, inputs(:,i)];"',

! testOutput=[testOutput,outputs(:,i)];’,
! else’',

trainInputs=[trainInputs, inputs(:,1i)];"',

! trainOQutput=[(trainOutput,outputs(:,i)];",
. end’',

'end',
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fo==m====e= Slide B sSsm=======

slide(8) .code={
'disp("'"' create neural network''):‘',

L]
r

'numHiddenLayerNode=5;",

'numOutputLayerNode=1; "',

'net=newff (ones(6,1)*[-1 1], [numHiddenLayerNode, numQutputLayerNode],
{ "Utansig®t, " ‘pareldnt "), "erainbytivy v,

LI}
r

'nnetNodes.numHiddenLayerNode=numHiddenLayerNode; ',

'nnetNodes.numOutputLayerNode=numQutputLayerNode; ',

'out=evalc (' 'nnetNodes'"');',

'slideData=nnslides(''text'',slideData,out);"' };

slide(8) .text={

'STEP 4 (Cont''d)"’,

'create neural network'’,

r

'numHiddenLayerNode=5; ",

'numOutputLayerNode=1; "',

'net=newff(ones(6,1)*[-1 1], [numHiddenLayerNode, numOutputLayerNode],
{'"'tansig''; ' ‘'purelin''}, ''trainbx''};"',

slide{9) .code={
‘disp("' neural network training'');',

(]
’

'slideData=nnslides(''axes'',slideData);"',
'net.trainParam.epochs=2000;"',
'net.trainParam.show=20;"',
'net=train(net, trainInputs,trainOutput);"',
R

slide (9) .text={
'SETP 4: (Cont’''d)',
'set training parameters and train neural network',
'‘net.trainParam.epochs=2000;",
'net.trainParam.show=20;"',
'net=train(net, trainInputs, trainCutput);"',

L7

slide (10) .code={
‘disp('" get network predicted residual error from training
set''); ',

LI}
r

'trainPredict=sim(net, traininputs);"',

(]
r

‘trainPredictScaledFirstl10Pts=trainPredict(1:10):"',
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'out=evalc(''trainPredictScaledFirst10Pts'"');"',
'slideData=nnslides(''text'',slideData,out);"’,
L )
D
slide(10).text=]{
'STEP 4(Cont''d)"’,
'get network predicted residual error from training set.',

()
L}

'trainPredict=sim(net, trainInputs);",

ll}'.

slide (11) .code={
‘disp (" get network predicted residual error from test set'');',

LI}
r

'testPredict=sim(net, testInputs);’,

LI}
’

'testPredictScaledFirstl0Pts=testPredict(1:10);"',

'out=evalc(''testPredictScaledFirst10Pts"'"); ",

'slideData=nnslides(''text'',slideData,out);"' };
slide(1ll) .text={

'STEP 4 (Cont''d) "',

'get network predicted residual error from test set.',

T

'testPredict=sim(net, testInputs);"',

D

slide(12) .code={
'disp("' set upper and lower bound for residual error'');’,

L)
’

T
’

‘l[r,cl=size(trainPredict);’',

*for i=lie'.;

' if trainPredict(i)>1.0",

: trainPredict (i)=1.0;",

! end’,

’ if trainPredict(i)<-1.0',

y trainPredict(i)=-1.0;"',

' end',

‘end',

'[r,c]l=size(testPredict);"',

‘for i=l:zc';

' if testPredict(i)>1.0",

! testPredict (i)=1.0;"',

' end’,

! if testPredict(i)<-1.0',

! testPredict (i)=-1.0;",

! end’,

'end' };

slide(12) .text={

'STEP 4 (Cont''d)"’',

'set upper and lower bound for residual error (scaled). If
predicted residual error is greater than 1.0, set the residual error
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equals to 1.0; If predicted residual error is less than -1.0, set the

residual error equals to -1.0.°,
(8
'[r,c]=size(trainPredict);"’,
‘for i=l:c',
! if trainPredict(i)>1.0",
trainPredict (i)=1.0;"',

end',

! if trainPredict(i)<-1.0"',
trainPredict (i)=-1.0;",

end',

‘end',

LI
r

'[r,c]l=size(testPredict);"’,
Yfor i=l:e",

: if testPredict(i)>1.0",

. testPredict (i)=1.0;",
: end',

! if testPredict(i)<-1.0',
t testPredict (i)=-1.0;"',
y end',

‘end',

slide(13).code={
'disp('" change training set scale back to experiment value'');',
LN )
'trainPredictReal=(trainPredict+l) * (expDataMax (15) -
expDataMin(15))/2+expDataMin(15);"',
'trainOutputReal=(trainQutput+1l) * (expDataMax (15) -
expDataMin (15)) /2+expDataMin(15); ',

r
r

'trainPredictReal trainExperiment FirstlOPts=[trainPredictReal(1:10);tr
ainOutputReal (1:10)];"',

'out=evalc(''trainPredictReal trainExperiment FirstlOPts''):',

'slideData=nnslides(''text'',slideData,out);"',

v by

slide(13).text={

'STEP 4(cont''d):"',

'change training set scale back to experiment wvalue',

T

'trainPredictReal=(trainPredict+1) * (expDataMax (15) -
expDataMin (15) ) /2+expDataMin(15);",

Ty

'trainOutputReal=(trainOutput+l)* (expDataMax (15}~
expDataMin (15) ) /2+expDataMin(15);',

Y

slide(14) .code={
Todisp(*® change test set scale back to experiment value'');',

Te
r
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'testPredictReal=(testPredict+1) * (expDataMax (15)-
expDataMin(15) ) /2+expDataMin (15);",
'testOutputReal=(testOQutput+l) * (expDataMax (15) -
expDataMin(15))/2+expDataMin(15);"',
T
’

LI}
’

L

testPredictReal testExperiment First10Pts=[testPredictReal(1:10);testOu

tputReal (1:10)];"',
'out=evalc(''testPredictReal testExperiment FirstlOPts'');',
'slideData=nnslides(''text'',slideData,out);"',

- m m o=

L );
slide(14) .text={

'STEP 4(cont''d):"',

'change test set scale back to experiment value',

11

'testPredictReal=(testPredict+l) * (expDataMax (15) -
expDataMin(15))/2+expDataMin(15);",

'testOutputReal=(testOutput+l) * (expDataMax (15) -
expDataMin(15)) /2+expDataMin{15);",

!|};

slide (15) .code={

'disp(''STEP 5: TEST HYBRID PARALLEL MODEL""):;',

‘disp.(V* plot experiment residual error vs. predicted residual
error from training set'');',

'figure(2);',

'plot (trainPredictReal, trainQutputReal, ''+''); "',

'line([-30,30],[-30,30]1);",

'title('"training set'');",

'xlabel (' 'neural network predicted residual error'');’',

'ylabel (''true experiment residual error'');' }:

slide(15).text={

'STEP 5: TEST HYBRID PARALLEL MOCDEL',

'plot experiment residual error vs. predicted residual error from
training set',

“figure(2);:",;

'plot (trainPredictReal, trainOutputReal,''+'"'); "',

'line([-30,30],[-30,30)):"',

'title(''training set'');"',

'xlabel (''neural network predicted residual error'');',

'ylabel (''true experiment residual error'');',

I'}‘.

slide(16) .code={
'disp(''plot experiment residual error vs. predicted residual error
from test set'');"',
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L}

'figure(3);"',

'plot (testPredictReal, testOutputReal,''+''); ",

'line([-30,30], [-30,30]);:",

‘title(''test set'"');",

'xlabel (' "neural network predicted residual error'');"',

'ylabel (''true experiment residual error'');"',

B

slide (16) .text=({

'STEP 5 (Cont''d)‘',

'plot experiment residual error vs. predicted residual error test
set’,

Il’

"figure(3);"',

'plot (testPredictReal, testOutputReal, ''+'"'); ",

'linei{ [-36,30]., [-30,301);",

YerEdle(? Veest. seE vy,

'x#label (' 'neural network predicted residual error'');',

'ylabel (''true experiment residual error'');:',

tl};

slide(17) .code={
'disp(''sum squared error'');’',

LI}
’

'errTrainReal=sumsqgr (trainQutputReal-trainPredictReal};',
'errTestReal=sumsqgr (testOutputReal-testPredictReal); "',
LI |
'err.TrainReal=errTrainReal; "',
'err.TestReal=errTestReal;"',
‘out=evalc(''err''); ",
'slideData=nnslides|{'"'text'',slideData,out);"',
L}

bi

slide(17) .text={

'STEP 5 {(Cont'"'d)!,;
'sum squared error',
‘errTrainReal=sumsqgr (trainQutputReal-trainPredictReal)’,
'errTestReal=sumsqgr (testOutputReal-testPredictReal) "',
R 7

end



APPENDIX E

HYBRID SERIAL MODELING DATA SET

The data set is on one large spread sheet. It is divided into 7 pages as follows (the

number in each of the box correspond to page number):

98 99 100 101 102 103 104
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| Data Used for Hybrid Serial Modeling
No. Tilo nama_|fsed Teed Tead refiux rafiux reboiler 3
rats rats
4[exeo0418_ssi 1205 0 a8 11.99) 50.0 0 71.0
1196 40 5 1400 500 860 708
12.02 40 (1K} 16.01 50.0 835 70.8
11.04 39| 409 20.00) 50.0] E70 70.7
11.95 3 50.0 30.00| 50 978 712
4.95 40 388 15.01] W00 7 702
15.02 34 307 18.01 50.0 35 70.1
14.99 3 384 2099 500, 36 702
15.05 40 39.0 2500 50.0 32| 0.8
14.87| 39 381 28.00 50.1 20 80.8
15.01 40 305 28.00 500 &2 89.6
15.00 39 385 31.01 50.0 B2 60
1389 40) 398 10.00 50.0 83 705
1367 40) 368 14.00 50.0 T 80.7
1363 40 400 16.01 500 42 0.5
13.68 40 395 20.00) 50.0 831 89.3
17.98 40 383 24 01 500 822 )
17.66 38 374 2802 500 B2 70.1
18.01 E7) 375 31.00, 500 E16 705
03] 35 463 10.00 500 804 670
6 01 33 457 10.00 500 3 887
32[exP90517_ss2 05 E") 430 12.00 500 0.4 BAS5
33[exP90517_ss1 95 35 431 10.01 500 51 4 60.0
34 |ex900519_ss: 59 38 368 10.00 500 85, 720
35| ex090522_ss 784 40 412 1308 50, B8 4 706
3602990522 _ss2 93 E7] 488 16 00 50, 6. 708
37| ex290522_s53 54 33 405 20 00 o7, 0.7
38[ex900523_ss1 10.03 35 450 2100 . 7006
30 ex290523_ss2 55 E7) 25.01 ¥ 708
40 ex290523_ss3 58 E7] ¥ 70.7
41| exa90525_ss1 1004 38 5. 708,
42| ex390525_ss2 1002 38 [3 70.7)
43 |0x900528_ss1 10.03 37 s 709
73 [ex280705_ss1 24.00 2 972 75.2,
75 [ex990705_s53 30.01 21 [FE 121
76 exg90706_ss1 2668 2 30 745
77 [ex200706_ss2 30.02 23 758
78[ex@80708_ssl 2388 23 137
78] ex990708_ss2 2400 2 9
B0[#x980708_ss3 2402 21
B1|ex880710_ss1 24.00 23 7
B2|exB00710_ss2 2309 0 7
B3 [ex@80711_s5 24.00 20 [
B4 ex@80711_s52 24.00 20 9
B5[exa90711_ss: 24.00 18] 5
86| exws0712_55 15.02 9] m_g’
89 [exG90713_ss 15.00 20 720
| 91| ex990714_ss 1499 17 714
52| ex9907 14_ss 2908 16 114
53]ex990717_ss 3002 20 1 %
20,00 [ 120
= 7
2308 7
30,00 1
2099 74,
20.97 T3,
21.01 73,
20.98 L1
30.02 15.
107 |ex000114_ss1 24.00 4. .
08| ex000114_ss2 2401 4 76.0]
09 ex000114_ss3 23068 Y 75
0] ex000114_ssd 2410 . 77.1]
ex000117_33 2307 6. 78
113|ex000118_s5 297 5. 852 7
114]ex000118_sa2 2398 0.8 2
117 | ex000118_ss2 20.04 m:l 40
118|ex000120_s31 20.91 915 TEll
116 &x000120_ss2 2992 912
120[ex000121_ss1 20.94 w28
21|ex000121_ss2 2094 821
22| ex000128_s31 2096 w22
23| ex000128_ss2 2995 917
24| ex000128_ss3 20.06 0.9
25| ex000131_ss1 20.08 5
26]ex000131_ss2 20,05 B4 6
27exD00131_ss3 20.95 90.
28|ex000201_ss1 20.05 [
20| ex000201_ss2 2095 0.
30 ex000201_ss3 20.97 [
35| ex000203_ss2 2397 [
38[ex000203_ss3 2391 B2
40| 6x000208_ss1
43[ex000210_sa2
#x000217_532
146 ex000217_s33
1471 exD00218_ss 1
148 ex000218_ss2
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Data Used for Hybrid Senal Modeling | distillate bottom distillate bottom
Explo. Jums __Jume __JeMiclescy _JeMciency use compoaition _|composition |
iced neural network neural network sot affi=0.4) |(set offi=0.4
:LE% Q] neural mol% moi% oi'% meOH
[ T04 89.3 51 [T 7.5% 5. 7.5% B1.5% 10.0%|
0.3 89.1 48 4858 % B 2% % 82 7% 11.0%
2 70.0 X7 4075 0% B4.0% [ B3 5% 12.0%
70. 70.0 37 3603 10.6% 83.1% 10.0% B5.7% 16.0%
[ 705 89.1 - 4349 L 76.6%) % T1d4% 10%
13 69.7 88.5 T 3882 18.2% 85 7% 16.2% B6.0% 22.0%
[0 60.5 5 42| 4018 18.6% B8 5% 16.6% B8 4% 20.0%
18] 59.8 Ba4 E 36543 18.4% B5.1% 16.4% 88.7T% 200%
18] 56. 88.0 2 17.2% 34.6% 17.2% 87.6% 2.0%
17] [TE 68.0 17.8% 13 6% 17.8%] B8 0% 21.0%
18/ [} 67, 30 18.2% 34 6% 18.7% B8 1% 23.0%
18 59.3 [X 2 18.0% B2.8% 18.0% BE 1% 3.0%
21 rﬁ| 7. [0 15.8% B8 1% 15.8% B4 0% 0%
22| u_i' 68, 45] 15.1% B7.5% 15.1% 85.7%| 7.0%
0 67 42 15.0% 88.2% 15.3% 88.1% 0.0%
; 67 40 174% BT 4% 17 4% B1.4% 200%
a7 Fi 85.0% s ﬂ 87.7% 23.0%)
[F 20 81.2% 1.5% 38.6% | 25.0%
[] 17 76.6% 20.6% 38.4% 22.0%
29 [T} .ﬁl 94.7% 73 5% B% 20.0%
30 €85 B4 I .0% 06% 85.8% 18.0%
32 ¥ u.4| 62 23.5%| 93.4% 3.5% 87.8% 20.0%
33 80.1] K] 68 1% 33.0% 21 1% B8.8% 23.0%
M 723 712 30 3% 71.0% 13 8%] 82.9% 170%
35 701 88.8] .48 1% 485 1% 1.T% 10.0%
£ 102 | 81 1.8% 34 8% % 11% 0%
37 701 [13 64 5% 4% 18% 1.T% %
38 703 [13 53] % T 83.7% % 8 n, %
3] 70.2 [ 48| 2% B30% 2% TT4% 20%
4 70. B8, 45| 2% 823%] % T74% 0%
4 70. B8, 50| %) 85.2%] ™ T7.3% 0%
4 70. [T] 55| 2 5% 88 ml % 78.3% 0%
4 70.3) 88 57 8% 80.3% % 75.8% 0%
7 738 71 A4 5% 73.9% 5% T14% 0%
5 71.5) 89 35 0% T8.1% 0% 80.7% %
8 738 . .25/ % T2T% 8% B0.7% 0%
77 74.7| 73, 33, W T2.0% [ 78.0% 0%
L:I 728 71.0 .51 5% 70.1% 6%] 74.8% 0%
79 0 X | 40 4% 79.0% 23 788% 0%
80 .2 ? 43 4.0% 78.4%] [ mj 78.5% 20%
81 2] 44] X 2'_&51 71.5% % 72.7% 2.0%
[H 8| 42 ; 1% 58 8% 1% 75.7% 0%
[} ] 38 X % 78.T% T 78.8% 0%
1] B .37 X %) T11% % B0 5% m
B85 [ ] T 2% 80.5% T.2% 81 8% 0%
[ 55 X % B31% 72% B0.2% 0%
[T 48 47% 81 5% 4Th 788% 2.0%
45 &% 78 1% 0% 80 1% 1.0%]|
36 [ T81% 4% 2.8% 4,0%
ﬁ'l T T4 5% uTI 28% 0%
| 7] z_?_l % 76.8% % 4 5% %
| 3 39 % B0.2% % 0.8% %
| [T .38 0% B4.9% 0% 76.8% 1.0%
| i 34 0.3586 % 79.1% EE B2.0% 4.0%
10 04006 34% T4.3% 4% 74 2% 4.0%
1 T 1.5% B7.5% 1% To1% 3.0%
102] T ¥ 75.9% % 79 4%) 1 0%
103 4 :E' 08, 7% * B8 0% 1.0%|
104 28 2% B8 5% % TH A% 1.0%]
107 4B 5% 50 2% 5% % 1.0%
108] «?I 'EI B B % 5. 1% 1.0%
[ 41 % 70.0% % % 1 “f
4B 8% B4.0% 0% 50 4% 1.0%
48 a% 55.1% A% 50 4% 0%
34 _mI B4 6% % B5 6% 0%
[ 29 1.3% 70 .'m.l 2.3% 78.0% 0%
ad o % [ 86.0% %
[ 46 2.5% 1% % 50.2% 10%
19 .33 % 2% 0% 78.0% 10%
20] 43 A% 1% % 670% 10%
21 32 5% 1.9% % 77 8% 10%
122 29 T% B0.7% 2.0% T81% 1.0%
123 Al % 728% 27% B9 9% 1.0%
124 38 5% T4 8% 35% 79.8% 10%
125 5] B8 1% T1.0% aT% T4 0% 30%
128 24 l A% 56.5% % 82.0% 30%
127 55 1% B0.T% 1% T13% 1.0%
28 50] 5% T6.4% 5% 69.2% 1.0%
) 36 3% T1.0% 1.3% T0.3% 10%
30 51 % T1.7% 2.9% 70.8% IIL
35 43 0% TH5% 5 0% % 0%
36 30 3% 75.9% % % 0% |
40 48 0% T4.6% 0% 54 5% 0%
43 4 T% B5.T% T% 58 1% %
45 33 % 60.0% 0.5% 13 0% |
148 4 2% 60.1% 22% 68 1% 0%
[ 147 35 5% 40.37% 0.5% 51.5% 0%
[ 148 27 % 53.8%] 0.8% 712% 1.0%
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]_ [sistinate  [rybrid moder [trst-principtes moder |hw:_u;um first-principles mocel | Experiment Data
Exp No. ition _|emor {with efficiency=0.4) _|distillate distiliats ition_[feed [foed refiux [bottom
from Neural xed rats com
ol'% mol MeOH) meOH
E 88.0% 3% i5% 85 7% %] 1208 4w
7.0% 8% 3% 862% 2 7% 1188 0%
87 0% 0% 5% B4.0% S%| 1202 0%
88.0% 9% o 53 1_51 %] 1194 3%
820% A% % % 34%| Tes 0%
80.0% 3% % as_m, 85.0%| 1495 0%
88.0% 5% 6% 365% 86.4%| 1502 4%
B 85 0% 0.1% T% 851% 5. 7%| _14.99 33%
16 85.0% 0.4% 6% 54 6% B%| 1508 40%
17 85 0% A% 30% 36% 5.0%| 1497 3%
18 85.0% 04% 3% 46% 8 1%| 15,01 40%| 28,
19 83 0% 02% S3% 826% 5.3% 1@{ 3% 3101
2 B9.0% 0% 4% g__"a'ml Sig%| 1368 40%| 1000
2 B3.0% 0.1% 2% 87.0% B5.7%| 1387 40%| 14.00
) B3.0% 02%| 8% 88 2% 86.1%] 1363 40% | 18.01
24 B3.0% 6% 6% 874% G74%| 1368 40% | 20.00]
25 59.0% 1% 3% 389% aTT%| 1798 40%| 2401
28 B0.0% 2% 86% 812% 236w 1708 30%| 28.02
21 T7.0% % Si4n 76.6% B84%| 1801 34%| 31.00
% 55.0% 3% 2% B4T% 87.6%| 1002 35%| 10.00
30 53.0% D8% x| 93.0% 858%] 1001 33%] 10.00
32 4 0% 6% 6.2% 63.4% 87.8%| 1205 3a%| 12,00
33 54.0% % T2% v30%] B6.8%| 11.05] 35%| 1001
2] 80.0% 0% 20% T1.0% E26%| 1769 39%[ 10.00]
35 85.0% 4% 3% 46% T%| _1794] 40%| 13.09
38 85.0% 7% 13.0% 4 6% %] 1783 3% | 16.00
37 B5.0% 6% 133% % zouol
38 85.0% 3% % 3%
3 1.0% 20% % u%
40 1.0% 3% 6% u%
41 830% 27% T% 38% |
42 85 0% 1% ™ 3%
43] 85.0% -1.3% 1%
7 Al 720% 19% 5%
75 nm’ 5.1% 7%
T8 68.0% 6.7% -14.7%
77 70.0% E m_&, 5.0%
78 80 0% 5% 2%
78] 77.0% -2.0%] -1.6%
80| 75.0% %[ 3 5%
| 7s_ou.| 25% 3%
2 T3.0% 6.2% 27%
83 76.0% 2% 26%
B4 TT.0% D% 35%
85 71.0% 35% 6.8%
[T 56.0% 2.1% 8%
[ B0.0%, 5% 2%
31 79.0% % L%
52 T 0% % Se%
53 720% 25% 108%
7] 7i0% 28% 105%
3 79.0% 2% 8%
98 720% T1% 4%
99 75.0% 4% 7.0
3% EFL)
5% T01%
8.3% T04%
% B.0%
5% i54%
% .
2%
0%
0%
129%
-0.6%
-5 5%
7.0% 39%
-B.1% -4 2%
8.2% 3o%
1% 56%
0% 14 8%]
1% q81%
28% 8%
3% 8%
B0% 5%
5% 200%
7% 0 7%
2% 2%
-3.0% -11.3%
5.7% -1.0%
5% 4%
5.0% 133%
6% 5%
37l 1%
0] 28%
1% B1%
8% 5%
37% ez
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|Expenment Data
Exp No._|distillate | rebolier feed reflux feed botlom distiiiate reboiler 1 2 3
rats termn Number
(% of full c mol% mol% C: C] = 1l
[ 261 B0% 418 50.0] 3 1% 8% 898 TIA 75.7]
5 247 B0% 415 500/ 3 % TS #9.0 [ik] 75.8]
] 85 B0% 411 500 3 F=) [T} [ 718 75
T 09 B0% 409 50.0 3 % 86% 870 800 5.
8 09 0% | 500 50.1 gl % 2% 978 822 il
i3 ) [ 3 z:__!l 3 07 783 52
14 1 80% ;j 20% 88% 5 [N 751
15 238 ogl 3 20% 85% 838 76.1 T
18 1.30 [ 22% 85% [FF] 75.9) L
17 83 80% 1% B5% 829 75.9 4
18 ] 60% 23% 5% [*X] 758 74
18 34 80% 2% 3% 828 5.7 T4
21 37 B0% 3 4% % [FX] T4 5
2 [] 60% 3 17% a8% 343 76.1 4
23 19| B0% 4
24 B0% 4
25 60% 3 T4
F 2 80% 3 T4
21 3 B80% 3 74
8 3|
30 55% 3
32 [ 55% 3
33 55% | 3
M 4.04 80%] 3
a5 4.36 80% 2
36 24 ] B0% 3
37 .19 [ E
38 318 0% 2%
39 426 B0% 2%
40 424 60% 2%
1] 411 0% Fx)
ar .07 B0% 2%
43 72 BO% 2%
7 88 B0% 1!|
75 28 0% 3%
78 ] 0% 31T 528 5%
fil 80| 70% 5%
78 04 70% E 5%
ﬂl 68 T1% 3 4%
80 19 76% 3 %
81 18 % 3 2%
82 80 5% 3 %
B3 05 B% 3 5%
B4 25 [T 3 5%
85 481 8% 3 5% 7%
86 231 Ba% 3 5% BE%
[0 28 uj] 3 % 80%
91 70 B5% 3 1% 0%
[F] £ 100% | ] A% T
[ 88 m_{_ El 5% 2%
[ [ _10% 3 % 4%
95 ﬂ} T0% 3 % o
(1) 688 100% 3 1% 2%
W 23| 100%] 3 % 75%
100 4] 67%| 3 4% 3% 822
101 20 67% 3 % [ _gl i
102 60 % % (TR 95, 5 910 B 78.1]
103 [ 100% 1% 82% ] i e _|1 X
[T] 52 100% % BI% 95 380 900 [FX] 7.4
o7 11.08 100% % 70% (1] 415 [1E] Ba.7 016
o8] 1133 100% % 0% 087 0 4 0| B6.0 506
] 11 87 % 5% 984 441 4 0| 8.0 BO 4
110; 11 46 E 70% 989 41.2 M 4 48 4 [TX
111 144 B0% [ BE% [ZE 4 s:l 96 1 T 82 4|
113 164 B0% 2% BA% gg' 421 X 80 0|
114 103 B0% F=} ,Lsul 981 483 908 T8
1 [XT] 90% 3 T-Z" 83% o 6 435 823 14 708
11 472 B0% 3 1% B5% 358 430 15 4.2 701
[ 18 08 0% 1% B5% 0 49.0 [T} 2 718
20] 1759 0% 1% B2% [ 43 026 i T8.7|
21| 1837 70% 1%, BI% [ 48] w2.1] 14 T7.8|
2| 1824 80% 1% [ 956 49. 922 14 778
23] 2082 B0% 3 1% 80% 955 44 (K] 6.8
4] 2014 B0% 1% 1% [TE) [T 90.9) 787,
25 1 [ ] % B5% W28 43 #5.9 178
128] 1257 B0% 3 % 82% 920 489 B840 76 8.9
[Fil 919 B0% 3| [ 2% 9 .7 0 4 708
128 064 90% 3 % B8% 95.8 404 91.3 I 80.0
129 20 80% 3] % 68% 946/ 48, 90. 788
130 04 100% ;1 1% 6% 5. 40.7) 90 6 Y Ti4
F 1 80% 3 % T5% 2] 380 [ [ 174
£ 37 0% 3] % T0% 9 474 842 79 T84
40 12.58 B80% .’4 5% 70%| 8. 417 93.2] B85, To4
3] 1204 B0% 3 > B1% 8. 422 95 BS 705
45 805 T0% S BI% 3 480 [1k] 3 86.6)
148] 2052 [ " BO%| 6.2 458 924 3. 18
147] 2095 T0% 50.0 3 = 55% 99.0 [0 ] 7 1.0
148] 2160 T0%] 614] :| E 57% 985 408 953 70 0.1
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| Data Reconcitliation CHEMCAD INPUTS |
0 beta overall  [MeOH  |reconciled |reconciled MeOH  water Teed reflux
material _|material |botiom rate |distillate rate_|flow rate |Now rats rate
balance |balance
893 281 ET] 0.00 .00 10) 3 $356] 55144 [T 11.09)
60.1 271 .37 0.00 .00 12 584 4838 54732 415 14.00
58 89 0.00 .00 28 74 £$103] 55007 (1K} 16.01
o7 [ 0.00 00 [ 02| 83517| ss8as 409 20.00
43 475 .00 00| A1 [ 3570] 5 5830 500 30.00
q 334 .00 00 Kl 18] 8.1085] eBBd1s 80 1501
98 221 .00 00 10.80] 12 1800] 78400 W7 18.01
87 58 .00 00 11.03 98| coos0| 76820 304 20,00
[T 415 00 [ 80 45| B1627] 68873 W0 25.00)
&7 74 .00 .00 80/ ET] 2 oanl 7.0084 31 28.00
58 13 .00 00 80 1| 81410 68690 W35 28.00
18 n .00 00 [ T R
EJ[ ] 00 00 E]] [ sl
o8 51 00 .00 1] 63
ﬂ 14 00 00! 30 33
25 5 .00 .00 51 17
872 24 88 00 00 00 98
682 162 T4 .00 .00 27 [
8 B 81 88| 00 00 37 B
I 1,18 48] 00 00 23 i
58, -D.04 82 00 .00 20 75
8.4 057 23 00 00 10,55 50
8. 14 [ 00 00 20 75 I
T EED) 318 00 00 10.17] 82 5701 B4lee 38.8] T
B8 58 4.13 .00 .00 .a_sl 03| ©97302] 82008 413 99|
B8, .oal B4 00 00 85 08| 85711 03580 468 00
[T 4.90 84 .00 00 | .03 3752 a4l [TH 20.00
89, 0.10] 05 00 .00 [H 21| 49055] s1245 459 21.00
@ 014 96 .00 00 477 22| 47755 s2145 452 25.01
688 06 98 .00) 00 71| zzl 47755] 52148 [H 28.00
[T} 028 % .00 00 437 87| 52353 a.8047 [N [
[TX -0.57 nsol .00 100 445 557 s28] 4792 [TA] 15.00)
69 -068 T4 .00 .00 4.57 48] 51232 49068 481 12.01
714 204 58 .00 00 14 54 48] B0152] 150848 339 30,00/
653 -351 12 .00 00 19.61 1040] 08307 203703 12 5007
k] 333 70 .00 00| 18.82 11.38] 103083] 195817 3 ﬂ!
730| 381 09 .00 .00 19.13 10.89] 104122] 198078 33 15.00)
710 E il 28 .00 .00 16.06 762] 83173] 156627 2. 10.83
70.0 330 79 .00 .00 1553 47 3242] 156758 n 26 43
65.0 -3.18 32 .00 .00 1551 S1]|  7.7084] 183118 M. .92
0 350 [ .00 00 IKE] 27| 33242] 156758 32 7368
70.0 182 38 0.00 .00 15.80 19| 70800] 159300 326 [T
71, 245 (1] 0.00 .00 17.02 98] 73848 166154 338 2174
B4 8 70. .280 87 0.00 .00 .08 92| 7.3848] 168154 5 3370
l5| 5 [3 380 25| 0.00 .00 92 D8] 67388 17263 7 7972
aq 70.5 [ 58.0) B 40 .00 00 .25 77| 4.4202] 10.5008 374 1408
[T T2.0 70.9] £9.0] 238 a7 .00 .00 10.35] 465 48154 103848 351 10.24]
[ 714 702 681 250 88 00 .00 1081 438 _40013] i0.0887 350 79.31
2 714 702, 680 424 82 .00 .00/ 2207 701]  75839] 2223981 u.u| B0.04
5] 727 718 (15 414 72 100 00 142 8.60] ©230] 207801 30.8 59 W
4 72 71.5) £33 EXE 062 .00 .o;l;'l 13 14 e88] mpeaaT| 211713 M 0.0
ngi T 720 7032 EX 218 .00 I 58 542] 80070 219021 M B 20.00]
) 73 722 [TE 32 0.90 00 12 786] #7312 172488] 18 B0
] T2.4 712 [ &1 99 00 22| 84211 215780 ¥ EI 80.02
00 74 137 m| 102 78 .00 40[ _85769] 12 4101 4.0 15.00)
01 73, 128 11| 04 018 00 1002 B5TM7] 12 3683 y 44 09
02 73, 72 702 0.3 007 .00 53] 05BA0| 124220 ¥ fXH
03 7. i 752 [ D84 00| 120567] 170043 12 1499
04 75 T4 18 08| 152 00| 122700] 17 7401 3 80.02
[ 77 i T4 [ Q‘ 55 00| 103784] 136216 35 4 16.78
76, T4 7. 080 43 .00 10.3827| 136273 B 31.01
i5 T48 T o7 70 00 100783 13,8807 35, 2893
i1 78.1 7 -0.10 ] .00/ 10 1382] 13 0818 M 1587
78. 7.2 7 -1.01 4| .00} 11.1902] 12 7708 36, 18.71]
1 187 754 1.00 51 00 10,3854, [ 7]
74 15 ] 07 97 00 5080
fil ?ul 74 -0.03 .57 .00/
76, 759 740 08 004 100/
74 733 704 45 144 00/
i1 782 748 08| o148 .00/ 578
75 737 70 19 -2.42 0.00) 178
76 D 711 34 1.7 00 180
78 754 742 70 F] 00 581
74 32 [EK] 753 541 00 178
75 uj] 735 088 85 00 005 2 3 592
7 729 708 057 08 _on| B115] 203385 300 €177]
T4 6 T40 718 148 0 00 I 2154 20 ﬁ{ 25 16.28)
78 75.2 731 -1.63 1 .00] 8115] 20 3345 324 18.01
73 122 (Y] i) 55 00 8116] 20.3385 308 6164
75, T4 9 727 -0.73 20 00 2215] 207485 24 18.08
[EY 125 709 .0.76 54 ] .00 0541|168 9159 FilD) 16.40
114 ﬁi [TX] 220 ] 00 0364] 8BTS 274 8151
762 751] 728 45| -0.68 .00 .8020] 14 1780 358 07
775 765 748 [ET 0,97 00 2081] 14 7418 M5 38|
B6 & 800 05 052 28 00 | esazs| 83171 n.n' 1
78, 76.3 51 aq -3.50 00 128033 17 3567 31 5
B0, 704 7.7_{ 200 0.78) o_ol 13.0886) 159734 3 H 14
78 17 2 748 404] -2 44 .00} 13.8427] 16.3073 22 4
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JCHEMCAD INPUTS |CHEMCAD OUTPUTS
Exp No__|botiom |reflux T Sub Cooled _|ieed |ised mflux_| bottom | distillate | Teed [reflux
s rate rate ratn rate

4 10 500 160] 1208 40%| 1109 10 §5] 0.010064 [T 87 9%
160] 11.96 40%] _14.00 12 B4|_o0011133 [ 86.0%

70| 1202 0% 1801 28 i|_ooizito (1K} 56,0

70| 1194 3% 20,00 92 02| 0014022 405 85 0% |

70| 11.05] 39%] 3000 1] 84 0020785 50.0 82 0%

14.95 40%| 15.01 7 18] 0.011370] 189 £0.0%

o] _15.02 %] 18.01] 1090 a2 o.mzml 307 88.1%]

o] e 33%| 2099 1103 m M 852%

70] 15.05 40%| 2500 60 5 45| 0017200 38.0 BE 1%

70| 1497 0% 28.00 .60 37| 0.018803 391 B50%

70 01 40%| 28.00 .80 21 018677 05 85.2%

0 00 39%] 3101 95| 505 0020471 W5 B3 2%

o] 13.89 [ _t_.q 34 3] nnmsl £ ) £5.1%

o] 1367 40%| 1400|708 89| _0.011079 39 B8 1%

o] 1383] “0%| 1801 30 33001185 20 BA 0%

0 _£| 40%| 2000] 851 : 013984 BE1%

16.0] 1768 40%| 2401 00 X7 016705 8. B9.0%

\uol 17 88| 3% 28.02 ¥Fil . 19788 . B0.1%

18.0] 18.01 4% | 3100] 1337 54 021341 5 7T 1%]

150 1002 35%| 1000 823 79| 0008414 463 04 0%

16.0] 10.01 33%| 1000 26 275 .007007 457 211%

150] 12.08 4%| 1200 1055 50| 0007480 (53 %

15 [ 5%[ 10,01 20 75| 0.007078. 43 04| 3 230% 4 0%

18 0 3% | 1000] 10.17 B2] 0010899 49.7] 3 17.0%) §0.0%|

17 o a0%| 1399 85 09| 0.013308 498 3 10.0% 0%

7 793 34%| 1600 a5 08| 0.014345 [T 0% 0%

17 704 33%| 2000 a1 03] 0018527 458 0% %

170] 1003 3s%| 2100 & 21 14668 | 4% 3 0% B5.0%

[ [T %] 2501 477 22 017281 50.5 3 % 81.1%

170|099 34%| 2800 477 22| 0.018838] %05 3 0% B0 0%

170] 10.04 m| 1799 4 :7| 67 13413 502] 3 0% B2 0%

1 002 38%| 1500 445 570011563 [ 0% 85 0% |

1 0.03) 3T%| 1201|457 46| 0009817 459 0% B4 %

19.0] 24.00 22%)| 3000] 1454 48 Dz25248| 50.0 % 72.0%

1 3001 21%| ses7| 1981 10.40 043371 538 3 9% 73.3%

1 CII 20.98 23%] 3801 1382 11.36] 0.031321 530 3 40% 86 2%

160] 3002 23%| 15.00] 19.13]  10.88] 0.017748 504 o% 59.8%

1 23.88 23%] 1083] 16.080] 82| 0012378 457 0% TO 0%

1 4.00 23%| 2843] 1553 AT 021812 501 3 % 712%

1 4,02 21%| 2843 15,53 4% 9. 3 0% 750%

1 4.00 23%| 2388] 1473 27 0. 3 0% 752%

150] 2398 16% 10 ] 3 0% 731%

18.0] 2400 20%| 2174 [ 5 3 3 76 3%

[l 24.00 20% 92| 0.025139 50 3 7% 77 3%

1 18% 08| 0050402 551 3 0% 77 2%

] 19%] 77]_o.010781 497 3 0% 86 0%

0.35 20% | 485] 0014585 496 3 0% 80.2%

91 t.a_|| 549 17% 4.38] 0.045086 48| 3 % 8 8%|
ﬂ' 2297 549 1% 701] 0051843 552 A0k 76 1%
| [5) 142 530 20% 5 00| 0042708 540 0% 72 2% |
B4 3.4 8.1 15% 5 86| 0052207 560 % T4 A%
95 458 50.0 17%) 542| 0016784 a8 0% 76.0%
98| 1812 562 8% 8001| 1612 784 0053550 %] 71 0%
99| 178 58, 16%| 8002 2178 22| 0053002 4.0 0% T5.2%
00 159 50, 28%| 1500 1159 9.40| 0015733 4.8 0% T31%
01 65 53 28%| 4409] 1095] 10.02] D045 4.7 0% 09.0%|
02] 1048 515 28%| 70097] 1048| 1053 0055327 4 0 3 % 0.0%
03] 1284 so.’n'} 30%| 1409] 1712|1284 0022381 32 3 T 2.0%
04| 1402 56 28%| B002] 1402|  18.00| 0062047 a1 % %
07 1137 50, 100| 2400 30%| 1575 1137] 1283] DO18sEL 35, T 70.0%
108] 1125 50, 200 2401 30%| 9101] 1125 1276| 0028034 MB 455 % 09.0%
108] 1150 50.0 200] 2398 29%| 2603 11%8| 1297] 0028517 158 45 5 % 06 1%
10 1178 50, 1 2410 20%| 1587 0018520 347 504 0% 70.0%
11 10.04 50 200] 2397 33%| 1571 019459 35, w7 3 % 68.0% |
i3] 1082 T 200] 23.97 30%| 15,66 019522 E7) 504] 3 20% B4 0%
4] 1096 2306 30%| 8190 059234 ] [1F) o 05 2% |
7] 1448 T 210, 20.04 27%] 1570 021784 32 496 3 0% 63.0%|
18] 1528 0.0 200] 2881 26%| 1582 021133 319 50 0% 65.0%
119] 1528 w.nl 100| 29.82 26%] 8171 061021 321 [ 0% B4o%
ml 1381 500 210] 2904 28%| 1575 022309 323, 4 3 % B2 1%
121 1369 50. 1 2904] 20%] 81.78 062485 325 B0 € "™ B3 1%
122 5] 60 1 nu{ 28%] €180 084200 308] 812 % 50.0%
123 344 50 210] 2995 26%] 15.81 02281 33 502 %] 50 1%
124 23 B0| 2008 28%| 8178 058448 32 812 0% 1%
[ 125] 18 5 200] n.ui 22%| 15.92 01957 31 50.2 0% £ 1%
126] 1831 10.0] 2095 21%] 8177 050531 30 [ % B2 1%
127] 1913 50 190] 20.05 20%| 1626 01854 325 502 0% 721%
128] 1820 50, 200] 2995 21%| 1801 ; 5] 0019345 324 457 0% B8 1%
25| 1620 50 0 81,64 g 1058348 W06 507 0% B8 0%
30 83 50.0) 200] 018988 324 [ 0% 59 0%
35 62 50.0 18 1015954 279 £05 0% 74 9% |
26 23 565 110 ) 054861 274 ﬂ E 0% R0 %
a_ 08 50, 19.0 018385 35, 504 % 70.0%
a a8 50 210 019085 H %6 3 0% 83 1%
a5 53 80 9 055038 35 809 % 6 5% |
1 1294 50 21 022095 33 02| 3 % 50.0%
147 79 50, 20| 025275 10 501 % 55 0%
| 148] 1078 B1 100 088528 | 322 617 0% 510%
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[CHEMCAD OUTPUTS
tray 1

40 i 1
137 7 _llel
733 T ad
126 57 37
; 755 o8 “
T 727 ! il 4
738 733 880 7 az|
73. 731 B2 4 1 )
I: 720 &2 T 31
, 720 [ T 31
; 4 1 [] T4 .30
72 1. 88 4 &77 .20
73 3 58 ik W
74 3 [ 7. 45
738 12 [ 67 a2
730 122 [ 87 40
L] BT 58 Al
] 7 [3 882 20
02' A7
659 59
68.3| 64
58.0 62
oTl 8
L) BB 30
25| 88, 48
38 [IX 61
37 E’ o4
] 681 83
3g| 688 48
40 €88 45
4] 888 50
42] [TE] 55
43 684 51
L] K]l “
75 702 38
78] 714 .E‘
77 A 33
78 89.7 51
0 50 60.8] .wl
80| 83 70. a
81 B4 70, |
82 B6. 708 a2
8 B0. 9. 38
a4 70.7 X 37
85 78. 891 M
[ B0 2] 880 55
[ 81, g 48
81 B3, 502 45
02 79, (X 36
93 78 701 28
[ 768 60, 21
95 80 [ 39
@ BS 4 70 9
[E 79 [ 4
100 Bl 70. T
10 BO.€ 70, 30
102, BS. 71, 38
103 87 75 4
104 5} 28
7 4B
3 40
09 A1
10 a8
in a
113 ]
4 Fi
7 “
2 Lt
H )
20 .43
21 32
2 28]
2 [
24 K
25 3
26 24
27 55
128 .50
129 ]
130 .51
135 .43
136 30
140 |
43 o
45 )
48 a9
47| 35|
148] .27
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APPENDIX F

HYBRID PARALLEL MODELING DATA SET

The data set is on one large spread sheet. It is divided into 16 pages as follows

(the number in each of the box correspond to page number):

106 107 108 109 110 111 112 113

114 115 116 117 118 119 120 121

105




]Dara Used for Hybrid Parallel Modeling
No. inal file name __|feed Teed Teed neflux reflux reboiler [tray3
rats (- rale
[mel%
4]ex950416_ss 12.05 40 821 718 757 71.0
5|ex860416_ssi o8 40 &q ikl 758 T0.8
8] ex50416_ss: 202 40 B4 778 759 70.8
7]ex880417_ss. [T 39 I 80.9) 75.9 707
B8|exBE0417_ssl 85 39 822 2
13| ex890430_ss' RS 40 76.3 752
4] 0x090430_ss2 15.02 3 8.1 7
5| ex880430_ss3 14.58 33 76.1 7
6|exa80501_ss1 15.05 40 759 T8
7]|ex890501_ss2 1497 39 75.9) 744
8| ex@80511_ss1 15.01 40 756 T4
9] ex980511_ss2 15.00 38 75.7 7a
21]ex890514_ss 13.68 40 T8 4 753 I
22[ex890514_ss2 13.67 40 76 74 00.7
23] ex890514_s53 13.63 40 5 74 09.6
24[ex0B0514_ssA 1368 40 75 74, [IX]
25]ex880515_ss 17.08 40 5.1 740 68.9]
17.96 39 75.0 T4 2 70.1]
18.01 M 75.0] T4.2 70
10.02 35 73. T 87,
10.01 3 74 [0 JI
12.05 1] 72 [TX 68.5|
11.95 35 T4 7 735] 69.0]
17.99 28 17 76. 728
17.94 40 T8 T4.4 708
17.63 L] | 1] 1' 78 T0.8|
17.84 33 [T 815 76 70.7
10.03 35 90,
999 34 W
9.98 £ . [
0.04 38 467 [
0.02 38 AT, 5.
0.03 37 48 05,
497 27] [T 08.2
KT O_I 40.8 9.4
[T [ %] 99,
E ] 8| 99,
2.00 [0 5| [T]
499
14.98
1497
15.00
7.99
98
01
18.01 Y
17.87 [TE] ;
18.05 X 941 B7.7 543
500 24 39.6 38.00 501 998 [EX] _J
[EE) 20 39.1] 4502 51.0] (K] w45
5.00 20 u.o! 54.01 527 [0 [1H]
2.01 20 427 11.38 50.0 9.5 [0
1199 20 42 12.00 50.0 moi 5.
54 exB00620_s32 o8 20 [T 23.09 50.0 T i
65| cxBG0629_s33 w [ 42.00] 50.4
7 30_ss2 .00 39 20.99 50.0 T J
38 | 0aB80703_ss1 02 50 12.00] 50.0 [ T
xBE0703 552 (] 50 20.69 50.0 [T [
72| ex900704_ss2 .00 2 3. 15.01 50.0 [ p5.0| [1X] 74.0|
73] ex90705_ss1 4.00 22] [ 30.00] 500 7. 809 20 78
74| exB00705_saz 4.00 1 2 80.01 54.6 968 864 [1E] 743
75 [ex880705_ss: 30.01 1 3.2 50.97 538 925 813 763 12
78| exu80706_ss 20.88) ] EIK] 36.01 52.8) %0.7 805 78.3 745
77| ex990706_ss2 30.02] 23 33.9) 15.00 50.0 [} 812 T 75.0
780x900708 _ss1 eﬂel 23 326 10.83) 50 918 82.0 70.2 737
79| 0x990708_ss2 24.00 23 319 2843 50 n.a‘l B2.1 T8.8 729
50| ex890708_s33 2402 1 34.5 3712 4 937 824 T84 723
ex260710_ss1 24.00 3 32.9 23.88 50 w2 85.3 805 743
82| ex90710_ss2 2399 9 328 5171 54 w4 86.4 508 739
83[ex980711_s51 400 20 33.9) 21.74 50. W17 813 791 [
B4[ex090711_ss2 400 20 335 3319 50.0 914 80.9 186 124
o5|gnaom 353 14.00 18 4.7 79.72] 55, 90. 804 8.1 i
BE[exBB0712_ss1 15.02 19 374 14.09 50.0 90. 104 785 70.5]
B7]ex890712_ss2 15.0 19 38.1 3728 50 [ 80.0 760 70
B8[ex00712_353 15.00 19 5.6 79.17 54.6 934 B4 78.0 713
B9 |exd90713_ss 15.00 20 A 19.24 sﬁ' 92 815 76.0 7, n“
90| exB90713_s52 15, [ 8.2 23.54 50.0 95 B34 79.0 72
x390714_s5 14 90 7 0] 78.31 54.0 95 ] 3 791 4
92| ex8007 14_ss3 20.648 ] 320 80.04 s-u| %09 4.7 1 788 714
93|ex990717_s5 30.02 20 30.8 50.99) 539 29.9 4.5 30, 8.7 721
4 [ex390717_ss; 30.00 19 4.1] 79.96) 561 885 3.0 80, T8.5 728
990717_s5: 30.00 17 348, 20.00 50.0) aﬁ' 830 80, 78 730
96 [0x390718_ss 14,98 18 ) 14 99| 50.0 921 85.0 0.4 78. 7 a_;
xB90720_ssl 15.00 18 35.1 80.01 572 u_l [T 956 0.4 86.1
2 23.98 18 1.9 80.01 6.2 6.5 [ 85.1] 8123 737
] 30.00 18 4.8, 80.02] 555 7 [H 19 79, 124
100 |ex890804_s31 20.99 28 4 8 .00 50.0 a4 9 22 78. T4 86
20.97 28 347 4499 538 943 X 1 7. 3.
21.01 28 4.9 78.97 57. 952 T 82 78.1 F
103|ex990805_ss 2998 30 22 1490 50, 96.1 83 758
104]ex990805_s52 30.02 28 31, 80.02] 50, 953 0 82 774 752
105]ex000113_s51 14 06 33 35, 15.‘@{ 50.1 100.7' 9.5 95, 87.71 [
106 [£x000113_ss2 14 68 33 35, 34.75) 50, 100.6 98.9 3 26.8] B4




Jpse |

| Data Used for Hybrid Parallel Modeling  |setiom composion
tr T e fixed

o e ey 5o e iy 3] imm

melH| meOH

51 7 5% 1.5% 10.0%)

.48 B 4% | 11.0%

44 0% Y 120%

37 10.0% 180%

44 1i%] IE!

A4 18.7% 20%

42 18.6% 200%

) 1B.4% 200%

.31 2% 22 0%

] 31 7.8% 210%

(1] .30 ¥ 23 0%

[3 28, 18.0% 23.0%

X 46 15.8% 24 0%

[1] 45 _151% 17 0% |

[1] 42 15.3% 19.0%

878 40 174% 20 0% |

25 f?_.ii 4_1l 19.2% 230%
F 68 2 20 21.5% 25 0%
Fij X A7 208% 0%
Fi] [} 89 13.5% 26.0%
30 [CE B4 8% 18.0% )
32 [ 82 5% 20.0%
1 | 88 1% 23.0%
4 30 3% 17.0%
35! 48 1% 10.0%
38 1 A% %
37 [ 2% %]
38 .5 3% 0%
38] 46 2% 0%
40 4 %) %
41 50 T 20%
42 5| % 20%
43 57 % 20%
[T 00 % 0.0%]
00 3% 0.0%|

00 3%| o%|

1.00 A% ¥ o% |

1.00 % B8 T% 00%

00 % 58 4% 0%

00 A% 58 8% 0%

0 A%/ ‘ﬂ' 0%

00 % 67 0% 0% |

00 5% 548% [

00 5% 59 4% %

00 5% B3 4% %

00 % T% 0%

00 3 T0.5% [

00 .en';'l' 89.5% [

00 %] 50 8% %

) % B7 8% 0%

) 7% T1.9% [

00 % 50.T% 0%

00 % B80T %

00 % 58.7% 0% |

.00 5% B8 0% 0%]

00 2% 58.2% 0%]

00 % 48.% | 0.0%
00 5% 4 7% [ ﬂ

[ [ 7.8% 10%

44 5% 14% 10%]

00| % 75 5% 0.0%]

3% 0% B0.7% 3 0%

25 5% B0 7% 5 0%

13 % 76.0% B

51 8% T4.8% %

40 [ TH.6% 0%

61 0% 78.5% %

[ 2% T2T% 0%

i 1% T 0%}

38 %] TBOS 50%
37 ™ 80.5% o%|

34 2% 81 8% [

55 % 80.7% [

43 % B21% 40%

_¢§I % 81 0% 0%

48 T T8.8% 10%

51 0% 76.8% 10%

a5 % 80.1% %

38 A% B26% 40%

28 % 52.8% 8.0%;

27 0% 54.5% 8.0%

39 % au.ls-l 0%

54 3% T8.5% ™

00 A% 87.1%) T

3¢ 0% 76.8%] 1.0%

ET ™ B820% 0%

37 4% T4.7% A0%)

.30 5% 79.1% 30%

36 % Toa% 10%
43 % B8.0% 1 ﬁl

28 % TBA% 10%

o0 % 45.3% [

00 % 50.8% [
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|
|

distiliate

r%
-2.0%

#3)

4 %

5 = .

[] 3% %

1| % %

] 6% L%

: : =
I% [

5 _ﬁl A%

18 1% 1 E%|

17 E -4 1% 1%

18 1% E 04%

i8] 5.3% 4 2%

21 1% B

22 2.3% -1.8%

nl =3 15%

24 0.6% 0%

25 3% . 1 s_'il

28 B.6% K A%

27 14% X 24%

29 72% -0.6%

30 7 2% 3%

22| B.2% 0.3%

33 [

1)

35)

38|

a7

38

39

40)

41

42

13.3%

1%
9% 1A%
% 0.1%
- 7% 15%
,'ml 3 &%
43 9.1% 3 %)
“ 2 21! 23. 5%|
45 8% . 5%
48 16.3% 10. 56%
47 B% 0.0%
9{ 0.7%] . 3%
49 11.6%| 10. 3%
50 152% 13.3% %)
51 7.1% 3% 1.2%
52 -2.0% 1% 8.0%
53 -0.6% -0.1% -0.5%
54 17.6% 14.1% 5%
55 6.6% 9.5% 2 0%
£ 8.3% 11.2% -2.0%
57 15% 7.8% -4.3%
58 5% 2.5% 1.0%
59 10.2% [ o'\_t_[ 4%
80 5.4%] 5% 0.0%
81 0.7% 0% -2.0%
82 820% 31.3% 17.A4% 16%
83 80.0% 19.3% 4.8% 5 4%
B4 76.0% 17.8% 3.3% 4.5%
85 10% 41% 47% -0.6%
67 4.0%] 15.8% 10.4% A%
68 B4 0% 15.1% 14.1% 0%
[ 65.0% 0.8% 3.1% 2.2%
72 79.0% 11.2% 10.6% 8%
73 72.0% 6% 0% %
] 70.0% -5.5% -5.4% -0.1%|
75 73.0% -T.1% -8.2% 5%
76 66.0% -14.7% 14 331 4%
77 70.0% 2% 2%
78] 80.0%) 3.5%] 1L
m 17.0% -3.5% 20%
80 75.0% -18% -1.9%
81 75.0% 0% %]
82 73.0% E 31' 6%
83 76.0% -36% 0%
84 77.0% - r_u' %
85 77.0% -B.2% 1.3%
] 86.0% 5% -1.7%
a7 B82.0% -3.5% 34A%
B8] 80 0% B0% B.1%
58 80.0% 8% -26%
90| 79.0% 54% -3.3%
1] 70.0% 30% 8%
a2 77.0% 408%] 1.0%
a3 72.0% -10.7% 0.1%
o4 74.0% -10.8% A%
85 70.0% -1.3% DA%
[ B56.0% 58% %
a7 60.0% % -0.5%
tel 72.0% -56% 1%
[ 75.0% -1.2% 1%
00 73.0% A% 2%
01 80.0% -12.3% 2.1%]|
02 68.0% 11.3% |
103 820% -5.7% 623% -0.9%|
104 63.0% -17.8% 60.85% A%
105 0% 238% 60.2% £08%
108 07' 1 siI 786% -4 6%
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S — | EXPERIMENT DATA
[refiux__ |botiom |distiliate reboiler Tieed refiux Teed botlom
rate rate rate temperature
1 of full C)
40%] 1199 ; 281 B0% 50.0 10%
0% 14.00 * 47 8% 00 11%)]
40%] 1801 .84 85| 5% 50.0] 12%]
39%| 2000 o 09) B0% 50.0 1%
%] 3000 88 03] 50w ﬁ L
40%| 1501 1289 7] [ 499 2%
34%| 1801|1288 o1 B0% 50.0 3 20%)
W% 2008 1100 38 [ 50.0 3 20W)
40%| 2500] 1329 30 B0% 50.0 3 2%
39%] 2800] 1327 83 B0% 501 3 Fi
40%| 2800] 1 .ul [ B0% 50.0 3
o) ] m‘ 12.13] ] [ 500 3
40%] 1000 a1 a7 B0% 50.0)
0% 1400 08 [0 0% 500
40| 1801 98 1% BO% 50.0
40%]  20.00 76 42 B0% sﬁi
40%| 2401] 1524 12 [ 500
5% 802 1419 o5 B0%| 50.0
4% 3100 1278 [T B0% 500
%] 1000 941 30 50% 50.0 3
33%| 1000 30 [H) 55% 50.0
%[ 1200 1112 27| 55% 0
35%| 1001 06 _sg_' 55% 0.0
39%] 1000] 1358 404 0% 0.0
40%| 1349 Fil 436 60% 50.0
34%| _ 16.00 3.85 24 80% 50.0
33%| 2000 401 19 80% 500 % |
5% 21.00 472 416 80% 50.0 %
4% 2501 49 428 80%. 50.0 ™
3% 2800 (i 424 80%]| 500 3 %
8% im 485 11 0% 500 T
38% 5 00 502 07 80% =
37% 201 525 72 80% %)
27%| _ 15.00 4 gi 37 0% 0%
1Dﬁ| 12.00] 9 417 %
19%  18.00 oll 08 3| %
19%]  24.00 A8 29 %
18% 2965/ 54 53 %
20%] 1200] 1030 .82 0%
19%)  18.00 495 7 [
0% 24.00 490 80 3 0%
18%] 30 460 5 3 [
20%] 1196 490 B4 3 [
54 19%) 18 33 43 3 %
5] 9% 24.00 20| 7 3 %
£ 20%| 2969 75 23 3 0%/
57| 2% 3801 54 34 3| [
g] 23%] 5100 1200 T 100% 3 _O%]
[ 59 24%]  36.00 .80 95 100% 0.0 [
| g_ql 20% 4502 1021 T2 100% i 0%
61 20%| 5401] 1048 85 100% —389| %
B2 20% 11.38 a7 12 1% 4 0%
[ 20%| 12,00 57 28 0% [ 3 [
B4 20%| 2389 43| 31 0% [l %)
85 % I 52 0% | [ o%|
67 % 44D 0% 30 o%|
58 % 90 0% 50 %)
59 gi % 50 0% ) [
7z 112%] 2400 % 614 0% :EI %
T 06%| 2400 88 BO% 330 "
74 55%| 2400 25 BO% 328] 0%
75 77%| 3001 28 BO%| 32 %
78 147%| 2008 56 T0%) N7 5%
[ B0%| 3002 80 0% 339 5%
78 52%| 2308 04 0% 326 5%
i 6% 2400 68 7% 319 m
80 35%| 2402 19 T6% U5 )
81 3% 2400 1B, 97%] 329 |
82 21% [H] 80 5% 3246 [
B3 28% 00 5.05 [ 339 3 5%
B4 35% 00 825 Bo% 338 %
85 58% 00 .u_:i Bo% LK 551 E %
[ 8% 02 37 BA% 374 500 3 5%
[ 0% 01 2 55| 4% 381 501 1| %
[ -18% 00 gl o5%| 8| 54 8/ 3 *
89 2% 00 28 % E 50.0 3 B
%0 12% a4 *
91 1% 70 1%
[ 56%] 39 %
EE) 0 8% 5 68 %
94 10.5% 94 %
ul 8% 26 %
98 5% 14 98 18% 14 99 3.33 %
97] 3% 1500 8% 8001 153 0%
38 48%| 2398 8% 80.01 9.39 1%
99) 7.0%| 3000 18%| 8002|2591 %
100 2% 2009 28% 15.00]  1281] &% %
101 101%] 2007 26%] 4498|1137 } Bi% %
102 S10.4%] 2101 28%| 7997]  10.80) B6% B
[ 103 50%] 2996 0% 14es| 1 100% »
104 154%| 3002 28%| 8002 i1 100% %
105 287%| 1496 3% 15.78 ] 0% %
108 142%] 1408 3% M8 X 70% %




EXPERIMENT DATA |DATA RECONCILIAT
No. disuilate reboiler |, 0 beta [overall | MeOH
material | material
mol C balancs | balance

4 BE%| [T] 20, 82.1 603 -281 d 0.00 00/
5 B7% 89, 29, 815 [T 1] 337 0.00 00)
[] B7% 88 30. 14 700] -358 9 0.00] 00!
: 3 :“: 31.2 TA T0.0] -2.07 | 293 00| 00
333 1.8 60.1] 143] 478 .00 00

13 855 (= 303 'uji __|_ 92] 34 og 00
14 BE% 835 312 184 o8] 221 00 .00
15 B5% [E13 320 185 87| 1.58 [ 00
16 B5% 832 328 T8 89) 4.15] 00 00)
17 85% 829 335 X 67| 274 0.00 00
18| B5% 827 332 7.7 53| 3.33 ) 00|
19 B3% 828 333 78] 218 0] 0
21 B9% 839 302 8.7 07| 0.98 0 00
22 B88% B4 30.5 78 EXT] IEED ) 00
23 BE% BAZ 308 78 268 3.14 00 00
T 83% [EX 310 78. -3.25| 2.75] 00 00
25 59%) 822 325] T14 24| a88| 0.00) 00
28 BO% 812 37 8.8 92| 2.74] 00| 00
27 % 818 340 770 61] 066 00 00
28 5% 80.4 28, 754] KT ._1 00, 00
30| 3% B35 _20.4 7&] ] 00| 00
32 4% B804 29. 75.8 ).57] 00 00
33| 4% B1.4 20 7.1 " .00 00
34 BO% 85. 30. 708 30 100 00
35| BS% X 34 1. 58 00| 00
36 B5% 96.8 N7 13 00) 00) 00
7 B5% 97 326 j %0 00| 00
38 B5% 6. ;i 90.0| .00 00
19 1% 6.2 ; 0 00
0 1% 6. 0.00] 00
[l 3% 5. 00| 00
¢z| B5% [ 00| 00
[5] B5% 953 00) 0
] % [ 00) 0
45 % 1W.l| 00| 00
48| % 100.5 00 00
47 69% 100.3] 00 0.00
[ E:l 1001 00 0.00
49| BB% 100, 0.00 00
50 Té% 100, [ 00)
51 T0% 100. 2 | ) 100
52 B5% 89, [ 58 i .00
53 4% 100.0] 94,3 El Ot 00
4 7% 100.1 ; 8B.5) 737 s470378 0 00 00|
55 T0%] 100.0 33.1 87| ? 737] seal421] o000 00
58 T5%| w98 34.5] 85.3] 782 70.8] -1.32] 135 0.00 .00
57 T4% 98,3 3 837 770 59.9] -203] 1.52 0.00 00
58 3% o8 38 843 [X] 6e6| -151] 125 0.00 (&)
59 70% [T 35 86 9 BO.4 Ti4] -148] 174 X o0
60 T3% 99 382 851 8.5 702] 0wa| 078 0 0 00
o1 T2% 3 37| 845 778 mo1 1] 0T ¥ 0.00
62 82% 99. 14 ‘!nl! 75.8] 700 101103 00 0.00]
B3 80% 100 O B840 8.7 714] 079 093 0.00 00
B4 6% [ 38 855 797 715 079] 103 0.0¢ 00)
[ 73%) 9.0 357 848 703| 062 74 DA 00!
67 Ta% 095 354] 6.5 711 80 - 00
[ B4% 1003 23] 928 764] 7. 08 T 00
[T 85% 100 W7 024 74 B8 544 T 0,00
72 To% o8 327 74 70 60| 240 00| 00
7 o7 351 75. 714] 204] 158 00 .00
74 o688 38 700] -2.08] 1.31 00 00)
75 BEI 387 593| 35212 [ 00
78 907 1539 71.7]_-233] 1.70 I 00
7 914 338 730] .3.81] 2.08 T 0.00
78 918 320 71.0] -3.30] 1.88 0 (]
79[ 925 43 70,0 3,30 1.79 00 00
[ 837 14 5 B9.0] - 32 00 00
a_1f 82 4 2 710l as0[ 21 000 00
82 6.4 75 70.0] -1.92| 0.39 0.00) 00,
83| K 336 10| 245/ 093] 00 00|
84| 4 35.1] 700| -2.80] 0.67 00) D 00)
85 20.1 351 683] -380[ 125 00 0.00)
[ 90.1 49 B8.0] 101 1.40 00 0.00
87 91.5] 35.0 68.0] -234] 1.57 00| 00,
88 [EX] 7 683] -228] 0.83 0.00] 00
[ B80% 928, 4 es0| 238 237 ] 00
50 To% 95.0 4. [0 ol 2.71] 243 0 00
a1 9% 5.6/ 37 es1] -250] o.u’ D0 00
92 T% 909 368 66.0] -424] 1.62 00 00
0 12% 59.9 384 ] : ; 60.5] 414 00 .00
o4 A% Oﬂl 371 83.0 80 78.5 728 59.3] -3.17] 0.9 00 00
3 0% 88.0| 47 830 80 782 730 70.2] -3.00] 2.1 00 .00
of 26% 02 B 85.0 80 4 8. 718 893] -187] 0.50 00 09)
5 5% [ 7 386 958 00.4 5.1 705] -1.60] 0.10] 0.0 00
98 2% 965/ 73 920 88 81.2 731 69.3] 227 ,wgl 00 00/
89 5% m.rl 37 B5.1 B1. 79.1 724 B28] 413 009 00 [
100 T3% o4 4] 33 89.1 822 78.3 746 21| -1.02 _n_l X 00
t0|| ml N.![ 36, 5.9 81 777 36| 71.1] -0.42|-018 o 00
102 85% 952 37 10 826 78.1 736 702| -032|-0.07 T 00
103 2% 9. 35. 16 [0 788 17. 753 49]-084 0.00 00
104 B3% 95. 38.0 %09 B28 T74 753 il 109]-1.62 0.00 00
105 Ta% 100 300 9% o5 3] 871 85 % 744| 043|154 000 00
108 Ta% 1008 43s5[ 98.9 95.1] 85.8| B4 79.1] 713 037 151 0.00 00
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CHEMCAD OUTPUTS

DATA RECONCILIATION |CHEMCAD INPUTS
econc MeOH feed

10 0%
A2 40%
C .28 0%
82 3% 20,00
1 3% 30.00
1 H A% 1
14 10.90 4% 1
15 1 .IJ!_I 1% 2099
15 50 A%
17 gi %
18 80 A% 0
19 95 0% 1
21 3_4{ 40% 0
2 58 0% 14.00
23 30 16, 0% 16.01
24 51 0% zﬁ'
25 00 24, 12.00 50.0 [ 24.01
26 Fil 28.02] 12.27 50.0 30% 2802
27 a7 31.00] 1337 50.0 31.00
29 23 10.00) 23 £0.0 30
0] 26 10.00) 28 500 00|
12 10.55| 1200|1055 50.0 00
3 20/ 1055 10.01 20| 50.0 10.01]
4 10.17 782 701 4199 368 10.00] _10.17) 500 10.00
35 85| 900 7302 2098 [1E 13.89) 85 500 1308
ml 85 508  85711] 83580 498  16.00 85 50.0 18.00
T 81 9.03] 83752 5648 495 2000 | 50.0 20.00
38 82 521] 49055 1245 459 2100 62| 50.0 21,00
38 77 ©23] 47755 214 482] 2501 477 50.0 2501
40 77| 22| 47755 214 485 7800 4 50.0 28.00
[ _4__::‘ 67 2353] _ 4.804 48, 799] 4 50.0 1709
[ 445 57 2248] _ 4.7952] 47 500] 44 50.0 00
[ 457 [T 1232 _ 4.0088 48 2.01 45 50.0)
[T B.53) [ mst 03 49, 15.00 53] 500 i
4s| 5.06 0 5285]  8.48 408 1200 96 50.0 ™ i
48 718 423 5285] 846 a1 18.00 76 50.0 = 18.00|
47 7.56 44 5256 4544 418]  24.00 7.58 50.0 = 24.00]
48 7.66 [EL 3884 6318] 415 2090 768 50.0 % 20.09
49 .16 5.83 8123] 10.3777] 38, 12.00 9.16] 50.0 20% 12.00
50 9.70 § 28| 4 A40B4 49 18.00] 70 £0.0) " 18.00
51 50 54 44085 500 24.00] 50 50.0 19.0] 1497 [ 24.00
52 51 54 42105 ; 504]  30.01 51 50.0 20.0] 1500 B% 30.01
53 80 B 5354] 12.4548 [ 11.99 .80 50.0 20| 17.09 0% 11,09
54 11.80 618 2913] 12,6887 46 4 1801 1180 50.0 180 1768 10% 18.01
55 4 658 3001] _12.7009 [3 2400 1143 50.0 19.0] 18 19% 24.00
56 4 5.58] 55415] 124885 36, 2098] 1143 50.0 19.0] 18 20% 29.99]
57 105 748 62328 11.7372 36 36.01) 1051 50.0 9.0 17 23% 36.01
58 10,48 756] ©.2605] 11.7885 38, 51.00] 1049 522 23% 00
59 531 X 3933 9.6087 395] _ 36.00 31 50.0] 4% 30 00
50, 025 X 45323] 101677 30,1 45.02 25 510] 20% 45.02)
B1 538 5§ 46154 10.3648| 389| 5401 38 527 20% Y
[ 786 [l 6954 3146 [ 11.38 [ 500 20%
esl 778 421 6802 3008 & 1200 778 500 20%
B4 ] 434 8862 2038 [ 23,09 7.64 50 0 20%)
85 7.73 426| 35285 4615 4 4200] 773 0 4 1%
87 5.7 9 4143] 105857 398] 2099 X 0%
[ 11.04 B 3031] 12 7160] sorl 1200|1104 X 10%
60 K 7] 3206 127804 503] 2009|1147 T 10%
T 15,461 " 7020] _16.2980| 338 1501]  1546] 50 21%
T, 14 54 4 .0152| 15 9848] 338] 3000 1454 50 0] 2%
7 1444 56 7 7020] 16 2080 32 8| BOO1[ 1444 ua{ 2%
75 1968 04 5.6307| 203793 332 Se87| 1961 53.8 21%
76| 18.62 1136] 10.3983] 185817 N7l se0 m.ezl sgi 2%
77| 19.13 1089] 104122 196078 3398] 1500 1913 50.0 23%
n_l 1606 792 373 8827 328] __1083] 16.08) 500 2%
79 15.53 3.47 3242 5758 318 26.43 15.53' 50.0 2%
80| 158 [ 7084 3118 46| 3713] 1551] [ 21%
B1 147 78324z 5758 329 2368 1473 50.9] 23%
[ 15.80 19| 7.0800] 16.8300 328]  51.71] 15 oal 54 % 1
B3 7.02 68| 73845] 166154 338 2174 02| 50 20% 174
B4 7.08 62| 7.3848] 166154 335 3379 o8] 50, ' 20% 3379
ElL 182 08| s73es| 17.2632| 47| 7072 92 58 | I 8% 79.72
86| 125 377]  4.4202] 105688 T4 408]  11.25 50.0 1700] 15.02 % 14 09|
57 10,89 [X] 44173 105627 8. 7.26] 89 50.1] oo] 1501 9% 37 38|
1] 10.59) X3 4 4143 105857 386 19.77 .56 546 00| 1400 % 70.77
[ 10.35 865  46154] 103848| 35 19.24] 1035 50.0 ) T 0% 1924
50 10.14 [ a4l 10,5027 38.2]  2354] 1014 50.0 oa[ 1t 10% 2354
91 10.61 [] 350 4.9 [ [T 17% 79.31
[7 2297 320 54, 13.00] 20.98 B% BO.04
[E] 21.42 30. 3 15.00] 3002 20% 50,09
] 314 Kl 3 12.00] 30.00] ™ To s
[3 458 T 50.0] 00| 3000 T 2000
S B! 500] 0] 14.98 18% 14,99
97 73] 572 0| 15.00 18% 8001
88 16.12 552 13.00] 2298 18% B0.01
@ 78 55 5) 13.00] 30.00 18% 80.02
100 59 500 15.00
101 95| 538 [T
102 48 57 79 07
103 B4 50. 14 99
104 202 Q 80.02
105, 8.60 500 15.78
| 106 6.60] 50 0] M5




| CHEMCAD OUTPUTS
A2
.28 Td B
62 73
A1) 78
13 kid
14 10.80
15/ 11.03 ;
16 .60 728
7 &0
8] 80| A
9 85 723
21 M 3 T30
22 88 3| 40
23| .30 3| T3.8
24 51 3| 73.0
25] 1200 3] ; 7 728
26 12.27 3 78, 45 ] 125
27 1337 3 B0, 50.1 5| 73.0
28/ 23 3 0. 50.3 2] 12
30/ 28 . 3 a2 | ,54 Tad
32 1085 007480 430 . 3 , 8 504 740 112
33 20 275 007078 431 50.4] 3| 23.0% B.0% 808 504 75 73.9)
34 10.17 .82 010899 88| 3 17 ﬁ 80.0% 8313 457 75 75.1
35 85 .09 013308 41 3 0% ] ss.u'\s| 877 w08 T 76.0
38 85 .08 014345 45, 3 0% B5.0%| 6 5 [T 88 820
37 ] .03 ).C 1&52?' 49 3 0% 85.0% T [} [H 840
38 82 21 .014668 45 ] 0% 85.0% 6.6 n.al (1] 807
38 477 .22 0.017261 48, 3 V% B81.1% 50.5 81.0
o 47| F7) 018939 48 'EI_'_nTE 807
a 437 87 013413 48 ; 0% B20% 808
q 4.45 57| X nsul a7 49. % 850% 808
43 457 48] .009917 48 1 [ % B4.9% n.:l
[T 53] 44 .012304 497 T3 1% 856% 6.2
[ 96 03 012144 408 [ 0% 55 0% X ol
48 78 423 013955 411 4_1' ¥ % 73 8%) 00 98 9
[1] 758 442 018178 418 496 % 88 %] 00, 96 3]
48 768 4.34 022208 41.5 50.0 0% 66.1% 00 96 5|
[0 18 583 1012040 38.9] 49.7 0% 87 a% X 497 [[H o7
50 70 .28 014562 49, 49. 3 0% 738% 79 497 997 [T
51 .50 47 018675 50.0 50.4 3T 0% 60 8% 100.0 504 598 51|
52 .51 ¥ 023110 50.4 50. 0% B4 9% 100.0 50,3 [ 904
53 .80 18 014723 48, 4 0% 53 0% [ 50.4 [T 082
54 T1.80] 18 015083 464 50.2 0% 76 8% 78| 50.2 (X 98.0|
55 11.43 58 019580| 480 50.4 E 0% B9 % 100.0 50.4 B 98 9
% 1143 58 0.022778 36.5 [TE 0% T4 0% 100.0 49, [T] 99.0f
57| 1051 48 0 026868 357 407 3 0% 74 0% 100.0 49 (2 991
58] 1049 71.58) 035645 36.7) 51.8] 3 0% [
59) 3 [ 026780 398 ai 0% [
wl 25 48 ).030346 391 I 3] 0% [
81 ET) a2 036415 389 3 0%
a;]'_ 786 415 009458 427 3| 1%
[5] 778 421 0.009997 42 3| 1%
54 764 434 ). 017228 42 50.3 3] 0%
B5 773 426 D.0Z8165 3 0%
87 g7 29 021874 3 0%
B8] 1104 ] 012568 1%
8] 1117 L 02413 0%
72| 1548 E 01525 10%
T3 1454 4 025248 0%
14 14.44 56 043860 0%
75 19 61 10.40 043371 9%
76] 1882 1136 1321 4%
77 19.13) 1088/ 017746 0%
78] 808 a_al 012378 0%
79 1553 47 021813 %
80 1553 0 022135 0%
1] 1473 Fij 020952 % 887 [T
82 15.80 19 038981 % 73.1% 98 [] 020 [E
Bl 1702 [T 018388 49% 78.3% W2 50 3 833] 8
B4] 1708 92 025138 4% 173% [F] 501 023{ 197
8s| 1792 08 ).050402 50% T.2% w25 55 810 781
85 1125 il 0.010761 50% 85.0% w24 49 [E] #032|
87]  10.89 412 023981 0% 82 0% [ 50 [5] 700
88| 1059 441 47814 0% 80.0% Xl 54 [E] 760
8s| 1035 485 ).014585 0% 80.2% [TX] [ [ Be
90 10 14 4.87] 17202 1.0% 79.0% [TK] 408 92 85 4]
91 1061 438 1.1%) T8.8% 38 1 548 90 8 839
92| 2207 1 40% 6.0% 37 55 32 0 795
83| 2142 50 0% 22% K 54, TH 78.5]
9] 2314 88 0% Td 4% 80 4 [ 185 75 8]
95]  z4se [F] % 7% X r (1K) 801}
B8] 1148 52 0% B5 0% 9z 4 4 B35 802
W7 973 21 0% 89.1% 100.0] 1000 998
98] 1612 3 0% 71.6% | 6 613 B854
59 e 22 40% 752%)| [N 55 [FI] 795
00 59 40 015733 40% 3% [FH [TX) 34 1 811
01 095 10.02 034415 :inj 69 0% 95 538 42 806
02 10 48] 1053 .055327 10%] 69.0% [ 575] 12 (A
03 B4 02238 1 1.0% 0% o8 49 5] 23| 871
04 ) 062047 16% ﬁ 972 98 883 83
05 800000 0.0% 4 0% 9.0 [TX] w6 6, ]
108 026255 0.0% 73.8%] 1000 awi| 6 9| 7
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|CHEMCAD OUTPUTS
3 4 5

tem
(€) =] [
1 74.0 [
B 730 EX
B 733 €5
7 7286 534
B 755 70.
3 721 X
4] 732 X
3 73.1 £8.4
8 ?z_j 8.
7 720 s,
0 71 3
B 7. 5.4
21 73. [
22 73 , TE
2 72, 894 T
24 722 8.1 50|
25 72, 889 K
Ei 72 804 58 p
Fil 7 89.8 69, A7
Fe 7. [TX [ 1 B8
30 73, 69.2 67.5 3 64
32| 72 68 %9 j’ 62
g} 73, 88, 572 56,1 68
] 7 71, 70. 888 30
35 74, 7 [T K 48
38 744 7. 828 61
37 75.1 713 [TH] 4
38 728 700 B8 1 53
38 733 70.7 [ 46
[ 731 70, B8, 45|
] 73.3 70, B4 50
4z 73, 70 88, 55
43 73.8 70, 82,4 57
) B3, 75 B9.8 00
45 544 31 B2 00
534 6. 753 00
952 [0 77 00
062 0. 78 o0,
818 a7 77 00
[FE [5 75 00
544 88 78, 00
o5 907 78, 00
g3 0 811 83 4 0o
%08 333 74 00
D 878 78 ¢ 00
3 B54 747 100
7 861 75 1.00]
8 871 75 100
5.0 8B4 78, 00
954 87 75, 00
95.9 8¢, 78 00
8.1 79 7 00
834 913 7 00
938 851 743 50
958 87 8| 758 0
543 #5 4 752 00
1 8 X1 795 00
[F 902 79.0 100
70. 743 70 00)
780 740 [ D44
55 4 887 76, 00
75 4 K] 70. 35
78] 4. 730 7. 25
77 8. 73.8 71.4 33
78 757 724 9.7 51
78 78, 74.0| 7 ?l 3.0 40
20 80, 75, Kl 703 a3
81 B0 78. 9 704 a4
uzl & 78, 729 708 a2
83 79, 74.0 718 59.7 38
84 77, 73 710 654 37
85 76, 72.2 70.5 891 34
28 78. 72 4 0. B8.0| 55
87 7 72.0] 0. [ 43
%8 75 722 0, 687 a0
# 78 738 1] 891 046
[ Bl 75 21 896 51|
91 78 73 ik 69.2 45
a2 77 7z 708 [EE 38|
23 75 T30 714 70.1 .28
o4 75 718 706 E5.5 27
95 790, 28| 70.8 B9 1 0.39)
E‘i 782 72. 8.7 §78) 54
97 985, CIR 500 77 00
96 D6 75, 728 70. 38
58 77.2 73. 711 0. 34
100 788 78.0 731 70. 37
101 78 ';J 727 00| 30
102 80 6.4 734 T 3%
103 82 845 7 75, [E)
104 [ 772 74 2 28
105 o1 806 &3 752 00
108 95 932] 25 752 00
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|Data Used for Hybrid Parallel Modeling
Tead

107 [exD00114_s31 30 0.0/ [ M5 | 887 e 715
108 |ex000114_s32 30] 50.0/ ] M.0] s£| 806 78.0
2 £0.0 ] .0 880 ED.4 75.8)
110]exD00114_ss4 2 50.0 88 M 4 84| 80.9/ 711
113[exD00118_ss1 % 50.0! e 934 852 0.0 1186
114 ]ex0D00118_s5s2 30 811 881 808 832 T84 748
115]ex000118_s53 30| 58.3 are 5.0 877 813 733
18]ex000118_ss1 28| 598 99.3] 87.7 g18 (1K 854
171ex000116_ss2 27 50.0
18]ex000120_ss1 28] 50.0
18]ex000120_ss2 26 80.8)
20[exD00121_ss1 28 50.0
22[exD00128_ss1 28] 80.9
23[exD00128_ss2 28| 50.0
24[exD00128_s33 28] 81.3
25]ex000131_ss1 22 50.0]
128]ex000131_ss2 21 81.0
127]ex000131_ss3 20/ 50.0]
128]ex000201 _ss 21 50.0/
129]ex000201_ss: 21 50.5)
130{ex000201_ss? 20 50.0|
131[03000202_ 55 2 500
132]ex000202_ss2 20 578
133 ex000202_ss3 20 50.0
134]ex000203_ss' 20 500
135]ex000203_ss: 18 50.0
136]ex000203_ss! 18 585
137 ex000204_ss 28 44
138|exD00204_ss2 28 565
28| 552
28 50.0
28 574
26 50.0
26| 500
3 50.0
3 808
28 50.0
147 |ex000218_551 EE] 50.0
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T

|Data Used for Hybrid Parallel Modeling  [sotiom composition
fixed

No. Jefficiency |gﬁ aficiancy =0.4] |m Tixed sfficiency =0.4] |.E£M!
ature
(from ChemCAD) {mol% meOH)
07 48 .“I 536% %
08 :I 40 ) B6.1% %
[ X Al ™ B7.5% %
110 48 B 564% %
113 K] 3% B5 6% 2%
114 29| 3% 78.0% 2%
115 00 5| To0%] j’
118 00 04% 88.1% 0%
17 K] 3 B5.9% %
118 46| 5% 60.2% 1%
119 33 0% | 78 0% %
120 43 1% 87.6% %
1zz| T ¥ 5% n_ml %
123 754 742 41 T% B0.0% | %
124 732 7. 3 5% 70.8%] *
128 748 73. .33 T% 74.6% I%|
128 729 70. 24 5.4% %
127 740 71 55 3 w.l %
28 75.2 73. .50 5% 1%
25 722 654 0.38 3% %
30 748 72.7 0.51] 0% 1%
3 75.8) l.ﬂ A% ]
32 725 ; 7.00 2% 0%
3 743 T 1,00 8% 0%
H 80, 7 00 1% 0%
35 72 70. 43 0% %
3 70 58 .30 3% %)
37 3 7 00 1% 0%
138 3 655 00 %) 0%
139 4 72 4 00 2.1% 0%
740 75 72, 48 0% %)
41 742 7. 00 9% %
142, 78, 72, 00 3% o
143] 78, 748 4 % 'r.
44 EE 743 4 4% %
145 80.0] m.sl D3 5% 0
48] 78.3| 75.1] D41 2.2% -
147] 70.4| 71| 0.35 0.5% 1%
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|wmmn arror of distillate arror of distillata distillate lmmm
composition compasition compesition C

fixed by neural network| rallel model model)

meOH) mel% PR imol% meOH (mol% meOH)
107 mw.] 18.4% 10.4% B4.0% 8.0%
108 59.0% % 2] 70.3% EE
109) 59.0% T% 4% T14% Z4%
110 70.0% 13.6% 10.0% B5.4% 10%
113 B4.0% 1.6% 5% 88.2% 4%
4 B5.0% -13.0% -12.1% B85.9% -0.6%|
£ 72.0% 4.0% AT T2.3% 0.3%
6 89.0% = 0% B9.1% 0.1%
7 B3 0% -3.0% 5.3% 51.8%)| 1.4%
] B5.0% 4.3% 5.8% 83.6% 14%
9 B5.0%| 13.0% 14.2% 4 B% 0.2%
E‘ 62.0%| -5.6% 4 5% B3.0% -1.0%
2 B0.0% 1B.1% -15.2% 3.0% 3.0%
23 B0.0% 8.8% £1% %] 3.8%
24 0% 8.8% A7.0% % ™
125 % 9.6% 06% % 0%
126 82.0% -20.0% -20.0% 620% ). 0%
127 720% 7% % 742% 27%
128 B8.0% 1.2% 1.1% €8 1% DA%
129 B3.0% -11.3% 12.1% 67 2% 0.6%)
130 £9.0% -1.8% 8% 700% 1.0%]
13 T1.0% [ % 77 4% -04%
132] 74.0% 32% 28% T40% -0.6%)
133 B1.0% 14 4% 13.7% 80 3% 1%/
134 79.0% 14.0% 11.5%] T8.4% 26%
135 750% 1.4% 0.3% T61% ERE
136 70.0% 13.3%]| -12.5% 70.8% 0 B%]
137 85.0% 10.6% 2.9% 86.7% A%
38| §8.0% 1% 7.3% 59.6% 0%
130] 630% -11.5% -12.5% 82.0% 1.0% |
40/ 700% 05% 313% 728% -28%
4 74.0% 3.0% 4.3% 728% 12%
4, 77.0% 28.5% 14.7% 62.3% 14.7%
4 83.0% 5.1% 2.5% 55.0% 28%
[T 120% 14 5% 20.4% 78.0% B.0%
145 B7.0% 268% 0.3% 59.5% 25%
146 60.0% B1% B.2% B10% 8%
147 550% N 5% A% 53.u7| 4%
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|resicuat amor EXPERIMENT DATA

No. it - fixed |feed |reflux__ |bottom [teed [ reflux foed bottom
model rats rats ure ition
maOH) mol% meOH €) (]
107 %] 1575 122 100% 50.0) 1%
108 0% 30 ] 100% 500 1%
108 20%| 2863 52/ 9% 50 nI %
0 20%| 1587|1188 0% 500 %
3 30%| 1508 11.82 B80% 500 Fo
0 30% 1.80 12.03 80% E [1] %
5 m.l 51,58 53 0% Y 58 )
18 29% 8176 04 T0% 350 59 3 0% |
17 2T% % 14.51 [ 21 50, (3
18 26% 1522 80% 9 50 1%
18 26% 12.82 BO% 1 10 6 1%
720 25%| 73 70% 323 50.0 %
122 _28% 1.11 B0% 06 809 1%
123 26% ; B0% 33 50.0 1%
124 28%] 8 0% 32 ‘ﬂi 1%
125 22% [ 3 500 %
126 21% 80% 30 B1. ED)
27| 20%] . B80% 32 50 3 1%
28 21%| 1801] 19.83) ng.l 224 50, %
El 21%] 8184|1899 90% 3086 506 |
30 20%| 1608 1958 100% 324 50.0 3 1%
n 20%] 1831] 1588 0% ¥ 500 %
132 20%] 8150 1587 B0% 33, 57, 0%
133 20%] s3] ®m B0% 3. 50. 0% |
134 6.81 0% 20 50. %
35 17.38 B0% Fi 50.0) 3%|
38 1843 B0% Fil 58 5| %
7 403 BO0% 47 54.4+ od
138 B.08 BO% ) 595 %)
|35| [¥i] 100% 1 552 0%
140 [T5] B0%. 35, 50.0 1%
141 1.35 B80% 352 4 0%
142 9.05 10% 35 0.0 %
143 10.67 0% 34 0.0 3 ™
144 87 70% 350 0.0 3 w
145 1 T0% as.FI 50.8 3 %
148 .28 0% 339 50.0 3 »
7 KD T0% 33.0] 50.0] 3 %
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EXPERIMENT DATA DATA RECONCILIATI
distillate | reboiler distillate [trmy alpha [beta [overall [MeOH
material |material
mol% meOH)]_(C (€ _rjg balance _ balance
107 0% 99.1 415 1.55 000 _ 000]
108 0% 98.7 440 68] 1. 0.00 00
05 9% 95.4 [ 00 00,
0 10% 989 412 00 00)
3 4% 976 42 00 00
4 65% 86 48 00 00
15 2%, 97 a7 00 00
118 3 9. 478 0 00
17 83% 6. 435 0 00
118 B5%| 95, 430 )0 00
118 B5% 95, 460 00 00
120 saz't 964 439 [ 00
122 80% 356 49. i 00
123 B0% | 95, I8 ; T 00
124 71%) 94, 49. 80. T 00
125 65% 92, 42, (3 . 00
126 82% 52 428 X 00 .00
127 72% 54 39.7 0. 0 00 00
123 58% 25 404 Bl D 00 00|
129 Sﬁ‘ 4 481 80 A 0.00 00|
130 58% 5 0.7 50.6 B4.5 75 00 00)
131 Ti% 7. 38.5] 4.8 [ 70 00 00,
132 Ta% . 47 o 876 6.7 00 00
133 B1% 6.8 177 4. 880 78 ; 3‘ 00 00)
134 5% 88,6 36.7 972 94.0 [EX: 35 00 00)
135 75% 825 38.9] 8. 808 738 ) 0 G0 0.00)
138 70% 910 47.4 842 793 714 X 0.00 00
a7 B5% %63 459 82 837 748 57 00 00|
38 B0% 8.6 48.0 [ES [ 76.4 &9 0 00
D B3% X 474 15 4 4 754 [1 00 0]
140 T0% 965 [Tk 32 85. 76.2] 00 00
a1 74% 6.6 (T3 4 8 #5.0 70.7) 0.00 0.00)
142 7T% 6.4 38 978 918 B34 00 .00
43 63% 6. 42 [EH 852 77 00 00
14 2% 100. 39 2 988 942 BT 00 00
45 B7% 08 a8 977 935 85, 00 .00
[0 60% 962 45, 524 838 78, 00 0.00
7 £5% 96.0 45 98,1 817 80, 000 0.00]
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DATA RECONCILIATION |CHEMCAD INPUTS CHEMCAD OUTPUTS
reconciled |mconciled MeOH water feed
bottom rate distillate rate Now rats _[flow rate
{ib/hr) { ]
1.37 1263] 10.3784] 136218 354 1575] 1137
25 1276] 10.3827| 136273 48] 3o 113s
.58 12.37] 10.0783] 13.8807 358] 2863] 1159
7 10.1382] 13e618 4 7 1587] 1178
.82
.08
09
]
14.48 50
1528 50
15.28 80
1381 50
13.45 80
13.44 500 8%
15.22 613 28%
18.18 50.0 2%
18.31 10 21%
.13 20%
18.20 1%
20 i 21%
18.83 20%
15.38 I 20% .
15.14] 883] 7.3154 20% 81 50
15.61 B34 3802 20% 16.63
8.69 0] 48123 20% 628
18.62 .355 0541 18% 6.40
16.23 {68 7.0364 1% 8151
20 1278 7838 28% 42.60]
69 1227 .T836] 1 28% 81.66
68 1628] 12.2382] 177018 31 4261 28% 42 gﬂ
08 11.60 L8020 14.1780 356 18.07] 28% 18.07
141 1224 1174 8020] 141780 :!sj 81.40 28% 61 .40]
142 13.21 10 2187 7803 353 1847 20% 18.17
143 1198 11 2081] 147419 348 15.68 W% 15 88
144 .02 D L6518 83282 350 15.77 31% m
145 6.63 B420] 83171 0] 8181 % (1]
146 12.04 1702 128033] 17.3567 1] 1585 2% 585/
147 70 2017] 138888] 158734 of 1544 3% 15 14]
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CHEMCAD OUTPUTS
No. botiom | distillate_|reboller Tieed I
rate rate
y (MBS __[C) )
107 018581 ; 3 0%
108, 028034 n.5| :: I 1.0%
108, 026517 3 1.0%
10 018529 X 3 1.0%
3] 82 018522 ¥ %
[ 96 059234 %
5 08 053485 0%
[ 08 7.80 054563 %
17 448 1548 021784 %]
1 528 146 021133 0%
11 5.28 14 64 061021 0%
[FT 281 18 022309 1.0%
122| 1345 6. 084200 3 1.0% 80.0% 56.0)
123] 1344 6 022811 3 0.5% 60.1% 77
124 15.23 473 nsma] 3 1.0% T11% L
125]  18.18 1.60 019573 3 0% B5.1%
126 31 164 060533 0% B2 1%
127 13 0.82 018547 0% 12 T_] B8 6
128 20 15 019345 1.0% B8.1% 887
129 20 75 058346 1.0% 63.0% 850
130] 1883 14 018868 0% 69.0% B8
3] 1538 82 ) 016341 1% 76.5% 6.8
32] 1514 83 054238 3 0% T4.0% W
33] 1581 34 016026 3 1% 80.5% 96 4|
34 9.60 30, 1013621 3 0% T8.8% 081
35| 1862 5 015854 0% T4 0% 83 5|
B 181 168 1054861 } 0% 69.0% 804
120 1278 038247 0% 65.0% 991
1608 12.27 057827 X 3 0.0% 05.0% 9.0 008
368 18.28 039227 X E] 0.0% 53.0%| [ 98|
40] 1208 11.90 018389 ¥ :|| 0% 70.0%) 528 87
1 24 11.74 055568 | Kl 0% T4 0% [ o9 5|
4 Fl] 10,77, 17251 E ] 1% T6.7% [T o8
[ 98 197 018085 I 3 % B3.1% 02 87
44 [ 708 015014 E 1.0% 72.0% [F] [E
45 63 8.33 055038 E 11% 56.9% [ B4
48] 1204 17.02 1022895 ¥ E D.5% 50 0%| 02 875
[7] 79 2017 1025275 X E 1.0% 55.0%) (I8 )
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L |cHEMCAD ouTPUTS
No. tray 3 4 }Es |tray & im
L1l ]% efMciency |
I€) I€) € (]

107 &20] a1.2| 7!.5| Fl ) 48
108 2.5 787 147 40
109 [1K 79.0/ 74_9| | 4
11 822 [1F] 765 72, [T
11 [T} 804 6.4 34
1 78 78.0 738 29
11 97, 3 £8.2 00
1 7.4 08, £8.7 1.00
1 2] BA. [CE) A4
118 3| 83 a7 48]
119 2 TS5 744 33
120 331 E 7197 43
FF] 81.8] T8.8 154 20/
23 832 85. 802 41
24 805 78, 32| 39
25 81, 9. 156 33,
2% 78, 75, 73 24
127 ] [1K 78, .55
128 B4 4 83 iE .50

| 120 814 76. 7 .36

[ 130 846 [F3 77 51
1 w07 X 82 4 1.00
32 074 5. 8.9 1.00
33 B0. 870| 199 1.00
134 93 902] 82.0) 00
135 &1 76.3] 73.0! .43
138 7 74.2 122 .30
137 95, Y] 8.7 00
138 a7 85 (1] 00
138 945 3. 89. .00
140 82 12 ] 0.48
[ 96, 34.8 86 6 00
4 T 73 816 1.00
[ 3. ¥ 78 0.41
4 [ 46 45
145 B 76. 35 E5]
148] 830 5.1 0.3 a1
147] 822| 86.1 7| 35
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