BIKUNIN PROTEIN AND GENE EXPRESSION IN THE PORCINE ENDOMETRIUM DURING THE ESTROUS CYCLE AND EARLY PREGNANCY

By

ANDI MARIE HETTINGER

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1997

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2000
BIKUNIN PROTEIN AND GENE EXPRESSION IN THE PORCINE ENDOMETRIUM DURING THE ESTROUS CYCLE AND EARLY PREGNANCY

Thesis Approved:

[Signatures]

Dean of the Graduate College
ACKNOWLEDGEMENTS

I would like to begin by thanking my family for all of their love and support through these last two years. I would like to especially thank my husband, Scott for always believing in me and for the sacrifices you made so that I could be here today. For all of your love and support, I will be forever grateful. I would also like to thank my parents, Dale and Pat, and my grandparents, Alex and Helen, for always having faith in me and for your encouraging words that have helped me through many difficult times.

To Dr. Rod Geisert, thank you for giving me the opportunity to return to Oklahoma State University to pursue my Master's degree. I have gained from you not only knowledge in the field of reproduction and molecular biology, but a love for science. Your dedication to both your teaching and your research is truly inspiring. You have been a great mentor and I appreciate all that you have done for me. To Dr. Malayer and Dr. Buchanan. Thank you so much for serving on my committee, and for all of the assistance that you gave me to make my time here such a success. It has been a great pleasure working with both of you.

And finally my thanks to Tonya Davidson, you have been my best friend and the great support you have shown me in the last year will never be forgotten; Melanie Allen, you have been such a help to me these last two years, I am not sure what I would have done without you; and to Clay Lents, thank you for sharing all of your wisdom and being such a great role model.
TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION | 1

II. LITERATURE REVIEW | 3
- Development of the Porcine Conceptus | 3
- Embryonic Mortality in the Pig | 7
- Maternal Recognition of Pregnancy | 10
- Conceptus-Uterine Epithelial Interactions | 12
- Endometrial Secretions During the Estrous Cycle and Early Pregnancy | 14
- Inter-α-trypsin Inhibitor Family | 19
- Statement of the Problem | 25

III. BIKUNIN PROTEIN AND GENE EXPRESSION IN THE PORCINE ENDOMETRIUM DURING THE ESTROUS CYCLE AND EARLY PREGNANCY | 26

- Introduction | 26

Materials and Methods
- Animals | 28
- Evaluation of Uterine Bikunin and Gene Expression in Cyclic and Pregnant Gilts | 29
 - Tissue Collection | 29
 - Western Blot Analysis | 30
 - RNA Extraction | 31
 - Bikunin Primer Construction, Optimization and Sequencing | 32
- Quantitative RT-PCR and In Situ Hybridization of Endometrial Bikunin Gene Expression | 37
 - Tissue Collection | 37
 - Quantitative Reverse Transcriptase-PCR | 38
 - In Situ Hybridization Analysis | 39
 - Statistical Analysis | 43

Results
- Western Blot Analysis of Endometrial Bikunin | 44
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR Analysis of Endometrial Bikunin mRNA Expression</td>
<td>44</td>
</tr>
<tr>
<td>Quantitative RT-PCR Analysis of Endometrial Bikunin mRNA Expression</td>
<td>51</td>
</tr>
<tr>
<td>In Situ Hybridization Analysis of Bikunin mRNA in the Porcine Endometrium</td>
<td>55</td>
</tr>
<tr>
<td>Discussion</td>
<td>55</td>
</tr>
<tr>
<td>IV. SUMMARY AND CONCLUSION</td>
<td>68</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>73</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>86</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Conditions for PCR Optimization</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Relative Quantitation Using the Comparative C\textsubscript{T} Method for Bikunin</td>
<td>52</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>3.1</td>
<td>Porcine mRNA sequence for alpha1-microglobulin-bikunin precursor protein. Blue color indicates the portion of the mRNA that encodes for the alpha1-microglobulin protein. Red color indicates the portion of the mRNA that encodes for the bikunin protein. Bold red lettering indicates the portion of the bikunin sequence that PCR primers were constructed from.</td>
</tr>
<tr>
<td>3.2</td>
<td>Quantitative RT-PCR cycle amplification of bikunin using the TET labeled bikunin probe. Arrow indicates the cycle threshold (ct) level.</td>
</tr>
<tr>
<td>3.3</td>
<td>Western Blot analysis of protein from endometrial explant culture media during the estrous cycle (c) and early pregnancy (p) using antiserum against human bikunin. Std indicates molecular weight standard lane. Ser indicates pig serum lane. Arrow indicates 30 kDa immunoreactive product.</td>
</tr>
<tr>
<td>3.4</td>
<td>Western Blot analysis of protein from uterine flushings during the estrous cycle (c) and early pregnancy (p) using antiserum against human bikunin. Std indicates molecular weight standard lane. Ser indicates pig serum lane. Arrow indicates 30 kDa immunoreactive product.</td>
</tr>
<tr>
<td>3.5</td>
<td>Photograph of an ethidium bromide stained 3% agarose gel with endometrial PCR products produced with bikunin primers. Arrow indicates a band size of 314 base pairs representing porcine bikunin.</td>
</tr>
<tr>
<td>3.6</td>
<td>Diagrammatical representation of fold differences in bikunin mRNA expression detected through quantitative RT-PCR analysis.</td>
</tr>
<tr>
<td>3.7</td>
<td>Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from days 0 (A,B), 5 (C,D), and 12 (E,F) cyclic gilts using a radiolabeled cRNA probe specific for bikunin mRNA. Magnification = 40X.</td>
</tr>
</tbody>
</table>
3.8 Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from days 15 (A,B) and 18 (C,D) cyclic, and 12 pregnant (E,F) gilts using a radiolabeled cRNA probe specific for bikunin mRNA. Magnification = 40X

3.9 Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from days 15 (A,B) and 18 (C,D) pregnant and a sense control (E) using a radiolabeled cRNA probe specific for bikunin mRNA. Magnification = 40X
Chapter I

INTRODUCTION

Mammalian embryos undergo a series of rapid changes in the first week of pregnancy including cleavage, compaction, blastocoele formation, hatching from the zona pellucida, and finally implantation. During the second week of gestation, the time of establishment of pregnancy in pigs, the conceptuses undergo dynamic morphological changes allowing for an increase in surface area available for placental attachment and nutrient uptake (Geisert and Yelich, 1997). This period of rapid transformation, attachment, and placentation coincides with the time of greatest embryonic loss in the pig. Since this time period is so critical for early conceptus development and survival, it is important that we understand the conceptus and uterine factors involved in these dynamic processes. Porcine embryos, which are non-invasive in the uterus, have been shown to be highly invasive outside of the uterine environment. This suggests the presence of factors in the uterine endometrium, which function to inhibit conceptus invasion. Recently, the inter-\(\alpha\)-trypsin inhibitor family of protease inhibitors has been detected in the pig endometrium during this time of elongation and attachment, suggesting their role in conceptus development. This review of literature will cover development of the porcine conceptus including estrogen synthesis from
the conceptus, embryonic mortality in the pig, conceptus-uterine epithelial interactions, as well as uterine secretions involved in the maintenance of pregnancy. Finally, the inter-α-trypsin inhibitor family of proteins will be reviewed along with their possible roles in porcine conceptus development.
Chapter II

LITERATURE REVIEW

Development of the Porcine Conceptus

Prior to the period of implantation, porcine embryos undergo a rapid, morphological transformation during early pregnancy. Between Day 10 and 12 of gestation, spherical conceptuses develop from 3mm to 10mm in diameter with the outside layer of trophectodermal cells being cuboidal in shape (Geisert et al., 1982b; Mattson et al., 1990). This increase in conceptus diameter is a result of cellular hyperplasia, which is evident from the increase in conceptus DNA content and amount of cellular mitosis (Geisert et al., 1982b, Pusateri et al., 1990). On approximately Day 12 of gestation, the conceptus rapidly expands, within 2 to 3 hours, from 10 mm spherical, to 20-40 mm tubular and finally to a 100 mm filamentous morphology (Geisert et al., 1982b). In 1990, Mattson et al. proposed that this dramatic and expansive elongation is due in part to a rearrangement of the trophectodermal filamentous actin (f-actin) cytoskeleton, rather than an increase in cellular hyperplasia. The process of trophoblastic elongation functions to increase the surface area of the placenta for conceptus nutrient uptake from the uterus (Geisert and Yelich, 1997).
On Day 12, which is the time of maternal recognition of pregnancy in pigs, the conceptus begins to synthesize estrogens (Dhindsa and Dziuk, 1968; Gadsby et al., 1980; Fischer et al., 1985). In the pig, estrogen administration is luteotrophic (Gardner et al., 1963; Frank et al., 1977), prolonging the life of the corpus luteum by redirecting PGF$_{2\alpha}$, a luteolytic factor, from uterine venous blood into the lumen of the uterus (Bazer and Thatcher, 1977). Two enzymes involved in the synthesis of estrogen, are present in the trophectoderm. These enzymes, cytochromes P450 17α-hydroxylase and aromatase peak at the stage of tubular development (Conley et al., 1992). Cytochrome P450 17α-hydroxylase is important for the metabolism of progesterone to 17α-hydroxyprogesterone, while aromatase is important for conversion of testosterone to estradiol-17β. Gene expression for 17α-hydroxylase is first detected in 2- to 4-mm spherical conceptuses, with the greatest degree of expression in 7-mm conceptuses (Yelich et al., 1997b). Aromatase gene expression starts to increase in the 6-mm spherical conceptuses, which is consistent with the time of increased conceptus estradiol synthesis (Yelich et al., 1997b).

Trophoblastic elongation in the porcine conceptus is occurring coincident with not only conceptus estrogen synthesis, but with the expression of various growth factors and ligand receptors. In 6-mm conceptuses, which is the stage of development just prior to mesodermal outgrowth, gene expression for brachyury, a specific marker for mesodermal cells, is detected (Yelich et al., 1997b). Increased gene expression in the growth factor brachyury, may be necessary for
the activation of 17α-hydroxylase and aromatase, and therefore, the conceptus synthesis of estrogen (Yelich et al., 1997b).

Another growth factor, which may be important for conceptus development in vitro is insulin-like growth factor-I (IGF-I). IGF-I is a cell mitogen that promotes cell division and differentiation (Letcher et al., 1989). Porcine uterine tissues synthesize and secrete IGF-I (Tavakkol et al., 1988) with highest concentrations detected between days 10 and 12 of pregnancy, coincident with the time of conceptus estrogen synthesis and elongation (Letcher et al., 1989). Ko et al. (1994) proposed that IGFs might influence conceptus estrogen synthesis through regulation of aromatase P450 gene expression. Preimplantation porcine blastocysts possess IGF-II/mannose-6-phosphate (IGF-II/M6P) receptors (Chastant et al., 1994) which may stimulate cellular growth and differentiation of the conceptus. IGF-I receptors are also located in the uterine endometrial and myometrial tissues during early pregnancy, suggesting a physiological role of IGF-I on uterine secretory activity and, subsequently, conceptus development (Hofig et al., 1991).

Retinol binding protein (RBP), a major component of the uterine histotroph secreted in response to progesterone during the period of conceptus elongation, transports vitamin A, in the form of retinol, to the developing conceptus (Adams et al., 1981; Trout et al., 1992). Continued secretion of progesterone by the corpora lutea may ensure that RBP will be present throughout the majority of gestation (Adams et al., 1981). Retinol, under the control of various enzymes,
can be oxidized to retinoic acid (Blomhoff et al., 1990), a cellular morphogen shown to function in trophoblastic remodeling and conceptus elongation.

Retinoic acid acts through its receptor, retinoic acid receptor (RAR), which binds to enhancer elements of the DNA to activate gene transcription (De Luca, 1991), thereby influencing the production of cell surface adhesion molecules (Agura et al., 1992) and extracellular matrix components (De Luca, 1991). \(\text{RAR}_\alpha, \text{RAR}_\beta \) and \(\text{RAR}_\gamma \), three isoforms of retinoic acid receptor are present in the day 10-12 porcine conceptus (Yelich et al., 1997a). \(\text{RAR}_\alpha \) gene expression is increased from the 4mm-8mm spherical stage and shows a marked increase during elongation (Yelich et al., 1997a).

RBP is produced by the elongating conceptus with gene expression (Trout et al., 1991) and secretion (Harney et al., 1990) localized to the trophectoderm and the inner cell mass. An increase in RBP gene expression is detected during the growth of spherical conceptuses from 2-8 mm. The RBP expression then declines during late spherical to early tubular stages of development followed by a dramatic increase during elongation (Yelich et al., 1997b). The rise in RBP gene expression may help protect the developing embryo from teratogenic or embryocidal effects of excessive retinol (Trout et al., 1992).

Yelich et al. (1997b) demonstrated increasing expression of transforming growth factor-\(\beta_3 \) (TGF\(\beta \)) during spherical conceptus development from 2mm-8mm. Expression remained high through the filamentous stage of development. TGF\(\beta \), a major regulator of cell growth and differentiation, may be involved in
mesodermal migration (Gupta et al., 1996) and has been shown to modify the extracellular matrix (Roberts et al., 1990).

Geisert and Yelich (1997) proposed a model for the role of retinol and other growth factors in trophoblastic elongation. Estrogen synthesized by the early conceptus stimulates endometrial estrogen receptor, which initiates the release of uterine RBP (uRBP). The uRBP functions to transport retinol directly to the conceptus or transfer it to the embryonic RBP (eRBP). Free retinol, which has not bound to RBP, is oxidized to RA. The RA turns on its receptor, thereby activating TGFβ and leukemia inhibiting factor (LIF), a haematopoietic cytokine, both of which play a role in remodeling of the extracellular matrix.

Anegon and coworkers (1994) suggested leukemia inhibiting factor (LIF) activity, detected at peak levels in porcine uterine luminal fluids on days 7 and 13 of the estrous cycle and day 12 of pregnancy, may play a role in conceptus development and implantation. Another cytokine thought to be involved in placentation and fetal growth and development, colony-stimulating factor 1 (CSF-1), has been localized to the uterine surface and glandular epithelium, with the highest levels of expression occurring after day 30 of gestation (Tuo et al., 1995).

Embryonic Mortality in the Pig

Embryonic mortality, before day 20 of gestation, is a major cause limiting litter size in pigs. In 1923, Corner et al. determined that counting the number of
corpora lutea on each ovary is a good indicator of ovulation rate, and can be used to compare to the number of fetuses present, therefore determining the rate of embryonic mortality. It is estimated that 30-40% of the oocytes ovulated do not develop into piglets (see review, Pope and First, 1985).

Pope et al. (1990) reported the effects of asynchronous development of blastocysts, within litters, on the rate of embryonic mortality. Embryos at day 6 of gestation transplanted into pregnant gilts at day 7 of gestation showed a higher degree of variability among blastocysts, as well as a lower degree of development, when compared to day 7 embryos transferred into day 6 recipients. These experiments suggest that the asynchronous development is due to the more developed embryos synthesizing estrogens sooner, thereby changing the protein secretions in the uterus.

Evidence suggests that the advancement of the endometrial cell surface and uterine glandular secretions, by the administration of exogenous estradiol on days 9 and 10 of pregnancy, is associated with embryonic mortality (Morgan et al., 1987a, 1987b; Blair et al., 1991; Geisert et al., 1991). These biochemical alterations in the uterine lumen result in embryonic mortality by day 30 (Pope et al., 1986a). In the gilt, the uterine glycocalyx thickens between days 12 and 18 of pregnancy, and placental attachment occurs between days 13 and 18 of gestation (Dantzer et al., 1985; Stroband and Van der Lende, 1990). In areas of placental attachment, the uterine glycocalyx is reduced (Dantzer et al., 1985; Blair et al, 1991), proving to be an important part of implantation. When gilts are
administered estradiol valerate on days 9 and 10 of gestation, the uterine glycocalyx is shed on approximately day 14 of gestation (Blair et al., 1991), which correlates with the time of embryonic mortality.

Superovulation and unilateral hysterectomy-ovariectomy (UHO) are methods that have been used to evaluate uterine capacity. Superovulation results in a greater number of embryos at day 30 of gestation, however, the number of embryos at term does not differ significantly when compared to controls (Christenson et al., 1987). This indicates that uterine capacity plays a role in embryo development later in gestation.

Gilts undergoing UHO have approximately half the uterine space available for embryonic growth. However, the single ovary remaining in UHO gilts compensates for the loss of the ovary and ovulation rates are similar to control intact animals (Dziuk, 1968). Between days 25 of gestation and term, when the uterine capacity becomes restricted due to increased embryonic growth, approximately 30% of the embryos are lost (Dziuk, 1968; Christenson et al., 1987).

Biensen and coworkers (1998) examined the impact of either a Meishan or Yorkshire uterus on Meishan or Yorkshire fetal and placental development. Meishan placenta showed a two-fold increase in vascular density between days 90 and 110, with no increase in placental surface area. While the Yorkshire placenta showed constant vasculature from days 90-110, the surface area of the placenta doubled in size. This suggests that Meishan fetal growth is dependent
on the increased vasculature of the placenta, while Yorkshire fetal growth relies on an increase in placental surface area.

Wilson and coworkers (1998) reported that Meishan and Yorkshire fetuses recovered from Meishan uteri were similar in weight; however, Meishan fetuses were lighter than Yorkshire fetuses when recovered from Yorkshire uteri. The weight of Day 90 and term Meishan placentas were similar, while Yorkshire placentas were approximately 70% larger at term than at Day 90. Given that uterine capacity sets the upper limit on litter size, it has been suggested that Meishan pigs have a greater potential for increased litter size due to the decreased surface area of endometrium required per conceptus.

Maternal Recognition of Pregnancy

The term “maternal recognition of pregnancy”, first coined by Short in 1969, can be defined as the signal produced by the conceptus which prolongs the normal lifespan of the CL (Geisert et al., 1990). The corpora lutea of pigs are required to maintain pregnancy throughout gestation. In pigs, PGF$_{2\alpha}$ is the luteolytic agent (Moeljono et al., 1976), while estrogen of trophoblastic origin is the luteostatic agent (Perry et al., 1976). Since only 18% of PGF$_{2\alpha}$ is metabolized by the lungs to the inactive metabolite, 15 keto-13,14 dihydro-prostaglandin F$_{2\alpha}$ in this species (Davis et al., 1979), the pig has both a local and
systemic luteolytic pathway. Therefore, the presence of at least two conceptuses is required in each uterine horn for pregnancy to be maintained (Dziuk, 1968).

Between days 11 and 13 of gestation, during the time of trophoblastic elongation, pig conceptuses produce both estradiol-17β (Perry et al., 1976; Fischer et al., 1985) and PGE₂ (Geisert et al., 1982a; Guthrie and Lewis, 1986), a vasodilator thought to be involved with immunosuppression of T cells (Croy et al., 1987; King, 1988). Estradiol-17β is synthesized and released for a second time during days 15 and 18 of pregnancy, helping to maintain pregnancy until term. Ford and Christenson (1991) demonstrated that estradiol-17β alone was not enough to protect the CL from an exogenous luteolytic dose of PGF₂α. PGE₂, when administered at a ratio to PGF₂α of 4:1, increased CL weight and P₄ content, thereby preventing luteolysis. Therefore, it is hypothesized that the roles of E₂ and PGE₂ in protecting CL from the luteolytic effects of PGF₂α are independent of each other.

In 1977, Bazer and Thatcher first proposed the theory of maternal recognition of pregnancy in the pig. During the estrous cycle, the uterine endometrial tissue becomes an endocrine tissue releasing PGF₂α into the uterine venous system where it then reaches the ovarian artery and finally the CL causing luteolysis. The release of estrogen from the elongating conceptus prevents CL regression by redirecting the transport of PGF₂α into an exocrine direction, sequestering the luteolysin to the uterine lumen, rather than preventing its synthesis and secretion.
During days 12 to 13 of pregnancy, along with the increased synthesis of
E$_2$ and PGE, there is a 3 - 4 fold increase in uterine blood flow (Ford and
Christenson, 1979). Stice et al. (1987a) proposed that uterine blood flow
fluctuations are a result of changes in uterine arterial tone and/or contractibility
due to alterations in Ca$^{2+}$ uptake. Estrogens, metabolized to catechol estrogens,
have been shown to block uptake of Ca$^{2+}$ by uterine arterial smooth muscle cells
(Stice et al., 1987b), thus increasing uterine blood flow necessary for conceptus
survival.

Conceptus-Uterine Epithelial Interactions

In the pig, a species that has a non-invasive, epitheliochorial type of
placentation (King et al., 1982; Keys et al., 1990), placental attachment to the
uterine epithelium occurs between days 13 and 18 of gestation (Perry et al.,
1981). The large (200-1000 kDa), heavily glycosylated transmembrane protein,
Muc-1, is an integral component of the uterine epithelium (Bowen et al., 1996,
1997). Much like the results seen by Braga and Gendler (1993) in uterine
attachment and implantation in rodents, Muc-1 is down-regulated during the
transition of the porcine uterus from the prereceptive to the receptive state,
allowing for trophoblast attachment (Bowen et al., 1996). Muc-1 levels in the
uterine epithelium are maximal at Day 0 (estrus) and Day 4; however, levels are
undetectable by Day 10 of the estrous cycle or pregnancy (Bowen et al., 1996).
Reduced staining of Muc-1 on the uterine luminal and glandular epithelium
correlates with increasing progesterone concentrations in both cyclic and pregnant gilts (Bowen et al., 1996, 1997), as well as the time of progesterone receptor down-regulation in the uterine epithelium (Geisert et al., 1994). These results are consistent with the theory of Surveyor et al., (1995) in which Muc-1 functions as an anti-adhesive molecule in the mouse uterus. Uterine receptivity may be due to the loss of Muc-1, which allows for various ligands to bind to their uterine epithelial cell surface receptors (Surveyor et al., 1995), resulting in implantation.

In order for there to be contact between the uterine epithelium and the conceptus, the epithelial cells of the uterus must possess receptors for the conceptus extracellular matrix (ECM) proteins. The major receptors for conceptus ECM proteins appear to be integrins, which are cell surface glycoproteins (Hyne, 1992). All integrins are composed of one of the 14 known α subunits and one of the 9 known β subunits (Bowen et al., 1996). The various heterodimers that form determine the specific function of the integrin (Hynes, 1992). Bowen et al. (1996, 1997) looked at the in vivo and in vitro expression of α₁, α₃, α₄, α₅, αᵥ, β₁ and β₃ integrin subunits in the endometrium and conceptus during the estrous cycle and early pregnancy. The integrin subunits expressed in the epithelium and trophectoderm are α₄, α₅, αᵥ, β₁ and β₃, members of the fibronectin and vitronectin families of receptors. Peak expression of α₄, α₅, and β₁ occurred between days 11-15, also known as the window of implantation, while αᵥ and β₃ expression remained consistently high independent of the day.
Steroid treatments had an effect on the expression of the α₁, α₄, α₅, and β₁ integrin subunits (Bowen et al., 1996). Expression of α₄, and α₅ was down-regulated by estrogen, while α₁ and β₁ expression was up-regulated by progesterone (Bowen et al., 1996).

Bowen and coworkers (1996) also reported the presence of fibronectin on the trophectoderm, vitronectin on the trophectoderm and uterine epithelium, and laminin and type IV collagen on the basal lamina of the uterine epithelium and trophectoderm. Tuo and Bazer (1996) reported the presence of oncofetal fibronectin in the trophectoderm from days 12 to 15. Fibronectins have been shown to be present on the day 5 blastocyst, while extracellular laminins do not appear on the conceptus until day 10 (Richoux et al., 1989). Integrin heterodimers known to bind fibronectin include α₄β₁, α₅β₁, αᵥβ₁, αᵥβ₃, whereas only αᵥβ₁ and αᵥβ₃ bind vitronectin (Hynes et al., 1992). The interactions of integrins on the uterine epithelium with their ligands on the trophectoderm, with peak expression during the time of implantation, suggest a role of integrins in the process of attachment in pigs.

Endometrial Secretions During the Estrous Cycle and Early Pregnancy

In species such as the pig, which have a diffuse, epitheliochorial type of placentation, uterine endometrial secretions, or histotroph, are important for the development of the conceptus (Roberts and Bazer, 1988). Areolae, specialized
chorionic structures, which form over the uterine glands around Day 30 of gestation, are thought to absorb the nutrients from the histotroph and transport it to the developing fetus (Brambel, 1933). Knight et al. (1974a; 1974b) demonstrated that the amount of uterine protein secreted is correlated primarily with levels of progesterone. During the estrous cycle, the protein content of uterine secretions remains relatively constant from Days 2-9, with an increase at Day 12. The maximum amounts are reached at Day 15, while under the influence of progesterone, followed by decreasing content after the regression of the CL, similar to that seen between Days 6-9 of the estrous cycle (Murray et al., 1972). It has also been demonstrated, through the use of superovulation and unilateral ovariectomy-hysterectomy, that the total amount of uterine protein secreted is related to the number and total weight of the corpora lutea present (Knight et al., 1973).

While examining the relationship between blastocyst development and uterine endometrial secretions, Geisert and coworkers (1982a) demonstrated that as estradiol concentration in uterine flushings increased, parallel to conceptus elongation, total uterine content of calcium, protein, acid phosphatase activity, PGF$_{2\alpha}$, and PGE$_2$ also increased. It is thought that endometrial calcium released may reflect the secretory activity of the uterine endometrium and glandular epithelium.

Geisert et al. (1982c) conducted another experiment to further demonstrate the role of conceptus estrogen synthesis on uterine secretory
activity. Estradiol valerate, injected on Day 11 of the estrous cycle, was shown to stimulate an increase in calcium, protein, PGF$_{2\alpha}$ and PGE within 24 hours, similar to the responses seen from Day 12 elongating blastocysts.

The uterine histotroph is composed of a large amount of uteroferrin, as well as plasmin inhibitor, riboflavin and lysozyme. Riboflavin appears as a yellow pigment (Moffatt et al., 1980) present in uterine flushings during Days 6-8 of the estrous cycle and pregnancy in response to estrogen and progesterone (Murray et al., 1980). The lysozyme present is assumed to function as an antibacterial agent in the uterus (see Roberts and Bazer, 1988). Uteroferrin is one of the most abundant proteins found in uterine flushings, making up approximately 15% of the total secreted protein (Roberts and Bazer, 1988). Uteroferrin, a protein with acid phosphatase activity (Bazer, 1975), gives flushings a deep purple color and has a molecular weight of 35,000 (Roberts and Bazer, 1988). It is secreted from the uterine glandular epithelium (Reneger, 1982), functions to carry iron to the developing fetus (Roberts and Bazer, 1988), and acts as a hematopoietic growth factor, stimulating proliferation and differentiation of erythroid and granulocyte-monocyte/macrophage cell lines (Bazer et al., 1991; Laurenz et al., 1997). Uteroferrin binds and transports two atoms of iron per molecule, with the excess iron being filtered through the fetal kidney, and then transported and stored in the allantoic fluid (Reneger, 1982).

Porcine embryos, when placed in an ectopic site, will invade the surrounding tissue forming a syncytium (Samuel and Perry, 1972). Protease
inhibitors, synthesized by the endometrium (see review Roberts et al., 1993), may help to protect the uterus from the invasive nature of the embryo. Plasmin inhibitor, found in uterine secretions during pregnancy and the estrous cycle (Stallings-Mann et al., 1994), is synthesized by not only uterine glandular epithelium, but surface epithelium as well (Fazleabas et al., 1985). The synthesis of plasmin inhibitor is progesterone dependent (Fazleabas et al., 1985), with maximum levels seen at Day 12 of pregnancy (Fazleabas et al., 1983). Fazleabas and coworkers (1983) demonstrated the release of plasminogen activator from Day 10-16 conceptuses and the presence of plasminogen in uterine flushings. Because of the presence of these two factors, conceptuses possess the ability to release plasmin, a substance that is shown to be highly proteolytic. Fazleabas et al. (1983) hypothesized that the release of plasmin inhibitor, stimulated at the time of elongation, functions to protect the uterine tissue from the proteolytic effects of plasmin.

Geisert and coworkers (1997) demonstrated the time- and steroid-dependent activity of cathepsin L in the uterine lumen of gilts during the estrous cycle and early pregnancy. Peak levels of the enzyme were seen on Day 15 of the cycle and pregnancy, corresponding to the time of placental attachment (King et al., 1982). Cathepsin L activity was shown to increase following 10 days of progesterone stimulation. Immunohistochemical analysis revealed that the surface and glandular epithelial cells of the uterus secrete cathepsin L. It has been suggested that this enzyme may be involved in the proteolysis of the
uterine glycocalyx, which occurs at the time of placental attachment (Geisert et al., 1997).

Another conceptus-derived factor likely to be involved in implantation in pigs is antileukoproteinase (ALP), also referred to as secretory leukocyte protease inhibitor (SLPI), a low molecular weight elastase/cathepsin G protease inhibitor (Badinga et al., 1994). Uterine expression of antileukoproteinase was shown to be highest during mid to late gestation (Badinga et al., 1994), due to the presence of the conceptuses, rather than progesterone or estrogen stimulation (Simmen et al., 1991). Reed and coworkers (1998) suggested that both a conceptus protein, such as TGFα, and an inhibitory component coming from the maternal blood serum, might mediate SLPI gene expression. Antileukoproteinase synthesis seems to be correlated with the epitheliochorial type of placentation seen in species such as the cow, horse and pig (Badinga et al., 1994).

Menino and coworkers (1997) evaluated the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in pig embryos and the uterus at the time of trophoblast attachment. Day 16 embryos expressed transcripts for TIMP-1, -2 and -3, with TIMP-1 and TIMP-3 being localized to the extraembryonic endoderm and the trophectoderm, while TIMP-2 was found in all embryonic cells. Transcripts for the TIMP-1, -2 and -3 genes were seen in the uterine stroma as well. MMP-2 and MMP-9 transcripts were expressed in both the embryos and the uteri, however, no
specific localization was observed. The presence of these proteinases, along
with their inhibitors, may explain the non-invasive behavior of pig embryos while
in the uterine environment.

Another key player in the process of implantation and placentation is the
plasma serine protease, kallikrein. Kallikrein gene expression has been detected
in both the uterine endometrium and the conceptus (Vonnahme et al., 1999).
Kallikrein enzymatic activity in uterine flushings increases between days 10 and
15 of the estrous cycle and pregnancy (Vonnahme et al., 1999). Along with its
role in the regulation of kinin release (see review Margolius, 1996), kallikrein has
been shown to cleave the 120 kDa glycoprotein, inter-\(\alpha\)-trypsin inhibitor heavy
chain 4 (\(\alpha\)1H4), into 100 and 35 kDa fragments (Geisert et al., 1995). The 100
kDa fragment is then further cleaved into a 70 kDa fragment which releases the
30 kDa porcine endometrial glycoprotein pGP30 (Geisert et al., 1995). Kallikrein
cleaving \(\alpha\)1H4 could play a role in exposing conceptus attachment sites to the
uterine surface (Geisert et al., 1998).

Inter-\(\alpha\)-trypsin Inhibitor Family

Exogenous estradiol administration on days 9 and 10 of pregnancy
stimulates the loss of the uterine epithelial glycocalyx (Blair et al., 1991), along
with the loss of a basic (pl 7.9-8.9), 30 kDa glycoprotein (Gries et al., 1989). In
1995, Geisert and coworkers isolated a basic, 30 kDa endometrial glycoprotein,
pGP30, which has since been characterized as homologous to the C-terminal region of the inter-α-trypsin inhibitor heavy chain 4 (Geisert et al., 1998). This 30 kDa glycoprotein is now known to be a cleavage product of IαIH4 proteolysis (Geisert et al., 1997). Inter-α-trypsin inhibitor heavy chain 4 has been found in human (Saguchi et al., 1995) and pig liver (Hashimoto et al., 1996), as well as in pig endometrium (Geisert et al., 1998). Although the strongest cellular localization of the IαIH4 cleavage product, pGP30, is seen in the epithelium of the endometrium, it has been found in the oviduct as well (Geisert et al., 1995). Geisert et al. (1995) determined that the endometrial production of pGP30 is time and steroid dependent, as synthesis was increased in ovariectomized gilts treated with progesterone. Maximum expression of pGP30, detected by immunocytochemistry, was observed on day 12 of the estrous cycle and between days 12 and 18 of pregnancy (Geisert et al., 1995).

Endometrial cultures, analyzed with pGP30 antiserum, showed multiple bands, varying in molecular mass, depending on the stage of the cycle at which the tissue was obtained (Geisert et al., 1995). Geisert and coworkers (1995) reported that on day 0, also known as estrus, two bands, the 30 kDa and a 32 kDa, were present. Between days 5 and 10, with the absence of the 30 kDa band, three to four bands of molecular masses ranging from 35-40 kDa appear. The 30- and 32 kDa bands reappeared at day 12 and remained through day 18 of the estrous cycle. On day 10, and continuing through day 18 in the pregnant gilt, only the 30 kDa glycoprotein was detected. The presence of the 30 kDa glycoprotein during this stage of pregnancy, when elongation and trophoblastic
attachment are occurring, may suggest a role of pGP30 in conceptus attachment to the uterine surface and development (Geisert et al., 1995). pGP30 is related to the inter-α-trypsin inhibitor family of proteins, as it is a product of lαIH4 proteolysis (Geisert et al., 1997) and may be involved in the loss of the uterine epithelial glycocalyx.

The inter-α-trypsin inhibitor family consists of four heavy chains, 1, 2, 3, and 4, (lαIH1, lαIH2, lαIH3, lαIH4) and a light chain, bikunin. All lα heavy chains contain a von Willebrand type A domain, which serves as a target for adhesive molecules such as integrins, collagen, proteoglycans and heparin (Colombatti and Bonaldo, 1991), and have been classified as acute phase proteins (Geisert et al., 1998). Acute phase proteins, coming from the liver, are molecules that increase rapidly during acute inflammation and infection (Roitt et al., 1998). In the reproductive tract, it has been suggested that acute phase proteins may help protect the uterus from inflammation that may occur during the process of conceptus attachment (Geisert et al., 1998). All inter-α-trypsin inhibitor heavy chains are homologous in their N-terminal regions; however, variations in the C-terminal regions are seen among the four proteins (Saguchi et al., 1995). Unlike the other heavy chains, lαIH4 does not possess a binding site for bikunin (Geisert et al., 1998) and, as mentioned earlier, is readily cleaved by kallikrein leaving 100 and 35 kDa fragments (Geisert et al., 1995). lαIH4 lacks the DPHFIi consensus sequence, which encodes for the region of chondroitin sulphate attachment, thereby preventing lαIH4 from binding to the chondroitin sulfate chain of bikunin (Geisert et al., 1998). The N-terminal 600 residues of
lαlH4 are highly homologous to those of the other lαl heavy chains, whereas, the 300 C-terminal residues exhibit no homology (Saguchi et al., 1995). The cDNA encoding lαlH4, previously referred to as inter-α-trypsin inhibitor heavy chain related protein (IHRP) (Hashimoto et al., 1996), was cloned from human liver cDNA libraries (Saguchi et al., 1995). The lαlH4 gene is expressed in the endometrium of gilts during the estrous cycle (days 0-18) and early pregnancy (days 10-18) (Geisert et al., 1998). Gene expression is enhanced during the mid-luteal phase of the cycle and during trophoblastic attachment (Geisert et al., 1998), and is up-regulated during acute inflammation (see review Salier et al., 1996), suggesting that lαlH4 is acting as an acute phase protein. It has been proposed that inter-α-trypsin inhibitor heavy chains play a role in stabilizing the extracellular matrix (Chen et al., 1994). Geisert and coworkers (1998) also suggested that lαlH4 might stabilize the uterine glycocalyx, thereby preventing invasion by the conceptus.

Bikunin binds to lαlH1, lαlH2, and lαlH3, via a chondroitin sulfate chain, forming either pre-α-inhibitor or inter-α-trypsin inhibitor (Blom et al., 1999; Thuveson and Fries, 1999). Pre-α-inhibitor, a positive acute-phase protein (Daveau et al., 1993), is composed of bikunin and heavy chain 3 linked together by a chondroitin 4-sulfate glycosaminoglycan (Enghild et al., 1991). This covalent linkage to the COOH-terminal amino acid residue of heavy chain 3 occurs while passing through the Golgi complex (Thuveson and Fries, 1999). Inter-α-trypsin inhibitor can also be a 180 kDa negative acute-phase protein.
(Daveau et al., 1993) consisting of bikunin covalently linked to the C-terminal amino acid residues of λ1H1 and λ1H2 (Blom et al., 1999). The heavy chains of λ1 appear as two large globular domains with the C-terminal ends of the polypeptides extending as thin flexible strands (Blom et al., 1999). Bikunin, present as a small globule, is found in the middle of the strands connecting the two heavy chains (Blom et al., 1999). The inter-α-trypsin inhibitor protein, along with functioning as a protease inhibitor, plays a role in the stabilization of the extracellular matrix (ECM) (see review Bost et al., 1998). The ECM allows for the interaction, adherence and migration of various cell types. A major component of the ECM is hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG) that is synthesized in the plasma membrane by hyaluronan synthase (Prehm, 1989). Inter-α-trypsin inhibitor has been identified as a HA-binding protein in the oocyte (Chen et al., 1992) and inflamed synovial fluids (Sandson et al., 1965). Flahaut and coworkers (1998) reported the interaction of heavy chains 1 and 2 with hyaluronan, suggesting its role in stabilizing the ECM.

Bikunin, the light chain member of the inter-α-trypsin inhibitor family, is a 30 kDa serine protease inhibitor (see review Bost et al., 1998) with two Kunitz-type inhibitor domains (Xu et al., 1998). Kunitz-type inhibitors are known for having a low molecular mass, a basic isoelectric point, and one or more inhibitory domains to serine proteases (see review Salier et al., 1996). The inter-α-trypsin inhibitor light chain (ITIL) gene (see review Bost et al., 1998), also known as the AMBP gene (see review Salier et al., 1996), encodes for two proteins, α1-
microglobulin and bikunin. The AMP-gene-encoded precursor polypeptide is cleaved, releasing the \(\alpha 1 \)-microglobulin and bikunin (see review Salier et al., 1996). The six exons encoding \(\alpha 1 \)-microglobulin are separated from the four exons encoding bikunin by a 7 kb intron (see review Salier et al., 1996). The AMBP gene, along with the four heavy chain genes, is transcribed in the liver, the primary source of all \(\alpha 1 \) plasma proteins, with gene transcription being mediated by the cytokines, IL-1 and IL-6 (see review Salier et al., 1996). The enzymes targeted by the two Kunitz-type inhibitory domains of bikunin are trypsin, chymotrypsin, cathepsin G, leukocyte elastase, acrosin and plasmin (see review Salier et al., 1996), although plasmin inhibitors more effectively inhibit these proteases (see review Salier et al., 1990).

Bikunin has been found in blood serum, urine and various tissues of humans and other species (Xu et al., 1998). Bikunin levels have been shown to increase during inflammation and such diseases as cancer (Xu et al., 1998). Yoshida and coworkers (1994) demonstrated the wide distribution of bikunin, by immunohistochemical analysis, in human brain tumors of various histological types. It has been suggested that bikunin may play a role in repairing tissue where destruction has occurred (Yoshida et al., 1994). Kobayashi et al., (1994a) described the use of bikunin for inhibiting tumor invasion in vitro and lung metastasis in vivo. Bikunin, present in the kidneys and urine, is known for being a potent inhibitor of calcium oxalate crystallization (Atmani et al., 1999), a process that leads to the formation of kidney stones. Gene expression is seen in renal epithelial cells, with bikunin being produced in response to substances such

More recently, bikunin has been identified in the reproductive tract. Marlar and coworkers (1997) identified and cloned bikunin from human placental tissue. Further studies characterized placental bikunin as being a potent inhibitor of plasma and tissue kallikreins, plasmin and factor Xla (Delaria et al., 1997). It is thought that placental bikunin may function as a regulator of contact activation and the intrinsic pathway of coagulation (Delaria et al., 1997).

Deiderich and coworkers (1997) identified message for bikunin in cyclic and pregnant porcine endometrium via RT-PCR. Although gene expression was seen in cyclic and pregnant endometrium on days 10 and 12, significantly greater levels were detected on days 15 and 18 of pregnancy, suggesting a possible role in conceptus development and implantation.

Statement of the Problem

Based on the previous results reported by Deiderich and coworkers (1997), the objective of this study was to determine whether bikunin protein was detectable during the estrous cycle and early pregnancy, and to further quantify and localize the gene expression of bikunin in the endometrium of the pig.
CHAPTER III

Bikunin protein and gene expression in the porcine endometrium during the estrous cycle and early pregnancy

Introduction

During early pregnancy, prior to the period of implantation, porcine conceptuses undergo a rapid, transformation from 10 mm spherical to greater than 100 mm filamentous morphology within a period of a few hours (Geisert et al., 1982b). This dramatic alteration in morphology, which occurs between day 11 to 12 of gestation, is temporally associated with conceptus synthesis and release of estrogen. Conceptus release of estradiol-17β into the uterine lumen prolongs the normal lifespan of the corpora lutea, signaling the maternal system for recognition of pregnancy (Geisert et al., 1990). As the estrogen concentrations in uterine flushings increase, parallel to the time of conceptus elongation, uterine secretory activity is altered (Geisert et al., 1982a). Roberts and Bazer (1988) suggested that in species such as the pig, which have a diffuse, epitheliochorial type of placentation (King et al., 1982; Keys et al., 1990), uterine endometrial secretions are important for regulation of conceptus development and placentation.
Although highly invasive when placed in an ectopic site (Samuel and Perry, 1972), porcine conceptuses are noninvasive in utero. It has been hypothesized that secretion of various enzyme inhibitors by the surface and glandular uterine epithelium protect the endometrium from the invasive nature of the porcine embryo. Endometrial secretion of a variety of protease inhibitors regulates the uterine environment during attachment of the trophoblast to the uterine surface in the pig (see Roberts et al., 1993). The porcine endometrium synthesizes and releases a protease inhibitor to plasmin, chymotrypsin and trypsin (Fazleabas et al., 1983; Stallings-Mann et al., 1994), antileukoproteinase (Simmen et al., 1992), and a group of low molecular mass, basic proteins that are related to the "serpin family" of protease inhibitors (Malathy et al., 1990). Expression of the inter-α-trypsin inhibitor (IαI) family of protease inhibitors has also been detected within the endometrium during early pregnancy of the pig (Geisert et al., 1996).

Inter-α-trypsin inhibitor heavy chains contain a von Willebrand type A domain (Colombatti and Bonaldo, 1991) and have been classified as acute phase proteins (see review Salier et al., 1996). Geisert and coworkers (1998) demonstrated IαIH4 gene expression in the endometrium of gilts during the estrous cycle (days 0-18) and early pregnancy (days 10-18). Gene expression is greatest during the mid-luteal phase of the cycle, and during trophoblastic attachment (Geisert et al., 1998). It has been hypothesized that IαIH4 might assist in the conceptus attachment to the uterus by stabilizing the uterine epithelial surface glycocalyx (Geisert et al., 1998). Inter-α-trypsin inhibitor family
of serine protease inhibitors are composed of either a combination of two heavy chains, lαH1 or lαH2, and the light chain member of the family, bikunin (Salier et al., 1996). Bikunin can also form a complex with single heavy chains, lαH2 and lαH3, through binding to a chondroitin sulfate chain (Enghild et al., 1993). The serine protease inhibitory activity originates from bikunin, a 30 kDa serine protease inhibitor (see review Bost et al., 1998) with two Kunitz-type inhibitory domains (Xu et al., 1998). Through its tandemly arranged Kunitz domains, bikunin inhibits trypsin, cathepsin G, elastase and plasmin. The inter-α-trypsin inhibitor light chain (ITIL) gene (see review Bost et al., 1998), also known as the AMBP gene (see review Salier et al., 1996), encodes for two proteins, α1-microglobulin and bikunin, which are separated through post-translational proteolytic cleavage. It has been suggested the bikunin may play a role in repairing tissue where proteolytic destruction has occurred (Yoshida et al., 1994). Certainly, bikunin could assist in the regulation of conceptus proteolysis of the uterine cellular surface and protein secretions. Therefore, the objective of this study was to determine whether bikunin protein was detectable during the estrous cycle and early pregnancy, and to further quantify and localize the gene expression of bikunin in the endometrium of the pig.

Materials and Methods

Animals

Cyclic, large white gilts of similar age (8-10 mo) and weight (100-130 kg) were checked twice daily for estrous behavior using intact boars. The onset of
estrus was considered Day 0 of the estrous cycle. Gilts assigned to be mated were bred naturally with fertile boars at the first detection of estrus and 12 h later.

Evaluation of uterine bikunin and gene expression in cyclic and pregnant gilts

Tissue Collection

Cyclic gilts (n=18) were hysterectomized on Days 0, 5, 10, 12, 15 and 18 of the estrous cycle, while pregnant gilts (n=12) were hysterectomized on Days 10, 12, 15 and 18 of gestation. Gilts were initially anesthetized with a 1.5 cc i.m. injection of a cocktail consisting of 2.5 cc Rompum (xylazine; 100 mg/ml) (Miles, Inc., Shawnee Mission, KS), and 2.5 cc Vetamine (ketamine HCl; 100 mg/ml) (Mallickrodt Veterinary, Mundelein, IL) in 500 mg of Telazol (tiletamine HCl and zolazepam HCl) (Fort Dodge, Syracuse, NE). Anesthesia was maintained with a closed-circuit system of halothane (Halocarbon Laboratories, Riveredge, NJ) and oxygen (1.0 liter/min). The uterine horns and ovaries were removed following midventral laparotomy. The incision site was closed using routine surgical procedures, and gilts were treated i.m. with procaine penicillin G (20,000 IU/kg BW). After surgical removal of the uterine horns as previously described (Gries et al., 1989), uterine flushings and endometrium were obtained by isolating one horn and flushing with 20 ml of PBS (pH 7.4). Uterine flushings were placed on ice until centrifugation (2500 x g, 10 min; 4°C). After flushing, the horn was cut along its antimesometrial border; endometrium was collected and snap frozen in liquid nitrogen, and tissue was stored at -80°C. The remaining uterine horn was immediately placed in a sterile container and transported on ice for use in explant
culture. Endometrium was removed from the mesometrial side and diced into 4x4-mm sections. A total of 0.5 g explant tissue was placed in 15 ml Dulbecco’s modified Eagle’s medium (MEM) (Gibco/Life Sciences, Gaithersburg, MD) and 2% (v:v) antibiotic-antimycotic (Gibco/Life Sciences). After 3 h, medium was replaced with fresh medium to remove serum leaching from the tissue. Endometrial explant cultures were incubated in air on a rocking platform (4 cycles/min) for an additional 24 h in MEM at 37°C. Endometrial explant culture medium was centrifuged (2500 x g, 10 min; 4°C). Endometrial tissue, uterine flushings and endometrial explant medium were stored at -80°C until analyzed.

Western Blot Analysis

Uterine flushings and endometrial explant culture media were analyzed by Western blotting for the presence of immunoreactivity to antiserum against human bikunin (generously provided by Jean-Philippe Salier, Boisguillaume, France). Polypeptides in UTF and ECM (50 μg total protein) were separated by 12.5% one-dimensional SDS-PAGE (Laemmli, 1970) and immediately transferred to polyvinylidene fluoride membranes (Millipore Corporation, Bedford, MA) at 150 mA constant current for 35 minutes. After electroblotting, the membranes were washed in TBS (20 mM Tris, 500 mM NaCl, pH 7.5) and incubated for 1 hour with the first blocking solution of 3% gelatin in TBS. After washing in Tween-TBS (TTBS; 20 mM Tris, 500 mM NaCl, 0.05% Tween 20, pH 7.5) for 10 minutes, membranes were incubated overnight with the first antibody (1:500 dilution) in 1% gelatin TTBS. The next day, membranes were washed
twice in TTBS and twice in TBS. Immunoreactive polypeptides were detected using the Bio-Rad Immuno-Blot kit (Bio-Rad, Hercules, CA) according to manufacturer's specifications.

RNA Extraction

Total RNA was isolated from endometrial tissue using TRlzol reagent (Gibco/Life Sciences, Gaithersburg, MD) according to manufacturer's specifications. Approximately 0.5 g of endometrial tissue was homogenized in 5 ml TRlzol reagent using a Virtishear homogenizer (Virtis Co. Inc., Gardiner, NY). After the addition of 1 ml of chloroform, samples were centrifuged at 4°C for 30 min at 3500 x g. The aqueous layer was removed and transferred into a new tube. Following the addition of 2.5 ml of isopropanol, samples were left at room temperature for 10 min to precipitate the RNA. Following centrifugation (3500 x g; 4°C) for 10 minutes, the supernatant was removed, RNA pellets were washed with 5 ml of 75% ethanol and centrifuged at 4°C for 4 min at 3500 x g. RNA pellets were rehydrated with 10 mM Tris, 1 mM EDTA (pH 7.4) and stored at -80°C until further analysis. Total RNA was quantified spectrophotometrically at an absorbance of 260 nm, while the purity was determined based on 260/280 nm ratios. Integrity of the RNA was checked via gel electrophoresis.

Total RNA was reverse transcribed to cDNA in a Perkin Elmer Cetus (Norwalk, CT) DNA Thermal Cycler Model 480. The total reaction volume of 20 µl contained 200 U of Moloney murine leukemia virus reverse transcriptase-Rnase H- (M-MLV-RT) (Promega, Madison, WI), 1.0 µg of oligo(dT)₁₅ primer
(Promega, Madison, WI), 0.5 mM each of dATP, dCTP, dGTP, dTTP, 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 20 U of Rnasin (Promega, Madison, WI), and 1.0 μg total RNA brought to volume with DEPC water. The reaction was incubated at 22°C for 15 min followed by a 30 min incubation at 42°C and a 5 minute incubation at 95°C. The samples were allowed to cool to 4°C and then placed in the -20°C freezer for long term storage. Quality and quantity of endometrial cDNA was checked by evaluating PCR expression of glyceraldehyde-3-phosphate dehydrogenase as previously described (Yelich et al., 1997).

Bikunin Primer Construction, Optimization and Sequencing

Figure 3.1 shows the complete mRNA sequence of the alpha1-microglobulin-bikunin precursor protein. Bikunin primers were designed from porcine cDNA sequence for α1-microglobulin-bikunin precursor protein (Gebhard et al., 1990). The nucleotide sequence of porcine bikunin (509-903 base pairs) was utilized to construct the 5' AGGAAGGATCAGGAGCTGGACAA and 3' GGAAGTGTGTT CTCTTCAAC primers. To optimize the PCR conditions, cDNA from cyclic and pregnant endometrium of all days was pooled and amplified with 0.6 U of Taq DNA polymerase and its supplied MgCl₂-free buffer (Promega, Madison, WI) and a 3x2x3 factorial (see Table 3.1) combination of primer (50, 150, 250 nM), deoxynucleotide triphosphates (dNTPs) (50 or 100μM), and MgCl₂ (1.25, 2.50, or 3.75 mM). All samples were kept on ice until loaded directly into the heat block of the thermocycler, which was preheated to 95°C to minimize the
Figure 3.1. Porcine mRNA sequence for alpha1-microglobulin-bikunin precursor protein. Blue color indicates the portion of the mRNA that encodes for the alpha1-microglobulin protein. Red color indicates the portion of the mRNA that encodes for the bikunin protein. Bold red lettering indicates the portion of the bikunin sequence that PCR primers were constructed from.
Porcine mRNA for alpha1-microglobulin-bikunin precursor protein

```
1 gccgtgagcg ccagccccctgt gctgacattg ccccaatgaca tccaggtgca ggagaacttc
gacctgtcta ggatctacgg gaaatggttc cacgtggccg tgggctccac ctgccccttg
61 ctgaagaggt tcaaggacaa gatgacgatg ggcacgctga tgctgggaga gggggcagcg
121 gagaggagga tcaagcttcgtg ggtccacacc aactatgatg agtatgccat atttctgacc
gigaaggt tcaaggacaa gatgacgatg ggcacgctga tgctgggaga gggggcagcg
181 gagagggaga tcagctgac ccagacctcc ccaggaagaa gtatctgtga ggtgatctct
gggcttatg agaaaacag gcacgtatgg ggactcttct atcaacatgc caaatggaac
241 gagaaggttca gecgccgcca cggacccacc cttacctcgt gctgctggag cccagggagcc
301 atcaccatag agtctctatgt ggtccacacc aactatgatg agtatgccat atttctgacc
gigaaggt tcaaggacaa gatgacgatg ggcacgctga tgctgggaga gggggcagcg
361 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
421 gagcccaaccc tactctcaag agccgggagg gcgcgtgtgc ccagggagaa ggaaggatca
481 gagaaggttca gecgccgcca cggacccacc cttacctcgt gctgctggag cccagggagcc
541 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
601 gagaaggttca gecgccgcca cggacccacc cttacctcgt gctgctggag cccagggagcc
661 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
721 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
781 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
841 gagaaggttca gecgccgcca cggacccacc cttacctcgt cccagggagcc ccagggagcc
901 aaccttgcgct gctgctggag ccagggagca cagttctact ggcagaggg gcagtcccaag
961 tagtggcttg tctttctctct gcgcggaggt gggaggcttt ggtttcgtta cggagggggg
1021 cgccgagcag gcggccgggg aacccagcgg ccagcccttg gtctttccct ccacaggggg
1081 cggcgtgtgta cccctgtcag gggtcctctc cggaccggcc aagtgctctg gccttccctc
1141 gttcttctct ctttccattt aagcggggcc gggcaggggg aacccagcgg ccagcccttg
1201 aaccaacagc aagtgctctg gccttccctc ctttccattt aagcggggcc gggcaggggg
1261 cggcgtgtgta cccctgtcag gggtcctctc cggaccggcc aagtgctctg gccttccctc
```
Table 3.1. Conditions for PCR optimization.

<table>
<thead>
<tr>
<th>Lane</th>
<th>Primer (5 μM stock)</th>
<th>dNTPs (10 mM stock)</th>
<th>10 X MgCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5 μl</td>
<td>0.5 μl</td>
<td>1.25 μl</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
<tr>
<td>13</td>
<td>2.5</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>14</td>
<td>2.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>16</td>
<td>2.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>17</td>
<td>2.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>18</td>
<td>2.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
</tbody>
</table>
time required to reach the denaturation temperature. The first cycle used a
denaturation temperature of 95°C for 2 min, an annealing temperature of 57°C
for 1 min, and an extension temperature of 72°C for 2 min. This was followed by
29 cycles of denaturation at 94°C for 1 min, annealing at 57°C for 1 min, and a 2
min extension at 72°C. The PCR reaction was completed by a 9 min extension
at 72°C followed by a final, holding temperature of 4°C. The PCR products were
resolved on a 3% agarose gel at 95 volts for 45 minutes. The gel was stained for
45 minutes in ethidium bromide (1.0 mg/ml). The optimal conditions for bikunin
gene amplification were 25 mM MgCl₂, 50 μM dNTPs, and 250 nM primers. To
verify the PCR product as endometrial bikunin, pooled cDNA was amplified with
the previously described optimal conditions, run on a 3% agarose gel, stained
with ethidium bromide (0.5 g/ml) and destained in water for 30 min; bands were
cut from the gel with a razor blade. The single band of the PCR product was
extracted using the Qiaquick (Qiagen, Santa Clarita, CA) and sequenced by the
Recombinant DNA/Protein Research Facility at Oklahoma State University. The
314 bp product was 100 % homologous to the region (519-903 bp) of the gene
encoding for bikunin in the cDNA sequence for porcine alpha1-microglobulin-
bikunin precursor protein (GenBank accession number X53685). Endometrial
cDNA (1 μg) was amplified using the optimum conditions previously described to
determine bikunin gene expression in the uterus during the estrous cycle (days 0,
5, 10, 12, 15, and 18) and early pregnancy (days 10, 12, 15, and 18). The PCR
products were resolved on a 3% agarose gel at 84V for 1 h followed by staining
with ethidium bromide. Agarose gel was exposed to ultraviolet light and
photographed with an MP4 Polaroid Camera System (Fotodyne, Inc., Hartland, WI). Molecular standards were obtained from Boehringer Mannheim VIII (Indianapolis, IN).

Quantitative RT-PCR and in situ hybridization of endometrial bikunin gene expression

Tissue collection

Endometrial tissue was collected from gilts on days 0, 5, 10, 12, 15 and 18 of the estrous cycle (n=24) and days 10, 12, 15 and 18 of pregnancy (n=16) as previously described. Following hysterectomy, the uterine horn was opened along its anti-mesometrial border and endometrium removed from the underlying myometrium using sterile scissors. Multiple sections of endometrium (~0.5 cm) from the mesometrial region of the uterine horn were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2). Additional endometrial tissue was removed, snap-frozen in liquid nitrogen and stored at −80°C until processed for RNA extraction as described previously. Fixed tissue was transported on ice to the laboratory where samples were trimmed into 5 x 5 mm pieces, transferred to fresh 4% paraformaldehyde and placed on a rocking platform overnight. The following day, paraformaldehyde was removed and tissues were stored in PBS. Tissues were dehydrated and embedded in Paraplast-Plus (Oxford Labware, St. Louis, MO).
Quantitative Reverse Transcriptase-Polymerase Chain Reaction

Quantification of endometrial bikunin gene expression was evaluated using the one-step RT-PCR reaction following manufacturers recommendations for the TaqMan® Gold RT-PCR Kit (P/N N808-0233) (PE Biosystems, Foster City, CA). The TaqMan® Gold RT-PCR kit is designed to reverse transcribe and amplify target RNA that results in alteration of fluorescence from the bikunin specific probe permitting a quantitative measure of gene expression. The TaqMan probe contained a 5’ reporter dye (TET) and a 3’ quencher dye (TAMRA). Cleavage of the probe by the endogenous 5’ nuclease activity of AmpliTaq Gold DNA polymerase, during each cycle of PCR, results in increased fluorescence of the reporter dye, which is quantified at each cycle. The total reaction volume of 50 μl contained TaqMan Buffer A, 5.5 mM MgCl₂, 300 μM deoxyATP, 300 μM deoxyCTP, 300 μM deoxyGTP, 600 μM deoxyUTP, 200 nM bikunin forward primer (bp 804-822) TGTGGAGGCCTGCAGTCTC, 200 nM bikunin reverse primer (bp 856-874) CATCAAACGCCAGAGCTG, 100 nM TET labeled bikunin probe (bp 825-844) CATCGTCTCCGGCCCCTGCC designed from the porcine mRNA sequence for α1-microglobulin-bikunin precursor protein (Gebhard et al., 1990), 0.025 U/μl AmpliTaq Gold DNA polymerase, 0.25 U/μl MultiScribe reverse transcriptase, 1.25 U/μl recombinant Moloney murine leukemia virus (MuLV) reverse transcriptase, 0.4 U/μl Rnase Inhibitor and 100 ng of total RNA brought to volume with Rnase-free water. The PCR amplification was carried out in the ABI PRISM® 7700 Sequence Detection System (Applied Biosystems, Foster City, CA). Thermal cycling conditions were 50°C for 2 min,
95°C for 10 min followed by 40 repetitive cycles of 95°C for 15 sec and 60°C for 1 min. The ribosomal 18S RNA control kit (43108993E, Applied Biosystems, Foster City, CA), was used to quantify 18S rRNA as a normalization control for RNA loading.

Quantitation of gene amplification was made following RT-PCR by setting the threshold on the TET layer in the geometric region of the plot after examining the semi-log view of the amplification plot (Figure 3.2). The relative quantitation of bikunin gene expression was evaluated using the comparative Cₜ (threshold cycle) method (PE Biosystems, Foster City, CA). The ΔCₜ value is determined by subtracting the bikunin Cₜ of each sample from the ribosomal 18S Cₜ value. Calculation of ΔΔCₜ involves using the highest sample ΔCₜ value as an arbitrary constant to subtract from all other ΔCₜ sample values. Fold change in gene expression of bikunin is then determined by evaluating the expression, $2^{-\Delta\Delta C_T}$

In Situ Hybridization Analysis

A partial porcine bikunin cDNA was generated by RT-PCR using the primers and method described previously. The RT-PCR product was excised from 3% agarose gel and extracted utilizing the QIAEX II agarose gel extraction protocol (QIAGEN Inc., Valencia, CA). The 314-bp RT-PCR product was subcloned into pCR II®-TOPO® (Invitrogen, San Diego, CA) and fully sequenced to confirm identity and directionality. Antisense cRNA probes were generated by linearizing the pCR®II TOPO® bikunin plasmid with BamHI and in vitro
Figure 3.2. Quantitative RT-PCR cycle amplification of bikunin using the TET labeled bikunin probe. Arrow indicates cycle threshold (ct) level.
transcription with SP6 RNA polymerase. Sense cRNA probes were generated using EcoRV and T7 RNA polymerase.

Paraffin embedded endometrial tissue was sectioned (5 μm) using a Rotary Microtome Model 1820 (American Optical, Buffalo, New York), and mounted on positively charged microscope slides. Tissue sections were deparaffinized in Hemo-D (Fisher) and rehydrated with a series of decreasing concentrations of ethyl alcohol. Sections were fixed in 4% paraformaldehyde in PBS and digested in proteinase K (20 μg/ml in 50 mM Tris, 5 mM EDTA) at 37°C for 7.5 min. Uterine sections were then post fixed in 4% paraformaldehyde for 5 min, washed in PBS and dehydrated in 70%, 95% and 100% ethyl alcohol. Slides were allowed to dry completely at room temperature. Tissue sections were hybridized with either a radiolabeled sense or antisense porcine bikunin cRNA generated from a linearized plasmid template using in vitro transcription with [α-35S]UTP (activity: 3000 Ci/mmol; Diagnostic Products Corp., Los Angeles, CA). Radiolabeled cRNA probes (3 x 10^6 cpm/slide) were denatured in 75 μl of hybridization solution (50% formamide, 0.3 M NaCl, 20 mM Tris-HCl [pH 8.0], 5 mM EDTA [pH 8.0], 10 mM sodium phosphate [pH 8.0], Denhardt’s solution, 10% dextran sulfate, 0.5 mg/ml yeast tRNA, 100 mM dithiothreitol [DTT]) at 70°C for 10 min. Hybridization solution was added to the middle of the slide and a cover slip was placed on top. The slides were hybridized overnight at 55°C in a humidified chamber containing Whatman 3MM paper soaked in 50% formamide/5X SSC. The hybridized slides were washed in 5X SSC/10 mM β-mercaptoethanol (βME) for 30 min at 55°C to remove the coverslips. Slides were
then washed in the following conditions: 50% formamide/2X SSC/50 mM βME for 20 min at 65°C; TEN (0.5 M NaCl/10 mM Tris (pH 8.0)/5 mM EDTA) at room temperature for 10 min; three 10 min washes in TEN at 37°C; Rnase (10 μg/ml) in TEN for 30 min at 37°C to remove non-specifically bound probe; TEN for 15 min at 37°C; 50% formamide/2X SSC/50 mM βME for 20 min at 65°C; 2X SSC for 15 min at r.t.; 0.1X SSC for 12 min; two washes of 70% EtOH/0.3 M ammonium acetate for 5 min; 95% EtOH/0.3 M ammonium acetate for 1 min; twice in 100% EtOH for 1 min. Liquid film autoradiography was carried out using Kodak NTB-2 emulsion (Eastman Kodak, Rochester, NY) at 42°C. Slides were stored for 3 weeks at r.t. in a light tight box containing dessicant. Slides were developed in Kodak D-19 Developer, fixed, counterstained with hematoxylin, dehydrated with increasing concentrations of ethyl alcohol, and washed with H.emo-D. Coverslips were mounted on the slides using Permount. Tissue sections were evaluated by both brightfield and darkfield microscopy with a Zeiss Photomicroscope III (Carl Zeiss, New York, NY), and images were assembled using Adobe Photoshop 5.0 (Adobe Systems, Seattle, WA).

Statistical Analysis

Data were analyzed by least-squares analysis of variance using the Proc Mixed of SAS (SAS, 1999). Quantitative RT-PCR ΔΔCT values were analyzed with a model that included the effects of day, reproductive status, and the day x reproductive status interaction.
Results

Western Blot Analysis of Endometrial Bikunin

Antiserum to human bikunin detected an approximate 30 kDa immunoreactive product in ECM (Figure 3.3) and UTF (Figure 3.4) that is consistent with reported Mr for free-bikunin (see review Bost et al., 1998). A strong immunoreactive 30 kDa product was detected in ECM on Days 12, 15 and 18 of pregnancy. However, with the exception of Day 0 (estrus), the 30 kDa product was not detected in ECM on any of the other days of the estrous cycle evaluated. A larger Mr reactive product detected on the blot may represent the larger 100 to 125 kDa forms of Iα1 that consist of the various combinations of inter-α-trypsin inhibitor heavy chains 1, 2, 3 and bikunin (Bost et al. 1998). Strong immunostaining of the 30 kDa immunoreactive product was detected in UTF on Days 12, 15 and 18 of both cyclic and pregnant gilts. A less intense 30 kDa band was present at estrus with no similar size reactive product detected on Days 5 and 10.

RT-PCR Analysis of Endometrial Bikunin mRNA Expression

A 314 bp product representing endometrial gene expression of bikunin was amplified on days 0, 5, 10, 12, 15 and 18 of the estrous cycle and days 10, 12, 15 and 18 of pregnancy (Figure 3.5). Bikunin was expressed throughout the estrous cycle and expression did not appear to vary greatly. Although PCR procedures utilized in this study are only semi-quantitative, expression of the 314 bp product was low on days 10 and 12 of pregnancy, similar to the estrous cycle.
Figure 3.3. Western Blot analysis of protein from endometrial explant culture media during the estrous cycle (c) and early pregnancy (p) using antiserum against human bikunin. Std indicates molecular weight standard lane. Ser indicates pig serum lane. Arrow indicates 30 kDa immunoreactive product.
<table>
<thead>
<tr>
<th>Std</th>
<th>Ser</th>
<th>0c</th>
<th>5c</th>
<th>10c</th>
<th>10p</th>
<th>12c</th>
<th>12p</th>
<th>15c</th>
<th>15p</th>
<th>18c</th>
<th>18p</th>
</tr>
</thead>
</table>

| kDa | 66.2 | 31 |

Western Blot analysis of protein samples.
Figure 3.4. Western Blot analysis of protein from uterine flushings during the estrous cycle (c) and early pregnancy (p) using antiserum against human bikunin. Std indicates molecular weight standard lane. Ser indicates pig serum lane. Arrow indicates 30 kDa immunoreactive product.
Figure 3.5. Photograph of an ethidium bromide stained 3% agarose gel with endometrial PCR products produced with bikunin primers. Arrow indicates a band size of 314 base pairs representing porcine bikunin.
but expression of bikunin was notably more pronounced on Day 15 and 18 of pregnancy.

Quantitative RT-PCR Analysis of Endometrial Bikunin mRNA Expression

The mRNA expression of bikunin was quantified using the ABI PRISM® 7700 Sequence Detection System (PE Biosystems, Foster City, CA). Specific primers designed to porcine bikunin amplified RNA in all endometrial samples with alteration of probe fluorescence detected within 30 cycles (Figure 3.2). The threshold cycle was set on the geometric region of the amplification curve of all samples for comparative analysis. Relative quantitation of bikunin gene expression was evaluated using the comparative C_T (threshold cycle) method (Table 3.2). Ribosomal 18S RNA was utilized to adjust each sample for variation in RNA loading. A tendency toward a status x day interaction ($P=0.06$), and a significant day ($P<0.001$) effect in endometrial bikunin gene expression was detected; however, there was no effect of status seen ($P=0.44$). Bikunin gene expression decreased 3-fold from Day 0 to 5 of the estrous cycle. Gene expression was lowest on Day 10 of the estrous cycle and pregnancy (Figure 3.6) followed by an approximate 4 to 14-fold increase at Day 12. There was a 60-fold increase in bikunin gene expression at Day 15 of the estrous cycle with an approximate 1 to 6 fold increase observed in pregnant gilts compared to cyclic females on Days 15 and 18 of the estrous cycle. Gene expression of bikunin decreased on Day 18 of the estrous cycle, in contrast to the dramatic increase in expression during early pregnancy.
<table>
<thead>
<tr>
<th>Date & Status</th>
<th>Average C_T</th>
<th>Average C_T</th>
<th>BKUN-18S-Ribo</th>
<th>ΔC_T</th>
<th>$\Delta \Delta C_T$</th>
<th>BKUN Rel. to 10C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-0C</td>
<td>36.40 ± 0.92</td>
<td>17.91 ± 0.22</td>
<td>18.49 ± 1.11</td>
<td>-3.25 ± 1.11</td>
<td></td>
<td>9.51</td>
</tr>
<tr>
<td>D-5C</td>
<td>37.30 ± 0.30</td>
<td>17.09 ± 0.30</td>
<td>20.21 ± 0.41</td>
<td>-1.53 ± 0.41</td>
<td></td>
<td>2.89</td>
</tr>
<tr>
<td>D-10C</td>
<td>38.79 ± 1.81</td>
<td>17.05 ± 0.25</td>
<td>21.74 ± 1.92</td>
<td>0.00 ± 1.92</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>D-10P</td>
<td>38.76 ± 2.53</td>
<td>17.57 ± 0.16</td>
<td>21.20 ± 2.69</td>
<td>-0.54 ± 2.69</td>
<td></td>
<td>1.45</td>
</tr>
<tr>
<td>D-12C</td>
<td>35.29 ± 1.49</td>
<td>17.43 ± 0.15</td>
<td>17.85 ± 1.35</td>
<td>-3.89 ± 1.35</td>
<td></td>
<td>14.83</td>
</tr>
<tr>
<td>D-12P</td>
<td>37.39 ± 2.69</td>
<td>17.64 ± 0.32</td>
<td>19.75 ± 2.83</td>
<td>-1.99 ± 2.83</td>
<td></td>
<td>3.97</td>
</tr>
<tr>
<td>D-15C</td>
<td>33.82 ± 0.92</td>
<td>17.99 ± 0.40</td>
<td>15.83 ± 0.67</td>
<td>-5.91 ± 0.67</td>
<td></td>
<td>60.13</td>
</tr>
<tr>
<td>D-15P</td>
<td>32.51 ± 1.01</td>
<td>17.27 ± 0.89</td>
<td>15.24 ± 0.96</td>
<td>-6.50 ± 0.96</td>
<td></td>
<td>90.51</td>
</tr>
<tr>
<td>D-18C</td>
<td>34.82 ± 0.91</td>
<td>17.67 ± 0.49</td>
<td>17.15 ± 0.73</td>
<td>-4.59 ± 0.73</td>
<td></td>
<td>24.08</td>
</tr>
<tr>
<td>D-18P</td>
<td>32.13 ± 1.10</td>
<td>17.52 ± 0.57</td>
<td>14.61 ± 1.22</td>
<td>-7.13 ± 1.22</td>
<td></td>
<td>140.07</td>
</tr>
</tbody>
</table>
Figure 3.6. Diagrammatical representation of fold differences in bikunin mRNA expression detected through quantitative RT-PCR analysis.
Relative Quantitation Using the Comparative C\text{\textsubscript{T}} Method for Bikunin
In situ hybridization of bikunin mRNA during Days 0 to 5 of the estrous cycle showed little accumulation of gene expression in the endometrial tissue (Figure 3.7). Expression of bikunin mRNA was prevalent around the uterine glands on Days 15 and 18 of the estrous cycle (Figure 3.8). Bikunin gene expression was observed to be scattered in the stroma, but localized mostly to the deep glandular epithelium. Endometrial bikunin gene expression appeared to be more intense in pregnant compared to cyclic females between days 15 to 18 (Figure 3.9). Little or no gene expression was noted in the uterine surface epithelium on any of the days investigated.

Discussion

Following rapid elongation of the trophoblast between days 10 and 12 of gestation, porcine conceptuses initiate the early stages of placental attachment to the uterine surface epithelium (see review, Stroband and Van der Lende, 1990). The pig is a species with a non-invasive, epitheliochorial type of placentation that begins with focal attachments of the newly elongated, filamentous conceptus on Day 13 of gestation (King et al., 1982). Full apposition and adhesion of the maternal and conceptus trophectodermal microvilli throughout the uterine lumen occurs with growth and fluid expansion of the allantois from the embryonic hindgut between days 13 and 18 of pregnancy (see Stroband and Van der Lende, 1990).

Timing of trophoblast attachment to the uterine surface appears to be temporally associated with the decreased expression of Muc-1 during the
Figure 3.7. Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from days 0 (A,B), 5 (C,D), and 12 (E,F) cyclic gilts using a radiolabeled cRNA probe specific for porcine bikunin mRNA. Magnification = 40X.
Figure 3.8. Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from day 15 (A,B) and 18 (C,D) cyclic, and 12 pregnant (E,F) gilts using a radiolabeled cRNA probe specific for bikunin mRNA. Magnification = 40X.
Figure 3.9. Brightfield and darkfield images illustrating in situ hybridization of porcine endometrial tissue sections from day 15 (A,B) and 18 (C,D) pregnant, and sense control (E) using a radiolabeled cRNA probe specific for bikunin mRNA. Magnification = 40X.
transition of the porcine uterus from the prereceptive to receptive state (Bowen et al., 1996). A reduction in Muc-1 expression on the lumenal and glandular epithelial surface is associated with events following down-regulation of progesterone receptor in the uterine epithelium (Geisert et al., 1994). The loss of Muc-1 allows the conceptus to interact with such adhesive molecules as integrins, proteoglycans and heparin (Burghardt et al. 1997).

Loss of the heavily glycosylated transmembrane protein expression prior to the period of conceptus placental attachment not only permits interaction of the adhesive factors for attachment of the trophoblast but also exposes the epithelium to proteolytic attack by the conceptus. Porcine conceptuses are highly invasive when placed in an ectopic site (Samuel and Perry, 1972) and therefore have the enzymatic potential to erode into the uterine tissue. However, loss of Muc-1 and the initiation of the receptive state to uterine attachment in the pig are tightly coupled with endometrial synthesis and release of several protease inhibitors (see review Roberts et al., 1993). These inhibitors serve a major function in protecting the uterine epithelium from the vast proteolytic activity of developing porcine conceptuses. The porcine endometrium is the source of several protease inhibitors such as plasmin/trypsin inhibitor (Fazleabas et al., 1983), antileukoproteinase (Badinga et al., 1994), tissue inhibitors of metalloproteinases (Menino et al., 1997), and low Mr, basic proteins related to the serpin family of protease inhibitors (Malathy et al., 1990). Uterine expression and lumenal secretion of these protease inhibitors is consistent with their
possible role in neutralization of the proteolytic activity of the developing porcine placenta.

The present study adds bikunin to the growing list of uterine protease inhibitors synthesized and released during the critical period of conceptus attachment in the pig. Bikunin is a component of the inter-α-trypsin inhibitor proteoglycan family (IαI) that are proposed to function in binding and stabilizing the extracellular matrix (Bost et al. 1998). Bikunin, the light chain component of the IαI family, is a 30 kDa serine protease inhibitor (see review Bost et al., 1998) that is a major member of Kunitz-type protease inhibitors (Salier et al. 1990). Kunitz type inhibitors are characterized as having a low Mr, basic isoelectric point and containing one or several enzymatic inhibitory domains against a large number of serine proteases such as trypsin, chymotrypsin, cathepsin G, leukocyte elastase, and plasmin (Salier et al., 1990). Stallings-Mann et al. (1994) previously isolated a 14 kDa, basic, progesterone stimulated porcine uterine plasmin/trypsin inhibitor containing a single Kunitz domain at its amino terminus. Bikunin, as its name implies, contains two tandemly arranged Kunitz-type inhibitory domains (Hochstrasser et al., 1981; Diarra-Mehrpour et al., 1990). Evaluation of uterine bikunin with antiserum to human bikunin identified a major reactive product of 30 kDa. The 30 kDa product was first detectable in uterine flushings on Day 12 of the estrous cycle and early pregnancy. The release of bikunin is temporally associated with the period following the loss of Muc-1 from the uterine epithelium and the stage of conceptus synthesis of plasminogen activator for conversion of uterine plasminogen to plasmin during rapid
elongation of trophoblast (Fazleabas et al., 1983; Bowen et al., 1996). Uterine release of the uterine plasmin/trypsin inhibitor has been suggested to be closely associated with conceptus estrogen release during elongation (Fazleabas et al. 1983). The bikunin reactive product was detected in UTF in both cyclic and pregnant females on Days 12 through 18 in the present study. However, absence of the 30 kDa reactive product in culture media from cyclic gilts would indicate that uterine exposure to the elongating conceptuses alters bikunin release from the $l\alpha l$ complex at least as evaluated in vitro. It is possible that conceptus estrogen stimulates bikunin release as the 30 kDa product is also detectable in ECM of endometrium from gilts during estrus.

The approximate 100 to 120 kDa products detected in ECM with antiserum to bikunin, represents the variable 95-200 kDa forms of the $l\alpha l$ family. The lack of detection of the bands in UTF suggests that bikunin is free and not associated with the heavy chains in the uterine lumen. The presence of the larger Mr forms in ECM without detection of the free 30 kDa bikunin in cyclic gilts further demonstrates an importance of conceptus interaction for bikunin release. Bikunin interacts with various combinations of the inter-α-trypsin inhibitor heavy chains ($l\alpha lH$) to form members of the $l\alpha l$ family (Salier et al., 1990). Covalent crosslinking of bikunin to $l\alpha lH$ occurs through a chondroitin 4-sulfate glycosaminoglycan bond (Enghild et al. 1991). The $l\alpha l$ family of serine protease inhibitors can consist of a combination of $l\alpha lH2$, $l\alpha lH3$ and bikunin, $l\alpha lH1$, $l\alpha lH2$, and bikunin, or single chains of each $l\alpha lH$ covalently linked to bikunin (Bost et al. 1998). We have previously reported the presence and synthesis of $l\alpha lH4$ by the
porcine endometrium (Geisert et al., 1997). However, unlike the other three α_1 heavy chains, α_1H4 does not possess a binding site for the bikunin (Hashimoto et al., 1996). α_1H1 has been detected in the porcine uterus and endometrial α_1H1 gene expression demonstrated by RT-PCR (Geisert unpublished results). Therefore, it appears that components of α_1 are present within the endometrium, however, the appearance of the various α_1H during the estrous cycle and early pregnancy need to be investigated.

Since the liver is a major source of α_1H and bikunin (Bost et al. 1998), presence of bikunin within the uterus could result in transfer of plasma components. However, the present study demonstrates endometrial bikunin gene expression during the estrous cycle and early pregnancy. The 140-fold increase in endometrial bikunin gene expression between Day 10 to 18 of the estrous cycle and pregnancy is consistent with the detection of free bikunin in the UTF and localization of bikunin mRNA in glandular epithelium of the endometrium. Increase in gene expression and protein within the uterus on Days 12 through 18, suggests that bikunin is possibly regulated by progesterone as previously indicated for the uterine plasmin/trypsin inhibitor (Stallings-Mann et al., 1994).

Although bikunin is denoted as member of the α_1 family, it is not related to the α_1H genes. Bikunin, inter-α-trypsin inhibitor light chain, is part of the gene designated α_1-microglobulin/bikunin precursor (AMBP), which encodes for two proteins, α_1-microglobulin and bikunin (Gebhard et al., 1990). Following glycosylation and sulphation of bikunin, the larger AMBP polypeptide is cleaved
in the golgi, possibly by the pro-protein processing activity of furin, releasing α1-microglobulin and bikunin (see review Salier et al., 1996). Sulphation of bikunin permits the assembly of the lαlH with bikunin prior to AMBP cleavage. Presently, there is no functional relationship known for the evolutionary fusion of the two genes that are separated by a 7 kb intron (Salier et al. 1996). Role for the release of α1-microglobulin in the porcine uterus is unknown. It belongs to the lipocalin family of hydrophobic ligand carriers and can bind to IgAs and fibronectin (Chan et al., 1994).

Several biological functions can be proposed for endometrial synthesis of bikunin in the pig. Bikunin functions as a serine protease inhibitor that is most noted for its status as an acute phase lαl protein for regulation of uncontrolled proteolysis following trauma, disease and inflammation (Romisch et al., 1996; Salier et al., 1996). Certainly, release of bikunin would contribute to the uterine proteinase inhibitors released to regulate the enzymatic activity of the developing porcine conceptuses in utero, as well as protecting uterine glandular secretions from proteolysis. Bikunin could serve a role independent of its function as a protease inhibitor. The lαlH have recently been established as hyaluronic-binding proteins, which are involved with stabilization of the extracellular matrix (see Bost et al., 1998). Current evidence in expansion of the cumulus oocyte complex (Chen et al., 1992; Camanioni et al., 1993) supports a principal role for lαl, namely lαlH, in matrix stabilization through its interaction with hyaluronic acid (HA). Bost and coworkers (1998) have suggested that initial ionic binding of HA with lαlH allows covalent substitution of the chondroitin 4-sulfate linkage of
bikunin with HA to form a stable lαlH-HA complex. This interaction would result in not only the stabilization of the extracellular matrix, but the release of bikunin into the cellular microenvironment. Need for stabilization of the uterine epithelial surface glycocalyx during placental attachment in pigs (Geisert et al. 1990) and release of bikunin observed in ECM of pregnant gilts in the present study, suggest lαl may serve a major function with uterine attachment and the establishment of pregnancy in pigs. Further investigation of the lαl family's role in uterine function during establishment of pregnancy in swine is warranted.
CHAPTER IV

SUMMARY AND CONCLUSIONS

In species such as the pig, which have a diffuse, epitheliochorial type of placentation, uterine endometrial secretions, or histotroph, are important for the development of the conceptus (Roberts and Bazer, 1988). Because the porcine embryo is normally invasive, the uterine endometrium synthesizes and secretes protease inhibitors (see review Roberts et al., 1993), which may help to protect the uterus from the invasive nature of the embryo.

Plasmin inhibitor, synthesized by the uterine surface and glandular epithelium, is progesterone dependent (Fazleabas et al., 1985). Maximum levels of plasmin inhibitor are seen at Day 12 of pregnancy (Fazleabas et al., 1983). Fazleabas and coworkers (1983) hypothesized that the release of plasmin inhibitor, stimulated at the time of elongation, may function to protect the uterine tissue from the proteolytic effects of plasmin.

Another protease inhibitor likely to be involved in implantation in pigs is antileukoproteinase (ALP), also referred to as secretory leukocyte protease inhibitor (SLPI) (Badinga et al., 1994). Antileukoproteinase, a low molecular
weight elastase/cathepsin G protease inhibitor (Badinga et al., 1994), shows the greatest amount of expression in the uterus during mid to late gestation (Badinga et al., 1994) in response to the presence of a conceptus, rather than progesterone or estrogen stimulation (Simmen et al., 1991). Antileukoproteinase synthesis seems to be correlated with the epitheliochorial type of placentation (Badinga et al., 1994).

The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) has been demonstrated in porcine embryos and the uterus during the time of trophoblastic attachment (Menino et al., 1997). Uterine tissue and Day 15 embryos expressed transcripts for TIMP-1, -2 and -3 and MMP-2 and -9 (Menino et al., 1997). The presence of these proteinases, along with their inhibitors, may explain the non-invasive behavior of pig embryos while in the uterine environment.

Epitheliochorial placentation is associated with interdigitation of the trophoblastic and uterine microvilli and changes in the uterine glycocalyx (Dantzer, 1985). Exogenous estradiol administration on days 9 and 10 of pregnancy stimulates the loss of the uterine epithelial glycocalyx (Blair et al., 1991), along with the loss of a basic (pI 7.9-8.9), 30 kDa glycoprotein (Gries et al., 1989). A 30 kDa endometrial glycoprotein, pGP30, has since been isolated and characterized as homologous to the C-terminal region of the inter-α-trypsin inhibitor heavy chain 4 (Geisert et al., 1998). The production of this 30 kDa glycoprotein, known to be a cleavage product of ιαIH4 proteolysis (Geisert et al.,
is time and steroid dependent with maximum expression observed on day 12 of the estrous cycle and days 12 and 18 of pregnancy (Geisert et al., 1995). The presence of pGP30 during this stage of pregnancy, when elongation and trophoblastic attachment are occurring, may suggest its role in conceptus attachment to the uterine surface and development (Geisert et al., 1995).

The inter-α-trypsin inhibitor family of protease inhibitors consists of four heavy chains, 1, 2, 3 and 4, (lαIH1, lαIH2, lαIH3, lαIH4) and a light chain, bikunin. All lαI heavy chains, classified as acute phase proteins (Geisert et al., 1998), contain a von Willebrand type A domain, which serves as a target for adhesive molecules such as integrins, collagen, proteoglycans and heparin (Colombatti and Bonaldo, 1991). Geisert and coworkers (1998) suggested that acute phase proteins protect the uterus from inflammation that may occur during trophoblastic attachment. The lαIH has recently been recognized as hyaluronic-binding proteins (see Bost et al., 1998). Hyaluronic acid, a glycosaminoglycan (GAG), is a major component of the extracellular matrix (see Bost et al., 1998). Bost and coworkers (1998) have reported that the binding of heavy chains 1 and 2 with hyaluronic acid, forming a stable lαIH-HA complex, releases bikunin into the cellular microenvironment and results in the stabilization of the extracellular matrix. lαIH4, unlike the other heavy chain members, does not bind bikunin (Geisert et al., 1998), and is readily cleaved by kallikrein (Geisert et al., 1995). lαIH4 is expressed in the porcine uterus during the estrous cycle and early pregnancy (days 0-18), with enhanced gene expression seen during the mid-luteal phase of the cycle and during trophoblastic attachment (Geisert et al.,
1998). It has been suggested that \(1\alpha1H4\) might stabilize the uterine glycocalyx, thereby preventing invasion by the conceptus (Geisert et al., 1998).

Bikunin binds to \(1\alpha1H1\), \(1\alpha1H2\), and \(1\alpha1H3\), via a chondroitin sulfate chain, forming either pre-\(\alpha\)-inhibitor or inter-\(\alpha\)-trypsin inhibitor complexes (Blom et al., 1999; Thuveson and Fries, 1999). The serine protease inhibitory activity of these complexes comes from bikunin, as it contains two Kunitz-type inhibitory domains (Xu et al., 1998). Bikunin can inhibit trypsin, cathepsin G, elastase and plasmin. The inter-\(\alpha\)-trypsin inhibitor light chain (ITIL) gene (see review Bost et al., 1998), also known as the AMBP gene (see review Salier et al., 1996), encodes for two proteins, \(\alpha1\)-microglobulin and bikunin, which are separated through post-translational proteolytic cleavage. Bikunin has been found in blood serum, urine and various tissues of humans and other species (Xu et al., 1998) and is thought to play a role in repairing tissue where proteolytic destruction has occurred (Yoshida et al., 1994).

The present study detected bikunin protein and gene expression during the estrous cycle and early pregnancy. There was a tendency towards a reproductive status by day interaction, as well as a significant day effect on gene expression. During the estrous cycle, bikunin gene expression increased at days 12 and 15 followed by a decrease at day 18. During early pregnancy, levels were high at days 12 and 15 and further increased at day 18. This pattern of expression suggests that bikunin gene expression may be regulated by progesterone.
The presence of bikunin in the uterus during the estrous cycle and early pregnancy could imply many possible roles of this protease inhibitor in conceptus attachment to the uterine surface and development. The first possibility could be that bikunin serves to protect the uterus from invasion by the conceptus. Kobayashi and coworkers (1994a) described the use of bikunin for inhibiting tumour invasion in vitro and lung metastasis in vivo. Because of these previous findings in other tissue and organ systems, and bikunin's localization to the deep uterine glands in pigs, it may be serving as a secondary, back-up mechanism, to prevent conceptus invasion if the protease inhibitors on the surface epithelium fail. Another possible role, based on the localization of bikunin, is that it protects uterine secretions from proteolysis on their way from the glands to the areolae, where they are absorbed by the conceptus. Species with an epithelialchorial type of placentation rely on uterine secretions for conceptus development (Roberts and Bazer, 1988); therefore proteolysis of these nutrients could be detrimental to the developing conceptus. The presence of bikunin during these critical stages of development suggests that it may be involved in regulating the biological processes that are occurring during conceptus attachment and development.
APPENDIX
Western Blot Analysis

1. After electrophoresis, carefully remove the gel from the glass plates by prying off the top glass with a spacer. Cut off the stacking gel and notch the left hand corner of the gel to mark the location of the molecular weight standards. Place the gel in transfer buffer on a rocking platform for 15-20 minutes.

2. While the gel is in the transfer buffer prepare the PVDF membrane by soaking it in:
 a. Methanol, 1-3 seconds
 b. Millipore water (dH₂O), 1-2 minutes
 c. Transfer buffer, 2 minutes
 *Handle the dry and wet membrane with forceps at one corner. After wetting do not allow the membrane to dry out.

3. Prepare the transfer unit on the semi-dry electroblotting (SDE) apparatus. Put the sandwich together on the anode base as follows:
 a. 1 sheet 3MM paper soaked in anode buffer #1
 b. 2 sheets 3MM paper soaked in anode buffer #2
 c. PVDF membrane soaked in transfer buffer; center the gel and place the notch in the upper left corner of the sandwich
 d. Gel soaked in transfer buffer; center the gel and place the notch in the upper left corner of the sandwich; roll out the air bubbles using cathode buffer
 e. 3 sheets 3MM paper soaked in cathode buffer
 *Wear gloves while preparing the sandwich. Roll out air bubbles from each layer with a gloved finger or a glass stirring rod. Don’t allow carbon particles from the anode base to get on the membrane or gel. Make sure that the filter papers, gel and membrane have the same dimensions and are stacked evenly.

4. Place the lid (cathode) on top of the sandwich. Loosely attach the screws to prevent the filter papers from drying out.

5. Electroblot for 35 minutes at 100 mA (constant current) for one sandwich and 150 mA for two; allow a maximum of 2.5 mA/cm² gel.
Immunostaining

For immunostaining use a plastic container to incubate the membrane. Use a rocking platform for all incubations and washes. Handle the membrane with forceps at one corner. Do not allow the membrane to dry out.

1. After electroblotting, immerse the membrane in TBS for 2 minutes. Place the gel in gel fixative and later stain the gel with Coomassie blue. All washes contain 30 ml of wash solution.

2. Pour off the TBS and add 30 ml of the first blocking solution (3% gelatin in TBS). Incubate for 1 hour.

3. Wash the membrane in TTBS one time for 10 minutes.

4. Pour off the TTBS and add the first antibody solution. Incubate overnight. The first antibody is bikunin antibody. It is diluted 1/330 in 25 ml of antibody buffer (1% gelatin in TTBS).

5. Wash the membrane in TTBS three times for five minutes each.

6. Pour off the TTBS and add the second antibody solution. Incubate for 2 hours.

7. During the second antibody incubation measure 33 ml of HRP color development buffer and allow it to reach room temperature. Thaw and measure 6.67 ml of HRP color reagent A and protect from light.

8. Wash the membrane in TTBS two times for five minutes each.

9. Prepare the color development solution for horseradish peroxidase. Add 200 µl of HRP color reagent B to 33 ml of HRP color development buffer at room temperature. Then add 6.67 ml of HRP color reagent A at room temperature immediately prior to use.

10. Wash the membrane in TBS two times for five minutes each.

11. Pour off the TBS and add the color development solution. Color development incubation will last about 15 minutes. Cover the incubation container to prevent fading.

12. Pour the color development solution into the waste bottle. Wash the membrane in Millipore water 2 times for 5 minutes each.

13. Store the membrane in water at 4°C protected from light.
Solutions

Use Millipore water for all solutions. Use electrophoresis grade Tris and glycine. Use blotting grade Tween-20 and gelatin.

10% Methanol
40 ml MeOH, QS to 400 ml with dH₂O

20% Methanol
120 ml MeOH, QS to 600 ml with dH₂O

Transfer Buffer
25 mM Tris, 192 mM glycine in 20% (v/v) methanol, pH 8.2-8.3.

Anode Buffer 1
0.3 M Tris in 10% (v/v) methanol, pH 10.4
200 ml contains 7.27 g Tris

Anode Buffer 2
0.025 M Tris in 10% (v/v) methanol, pH 10.4
200 ml contains 0.6055 g Tris

Cathode Buffer
0.025 M Tris, 40 mM glycine in 20% (v/v) methanol, pH 9.4
200 ml contains 0.6055 g Tris, 0.6006 g glycine

Tris Buffered Saline (TBS)
20 mM Tris, 500 mM NaCl, pH 7.5
400 ml contains 0.9691 g Tris, 11.688 g NaCl

Wash Solution (TTBS)
20 mM Tris, 500 mM NaCl, 0.05% Tween-20, pH 7.5
250 ml Tris, 125 μl Tween-20

First Blocking Solution
3% gelatin in TBS
30 ml TBS contains 0.9278 g gelatin

Antibody Buffer
1% gelatin in TTBS
60 ml TTBS contains 0.6061 g gelatin

First Antibody Solution
1:330 antibody (stored at -20°C) in 25 ml antibody buffer
Second Antibody Solution
10 ul (1:3000) Goat Anti-Rabbit IgG HRP Conjugate (stored at 4°C), 10 ul (1:3000) avidin HRP conjugate (stored at 4°C) in 30 ml antibody buffer

Color Development Solution for Horseradish Peroxidase
33 ml HRP color development buffer (20 mM Tris, 500 mM NaCl, pH 7.5) at room temperature, 200 µl HRP color reagent B (3% hydrogen peroxide), 6.67 ml HRP color reagent A (0.3% 4-chloro-1-napthol in diethylene glycol) at room temperature. Prepare just before use.

**All solutions are enough to process one PVDF membrane.

Coomassie Staining Procedure
1. Fix gels in 7% acetic acid and 40% EtOH overnight.
2. Coomassie blue stain:
 1.25 g Coomassie blue in 400 ml 95% EtOH, stir several hours then add: 70 ml conc. acetic acid, 530 ml distilled water. Filter with filter paper.
3. Stain gel for minimum of 2 hours at room temperature.
4. Destain gel in 7% acetic acid and 10% EtOH. Will need several changes.
General Procedures for Polymerase Chain Reaction (PCR)

For each new gene, the optimal conditions for its amplification must be determined. The total reaction volume in each tube is 25 μl. The amounts of Taq polymerase (0.175 μl/tube) and 10X Buffer (2.5 μl/tube) remain constant for every reaction. QS the volume of each tube to 25 μl with PCR water.

<table>
<thead>
<tr>
<th>Lane</th>
<th>Primer (5 μM stock)</th>
<th>dNTPs (10 mM stock)</th>
<th>10 X MgCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5 μl</td>
<td>0.5 μl</td>
<td>1.25 μl</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
<tr>
<td>13</td>
<td>2.5</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>14</td>
<td>2.5</td>
<td>0.5</td>
<td>2.50</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
<td>0.5</td>
<td>3.75</td>
</tr>
<tr>
<td>16</td>
<td>2.5</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>17</td>
<td>2.5</td>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>18</td>
<td>2.5</td>
<td>1.0</td>
<td>3.75</td>
</tr>
</tbody>
</table>

After the determination of the optimal conditions, a regular PCR reaction is carried out.

A PCR reaction sheet should be filled out prior to every reaction.

Prior to use, the PCR pipettors, tube opener and work area should be cleaned thoroughly with a 10% bleach solution.

Use only tubes and pipettor tips that are designated for PCR use.

Keep all ingredients and tubes on ice. Taq polymerase should remain in the -20°C freezer until use.
Prepare a Master Mix (MM) including all of the ingredients except the cDNA.

Each reaction should include a negative control to check for any DNA contamination. The negative control includes the Master Mix with PCR water in the place of the cDNA. In the case of any contamination, discard all of the PCR reaction ingredients, with the exception of the Taq polymerase and the cDNA, and redo the PCR reaction using new ingredients.

20 μl of PCR oil should be placed on top of the contents of each tube when using a thermocycler without a heated lid.

Store PCR products at 4°C until run on an agarose gel.
Quantitative Reverse-Transcriptase Polymerase Chain Reaction

For each reaction, primers and a probe must be constructed based on the sequence of the target gene. The primers and fluorescent probe can be ordered from PE Applied Biosystems online at http://oligos.pebio.com. Upon arrival, the primers, probe and TaqMan Gold RT-PCR kit need to be stored at -20°C.

RNA samples were diluted to a concentration of 20 ng/µl in DEPC water. Reactions were set up using both 100 ng and 200 ng of RNA.

A 50 µl RT-PCR reaction was set up using the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Tube (µl)</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>5 or 10</td>
<td>100 ng or 200 ng</td>
</tr>
<tr>
<td>Rnase-free water</td>
<td>18.5 or 13.5</td>
<td>--</td>
</tr>
<tr>
<td>10X TaqMan Buffer A</td>
<td>5</td>
<td>1X</td>
</tr>
<tr>
<td>25 mM Magnesium Chloride</td>
<td>11</td>
<td>5.5 mM</td>
</tr>
<tr>
<td>10 mM deoxyATP</td>
<td>1.5</td>
<td>300 µM</td>
</tr>
<tr>
<td>10 mM deoxyCTP</td>
<td>1.5</td>
<td>300 µM</td>
</tr>
<tr>
<td>10 mM deoxyGTP</td>
<td>1.5</td>
<td>300 µM</td>
</tr>
<tr>
<td>20 mM deoxyUTP</td>
<td>1.5</td>
<td>600 µM</td>
</tr>
<tr>
<td>10 µM Forward Primer</td>
<td>1.0</td>
<td>200 nM</td>
</tr>
<tr>
<td>10 µM Reverse Primer</td>
<td>1.0</td>
<td>200 nM</td>
</tr>
<tr>
<td>5 µM Fluorescent Probe</td>
<td>1.0</td>
<td>100 nM</td>
</tr>
<tr>
<td>AmpliTaq Gold DNA Polymerase (5.0 U/µl)</td>
<td>0.25</td>
<td>0.025 U/µl</td>
</tr>
<tr>
<td>MultiScribe Reverse Transcriptase (50 U/µl)</td>
<td>0.25</td>
<td>0.25 U/µl</td>
</tr>
<tr>
<td>Rnase Inhibitor</td>
<td>1.0</td>
<td>0.4 U/µl</td>
</tr>
</tbody>
</table>

A Master Mix (MM) should be made up (minus the RNA) for the number of samples being run plus 10% for pipetting errors.

Pipette the RNA into .5 ml microcentrifuge tubes. Gloves should be changed after handling RNA to prevent any sample cross contamination. Following addition of the RNA, the Master Mix should be distributed to the tubes.

After vortexing the samples, they are transferred into a MicroAmp Optical 96-well Reaction Plate and the wells were capped using MicroAmp Optical Caps.
Transfer the plates to the thermal cycler block of the ABI PRISM 7700 Sequence Detection System.

The following thermal cycling parameters were used to amplify the bikunin gene:

<table>
<thead>
<tr>
<th>Step</th>
<th>Reverse Transcription</th>
<th>AmpliTaq Gold Activation</th>
<th>PCR Cycle (40 cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hold</td>
<td>Hold</td>
<td>Denature</td>
</tr>
<tr>
<td>Time</td>
<td>30 min</td>
<td>10 min</td>
<td>15 sec</td>
</tr>
<tr>
<td>Temperature</td>
<td>48°C</td>
<td>95°C</td>
<td>95°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60°C</td>
</tr>
</tbody>
</table>

Results are analyzed using the software provided.
In Situ Hybridization

*Plasmids must be linearized for in vitro transcription (IVT)

1. Digest 20μg of DNA with appropriate restriction enzyme for >2 hours at appropriate temperature. (With TOPO plasmid use EcoRV and BamHI at 37°C)

2. Extract once with PCI (25 Phenol: 24 Chloroform: 1 Iosamyl alcohol) and back extract with water. Extract once again with chloroform.

3. Precipitate DNA with 3 volumes 100% EtOH, 1/10 volume 3M NaOAc.

4. Place at -80°C for 15 minutes. Spin down for 10 minutes at maximum speed at room temperature.

5. Remove EtOH and wash pellet with 150 μl of 70% EtOH.

6. Remove all 70% EtOH and resuspend pellet in 40 μl of Rnase-free water. (Volume of water depends on the size of the pellet)

Preparation of Probe

1. Set up probe synthesis reaction in 1.5 ml tube:

 Solution # μl
 DNA 2 (~1-2 μg)
 5X Tsc Buffer 5 (Promega)
 100 mM DTT 2.5 (Promega)
 2.5 mM rACG 2.5 (Promega)
 Radiolabeled UTP 5 (20 mCi/ml)
 Rnasin 1 (Promega)
 Water 5.5
 T7 or SP6 Polymerase 1.5 (Promega)

2. Incubate 2 hours at 37°C. During the 2 hour incubation prepare the slides for hybridization.

3. Add 3 μl RQ1-Dnase I (Promega) and 0.5 μl Rnasin. Incubate at 37°C for 15 minutes.
4. Add 8 μl yeast tRNA (25 mg/ml) and 60 μl PCI. Spin for 5 minutes and back extract with 20 μl water. Extract again with 100 μl chloroform.

5. Remove unincorporated nucleotides using a Sephadex G-50 column.

6. Precipitate by adding 60 μl 3 M NaOAc (pH 5.0), 1 μl yeast tRNA, and 300 μl EtOH.

7. Leave at -80°C for 15-20 minutes. Spin down at maximum speed for 10 minutes at 4°C.

8. Wash the pellet with 70% EtOH and redissolve pellet in 50 μl of 100 mM DTT.

9. Count 2 μl on beta counter.

Preparation of Slides for Hybridization

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>TIME (min)</th>
<th># OF CHANGES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylene or Substitute</td>
<td>10</td>
<td>2</td>
<td>Agitate every 2-3 minutes</td>
</tr>
<tr>
<td>100% EtOH</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>95% EtOH</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>70% EtOH</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>5</td>
<td>2</td>
<td>Can hold here a short time</td>
</tr>
<tr>
<td>Fresh 4% Paraformaldehyde</td>
<td>20</td>
<td>1</td>
<td>Reuse for later PAF step</td>
</tr>
<tr>
<td>Proteinase K (at 37°C)</td>
<td>7.5</td>
<td>1</td>
<td>20 μg/ml Prot. K in 50 mM Tris, 5 mM EDTA</td>
</tr>
<tr>
<td>Fresh 4% PAF</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DEPC Water</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>5</td>
<td>2</td>
<td>Can hold here a short time</td>
</tr>
<tr>
<td>70% EtOH</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>95% EtOH</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100% EtOH</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Air dry slides at room temperature.
Hybridization

1. Denature radiolabeled cRNA probe (5x10^6 CPM/slide) at 70°C for 10 minutes in hybridization solution containing 100 mM DTT. Need ~ 75 μl of hybe solution per slide.

2. Add hybe probe solution to middle of slide.

3. Gently place coverslip on each slide. Avoid air bubbles!!

4. Hybridize overnight at 55°C in a humidified chamber containing Whatman 3 MM paper wetted with 50% formamide/5X SSC.

Washing

*Wash the hybridized slides using the following protocol:

<table>
<thead>
<tr>
<th>WASH SOLUTIONS</th>
<th>TIME (min)</th>
<th># OF CHANGES</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X SSC/10 mM βME</td>
<td>30</td>
<td>1</td>
<td>55°C</td>
</tr>
<tr>
<td>50% Formamide/2X SSC/50 mM βME</td>
<td>20</td>
<td>1</td>
<td>65°C</td>
</tr>
<tr>
<td>TEN</td>
<td>10</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>TEN</td>
<td>10</td>
<td>3</td>
<td>37°C</td>
</tr>
<tr>
<td>RnaseA (10 μg/ml) in TEN</td>
<td>30</td>
<td>1</td>
<td>37°C</td>
</tr>
<tr>
<td>TEN</td>
<td>15</td>
<td>1</td>
<td>37°C</td>
</tr>
<tr>
<td>50% Formamide/2X SSC/50 mM βME</td>
<td>20</td>
<td>1</td>
<td>65°C</td>
</tr>
<tr>
<td>2X SSC</td>
<td>15</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>0.1X SSC</td>
<td>12</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>70% EtOH/0.3M Ammonium Acetate</td>
<td>5</td>
<td>2</td>
<td>RT</td>
</tr>
<tr>
<td>95% EtOH/0.3M Ammonium Acetate</td>
<td>1</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>100% EtOH</td>
<td>1</td>
<td>2</td>
<td>RT</td>
</tr>
</tbody>
</table>

Air dry slides completely and expose to film overnight to estimate autoradiography time.

Roughly:
Shadow - ~2 weeks
Clearly visible but faint - ~1 week
Obviously dark - ~2-3 days
Autoradiography
1. Thaw Kodak NTB2 emulsion at 42°C in a light tight container.

2. Using a Kodak Safelight filter, mix the emulsion (1:1) with an equal volume of 42°C water.

3. Pour into a slide holder, dip slide, and wipe off excess emulsion on slide back.

4. Place slides in a light tight box containing dessicant.

5. Wrap the box in foil and store at room temperature for appropriate amount of time.

Develop and stain the slides using the following protocol:
(Begin in the dark room!!)

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>TIME (min)</th>
<th># OF CHANGES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodak D-19 Developer</td>
<td>4</td>
<td>1</td>
<td>Dilute 1:1 and chill to 15°C on ice</td>
</tr>
<tr>
<td>Water</td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fixer</td>
<td>5</td>
<td>1</td>
<td>Use fixer with hardener</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>2</td>
<td>Can turn on light</td>
</tr>
<tr>
<td>Hematoxylin</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.5</td>
<td></td>
<td>Until clear</td>
</tr>
<tr>
<td>50% EtOH</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>70% EtOH</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>95% EtOH</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>100% EtOH</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Xylene or substitute</td>
<td>1</td>
<td>3</td>
<td>Use to mount coverslip</td>
</tr>
<tr>
<td>Permount</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literature Cited

Corner GW. The problem of embryonic pathology in mammals, with observations upon intrauterine mortality in the pig. Am J Anat 1923; 31:523-545.

Gupta A, Bazer FW, Jaeger LA. Differential expression of beta transforming growth factors (TGFβ1, TGFβ2, and TGFβ3) and their receptors (Type I and Type II) in peri-implantation porcine conceptuses. Biol Reprod 1996; 55:796-802.

Hashimoto K, Tobe T, Sumiya J, Sano Y, Choi-Miura N, Ozawa A, Yasue H, Tomita M. Primary structure of the pig homologue of human IHRP: inter-

Laurenz JC, Hadjisavas M, Schuster D, Bazer FW. The effect of uteroferrin and recombinant GM-CSF on hematopoietic parameters in normal female

Morgan GL, Geisert RD, Zavy MT, Fazleabas AT. Development and survival of pig blastocysts after oestrogen administration on day 9 or days 9 and 10 of pregnancy. J Reprod Fert 1987b; 80:133-141.

Samuel CA, Perry JS. The ultrastructure of the pig trophoblast transplanted to an ectopic site in the uterine wall. J Anat 1972; 113:139-149.

Surveyor GA, Gendler SJ, Pemberton L, Das SK, Chakraborty I, Julian J, Pimental RA, Wegner CC, Dey SK, Carson DD. Expression and steroid

VITA

Andrea M. Hettinger

Candidate for the Degree of

Master of Science

Thesis: BIKUNIN PROTEIN AND GENE EXPRESSION IN THE PORCINE ENDOMETRIUM DURING THE ESTROUS CYCLE AND EARLY PREGNANCY

Major Field: Animal Science

Biographical:

Personal Data: Born in Sterling, Colorado on August 29, 1975, the daughter of Dale and Pat Hettinger.

Education: Graduated from Merino High School, Merino, Colorado in May, 1993; received an Associate of Science degree in Animal Science from Northeastern Junior College, Sterling, Colorado in May, 1995; received a Bachelor of Science degree in Animal Science from Oklahoma State University, Stillwater, Oklahoma in December, 1997. Completed the requirements for the Master of Science degree with a major in Animal Science at Oklahoma State University in December 2000.

Experience: Employed by Oklahoma State University, Department of Animal Science as a graduate research assistant, 1998 to present.

Professional Memberships: Society for the Study of Reproduction, OSU Graduate Student Association