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ABSTRACT 

 

The research described by this dissertation has focused on the fabrication and design, for 

the improvement of lead chalcogenide lasers. The ultimate goal was to develop TE-

cooled single-mode continuous wave Mid-IR laser for high resolution spectroscopic 

applications. Processing techniques and procedures as well as theoretical design have 

been successfully developed that could lead to high temperature single-mode continuous 

wave (CW) laser operation. Light emitting Pb-salt structures on BaF2 substrate has been 

examined. An antireflection coating material, for diode-pumped Pb-salt light emitters, 

that has enhanced room temperature continuous wave light emission has been described. 

A new surface preparation technology for epi-ready [110] oriented BaF2 substrates and a 

novel mounting technique for the fabrication of cleaved cavity Pb-salt laser grown on 

{110} BaF2 was developed. Lasing results from [110] oriented Pb-salt laser fabricated on 

PbSnSe substrate have been reported for the first time. Theoretical modeling of a Pb-Salt 

ridge waveguide laser for single lateral mode operation and the development of a 

fabrication process for the same has been described. A novel fabrication method of 

cleaved facet Pb-salt laser on as-grown metal substrate for high temperature operation of 

the device has been described. 
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1.1 Mid-Infrared Semiconductor Light Emitting Devices 

In the recent years a worldwide increase in the research of mid infrared 

semiconductor light emitting devices has been observed due to various important 

applications in telecommunication and molecular spectroscopy. Spectroscopic 

applications mainly include Trace–Gas-Sensing systems based on Laser Absorption 

Spectroscopy, which in turn has applications in scientific research, automobile industry, 

power plants, medicine, environmental control, military base cleaning, chemical and 

biological weapon detection. Other than spectroscopic applications there are also 

potential applications like countermeasure, open path A-B Distance Wireless 

communication, differential absorption light detection and ranging systems etc. But most 

of the interest in mid infrared light emitters arouse from the prospects for ultrahigh 

sensitive chemical gas analysis and atmospheric pollution monitoring, using inexpensive 

and portable spectroscopic instruments1.  

Mid infrared section of optical spectrum lies between 2 to 30 μm wavelengths. 

And numerous absorption lines of many gaseous molecules lie in the range of mid 

infrared spectra, for example CO2 (4.25μm), CO (4.6μm), CH4 (3.3μm), N2O (4.5μm), 

HF (2.52μm), O3 (4.73μm) etc. So there is a need of thermally stable mid infrared 

sources with narrow line-widths to obtain high selectivity and sensitivity; single 

longitudinal mode operation for high selectivity and the elimination of inter-mode noise; 

rapid wavelength tunability for fast response and high data acquisition rates; high beam 

quality, i.e., small beam divergence, small astigmatism, and stable beam output direction 

for optimum coupling into and through a gas sampling cell; and sufficient output power 

to overcome inherent electronic detection noise and to obtain high laser signal-to-noise 
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ratios, for the Mid-IR absorption spectroscopy2. An ideal source for such applications 

would be, narrow line width tunable lasers with continuous-wave (cw) emission at room 

temperature and with considerable output power (>1mW). Figure 1.1 shows bandgap 

energy vs. lattice periodicity of some semiconductor compounds and substrates including 

those used in Mid-IR laser fabrication. 
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1.2 Auger Recombination in Mid-Infrared Emitters 

In the Mid-Infrared interband devices, the principal carrier loss mechanism is 

Auger recombination3. The Auger recombination rate per unit volume for electron auger 

type-1 process (CHCC), according to Beattie & Landsberg (1959) is expressed as4 

( )
( ) ( ) ( ) '2

3
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3
2

3
1

3
'2'121

2

3 '2,2,'1,1
2

12 kdkdkdkdEEkkkkPMR fiif −−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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π
π
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where 1 and 1’ indicate the electron and hole recombination pair respectively, 2 points to 

second electron excited to 2’. P(1,1’,2,2’) is the net probability for the auger process. 

Therefore, in the case of a CHCC process 3,  

( ) )1('2,2,'1,1 '2211 eehe ffffP −=  

In the above expression of CHCC, fe and fh are the Fermi-Dirac distribution functions for 

electrons and holes respectively. These are actually the quasi-Fermi levels of conduction 

band and valence band. Considering n = p and replacing the last term for empty state by 

Boltzmann-factor, the approximated probability can be written as 3,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−∝

Tk
EE

nP
B

g'23 exp , 

For highly degenerate states (lasers) this equation does not apply. However, it describes 

when P is largest then E2’ is smallest. Therefore, the auger rate is basically controlled by 

the exponential by contributing at the threshold energy ET (Beattie & Landsberg 1959), 

as there exists a minimum energy below which the δ-function no longer satisfies 4. 

Hence,  

eh

g
T mm

E
E

+
=

1
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For CHHH process ET is described as, 

he

g
T mm

E
E

+
=

1
, 

The auger coefficient C is derived from the approximation of R which is again derived 

from the above equations 3. Hence, we have 

3

23 exp.

Cn
kT
E

MnconstR T

=

⎥⎦
⎤

⎢⎣
⎡−×=

 

Narrow bandgap lasers emitting in the range of 3-5 μm with interband transition 

gained much popularity due to low non-radiative transition rates. For these materials 

Auger suppression takes place when they are in the form of bulk materials. Figure below 

shows the Auger coefficient as a function of emission wavelengths for different 

materials used in the MIR regime as light sources.  

 

 

 Fig 1.2 Auger coefficient of different materials used as MIR sources 16. 
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Auger transition rate is mainly controlled by the δ function which is actually 

accountable for the momentum conservation in the Auger rate equation. It can be reduced 

by bandgap engineering so that it changes the range of momenta. This is possible by 

reducing heavy hole effective mass. Also, if the effective mass ratio is close to one, that 

lowers the Auger rate 3. 

Lead chalcogenides have symmetric valence and conduction bands. Therefore, 

they have a maximum value of ET. Findlay et al. (1998)5 had performed Pump-probe 

transmission experiments on PbSe above the fundamental absorption edge near 4 μm in 

the temperature range 30 - 300 K. A Dutch picosecond free electron laser was used in 

this experiment. For carrier densities above threshold and at temperatures below 200 K, 

stimulated recombination represented the most efficient recombination mechanism with 

relatively fast kinetics in the 50-100 ps region, as was reported by them. Above this 

temperature although Auger recombination dominated but still it remained at a lower 

value. The Auger coefficient was approximately constant (about 8×10-28cm6 s-1) in the 

temperature range of 300 and 70 K, and then dropped to a value of about 1×10-28cm6s-1 

at 30 K, which was in good agreement with the theory for nonparabolic near-mirror 

bands and nondegenerate statistics, as was reported by them. 

  As Auger recombination is much lower in IV-VI semiconductors than III-V 

materials emitting in the 3 – 5 μm wavelength region, these materials have the potential 

to lase at and above room temperature 11.  
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1.3 State of the Art in Mid-Infrared Semiconductor Laser 

Mid-infrared emissions were first demonstrated in 1963, from InAs and InSb p-n 

junction diode emitting at a wavelength of 3.1 μm6 and 5.3μm7 respectively. In 1964, 

just after a year, laser emission from PbTe p-n junction diode at a higher wavelength was 

reported8. After this demonstration of first Pb-salt laser, standard MIR lasers were 

fabricated from narrow gap IV-VI semiconductors such as PbS, PbTe, PbSe, PbSSe, 

PbSnTe, and PbSnSe, in the next twenty years. These lasers were all diffused-diodes 

emitting in 4 – 30 μm wavelength range with an operation temperature of 4 – 77 K. As 

the epitaxial growth techniques advanced, new growing techniques such as Liquid-

phase-epitaxy (LPE), hot-wall-epitaxy (HPE), molecular-beam-epitaxy (MBE) were 

developed and double-hetrostructures (DH) were grown. DH-structure made revolution 

in IV-VI laser performances. Lead-salt DH lasers remained the standard of MIR lasers 

still 1990. These lasers were grown on PbS, PbSe or PbTe substrates, with active layers 

having PbEuSSe for 3 – 4 μm9, PbEuSeTe or PbEuSe for 4 – 8 μm range, and PbSnTe 

or PbSnSe for wavelengths beyond 8 μm. During that time DH laser based on III-V 

materials were becoming promising candidate for MIR light source as well. 

AlGaAsSb/GaInAsSb/AlGaAsSb DH lasers on GaSb substrate and 

InAsPSb/InAsSb/InAsPSb DH lasers on InAs substrates showed excellent performance 

at room temperature in the 2.0 - 2.5 μm range10,11,12  . The InGaAsSb/AlGaAsSb 

strained multi-quantum-well (MQW) laser showed striking results in CW operation at 

and above room temperature and till date appears to be well-established technology for 

laser emission in the 2.0 - 2.7 μm wavelength range 13. Beyond 2.7 μm, type-II quantum 

well semiconductor lasers based on the InAs–GaSb system, III–V quantum cascade laser 
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and IV–VI lead salt semiconductor lasers are in use14 15 16. To give an overview of the 

present state of the art in MIR semiconductor laser, Figure 1.3 shows the maximum 

operation temperature in the pulse and CW regime as a function of wavelength for 

various lasers in the 2-5μm wavelength range. 

 

 

 

Fig 1.3 Maximum operating temperature of semiconductor laser diodes in the mid-IR; open 
circles: Sb-based DH lasers; open boxes: Sb-based type-I MQW lasers; solid boxes: Sb-based 
type-II MQW lasers; +: Sb-based type-II interband cascade lasers; *: GaInAs/AlInAs inter sub-
band quantum cascade lasers; crossed box: lead salt lasers; open triangles: HgCdTe lasers 17. 
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1.4 Lead-Chalcogenide Diode Laser 

Lead chalcogenide diode lasers emitting in the MIR region have been 

commercially available for more than two decades. Their emission covers the wavelength 

range from 3μm to more than 20μm18. Electrically injected lead salt lasers have achieved 

223K operation in continuous wave mode 19 and above-room-temperature operations in 

pulsed mode20. Earlier, there was misconception regarding the incapability of IV-VI 

lasers to produce high output power. However, in 1997 it was reported that even a 

diffused-junction laser can produce up to 24 mW of CW output power21.  

Bandgap energies of IV-VI semiconductors increase with increasing temperature. 

Hence, they have very large temperature and current tuning ranges. The temperature 

induced bandgap energy change also helps in reducing facet heating. Facet heating is a 

great disadvantage of III-V lasers that suffer from thermal runaway problems associated 

with the decrease in bandgap energy with increasing temperature22. Absence of facet 

heating in IV-VI lasers make them more reliable for high temperature operation.  

Among all the previously-mentioned state of the art MIR lasers, lead salt diode 

lasers have the advantages of large tuning range, easy current tuning and narrow line-

width. Group IV-VI materials have suppressed Auger non-radiative loss (by more than an 

order of magnitude over III-V quantum wells)23 24. Also they posses much lighter 

electron and hole masses that lead to further reduction of the lasing thresholds. These are 

the properties that enabled lead salt lasers to set and maintain the earlier records for 

maximum operation temperatures for both pulsed and CW operation among all mid 

infrared semiconductor diodes.  
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       (b) 
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Pb-salt diode can be easily 

m to 10 μm with high reproducibility. It is 
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        (a)      

Fig 1.4 Energy band gap of PbSnSe at room temp
wavelengths of PbSe/PbSrSe QW structures (b)25.  
 

As can be seen in Figure 1.4(a), the wavelength of a MIR 

tuned by changing the composition from 3.5 μ

clear from Figure 1.4(b) that by changing th

tu of evice is p le an een ig 4(b), the tem

about five times larger than III-V materials. It was mentioned before that the energy 

b

injection current will make a blue-shift of both the gain peak and the energy band gap by 

Joule-heating and thus the laser emission wavelength can be easily tuned. 

For a number of years, lead salt diode lasers remained the only commercially 

available semiconductor laser emitting in the mid-infrared region. However, their 

performance remains far from that desired. Low thermal conductivity of IV-VI materials 

prevents room temperature CW operation of traditional IV-VI lasers. Also, there are 

issues with high dislocation density26 (~104 to 107 cm-2) as well. Presently, commercially 

available Pb-salt lasers require cryogenic cooling.  
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For commercially available IV-VI mid-IR lasers, the lasing thresholds are 

significantly increased by the four-fold degeneracy of the L-valley conduction and 

valence band extrema. Quantum confinement does not lift the degeneracy in [100] 

oriented edge-emitting QW devices, since the four valleys remain symmetric for the 

(100) growth that was employed to allow the cleaving of laser cavities. This prevents the 

full exploitation of what is perhaps the greatest advantage of IV-VI laser materials for 

high-te

imes higher 

therma

mperature and long-wavelength operation, namely the threshold reduction that 

results from a low non-radiative recombination rate. Therefore, a continued effort in the 

development of lasers based on this promising material system was needed.  

In this research work, to solve the problems of higher dislocation density and 

poor heat dissipation of traditional IV-VI mid-IR lasers, fabrication of lasers using PbSe-

based material on metal halide substrates, particularly BaF2 was carried out. BaF2 is 

lattice matched with PbSe.  Epitaxial growth on (111) BaF2 produces high quality 

material due to dislocation gliding. PbSe/PbSrSe quantum well grown on BaF2 

substrates showed very high power photoluminescence 27. BaF2 has five t

l conductivity than that of IV-VI materials and hence has the potential to improve 

heat dissipation from active region. It is more economic than the expensive Pb-salt 

substrates. In addition, refractive index of BaF2 in the 3.5 to 4.5µm wavelength region is 

1.4 while that of PbSe in the same wavelength range is 4.8, thus the combination makes 

the optical confinement very high. This is quiet advantageous for optically pumped 

devices. Previously Vertical cavity surface emitting lasers on BaF2 substrates with 

above-room-temperature operation was reported28. However, several issues still remain 

for the fabrication of edge emitting devices with IV-VI epitaxy grown on BaF2 substrate, 
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which is addressed in Chapter 3. In connection to optical pumping, an antireflection 

coating material, for diode-pumped Pb-salt light emitters, that enhanced room 

temperature CW light emission29 was also reported as a part of this research. 

To overcome the existing problems associated with the [100] orientation of the 

edge emitting devices, [110] orientation was further chosen. Compared with the 

conventional [100] orientated materials, [110]-orientation provides higher material 

quality, high modal gain and partially lifts the degeneracy. Based on the theoretical 

calculations and waveguide simulations, it was found that single lateral mode emission is 

possible from a Pb-salt ridge waveguide laser having a ridge of width 5 μm and height 

1μm. I

d been reported. In 

additio

n the design of this ridge waveguide laser additional criterion that can produce 

selective losses for the higher order modes was included. Novel surface preparation 

technology for epi-ready [110] oriented Pb-salt and metal halide wafers and lasing 

results from {110} Pb-salt laser was also reported for the first time.  

Despite the low thermal conductivity of Pb-salt materials (thermal conductivity 

4.2Wm-1.K-1@300 K), proper design of laser fabrication method on foreign substrates 

having higher thermal conductivities allow significant improvements in the operation 

temperature. A successful epitaxial transfer and cleaving of [110] oriented Pb-salt based 

epitaxy on GaAs wafer30, having almost 11 times higher thermal conductivity (46 Wm-

1.K-1@298 K) than that of thermally resistive Pb-salt substrates, ha

n, a novel fabrication method of cleaved facet Pb-salt laser on as grown metal 

substrate for high temperature CW operation of the device had also been reported.  
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1.5 Fundamentals of Semiconductor Laser Operation 

The basic description of a semiconductor is its band structure, i.e. the variation of  

energy E with wave vector k, which is shown in Figure 1.5. The valence band is the last 

completely filled band and the Conduction band is the first unfilled band at T=0. At 

igher temperatures some electrons in the valence band absorbs enough energy to jump 

 the conduction band creating a vacant space or hole in the valence band. Such a 

on. When the electron 

h

to

transition is also possible by photon absorption or electrical excitati

in the higher energy conduction band jumps back to the empty space and thus combining 

with a hole in the lower energy conduction band then a photon is emitted. Thus the 

generation of a photon in this process may be written by the chemical equation, e + h → 

hν > Eg. 

 

 

Fig 1.5 Band Diagram of Semiconductor 31 

  

Now, direct band gap semiconductors strictly follow the above mentioned equation and 

for indirect band gap semiconductors some non-radiative processes compete for electron 

population. Figure 1.5 shows the occupied (shaded) and empty states (white) for direct 

and indirect band gap semiconductors as a function of the momentum of a carrier.  
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 In the absorption process the electron absorbs energy of an incident photon, which 

is greater than  Eg  and jumps to a higher energy in the conduction band but by the 

phonon vibrations it settles down to the minimum of the conduction band. The hole does 

the opposite, it settles to the maximum of the valence band. Thus if enough electrons can 

be pumped to the conduction band, a population inversion may be created between the 

lowest energies of the conduction band and the highest energies of the valence band. This 

gives the possibility of cr

The density of states in either the conduction band or the valence band can be 

eating a laser. 

 

given by the equation  
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where E is measured from the band edge, that is up to the conduction band or down

m 2/1*21 ⎫⎧⎫⎧

 to the 

valence band, and m* is the effective mass of each of the carriers. It should be noted that 

since the effective mass of electrons are larger than the holes the density of states for 

holes per unit energy dE is much larger than for electrons. Suppose we wish to fill every 

available energy from  Ec to Ec + ΔE, the densities of electrons that must be created either 

by injection or by some other means are 
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and 1 − f(∈) is the probability that it is empty. 
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Thus the density of electrons in the conduction band in the energy interval d∈ is given by 
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         (a)        (b) 

Fig 1.6 Optical transitions in a semiconductor (a) Band diagram showing strong pump creating an 
inversion by moving quasi-fermi level into band (b)31. 

Referring to the Figure 1.6(a), 

 

( )[ ] 2/1
2

*2 cec EEmk −=h  

( )[ ] 2/1
1

*2 EEmk vhv −=h  

Since the transition must conserve momentum, kc − kv = kopt ≈ 0, we obtain the different 

energy spreads of the electrons and holes in the above figure, not equal but related by the 

equation, 
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It should be noted that all the states in the energy interval dE2 and dE1 cannot participate 

in the optical transition. The spin of the state must be conserved, and this divides the 

density of states by two. The conservation of momentum should also be maintained, and 

there is also a restriction in the available appropriate empty states. The reduced joint 

2 and dE1 

herefore, the joint density of state can be expressed as, 

density of states is defined to reflect the number of states at E2 and E1 within dE

which can participate in the transition at hν, and which conserve spin momentum. 
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When light travels through such a medium the following processes may occur,  

1. Stimulated emission: the photon strikes an electron in the conduction band and 

 

ce band absorbs the photon and jumps to the 

conduction band 

3. Spontaneous emission: A spontaneous transition of the electron from conduction 

band to valence band occurs releasing a photon in the process. 

The gain coefficient 

forces it to jump to the valence band releasing another photon of same

wavelength, phase, and direction.  

2. Absorption: An electron in the valen

γ  is defined as the rate of increase in intensity per unit distance as 

 

the light travels through it due to the above-mentioned processes. 
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It should be noted that we can get a positive gain coefficient when Fn−Fp (as in Figure 

1.6b) is greater than hν. This is possible when Fermi levels (rather pseudo Fermi levels) 

are made wider than the band-gap by carrier injection or by optical pumping. In a homo-

evel split 

bec e

simulta

region recombine releasing a photon. In a hetero-junction laser there exists an undoped 

reg

recomb nd holes might occur, thus increasing the output power. 

Qu

junction laser a p-n junction which when forward biased causes a Fermi l

aus  of injection of minority carriers and forms a region near the junction where exists 

neously both a high density of holes and electrons. The electrons and holes in this 

ion between the p and n type material. This gives an advantage of large area where the 

ination of electrons a

antum size effects 

 technologies have made it possible to grow thin layers Modern of material whose 

dimension is of the order of deBroglie wavelengths. This modifies the density of states 

and makes it independent of energy. 
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If we consider quantum confinement to be in the z direction, the density of states 

becomes independent of the energy E, and can be controlled by the thickness Lz. Thus by 

choosing the dimension of Lz we can design the energy state and thus engineer the band-

gap .  

 

 

 

31
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1.6 Thesis Overview 

The main goal of this research was to assist the development of an improved Pb-

rce for Tunable Diode Laser Absorption Spectroscopy. In order to 

nd increase the operation temperature to at least the 

thermoelectric range, above 230K. At the initial stage, light emitting Pb-salt structures on 

BaF2 substrate had been examined, owing to the advantages mentioned in the previous 

i high modal gain and partially lifts the degeneracy. Based on the theoretical 

alculations and waveguide simulations, it was found that single lateral mode emission is 

ossible from a Pb-salt ridge waveguide laser having a ridge of width 5 μm and height 1 

m. Also, despite the low thermal conductivity of IV-VI semiconductor materials 

hermal conductivity 4.2 Wm-1.K-1@300 K for PbSe), proper design of a laser 

reign substrates having higher thermal conductivities allow 

signific

32

-1 -1

chalcogenide light sou

achieve such a goal, proper design of a laser structure and proper design of laser 

fabrication methods were needed that would preferentially make the device to operate in 

continuous wave single lateral mode a

section. Then to overcome the existing problems associated with the [100] orientation of 

the edge emitting devices, the [110] orientation was chosen further. Compared with the 

conventional [100] orientated materials, [110]-orientation provides higher material 

qual ty, 

c

p

μ

(t

fabrication method on fo

ant improvements in the operation temperature. A successful epitaxial transfer 

and cleaving of [110] oriented IV-VI semiconductor based epitaxy on GaAs wafer , 

which has almost 11 times higher thermal conductivity (46 Wm .K @298 K) than that 

of thermally resistive IV-VI semiconductor substrates, was reported. This dissertation 

describes all my experimental work towards the development of Pb-chalcogenide light 

emitting structures, both optically and electrically pumped and theoretical modeling of a 
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ridge waveguide laser for single lateral mode operation. The journey was full of 

challenges and the following chapters also describe how they were met and solved.  

Chapter-2 describes the fabrication and measurement results of an optically 

pumped Pb-salt light emitting structure on [111] oriented BaF2 substrate. Also discussed 

is the development of an antireflection coating material for diode-pumped Pb-salt light 

emitters that enhanced CW light emission up to 3-4 times from the structure. Chapter-3 

describes the fabrication of a [110] oriented edge emitting laser grown on a BaF2 

substrate using both cleaved and etched facets and novel surface preparation technology 

of [110] oriented wafers for epitaxial growth. Chapter-4 presents [110] oriented Pb-salt 

laser fabricated on a PbSnSe substrate. Lasing results have been represented and 

fabrication issues have been discussed. Chapter-5 describes the modeling of a ridge 

waveguide laser and addresses the fabrication steps taken for the development of such a 

device. Chapter-6 introduces a novel fabrication method of cleaved facet Pb-salt laser on 

an as-grown metal substrate for high temperature operation of the device. This method 

uses electroplating technique to form a metal base or carrier substrate in contact with 

epitaxial layer and is followed by a growth substrate removal technique for complete 

transfer of the epitaxial layer to a metal. Chapter-7 details the future direction for this 

project and explains the issues needing further investigation and improvements. 

  Some material properties and outcomes thereafter were not clearly understood. 

Therefore, some questions remain unanswered. Despite this, many novel processes have 

been developed and challenges were overcome in an honest effort towards betterment. It 

is hoped that this dissertation provides a clear picture of the field of Pb-salt light emitting 

devices and inspires a continuation of this work at the University of Oklahoma. 
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2.1 Optically Pumped Lead-Salt Structure on [111] Oriented BaF2 
Substrate 

In the recent years, in contrast to electrical excitation, a renewed interest has been 

observed in optical excitation to demonstrate lasing in the mid-infrared wavelength 

region1,2. This is due to the fact that optical pumping offers several advantages, first of 

all simple design or in other words the design freedom is much higher. This includes use 

of high resistance cladding layers like Pb1-xSrxSe with comparatively larger Sr content 

and lower carrier concentration that in addition further diminishes Auger recombination 

increasing the chances of having a higher operating temperature device. Secondly, in an 

optically pumped device there is no need of the development of p-n junctions and low 

resistance ohmic contacts for the electrical connections. Therefore, as an initial step to 

demonstrate MIR emission from edge-emitting devices we choose optical pumping of 

Pb-salt based structure grown on [111] oriented BaF2 substrate. Now, as it was mentioned 

earlier that IV-VI lasers, especially PbSe-based lasers on BaF2 substrate, offer several 

advantages. PbSe is almost lattice matched with BaF2 and they have a large difference in 

refractive index. PbSe has a refractive index of 4.8 where as BaF2 has a refractive index 

of 1.4 in the 3.5 to 4.5 µm wavelength range, thus giving an excellent optical 

confinement. Third, the thermal conductivity of BaF2 is five times larger than that of IV-

VI materials. In addition, growth on [111] BaF2 allows dislocation gliding and thus leads 

to superior material quality. Owing to the previous success of quantum well structures 

grown with PbSe and PbSrSe on [111] oriented BaF2 substrates with high output power3 

and above-room-temperature operation of vertical cavity surface emitting lasers 

(VCSEL)4, on [111] BaF2, the [111] orientation was opted for the edge-emitting device 
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as well . Although PbSe-based VCSELs have been successful, edge-emitting lasers 

would have better tunability and much higher output power as are needed for TDLAS. 

 

2.1.1 Edge Emitting Device Fabrication 

In this experiment, a waveguide structure was grown on [111] oriented BaF2 by 

molecular beam epitaxy (MBE), using compound sources for PbSe and BaF2 and 

elemental sources for Sr and Se. The structure consisted of seven pairs of PbSe (20 nm) / 

PbSrSe (30 nm) multi-quantum wells followed by a 100 nm BaF2 top confinement layer. 

This BaF2 layer also serves as a passivation layer. Ridge structures of dimension 470 μm 

in length and 40 μm in width were then fabricated by wet chemical etching. It can be 

seen from Figure 2.1 that parallel facets cannot be obtained by cleaving the Pb-salt-BaF2 

assembly where the growth took place along [111] orientation of the substrate, and that is 

why wet chemical etching was used to obtain the mirror facets to form a Fabry-Perot 

cavity for lasing operation.  

 

 

Fig 2.1 Crystal orientation showing {111} and {100} plane 

 

 24



 

(a) 

                    

         (b)     (c) 

             

       (d) 

Fig 2.2 Schematic of the wet etched structure showing different layers (a); Nomarski image of the 
etched structure showing several active elements (b); Top view of a single etched element at a 
higher magnification (c); Nomarski image of a single ridge showing cavity length and width (d).  
 

Two times photolithography was performed followed by the wet etching to form 470µm 

X 40 µm ridge elements on 1cm2 sample. The etching solutions are proprietary mixtures 

provided by an institution in Germany and are subject to a non-disclosure agreement 

(NDA) with the University of Oklahoma, so their exact recipes will not be described 

here. BaF2 passivation layer was deposited on the whole etched structure after a thorough 

cleaning, by using molecular beam epitaxy method (MBE). 
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2.1.2 Measurement and Results 

The sample was optically pumped with light incident normal to the substrate by a 

1.064 μm Nd:YAG laser (τpulse ≈ 23ns, 10Hz) with a spot size of 2.6 mm in diameter. The 

emission from the side i.e from one facet of the sample was measured with an IFS 66/S 

spectrometer in step-scan mode using an InSb detector. The output power from the 

sample was calibrated using a standard blackbody reference source whose emission 

energy at certain temperature and blackbody field of view was provided by the 

manufacturer. Figure 2.3 shows the schematic of the sample showing direction of 

pumping and light emission from facet. 

 

 

Fig 2.3 Schematic of etched structure showing pumping direction and light emission 

 

Figure 2.4(a) shows room temperature emission spectrum measured from one 

facet of the edge emitting structure and 2.4(b) shows the room temperature 

photoluminescence (PL) measured from the surface of the sample before processing.  
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(a) 

 

(b) 

Fig 2.4 Side emission spectrum (a) and Surface emission spectrum (b) at room temperature from 
optically pumped Edge Emitting structure 

 

As can be seen in the figure, the line-width of side emission is 18 cm-1, which is much 

wider than cavity modes but it is much narrower than the line-width of surface emission, 

which is actually 88 cm-1 at room temperature. Also, emission intensity from the facet is 

almost 10 times higher than that of surface. Therefore, the results although do not 

indicate lasing but definitely points toward Amplified Spontaneous Emission (ASE). 
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The peak output power vs. peak pump intensity observed from the sample is shown in 

Figure 2.5(a). The numbers in the figure are as seen by the FTIR without considering far-

field of the emission. As shown in Figure 2.5(b), the emission from the sample showed a 

threshold-like behavior, the possible cause of which is ASE, indicating high reflectivity 

of the facets. Also, peak output power as high as several milliwatts was obtained at room 

temperature. 

 

(a) 

 

(b) 

Fig 2.5 Peak output power vs. peak pumping power intensity at room temperature (a) and 
Threshold behavior of the sample at different temperatures (b)  
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Figure 2.6 shows emission peaks at different temperatures and hence represents the 

tunability of the emission. It can be seen from the figure that the wavelength is tunable 

from 4.38 μm at room temperature to 4.72 μm at almost TE cooler temperature (240K). 

Temperature tunability is almost 5.7 x 10-3 μm/K. Considering the measured far field 

emission and the pumping efficiency (26.6%) in the calculation, internal quantum 

efficiency was found to be 2.4% at room temperature, and significantly higher at lower 

temperatures. However, internal reflection loss was not considered while calculating 

quantum efficiency. 

 

 

Fig 2.6 Emission peaks at different temperature from the Edge Emitting structure 
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2.1.3 Discussion 

In a laser medium with large gain, the fluorescence from spontaneous emission 

can be amplified to high levels. This amplified fluorescence has low temporal coherence 

but possesses good spatial coherence. This is actually called amplified spontaneous 

emission (ASE). This emission of fluorescence can be relatively intense as it experiences 

significant optical gain within the emitting device. Due to the finite gain bandwidth, the 

bandwidth of the emitted light is usually smaller than that of the fluorescence itself. 

Although ASE is considered to be a noise parameter for a laser medium or in a large gain 

amplifier, but in our case at least it indicated the presence of a gain medium.  

 

 

Fig 2.7 SEM image of wet etched facet of the Edge Emitting structure 
 

From the SEM image of the facet we can see that the facets are concave in nature 

although the surface-roughness is less than 0.1μm, which for 4 μm emission is much 

better than the tolerance limit of λ/10 for lasing5. Therefore, it is clear that the reason for 

not getting cavity modes from this structure was actually the absence of a proper Fabry-
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Perot cavity that is needed to achieve stimulated emission inside the gain medium. From 

the experiment it seemed that wet processing alone was not able to form parallel laser 

cavity. A combination of dry etching followed by wet processing could help achieve the 

cavity requirements. Considering the high quantum efficiency, tunability and ease of 

fabrication, light emitters using IV-VI materials grown on BaF2 substrate generated lot of 

hope in us as a promising candidate for Mid-IR laser. Hence, to solve the existing 

problem of cavity formation, plasma etching of IV-VI material had been started in 

collaboration with a vendor, to form laser cavity. Figure 2.8 shows the first step towards 

plasma etching. Electroplated thick gold was used as a mask for the etching.  

 

 

Fig 2.8 SEM image of dry etched cross-section of a PbSe layer 
 

For masking, 40 μm wide stripes of plated gold was fabricated on a single layer PbSe 

sample grown on BaF2 to check dry etching conditions and outcome thereafter. It can be 

seen from Figure 2.8 that etched facet was quite rough. This happened because of the 

roughness of mask material. Hence, the idea of using plated gold as mask and the first 

attempt towards dry etching was not quite successful. But the work on dry etching was 

continued. Details of dry etching results obtained afterwards are discussed in Chapter 3. 
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2.2 Antireflection Coating for Diode Pumped Lead-Salt Light Emitters 

It was mentioned at the beginning of this chapter that a renewed interest has been 

observed in optical pumping. Optical pumping with low cost, compact, high power III-V 

diode lasers has recently been employed by several research groups to demonstrate 

emission and lasing in the mid-infrared wavelength region6 7. The pumping source, 

mostly used for these applications are III-V diode lasers emitting in the 980 nm - 1µm 

wavelength region. Lead-chalcogenide semiconductor materials having higher refractive 

indices in this wavelength region reflects back almost 40-42 % of the incident pumping 

light allowing only a small fraction of pump-light to enter the high-index semiconductor. 

So there is a need to minimize the reflectance of the light-receiving surface in order to 

boost the pumping efficiency and increase the generation of photons in the semiconductor 

material. Thus, an antireflection coating material has been proposed to increase the 

pumping efficiency of the optically pumped lead-chalcogenide semiconductor light 

emitters8. The antireflection property of the coated film was investigated by FTIR–

spectroscopic reflectance measurement. Room temperature continuous wave (CW) mid-

infrared photoluminescence (PL) of the diode pumped IV-VI semiconductor multiple 

quantum well (MQW) structures was studied before and after coating the antireflection 

material. The mid-infrared photoluminescence from the coated structure was increased up 

to 4-times when compared with uncoated structure.  
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2.2.1 Zero reflectance condition for the proposed coating 

The necessary and sufficient conditions for a single layer coating to produce zero 

reflectance are9: 

ss nnnnn <= 1
2
1

01 ,)(     (1) 

and      ,.......3,2,1,
2

)12(1 =−= mm πφ ,  (2) 

where n0 and ns are the refractive indices of the surrounding medium and substrate 

respectively. The substrate is actually the epitaxial layer in our case. λπφ /2 111 dn=  is the 

phase thickness of the coating, where d1 and n1 are the geometrical thickness and 

refractive index of the coating material. Here λ is the wavelength of the incident light. In 

practice m is usually chosen to be one, and the optical thickness n1d1 is then one quarter 

wavelength. The reflectance of a quarter-wave coating is equal to zero at the wavelength 

corresponding to the optical thickness of quarter wavelength, if Eq. (1) is satisfied. If Eq. 

(2) is not satisfied, then the reflectance will indicate a minimum at the same wavelength. 

The position of the reflectance minimum of a surface coated with a quarter-wave coating 

depends on the optical thickness of the coating and shifts towards longer wavelengths as 

the optical thickness increases.  

The average refractive index ns of PbSe/PbSrSe QW in the wavelength region of 

980-982 nm is between 4.4-4.48. Although the refractive index of Pb0.97Sr0.03Se at this 

particular wavelength is not accurately known but an approximate value was calculated 

from the experimentally obtained transmission spectra by the methods described 

elsewhere10.  Therefore, when the surrounding medium is air (no=1.0), the refractive 

index of the coating material to be used for a quarterwave antireflection coating should 
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have a value between 2 and 2.1, according to the index condition in Eq.(2). So we have 

chosen the binary material SrSe as the coating material, whose refractive index in this 

wavelength region is around 2.011.  

 

 

Fig 2.9 Simulated reflection spectrum of SrSe coated MQW sample as a function of pumping 
wavelength 

 

The reflectance spectrum of the SrSe coated multi quantum well sample was simulated 

using FilmWizardTM and is shown in Figure 2.9. The figure shows clear minima in 970-

990 nm wavelength region having a reflectivity of 0.008%. 
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2.2.2 Experiment 

The PbSe/Pb0.97Sr0.03Se multi quantum well structure was grown on [110] 

oriented Si substrate by molecular-beam epitaxy (MBE), using compound sources for 

PbSe and elemental sources for Sr and Se. The QW structure consisted of 18 pairs of 

20nm PbSe well separated by 30nm thick Pb0.97Sr0.03Se barrier. A CaF2 buffer layer was 

grown on Si substrate before the growth of IV-VI semiconductor material. After a 

photoluminescence measurement these samples were transferred back into the MBE 

chamber for the growth of SrSe antireflection coating material, followed by a thorough 

ultrasonic cleaning using acetone, methanol, propanol and DI water. SrSe was grown on 

the MQW sample at a growth rate of 0.6µm/h. 

 

 

Fig 2.10 SEM image of the surface of SrSe coated MQW sample 
 

The image above shows the surface morphology of the deposited material. Even after a 

CTE (coefficient of thermal expansion) mismatch between SrSe (7.1X10-6 K-1) and PbSe 

(19.4X10-6 K-1) no cracks has been observed on the surface. One of the technological 
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challenge for the AR coating of IV-VI material is thermal expansion coefficient 

difference between common coating materials and the IV-VI semiconductor which 

results crack on the surface of deposited material when cycled from higher temperature to 

ambient or much lower temperature to ambient and vice versa. But in our case most 

probably longer cooling time after growth helped to produce a crack free surface. A 

surface roughness of the order of 50 nm has been observed through the SEM image of the 

surface of the sample. After growth, the reflection spectrum of the sample was measured 

by a BRUKER IFS 66/S Fourier Transform Spectrometer using NIR source and a DTGS 

detector. The schematic of measurement set up is shown in Figure 2.11. 

 

 

Fig 2.11 Schematic of reflection/transmission measurement set up 
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Before and after SrSe growth, the quantum well sample was mounted episide up on a 

copper heat sink with silver epoxy and pumped by a 980 nm low-power CW (continuous 

wave) InGaAs diode laser to measure room temperature photoluminescence (PL) spectra 

from the quantum well sample. The laser beam was focused on to the surface of the 

sample with a spot size of 400 µm in diameter. The PL spectra were measured again with 

IFS 66/S spectrometer in single-channel mode at resolution of 1 cm-1, using a LN2-cooled 

InSb detector having a rise time of 23 ns. Emission was measured at different intensities 

of pumping before and after the coating of SrSe on MQW sample, and the emitted power 

was calibrated by a standard blackbody reference source. 
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2.2.3 Results and discussion 

Figure 2.12 shows the room temperature reflection spectrum, obtained 

experimentally from the multi quantum well sample coated with SrSe. 

 

 

Fig 2.12 Room Temperature Reflection spectrum of SrSe coated MQW sample 

 

The spectrum shows around 0.01% reflectivity in 980-990 nm wavelength region, which 

is in good agreement with the theoretically simulated reflectivity. But at this point I 

would like to mention that with such a low signal, the noise part in the FTIR becomes 

quite dominant, so the spectrum becomes noisy, which is also clear from the above figure 

and so it becomes inconvenient to consider this data as an absolute measure. Rather 

qualitatively it gives us the idea that the reflectivity is so low it almost approached the 

detection limit.   
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Figure 2.13 shows the continuous wave (CW) photoluminescence (PL) spectra of the 

SrSe coated PbSe/PbSrSe multi quantum well sample at room temperature. CW emission 

from the sample was recorded at different pump power. This figure shows the spectra 

where the pump power was increased gradually from 65 mW to 1.1 W. 

 

 

Fig 2.13 Room Temperature PL spectra of SrSe coated MQW sample 

 

A blue-shift in the peak emission has been observed with the increased pump power. This 

is because of the heat generated and temperature induced band gap change in the 

epilayer. 
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Figure 2.14 shows the calibrated output power of PL emissions at room temperature as a 

function of pump power density, before and after coating SrSe on the sample. The output 

power increases monotonically with the increase in pump intensity, indicating the 

spontaneous nature of emission from the sample. Before coating of SrSe the maximum 

CW output power from the sample was 40µW for a pump power of 1W on a spot of 

400µm diameter. But after the coating of SrSe the maximum CW output power from the 

same sample increased to 95µW for the same pumping condition. 

 

 

Fig 2.14 Room temperature CW output power from sample as a function of pump power density 

 

Although further measurement of output power from the sample at a relatively higher 

pump power was limited by the low power of the pumping laser. Also, the collection 

optics of the spectrometer contains a parabolic mirror that collects only 4.63% of the total 

emission from the sample considering a conservative value that emission occurs through 
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an angle -75º to +75º. Therefore, the total emission from the sample before coating can be 

estimated as 863µW and after SrSe coating it is 2 mW.  

In conclusion, an antireflection coating material has been demonstrated for the 

optically pumped IV-VI semiconductor devices. Coating its surface with a quarter-wave 

single layer coating of SrSe reduced the reflectance of the IV-VI semiconductor surface 

in the studied spectral range covered by the pump light. The position of the minimum in 

the reflectance spectra obtained for single-layer coatings can be shifted to a desired 

wavelength by changing the optical thickness of the coating. Also, the minimum 

reflectance band obtained with this single-layer coating is sufficiently wide for practical 

optical pumping. The coating enhances the pumping efficiency thus by allowing more 

photons to be absorbed in the device material. Almost 3-4 times increment in the output 

power of the PbSe/PbSrSe light emitting structure has been demonstrated. The multiple-

quantum-well sample used in the experiment is not the best one and epi-side-up mounting 

has been used during photoluminescence measurement. Therefore, it can be anticipated 

that better heat management could lead to an emission intensity of approximately 10 mW 

with this coating. 
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3.1 Potential Advantages of [110] Orientation for IV-VI Pb-Salt Lasers 

The first laser action of lead chalcogenides was obtained from PbTe in 19641; two 

year after the first semiconductor GaAs laser was made. These lead salt diode lasers were 

usually fabricated on [100] orientated lead salt wafers because of the availability of two 

parallel facets that can be cleaved along the easiest cleavage plane {100} to form a 

Fabry-Perot cavity. However, it has been theoretically demonstrated that [110] 

orientation is the best orientation for QW lead salt laser fabrication2. Theoretical 

simulations for the [110] orientation showed higher gain, higher efficiency, compared to 

conventional [100] orientated lasers. 

 

 

Fig 3.1 Illustration of PbSe L-valley energy minima 
 

Figure 3.1 illustrates the configuration of L-valley constant energy surfaces in k space for 

IV-VI materials. The gain function due to a single L-point band extremum is proportional 

to the momentum matrix element3.  
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The momentum matrix element in terms of interband matrix element can be expressed as,  

( ) ( ) 2

2
022222

h

mSinPCosPp llvcx θθ +=    (3.1) 

,where θ is the angle between a single [111] direction and the electric field vector of the 

radiation. Table 3.1 shows the effective masses for electrons and holes for different 

orientations for the energy minima shown in Figure 3.1. 

 

Table 3.1 Effective mass along different orientations for L-valley energy minima 2 

 
Surface 

Orientation 
mx my mz Degeneracy 

[100] mt (mt+2ml)/3 3mtml/(mt+2ml) 4 

     

mt (2mt+ml)/3 3mtml/(2mt+ml) 2 
[110] 

mt ml mt 2 

     

mt mt ml 1 
[111] 

mt (mt+8ml)/3 9mtml/(mt+8ml) 3 

 

 

For PbSe, ml ≈2mt (both electrons and holes). When growing QW structures along [111] 

orientation, in which the effective mass ml in the longitudinal valley is heavier than that 

of the three transverse valleys, the sub-band energies of the oblique valley increase faster. 

Hence, 1 –1 sub-band transition of the longitudinal valley becomes lowest. The 

degeneracy is then lifted.  
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Similarly, [110]-orientation partially lifts the degeneracy. However, four energy valleys 

in [100] orientation, stay degenerated. For QW structures when degeneracy is lifted off 

on [111] and [110] orientations, the gain is determined by the angle in equation (3.1) and 

the quasi Fermi energy levels. 

 

 

Fig 3.2 Calculated peak gain for [111], [100] and [110] QW structure at different injected carrier 
concentrations at 300 K. The free carrier absorption (solid line) is shown as well 2. 
 

Figure 3.2 shows the calculated peak gain along [111], [110] and [100] orientations 

together with the free carrier absorption loss σFN. As can be seen that [111] orientation 

has the lowest threshold concentration. For low loss laser devices such as VCSEL, [111]-

orientation is best suited for low threshold operation. [111]-gain increases at a rate slower 

than the increase of free carrier absorption loss. Therefore, [111] orientation would tend 
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to have gain saturation for a relatively high loss device such as an edge emitting laser. 

For edge emitting lasers whose loss is significantly higher than VCSEL, higher gain is 

needed. [110] orientation provides the highest gain among all these three possible 

orientations for laser fabrication. For example, at 300K the [110]-gain is about twice as 

high as [100] gain. With the lifted degeneracy for structures on [111] and [110] 

orientation, less number of valleys along is filled. This causes the quasi-Fermi levels to 

separate more from the band edges. This in turn lowers the threshold and increases the 

gain, as the Fermi energies are in the exponential term of the gain equation. As the 

injected carrier concentration increases, the density of states increases proportional to the 

number of degenerate valleys. The combination determines the gain value. Although the 

calculations using the gain expression for bulk material is not as accurate as direct 

simulation of gain in a lead salt QW structure, however it should give some insights as to 

why different orientation could provide different gain. It is worthwhile mentioning that 

QW gain should be much larger than the bulk material gain because of the stronger 

electron-hole coupling. 

Another significant advantage of [110] orientation is the low dislocation density. 

The mechanism of strain relaxation in IV-VI materials is by glide of dislocations. This 

mechanism will be quite clear from Figure 3.3, which is actually the schematic showing 

the geometry of dislocation gliding, on the next page. 
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Fig 3.3 Schematic drawing of the arrangement of the {100}<110> glide system for the NaCl type 
PbSe(111) layers4 . 
 

It is evident from Figure 3.3, the Burgers vectors are of type a/2 <110>. However, unlike 

the zinc-blende type semiconductors, the primary glide planes of IV-VI Pb-salt materials 

are {100}. The critical resolved shear stresses are low for these planes (while they are 

much higher in the second glide system with {110} type glide planes). The {100} planes 

are inclined to the [111] oriented layer surface. Therefore, each time a mechanical strain 

tends to build up (e.g. during the MBE growth because of the lattice mismatch or due to 

temperature changes), this strain can relax by the glide of dislocations on the {100} type 

planes since the Schmid factors are high for this growth orientation. In the contrary, for 

[100] oriented layers, the Schmid factors for glide in the primary {100} planes are zero, 

and therefore, no glide can occur in the main {100} glide system. The misfit dislocations 

lie along <110> directions, i.e., the intersection of the {100} type glide planes with the 
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[111] oriented interface. They are arranged with three-fold symmetry. When a misfit 

dislocation is formed by glide of a threading dislocation no defect remains in the interior 

of the layer, instead, the misfit dislocation lies at the interface and a single atomic step 

remains at the surface. If more than one dislocation glides on the same slip plane, the 

surface step is higher. 
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3.2 Development of Novel Surface Preparation Technology of {110} 
BaF2 Wafers for Epitaxial Growth 

The first step towards the fabrication of [110] oriented laser on BaF2 substrate 

was the development of surface preparation technology for [110] oriented wafers for the 

epitaxial growth of IV-VI semiconductor layers.  Since [110] orientation is not the natural 

cleaving direction of BaF2 crystal, {110} BaF2 is obtained by cutting the crystal along 

[110] orientation. Therefore, the surface of an unpolished substrate is severely rough; 

contains surface defects and grooves.  Figure 3.4 shows the SEM image of an unpolished 

{110} BaF2 wafer, as bought from a commercial vendor.  

 

 

Fig 3.4 SEM image of the surface of unpolished {110} BaF2 wafer 
 

The rougher the surface of the wafer the smaller the chances of getting single crystalline 

quality of the epitaxial layer grown on that surface. But all these drawbacks can be 

eliminated by polishing the substrates.  Polishing helps in achieving surface planarity, 

removes the surface roughness, and lowers the defect density on the surface as well. 
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Epilayers grown on a polished substrate should have a better quality and also at the same 

time enables easier processing of the device. 

As a part of this research a novel chemical mechanical polishing recipe was 

developed to make epi-ready [110] oriented BaF2 substrate for MBE growth. There were 

several challenges regarding this process. Epi-ready BaF2 substrates are not commercially 

available. Also to date there is no report available on polishing of [110] oriented BaF2 

wafers. Metal halides are not common materials for epitaxial growth; rather they have 

wide applications in IR windows. For these applications the surface flatness needed is not 

comparable to the flatness required for an epi-ready wafer. While developing a polishing 

recipe for {110} BaF2, the biggest of all the challenges was the extremely low Mohs’ 

hardness value of BaF2 crystal. Mohs’ hardness is actually the physical property of a 

material that represents a materials resistance to scratching. And among all metal 

fluorides, BaF2 has the lowest Mohs’ hardness of 3. Diamond is the material available in 

nature having the maximum Mohs’ hardness value of 10. Now all the abrasives and 

chemical slurries available commercially in the market for chemical mechanical polishing 

contain either Alumina (hardness: 9) or colloidal silica (hardness: 6 -7) that are much 

harder than BaF2. Therefore, commercially available slurry materials for chemical 

mechanical polishing do not have the ability to produce scratchless surface of BaF2, 

regardless of their particle size. In addition, most of the chemical polishing cloth 

available in the market was slightly harder and was found to scratch BaF2. Therefore, a 

polishing method of BaF2 that overcomes all these shortcomings needs to be developed. 

After a thorough research and rigorous experiments a novel polishing recipe was 
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developed in our lab, containing both mechanical and chemical material removal steps 

for {110} BaF2. 
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3.2.1 Fundamentals of Chemical Mechanical Polishing (CMP) 

Chemical mechanical polishing has come to occupy the role of an enabling 

technology for the semiconductor industry in its drive toward gigabit chips and sub-

quarter micron feature sizes. At the moment, it appears that the global planarization 

necessary for establishing reliable uniform interconnections or growth substrates can be 

achieved only by using CMP.   

CMP is described as a combination of mechanical abrasion and chemical reaction 

process.  According to M. Moinpour et al., CMP depends on at least sixteen parameters; 

a major parameter among them is the composition of the slurry5.  The development of an 

invariable CMP process needs consideration of many variables such as abrasive type and 

size; slurry chemicals including concentration and pH; percentage of solid fraction; 

surfactants; buffering agents. 

According to Sun Hyuk et al wafer polishing can be divided in two steps- 1) stock 

or bulk material removal and 2) final polishing step.  In the stock removal step, layers of 

wafer-materials from the wafer surface are effectively removed and in the final polishing 

step flatness of the wafer surface is achieved6.  The material removal rate is in turn a 

function of the concentration of chemicals and abrasives in the slurry7.  In a CMP process 

the polishing pad and the slurries play a vital role, as the formation of CMP by-product 

by slurry takes place between the interface of polishing pad and the wafer. The 

concentration of slurry between the wafer and the pad also controls the rate of formation 

of chemical byproduct in this process.  Hence, a continuous flow of slurry is required to 

keep a consistency in the material removal process8.   
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Slurry stability is another great concern in a CMP process. Abrasive particles in the slurry 

agglomerate; thus by modifying the slurry compositions. Particle agglomeration causes 

hefty defects on the wafer surface as well as on the polishing pads, during CMP. As a 

matter of course, mechanical grinding or shearing during the polishing process can detach 

the agglomerates as they remain attached by weak Vander-Waals force 9.  

 

 

         

   (a)      (b) 
Fig 3.5 Schematic of a generic rotary polishing tool (a); Bench Top LabOne polisher used in 
optoelectronics laboratory of OU for Chemical Mechanical Polishing (b) 
 

The substrates or wafers are mounted on a wafer-carrier during polishing. Depending on 

the design of the polisher, external weights or wafer carrier itself provides the pressure on 

the wafer needed for polishing.  The schematic of a generic CMP tool and the picture of 

the CMP tool used by us in the optoelectronics laboratory of OU are shown in Figure 3.5. 

During the CMP process, the wafer and polishing pad rotate against each other keeping 

the slurry at the middle of pad and wafer.  The speed of rotation of the wafer plays an 

important role in controlling material removal rates of wafer10.  However, the removal 
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rate is actually function of the product of pad pressure and relative velocity between pad 

and wafer, and is given by Preston’s Equation11. The smoothness that can be attained 

after CMP can be approximated by the Hertzian penetration depth: 

EK
PR
p

s 24
3 φ

=  

,where Φ is the abrasive particle diameter, P is polishing pressure, E is Young’s modulus 

of wafer material and Kp is a constant related to density of particle. Kp=1 for closely 

packed particle. 

“Polishing pads are considered to be the major consumables which affect the 

within-wafer and wafer-to-wafer non-uniformity (WIWNU and WTWNU)”12. Hence, 

CMP performance is also get affected by the mechanical properties of polishing pads. 

The macrostructure of the polishing pad and the relative motion of the polishing pad and 

the wafer control the movement of the slurry between pad and wafer 10.  A polishing pad 

consists of peaks and valleys.  The role of valley is to hold slurry and carry it to the 

contact region of pad and wafer by the relative movement between wafer and polishing 

pad and also carry by-products from the interface region of pad and wafer.  And the role 

of peaks is to withstand the stress on the wafer. The quality of the polishing pad degrades 

with time because of this stress caused by abrasive particle.  This also results in a sharp 

decrease in the material removal rate (MRR) with the increment in contact area and 

decrease in the contact pressure13.  Deformations in the polishing pads such as dishing 

and thinning have a negative effect on wafer surface uniformity.  Irregularities on the pad 

surface cause severe non-uniformities on wafer surface14. Hence, the pre-conditioning of 

the pad and conditioning during polishing is a key issue to a successful CMP process.  
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Several types of pad conditioning schemes are out there in the market. Appropriate wet 

and dry conditions should be carried out to prevent deterioration of the polishing pad. 

Conditioning also helps to improve the substrate surface and to keep a consistency in the 

polishing recipe.   
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3.2.2 CMP of {110} BaF2 

At the beginning of this development process, very few polishing recipes, that 

are available for [111] oriented BaF2, were attempted and applied on [110] orientation as 

well. Below is a brief summary of methods used and results obtained from them. 

Method I 

Earlier R. F. Bis et al. introduced a polishing method of BaF2 using a mixture of 

two solutions (a) 30% H2SO4 with 70% H2O (b) 40% HCl with 60% H2O.  According to 

that process, the polishing pad is first soaked with DI water and the two solutions are 

introduced drop by drop in a ratio of 4:6 i.e., four drops of H2SO4 solution and six drops 

of HCl solution. They recommended continuing polishing with the mixture and adding 

only HCl solution in case the polishing slows down.  The estimated time for this process 

is approximately 4 hrs but it varies according to the height of the cleavage steps on the 

substrate surface.  After polishing, the substrates are cleaned in a solution of 80% 

aerosol and 20% acetic acid15. 

This method was tried on [110]-oriented BaF2 substrates.  The process was 

initially started with 14 drops/min.  The etch rate was observed to be 3µm/min.  To 

increase the etch rate at initial stage, later on solution flow increased to 19 drops/min and 

finally to 30 drops/min and polished for an hour.  It took about an hour to remove all 

surface irregularities that were initially there on the unpolished substrate. But after this 

one hour the surface of the substrate was found with deep scratches.  In order to repair the 

scratched surface the substrates were further polished with a solution of HCl and DI 

water in the ratio 4:6 for approximately 17 minutes.  It did not produce desirable results 

and a further increase in surface scratches was observed, which is shown in Figure 3.6. 
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Fig 3.6 Nomarski image of the substrate surface polished with the recipe of Method-I 
 

Method II 

In the second method proposed by James Harrington et. al. the substrates are first 

polished on sandpaper of decreasing coarseness followed by a mechanical polishing with 

selected polishing abrasives of decreasing particle size till a relatively scratch free surface 

is obtained16.  After mechanical polishing, according to this process, the chemical cycle 

consists of an immersion cycle of mechanically polished substrates into a solution of 

concentrated sulfuric acid and acetic acid in the ratio of 4:9 for up to several hours.  This 

cycle is supposed to remove fine scratches remained after mechanical polishing. The time 

of polishing can be varied based on observations. Several combinations of these variable 

factors were tried but the surface quality never improved.  With this recipe each time the 

substrate immersed into the chemical solution after mechanical polishing, it instantly 

became smoky and severely damaged. Even after seven to eight cycles of mechanical and 

chemical polishing the situation did not improve. A scratch free substrate surface was not 

obtained with this method. Figure 3.7 shows the Nomarski image of the substrate surface 

after mechanical and chemical cycle following this method. 

 58



             

     (a)           (b) 

Fig 3.7 Nomarski image of the substrate surface polished with the recipe of Method-II. Surface 
after mechanical polish (a); surface after chemical cycle (b). 
 

Method III 

In this method a recipe proposed by Jr. Nordquist et. al. was followed17. The 

chemical polishing solution comprised of a mixture of 20 ml boric acid and 100 ml 

tartaric acid. This recipe produced better result than the previous ones but still surface 

quality was not acceptable for epitaxial growth. SEM image of the surface of the 

polished substrate obtained with this recipe is shown in Figure 3.8. 

 

 

Fig 3.8 SEM image of the substrate surface polished with the recipe of Method-III 
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CMP with ChemPol 

After experimenting with several polishing solution ultimately a novel polishing 

recipe that was developed for {110} BaF2 was a multistage polishing. Each stages of 

polishing were carried out with different polishing solutions that are named as ChemPol 

I, ChemPol II and ChemPol IV. Smooth epi-ready wafer surfaces were achieved with this 

method of polishing. The recipes for ChemPol I to ChemPol IV are proprietary and 

subject to a non-disclosure agreement (NDA). The three step polishing method is 

sequentially written below: 

 Reduction of surface roughness on back and front side of wafer with ChemPol I 

 Rough polishing with ChemPol II 

 Final chemical polishing with ChemPol IV 

Step I: In the first step Chem Pol I is used as the polishing solution on a 1200 grit size 

SiC cloth till the substrate become transparent and blisters on the surface get removed. 

Below are the images at different stages of polishing with Chem Pol I.    

  

 
(a) 

                             
                                            (b)                                                 (c) 
 
Fig 3.9 Nomarski image of unpolished substrate surface (a); substrate surface after 11 min (b); 
after 17 min (c) polishing with ChemPol I. 
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Step II: Once the substrate reaches the above stage, the next step is polishing with 

ChemPol II till no scratches are visible under 50X magnification of the Nomarski 

Microscope.  ChemPol II is an alkaline solution containing high purity nano-abrasives. 

The cloth initially moistened using DI water and the polishing solution was added at a 

rate of 1 ml/min.  The substrates were polished for 10 minutes and checked for scratches. 

After every run, the cloth was conditioned with DI water and the substrates were also 

cleaned with DI water as well.  Cleaning the cloth at regular interval with DI water is 

important as the silica particles in the polishing slurry solidify quickly in air-contact on 

the cloths thus causing deterioration of the cloth and the substrate surface. 

 

     

                               (a)                                                                     (b) 

Fig 3.10 Nomarski image of polished substrate surface after 15 min (a); after 25 min (b) polishing 
with ChemPol II. 
 

It can be seen in the above figure that after 15 min of polishing with ChemPol II still one 

or two fine scratches remain visible on the substrate. But after polishing 25 mins 

scratches become invisible at higher magnification of Nomarski Microscope. 
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Step III: The next stage involves final polishing using a purely chemical solution without 

any abrasive to attain a completely uniform surface with no scratches at the highest 

possible magnification of Nomarski and SEM.  After polishing with the ChemPol II, 

although a scratch-free surface was observed under Nomarski but the SEM images 

showed light scratches and roughness on the surface. Figure 3.11 shows the SEM image 

of [110]-oriented substrate, after polishing with ChemPol II and before the final polishing 

stage. 

 

 

Fig 3.11 SEM image of the substrate surface polished with ChemPol II 

 

It is observed from the above SEM that ChemPol II was not sufficient enough to produce 

epi-ready surface. Therefore, final polishing was carried out using yet another fresh 

solution, ChemPol IV for 30 seconds.  The cloth was initially moistened using the same 

solution and the solution was added continuously at a rate of 1 ml/sec.  The SEM pictures 

showed no surface non-uniformity or any scratches.  Figure 3.12 shows the surface of a 

[110]-oriented substrate after final polishing with this new solution. 
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Fig 3.12 SEM image of the substrate surface polished with ChemPol IV 

 

The image was taken at quite high magnification and no surface non uniformity was 

observed. Figure 3.13 shows the Nomarski image of a single layer PbSe sample that was 

grown on polished {110} BaF2 wafer. 

 

 

Fig 3.13 Nomarski image of PbSe epitaxy grown on polished {110} BaF2 substrate 
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Chemistry behind the process 

The principal etching solution used in this chemical process is de-ionized (DI) 

water. Hydrated surface of BaF2 forms a thin layer of barium hydroxide Ba(OH)2 by 

reacting with H2O (basically the OH- ion). The chemical reaction is written below: 

BaF2 + 2 H2O = Ba(OH)2 + 2HF 

Thus to remove few mono layers of barium fluoride  materials from the surface of a BaF2 

wafer by forming metal-hydroxide at the interface of wafer surface and polishing pads, 

strict process control of several parameters including the etch rate, pressure on polishing 

pad , relative velocity between pad and wafer, was needed. Each parameter was 

optimized after a vivid research and chain of experiments. Control of etch rate was 

accomplished by adding appropriate amount of a moderator in the polishing solution. 

Pressure on Pad and the relative velocity was optimized by using design of experiment 

(DOE) technique. Also since the final polishing was completely chemical without any 

abrasive, the abrasion of reaction by-products was accomplished by the polishing pad 

only. Hence, after a thorough research a polishing cloth having large valley area but at 

the same time having less hardness and short nap was chosen. 
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3.2.3 Characterization of polished substrate after MBE growth  

MBE growth of Pb-salt epitaxial layers on polished [110] oriented BaF2 substrate 

showed promising results18. During growth of PbSe/PbSrSe QW on polished BaF2 

substrate, In situ RHEED showed two dimensional growth modes. Figure 3.14 shows the 

RHEED patterns from [11¯2] BaF2 orientation and of PbSe after one minute growth (33 

nm). 

 

 

Fig 3.14 RHEED patterns from BaF2 substrate (a) grown PbSe layer (b) 

 

The 2D nature of the RHEED images depicts improved surface quality and single 

crystalline nature of grown epitaxial layer.  The RHEED of the PbSe film has an equal 

spacing identical to that of the BaF2 substrate which suggests the idea of same lattice 

registrations and better epilayer quality. After MBE growth, photoluminescence and 

HRXRD measurements were carried out to know the optical performance and material 

quality of the grown layers on polished wafer. PL intensity of a seven pair PbSe (20 

nm)/PbSrSe (30nm) QW structure grown on [110] sample was about 2 times higher than 

that of cleaved [111] sample grown in the same MBE run 18. 
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           (a) 

 
             (b) 

Fig 3.15 Comparison of room temperature photoluminescence on cleaved [111] and polished 
[110] oriented BaF2 substrate (a) and HRXRD spectrum of the (220) reflection from a 3.9 µm 
PbSe thin film on [110] oriented BaF2 substrate (b) 18. 
 

Figure shows, the PL intensity of [110] sample is about 2 times higher than that of [111] 

sample. Figure 3.16 (b) shows (220) rocking curve of PbSe thin film which has a FWHM 

of 60 arcsec. All these results indicate high material quality. The dislocation density of 

PbSe thin film was estimated to be 1x107 cm-2 from rocking-curve measurements19. 
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3.3 Development of [110] Oriented Edge Emitting Laser 

It was mentioned before that commercially available lead salt diode lasers are 

fabricated on [100] orientated lead salt wafers because of the availability of two parallel 

facets that can be cleaved along {100} to form a Fabry-Perot cavity. Now for fabrication 

of lasers grown on [110] oriented BaF2, Fabry-Perot cavities can be obtained by cleaving 

the structure along {111} planes, which is the natural cleavage plane of BaF2. Figure 

3.16 shows the orientation of {110}, {111}, {100} planes. From the figure it is clear that 

for growth along [110] orientation, there exists parallel {111} planes that can lead to the 

formation of cavity for a cleaved cavity laser. 

 

     

Fig 3.16 Crystal orientation showing different planes and their intersection 

 

Another approach of having Fabry-Perot cavity for lasing is etching. With etching, 

parallel facets can be obtained along any direction. Wet etching and a step toward dry 

etching has already been discussed in Chapter 2. In this chapter, other than cleaved facet, 

progress made afterwards toward dry etched structures will also be discussed. 
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3.3.1 Cleaved facet laser 

As a first step toward cleaved facet [110] oriented edge emitting laser (EEL), 7 

pair PbSe/PbSrSe multi quantum well followed by 50 nm Pb0.96Sr0.04Se optical 

confinement layer was grown on {110} BaF2 for optical pumping of the device. A ridge 

waveguide structure with thick gold coating on top surface, for better heat dissipation, 

was planned for this laser. Figure 3.17 shows the schematic of layer and device structure. 

 

  

                            (a)                                                                                      (b) 

Fig 3.17 Schematic of layer structure (a) device structure (b) for optically pumped EEL on 
BaF2 
 

In the device structure, a thin layer of CaF2 on top of ridge and entire sample 

served as passivation layer. Pb served as a seed layer for the electro deposition of Au. To 

form a ridge waveguide, the epitaxial layer was etched followed by a photolithography 

step. Before lithography the entire sample was cleaved along [111] orientation and then 

9 µm wide photoresist stripes were fabricated perpendicular to the cleaving plane. Wet 

etching was performed to obtain the ridge. Because of isotropic etching, the width of the 

top portion of ridge narrowed down to 5 µm after etching. After the formation of the 

ridge the sample was cleaned thoroughly and transferred into the MBE chamber for the 

growth of CaF2 and Pb layer on the sample. After this deposition, a 1.5 µm thick layer of 

 68



Au was electrodeposited on the entire sample. The figure below shows the Nomarski 

image of the sample at different stages of fabrication. 

 

 

              

                                      (a)                                                         (b) 

   

                                  (c)                                                                  (d) 

Fig 3.18 Nomarski image of top view of the EEL sample after photolithography (a); image of 
cross-section of the ridge after wet etching (b); image of top view of sample after depositing 
CaF2 and Pb consecutively (c); image of top view after depositing gold on entire sample.  
 

After the deposition of gold, BaF2 substrate was thinned down from the back, to 200 µm 

from the original thickness of 500 µm for the ease of cleaving. The entire sample was 

mounted upside down on a thinning holder and wafer thinning was carried out. 
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Problem faced and probable solution 

After the fabrication of the device the next step was cleaving the assembly along 

{111} to form facet and or cavity. But during cleaving we encountered problem. It was 

found that the epitaxial layer was not cleaving along with the growth substrate BaF2. At 

a first glance we assumed that this happened because of thick gold on top of the sample. 

Therefore, to clarify this point we fabricated another piece of the same sample; omitted 

the gold deposition step and performed cleaving again. The results obtained from both 

the cases are shown in Figure 3.19. 

 

  

                                (a)                                                                     (b) 

Fig 3.19 Nomarski image of top view of the gold deposited EEL sample after cleaving (a); 
image of top view of same sample without gold after cleaving (b). 
 

From the above figure it can be seen that with or without gold, in both the cases Pb-salt 

layer did not cleave along with BaF2. In both the cases the Pb-salt ridge was hanging 

from the edge of cleaved BaF2. Hence it was confirmed that thick metal did not play any 

role in this uneven cleaving. 
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To solve the problem of this uneven cleaving a new structure was designed where the 

Pb-salt epitaxial layer was sandwiched between the BaF2 growth substrate and another 

layer of BaF2 deposited on top of epitaxial layer.  The schematic of this new ridge 

structure is shown in Figure 3.20. 

 

 

 

Fig 3.20 Schematic of modified device structure for optically pumped EEL on BaF2 

 

With this structure it was expected that the cleaving force would be transferred to the 

epitaxial layer both from top and bottom by the top and bottom BaF2 and preferentially 

that would cleave the Pb-salt epitaxy. To verify this fact we grew a 500 nm thick layer of 

BaF2 on top of the same sample whose layer structure was shown in Figure 3.17. After 

deposition of BaF2, the substrate was thinned from the back as before, for the ease of 

cleaving. After thinning the sample was cleaved along [111] direction. The Nomarski 

image of the cleaved sample is shown in Figure 3.21. 
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(a) 

 

(b) 

Fig 3.21 Nomarski image of top view of the modified EEL sample after cleaving (a); image of 
cross-section of the sample after cleaving (b). 
 

From these images it is quite clear that for the second structure, Pb-salt epilayer cleaved 

with the growth substrate. No hanging Pb-salt layer was found after cleaving for the 

second structure, as it was the case in the first structure. Therefore, we did proceed to 

measurement with this sample. 
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Characterization of the EEL structure 

The sample was optically pumped normal to the substrate, by a 1.064 μm 

Nd:YAG laser (τpulse ≈ 23ns, 10Hz) with a rectangular spot having a dimension of 

100X600 µm2. The emission from the side i.e from one facet of the sample was 

measured with an IFS 66/S spectrometer in step-scan mode using an InSb detector, in 

1cm-1 resolution of spectrometer. Peak pumping intensity was 5 kW/cm2. Figure 3.22 

shows the room temperature emission spectrum measured from one facet of this edge 

emitting structure. 

 

 

Fig 3.22 Side emission spectrum at room temperature from optically pumped Edge Emitting 
structure on [110] oriented BaF2 substrate 
 

As can be seen in the figure, strong emission was observed at room temperature, but the 

line-width of side emission was 30 cm-1, which is much wider than cavity modes. 

Therefore, the results do not indicate lasing. 
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Discussion on the result 

The reason for not getting cavity modes or lasing from this structure became 

clear afterwards from the SEM image of the cross-sections. Although with the 2nd 

structure the epilayer did cleave or in other words we should say broke along with the 

BaF2 but it did not cleave along its natural cleaving direction, which is actually [100] for 

Pb-salt based crystals. And therefore, it was not actually cleaved but broken 

perpendicular to the [111] direction. Hence, the absence of a proper Fabry-Perot cavity 

that is needed to achieve stimulated emission prevented lasing. Figure 3.23 shows an 

SEM cross section of the modified EEL sample obtained after cleaving. 

 

  

Fig 3.23 SEM image of cleaved cross-section of the modified EEL sample, lower magnification 
(a) higher magnification (b)  
 

From the above figure, it can be seen that both BaF2 substrate and top BaF2 layer were 

nicely cleaved along [111] orientation. But the Pb-salt layer did not cleave, rather broke. 
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3.3.2 Plasma etching for edge-emitting laser 

To obtain Fabry-Perot cavity for edge emitting structure, grown on {110} BaF2, 

plasma etching of PbSe and PbSrSe based material was investigated in collaboration with 

a commercial vendor. My role in this collaboration was researching on the process; 

proposing the recipe; also helping to optimize the recipe and producing feedback. Plasma 

etching of IV-VI material has been reported, to obtain mirror facet for the EEL, by Zogg. 

et. al.20. Also, dry etching of PbTe/ Pb1-xEuxTe to form nano-structures using CH4/H2 

plasma was reported by Schwarzl et. al.21. In particular, CH4/H2 dry etching has been 

proven to cause the least damage to III–V semiconductors as well22. Therefore, for our 

PbSe/PbSrSe material system we decided to start with CH4/H2 chemistry. As it was 

discussed in Chapter 2, for the first dry etch sample, plated Au was used as mask and that 

did not work because of huge roughness of plated gold, thus during second trial, a 

photoresist mask, which is quite smooth, was used. For etching trials, PbSe/PbSrSe 

multiple quantum well (MQW) layers grown on BaF2 substrate was used. The etching 

recipe that was used for this etching is shown in Table 3.2. 

 

Table 3.2 Etching recipe of PbSe/PbSrSe material system with CH4/H2 chemistry 

 

The SEM cross sectional image of the etched facet of the sample is shown in Figure 

3.24. 

 

CH4 H2 Ar ICP RIE Pressure Rate
8 sccm 32 sccm 10 sccm 300 W 65 W 20 mtorr 45 nm/min
4 sccm 32 sccm 10 sccm 0 W 170 W 20 mtorr 45 nm/min
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Fig 3.24 SEM image of dry-etched cross-section of PbSe/PbSrSe sample, with photoresist mask 

rom the above figure, it can be seen that during etching the etchant gases did react with 

 

F

photoresist making it rough. And hence, the etched facet also became rough. The 

photoresist that we used for this purpose was AZ-4110, which did not work with CH4/H2 

chemistry. The reason for using AZ-4110 was easy processing and easy post-etching 

removal process. The best option with photoresist would be use of SU-8. But once this 

photoresist gets cured, the only way to remove it is through plasma-ashing and this was 

not possible in our laboratory facility. 
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To interpret the tolerance limit of facet roughness, a calculation was carried out 

to analyze reflectivity of the facet as a function of facet roughness based on the formula 

provided by Stocker et. al. 23. 

The normalized power reflectivity[R(d)], i.e the ratio of the actual power 

reflectivity (R) to the power reflectivity for a perfectly smooth facet (R0) is given by, 

2
0

2 )/(16

0

)( λπ dne
R

dR Δ−=
Δ

 

For an uncoated surface, R0 = (n1-n2)2 / (n1+n2)2. For our case, by putting λ0= 4 µm and 

n=4.8, the plot of normalized power reflectivity[R(d)] and surface roughness ‘d’ can be 

obtained as shown below, 

 

 

          Fig 3.25 Plot of normalized facet reflectivity R(d) vs facet roughness d (um) 
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Literature review revealed that with CH4/H2 chemistry, a 1 µm thick Si3N4 layer 

could be the better etch mask. Hence, we used sputter deposited Si3N4 as the mask 

material for our next trial. Although due to very slow deposition rate of Si3N4 in our 

sputtering chamber, we were able to deposit only 0.3 µm of this material. Figure 3.26 

shows the etched cross-section of a 2 µm thick PbSe/PbSrSe layer obtained with Si3N4 

masking. 

 

 

Fig 3.26 SEM image of dry-etched cross-section of PbSe/PbSrSe sample, with Si3N4 mask 

 

From the above figure, it is clear that from many portion of Si3N4 layer the material was 

etched away during RIE of IV-VI material. In this particular case the reason of this 

etching was very low thickness of Si3N4 and above all poor quality of sputtered material. 

Although in the Si industry it is commonly known that sputtered Si3N4 always has a very  

 78



poor quality and for that reason the recommended deposition technique for this material 

is CVD, but since in our lab we did not have the facility to do that, we had to go ahead 

with sputtering. 

Later on, during collaboration with Penn State University some promising results 

were obtained from dry etching of PbSe/PbSrSe based material using Ni mask. 

However, a plasma etcher was not available at OU and hence, the whole process of dry 

etching by collaborating with others at a remote facility was found to be very slow. 

Therefore, further research was carried out on the development of a substrate removal 

method that would preferentially cleave Pb-salt material along [100] direction, for the 

growth on [110] oriented BaF2 substrate. 
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3.3.3 Gold-Indium bonded laser on GaAs wafer 

It was already discussed in the previous sections that parallel natural cleavage 

{100} planes also exist for [110] orientated structure that allows the formation of Fabry-

Perot cavity. However, from the results shown in section 3.3.1, it is clear that the 

challenge still remained in fabricating the cleaved cavity laser structure on BaF2 substrate 

because of the dissimilar natural cleavage plane of epilayers and the BaF2 substrate that 

has natural {111} cleavage plane. Therefore, development of a proper cleaving method 

by removing the growth substrate became necessary. Epitaxial transfer and the removal 

of growth substrate have already been developed for various material systems24 25  26. 

In this section a novel mounting technique will be described with epitaxial 

transfer of Pb-salt based structure onto {100} GaAs wafers for the fabrication of cleaved 

cavity Pb-salt laser grown on BaF2
27. In this process the cleavage plane of PbSe in the 

[100] direction is aligned with GaAs (110) plane. The advantage of this approach is that 

BaF2 growth substrate is commercially available and has high material quality. The use 

of BaF2 as a growth substrate is much more cost effective and economic than the use of 

expensive PbSe substrates. Again, the GaAs carrier wafers not only facilitate the 

cleaving technique but also have the advantage of better thermal conductivity (46 Wm-

1.K-1@298 K) over BaF2 substrates (11.7Wm-1.K-1@286K). Conductive GaAs wafers 

also overcome the disadvantages of insulating BaF2 substrate and ease the fabrication of 

electrically injected devices. 
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Experimental Procedure of transferring Pb-salt epitaxy on {100} GaAs 

PbSe/ PbSrSe epitaxial layers were grown on [110] orientated BaF2 substrates by 

molecular beam epitaxy (MBE) as described in reference-18. Epilayers were bonded to 

the GaAs wafers by using a metallic Gold-Indium alloy having very high melting 

temperature28. The GaAs wafers used for these experiments were n-type doped. Figure 

3.27 shows a schematic of bonded epilayer on GaAs, before and after growth substrate 

removal. A layer of Ni/Au/Ge alloy on both sides of GaAs wafers serves the purpose of 

ohmic contact on GaAs. 

 

 

Fig 3.27 Schematic of bonded cross-section before BaF2 substrate removal. Pb-salt sample 
mounted episide down on GaAs (a); The sample after BaF2 substrate removal (b). 
 

Prior to bonding, the GaAs wafers (2”dia) were mechanically thinned to almost 170 µm 

from an initial thickness of 600 µm for the ease of cleaving. Then they were polished 

using a sodium hypochlorite based commercially available polishing fluid, Chemlox. 

After polishing, the wafers were subject to ultrasonic cleaning in acetone, propanol and 

methanol bath respectively, followed by an oxide removal technique in which the wafers 

were boiled in 1:1   HCL, De-Ionized water solution until they become hygroscopic. 
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Figure 3.28 shows the SEM image of the polished GaAs wafer, revealing the surface 

morphology. 

 

 

Fig 3.28 SEM image of polished GaAs wafer, revealing surface morphology 

 

After polishing and cleaning, these wafers were sputter-coated with a thin layer of Au 

(~0.5µm) and cleaved into pieces to get two mutually perpendicular {110} planes. At 

this stage I would like to mention, to verify the bond ability and cleaving of Pb-salt 

epitaxy on GaAs, initially no Ni/Au/Ge alloy was deposited. But during the fabrication 

of diode laser, we did deposit this layer for ohmic contact formation. 

To cleave the Pb-salt layers in the [100] direction after bonding it onto GaAs, a 

proper alignment of epilayers along with growth substrate on the GaAs wafer was 

needed before bonding.  
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For this purpose at first the Pb-salt sample together with BaF2 substrate was cleaved 

twice to obtain two cleaved {111} planes as shown in Figure 3.29 (a) and (b). 

 

 

Fig 3.29 Schematic of crystal orientation, showing the intersection of {111} and {110} for 
different orientation of {111} plane and the correspondingly angle between {111} and {100}. 
 

As it can be seen that the angle between {111} and {100} is 54.735º and 35.265º 

respectively, depending upon two different orientations of the {111} planes. When two 

{111} planes intersect the {110} plane and meet at an acute angle, the angle between 

{111} and {100} is 54.735º and when they are obtuse this angle becomes 35.265º. Now 

for this bonding process we made a sample holder made of brass with a mark of 54.735º 

angle on it. Now after cleaving the Pb-salt sample twice along with BaF2, they were 

mounted on this holder in a specific manner depending on the angle between two {111} 

planes. This mounting is shown in Figure 3.30. 
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                             (a)                                                                                       (b) 
 
Fig 3.30 Schematic of the mounting of Pb-salt sample on holder. Aligned Pb-salt sample when 
the angle between two {111} plane is acute (a); Aligned Pb-salt sample when the angle between 
two {111} plane is obtuse (b).  
 

Before mounting the Pb-salt sample on the holder, about 1.5 µm of Au was electroplated 

on the Pb-salt sample. This gold layer also forms an ohmic contact to the Pb-salt layer. 

After the mounting of Pb-salt sample, about 5µm of ‘In’ was electroplated on the Au-

sputtered GaAs wafers. Pb-salt epilayer and GaAs wafer were then aligned quickly 

under an optical microscope and bonded together by the ‘In’ layer. Figure 3.31 shows 

the alignment with GaAs and the direction of cleaving. 

 

 

                          (a)                                                                          (b) 

Fig 3.31 Schematic of aligned GaAs and Pb-salt before bonding, when the angle between two 
{111} plane is acute (a); when the angle is obtuse (b). Arrows show the direction of cleaving after 
growth substrate removal.  
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The alignment process that is shown in the above two figures allows natural cleavage of 

{100} planes of [110] orientated Pb-salt epilayer together with {110} planes of GaAs 

after the BaF2 substrate is removed. After securing the In plated GaAs wafer on mounted 

Pb-salt sample on the brass holder, they were transferred in a small furnace and heated 

under vacuum (~10-3 torr). To ensure good adhesion between the samples they were kept 

under a static pressure by providing a weight of 500 gm/cm2 by mechanical means. The 

furnace temperature was raised to 290ºC in 1 hour and stayed at that temperature for 8 

hour. Then the furnace was turned off and allowed to cool at room temperature. 

Experimentally it was found that when the furnace temperature is 290ºC the temperature 

at the interface of Pb-salt and GaAs is around 200 ºC. However, this temperature gradient 

may change with the change in metallic weights that are usually kept on top of this 

assembly, during boding, to apply pressure on the sample. Also during initial experiments 

the bonding time was 8 hours, but later on it was reduced to 2 hr and same bonding 

strength was obtained. Upon completion of the bonding process, the sample was taken 

out from the chamber and mounted on another holder keeping GaAs side down and the 

BaF2 side up and then BaF2 substrate was thinned down to ~10-20µm by a chemo-

mechanical thinning process. The remaining BaF2 was removed by immersing the sample 

in DI water to avoid any mechanical damage to Pb-salt epi-layer. Now, during this 

removal process several obstacles were encountered. The etch rate of BaF2 substrate in 

DI water at room temperature was found quite low. After thinning, the removal of 

substrate in this method used to take 2-3 days. Therefore, substrate removal became quite 

a time consuming process. To make this process faster, substrate removal had been tested 

with i) DI water at 50 ºC; and ii)  a mixture of DI water with 30% filtered city water. 
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Time of etching came down to several hours with these processes, but in both cases the 

surface of the epitaxial layer got damaged and contaminated. 

Figure 3.32 (a) shows the Nomarski image of the surface of epitaxial layer, after 

removing BaF2 substrate by above mentioned processes. 

 

 

                                                                     (a) 

 

(b) 

Fig 3.32 Nomarski image of the surface of epitaxial layer, after BaF2 removal by DI water at 50 
ºC (a); image of the surface of epitaxial layer, after BaF2 removal by a mixture of DI water and 
30% filtered city water (acidic in nature) (b).  
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During removal of BaF2 in hot DI water, air bubbles created in water with enormous 

vapor pressure inside, and made the interface of epitaxial layer bonded on GaAs very 

weak and enhanced water getting under the epitaxial layer, which made the epitaxial 

layer rough.  In the second method even after using filtered water, lot of precipitation 

from water was found on the surface thus by making it severely contaminated. To solve 

these problems but at the same time to increase the etch rate of BaF2, a method was 

developed in which the BaF2 substrate was etched in DI water at room temperature while 

stirring the water by a magnetic stirrer at a speed of 100 rpm. And the sample was 

hanged inside the solution with the BaF2 side parallel to the direction of rotation of 

water. In this method the speed of rotation is a critical parameter. Very high speed 

creates vortex inside water and makes the bonded interface weak with time. Also very 

slow speed makes the etch rate slow. By this process, even 50 µm thick substrate was 

removed completely in 3 hrs. A point to be noted here is that the water was changed at 

an interval of 1 hr to prevent ionic saturation and enhance dissolution of more BaF2 in 

the de-ionized water. By using this method a mirror like surface of epitaxial layer was 

obtained. The SEM surface morphology of the epilayer after growth substrate removal is 

shown in Figure 3.33. To check any degradation of material properties during this 

process photoluminescence measurement was carried out before and after bonding of the 

epitaxial layer. No change in PL intensity from the epitaxial layer was observed after 

bonding, however a peak shift of 38 cm-1 was observed from a single layer PbSe sample 

after bonding and substrate removal. Figure 3.34 shows the PL spectrum of that sample 

before and after bonding. The pumping power and position of the sample was same for 

both the measurements.  
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Fig 3.33 SEM top view of the bonded epilayer on GaAs, after BaF2 substrate removal 

 

 

Fig 3.34 PL spectrum from a single layer PbSe sample before and after bonding on GaAs and 
after BaF2 substrate removal. The intensity showed here is 10% of actual intensity.  
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After the removal of BaF2 substrate the GaAs host substrates were cleaved in the 

directions as shown in Figure 3.31, this preferably cleaves Pb-salt material in the [100] 

direction. The quality of the cleaved plane and bonded cross-section was observed by 

scanning electron microscope (SEM); also the bonded cross-section was examined using 

energy dispersive x-ray spectroscopy (EDX). 

 

 

(a) 

 

(b) 
 
Fig 3.35 Scanning electron micrograph of bonded cross section (a); {100} cleaved facet of Pb-
salt epilayer after bonding and BaF2 substrate removal (b). 
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Cleaved facet of a PbSe epilayer bonded onto GaAs is shown in Figure 3.35. The figure 

shows a smooth {100} cleaved facet, and that proves the validity of the mounting 

technique. The bonding medium showed a total thickness of 6.95µm, which is consistent 

with the total thickness of the deposited metal before alloy formation. Proper bonding of 

the epilayer on GaAs happened because of the formation of high melting temperature Au-

In alloy (AuIn2-540.7ºC, AuIn-509.6ºC) in the bonding medium. 

 

 

Fig 3.36 Au-In Phase Diagram 26 

 

Figure 3.36 shows the Au-In phase diagram. AuIn2, AuIn alloys basically form through a 

solid-liquid diffusion process. When ‘In’ melts AuIn2 is formed at the interface of solid 

Au and liquid ‘In’, as the temperature rises above the melting point of ‘In’, the mixture 

dissolves Au to form more AuIn2. This solid–liquid diffusion continues until the mixture 
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solidifies. With higher concentration of gold, AuIn2 eventually results in AuIn, Au3In (γ) 

and Au4In (β) phases 26, 29. 

 

 

Fig 3.37 Weight percentage ratio of In-Au along bonding cross-section starting from the top 
surface of GaAs wafer to the backside of epilayer. 
 

Figure 3.37 shows the line-scan measurement results of EDX measurement. The ratio of 

In and Au weight percentages throughout the bonding layer extending from GaAs side to 

the PbSe side was calculated and shown in the figure.  Several sets of data were obtained 

by measuring along different trace lines across the bonding layer during EDX 

measurement. Measurement along different traces gave almost similar results. From the 

EDX data we observed that the bonding layer has three distinct regions: almost 0.4µm 

thick region with much higher wt% of Au and much less wt% of In on the GaAs side; 

then approximately 6.2µm thick region at the middle portion of the bonding medium 
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where the ratio of concentration of In and Au in wt% was variable and showed typical 

values like 1.17, 0.587, 0.176 indicating the formation AuIn2, AuIn, Au4In phases in the 

alloy and at the end an almost 0.35 µm thick region with ~90 wt% Au and no In on the 

PbSe side. But it can be seen from Figure 3.37 that the dominant intermetallic compound 

in the alloy was AuIn2. These data were consistent with the desired result. Initially the 

thickness of Au and Indium were chosen to give 51.5 wt% of Au and 48.5 wt% of In. 

Although for the formation of AuIn2 intermetallic compound the required composition 

was 46 wt% of Au and 54 wt% of In, but we preferred some extra gold so that even after 

alloy formation a layer of pure Au remain on the PbSe side and the Au-PbSe ohmic 

contact resistance remains unaffected. The formation of AuIn and Au4In alloy (shown as 

β phase in the phase diagram) in the bonding medium suggests that Au and Indium atoms 

continue to interdiffuse by solid-state diffusion as the time passes at higher temperature 

and form a mixture of AuIn2, AuIn, Au4In having much higher melting point. But among 

these three intermetallics the melting point of Au4In is comparatively lower than other 

two. In this particular experiment, the formation of Au4In was mainly because of 

prolonged bonding time. By reducing this time, one can eliminate the presence of this 

phase in the bonding intermetallics. 
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Fabrication of electrically pumped diode laser from bonded epitaxy on GaAs  

For the fabrication of diode laser first of all we grew epitaxial layers forming 

active region, as well as electrical and optical confinement region on {110} BaF2 

substrate. The active region consisted of a 7 pair MQW with 20 nm PbSe well and 30 

nm Pb0.97Sr0.03Se barrier. The n-cladding layer consisted of a 1.67 µm layer of Bi2Se3 

doped Pb0.96Sr0.04Se and p-cladding layer consisted of 1.3 µm of Ag doped Pb0.96Sr0.04Se. 

Before fabricating laser structure the Pb-salt based epitaxy was transferred on GaAs 

wafer following the method discussed above. The surface morphology of the Pb-salt 

epitaxial layer after bonding it on GaAs is shown in the figure below. 

 

 

Fig 3.38 Scanning electron micrograph of the bonded epilayer on GaAs carrier wafer, after BaF2 
growth substrate removal 
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Stripe geometry was followed for the diode laser fabrication. After the BaF2 substrate 

removal the Pb-salt epitaxy was cleaved along with GaAs to obtain the {100} plane. 40 

µm wide openings were then patterned perpendicular to this {100} plane by 

photolithography. An SEM cross-section of the bonded epitaxy after cleaving is shown 

in Figure 3.39. 

 

 

Fig 3.39 SEM cross-section of the bonded epilayer on GaAs carrier wafer, after BaF2 growth 
substrate removal. {100} plane of Pb-salt epitaxy is visible in the micrograph. 
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After forming 40 µm wide openings on the epilayer, 1 µm thick Au layer was 

electrodeposited on those openings for the formation of ohmic contacts to the Pb-salt 

layer. A schematic of this laser structure and Nomarski image of the plated gold stripes 

is shown in Figure 3.40 below.  

 

 

(a) 

 

(b) 

Fig 3.40 Schematic of the stripe geometry laser structure (a); Nomarski image of the plated gold 
stripes on Pb-salt epitaxial layer (b) 
 

It can be seen in the schematic that Si3N4 had been used as the insulating layer for 

epitaxial down mounting on laser head and a thin layer of sputtered gold was used on top 

for better heat dissipation. After Au electrodeposition for stripe formation, photoresist 
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was removed and 0.2 µm thick silicon nitride was sputter deposited on the whole 

structure. Next Si3N4 was etched from the top of the gold stripe to open 25 µm window 

on gold stripes and hence exposing the stripes for electrical connection. Finally a 0.1 µm 

thin layer of Au was sputter coated to form the top Au layer. After this step, the structure 

was cleaved into 300-500 µm long rectangular pieces to form the cavity and individual 

diode lasers. The figure below shows the SEM cross section of a single diode laser. 

 

 

(a) 

               

                                    (b)                                                              (c) 

Fig 3.41 SEM cross sections of a single diode laser (a); magnified image of gold stripe region 
(b); magnified image of sputter gold/ Si3N4 region (c). 
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Device Characterization 

The first step in device characterization started with measuring the I-V 

characteristics of the fabricated edge emitting structure. The following figure shows the 

I-V curve of the above fabricated structure in forward bias.  

 

 

Fig 3.42 Current –Voltage relationship of the fabricated structure in forward bias 

 

From the I-V characteristics the existence of a p-n junction was not observed in this 

sample. Therefore, lasing could not be expected from this structure.  

The probable reason of not having a p-n junction in the sample could be longer 

post growth annealing which might cause dopant diffusion. During the growth of this 

sample, after the growth of n-PbSrSe layer it was annealed overnight at 250 oC, then 

again after growing p-PbSrSe layer and p+ PbSe cap layer, it was annealed overnight at 

250 oC. Also, [110] orientation that provides dislocation gliding might lead to the gliding 

of dopants as well during the growth of epitaxial layer. To our knowledge, the diffusion 

properties of both p- and n-dopants in Pb-salt materials on BaF2 substrates have not been 
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studied. Since, only three p-n junction laser structures on {110} BaF2 have been 

fabricated till now, more experiments are needed for conclusive suggestion.  

In sum, a novel fabrication method has been developed for electrically pumped Pb-salt 

laser grown on [110] oriented BaF2 substrates. Once the junction characteristics are 

improved, electrically pumped Mid-IR lasers would be anticipated. 
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[110] Oriented Edge Emitting Laser on PbSnSe 
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4.1 Surface Preparation of {110} PbSnSe Wafers for MBE Growth 

MBE epitaxial growth of Pb-salt based material on [110] oriented PbSnSe 

substrates has not been performed before the research work of this dissertation. 

Therefore, there was a need to develop a polishing recipe for such substrates. PbSnSe 

substrate polishing also consisted of both mechanical and chemical cycles. Chemical 

cycle comprised of two parts with two different sets of chemical solution, SOLN1 and 

SOLN2. First solution had much higher etch-rate than the second. This was to get rid of 

the higher order surface non uniformities at a much faster rate, with the first solution. The 

chemicals chosen for the chemical cycles were kept same as the one used for [100] 

oriented Pb-salt wafers, but the composition was changed for [110] oriented substrates 

because of etch rate difference between two orientations. After a series of experiments, a 

chemical mechanical polishing recipe was optimized for [110] oriented epi-ready PbSnSe 

substrate. Again, recipes of SOLN1 and SOLN2 are proprietary and subject to a NDA 

(Non-disclosure agreement). 

 

                    

                                          (a)                                                   (b) 

Fig 4.1 Nomarski image of the PbSnSe wafer surface before polishing (a); image of same wafer 
surface after mechanical polishing (b).  
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The figure above shows PbSnSe wafer surface before and after mechanical polishing. 

Unpolished wafers had several deep grooves and saw marks. Therefore, at first they 

were mechanically polished on a glass plate by hand with 5µm alumina suspension. This 

removes the deep saw marks but leaves scratches in the range of (5- 40) µm. For the 

faster removal of these scratches a chemical cycle followed the mechanical.  The first 

solution, SOLN1, used for chemical polishing has an etch rate of around 4µm/min. 

Figure 4.2 shows the Nomarski image of the wafer surface after chemical polishing with 

this solution.      

 

 

Fig 4.2 Nomarski image of the PbSnSe wafer surface after chemical polishing with SOLN1.  
 

As can be seen from the figure, other than one or two light scratches, most of the deep 

scratches occurred during mechanical polishing were being removed by this solution. 

However, there still remained some surface non-uniformities and light scratches after 

polishing with SOLN1. The purpose of final polishing solution SOLN2 is actually to 

remove these surface non-uniformities that still left after polishing with SOLN1 and to 

produce a smooth surface.  
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As it was mentioned before that chemicals chosen for the chemical cycles were kept 

same as the one used for [100] oriented wafers, but the composition was changed for 

[110] oriented substrates because of difference in the outcome, Figure 4.3 is evidence of 

this fact. Figure 4.3 shows the SEM surface morphology of PbSnSe wafer polished with 

final polishing solution SOLN2 having the same composition of chemicals used for 

[100] oriented Pb-salt wafers. 

 

 

Fig 4.3 SEM of the PbSnSe wafer surface after polishing with final polishing chemicals having 
same composition as the one used for polishing {100} Pb-salt wafers. 
 

From the SEM image it is quite clear that final polishing using the same composition of 

chemicals used for {100} wafers did not produce a defect free smooth surface for the 

[110] orientation. Therefore, the composition of the final polishing solution SOLN2 was 

changed for [110] oriented wafers.  
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SOLN2 with changed composition has an etch rate of around 1 µm/min. Figure 4.4 

shows the SEM surface morphology of the PbSnSe wafer after polishing with a changed 

composition of SOLN2. 

 

  

(a) 

 

(b) 

Fig 4.4 SEM of the PbSnSe wafer surface after polishing with changed composition of SOLN2 
(a); same image at a much higher magnification of the microscope (b). 
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As can be seen from the above figure, a smooth defect free surface for {110} PbSnSe 

was obtained after polishing with an optimized chemical solution. Based on the image, a 

convenient standard for the end point detection of PbSnSe wafer was also developed. 

When the light scattering of a narrow intense spot (focused by a lens of Nomarski optical 

microscope) from the wafer is invisible by the naked eye, the surface morphology of the 

wafer is comparable to the surface morphology shown in Figure 4.4. This method was 

therefore accepted as the standard end point detection for epi-ready wafer. 

Since most of the Pb-salts are extremely soft, this poses practical difficulties 

when handling bulk single crystals. Extreme care is needed and samples must not be 

treated with regular tweezers1. Therefore, throughout experimentation with Pb-salt 

substrate, filter papers and chemically resistant sample holders were used to handle the 

sample for complex processing. After chemical polishing cycle the samples were 

cleaned under flowing DI water for about 30 minutes. Before MBE growth the wafers 

were cleaned consecutively in electronic grade organic solvents, such as acetone, 

propanol and methanol. During growth of diode laser structure on polished {110} 

PbSnSe wafers, two dimensional RHEED pattern was observed from the substrate 

surface.  
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Fig 4.5 RHEED pattern from {110} PbSnSe substrate surface before epitaxial growth 

 

Figure 4.5 shows the RHEED pattern from such a substrate before starting epitaxial 

growth. Streaky RHEED pattern as it can be seen in the figure, confirms a defect free 

smooth substrate surface for 2-dimensional epitaxial growth. 

 

 

 

 

 

 

 

 107



4.2 Electrically Pumped Diode Laser with Si3N4 Insulating Layer 

PbSe/PbSrSe double heterostructure lasers on Pb-salt substrate were first 

developed by Spanger et al. in 19882. In PbSe-based lasers most commonly PbSSe, 

PbEuSe and PbSrSe are used as cladding materials; but among all these PbSrSe has some 

advantages. It was reported by Zogg et. al., “in PbEuTe, high carrier-concentration p-type 

films are obtained up to 600 meV of band gap while in PbEuSe band gap cannot exceed 

450 meV in order to grow such film. In PbSrSe-system p- and n-type films with higher 

carrier concentration are readily obtained even for band gaps above 600 meV”3. 

Commercially available Pb-salt lasers are fabricated with stripe geometry. Therefore, 

initially for the fabrication of diode laser on PbSnSe substrate the stripe geometry was 

followed with some modifications for better heat dissipation.  The schematic of the 

structure of a commercial Pb-salt laser chip is shown in the figure below for reference. 

 

 

Fig 4.6 Schematic of a commercial Pb-salt diode laser chip 

 

In our diode laser structure, the photoresist layer as shown in Figure 4.6 was replaced by 

a layer of silicon nitride. 
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4.2.1 Device structure and fabrication 

PbSe/PbSrSe double heterostructure was grown on {110} PbSnSe substrate for 

the cleaved cavity diode laser fabrication. The laser fabrication process flow is shown 

schematically in Figure 4.7. 

 

 

Fig 4.7 Schematic of processing steps for the fabrication of cleaved cavity PbSe/PbSrSe DH 
laser on {110} PbSnSe substrate. 
 

Results from two samples processed according to the above mentioned processing steps, 

will be presented in this section. The active region of the first sample LD1 consisted of 

1.03 µm of PbSe/PbSrSe double heterostructure, having 0.72 µm undoped PbSe and 

0.11 µm of undoped PbSrSe. The PbSrSe p-confinement layer was 2 µm thick and the 

PbSrSe n-confinement layer was 1.5 µm thick. The p- and n-confinement layers were 

followed by two graded p- and n- PbSrSe layers of 0.06 µm thickness, where the Sr 

composition was graded between 3% and 4%. And the top most layer was a 0.2 µm thick 
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n+-PbSe cap layer. The second sample, i.e LD2 had almost same structure, except p-

confinement layer, which was 1.48 µm thick and n-confinement layer, which was 1 µm 

thick. Also there was no graded layer in this structure. The {110} PbSnSe substrates 

used in these fabrications are p-type doped and have hole concentrations at around 5-8 X 

1018 /cm3. 

Initially during MBE growth on {110} PbSnSe, [100] oriented PbSe wafers were 

also mounted together with {110} wafers for epitaxial growth to compare lasing results 

from two different orientations. But after one or two runs of growth it was found that 

there are some differences in the growth condition for the two different orientations. 

Growth conditions that produced satisfactory results on {110}, did not produce high 

quality epilayers on {100} substrates. Surface morphology of the epitaxial layer on 

{100} PbSe wafer, grown at the same run along with LD1 sample on {110} PbSnSe, is 

shown in Figure 4.8 below. 

 

  

                                (a)                                                                   (b) 

Fig 4.8 SEM surface morphology of the epitaxial layer on {100} PbSe wafer (a), grown at the 
same run along with sample on {110} PbSnSe wafer (b). 
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It is clear from the SEM images that epitaxial layer on {100} wafer has a rougher 

surface morphology. Hence, comparison could not be done for the epitaxial layers grown 

at the same run for these two orientations. 

After MBE growth of the epitaxial layer, the sample was thinned from the back 

side, i.e the substrate side, from an original thickness of 500 µm to 250 µm for 

facilitating cleaving. After thinning, the back side of the substrate was polished with a 

chemical solution for the better adhesion of electrodeposited gold during laser 

fabrication.  

After thinning, the sample was cleaved along the {100} plane that is 

perpendicular to {110} plane. Then 40µm wide stripe patterns were made perpendicular 

to the {100} plane by a photolithographic technique. The microscope attached with the 

camera of our mask aligner has a maximum magnification of 20X. Therefore, to avoid 

any miss-alignment of the stripe contact with the {100} cleaved facet due to lower 

magnification of microscope, wider contact stripe was preferred. From a simple 

geometrical calculation it can be inferred that 1º miss-alignment can create a 5 µm 

deviation from perpendicular to obliqueness of the stripe to facet, for a 300 µm long 

cavity. After analyzing several stripe geometry lasers fabricated in our lab by SEM, it 

was found that maximum alignment error ranged from 0.1º to 0.3 º. For a 300 µm long 

cavity laser this could lead to a shift of   0.52 µm to 1.57 µm. Therefore, the reason for 

choosing a large contact width of 40 µm was to make the alignment error negligible. 

Because of the large contact width, multi mode behavior, higher threshold current and 

joule heating and therefore lower CW operation temperature was anticipated. However, 
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the goal of such laser structure is to demonstrate the feasibility of the [110] oriented lead 

salt laser. 

After photolithography a 0.3 µm thick Au layer was electroplated on the stripe 

and on the back side of the substrate to form both top and bottom contact as shown in 

Figure 4.7a. The photoresist was then completely removed from the sample as shown in 

Figure 4.7b and 0.2 µm thick Si3N4 layer was sputtered on top of the sample as shown in 

Figure 4.7c.  

Following the sputtering, a second time photolithography was performed on the 

sample to open a 10 µm wide window on gold stripe and etch the Si3N4 from the window 

to expose the gold stripe underneath for contact. This step is shown in Figure 4.7d.  

Opening window on gold stripe was another challenge. In our mask-aligner the 

camera for alignment is on one side and the exposure facility is on other side of the 

machine. And sample stage on a rail moves from one side to the other for exposure after 

alignment, and this is the time when there is a chance of a shift of the sample from the 

aligned position. The problem with mis-alignment is that if the window is opened even 

slightly outside the gold stripe, then the area of current spreading region will change and 

device performance will also change. Therefore, after the photolithography step for 

window opening, each time the sample was checked under microscope to find out the 

position of the window on the stripe. If there was an alignment error the 

photolithography step was repeated. 

Figure 4.9 shows the Nomarski image of the sample after having improper 

alignment of the window in the Si3N4 deposited on the gold stripe. 
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(a) 

 

(b) 

Fig 4.9 Nomarski image of the sample after having improper alignment of the window in the 
Si3N4 deposited gold stripe; image before etching Si3N4 (a); image after etching Si3N4 (b) from 
window.  
 

 

Figure 4.9 shows the Nomarski image of the sample with mis-alignment of the window.  
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Figure 4.10 shows the Nomarski image of a properly aligned window. Si3N4 wet etching 

was carried out by 7:1 BHF solution at room temperature. The etch rate was around 0.04 

µm/min. 

 

 

Fig 4.10 Nomarski image of the sample after having proper alignment of the window over Si3N4 
on top of the gold stripe. Si3N4 had not been etched from window region yet. 
 

After etching Si3N4 from the window the next step was sputtering a layer of gold 

on top of the whole sample, as shown in Figure 4.7f. The purpose of this layer was better 

heat dissipation through broad metal sheet. It also makes the episide down mounting 

easier.  This is the last step in the laser fabrication process, after this step the sample 

becomes ready for cleaving and mounting on a laser head for measurements. 

The cavity and mirror facets for lasing were formed by cleaving. Cleaving of a 

single laser chip is a manual process. Cavity length usually ranged from 300-500 µm.  

Figure 4.11 shows a scanning electron micrograph of the cleaved cross section of a 

single laser chip after cleaving.  
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Fig 4.11 SEM image of cleaved cross section of a single laser chip. The image at the top is the 
magnified version of the region beside the window region on gold stripe. On two sides of the 
window Si3N4 was not etched. Hence, at that region gold is sputtered on Si3N4.  
 

Figure 4.12 shows a scanning electron micrograph of the window region at a higher 

magnification, where Si3N4 was etched and gold got sputtered directly on the plated gold 

stripe. 
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Fig 4.12 Scanning electron micrograph of the window region at a higher magnification 
 

The sample that is shown in the images is not the best cleaved sample. It is difficult to 

see layer details from the mounted sample that are usually kept for measurement, 

therefore a different piece had been used to check the fabrication detail. 

After cleaving, the next step was the mounting of the single laser chip on the 

laser head, a small pillar made of copper, which is a part of the laser housing. To mount 

the laser chip on this pillar, Indium is electroplated on top surface of the pillar. Figure 

4.13 shows the picture of the laser housing with the chip mounted on it and SEM image 

of a mounted chip. 
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Fig 4.13 Picture of laser housing with the chip mounted (a); Scanning electron micrograph of the 
mounted chip, showing leaser head pillar on the top and chip at the bottom. 
 

Since, ‘In’ metal has a quite low melting temperature (157ºC), freshly plated Indium on 

laser head, acts as an adhesive to stick the laser chip even at room temperature. The chip 

was placed episide down by vacuum tweezers on freshly ‘In’ plated pillar while 

observing under a microscope. After placement of the chip on the pillar, a thin freshly 
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‘In’ plated copper wire secures the chip on the pillar tightly. This wire also carries 

current to the bottom contact. This Cu wire is visible in the SEM image, shown in Figure 

4.13, at the bottom of the chip.   
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4.2.2 Device characterization 

After mounting the laser diodes, typical tests were performed that indicated that 

the device lase: device showed threshold characteristics, spectral narrowing upon FTIR 

spectrum analysis. This section details the characteristics of the fabricated device and 

interprets the results.  

At first to check the diode characteristics, the current versus voltage relationship 

of the diodes were measured in forward bias. Due to variation in material characteristics 

over the entire wafer, the forward bias resistance and I-V characteristics varied from 

chip to chip, selected from different portions of the wafer. Figure 4.14 below shows the 

I-V relationship at 77K of several chips cleaved from different portions of sample LD1.   

 

 

Fig 4.14 I-V characteristics of cleaved facet diodes selected from different regions of the same 
wafer, measured at 77K. Forward bias series resistance values in Ohms, for different chips are 
appended on the graph.  
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The data from the chip which had narrower linewidth will be presented here. The I-V 

curve of that typical chip at 77K is shown in the Figure 4.15 below. 

 

 

Fig 4.15 I-V characteristics at 77K of a typical diode; Forward bias series resistance is appended 
on the graph. 
 

The emission spectrum from one facet of this sample was measured at liquid 

nitrogen temperature and higher temperature with an IFS 66/S spectrometer in step-scan 

mode using a liquid nitrogen cooled MCT detector having rise time of 500 ns. The MCT 

detector had a pre-amplifier connected with it. Device testing was performed with 500 ns 

pulses with pulse repetition frequency of 100 kHz (5% duty cycle), provided by a DEI –

PCX-7410 laser diode driver. For this sample, CW pumping and pumping with higher 

pulse-width had been tried, but no emission was observed.  
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The light collection optics and the measurement set up for the spectrum analysis of the 

diode laser chip using FTIR is shown in Figure 4.16.   

 

 

 

Fig 4.16 Light collection optics for the FTIR spectrum analysis with superimposed optical traces 
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The measured emission spectrum of the diode laser above threshold at the heat 

sink temperature of 80K is shown in Figure 4.17.  

 

 

Fig 4.17 Laser emission spectrum above threshold from sample LD1 at a temperature of 80K. 

 

As seen in the figure, the peak laser emission wavelength was 6.7 µm at 400 mA 

injection currents for a heat sink temperature of 80K.  The spectrum was measured with 

a 0.25 cm-1 resolution setting of the FTIR. The line width of the spectrum measured in 

wavenumber scale was 0.39 cm-1 even at this low current. Higher resolution of the 
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spectrometer could have lead to narrower linewidth; however the FTIR does have some 

limitations in terms of resolution.    

Figure 4.18 shows the spectra or emission peaks at different injection currents at 

the heat sink temperature of 80K and hence represents the current tunability of the 

emission spectrum. 

 

 

Fig 4.18 Laser emission spectra above threshold from sample LD1 at different injection currents 
at a heat sink temperature of 80K 
 

From the figure, it can be seen that the current tuning range increases at higher injection 

current. From 400 to 800 mA current range, the tunability of peak emission in 
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wavenumber scale is almost 0.0675 cm-1/ mA. Above 800 mA the tunability is almost 

0.25 cm-1/ mA. 

The L-I characteristics or the light output versus injection current data of this 

laser chip were collected at different heat sink temperature. The light output was 

expressed in terms of detector output voltage. The measurement set up that was used to 

collect these data is schematically shown in Figure 4.19. 

 

 

Fig 4.19 Schematic of the measurement set up used for collecting L-I data for the sample LD1 

 

In this set up, the emitted laser light from the sample was focused by two CaF2 lenses on 

to the MCT detector and the amplified signal from the detector was measured by the 

oscilloscope. This is a very fast method to measure and obtain the L-I curve of a sample. 

However, this set up was used for measuring the sample LD1 only. Later on for other 
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samples, the light output power at different injection current was calibrated using a 

standard blackbody reference source directly from the emission spectrum.  

Figure 4.20 shows the L-I characteristics, i.e the light output versus injection 

current data of the sample LD1 at different heat sink temperature.  

 

 

Fig 4.20 Light output vs. Injection current (L-I) curve of LD1 at different operation temperature 

 

In the above curve the light output has been expressed in terms of amplified detector 

output voltage. Detector output signal was 1000 times amplified by a preamplifier. From 

the L-I curve it can be seen that above threshold at a particular operation temperature, 

initially as the injection current increases, the laser output power also increases but after 
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a certain injection current the output decreases. The reason behind this is the Joule 

heating of the device at higher current values.  Threshold current of the device also 

increases with increasing operation temperature.  

Figure 4.21 shows the I-V curve of a typical laser chip at 77K from the sample 

LD2 that was processed the same way as LD1, but had slightly different layer 

thicknesses as mentioned before.  

 

 

Fig 4.21 I-V characteristics at 77K of a typical diode laser from sample LD2. Forward bias series 
resistance is appended on the graph. 
 

The laser emission from this sample was also measured at different heat sink 

temperature by the FTIR spectrometer. This sample also lased at a pump pulse width of 

500 ns, with 100 kHz repetition frequency.  
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The measured emission spectrum of this diode laser above threshold at the heat sink 

temperature of 77K is shown in Figure 4.22. 

 

 

Fig 4.22 Laser emission spectrum above threshold from sample LD2 at temperature 77K 

 

As seen in the figure, the emission is multimode with a modal spacing of approximately 

5 cm-1. Peak laser emission wavelength was 6.85 µm at 430 mA injection current at 77K.  

This spectrum was also measured with a 0.25 cm-1 resolution setting of the FTIR. The 

line width of the peak emission as can be seen in the figure is 0.49 cm-1 which is a little 

bit higher than the linewidth obtained from LD1.  Also, the measured threshold current 

density of LD1 at 80K was approximately 1.8 kA/cm2, whereas for LD2 the measured 

threshold current density at 77K is about 2.05 kA/cm2. The difference in the emission 

characteristics of these two samples is not quite obvious, but a probable reason could be 

a difference in the material quality as well as cleaving and mounting, as the latter two 

processes are completely manual. Also, this sample was processed after almost one 
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month from the day of completion of MBE growth. Therefore, to some extent there 

could be a probability of material degradation upon aging. This interpretation is based on 

the observation of reduced PL or EL intensity from some sample with time, although the 

reason behind this is not exactly known. 

Figure 4.23 shows the spectra at different injection currents at a heat sink 

temperature of 77K and hence represents the current tunability of the emission for LD2. 

 

 

Fig 4.23 Laser emission spectra above threshold from sample LD2 at different injection current 
at a heat sink temperature of 77K 
 

From the figure, it can be seen that by increasing current from 430 to 650 mA, the peak 

emission wavelength can be tuned by almost 17 cm-1, in wavenumber scale. Hence, the 

tunability of peak emission is almost 0.077 cm-1/ mA, from 430 to 650 mA current 

range.  
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Figure 4.24 shows the L-I characteristics, the light output versus injection current 

data of the sample LD2 at different heat sink temperatures. The output power from one 

facet of the sample was calibrated using a standard blackbody reference source whose 

emission energy at a certain temperature and blackbody field of view was provided by 

the manufacturer.  

 

 

Fig 4.24 Light output vs. Injection current (L-I) curve of LD2 at different operation temperature 

 

As can be seen in the figure, maximum peak output power of more than 10 mW was 

obtained at a heat sink temperature of 77K. However, as the operation temperature 

increases the output power decreases and the threshold current density increases. With 

increase in temperature, phonon assisted loss mechanisms become dominant and that 

deteriorates the laser performance. Also initially as the injection current increases, the 

laser output power increases but after a certain injection current the output decreases 

because of the Joule heating at higher current. 
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4.3 Electrically Pumped Diode Laser with Polymer Insulating Layer 

Continuous wave operation of PbTe/PbSnTe double heterostructure laser at 77K 

was obtained in 1974, from a simple stripe geometry structure4. Our primary aim for 

PbSe/PbSrSe based laser was also obtaining CW operation from the structure. Hence, for 

the further fabrication of laser structures on PbSnSe substrate we chose to proceed with 

the commonly used photoresist or polymer insulating layer in accordance with the stripe 

geometry, avoiding the time consuming fabrication process mentioned in the previous 

section. The schematic of this simple stripe geometry structure is shown in the figure 

below. 

 

 

 

Fig 4.25 Schematic of a Pb-salt diode laser chip with photoresist insulation 
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4.3.1 Device structure and fabrication 

PbSe/PbSrSe double heterostructure was grown on {110} PbSnSe substrate for 

the cleaved cavity diode laser fabrication. The active region of the sample consisted of 

0.616 µm of undoped PbSe. PbSrSe p-confinement layer was 1.44 µm and PbSrSe n-

confinement layer was 1.32 µm thick. The p- and n-confinement layers were followed 

by two graded p- and n- PbSrSe layers of 0.24 µm and 0.15 µm thickness, where the Sr 

composition was graded between 3% and 4%. And the top most layer was 0.15 µm n+-

PbSe cap layer. The laser fabrication process flow is shown schematically in Figure 

4.26. 

 

 

Fig 4.26 Schematic of processing steps for the fabrication of cleaved cavity PbSe/PbSrSe DH 
laser on {110} PbSnSe substrate, with polymer insulating layer. 
 

After MBE growth of the epitaxial layer, the sample was thinned from the back 

side, i.e the substrate side, to 250 µm for the ease of cleaving. After thinning, the back 

side of the substrate was polished with a chemical solution for the better adhesion of 

electrodeposited gold during laser fabrication.  
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After thinning, the sample was cleaved to get the {100} plane that is 

perpendicular to the {110} plane. Then 40µm wide stripe patterns were made 

perpendicular to the {100} plane by photolithography. Electrodeposition of 1µm gold 

followed the photolithography for the formation of top and bottom contact. 

The cavity and mirror facets for lasing were formed by cleaving, as was 

mentioned in the previous section. Cavity length usually ranged from 300-500 µm. 

Figure 4.27 shows a scanning electron micrograph of the cleaved cross section of a 

single laser chip with photoresist insulation.  

 

 

Fig 4.27 SEM image of cleaved cross section of a single laser chip with photoresist insulation. 

 

The SEM image shows the process technology. However, this is not the same sample 

used for measurement. As it was mentioned before, measured samples are all mounted 

and packaged in laser housing, therefore SEM cross-section of those samples do not 

reveal process details. Mounting of these samples were also done by the same way as 

previously mentioned. 
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4.3.2 Device characterization 

At first to check the diode characteristics, the current versus voltage relationship 

of the diodes was measured in forward bias. Due to variation in material characteristics 

over the entire wafer, the forward bias resistance and I-V characteristics varied from 

chip to chip, selected from different portion of the same wafer. The data from the chip 

which had narrower linewidth will be presented here. I-V curve of that typical chip at 

77K is shown in the Figure 4.28 below. 

 

 

Fig 4.28 I-V characteristics at 77K of a typical diode; Forward bias series resistance is appended 
on the graph. 
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The laser emission from this sample was also measured at different heat sink 

temperatures using FTIR spectrometer. This sample lased at a pump pulse width of 3 µs, 

with 100 kHz repetition frequency (30% duty cycle), which is much larger than the 

pump pulse width of previously measured samples. Therefore, positive improvement in 

the laser performance was being observed. However, CW emission was not observed 

from any of these samples. The measured emission spectrum of this diode laser above 

threshold at the heat sink temperature of 77K is shown in Figure 4.29 and Figure 4.30. 

 

 

Fig 4.29 Laser emission spectrum above threshold at 600 mA injection current at temperature 
77K 
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Fig 4.30 Laser emission spectrum above threshold at 800 mA injection current at temperature 
77K 
 

Peak laser emission wavelength was 6.59 µm at 600 mA and 6.46 µm at 800 mA 

injection current at 77K.  At 600 mA three modes were observed with intermodal 

spacing of 5 cm-1. These spectra were also measured with a 0.25 cm-1 resolution setting 

of the FTIR. The line width of the peak emission as can be seen in the Figure 4.30 is 

0.47 cm-1 and was measured in wavenumber scale.  Also the measured threshold current 

density was approximately 2.5 kA/cm2. 
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Figure 4.31 shows the spectra at different injection current at the heat sink temperature 

of 77K and hence represents the current tunability of the emission spectrum. 

 

 

Fig 4.31 Laser emission spectra above threshold at different injection current at the heat sink 
temperature of 77K 
 

From the figure it can be seen, by increasing current from 500 to 600 mA, the peak 

emission wavelength can be tuned almost 14 cm-1 (in wavenumber scale). Similarly in 

the above mentioned current ranges, the tunability of peak emission is almost 0.14 – 0.15 

cm-1/ mA, measuring in wavenumber scale.  
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Figure 4.32 shows the L-I characteristics, the light output versus injection current data at 

different heat sink temperatures. The output power from one facet of the sample was 

calibrated using a standard blackbody reference source as mentioned in the previous 

section as well. 

 

 

Fig 4.32 Light output vs. Injection current (L-I) curve at different operation temperature 

 

As seen in the figure, maximum peak output power of 0.4 mW was obtained at a heat 

sink temperature of 77K, at 3 µs pulse width. As the operation temperature increases the 

output power decreases and the threshold current density increases, due to the 

domination of phonon assisted losses. Lead salt materials have low thermal conductivity. 

At threshold, there is a large difference between lattice and heat sink temperature. As the 

injection current or the heat sink temperature increases, this temperature difference 

becomes higher and higher, which in turn lead to thermal rollover. Hence, a structure 

having better heat management could lead to much better performance from this device.  
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4.4 Conclusion 

Conclusively, pulsed operation of PbSe/PbSrSe diode laser based on double 

heterostructure active region on {110} PbSnSe substrate has been reported. Threshold 

current density, as low as 1.8 kA/cm2, was obtained from the laser chips with broad 

stripe contact of width 40µm. However, with broader stripe contact maximum operation 

temperature remained 130K. Instead of average power, peak output power from the laser 

chips were calculated as the pulse repetition frequency during pumping were kept very 

low in order to provide enough cooling time to the device. MBE growth on [110] 

oriented PbSnSe substrate has been performed for the first time. More experiments are 

needed for the optimization of growth condition for best lasing results. Material quality 

has been improved at each run of sample growth as is quite evident from the above 

mentioned results. As was interpreted from theoretical simulation on [110] oriented 

lasers, QW active region has the highest gain along [110] orientation in comparison to 

[100] or [111]5, replacement of double heterostructure with quantum wells could further 

improve the performance of these lasers.  
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5.1 Single Mode Operation of Pb-Salt Edge Emitting Laser 

Single mode tunable laser operation in the mid infrared spectral region is of great 

interest in high resolution IR spectroscopy, heterodyne detection and also in MIR-fiber 

transmission1. A number of techniques have been employed to obtain single mode 

emission from lead chalcogenide lasers, among them are buried-heterostructure (BH) 

lasers2, distributed feedback (DFB) lasers3 and distributed Bragg reflectors (DBR)4. 

Other than the buried-heterostructure, which operated in CW mode at 120K, DFB or 

DBR structures all operated below 77K. In the recent time in PbSnTe materials system, 

Nishijima et al.5 reported a BH laser with a single mode CW optical output power 

exceeding 1 mW. Figure 5.1 shows the wavelength coverage of a PbTeSe/PbSnTe buried 

heterostructure laser. Bold lines in the figure show the single mode region. 

 

 

Fig 5.1 Wavelength coverage of PbTeSe/PbSnTe buried heterostructure laser 6
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Among the three structures mentioned above, BH lasers structure in case of Pb-

salt material showed some potential. PbEuTeSe/PbTe BH laser was reported by Feit et al 

and CW emission up to 223K was observed7 8. From all these information, it was 

expected that a ridge waveguide (RW) structure would perform better for the single mode 

operation of the device. The advantage of this structure over BH structure is that, it is not 

as process sensitive as a BH structure. The fabrication of BH laser diodes require 

multiple epitaxial steps, interrupted by etching processes to build the active stripe, 

therefore any process defects occurred during fabrication affects its performance. Also 

the device technology is complicated and the reliability may be degraded. Whereas in 

ridge waveguide structure the whole epitaxial growth is finished in one run and etching 

takes place afterwards. The active region is not processed between epitaxial growth steps, 

and the lateral optical confinement is dominated by the index guiding. However, in the 

RW structure taking electrical carrier confinement into consideration, the effective active 

region width equals the stripe width w plus approximately one diffusion length on each 

side. 

This chapter will describe the simulation of a ridge waveguide laser for single 

lateral mode operation for the PbSe/PbSrSe based material system. A method has been 

proposed where selective losses can be introduced for the higher order modes allowing 

the device to oscillate in single lateral mode. Also the fabrication process development 

for this ridge laser structure has been discussed.  
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5.2 Principles of Modeling Guided Waves 

By definition, the field intensity of a guided mode decays monotonically in the 

transverse direction everywhere external to the core without loosing power to radiation.  

 

 

Fig 5.2 Schematic of vertical (Transverse) and horizontal (Lateral) optical field intensity9

 

There are formal distinctions between transverse and lateral guiding as shown in figure 

5.2. The light usually propagates along the ‘longitudinal’ z-direction and the transverse 

and lateral terms refers to the directions (towards X and Y) perpendicular to z-direction. 

Lateral variation is described by the changes in the y-direction, which is perpendicular to 

the junction or layer interfaces. Vertical or transverse variation refers to changes in x-

direction. X, Y, Z follows right handed set of axes. Longitudinal variations are usually 

taken to be forward and reverse traveling waves of constant amplitude. The forward and 

reverse traveling waves beat together to form standing waves. However, their average 

intensity remains uniform 9. 
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5.2.1 Transverse wave guiding for slab-waveguide 

A three layer slab waveguide is formed with three slabs where the material of 

lower refractive index embraces material with highest refractive index. The E and H 

fields of a plane wave propagating in one direction form a right handed set with, 

0

0

εε
μμ

r

r

H
E

= , where εr and µr are the real part of material permittivity and permeability 

and ε0 and µ0 are the free space permittivity and permeability. 

 

 

Fig 5.3 Schematic of Transverse Electric (a) and Transverse Magnetic mode (b)9 
 

The orientation of E-field is considered to be along the plane of the junction as shown in 

Figure 5.3(a). Hence, the E-field has a component only in the horizontal direction, i.e. 

transverse to the junction; thus the nomenclature TE mode. When a plane wave is 

launched into this slab at an angle to Oz axis so that Oz’ is not exactly parallel to the Oz 

axis, then-only the entire structure acts as a guide. This plane wave is reflected through 

Total Internal Reflection at the boundaries when the angle of launching into the guide is 
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smaller than a certain critical value. The only difference between TM and TE mode is 

that, for TM mode, the Hy field is transverse to junction 9. 

In practice, the modes that are usually excited in semiconductor laser because of 

strong guiding by the di-electric waveguide are TE-modes. Thus they also exhibit higher 

modal gain. Moreover, the reflectivity of the end facet is higher for TE than for TM 

modes of the same order. So our calculation will be mainly based on TE modes. Later on 

we will show that each propagating mode can be described by a propagation constant β, 

where β=neffk0. neff is close to n2 for small thickness of core layer and close to n1 for large 

thickness of core layer. 

Gain or loss in the active layer is described by considering n1 to be complex: 

"
1

'
11 jnnn +=  

,where the active layer gain ga is related to the imaginary part of n1 by the following 

equation : 

"
102 nkg a =  

The modal gain of a particular mode is given by, 

}Im{2 β=effg  

The transverse structure of the laser diodes is designed in such a way that only 

fundamental mode is guided. In the symmetric dielectric slab waveguide as shown in 

Figure 5.3, this is the case for  

        
2
2

2
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d
−

<
λ ,  

where d is thickness of core layer11. 
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5.2.2 Lateral wave guiding for slab-waveguide 

The laser structures are described as either index guided (IG) or quasi-index 

guided (QIG), depending on how the lateral index guiding is accomplished. Two 

dimensional waveguides can be treated by the effective refractive index method10.  

 

 

Fig 5.4 The effective refractive index method applied to a ridge waveguide (a) From the solution 
of transverse wave equation in each lateral region, an effective lateral slab waveguide is deduced 
(b) with effective refractive index step Δneff (c)11. 
 

The illustration of effective refractive index method is shown in Figure 5.4 for a 

QIG ridge waveguide (RW). As shown in figure 5.4 the RW consists of a laterally 

modified transverse dielectric slab, where part of the upper confinement layer has been 

replaced with a material of lower refractive index so that n0>n2. The evanescent optical 

field becomes affected when the distance‘t’ to the active region is extremely small. The 

effective refractive index of the transverse mode outside the active stripe gets reduced 

depending on the confinement inside the lower index region. Accordingly, an effective 

lateral-slab waveguide can be made as illustrated in Figure 5.4(b) with effective 
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refractive indices  and for the middle-stripe region and side-wing regions, 

respectively. When the effective refractive index difference , becomes 

positive, lateral wave guiding takes place.  

A
effn B

effn

B
eff

A
effeff nnn −=Δ

Therefore, the 2D waveguiding problem can be solved with effective refractive 

index method by first solving the 1D wave equation for the slab waveguides along the 

transverse direction in the stripe or ridge region and the side or wing region and then 

using the effective refractive indices to build another effective lateral slab waveguide, 

and again solving the 1D lateral wave equation for this effective lateral slab waveguide. 

As, , single mode condition (effnnnn Δ>>−=Δ 01 2
2

2
12 nn

d
−

<
λ ) for the lateral 

direction allows w>>d 10,11.  
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5.2.3 Solution of wave equation for modal analysis 

To analyze the modal behavior in certain waveguide structure a we need to 

calculate the eigenstate for an optical TE or TM mode. By definition, a guided optical 

beam and a confined eigenstate for a quantum well have the boundary condition that as x 

approaches positive or negative infinity, the electric field (or wave-functions for the QW 

case) must approach zero. 

Propagation of a plane wave is described by Equation 5.1. 

EE
dt
d 2

2

2

∇=με      (5.1) 

This equation can be simplified in the form, 

rrKwtjeEE ).((
0

−−=     (5.2) 

Considering a plane wave propagating in the transverse direction in a slab waveguide, the 

gradient can be described using Cartesian Co-ordinate like this, 

Ek
dx
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dz
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dy

Ed
dx
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dt
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z =+με     (5.4) 

EkrnErKErE
dt
d 2

0
222

2

2

)()()( −=−== ωμεμε   (5.5) 

In these equations, E is the electric field profile, kz is the eigenvalue for the mode, n(r) is 

the index as a function of position, and K(r) is the wave function. The modal index or the 

effective refractive index for a particular mode is expressed as n = kz/k0, where k0 = 2π/λ 

. 
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For uniform propagation in the z direction, we want to describe the mode shape in the x 

direction. K is proportional to the index of refraction in each section and so it varies 

across the waveguide. For a single mode, kz remains the same across the entire 

waveguide. For this reason, the second derivative of “E” with respect to “x” position 

must change to compensate for the change in index in each layer of the waveguide.  

Ekkrn
dx

Ed
z ))(( 22

0
2

2

2

−−=     (5.6) 

For the TE and TM cases, Maxwell’s equations require that the transverse electric and 

magnetic field be continuous across a dielectric boundary. The requirements of 

Maxwell’s equations on the TE mode yield boundary conditions at an index step, 

E1=E2 and 
dx

dE
dx

dE 21 =     (5.7) 

Now there are several methods to solve the eigenmodes of the system. 

Transfer matrix method 

This method is significantly faster. The transfer matrix method represents each 

boundary using a 2x2 matrix. Assuming for the plane wave and from Maxwell’s 

equations, we can get a scalar wave equation for each ith layer as follows: 

0)( 22
02

2

=++Ψ
∂
∂

iii k
x

ϕγε     (5.8) 

Here φi is Ey for TE mode at i th layer and Hy for TM mode, γ is the modal propagation 

constant (= α+jβ), and is ω2
0k 2μ0ε0 .  ‘kz’ of Equation (5.7) is replaced by ‘γ’ in 

Equation (5.8). 
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Also, n2 is replaced by εi, where ε is the permittivity of the material and ε= n2. For TE 

modes, the boundaries need to have ϕι and ∂ϕι/∂x be continuous over different layers. If 

we consider the bounded mode and no loss or gain, which means ει and γ are real, for a 

three-layer waveguide, we can get a coupled equation in matrix form for the inner layer: 
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where hi is, 22
0 γε +ik  and εγ 2

0
2 k>  

The outer layer has the matrix form: 
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where h1orL is orLk 1
2
0

2 εγ − , h1 is for 1 st layer and negative (-hL) for Lth layer, A0 is A1 

for 1st layer and AL for the last layer. 

 

  

Fig 5.5 Slab Waveguide model, three layer (a) and multi-layer (b) 
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After matching the boundary conditions at each layer, we can get the following matrix 

form for the whole waveguide structure: 

⎥
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From this equation, we can further get the characteristic equation as the following: 

T21+T22h1+hL(T11+T12h1)=0    (5.12) 

For multi-layer waveguides the overall T will become a multiplication of matrices T with 

different h and d in the matrix entries. However, the final characteristic equation will be 

the same as equation 5.1212 13. 
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5.2.4 Calculation of near-field and far-field 

Near field and far field are two of the important characteristics of an emitted 

optical field. Near field refers to the spatial intensity distribution of the emitted light near 

the waveguide end face. And the angular intensity distribution far from the end-face is 

known as the far field14. Far field is important in determining the coupling efficiency. 

Mathematically, the far-field pattern can be approximated by taking the Fourier transform 

of the near field intensity distribution. However, this method is not very accurate for a 

dielectric waveguide, though it is applicable for antennas. The idea of “obliquity factor” 

during the calculation of far field is applied in the present case15. Here, we can use a 3-

layer waveguide to exemplify the calculation process. We can assume the mode fields to 

be independent of y direction (lateral direction) if the width of the waveguide is large in 

comparison to the thickness of the waveguide. Then the spatial distribution of the optical 

field is just associated with the transverse mode ψ(x) that can be solved from the wave 

equation and boundary condition. For TE mode, the electric field can be written in the 

following form 14 15:  

)()( ztj
y exFE βωψ −=      (5.13) 

And the modal distribution ψ(x) that propagates along z direction has different form at 

each of the 3 layers: 

pxCex −=)(ψ   (x ≥ d) 

)()()( qxBSinqxACosx +=ψ   (d ≥ x ≥ 0)  (5.14) 

)()( dxrDex +=ψ  (x ≤ d) 
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Where, p, q and r are wave-numbers at each layer and they satisfy the following 

conditions that relate with propagation constant at z direction: 

22
01

2 βε =+ kp  

22
02

2 βε =+− kq     (5.15) 

22
03

2 βε =+ kr  

When combining with boundary condition, (i.e. tangential fields and their derivatives are 

continuous at the interface) and normalizing them, we can solve out the values of p, q, r  

and coefficients A, B, C, D. Thus ψ(x) can be known.  

Writing ψ(x) in terms of plane waves by Fourier Transform theory, 

dxexs jsx∫
+∞

∞−

= )(
2
1)( ψ
π

ψ    

 (5.16) 

Where s is the propagation constant at x direction. 

Then electric field is in the following form: 

dsesFxE zsxtj
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  (5.17) 

When the light radiates from the end-face of the waveguide, both reflection and 

transmission happen and the transmitted field is: 

dsesFxE zsxtjtrans
y ∫
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Where τ is the transmission coefficient. 
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Considering the coordinate system shown in Figure 5.6, where the electromagnetic field 

is radiated into the air, we have the following relationships: 

x = r Sinθ;  z = r Cosθ 

s = k0 Sinφ; ds = k0 Cosφ dφ   (5.20) 

 

 

Fig 5.6 Schematic coordinate system of the far field of 3-layer waveguide 
 

Then, the total field intensity at (r,θ) changes to: (ignoring the time term ejwt) 
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And then the “saddle point method”16 is used to approximate the value of E (r,θ) for 

large distance. The “saddle point method” is shown below: 
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   (5.22) 

Where ‘a’ is from, 

    h’x=0, in this case, Sin(θ-φ)=0 => θ = φ and 
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Therefore, the intensity of the far field is 

I(θ) =|E(r,θ)|2=
2
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θ Sink
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  (5.24) 

Cos θ is known as “Huygen obliquity factor” and Cos2θ the “intensity obliquity factor”. 

In the present work, a coefficient g(θ) xxvi is used to combine all Huygen obliquity factor 

terms and the effective index of refraction calculated from previous steps contributes here 

to find the value of g(θ). 
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Then, the far field intensity is calculated as: 

22
00 )()()( θθψθ gSinkII =    (5.26) 
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5.2.5 Calculation of confinement factor 

Physically the confinement factor or filling factor Γ accounts for the reduction in 

gain that occurs because of the spreading of the optical mode beyond the active region, it 

represents the fraction of the mode energy contained in the active region.  

From the Maxwell’s equations, we can get the time-independent wave equation 12 13: 

02
0

2 =+∇ EkE ε     (5.27) 

Where ε is the complex dielectric constant: 

"' εεε +=      (5.28) 

Where k0 is the vacuum wave number: 

λπω /2/0 == ck     (5.29) 

Where E is the electric field: 

)exp()();(ˆ zixxyeE βψφ≅    (5.30) 

Here β is the propagation constant, e is the unit vector and z is the propagation direction. 

By substituting Eq. (5.30) in Eq. (5.27), we obtain: 
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From the above Equation (5.31), we can get the transverse field distribution φ( y; x) by 

solving: 

0)](),([ 22
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∂ φβεφ xkyx
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where βeff  (x) is the effective propagation constant for a fixed value of x. 
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From the Equation (5.31), we can also get the lateral field distribution ψ(x)  by solving: 

0])([ 22
2

2

=−+
∂
∂ ψββψ x

x eff      (5.33) 

 

Confinement Factor of Transverse Modes: 

The transverse modes depend on the thicknesses and refractive indices of the 

various layers used to fabricate a semiconductor lasers. 

 

 

Fig 5.7 Three layer slab waveguide model 

 

This Figure 5.7 shows the three-layer slab-waveguide model of a semiconductor laser 

with refractive indices such that u2>u1. The intensity distribution of the fundamental 

waveguide mode is also shown. The hatched region represents the fraction of the mode 

within the active region. 
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Now, the transverse confinement factor can be given as: 

 

Where, ΓΤ is transverse confinement factor; φ (y) is the transverse field distribution, 

which can be solved from the Equation (5.32) and d is the active layer thickness. 

 

Confinement Factor of Lateral Modes: 

The lateral-mode behavior in semiconductor lasers is different depending on 

whether gain guiding or index guiding is used to confine the lateral modes. 

 

Where ΓL  is lateral confinement factor, ψ(x) is lateral field distribution, can be solved 

from the Equation (5.33) and w is the central region width, i.e the ridge width. 

 
Total confinement factor: 
 
In the waveguide description, 

Γ = ΓΤ ∗ΓL 
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5.3 Design of a Single Mode PbSe/PbSrSe Ridge Waveguide 

The design of a ridge waveguide laser comprises of several steps. The first step 

starts with a basic waveguide design in the transverse direction. In the second step the 

height of the ridge is optimized to achieve the required lateral effective refractive index 

difference. Third, ridge width was designed to maintain single-lateral-mode and low loss, 

which is discussed. The effective index waveguide modeling software used in this work 

is Waveguide BetaRelease 0.93. The software handles complex modes in the presence of 

gain or loss. The mode characteristics, the phase propagation and exponential behavior 

can be determined from the transverse propagation constant plane. For bounded modes, 

the eigenvalue problem is well defined and all the roots are physically acceptable. For 

complex mode search, Waveguide uses an arbitrary branch cut in the square of modal 

propagation constant plane instead of a real axis line for proper mode search. The Muller-

Traub method for complex plane is used in Waveguide to find a complex root. The 

program uses three kinds of convergence tests. If any one test is satisfied, the last 

iteration is accepted. Users can set up the maximum iteration number. 

 

 

 

 

 

 

 

 

 159



5.3.1 Design of a basic waveguide structure 

The basic waveguide laser is composed of active layers, including quantum wells 

and barriers, and passive layers, including p-cladding layers, p-buffer layer, p- substrate, 

and n-cladding layer, n-cap layer. The basic design comprises optimization of the 

thickness of active layer for higher confinement and single transverse mode operation and 

optimization of the thickness of cladding layers for optimum confinement, lower modal 

intensity loss and narrow far-field divergence. 

 

 

Fig 5.8 Refractive index profile of the layer structure in the transverse (vertical) direction 

 

Figure 5.8 shows the refractive index profile of a basic waveguide laser in x direction. 
 

Optimization of active region thickness 

During the optimization of active layer thickness the fact that has been taken in 

consideration is maximizing the confinement factor but at the same time keeping the 

thickness in the limit which is needed for single transverse mode operation owing to the 
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condition
2
2

2
12 nn

d
−

<
λ , where d is the thickness of active region. The detail of this 

condition has already been described in the previous chapter. In our case the active region 

consists of multiple quantum well structure. PbSe (n= 4.9) well and Pb0.97Sr0.03Se (n= 

4.45) barrier. 

 

 

Fig 5.9 Plot of confinement factor of fundamental mode vs. active region thickness 

 

Figure 5.9 shows the confinement factor of the fundamental mode in the active region as 

a function of active region thickness. It is clear that as the number of pairs of wells and 

barriers increases, confinement increases. So for our structure 9-pair of well and barrier 

was selected. For the single transverse mode operation the thickness should be less than 

1.91 um according to the formula mentioned above. So the thickness of a 9-pair active 

region is in perfect agreement with this, since our well and barrier have a thickness of 20 

nm and 30 nm respectively. With 9-pairs the confinement factor in the active region is 

0.43. 
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Optimization of cladding layer thickness 

After optimizing the thickness of active region there was need to optimize the 

thickness of n and p cladding regions by plotting confinement factor, far-field divergence 

and modal loss as a function of thickness of these layers. In our case, Pb0.96Sr0.04Se 

(absorption at 4000cm-1) having refractive index 4.4 was chosen as the cladding layer. 

For the doped layers, doping concentration was 2X1018 cm-3. 

 

 

 

Fig 5.10 Plot of confinement factor of fundamental mode vs p-cladding thickness 

 

From Figure 5.10, it can be seen that as the thickness of p-cladding region increases 

initially the confinement factor increases but then as thickness increases after 1μm it 

decreases little bit and becomes almost constant afterwards. The outcome is quite 

obvious. Initially, when the thickness increases, more field gets confined because of 

refractive index difference, but after a certain thickness a considerable amount of field 

propagates inside the cladding region itself and gets some confinement there, as a result, 
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confinement in the active region decreases a little bit. And when the thickness approaches 

a large value the field almost dies out in that region so the confinement factor becomes 

almost constant. 

 

 

Fig 5.11 Farfield divergence (FullWidthHalfPower of farfield) vs  p-cladding thickness 

 

Now, as confinement of near field increases, divergence of farfield also increases. 

This effect is reflected in Figure 5.11. So we have to choose the thickness of cladding 

layer at which the confinement is also good enough and farfield divergence also remains 

at an acceptable value.  

Figure 5.12 on the next page shows the plot of modal intensity loss as a function 

of p-cladding layer thickness. The modal loss was calculated from the formula,  

Modal Intensity loss= Im(neff) × (4π /λ ) × 10 4 /cm 
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During modal analysis we have also entered the free carrier loss values of the doped 

layers. Free carrier loss (σFN) was calculated from the equation below17: 

22*
0

3

ωμεε
σ

c
F mc

NqN
∞

=  

Here, N is the carrier density, μ is the mobility, mc is the conductivity effective mass. 

 

 

Fig 5.12 Plot of modal intensity loss of fundamental mode vs p-cladding thickness 

 

In the absence of p-cladding thickness loss is very high because in that case most of the 

field penetrates into the lossy p-type PbSe substrate. Therefore, as the thickness 

increases, intensity loss decreases. However, after a certain thickness the field almost dies 

out in the cladding layer, hence modal loss becomes almost constant.  

So, by analyzing all the above curves we choose p-cladding thickness to be 2 μm. 

At this thickness the confinement is 0.435 and far-field divergence is 66.5˚. 
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(a) 

 

(b) 

Fig 5.13 Plot of confinement factor of fundamental mode vs. n-cladding thickness (a); far-field 
divergence (Full Width Half Power of far-field) vs n-cladding thickness (b). 
 

From Figure 5.13, we can see that as the thickness of n-cladding region increases, 

initially the confinement factor increases but then as thickness increases after 1 μm it 

decreases little bit and becomes almost constant afterwards. Therefore, same explanation 

is valid here as well. Hence, we have to choose the thickness of n-cladding layer at which 
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the confinement is good enough and divergence of far-field also remain at an acceptable 

value.  

 

 

Fig 5.14 Plot of modal intensity loss of fundamental mode vs. n-cladding thickness 

 

Figure 5.14 shows the plot of modal intensity loss as a function of n-cladding 

layer thickness. In the absence of p-cladding thickness loss is very high because in that 

case most of the field penetrates into the lossy and absorptive n-cap PbSe layer. 

Therefore, as the thickness increases intensity loss decreases, however after a certain 

thickness the field almost dies out in the cladding layer, hence modal loss becomes 

almost constant. 

By analyzing all the above curves we chose n-cladding thickness to be 1.5 μm. At 

this thickness confinement is 0.425 and far-field divergence is 67˚. 
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(a) 

 

(b) 

Fig 5.15 Plot of Near-field intensity (a); Far field intensity (b) of the fundamental mode in the 
transverse direction. 
 

Figure 5.15 shows the near-field intensity and far-field intensity of the 

fundamental mode in transverse direction from the final optimized structure in the 

transverse or vertical direction. 
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The schematic of final structure in the transverse direction is shown in Figure 5.16. 

 

 

Fig 5.16  Schematic of final structure in transverse direction. 
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5.3.2 Design of ridge width and height for single lateral mode operation 

As we know, by solving Maxwell’s equations and matching boundary conditions 

of the three-layer dielectric slab waveguide, the graphical solutions can be found for 

Equation 5.34a, 5.34b, and 5.34c for TE polarization. 

αd/2 = (μ/μ1)(kxd/2) tan(kxd/2)      for even modes (Equation 5.34a) 
 
αd/2 = -(μ/μ1)(kxd/2) cot(kxd/2)     for odd modes  (Equation 5.34b)  
 
(αd/2)2 + (kxd/2)2 = ω2 (μ1ε1- με)(d/2)2                  (Equation 5.34c)  
 

 

 

Fig 5.17 Graphical solution of Equations 5.34 - a, b, c for a three-layer dielectric slab waveguide. 
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In the above equations, α is the decay constant in the cladding layer I and III, this is 

shown in Figure 5.17. kx is the x component of k in the core layer II, d is the thickness of 

the core layer II, μ and ε are the permeability and permittivity of layer I and III, and 

μ1 and ε1 are the permeability and permittivity of layer II, ω is the angular momentum of 

the modes in layer II. As shown in figure 23, the number of modes allowed to propagate 

in the three-layer dielectric slab waveguide is determined by the radius of the quarter 

circle R, which is  R= (kxd/2)( n1
2 - n2 )1/2 < π/2 . Therefore, the cutoff condition for the 

1st TE mode TE1 is derived as d< λ/2(n1
2 - n2 )1/2 . In other words, only one mode, the TE0 

mode can propagate for the 3-layer dielectric waveguide with the core thickness (ridge 

width) that meets the condition set by above formula. Here n1 and n are the effective 

refractive indices of ridge and wing (or side) region respectively. 

Therefore, after calculating the basic waveguide we found when the etch depth or 

ridge height is 1 µm the effective refractive index of wing region is 4.40. 

Effective index in the ridge region is 4.42. Hence, if we put these values in place 

of n and n1 in the formula d< λ/2 ( n1
2 - n2 )1/2, the inequality equation for d becomes d< 

5.85. Then, putting d=5 if we simulate the structure again we find only one mode having 

modal index 4.42 is propagating in the structure. 

Near-field and Far-Field intensity of this fundamental mode in lateral direction 

are shown in Figure 5.18. 
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(a) 

 

(b) 

Fig 5.18 Plot of Near-field intensity (a); Far-field intensity (b) of the fundamental mode in the 
lateral direction. 
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5.3.3 Design of waveguide for selective modal loss 

In this section, design of a waveguide structure to produce selective losses for 

higher order modes will be discussed. A ridge structure has been designed that will allow 

selective losses for the higher order modes with respect to the fundamental mode by 

changing the thickness of the deposited insulating layer outside the ridge and coupling 

the higher order optical field to metal layer and thus allowing only the fundamental mode 

to propagate within the structure. Introduction of selective losses to the higher order 

modes has already been applied through partial implantation outside ridge area in III-V 

lasers by several researchers18 19. In our case, if we deposit a layer of Al after the BaF2 

insulating layer outside the ridge, in that case the first order mode suffers a huge loss 

since its modal index is less than the refractive index of Al at our emission wavelength. 

Figure 5.19 represents a schematic of this structure and Figure 5.20 shows the theoretical 

simulation results indicating the comparative losses for the first order and fundamental 

mode.  

 

 

Fig 5.19 Schematic of selective modal loss ridge waveguide structure. 
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(a) 

 

(b) 

Fig 5.20 Modal Intensity loss of 1st order mode (a) and fundamental mode (b), with the change of 
thickness of insulating BaF2 layer. 
 

If the thickness of BaF2 has been chosen to be 0.20 um - 0.23 um, in that case the 

1st order mode experiences a huge loss; whereas the fundamental mode has a negligible 

loss at this thickness. 
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5.4 Fabrication Process Development of Ridge Waveguide Laser 

Fabrication procedure has been developed to prove the feasibility of ridge wave-

guide structure. The schematic of the process flow is shown in Figure 5.21. 

 

 

Fig 5.21 Schematic of the process flow for the fabrication of single mode ridge waveguide laser 
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The first step in the fabrication process started with photolithography for ridge 

formation. During the process development, masks having the exact dimension as per 

design were not available. Hence, masks having higher or lower dimension had been used 

to check the feasibility of the process. During the first photolithography step, stripe 

patterns were made perpendicular to the cleaving direction of epitaxial layer as in Figure 

5.21a. Etching of the epitaxial layer was then performed with the protection of resist to 

form a ridge as shown in Figure 5.21b. 

After the formation of the ridge, photoresist was completely removed from the 

sample and the sample was transferred into the MBE chamber for the deposition of a thin 

layer of BaF2, followed by a thorough cleaning in organic solvents and DI water. This 

step is shown in Figure 5.21c. 

 

 

Fig 5.22 SEM cross-sectional image of a Pb-salt ridge after deposition of BaF2 on the whole 
sample.  
 

Figure 5.22 shows the cross-sectional image of a ridge after the deposition of BaF2. 
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The next step in the fabrication process is etching BaF2 only from the top of the 

ridge for the formation of the metal contact. This step needs a photolithography that 

opens window on photoresist on top of the ridge so that BaF2 gets etched only from that 

window. Now if the ridge width is only of the order of 2-3 µm, then opening a window 

smaller than that needs sub micron photolithographic system, which was not available to 

us. Therefore, for this step a technique called flood exposure was used. This is the most 

challenging part of this fabrication in the whole process. And it will be visible from next 

couple of SEM images shown below. In the flood exposure technique due to the variation 

of thickness of the photoresist on top and bottom of the ridge, a certain exposure helps to 

remove photoresist only from top of the ridge. However, a strict process control is needed 

on the exposure time, which is again a function of ridge height and a change in the ridge 

height changes the exposure time needed to completely remove photoresist from ridge 

top.  

 

 

Fig 5.23 SEM cross-sectional image of a Pb-salt ridge after 2nd photolithography step to remove 
photoresist from ridge top. Photoresist had not been removed fully due to insufficient exposure. 
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It can be seen in above shown SEM image that the exposure was insufficient to remove 

completely the resist from ridge top. However, previously with the same exposure 

complete removal was achieved for a ridge that was 0.4 µm taller than this one.  Figure 

5.24 shows the cross-sectional SEM image, where, due longer exposure time, the removal 

was more than what was needed.  

 

 

Fig 5.24 SEM cross-sectional image of a Pb-salt ridge after 2nd photolithography step to remove 
photoresist from ridge top. Photoresist had been removed also from side due to over exposure. 
 

The problem with the profile shown in Figure 5.24 is that during BaF2 etching the 

insulating material will also be removed from the side of ridge and therefore during gold 

electroplating, gold will be deposited on the side of the ridge thus changing the 

dimension of current spreading region and current conduction profile. Figure 5.25 shows 

the SEM cross-sectional image of a ridge with proper removal of photoresist from the top 

of the ridge. Experimentally, it was found that the ridge height tolerance level of flood 

exposure is approximately 0.2-0.3 µm. 
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Fig 5.25 SEM cross-sectional image of a Pb-salt ridge after 2nd photolithography step to remove 
photoresist from ridge top. Photoresist had been removed completely from ridge top. 
 

In the next step, BaF2 was etched from ridge top and gold was electroplated as is 

shown in schematically in Figure 5.21f for the formation of top and bottom contact.  

Plating nearly 1 µm thick gold on a 2 µm wide ridge was also quite challenging. Due to 

fluidic friction at the sharp edges of the ridge, gold was deposited on photoresist on the 

ridge side. However, this does not create a major problem since the ridge side already 

remains insulated by the BaF2 layer. The SEM cross sectional image of the ridge after 

gold plating and contact formation is shown in Figure 5.26 on the next page. All the 

cross-sectional images shown in this section so far are not cleaved but cut using diamond 

scriber. 
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Fig 5.26 SEM cross-sectional image of a Pb-salt ridge after gold electroplating for contact 
formation. 
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The SEM images below show a ridge structure where the plated gold for contact 

has been used as a mask, to form a 3 µm wide 1 µm high ridge waveguide. All other 

fabrication processes remain the same as is shown schematically in Figure 5.21. 

 

 

(a) 

 

(b) 

Fig 5.27 SEM cross-sectional image of a Pb-salt epitaxial layer after plating a 5 µm wide gold 
stripe, followed by a photolithography (a); Cleaved cross-section of ridge showing BaF2 on 
ridge side. BaF2 was etched from top of gold contact (b). Ridge was formed by etching the Pb-salt 
layer from all other areas of the sample except the area with a protection of gold. 
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5.5 Conclusion 

The design and a fabrication process have been developed for the formation of a 

single mode ridge waveguide laser. The entire process is generic and can be applied to 

Pb-salt epitaxial layers grown on any substrate. Facets for the formation of Fabry Perot 

cavity can be formed either by cleaving or dry etching, as is discussed in the previous 

chapters.  

After developing the entire process we were not able to grow a Pb-salt laser 

sample according to the design because of the multiple MBE downtimes in our lab, 

during my period of stay at OU. At the time of this writing, the MBE is up and running 

again. Once a laser structure is grown, a ridge waveguide laser with a single lateral mode 

could be expected. 
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Lead Chalcogenide on In-built Metal Heat Sink  
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6.1 Motivation 

Currently, the main challenge for lead salt diode lasers is increasing maximum 

operation temperature in continuous wave mode. For high resolution spectroscopy 

continuous wave operation is always preferred over pulsed mode operation. However, 

highest operation temperature reported so far from a lead salt laser operating in CW mode 

and emitting around 3.5μm is 223K 1. Longer wavelength devices have even lower 

operation temperatures, requiring the use of cryogenic cooling system. Thus any 

technique that will increase the operation temperature of the device is greatly needed. 

In this chapter, a method of fabricating Pb-salt semiconductor light-emitting devices that 

may lead to higher operation temperature will be described. In this method, a metallic 

base was grown in contact with the semiconductor epitaxial layer, which serves as a 

supporting structure after the substrate removal and a heat sink that improves the heat 

dissipation from active region. To obtain the two parallel facets for the laser structures 

the semiconductor epitaxial layer can either be cleaved or dry etched. The cleaving 

scheme developed thereon allows the cleaving of the epitaxial layer in the natural 

cleaving plane after the removal of the growth substrate. The objective is a 

semiconductor laser that can be cooled using a thermoelectric cooler. 

An efficient removal of heat from active region can increase the operation 

temperature but low thermal conductivity lead salt substrate hinders this process. 

Removal of growth substrate and transfer of epitaxial layer to carrier wafers have already 

been developed for various material systems, including IV-VI materials as well2 3 4 5. An 

epitaxial transfer of IV-VI epitaxy on GaAs carrier wafer that was developed in our lab 

has already been discussed in chapter-3. However, all of these methods are based on 
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intermetallic bonding, that needs strict control of process conditions and above all, 

success of the process depends on several process parameters; if any one of them is not 

met, the process has a high chance of failure. Therefore, a method of growing a metal 

base or carrier substrate on epitaxial layer was developed followed by growth substrate 

removal. 

By replacing the growth substrate completely with a metallic base or carrier 

substrate, heat dissipation increases several times. Considering the work of Kevin R. 

Lewelling and Patrick J. McCann6, thermoelectrically cooled IV–VI semiconductor diode 

laser can be obtained if the device is transferred from its thermally resistive IV-VI 

substrate to a more thermally conductive copper substrate. It was reported that the 

thermal models revealed a 63 K decrease in active region temperature under normal 

operating condition when copper replaces a conventional PbTe substrate. 

Therefore, in the present method, copper layer of thickness 100 – 500 µm, 

forming a base was grown by an electroplating method in contact with the epitaxial layer. 

The Pb-salt epitaxial layer was grown by MBE on a BaF2 substrate followed by growth of 

a BaF2 sacrificial layer, which helps in removing the growth substrate by getting 

dissolved in water.  
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6.2 Optically and Electrically Pumped Device Structure 

Figure 6.1 shows the fabrication steps for an optically-pumped laser with an as 

grown metallic substrate deposited sequentially. 

 

 

Fig 6.1 Schematic of process steps for the fabrication of a photo-pumped laser with an as-grown 
metallic substrate. 
 

Referring to Figure 6.1a, in the very first step a layer of gold had been deposited 

over the surface of the MBE grown semiconductor epitaxial layer by standard sputtering 

technique. The thickness of this gold was approximately 100 nanometers to 700 

nanometers. This was done to protect the epitaxial layer from the acidic copper plating 

solution. After this step, as shown in Figure 6.1b, thick layer of copper was electroplated, 

followed by a photolithographic technique, to define patterned structures. The result is a 

copper-carrier substrate, metallic cleaving-means and a metallic frame to hold the 

epitaxial layer after growth-substrate removal. The metallic-carrier substrate had a 
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thickness of 80 micrometers to 200 micrometers and width from about 200 micrometers 

to 500 micrometers. The width of these metal substrates actually forms the cavity length 

for lasing operation. Referring to Figure 6.1c, shown therein is a metal semiconductor 

structure, which was obtained after the removal of BaF2 growth substrate. The growth 

substrate was removed by etching the BaF2 sacrificial layer. The arrows in Figure 6.1c 

indicates the direction of cleaving force on the cleaving means, which is needed to obtain 

the two parallel facets for the formation of Fabry-Perot cavity for lasing. The cleaving 

means were aligned with the natural cleaving direction of the epitaxial layer. Upon 

application of the cleaving force along the directions shown in Figure 6.1c, the epitaxial 

layer gets cleaved along the directions parallel to the cleaving means. 

Figure 6.1d shows a photo-pumped laser structure, which can be obtained after 

the cleaving of epitaxial layer and after separation from the metal semiconductor 

assembly as shown in Figure 6.1c. The advantage for optically pumped devices is that 

they do not need a p-n junction or electrical contacts. Also the absence of Joule heating 

increases the chance of lasing at higher operation temperatures. In Figure 6.1d, the pump 

spot from a diode laser, which can be used to pump the photo-pumped laser structure, is 

also shown.  

The fabrication process described in Figure 6.1 can be modified for an electrically 

pumped laser as well. Figure 6.2 schematically describes the fabrication of an electrically 

pumped laser.  

Referring to Figure 6.2a, shown therein is a semiconductor structure to which 

stripe patterns of gold had been made over the surface of a semiconductor epitaxial layer 

by standard photolithography and electroplating techniques. Gold stripes were made 
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perpendicular to the direction of the natural cleaving plane of the semiconductor. Stripe 

patterns have a length which is in the range from about 100 to 1000 microns, more 

preferably between 200 and 500 microns and the width, which is in the range from about 

4 to 60 micron, more preferably between 5 and 20 microns.  

 

 

Fig 6.2 Schematic of process steps for the fabrication of a electrically-pumped laser with an as- 
grown metallic substrate 
 

 188



As shown in Figure 6.2b, an insulating layer of Si3N4 had been applied over the 

surface of the patterned epitaxial layer, by standard sputtering technique. The Si3N4 layer 

has a thickness of around 100 nanometers to 200 nanometers. The Si3N4 layer deposition 

was followed by a standard photolithographic technique in which small windows were 

opened on top of metal stripes and Si3N4 was etched away from those portions leaving a 

metallic gold underneath. After this step, a layer of gold was applied to the resulting 

surface of the semiconductor structure by a standard sputtering technique. This layer 

served the purpose of a seed layer for Cu electroplating. The layer has a thickness of 100-

300 nm. 

After this step, as shown in Figure 6.2c, a layer of copper was electroplated, 

followed by a photolithographic technique, to grow patterned structures, forming a 

copper-carrier substrate, metallic cleaving-means and a metallic frame to hold the 

epitaxial layer after growth substrate removal. 

The metallic-carrier substrate has a thickness 80 micrometers to 200 micrometers 

and width from about 200 micrometers to 500 micrometers. The width of these metal 

substrates actually forms the cavity length for laser. Referring to Figure 6.2d is a metal 

semiconductor structure, which was obtained after the removal of BaF2 growth substrate. 

The growth substrate was removed by etching the BaF2 sacrificial layer. The arrows in 

Figure 6.2d indicate the direction of the cleaving force on the cleaving means, which is 

needed to obtain the two parallel facets for laser operation. The cleaving means are 

aligned with the natural cleaving direction of the epitaxial layer. Figure 6.2e shows an 

individual electrically pumped structure schematically. 
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6.3 Device Fabrication for Optical Pumping 

An optically pumped device had been fabricated to check the feasibility of the 

entire fabrication process with a PbSe/PbSrSe quantum well sample grown on {110} 

BaF2, having a thin BaF2 sacrificial layer. The sample was processed according to the 

fabrication steps mentioned in the previous section and shown schematically in Figure 

6.1. While performing photolithography for the formation of copper substrate, alignment 

of the patterns (to be made for copper deposition), with the [100] cleaving direction was 

done by following the same alignment technique described in section 3.3.3 of Chapter 3. 

The only difference in this particular case was, in place of metal holder with 54.735º 

angle mark, a mask was used with a pattern having the same 54.735º angle marking. 

Also the sample was cleaved twice before photolithography to obtain two {111} planes, 

as a part of this alignment process.  

Figure 6.3 shows the SEM top view of a single Cu base formed on this quantum 

well sample. The BaF2 growth substrate had already been removed from the metal-

semiconductor structure. 

 

 

Fig 6.3 SEM top view of a single Cu substrate grown by electroplating on PbSe/PbSrSe quantum 
well sample. Image was taken after growth substrate removal and cleaving. 
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The SEM cross-sectional image of the cleaved epilayer after growth substrate removal 

on electroplated copper substrate is shown in Figure 6.4. 

 

 

Fig 6.4 SEM cross-sectional image of the cleaved epilayer with multiple quantum well, after 
growth substrate removal, on as grown copper carrier substrate.  
 

It was mentioned before, to protect the epilayer from acidic copper plating solution, a 

thin layer of gold was first sputtered on the sample. And then copper plating was done to 

make a copper substrate on the patterned sample. Patterns were made by 

photolithography. 

The BaF2 growth substrate was removed from the sample by etching the BaF2 

sacrificial layer in DI water at a temperature of 70ºC. 
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Figure 6.5 also shows the SEM image of a cleaved epilayer after growth 

substrate removal of a dummy Pb-salt sample grown on {110} BaF2. This sample was 

processed the same way as before, just to check the repeatability of the process. The 

epilayer was also thicker than the previous sample. 

 

 

Fig 6.5 SEM cross-sectional image of a cleaved, thick epilayer, after growth substrate removal, 
on as grown copper carrier substrate.  
 

 

 

 

 

 

 

 192



6.4 Initial Results 

Two samples had been processed according to this fabrication process, including 

a dummy one. However, as can be seen from the SEM images promising cleaving results 

were obtained from the Pb-salt epitaxy. Side emission was checked from the MQW 

sample by optical pumping with a 1.064 μm Nd:YAG laser (τpulse ≈ 23ns, 10Hz) having a 

rectangular spot width of 60 μm, focused by a cylindrical lens.  

Even after nice cleaving, no side emission was observed from the MQW sample. 

There could be several reasons for that. First of all, other than air there was no optical 

confinement layer. Secondly the quality of this particular sample was much inferior to 

our average quantum well samples; the photoluminescence (PL) from the surface was 

several times lower than the photoluminescence from an average quantum sample.  

Figure 6.6 shows the photoluminescence from the surface of the quantum well 

sample used in the fabrication process for optical pumping and photoluminescence from 

an average quantum well sample grown in our lab. Both of them were measured with 

same measurement set up and were also grown on {110} BaF2. The figure shows the 

difference in PL intensity from surface of both the sample.  
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Fig 6.6 PL spectrum from quantum well sample used for fabricating optically pumped laser on 
Cu substrate and PL spectrum from an average quantum well sample grown in our lab. The 
intensity shown here from both the sample is actually 3.5% of actual intensity. 
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The most encouraging part of this process was the observation of continuous 

wave (CW) photoluminescence (PL) from the surface of a quantum well sample grown 

on BaF2 at room temperature after plating gold and then forming copper base on the other 

side of the epilayer. The sample was optically pumped with a 980 nm InGaAs diode 

laser, at a pump power of 1.1W. The pump spot size was 400 µm in diameter. The PL 

spectrum was measured with IFS 66/S spectrometer in single-channel mode at resolution 

of 1 cm-1, using a LN2-cooled InSb detector. Ability to obtain CW PL from IV-VI 

semiconductor mid-IR laser materials transferred from growth substrates to more 

conductive heat sink materials is important since it provides a way to assess 

quantitatively the expected improvement in active region heat dissipation using methods 

similar to those described by Li et al.7 . 

Figure 6.7 shows the room temperature CW-PL spectrum of a quamtum well 

sample after forming Cu substrate or base on the other side of the epilayer. 

 

 

Fig 6.7 Room temperature CW-PL spectrum of a quamtum well sample grown on {110} BaF2, 
after forming Cu substrate on the other side of the epilayer. 
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6.5 Conclusion 

Initial results including cleaved cavity and room temperature CW emission, 

obtained from the Pb-salt epitaxial layer on the inbuilt copper base or copper carrier 

substrate are promising and encouraging. However, further experiments with MBE grown 

Pb-salt epitaxial layer having either optical or electrical confinement layers are needed 

for the demonstration of lasing from these structures. 
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7.1 Summary 

The research described by this dissertation has focused on the fabrication and 

design, for the improvement of lead chalcogenide lasers. Several novel approaches that 

have not been tried previously were reported in this dissertation. The ultimate goal is to 

develop a TE-cooled single-mode CW Mid-IR laser for high resolution spectroscopic 

applications. Processing techniques and procedures, as well as theoretical design have 

been successfully developed that could lead to high temperature single-mode CW laser 

operation. 

The second chapter focused on an antireflection coating material for diode-

pumped Pb-salt light emitters that has enhanced room temperature CW light emission1. 

The third and fourth chapters described in detail the development of [110] oriented laser 

fabrication. Chapter Three focused on the laser fabrication grown on {110} BaF2 

substrate. A new surface preparation technology for epi-ready [110] oriented BaF2 

substrates and a novel mounting technique for the fabrication of cleaved cavity Pb-salt 

laser grown on {110} BaF2
2 was developed. In Chapter Four, lasing results from [110] 

oriented PbSe/PbSrSe double heterostructure laser fabricated on PbSnSe substrate have 

been reported for the first time. The fifth chapter described the design and fabrication of a 

ridge waveguide laser for single lateral mode operation. The sixth chapter introduced a 

novel fabrication method of cleaved facet Pb-salt laser on as-grown metal substrate for 

high temperature operation of the device.  
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7.2 Recommendations for Future Work 

Formation of a cleaved cavity for a Pb-salt laser grown on [110] oriented BaF2 

substrate has been demonstrated. However, more research on the formation of p-n 

junctions and more studies are needed on the diffusion properties of both p- and n-

dopants in Pb-salt material on BaF2 substrates to demonstrate lasing. 

Lasing results were achieved from the PbSe/PbSrSe based materials grown on a 

[110] oriented PbSnSe substrates. Although low threshold current densities were obtained 

even from broad contact stripe lasers, higher injection current increased the Joule heating, 

thus operation temperature remained below 150K. Therefore, a narrower stripe contact in 

the range of 5-20 µm should be tried to raise the operation temperature in the continuous 

wave mode. 

The design and a fabrication process have been developed for the formation of a 

single lateral mode ridge waveguide laser. However, the laser beam from an edge 

emitting laser is elliptic in shape and therefore not very convenient for optimum coupling 

into and through a gas sampling cell for their applications in diode laser spectroscopy. 

Hence, more simulations on laser design to get small beam divergence and small 

astigmatism are needed. 

Initial results including cleaved cavity and room temperature CW emission, 

obtained from Pb-salt epitaxy on the proposed inbuilt copper base or copper carrier 

substrate are promising and encouraging. Therefore, further experiments with MBE 

grown Pb-salt epitaxy having either optical or electrical confinement layers are needed 

for the demonstration of lasing from these structures. 
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7.3 Conclusion 

Lead chalcogenides have been known for more than a century3. Unfortunately, 

they have been left out of the mainstream research in recent years. The modern epitaxial 

technology that allows high quality alternating material growth and advanced laser 

concepts can make a revitalization of IV-VI mid-IR lasers. Nevertheless, fabricating a 

CW, tunable, single mode near room temperature MIR device requires improved 

fabrication techniques and more accurate physical model. The physical model described 

in this research for single mode emission, along with [110] oriented QW structures and 

novel fabrication methods of devices on carrier substrates having much improved 

substrate thermal conductivity combined with the low Auger recombination promise the 

success of a MIR light emitting device.  

Throughout this research several novel processes have been developed. All the 

developed processes are generic and can be applied to Pb-salt materials grown on any 

substrate. Nevertheless the challenges, which are not met yet and further experiments that 

are recommended in the previous section, present opportunities for ongoing research.   

Conclusively, the work presented in this dissertation holds the promise and made a step 

ahead towards a compact mid-infrared laser system. Such light sources will eventually 

lead to many applications such as a high efficiency, field-portable, mid-IR laser 

spectroscopy systems. 
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