
A LOCALIZED CLUSTERING ALGORITHM AND ITS

APPLICATION TO DNA STRING PROCESSING

By

JUNHUAN

Bachelor of Science

Peking University

Beijing, China

L997

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfi IIment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2000

Oklahoma tate University Library

A LOCALIZED CLUSTERING ALGORITHM AND ITS

APPLICATION TO DNA STRING PROCESSING

Thesis Approved:

-~,--._---

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. K. M. George for his

intelligent supervision, constructive guidance, inspiration and friendship. My sincere

appreciation extends to my other committee members Dr. G. E. Hedrick and Dr. H. K.

Dai, whose guidance, assistance, encouragement and friendship are invaluable.

More Over, I wish to express my sincere gratitude to Dr. Ross Overbeek and Dr. Natalie

Maltsev in Mathematics and Computer Science Division, Argonne National Laboratory

and Dr. R. Burnap in Microbiology Department, Oklahoma State University for

suggestion and assistance for this study.

I would also like to give my special appreciation to my parents Shuyu Huan and

Chuanhui Gu as well as my sister Zhen Gu for their love, support and encouragement.

I would like to thank the Department of Computer Science for supporting during these

two years of study.

Finally, I want to say ''Thanks'' to all my friends.

III

TABLE OF CONTENTS

Chapter Page

I. INTROCUDTION 1

II. BIOLOGICAL BACKGROUND 3

III. LITERATURE REVIEW 4

3.1 Introduction ..4
3.2 Hierarchical Clustering Algorithm Model 8
3.3 Single-Link 10
3.4 Complete-Link 10
3.5 Unweighted Group Average Method (UWGAM) 11
3.6 Weighted Group Average Method (WGAM) 11
3.7 Ward'sMethod 13

IV. RELATED RESEARCH 14

4.1 Introduction 14
4.2 High Frequency Pattern Algorithm 16
4.3 Redundancy '" 20

V. THE LOCALIZED CLUSTERING ALGORITHM DESIGN 23

5.1 Introduction 23
5.2 Localized Clustering Algorithm 25

VI. ALGORITHM IMPLEMENTATION AND ANALYSIS 29

6.1 Introduction 29
6.2 The Localized Clustering Algorithm Implementation 29
6.3 The Theoretical Analysis of the

Localized Clustering Algorithm 33
6.4 The Experimental Analysis of the

Localized Clustering Algorithm 34

VII. SUMMARY AND FUTURE WORK. 37

iv

Chapter Page

REFERENCE 38

APPENDIXES 41

APPENDIX A - PERL SCRIPT OF THE LOCALIZED
CLUSTERING ALGORITHM 41

APPENDIX B - IMPLEMENTATION OF FUNCTIONS
INITIALIZE_SET, WEIGHT AND ABSORB ..43

v

Table

LIST OF TABLES

Page

1. Relationship of execution time and objects-set size 35

VI

LIST OF FIGURES

R~re p~

1.a. An n-tree from the objects-set.Q ={I, 2, 3, 4 J 5

1.b. Two-dimensional objects distribution 5

1.c. A profile matrix of objects-set {I, 2, 3,4} , , , ' , 5

2. Distance matrix for an ordered set of cl usters{{l}, {2}, {3}, {4} } 7

3. Distance matrix for T J ={CL12, {3}, {4}} ,':)

4. Distance matrix for T 1 = {CLI2, CL34} 9

5. An example of clusters , .10

6. An n-tree defined on objects-set {1, 2, 3, 4, 5,6} , 12

7. An example of pattern shi ft , , 21

8. An example of pattern overlapping , ' .. ' , , , 22

9. Distribution of 9 objects ' , " ' " 28

10. The result of the first iteration of the LCA , , , 28

11. The result of the third iteration of the LCA .. ,.. , ,., , ,.. , ,.28

12. The n-tree constructed by LeA , 28

13. Comparison of execution time and function n2
.... , 36

vii

K

P

D

DNA

dO, j)

df(CL1, CL2)

HF

Htr

IT

Sd

Str

ST

T

LIST OF SYMBOLS

Ordered set of n objects {I, 2, .. , n}.

A positive integer denotes the selected frequency threshold.

Constant denoting a pattern's length.

D is a distance matrix of an ordered set of clusters (objects).

A n-character string composed of four characters: A, T, G, C.

Distance between two objects i and j.

Distance function used to calculate the distance between

two clusters CLI and CL2.

A mapping of a pattern to an integer called index.

A mapping of a single character to an integer.

A table of integers where IT[i] is the number of patterns mapping

to index i.

Shift distance of two patterns.

A pattern from a DNA.

A string hash table of patterns from a DNA.

An n-tree obtained from objects-set n.

A set of clusters obtained from n.

viii

CHAPTER I

INTRODUCTION

Clustering is concerned with the investigation of a set of objects in order to establish

whether or not they fall naturally into groups of objects with the property that objects in

the same group are similar to one another and different from objects in other groups ([4],

[24]).

Hierarchical clustering is the most popular clustering algorithm. The hierarchical

algorithm builds an n-tree based on an n x n distance matrix ([3], [4]).

In certain applications such as the DNA string analysis, a set of objects usually contains

hundreds of thousands of objects ([17]). The limited memory becomes a restriction for

applying the hierarchical clustering to these applications because of the n x n distance

matrix. In this research, the author proposes a localized clustering algorithm. This

algorithm is designed for clustering patterns from a DNA sequence. Compared to the

classical hierarchical clustering algorithm ([4]), the proposed algorithm is both memory

saving and time-efficient.

The organization of this thesis is the following:

In chapter IT, the biological background is presented.

In chapter III, the literature review is presented.

In chapter IV, the related research is presented and discussed.

The design of the localized clustering algorithm is discussed in chapter V.

Implementation and result analyses are presented in chapter VI.

Chapter VII gives a summary of the work and discusses future work.

2

CHAPTER II

BIOLOGICAL BACKGROUND

Through molecular biology research, it is clear that most of the biological functions are

carried by proteins ([2J, [22]). A Protein is synthesized using the information stored in its

DNA template. DNA is a long string composed of 4 elements. The sequence of the DNA

specifies the protein sequence ([2]). Protein synthesis is initialized by a class of proteins

called transcription factors. The transcription factor recognizes a short DNA sequence

and binds to it. After binding using the transcription factor, more proteins come to form a

protein complex to start the transcription ([2J, [22]). The short DNA sequence to which

the transcription factor binds to is known as regulatory element. Regulatory Elements are

considered as the key to understand the regulation of the protein synthesis ([2]).

Mutations (DNA sequence's change) are phenomena that occur in living organisms.

Mutation accumulates during evolution ([2]). By accumulations of mutations, several

regulatory elements were derived from a common regulatory element in the evolution.

Clustering algorithm, which is concerned with the investigation of a set of objects in

order to establish whether or not they fall naturally into groups, becomes a very useful

tool to analyze the set of regulatory elements. This helps greatly in understanding the

evolutionary process.

3

CHAPTER III

LITERATURE REVIEW

3.1 Introduction

A cluster is a set of objects that are grouped together by certain rules ([24]). The goal of

clustering is to find groups containing objects that are most homogeneous to each other

within the groups while these groups are most heterogeneous to each other. The term

homogeneous and heterogeneous refer to the common and distinguishing properties of

the objects according which clustering is done on the given set of objects ([4], [24]).

The set of objects that are to be investigated in a clustering study are generally ordered

and described by a profile matrix ([4], [24]). In this thesis, we use the term objects-set to

denote a set of objects (with an ordering).

A profile matrix of an objects-set is a n x p matrix H == (hilt), where hik denotes the value

taken by the kth variable describing the ith object (i =1, ... , n~ k =1, .. , p).

An objects-set with four objects distributed in a two-dimensional space is shown in figure

lb. The objects-set's profile matrix is shown in figure lc.

Let.Q be the ordered set of n objects {I, 2, ... , n}, an n-tree from .Q is a set T of subsets

of.Q satisfying the conditions ([1], [14]):

4

1 QET

2

3 {i} E T for all i E Q

4 if A, BET, then An BE { A, B, q.}

Condition 4 ensures that the subsets are hierarchically-nested. This is illustrated in the

rooted tree diagram shown in figure la, in which each leaf (depicted by an open circle)

represents an object, and each internal node (depicted by a filled circle) repre ents a non-

singleton subset of objects. In addition to the complete set Q = {I, 2, 3, 4} and the

singleton subsets {i} (i = 1, 2, 3, 4), which are present in all n-trees, this diagram

comprises the subsets {1, 2} and {3, 4}, that are represented by the internal nodes A and

B respectively. In other words, this n-tree T is T = { (1}, {2}, {3}, (4}, (I, 2}, (3,4}, (1,

2,3,4} }. The corresponding distribution of the objects is presented in figure lb.

c

• 1 • 2

U.1 L.4.

(0.0)
2 3 4

Figure lao An n-tree from the objects-set 12 = {I, 2, 3. 4} Figure lb. Two-dimensional objects
distribution

Object X i2

o 2

2 2

3

4

2

3

Figure Ie. A profde matrix of objects-set (1,2, 3,4 }

5

The distance between two objects (clusters) denotes any meaningful measurement of the

differences between those two objects (clusters, respectively), given that the

measurement satisfies the following conditions ([24]):

• dij >= 0

• di,i = 0

where di,j denotes the distance between the ith and jth objects (clusters) in the objects-set

(clusters) (i,j = 1, 2, ,., n).

One example of the distance between two objects is the Minkowski distance dm:

p

dmij = [L(Xik - Xjk) m] (11m) (i, j = 1,2, .,., n, Xik is the kth variable describing

k == 1
the ith object in the objects-set)

If m = 1, the Manhattan distance is obtained, and if m= 2, the Euclidian distance is

obtained ([24]). We use dei, j) to denote the distance between two objects i and j in Q

(i,j =1,2, ... , n).

Examples of the distance between two dusters such as single-link, complete-link and

Ward's method are discussed in sections 3.3, 3.4 and 3.7 respectively. We call the

function which is used to calculate the distance between two clusters as distance function

([24]), We use df to denote a distance function and use df(CL), CL2) to denote the

distance between two clusters CLI and CL2.

6

The distance between an object i and a cluster CLp is defined to be the distance between

the singleton cluster {i} and CLp.

The distance between two singleton clusters is defined to be the distance between the two

objects in the clusters. That is:

df({i}, {j})=d(i,j)wherei,j= 1,2, ... ,n.

Let S be an ordered set of n clusters (or objects), a distance matrix D calculated for S i

an n x n matrix D == (dij), where dij denotes the distance between the ith and jth clusters

(or objects) in S.

An example of the distance matrix for an ordered set of clusters S = {{I}, {2}, {3}, {4} }

is shown in figure 2. The corresponding data distribution is shown in figure lb.

Cluster {I} {2} {3} {4}

{1} 0 2.24 3.16

{2} 0 1.41 2.24

{3 } 2.24 1.41 0 1

{4} 3.16 2.24 1 0

Figure 2. Distance matrix for an ordered set of clusters ({1}, (2), {3), 14} I

7

3.2 Hierarchical Clustering Algorithm Model

The entire group of hierarchical clustering algorithm can be presented a a four-step

procedure described below ([4], [24]):

1. Calculate the n x n distance matrix 0 = (dij) from the ordered set of clusters T1 =

{{ I}, {2}, .. , {n}} on objects-set Q = {I, 2, ... , n}. Initialize clusters set T2 to

empty set <1>.

2. Find the minimal positive distance in the distance matrix and let I and J be the

corresponding elements. Form a new cluster CL = I u J. Copy the remaining

elements in T I to T 2. Add CL to T2.

3. Replace T 1 by T2. Calculate a new distance matrix for T I.

4. If cardinality of T 1 is greater than l, go to step2; else stop.

The following is an example of applying this hierarchical clustering algorithm to the

objects-set Q ={1, 2, 3,4} shown in figure 1b. There are three iterations in this example.

For the first iteration, the distance matrix is presented in figure 2. The minimal posi ti ve

distance in this matrix is given by df({l},{2}) and df({3}, {4}), where df({l}, {2})

denotes the distance between the singleton clusters {J } and {2} and df({3 }, {4}) denotes

the distance between the singleton clusters {3} and {4}. Both have value 1. Arbitrary

decision has to be made here ([24D. If we chose to form a cluster CL I2 = { 1, 2}, then the

distance matrix is re-calculated and presented in figure 3.

The single-link algorithm is used in this calculation. This algorithm is discu sed in

section 3.3. Using this algorithm, the distance between the cluster CLI2 and singleton

8

cluster {3} is defined as the smaller value of d(l, 3) and d(2, 3), where d(l, 3) denotes the

distance between the objects 1 and 3 and d(2, 3) denotes the distance between the objects

2 and 3. Because d(2, 3) =1.41 < d(l, 3) =2.24, the distance between the cluster CLI2

and singleton cluster {3} is 1.41.

Cluster CL12 {3} {4 }

CLl2 0 1.41 2.24

{3} 1.41 0 1

{4} 2.24 0

Figure 3. Distance matrix for T) = {CLI2• {3 I. {4}}

For the second iteration, the minimal positive distance in the distance matrix is df({3 },

{4}). New cluster CL34 ({3. 4}) is formed and the distance matrix is updated. This

updated distance matrix is presented in figure 4.

Cluster

o 1.41

1.41 0

Figure 4. Distance matri x for T I = (CL I2, CL34 }

In the third iteration, the two clusters CLl2 and CL34 are joined and thus form a cluster

CL1234 = {I, 2, 3, 4}. After the third iteration, the ordered set of clusters T], contains only

one element, CL1234. Therefore, the hierarchical clustering stops. The resulting n-tree is

shown in figure la.

9

We discuss several classical clustering algorithms which follow the procedure presented

above. The differences are in the distance functions they use. These clustering algorithms

are described in section 3.3 - 3.7.

3.3 Single-Link

The single-link algorithm ([7], [9], [19]) is the first clustering algorithm proposed in the

literature. The distance between two clusters CLp and CLq is defined as the shorte t

distance between two objects, one from each cluster. The distance function is defined as:

df (CLp, CLq) = min { dei, j) }, where i E CLp & j E CLq

For example, consider the objects-set shown in figure 5. Assume there are two clusters

CL12 ({ 1, 2}) and CL34 ({ 3, 4 D. The distance between CLI2 and CL34 is d(2, 3), which

denotes the distance between the objects 2 and 3, and that is 1.41.

1 2

fU..t)..-!

'-- -,

Figure 5, An example of clusters

CLI2 = { I , 2} and CL34 = (3 .41
When single-linkage is used: df (CL I2• CL34) =d (2. 3)

=1,41
When complete-linkage is used: df (CL I2. CL3d =d (1,4)

=3,16

L

3.4 Complete-Link

Complete-link is a modification of the single-link algorithm ([7], [9]). The distance

between two clusters is defined as the largest distance between two objects, one from

each cluster. The distance function is:

df (CLp, CLq) = max { dei, j)}, where i E CLp & j E CLq

In the distribution shown in figure 5, the distance between the cluster CLI2 and CL34 ,

using complete-link, is d(1, 4) and that is 3.16.

10

3.5 Unweighted Group Average Method (UWGAM)

The distance function is the average of the distances between the two clusters. The

distance between two clusters is given by the formula ([10], [15], [20]):

df (CLp, CLq) = mean { d(i, j) }, where i E CLp & j E CLq and

mean represents the average of all dei, j)

3.6 Weighted Group Average Method (WGAM)

In WGAM, each cluster is given equal weight. In UWGAM, each object is given equal

weight ([20]).

To describe the distance function, we need the following definition:

Cluster A is a maximal-subset of cluster B if and only if A c B and there is no other

cluster C satisfying the relation A c C c B. For example, consider the n-tree defined on

objects-set Q = {I, 2, 3,4, 5, 6, 7} presented in figure 6. Considering cluster E (11,2,3,

4, 5}), cluster A ({ 1, 2, 3}) and cluster C ({ 4, 5}), A and C are E's maximal-subsets

while cluster B ({ 2, 3 }) is not a maximal-subset of E because we have the relation B c A

cEo

The distance between two clusters is defined recursively as:

(1) df({i}, {j}) = d(i,j) (i,j = 1,2,... , n) where d(i,j) denotes the distance between the

ith and jth objects in the original objects-set.

(2) df (CLp, CLq) =mean { df (CLI , CL2) }, for every pair (CL I, CL2), CLI is a maximal

subset of CLp and CL2 is a maximal-subset of

11

The following example shows the difference between WGRAM and UWGRAM in the

calculation of distance between clusters D and E in figure 6.

By UWGAM, df (D, E) = 1/10 (d(l, 6) + d(2, 6) + d(3, 6) + d(4, 6) +

d(5, 6) + d(l, 7) + d(2, 7) + d(3, 7) +

d(4, 7) + d(5, 7»

= 1/10 d(l, 6) + 1/10 d(2, 6) + 1/10 d(3, 6) + 1/10 d(4, 6)

+ 1/10 d(5, 6)+ 1/10 d(l, 7) + 1/10 d(2, 7) + 1/10 d(3, 7)

+ 1/10 d(4, 7) + 1/10 d(5, 7)

By WGAM df (D, E) =1/4 (df(A, {6}) + df(A, {7}) + df(C, {6}} + df(C, {7}))

=1/4 (1/2 (dO, 6) + df(B, {6}) + lI2 (d(l, 7) + df(B, {7}» +

1/2 (d(4, 6) + d(5, 6» + 1/2 (d(4, 7) + d(5, 7)))

= 1/8 d(l, 6) + 1/16 d(2, 6) + 1/16 d(3, 6) + 1/8 d(4, 6) +

1/8 d(5, 6)+ L/8 d(l, 7) + 1116 d(2, 7) + 1/16 d(3, 7) +

lI8 d(4, 7) + 1/8 d(5, 7)

F

E

4 5 6 7

l

Figure 6. An n-tree defined on objects-set {1, 2, 3,4,5. 6}

12

3.7 Ward's Method

Ward's method is based on statistical minimization of clustering's "expansion". At each

step, a central point is calculated for any possible combination of two cluster and then

the sum of squared distances from this point to any objects in those two clusters are

evaluated. This value is defined as the distance between those two clusters. If we use CP

to represent the central point of that two clusters CLp, C~, then the distance between the

two clusters is defined as ([23]):

df (CLp, C~) = L [d (i, CP)] 2, E CLp U C~

13

CHAPTER IV

RELATED RESEARCH

4.1 Introduction

The research undertaken in this thesis is based on previous unpublished research [17]. In

[17], an algorithm to obtain all high frequency patterns from a DNA sequence is

described. Because of its closeness to the current research, the algorithm is described in

detail in this section. For other algorithms designed for obtaining the "repeated"

substrings, the reader is referred to [21].

A DNA molecule can be described by an n-character string DNAS, which is composed of

characters 'A', 'C', 'G' and 'T'. We call the string DNAS as the DNA sequence. For

simplicity, we also call the DNAS as a DNA. We use DNA[i, j] to denotes the substring

that starts at position i and ends at position j in the DNA (i, j = 1,2, ... , n; i<=j). We use

IDNAI to denote the length of a DNA.

A pattern in a DNA is a substring in the DNA with a fixed-length p (p>O). The frequency

of a string, Str, is defined as its number of distinct occurrences in the DNA. The

frequency of substring Str is denoted by fStr .

We use the term high frequency pattern (HFP) to denote any pattern that has at least two

distinct occurrences in the DNA. An n-frequency pattern is any pattern that has at least n

14

l

distinct occurrences in the DNA (n >1). In the following discussion, only n-fr quency

pattern is used. Therefore, for simplicity, we use the term "high frequency pattern" to

refer to an n-frequency pattern.

A high frequency pattern list (HFPL) of a DNA is the set of all high frequency patterns

of the DNA sorted in descending order by the patterns' frequencies. We use HFPL[i] to

denote the ith high frequency pattern in the HFPL. The size of the list HFPL is denoted

by size(HFPL).

Each pattern in a DNA can be mapped to an integer called index. The mapping is

discussed below. Before we introduce the mapping of a pattern to its index, we fir t

introduce the mapping of a single character to an integer. We call this mapping as the

translation function (Htr). Htr: A~ 0, C~ 1, G~ 2, T ~ 3 is used in this work.

HF is the mapping of a pattern to its index. We define HF by an algorithm. HF receive

as input a pattern, Str, and returns the index of the pattern. In the following discussion,

variable Ch is a single character variable and <p is a positive integer constant. The specific

value of <p depends on applications. Generally, <p should be a primer number in the

following hash function. We use IStrl to denote the pattern Str's length. The function HF

is defined below:

Function HF(Str)

it-- 1 ; Ch t-- Str[i]; index t-- Htr(Ch);

loop while (i <= IStrl)

15

i f-- i + 1~ Ch f-- Str(i]~

index f-- (index x 4 + Htr(Ch)) mod q:>;

end loop;

return index;

end;

We consider the pattern "ITAC" and calculate its index using the above algorithm as an

example. Suppose the constant q:> is 7. The first character is "T" and it is mapped to

integer 3 by translation function Htr A ~ 0, C~ 1, G~ 2, T ~ 3. The variable index is

initialized to 3. The second character is still "T" and it is mapped to 3. The index is (3 x 4

+ 3) mod 7 =1. The third character is "A" and mapped to 0. The index is (l x 4 + 0) mod

7 =4. The last character is "c" and mapped to 1. The index is (4 x 4 + 1) mod 7 =3. The

calculation stops and three is the index of pattern "TIAC"; i.e. HF("TIAC") = 3.

4.2 High Frequency Pattern Algorithm

ldentifying all the high frequency patterns in a DNA sequence with a given frequency

threshold is our research interest. We call this problem as "High Frequency Pattern

Problem" ((17]) and the problem may he fonnulated as foHows (lsi denotes the length of

the string s):

Given a DNA with length IDNAI = n (n >0), and an integer K (lOl), identify all

patterns p with Ipl = p (p>O and p< n) in the DNA such that p's occurrences fp >= K.

We designed a three-step algorithm called high frequency pattern algorithm (HFPA) to

solve the problem. In HFPA, function geCindex_frequency is used to calculate the table

IT. IT is defined as follows:

16

IT[i] =Yi. where Yi denotes the number of patterns which are mapped to index i. The e

patterns are located at distinct positions in a DNA sequence with distinct or

same sequences.

Let i to be a pattern Str's index, Str is a candidate high frequency pattern (CHFP) if and

only if IT[i] >= K, where K denotes the frequency threshold stated in the high frequency

pattern problem.

Function geCcandidate_patterns is used to obtain the set of candidate high frequency

patterns. String hash table ST is calculated by geccandidate_patterns. ST is indexed by

patterns and is defined as follows:

ST[Str] = fStr where Str is a distinct pattern in a DNA and fStr denotes the frequency of

pattern Str.

Function geCHFPL is used to obtain the sorted list of high frequency patterns with

frequency threshold K.

The pseudo code ofHFPA is discussed below. In HFPA, the input parameters are a string

DNA, a positive frequency threshold K and a positive constant (length) p. HFPA returns

the high frequency patterns list HFPL. P is the set of all candidate high frequency

patterns. The high frequency pattern algorithm is given below:

17

Function HFPA(DNA, K, p)
/* the inputs are: string DNA, frequency threshold K and length constant p*1

/* the set of candidate high frequency patterns*/

IT f- geCindex_frequency(DNA, K, p);

ST f- geCcandidate_patterns(DNA, IT, P, K, p);
/*P is updated in this function*/

HFPL f-- geCHFPL(P, ST, K);

return HFPL;

end;

Function geCindex_frequency (DNA, K, p)

if-I; Create table IT;

loop while (i <= IDNAI- p + 1)

Str f- DNA[i, i + P -I];

index f- HF(Str);

IT[index] f- IT[index] + 1 ;

if- j +1;

end loop

return IT;

end;

1* number of patterns mapped to this index */

18

Function geCcandidate_patterns(DNA, IT, P, K, p)
/* the set of candidate high frequency patterns, P, is updated in this function */

i ~ 1; Create string hash table ST; /*ST is indexed by patterns*/

loop while (i<= IDNAI- P + 1)

Str~ DNA[i, i +p -1];

index ~ HF(Str);

Yindex. = IT[index];

if Yindex. >= K then

if Str ~ P then

/*the number of patterns mapped to this index*/

/*pattern is a candidate high frequency pattern */

add Str to P;

end if;

ST[Str] ~ ST[Str] +l; /*calculate pattern Str's frequency f s1r*/

else;

end if;

/*pattern is not a candidate high frequency pattern */

i~i+l;

end loop;

return ST;

end;

19

Function geCHFPL (P, ST, K)

i f-- 1; HFPL f-- <1>;

for each pattern Str E P do

if ST[Str] >= K then

add Str to HFPL;

I*Str's number of distinct occurrence >=K*I

else;

end if;

end do:

sort HFPL in descending order by patterns' frequencies;

return HFPL;

end;

4.3 Redundancy

Before we introduce the concept of redundancy, we first introduce several relationships

between two patterns.

String sStr is a maximal overlapping string (MOS) of two distinct patterns Strl and Str2

(of same length) if and only if:

Str1 =sStr II s1 and Str2 =s211 sStr

or Strl = s1 II sStr and Str2 = sStr II s2

where the length of sStr is maximal among all such strings satisfying the relation

presented above. s1 and s2 are strings of length >0.

Two patterns Strl and Str2 is a shift to each other if and only if the maximal overlapping

string sStr of these two patterns has length IsStrl >0.

20

The signed shift distance Sd Strl, Str2 of a pattern Str1 and its shift Str2 is defined as:

Sd StrJ.Slrl = A x (IStrll- IsStri)

Where sStr is the maximal overlapping string of Str1 and Str2.

A is 1 if sStr is Strl's prefix and otherwise-1.

One example of string shift is shown in figure 7. Pattern Strl = "AITITICTGGG

GACTCCT" is a shift of pattern Str2 ="TfTTCTGGGGACTCCTGG" with signed shift

distance Sd Slrl, Str2 =-2 and Str2 is a shift of Strl with signed shift distance Sd Str2. 'trl =2.

We define shift distance, Sd, of two patterns Strl and Str2 to be ISd SLYI, s1r21. For two

patterns that do not have a shift relationship the Sd is defined to be infinity.

A~TfTTCTGGGGACTCCT

TITTCTGGGGACTCCT GG

Figure 7. An example of pattern shift

patterns "AT TITTCTGGGGACTCCT" and

"TTTICTGGGGACTCCT GG" have a shi ft

relationship and shift distance Sd =2

One pattern Strl overlaps Str2 if and only if at least one occurrence of Strl overlaps an

occurrence of Str2. One example of pattern overlapping is shown in figure 8. Pattern

"ATTGCT" overlaps "TTGCTA" because its first occurrence overlaps the first

occurrence of '!TGCTA".

Pattern Strl is Str2's partner if and only if every occurrence of Strl overlaps with an

occurrence of Str2.

Patterns Strl and Str2 are couple if and only if Strl is Str2's partner and Str2 is Strl's

partner.

21

Pattern Str1 is a ghost of Str2 if and only if Str1 is Str2's partner while Str2 is not Str!'

partner. A ghost is defined to be a redundancy.

4<GA TTGCTA TACGCAG TTGCTA GGGCGACT TTGCTA GTACGAC TTGC

TA CCCAGTCCTTCAGGCTTCGATCA TCAGGC GGGCTTACA TTGCTA".

Figure 8. An example of pattern overlapping

The function RR (defined below) is used to remove the redundancies from the oIted

high frequency pattern list HFPL.

Function RR (HFPL)

i f-- 1;

loop while (i<= Size(HFPL))

Strl f-- HFPL[i];

remove Str2 from the HFPL where Str2 is Str I' s ghost;

if--i+l;

end loop;

return HFPL;

end;

Based on the algorithm described above, a clustering algorithm is developed in this

thesis. The algorithm is called Localized Clustering Algorithm (LCA). The design of

LeA is presented in the next chapter.

22

CHAPTER V

THE LOCALIZED CLUSTERING ALGORITHM DESIGN

5.1 Introduction

In the localized clustering algorithm, each object in the objects-set Q = { 1, 2, ... , n} is

described by two variables v and f.

v is a 1 x p matrix v == (Mk), where Mk is the value taken by the kth variable describing

this object (k= 1,2, ... , p). We call this variable v as the related object's value. We use Vi

to denote the value of object i in Q 0=1, 2, ... , n).

Another variable f is a positive integer. We call the variable f as the related object's

frequency. We use fito denote the frequency of the object i in Q (i=l, 2, ... , n).

Correspondingly, each cluster in the localized clustering algorithm is associated with two

variables V and F.

V is a 1 x p matrix V = (Nk), where Nk is the value taken by the kth variable describing

this cluster (k= 1,2, ... , p). We call the variable V as the related cluster's value and use

Vy to denote the value of cluster Y.

23

If Y is a singleton cluster {i}, V's value is the same as the value of the object i in n. For

clusters which contain more than one object, the definition of the value can be found in

section 5.2 along with the discussion of LCA.

Another variable F is a positive integer and is called as the cluster'sjrequency. We use Fy

to denote cluster Y's frequency. Fy is defined to be the sum of the frequencies of objects

that belong to Y. That is:

Fy = Ifj for every object i E Y

The distance between two clusters is defined to be the distance between the two cluster'

values. That is:

df(Y, Z) = d(Vy, Vz) where Y and Z denote two clusters. Vy and Vzdenote the

values ofY and Z, respectively.

Let S be an ordered set of clusters, the weight of a cluster Y, W y, with given distance

variable Dis is defined as:

Wy = L &YZ x Fz where Z E S
Z

and &YZ = 1 if df(Y, Z) <= Dis

=0 otherwise

The LCA is described in the next section. The algorithm description is at the abstract

level without reference to any specihc distance function.

24

5.2 Localized Clustering Algorithm

In the description of the localized clustering algorithm, Dis denotes a distance variable.

MinD denotes the minimal distance found in the objects-set Q. Dislnc is a positive

number denoting the distance increment. T represents a set of clusters representing the n-

tree obtained from Q by LCA. T land T2 represent ordered sets of clusters.

The localized clustering algorithm is a six-step algorithm described below:

1. Dis f- MinD~ T =T 1 ={{I}, {2}, ... , {n}} where Q = {I, 2, ... , n};

2. For each cluster YETI, calculate cluster Y's weight W y :

Wy = L Fx where X E T l and df(Y, X) <= Dis;
x

3. Sort T 1 in descending order of weights; initialize ordered set of clusters T2 to ¢;

4. Let cluster Z be the first element of T); CL f- $;

for all clusters Q in T] do

if df(Z, Q) <= Dis then

end if;

end do~

5. IfTI is empty, replace T I by T2 and go to step 6, otherwise go to step 4;

6. T f- T uTI; stop ifT l contains only one element, otherwise Dis f- Dis + DisInc and

go to step 2.

The algorithm can be illustrated by the following example in which the algorithm is

applied to the distribution shown in figure 9. Intermediate results are shown in figure 10

and among the distances between the objects, the minimal positive distance is 1.

Therefore the variable Dis has an initial value 1 each. In this example, the DisInc is 1.

Initializing T and T I, we get T = T 1= { {I}, {2}, {3}, {4}, {5 L {6}, {7}, {8}, {9} }.

There are three iterations in the example. The first iteration's result is shown in figure 10.

For the first iteration, after calculating all clusters' weights, the weight of the cluster CL I

({ 1}) is Well = 9. For simplicity, we refer to the cluster CL I as "cluster 1". Therefore,

the above fact can be expressed as cluster 1 has weight WI = 9. We trace the updating

process as follows:

The distance between cluster 1 and itself is 0 (by distance definition). The distances

between cluster 1 and clusters 2, 3,4 and 5 are all equal to 1 each. Therefore cluster l's

frequency I, cluster 2's frequency 2, cluster 3's frequency I, cluster 4's frequency 3 and

cluster 5' frequency 2 are added up. The result 9 is assigned as cluster I 's weight.

Similar calculations are performed to th(; rest of the clusters in T 1 and their weights are

listed below: W 2 = 3, W3 = 2, W4 = 4, Ws = 3, W6 =4, W7 =3, Ws = 3 and W9 = 1.

After sorting elements in T 1, we get the order: 1(9),4(4),6(4),2(3),5(3), 7(3), 8(3), 3(2)

and 9(1). The numbers before the parentheses indicate the clusters and those within

parentheses are the calculated weights. Considering cluster 1, the first component in T I ,

the cluster A {1, 2. 3, 4, 5} is formed by joining clusters 2, 3,4 and 5 to cluster 1. A's

value is the same as the value of cluster 1. It is the vector (3,2). A's frequency is 9. After

this operation, T 1 is updated from {{I}, {4}, {6}, {2}, {5}, {7}. {tq. {3}, {9}} (after

sort) to {{6}, {7}, {8}, {9}}} and T2 = {A}. Cluster B is formed by joining clusters 6,7

26

and 8 together. B's value is the same as that of cluster 6 (the vector (6, 2» and B's

frequency, fs , is 4. After this operation, T 1 is {{9}} and T2 is {A, B}. Finally, {9} is

moved from T] to T2. Therefore, T 1 is empty and T2 is {A, B, {9}}. Control is transferred

to step 6 in the procedure we presented above.

Atthe end of the first iteration, T = { {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {I, 2, 3,

4, 5}, {6, 7, 8}} and Tdreplaced by T2) is {{ 1,2,3,4, 5}, {6, 7, 8}, {9}}. The result of

the first iteration is shown in figure 10 ..

For the second iteration, the Dis's value is 2. No variable changes because every possible

distance in figure lOis greater than 2.

At the beginning of the third iteration, T) contains three components: clusters A ({ 1, 2, 3,

4, 5}), B ({ 6, 7, 8}) and {9}. The frequencies of the clusters are indicated within the

parentheses in figure 10. The weight of A is, using the similar calculation as shown in the

first iteration, 9 + 4 + 1 = 14. The weight of B is 9 + 4 = 13 and that of cluster {9} is 9 +

1 = 10. Cluster C is formed by joining A, Band {9}. This cluster has value (3, 2) and

frequency 14.

At the end of third iteration, T = { { J I. {2}, {3}, {4}, {') J, {6}, {7}, {8}, {9}, {I, 2, 3, 4,

51. {6, 7, 81. {I, 2, 3,4,5,6,7,8, 9}} and T 1 = {{I, 2, 3,4,5,6,7,8, 9}}. Since T 1 only

contains a single element now, the clustering process stops.

The n-tree of the objects-set using localized clustering algorithm is shown in figure 12.

An outline of an implementation of LCA is given in the next chapter.

27

9

(0,0)

r (2) . (l)
.ii

1) 3 1) (1) 4(3 6 2P(
,

, (2)

1)

Figure 9. Distribution of 9 objects

Frequencies are: fl = I, f2 =2, f3 = I. f4 =3,

9(1 A 9) B(4)

(0,0)

,

C 14

(0,0)

Figure 10. The result of the first iteration of the LCA

Cluster A ={1,2, 3.4, 5} frequency fA =9

Cluster B ={6. 7. 8} frequency fa =4

T= {{I}. {2}, {3}, {4). {5}, {6}, {7J, {8},

[9}, {I, 2, 3,4, 5},{6, 7, 8}}.

T I = {{1.2, 3,4.5}, {6, 7,8 J, {91 }.

Figure II. The result of the third iteration of the LCA

C ={1.2,3,4.5.6,7.8,9}

T ={{I}, {21, {3J, [4}, {5}, {6}, P}, (8).

{9}. {I, 2,3,4,5}, {6, 7. 8}.

{I, 2, 3, 4, 5, 6, 7, 8, 9)J

T I ={{ I, 2. 3. 4, 5, 6, 7,8,9} }

C

1 2 3 4 5 6 7 8 9

Figure 12. The n-tree constructed by LCA

28

CHAPTER VI

ALGORITHM IMPLKMENTATION AND ANALYSIS

6.1 Introduction

In this chapter, we first discuss the implementation of the localized clustering algorithm.

Theoretical analysis of the time complexity and space complexity is performed. The

experimental results using the human genome sequence verifies the result of the

theoretical analysis of time complexity.

6.2 The Localized Clustering Algorithm Implementation

In this section, we give an implementatlon of the localized clustering algorithm. In the

description of the algorithm, let L denote an ordered set, then size(L) denote the

cardinality of Land L[i] denotes the ith element of L 0= 1,2, .. , size(L».

The localized clustering algorithm receives an input objects-set Q. It returns the n-tree T

from Q. Sets T] and T2 are ordered sets of clusters. Distance variable Dis, minimal

distance MinD in Q, the distance increment DisInc, object i's value Vi and frequency f j

are defined in section 5.1 and 5.2. Unless stated otherwise, we assume they have the same

meaning as defined in section 5.1 and 5.2.

Each cluster in the LeA is implemented as a structure with four fields. The first three

fields in the structure are the value of the clusters, the frequency of the cluster and the

29

1

weight of the cluster. These variables are defined in section 5.1 and we use Y. v, Y.f and

Y.w to denote a cluster Y's value, frequency and weight, respectively. The fourth field is

the set of objects that belong to Y. We use Y.s to denote the set of objects that belong to

Y.

The six-step procedure LCA is given in pseudo code fonn by the functions LCA.

Initialize_set, Weight, Sort and Absorb. They are shown below:

Function LCA(Q)

Dis f-- MinD; /*MinD is calculated from Q*/

T f- T I f- Initialize_set(Q);

Loop while (size(T1»1)

T1 f-- Weight(Dis, Td;

Sort(T]);

T 1 f-- Absorb(Dis, T 1);

T f-- T u T\; Dis f-- Dis + Dislnc;

end loop;

return T;

end;

The function Initialize_set, Weight, Sort and Absorb are described as follows:

30

Function Initialize_set (.Q)

for each i E .Q do

create new cluster CL;

CL.w ~ 0; CL.s ~ {i};

AddCLto P;

end do;

return P:

end;

Function Weight(Dis, T\)
1* weights of clusters in T 1 are calculated in this function*/

i ~ I;

loop while (i < =size(T I))

CL.w ~ CL.w + QJ for every Q E T 1 and df(CL, Q) <= Dis;

i ~ i+l;

end loop

return T t ;

end;

31

/*initialization*/

Function Sort(S)

sort the set S of clusters in descending order by elements' weights using any

efficient sorting algorithms;

end;

Function Absorb (Dis, T t)

T2~ep;

loop while (size(T t) >0)

cluster Z ~ T([l]; create new cluster CL;

CL.v ~ Z.v; CL.f~ 0;

CL.w ~ 0; CL.s ~ ep;

for all clusters Q in T) do

if df(Z, Q) <= Dis then

TI~ T 1 - {Q}; CL.s ~ CL.s u Q.s;

end if;

end do;

CL.f ~ IJi. for every i E CL I*calculate cluster CL's frequency*/

T2 ~ T2 U {CL};

end Joop

return T2;

end;

32

The function LCA was implemented as a Perl script and the source code is presented in

appendix A. The functions Initialize_set, Weight and Absorb were implemented in C

programming language and the source codes are presented in appendix. B. The function

Sort was implemented by UNIX command sort.

6.3 The Theoretical Analysis of the Localized Clustering Algorithm

We compare the localized clustering algorithm to the hierarchical clustering algorithms

presented in [4] and [24].

Let .Q to be the objects-set with n objects, the hierarchical clustering algorithm must

calculate and maintain an n x n two-dimensional distance matrix ([4], [24]). In the

localized clustering algorithm, each cluster is implemented by a structure with four fields:

the cluster's value, the cluster's frequency, the cluster's weight and the set of objects that

belong to this cluster. Using this implementation, considering a set of n clusters, P, the

total space required by Pis:

:1 x n + L IY.sl where YEP and IY.sl denotes the number of objects belonging to Y
y

Because there are n objects in Q, the sum of all clusters' size (number of objects

belonging to the cluster) is n. Therefore, the total size required by P is 0(3n + n) = 0(4n).

This memory-saving property is a great advantage of our algorithm.

Most widely-used hierarchical clustering algorithms can be implemented in the Lance-

Williams-Jambu general recurrence relation, which would have 0(n3
) time complexity

and 0(02
) space complexity ([11], [12]). However, there are some algorithms that do not

fit within this framework, for example those using criteria based on information content

33

([11]). Further, the authors in [3] pointed out that the time complexity can be reduced to

0(n2 10g n) for special cases.

There are at most n iterations in the Weight function in the localized clustering algorithm.

Within one such iteration, there are at most n operations. Therefore, the Weight function

takes time O(n x n) =0(n2
). The Sort function, considering a heap implementation, could

take time O(n log n). In the Absorb function, there are at most n iterations and within one

iteration, there are at most n operations. Therefore, Absorb takes another 0(n2
) time.

Therefore one loop iteration of the localized clustering algorithm takes time 0(n2
). There

are k iterations and the total execution time complexity is k x 0(n2
) = O(kn2

). The

variable k's value depends on the application. However, in most cases k can be assumed

to be a constant. In our substring processing application, let MinD, (the minimal distance

found in the objects-set Q) and DisInc (the distance increment) both have value 1. Then

the worst case of the iteration number, k, is p -1, where p is the length constant of the

pattern. To prove this conclusion, we notice that the maximal possible distance between

two substrings is p. In the localized clustering algorithm, when the distance variable, Dis,

has the value equal to the maximal distance found in ,Q, all clusters will be joined to form

one cluster. The LeA will stop after that. To finish our proof, we notice that after p-l

iterations, the distance variable Dis has the value p. Therefore in our substring proce sing

application, we have the time complexity O(pn2
).

6.4 The Experimental Analysis of the Localized Clustering Algorithm

The High Frequency Substring Algorithm was applied to human genome sequence (

downloadable from web site: ftp://ftp.ebi.ac.uk/pub/databases/embl/release/). A list of

34

126K patterns was obtained with frequency threshold K =50. After removing the

redundancy, a list of 102K patterns was obtained. This pattern list is used to test our

localized clustering algorithm.

The execution results are listed in table 1. The objects-set's size is the number of patterns

used. The execution time was collected using UNIX command "time" and then

transformed to seconds. For comparison, one loop iteration is performed for each objects-

set.

Table!. Relationship of execution time and objects-set size

Objects-set Size Execution Time(S)

1019667 9475

57013 2785

35513 1409

31103 1012

24805 565

14425 172

5507 24

1566 2

The graph presented in figure 13 compares the execution time with the function n2
. It

verifies that the performance of the localized clustering algorithm is O(n2
).

35

8

6

4

2

o
o 2 4 6

o

Execution time t •

Theoretical estimation n2 0

8 objects-set size n (XlOOOO)

Figure 13. Comparison of execution time and function n2

CHAPTER VII

SUMMARY AND FUTURE WORK

In this thesis, a time and space efficient clustering algorithm for DNA string clustering is

designed and implemented. This algorithm is named localized clustering algorithm. The

localized clustering algorithm runs on space complexity O(n) and time complexity 0(kn2
)

(k's value dependents on applications and in most cases k can be assumed to be a

constant).

Currently, the distance between two substrings is defined as the hamming distance.

Biologists have established that a DNA can change its sequence by insertion (adding a

DNA sequence to an existing DNA sequence), deletion (removing a piece of DNA

sequence from existing DNA sequence), or reversing (changing the direction of a piece of

DNA sequences) ([2J). Modification of the distance function to reflect these changes and

evaluation of the new distance function are proposed as future work.

37

REFERENCES

[1] H.M. Bobisud & L.E. Bobisud, "A Metric for Classification," Taxon, Vol. 21,1972,
pp.607-613.

[2] M.K. Campell, Biochemistry (2/1d edition), Saunders College Publishing, Orlando,
Florida, 1995.

[3] W.H. Day & H. Edelsbrunner, "Efficient Algorithms for Agglomerative Hierarchical
Clustering Methods," Journal of Classification, Vol. 1, 1984, pp. 7-24.

[4] A.D. Gordon, Clustering and Classification, World Scientific Pub!., Singapore, 1996.

[5] J.e. Gower, "A Comparison of Some Methods of Cluster Analysis," Biometrics, Vol.
23,1967,pp.623-638.

[6] M.e. Harrison, "Implementation of the Substring test by Hashing," Communications
of the ACM, Vol. 14, No.1, Dec. 1971, pp. 777-779.

{7] S. e. Johnson, "Hierarchical Clustering Schemes," Psyhometrika, Vol. 32,1967, pp.
241-254.

[8] R.M. Karp & M.O. Rabin, "Efficient Randomized Pattern-matching Algorithms,"
IBM journal ofResearch and Development, Vol. 31, No.2, March, 1987, pp. 249
260.

[9] G.N. Lance & W.T. Williams, "A General Theory of Classificatory Sorting
Strategies I. Hierarchical Systems," Computer Journal, Vol. 9, Feb. 1967, pp. 373
380.

[10] G.N. Lance & W. T. Williams, "Note on the Classification of Multi-level Data,"
Computer Journal, Vol. 9, Feb. 1967, pp. 380-380.

38

[11] G.N. Lance & W. T. Williams, "A General Sorting Strategy for Computer
Classifications," Nature, Vol. 212, Oct. 1966, pp. 218-218.

[12] G.N. Lance & W. T. Williams, "Computer programs for Hierarchical Polythetic
Classification (Similarity Analyses)," Computer JournaL, Vol. 9, May 1966, pp. 60
64.

[13] FJ. Lapointe & P. Legendre, ''The Generation of Random Ultrametric Matrices
Representing Dendrograms," JournaL ofCLassification, Vol. 8,1991, pp.177-200.

[14] F. R. McMorris, D. B. Mronk & D.A. Neumann, Numerical taxonomy, Springer
Verlag, Berlin, Gennany, 1983.

[15] L.L. McQuitty, "Similarity Analysis by Reciprocal Pairs for Discrete and
Continuous Data," EducationaL and PsychologicaL Measurement, Vol. 26, 1966, pp.
825 - 831.

[16] L.L. McQuitty, "Hierarcial Linkage Analysis for the Isolation of Types,"
Educational and Psychological Measurement, Vol. 20, 1960, pp. 55- 67.

[17J R. Overbeek & J. Huan, "A High Frequency Substring Algorithm," unpublished,
1999.

[18] N. Shubin, C. Tabin & S. Carroll, "Fossils, Genes and the Evolution of Animal
Limbs," Nature, Vol. 388 (6643), Aug. 1997, pp. 639-648.

[19] P.H.A. Sneath, "The Application of Computers in Taxonomy," 1. Gen. Microbiol.,
Vol. 17. 1957, pp. 201 .. 226.

[20] R.R. Sakal & C.D. Michener, "A Statistical Method for Evaluating Systematic
Relationships," University of Kansas Science Bulletin, Vol. 38, 1958, pp. 1409
1438.

[21] G.A. Stephen, String Searching Algorithms, World Scientific, Singapore, 1994.

[22] H. Turner & J.P. Kinet, "Signaling Through the High-affinity IgE Receptor Fc
EpsilonRI," Nature, Vol. 402 (6760 Suppl B), Nov. 1999, pp. 24-30.

39

[23] J. H. Ward, "Hierarchical Grouping to Optimize an Objective Function," J. Am.
Statist. Assoc., Vol. 58, 1963, pp.236-244.

[24] J. Zupan, Clustering ofLarge Data Sets, Research Studies Press, Herts, England,
1982.

40

"We gratefully acknowledge use of the Localized Clustering
software developed by researchers in Oklahoma State University
and the Mathematics and Computer Science Di vision of Argonne
National Laboratory. "

APPENDIX A - PERL SCRIPT OF THE LOCALIZED

CLUSTERING ALGORITHM

#!lusr/local/bin/perl5 -w
($]>=5.004) \I die "version is $] -- need perl 5.004 or greater";

#++
This software is being made freely available without conditions on its
use or distribution. The software was developed hy cooperation of
Oklahoma State University and Mathematics and Computer Science Division
of Argonne National Laboratory. No liability is assumed for any flaws
in the software or for failure of the software to work as expected.
If you find this software useful in your research, we would appreciate
your adding the following acknowledgment:
#
#
#
#
#
#

#--

#check the command line parameter
$file = shift @ARGV;
open (FILE_IN, "<$file") II die "Usage: cluster.pl <input file> <begin distance> <end
distance> <distance increase> \n";
c1ose(FILE_IN);

#set default value
$bein~dis = 2;
$end_dis = 2;
$dis_inc =1;

$wei command ="time wei II.- ,
$abs_command ="time abs ";
$round_number =0;

41

#clean data directory clusters
if(opendir(ItDIR It , "clustersfl »
{

close(DIR);
system(flrm -r clustersfl)~

system("mkdir clusters")~

#run the clean, weight and absorb
$clean30mmand = "clean ".$file." clusters/cluster_disOfl ;
print(fI$clean_commandtl):
system("$clean_command")~

#run weight and absorb using loop
for(Star_dis = $bein~dis; $tacdis <=$end_dis: $tar_dis += $dis_inc)
{

if(Star_dis == $bein~dis){ $tar_disl = 0 ~ }
else{ Star_dis! = Star_dis - $dis_inc; }

$wei30mmand = $wei_command." clusters/cluster_distl.$tacdisl. tI fI.$tar_dis;
$abs30mmand = $abs_command." c1usters/clustecdis".$tacdis. fI ".$tar_dis;

#execute the command
print("\nwei operation\n");
print("$wei_command\n");
system("$wei_commandfl);

#sort by unix command
system(flrm .cluster_temp");
system(flsort -r -n +1 .clustectempo > .cluster_temptl);
system(flwc -I .clustectemp"):

#do the abs command
print("abs operation\n lt

);

print("$abs_command\n fl);
system("$abs_command")~

$wei_cornmand ="time wei It~

$abs_command =fltime abs fI;
$round_number++;

42

APPENDIX B - IMPLEMENTATION OF FUNCTIONS

INITIALIZE_SET, WEIGlIT AND ABSORB

Weight Function:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

/*define macros*/
#define UNIT_ENTRY_NUM 13 /*how many memory block*/
#define MEMORY_UNIT_SIZE 10000 /*each block's size*/
#define STR_LENGTH 18 /*string length*/
#define CLEAN_CONSTANT 1.1 /*clean constant*/
#define SHIFT_DIS 3 /*the shift distance*/
#define TRUE 1 /*boolean constant*/
#define FALSE 0

/*data definition*/
typedef struct data_def {

int frequency;
int weight;
char str[STR_LENGTH+1];
char flag;

} Data;

/*GlobaJ Variable*/
Data * MEM_BLOCK[UNIT_ENTRY_NUM];/*store the memory block's location*/
int TOTAL_NUM;/*total data number*/

/*functions*/
void block_ini(void);/*INITIALIZE THE SET*/
Data * memory_allocate(void);/*allocate the memory for block*/
int memory_deallocate(void); /*deallocate the memory for block*/
Data * get_data(int data_num); /*intertace of the memory management and data*/
void read_data(char * file_name);/*read data from file*/
void write_data(char * file_name);/*wrote cleaned data to file*/
int find_distance(Data * dataCpt, Data * data2_pt); /*find the distance of two data*/
void weight(int); /*pertorm the weight operation */

43

void main(int argc, char * argv[])
{

char input_file =argv[1]:
char output_file[] = ".clustectempo";
int dis_p;
FILE * system =fopen("log..Jile","a");

if(argc <3)(
fprintf(system,"Usage: wei <distance parameter>\n");
printf("Usage: wei <distance parameter>\n");

}
else{

printf("Wei begin\n");
sscanf(argv[2], "%d", &dis_p);
read_data(inpucfi Ie);
weight(dis_p);

write_data(outpucfile);
memory_deallocate();

}

fclose(system);

printf("wei finished\n");

1*
Block initialize will initialize the block entry
*/

void block_ini(void)
{

int i;
fore i=O; i< UNIT_ENTRY_NUM; i++){

MEM_BLOCK[i] = NULL;

1*
Allocate the memory for MEMORY_UNIT_SIZE's data
and return the point to the calling process

44

*/
Data * memory_allocate(void)
{

Data * pt =NULL;
pt =malloc(MEMORY_UNIT_SIZE * sizeof(Data));

if(!pt) { printf("Out of Memory!"); return NULL; }
else return pt;

/*
free memory and let the os know the free event

*/
int memory_deaJlocate(void)
{

int i;
Data * curept;

/*free the block */
fore i=O; i<UNIT_ENTRY_NUM; i++){

if((curept = MEM_BLOCK[i]) != NULLH
free(curept);

}

return EXIT_SUCCESS;

/*
Get data will get the data from the memory
*/

Data * gecdata(int data_num)
{

Data * data_pt = NULL;
Data * block_pt;

/*out of array boundary*/

45

if(data_num < 0 II «data_num/ MEMORY_UNIT_SIZE) > UNIT_ENTRY_NUM))
return NULL;

/*get the block base address */
if(block_pt != NULL)

data_pt = &(block_pt[data_num % MEMORY_UNIT_SIZE]);

return data_pt;

/*
read the data from the input file and put the
frequency, weight, the string, the flag into the
structure
input parameter: input file name
*/

void read_data(char * file_name)
{
FILE * in_file = fopen(file_name, "r");
int line_num =0;
char line_buff[81] ="\n" ;
char string[STR_LENGTH] ="\n";
int frequency =0;
Data * curcm_pt;
int cUIT_index;
FILE * system = fopen("log..Jile Jl , "aJl);

/*inilizing block array*/
block_iniO;

/*allocate the first block*/
curr_m_pt =memory_allocateO;
if(cUIT_m_pt == NULL) exit(0); /*out of meffiory*/

fprintf(system, "Begin to load data\n");
fprintf(system, ". ");

/*return*/;
MEM_BLOCK[O] = CUIT_ffi_pt;

46

/*read data into memory*/
while(fgets(line_buff, 80, in_file) != NULL)

{
line_num++;

/*printf("%d-- %S", line_num, line_buff);*/

/*read the string and frequency*/
sscanf(line_buff, "%s%d", string, &frequency);

cUIT_index =(line_num -1) % MEMORY_UNIT_SIZE;
CUIT_ffi_pt[cuIT_index].frequency = frequency;
cUIT_m_pt[cuIT_index].weight =frequency;
slmcpy(cuIT_m_pt[cuIT_index].str, string, STR_LENGTH);
(curcm_pt[cuIT_index].str)[STR_LENGTH] =\0';
curr_m_pt[cuIT_index].flag ='t';

/*if the line size come to block size, then
allocate the memeory again*/

if(line_num % MEMORY_UNIT_SIZE == 0)
{
cUIT_m_pt =memory_allocateO:
if(cUIT_m_pt == NULL) exit(O);
MEM_BLOCK[line_num /MEMORY_UNIT_SIZE] = curr_rn_pt;
fprintf(system, ". ");

}

TOTAL_NUM =line_num;
fprintf(system, "\nFinished loading\n");
close(system);

}

/*
If two objecs distance is within certain distance, then
update their weight

*/
void weight(int target_dis)
{
int line_num, line_num2;
Data * targe,-pt, *cuIT_data_pt;

47

int ham_dis = 0;
int freql, freq2;
FILE * system = fopen("lo~file", "a");

fprintf(system, "Begin to do weight: %d\n", TOTAL_NUM);

fore line_num =0; line_num < TOTAL_NUM; line_num++)
{
targeCpt =gecdata(line_num);
freql =targecpt->frequency;

/*report */
if« line_num + 1) % 1000 == O){

fprintf(system, ".");
if« line_num+ 1) % 10000 == O){

fprintf(system, "\n");
}

/*compare the target and current data*/
fore line_num2 =1ine_num+ 1; line_num2 < TOTAL_NUM; line_num2++)

{
cUff_data_pt = gecdata(line_num2);

if(ham_dis <= targecdis){
freq2 =curr_data_pt->frequency;
targecpt->weight += freq2;
curr_data_pt->weight += freq 1;

}
}

/*after weight*/
fprintf(system, "Finished weight\n");

}

/*
Find the hamming distance for the two data object

*/
int find_distance(Data * datal_pt, Data * data2_pt)
{

char * strl = dataLpt->str;
char * str2 = data2_pt->str;

int hamin~dis =0;
int i;

for(i=O;i<STR_LENGTH;i++){
if(strl [i] != str2[i]) hamin~dis++;

}

return hamin~dis;

/*
write the data back to a file only if the flag is

*/

void write_data(char * file_name)
{
Fll..-E * file_out = fopen(file_namc, "w");
int i;
Data * data_pt;

if(file_out == NULL){
printf("Error in open file %s for writing\n");
return;

}

for(i=O; i<TOTAL_NUM; i++)
{
data_pt = gecdata(i);

if(data_pt != NULL)
fprintf(file_out, "%s %d %d\n", data_pt->str,

data_pt->weight, dat3l_pt->frequency);

Absorb Function:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

49

/*define macros*/
#define UNIT_ENTRY_NUM 13 /*how many memory block*/
#define MEMORY_UNIT_SIZE 10000 /*each block's size*/
#define STR_LENGTH 18 /*string length*/
#define CLEAN_CONSTANT 1.1 /*c1ean constant*/
#define SHIFT_DIS 3 /*the shift distance*/
#define TRUE 1 /*boolean constant*/
#define FALSE a

/*data definition*/
typedef struct data_def {
int frequency;
int weight;
char str[STR_LENGTH+l];
char flag;

} Data;

/*Global Variable*/
Data * MEM_BLOCK[UNIT_ENTRY_NUM];/*store the memory block's location*/
int TOTAL_NUM;I*total data number*/

/*functions*/
void block_ini(void);/*inilize the block entry*/
Data * memory_allocate(void);/*allocate the memory for block*/
int memory_deallocate(void); /*deallocate the memory for block*/
Data * geCdata(int data_num); /*interface of the memory management and data*/
void read_data(char * file_name);/*read data from file*/
void write_data(char * file_name);/*wrote cleaned data to fiJe*/
int is_shift(Data * datal_pt, Data * data2_pt);/*whether the two data is shift*/
int find_distance(Data * datal_pt, Data * data2_pt); /*find the distance of two data*/
void absorb(int, char*); /*perform the absorb operatoin */

void main(int argc, char * argv[])
{
char inpuCfile[] =II .cluster_temp";
char *outpucfile;
int distance_p;

/*check error message*/
if(argc < 3) { printf("abs <output file> <distance parameter>");
else{

sscanf(argv[2], "%d", &distance_p);
outpucfile =argv[l];

read_data(inputjile);
absorb(distance_p,outpucfiJe);

50

write_data(output_file);
memory_deallocateO;

}
}

/*
Block initilize will initilize the block entry
*/

void block_ini(void)
{

int i;
fore i=O; i< UNIT_ENTRY_NUM; i++){

MEM_BLOCK[i] = NULL;

1*
Allocate the memory for MEMORY_UNIT_SIZE's data
and return the point to the calling process
*/

Data * memory_allocate(void)
{

Data * pt = NULL;
pt =malloc(MEMORY_UNIT_SIZE * sizeof(Data»;

if(!pt) { printf("Out of Memory!"); return NULL; }
else return pt;

/*
free memory and let the as know the free event

*1
int memory_deallocate(void)
{

int i;

Data * curept;

I*free the block */
fore i=O; i<UNIT_ENTRY_NUM; i++){

S1

if((curcpt = MEM_BLOCK[i]) != NULL){
free(CUIT_pt);

}

return EXIT_SUCCESS;

1*
Get data will get the data from the memory
*1

Data * get_data(int data_num)
{

Data * data_pt =NULL;
Data * block_pt;

I*out of array boundary*/
if(data_num < 0 II «data_num / MEMORY_UNIT_SIZE) > UNIT_ENTRY_NUM))

return NULL;

block_pt =MEM_BLOCK[data_num lMEMORY_UNIT_SIZE];

/*get the block base address */
if(block_pt != NULL)
data_pt = &(block_pt[data_num % MEMORY_UNIT_SIZE]);

return data_pt;

/*
read the data from the input file and put the
frequency, weight, the string, the flag into the
structure
input parameter: input file name
*/

void read_data(char * file_name)
{
FILE * in_file = fopen(file_name, "r");
int line_num =0;
char line_buff[81] ="'0" ;

52

char string[STR_LENGTH] ="\n";
int frequency =0, weight=O;
Data * curcm_pt;
int curr_index;
FILE * system = fopen(ltlogJile", "a");

/*inilizing block array*/
block_iniO;

/*allocate the first block*/
curcm_pt =memory_allocateO;
if(cUIT_m_pt == NULL) exit(0); /*out ofmemory*/

fprintf(system, "Begin to load data\n");
fprintf(system, ".");

/*return*/:
MEM_BLOCK[O] = curr_m_pt;

/*read data into memory*/
while(fgets(line_buff, 80, in_file) != NULL)

{
line_num++;

/*printf("%d-- %S", line_num, line_buff);*/

/*read the string and frequency*/
sscanf(line_buff, "%s%d%d", string, &weight, &frequency);

curr_index = (line_num -1) % MEMORY_UNIT_SIZE;
curr_rn_pt[curr_index].frequency = frequency;
curr_ID_pt[curr_index].weight = frequency;
strncpy(curr_ID_pt[curr_index] .str, string, STR_LENGTH);
(curr_m_pt[cuIT_index].str)[STR_LENGTH] = \0';
curr_ID_pt[cuIT_index].flag = 't';

/*if the line size come to block size, then
allocate the rnerneory again*/

if(line_nuID % MEMORY_UNIT_SIZE == 0)
{
curr_m_pt = memory_allocateO;

53

if(cUIT_m_pt == NULL) exit(O);
:MEM_BLOCK[line_num /MEMORY_UNIT_SIZE] =cUlT_m_pt;
fprintf(system, fl. ");

}

TOTAL_NUM =line_num;
fprintf(system, "\nFinished loading.\n");
close(system);

}

1*
data 1 will abost data 2 only when both of them have not been absorted by
other data and data 2 is withi n certain distance of datal. The datal' weight
is higher than data2' weight

*1
void absorb(int targecdis, char* file_name)
{
int line_num, line_num2;
Data * targeCpt, *curcdata_pt;
int ham_dis =0;
int freql, freq2;
FILE * system;
char Ifile[30J;
FILE * cluster_log;

system = fopen("lo~file", "a");

I*log file for cluster*1
strcpy(lfile, file_name);
strcat(lfile, "_log");

cluster_log =fopen(lfile,"w");
if(clusteclog == NULL)

{
printf("ElTor in wtirting the log file\n");
return;

}

printf("%s",lfile);

fprintf(system, "Begin to do absorb: %d\n", TOTAL_NUM);

fore line_num =0; hne_num < TOTAL_NUM; line_num++)
{

54

targeCpt = gecdata(line_num);
freql = target_pt->frequency;

I*report *1
if« line_num +1) % 1000 == O){

fprintf(system, ". ");
if« line_num+1) % 10000 == O){
fprintf(system, "\n");
}

I*compare the target and current data*1
if(targecpt->flag == 'f){ I*only the one has not been absorbed could absorb

others*1

fplintf(c1usteclog, "%s %d\n", targeCpt->str, targecpt->frequency);
fore line_num2 =linc_num+ 1; line_num2 < TOTAL_NUM; line_num2++)

{
curr_data_pt = get_data(line_num2);

ham_dis = finu_distance(targecpt, curr_data_pt);

if(cUIT_data_pt->flag == '1' && ham_dis <= targecdis){
curr_data_pt->f1ag = 'f';
targecpt->weight += curcdata_pt->frequency;

fprintf(cluster_log, "\t\t%s %d\n", cUIT_data_pt->str, cUIT_data_pt
>frequency);

}

}
}

I*finished absorb*1
fprintf(system, "Finished doing absort\n");
fclose(system);
fclose(cluster_log);

1""-
Find the hamming distance for the two data object

"'/

55

int find_distanceCData * dataLpt, Data * data2_pt)
{

char * str! = data1_pt->str;
char * str2 = data2_pt->str;
int hamin~dis =0;
int i:

for(i=O;i<STR_LENGTH;i++){
if(str1[i] != str2[i]) hamin~dis++;

I

return hamin~dis;

/*
write the data back to a file only if the flag is t

*/

void write_data(char * file_name)
{
FILE:;< file_out = fopen(file_name, "W ");

int i;
Data * data_pt;

if(file_out == NULL){
printf("Error in open file %s for writing\n");
return;

}

for(i=O; i<TOTAL_NUM; i++)
{
data_pt = get_data(i);

if(data_pt != NULL && data_pt->flag == 't)
fprintf(file_out, "%s %d\n II , data_pt->str, data_pt->weight);

56

VITA

Jun Huan

Candidate for the Degree of

Master of Science

Thesis: A LOCALIZED CLUSTERING ALGORITHM AND ITS APPLICAnON
TO DNA STRING PROCESSING

Major Field: Computer Science

Biographical:

Personal Data: Born in Suzhou, Jiangsu, China, P. R. On March 6, 1975, the second
son of Shuyu Huan and Chuanhui Gu.

Education: Graduated in July, 1993 from No. 1 Middle School, Changsha, Hunan.
Received a Bachelor of Science degree in Biochemistry and Molecular
Biology from Peking University in July, 1997; Finished one-year graduate
study in University of Illinois, Chicago, Illinois from August, 1997 to Augu t,
1998. Completed the requirements for the Master of Science degree with a
major in Computer Science at Oklahoma State University in July 2000.

Professional Experience: Employed as a summer research aid from May 1999 to
August 1999 by Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois; Employed as a graduate research
assistant from September, 1998 to May 1999 by Department of Microbiology,
Oklahoma State University, Stillwater, Oklahoma.

