DYNAMIC PROGRAMMING AND ITS
APPLICATION TO PAIRWISE
BIOLOGICAL SEQUENCE

ALIGNMENT

By
YANWEN GUO
Bachelor of Science
Wuhan University
Wuhan, China

1987

Submitted to the faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 2000

DYNAMIC PROGRAMMING AND ITS
APPLICATION TO PAIRWISE
BIOLOGICAL SEQUENCE

ALIGNMENT

Thesis Approved:

/i"/ B o S -

L,rvté s
Fa 7

£

Dean of the Graduate Collage

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major adviser, Dr. George E.
Hedrick for his guidance, encouragement, patience, advice and friendship throughout my
graduate program. [would like to thank Dr. John P. Chandler, Dr. Robert L. Burnap for
serving my graduate committee, and for their helpful suggestions throughout the study.

I deeply appreciate Dr. Robert L. Matts, my supervisor in the department of
biochemistry and molecular biology, for his kindness and understanding. [took courses
in computer science in part time while I was a full-time employee working in Dr. Matts’
lab. Icould not finish my graduate study in such a short time without his generous
permission.

My eternal gratitude goes to my wonderful wife Ms. Hui Zeng, who gave me the
most substantial support and encouragement. Her appreciation for this project, and her
love and affection for me gave me the strength to endure difficult times, and the privilege
to work on an advanced degree and at the meantime to have a perfect family.

My whole-hearted appreciation also extends to my dear parents, brothers and
sisters, especially to my great mother, Ms. Zhonghui Long who gave me so much love

and support during my entire life.

it

TABLE OF CONTENTS

Chapter Page

I[I BIOINFORMATICS AND SEQUENCE ALIGNMENT.......ccoooeiiiiiiiiiiieveeecerivieeen 3
2.1 -Detimition of BIOIMTORMAHON ...usuvisinaainitinemsmsimiaasaniinanaais 3

2.2 Biological PrelIMINATIEsc.oiiueiiiiiiiueeciiieiiieieeestcsi st e sseeentesne e s esanens 4
2:3 Defmition of Sequence AHSNMENt:..cicainninniminiiminsmvsmmmssimaamasmige T
2.4 The Application of Sequence AlignMmENntcoceieeiiiiiiiinenrienrine e saesseneen, 8
[T LITERATURE REVIEW OF ALGORITHMS FOR BIOLOGICAL SEQUENCE
ALTGNMEBINT .. .cvnsnaninsssnnsnawmssssvasmsunssssssssiossss s s 5 s omimioss s s esns 9
3.1 The Importance of Sequence Alignment in Molecular Biologyc.ccccovvvievineennn 9
3.2 The Seoring SChemB....co im0
3.2.]1 TAENULY SCOTIME ...uveeniioiiiiit et ieer e eie ettt e e e e eas snnnesntesanne e 10
322 Genetics Cofe Sl cmeissismmismmnrmannsnimmranssmsese 11
323 Chereal STMIATIEY SOOTIN suuavecumsimusismisin s soniisssmsss s Ao s esmssins 11
3.2.4 Observed SUDSHIUIONS.......ccceeutirrieieeieeie et er et e sene s 12
3.2.4.1 The Payhoff Mutation Data MAaniXcuicaiiaiiissmioiiivesiiviis 13
3.2.4.2 PET91 — An Updated Dayhoff Matrix .. RTPRRRRREENY ¢
3.2.4.3 BLOSUM - Matrix From Ungapped Allgnment] i
3.2.5 The Selection of a:Suitable Scoring MatriXvamummismunismsanasiss 15
3.3 GAP PENALLYoviiiciiieeeetee e et b et b e re s 17
331 MOUYRKON oo s Gt 18
3.3.2/Gap Penalties TYPes . ..cu:uuiussimmmismusimmsssiosassmnsssinsisonsssismiissmsssa 20
3.3.3 Constant Gap Weight Model..........ccocvviiiniiiiiiiiiiic e 20
334 ATHDE Gap PERAILY ..o v st s s i s i o s nssitasi 21
3.4 Pairwise Seqnenoe ANENIMCHE ususisiomasncassmmismmatesssssassvsnssissss s 23
3.4.1 Alignment Without Gaps — Fixed Length Segmentsc.ccococviiiininninns 24
3:4.1. 1 Correlation Methods ..qonunninnimminissasis i mmeiomiemss 25
3.4.1.2 Variable Length SeEmENLS ... msmmmomsammmmsromssmssassasasaansesmsons 26
3.4.2 AUgnment With TIPSccoensoseennmmmnsessnnevassssnesenss s suonsesvonspiassss sssetsiassniens 26
3.4.2.1 Finding the Best Alignment with Dynamic Programming.................. 27
3:4.2.2 Alternative Welght Tor Gans ... oo s iosasussmms svanssmessessmssiprseymis 30
3.4.3 Identification of Local SImilantes . umeiissssssmsmssiisiirsssssionniimmaimemm 30
3.4.3.1 Finding Subsequence - Best Local Alignment...............cccccoceviin. 31
3.5:Multiple Semences AlSBIIENY oo woncsmsanmmsmmssmmrsssmsms s somsnmsosma 31
351 THOAUCHEN < s mrammissis i R e R n e 31

iv

Chapter Page

3.9:2 Multiple Alignment AlGORIMS ..ot 2

IV DYNAMIC PROGRAMMING AND PAIRWISE BIOLOGICAL SEQUENCE
4.1 I.ntroducnon s POMPNERBTETDIO.:. |,
42 Needleman-Wunsch Algorlthm and G]obal Sequence Allgnment ceereneennns 36
4.3 Smith-Waterman Algorithm and Local Sequence Alignment ... s 5
4.4 Repeated Matches Algorithm.... e eraeene et et ebaeeheeenaeeanseennnesaesaeessns D
4.5 Overlap Matches Algorithm.... P e o o
4.6 Dynamic Programming and Lmear Space Algonthm SRS |

V PROGRAM DESIGN AND IMPLEMENTATIONcccccinviinnnnnieninsenssnnisnsescsnensss 49

5. 1. D ystem ReGUITCINBIES . o scconisusasinonisssmsuossnsinssssexss xses s ssmssassseasiisinss s ims 49
5.2 Algorithms Used for Programming.........cc.ocevoiiiiiiciiiniiiniein i sesnecsesreie e 49
9.3 THput AT ONIPIE: s nissvmasrosssis s sravon ST s RV VA e NGRS 50
9:3.1 Khe Hormal oF IR o vomimoommsmssinsmnmisssamssssesi a5 s i 50
3.3:2 The Sample-of OUPUL c....ciimnminmnmiisnpnaanimsmmianiommiinrmies 50
5.4 IPISTRERCAMON. .ocviscsissisamissisivisnmissussieisssisimisonsissvnsissvisadis instssamsss sesussismmnsaisaasins 53
5.4.1 Implementation of Global Alignmcnl Algorithm.......ccocevvviiviiiiniiiceinn 55
5.4.1.1 Initialization .. R S A R e D
5.4.1.2 Filling in the Matnx s RPN .. i

5.4.2 Implementation of Local Ahgnment Algomhm et enaeereenees DO
5.4.2.1 Initialization .. SR TR A R s O
5.4.2.2 Filling in the Matnx ... 56

5.4.3 Implementation of Repeated Matches Algorithm.........ccccccecviiiieiniiciinenn 57
3431 INIBANZAION v.ucivvisvicasinsins ssnsiassviissinisniviasniss@nsiiase Taam s dsewss 37
5.4.3.2 Filling in the Matrix .. . SRR . |

5.4.4 Implementation of Overlap Matchcs. A]gonlhm el D D
AR] IO AIIZALION souumwssonsnonsmsunmssumenssinsmassicsmaosisessasm e st sLoRs SR RS 3o Usrn 58
5.4.4.2 Filling in the Matrix .. . vreeene 99
5.4.4.2.1 Finding Maxm]al Score on Lefl hdnd dﬂd Upper Borders 59

5.4.4.2.2 Finding Maximal Score on Right-hand and Bottom Borders 59

VI SUMMARY, CONCLUSIONS AND FUTURE WORK..........ccccciiiiiiiiiiiiiinienne. 60

APPENDIXES i cisisisvinasmmsisisiiinrms i mnim s s v i v oo e ro v b 63
APPENDEX: A~ GLOBSARYoicicimisauinsisissi v s uassssasss ssismm s amiass i issn 63
APPENDIX B - TABLE OF ACRONYMS AND ABBREVIATIONS.................... 66

REPEREINCES . ccususisasuncasivisssisasasssssits s oo sssaiss ias ik 4 s5smsohs st s s vas anbics s e siavs arasa shatnssas 67

Table

Table 2.1

Table 2.2

Table 3.2.5

Table 4.2.1

Table 4.2.2

Table 4.2.3

Table 4.3.1

Table 5.1

Table 5.2

Table 5.4.1

Table 6.1

LIST OF TABLES

Page

DINA DUCICOLIAES ..ot eeeeeeeeeeeesaeesesamesamsesnsssnsssnesannssnsssnesnsnssnnsnns

0 PNONTY ATRN0 ACHS .occsmcamssimsumverscomsissssainie
Initial SeRIP:.uumnuiminnin SRR AR SRR RN
Half way through the second Stepcccociieiriiiiieiiieiciinsie e cene e
A I B I oonusnnssosnsmumoniess s m s o A A AR RNSAEHRERAHRAAES I
An example of Smith-Waterman algorithm............ccceccnvviiniiininnreciinnnns
System reqUITeINEIL. ... ciuiuisiosimisasississivamssomssassiioiessosmimmmmssiss
Algorithms used N PrOgraml.........oooiivieieis e e
Desoription: Of TAI CHABNEE ccv i simom by ass y e s

Performance of the algorithms used in the program ...

vi

17

37

38

39

41

49

LIST OF FIGURES
Figure Page
Figure 2.1 Scope of Bioinformaticsc.cceennune wed
Figure 2.2 Translation of a DNA sequence into amino acid sequenceccoveveeeee. ©
Figure 2.3 An example of sequence alignIent ... ssnmnisnvmairmimming S
Figure 3.2.3 Classification of different amino acids..........ccccevviieviiiiaiiviniii e 12
Figure 3.3 ALgnrent WitR EADS ... comviussssmnommssumsmimessassmsssnsrs sosasmnsessosssaissssas 18
Figure 3.4.2.1 The difference between global and local alignments..........c.cccocovevininnnann, 28
Figure 4.5.1 Difference types of overlap matchesccccoviiiiiiiiiiiiniiiiiicnnnn. 45
Figure 4.6 Linear space alignment algorithm.............ccocoiiiiiiiiiiiiciccicei 48

CHAPTER]

INTRODUCTION

Bioinformatics, also known as computational biology, is a new explosively
expanding research area that uses computational techniques to analyze biological data
obtained from experimentation.

The most important aspect in bioinformatics at the molecular level is sequence
alignment providing an explicit mapping between two or more biological sequences such
as DNA and proteins. Analyzing the similarities and differences at the level of individual
bases or amino acids by using sequence alignment, this allows us to predict and to find
the structural, functional, and evolutionary relationships among the sequences under
study.

There are two basic methods for sequence alignment: pairwise sequence
alignment and multiple sequence alignment. And there are many algorithms used for
these two sequence analysis methods. We may find that different algorithms may
generate different results with different efficiency, sensitivity and selectively, so finding a
good algorithm that can produce an optimal result is very important for sequence
alignment program.

The object of this study is to analyze and to compare several dynamic
programming algorithms for pairwise alignment. Such algorithms are the basis of most
methods currently used to identify distantly related proteins by analyzing sequence
similarity. A newly designed program implements and demonstrates how the several

algorithms work to together and to produce the results.

In this thesis, chapter II gives a brief introduction to bioinformatics and the
concept of sequence alignment. Chapter IIl is a literature review of algorithms for
biological sequence alignment, focusing on the pairwise and multiple sequence alignment
and the selection of scoring scheme. Chapter IV introduces the details of dynamic
programming algorithms and their application to pairwise biological alignment. Chapter
V is the detailed information of program design and implementation. Finally, the
summary, conclusions and future work recommendations are given in Chapter VI. Also,

a glossary, a table of acronyms and abbreviations are appended at the end of the thesis.

CHAPTER 11
BIOINFORMATICS AND SEQUENCE ALIGNMENT

2.1 Definition of Bioinformatics

Bioinformatics, sometimes used interchangeably with the term computational
biology, is the science of developing computer databases and algorithms for the purpose
of accelerating and enhancing biological research. The most notable use of
bioinformatics is in the Human Genome Project (Cooper 1994, Hudson 1995 and Schuler
1996), the effort to identify the 80,000 genes in human DNA. It brings together
systematic biological data (e.g. genomes) with the analytic theory and practical tools of

computer science and mathematics. The Figure 2.1 shows the scope of bioinformatics:

Structural
Biology

Computer
Science

i)

Biochemistry

Bioinformatics
Identification of genes
Sequence alignment
Design of metabolic
pathways
Discovery of
structure/function
relationship

Statistics

- N

Molecular
Biology

-

Figure 2.1 Scope of Bioinformatics (from Lee, 1999)

Mathematics

It is possible to use computer techniques to solve a large variety of biologically

motivated problems primarily involving strings or sequences. For example:

e Comparing two or more strings for similarities;

e Storing, retrieving and comparing DNA strings;

e Searching databases for related strings and substrings;

e Exploring frequently occurring patterns of nucleotides;

e Finding informative elements in protein and DNA sequences;

* Reconstructing long sequences of DNA from overlapping string fragments;

e Determining physical and genetic maps from probe data under various

experiments;

Many of these research problems show the functionality or structure of a protein
or DNA without experimentation and without physically constructing the molecular
sequences. The basic idea is that similar sequences produce similar proteins. In order to
predict the characteristics of a protein using only its sequence data, we use the
structure/function information on known proteins with similar sequences available from a
database. This thesis explores algorithms for biological sequence alignment, especially
dynamic programming algorithms and their application to pairwise biological sequence
alignment.

2.2 Biological Preliminaries

An overview of molecular biology can be found in any modern textbook on
biology, biochemistry or molecular biology (Stryer 1988, Alberts et al 1989). Goad
(1986) gave a short review of computational methods in biological sequence analysis and
recently several books summarizing problems and methods have been published

(Doolittle 1986, Heijne 1987 and Lesk 1988).

DNA (deoxyribonucleic acid) and proteins are biological macromolecules built as
long linear chains of chemical components. In the case of DNA, these components are
the so-called nucleotides, of which there are four different ones, each denoted by one of

the letters A, C, G, T (Table 2.1).

Adenine Guanine Cytosine Thymine

A G C T

Table 2.1 DNA nucleotides
Proteins, however, are made up of 20 different amino acids (or “residues”) which
are denoted by 20 different letters of the alphabet. The table 2.2 shows the names of the

different amino acids and their single-letter code and three-letter code.

Name Three-Letter Code One-Letter Code
Alanine Ala A
Cysteine Cys C

Aspartic Acid Asp D
Glutamine Acid Glu E
Phenylalanine Phe F
Glycine Gly G
Histidine His H
Isoleucine lle I

Lysine Lys K
leucine Leu L.

Methionine Met M
Asparagine Asn N
Proline Pro P
Glutamine Gin Q
Arginine Arg R
Serine Ser S
Threonine Thr T
Valine Val A%
Tryptophan Trp W
Tyrosine Tyr Y
Table 2.2 The twenty amino acids

DNA plays a fundamental role in the processes of life in two respects. First it
contains the templates for the synthesis of proteins, which are essential molecules for any
organism. DNA can be transcribled into RNA, then RNA is translated into amino acid,
this means that a linear string of DNA is translated into a corresponding linear string of
amino acids; i.e., a protein. Figure 2.2 gives an example.

DNA sequence: .. GAA CTA CAC ACG TGT AAC ..
Amino Acid Sequence i B L H T C N

Figure 2.2 Translation of a DNA sequence into amino acid sequence
The amino acid sequence of a protein, also called its primary structure, is only one
of many levels at which it can be examined. To fulfill its natural role a protein assumes a
certain three dimensional structure, its tertiary structure. The term “secondary structure”
refers to the local folding of the amino acid chain into small regular elements. The major

classes of secondary structure are called B-sheets and a-helices. The three dimensional

(tertiary) structure of a protein is usually built up of elements of a- and/or 8- structure
together with loop regions between them. It is the three dimensional folding of the chain
which determines the biological function of a protein.

The second role of DNA is as a medium to transmit information (namely the
building plans for proteins) from generation to generation. Watson and Crick in 1953
found the double helical structure of DNA. The linear chain does not really occur on its
own but is paired to a complementary strand. The complementary stems from the ability
of the nucleotides to establish specific pairs (A-T and G-C). The pair of complementary
strands then forms the famous double helix. Each strand therefore carries the entire
genetic information and the biochemical machinery and guarantees that the information
can be copied over and over again even when the “original” molecule has long since
vanished.

During this process of copying, changes (known as mutations) are introduced into
the DNA sequence. The kinds of mutations that are important to sequence comparison
are base changes, insertions of nucleotides into the chain and deletions from the chain.
Those changes do not affect the translated protein when the changes do not alter protein’s
tertiary structure, but sometimes such alteration is possible. Based on this theory, the
sequence alignment or comparison is very important in predicting the structure and

function relationship between DNA and protein molecules.
2.3 Definition of Sequence Alignment

Sequence alignment, also called string matching or inexact string matching, refers
to the procedure of comparing two or more sequences by looking for a series of

individual characters or character patterns that are in the same order in the sequences.

For example, given two strings S and 7, the alignment between S and T is obtained by
first inserting chosen spaces (gaps or dashes), into § and 7, and then placing the two
resulting strings one above the other so that every character or space in either string is
opposite a unique character or a unique space in the other string (Gusfield 1997). Figure
2.3 shows an example of sequence alignment,

QAC-DBD
QAWX-B-

Figure 2.3 An example of sequence alignment
In this alignment, character C is mismatched with W, both the Ds and X are

opposite space, and all characters match their counterparts in the opposite string.
2.4 The Application of Sequence Alignment

Sequence alignment is a very useful tool. It commonly it used to search a word,
check spelling error in a text, or even do file comparison. One of the widest applications
of sequence alignment is in comparing the biological sequences. Sequence alignment
attempts to align two or more biological sequences (DNA or proteins) such that regions
of structural or functional similarity between the molecules are highlighted.

In modern molecular biological research, when scientists find an unknown new
gene from a cDNA library or genomic library, they usually send this gene to a gene bank
to search for any similar sequences in the database. By asking whether the unknown
scquence is in any way similar to known sequences (and ideally to sequences of known
function or structure), scientists can identify an unknown sequence and predict its

structure and function.

CHAPTER III
LITERATURE REVIEW OF ALGORITHMS

FOR BIOLOGICAL SEQUENCE ALIGNMENT

3.1 The Importance of Sequence Alignment in Molecular Biology

Sequence alignment, or sequence comparison, particularly when combined with
the systematic collection of data and search of database containing biomolecular
sequences, has become essential in modern molecular biology. Biological sequence
alignment make use of the fact that high sequence similarity usually implies significant
structural or functional similarity. When we find two or more sequences can be related
by aligning them; that is, many characters in one sequence are in the same order as they
are in the other sequence, then we say that the two sequences are similar. Later, we
calculate a similarity score, which gives the probability that the sequences are related.
The following may be true for similar sequences: (A) The sequences may share a
common origin — a common ancestor sequence. If the similarity is sufficiently
convincing, or if there is additional evidence for an evolutionary relationship, then the
sequences are homologous; (B) The sequences may have the same or related structure
and function — the stronger the alignment between sequences, the more likely they are to
be related. Very similar sequences that are almost identical along their lengths almost
certainly have the same function. Sequences that are only weakly similar may or may not
be related, and no firm conclusions can be drawn about their relationship.

As more is known about more sequences in an increasingly larger number of

organisms, we find the organisms share many similar sequences, but some sequences also

are unique to an organism or group of organisms. The shared sequences all can be
compared to each other to try to define the common domains that provide a particular
function. In other cases, they can be used to predict which of the organisms are most

closely related based upon the degree of similarity.
3.2 The Scoring Scheme

All algorithms to compare biological sequences rely on some scheme to score the
equivalence of each of the 210 possible pairs of amino acids (i.e. 190 pairs of different
amino acids + 20 pairs of identical amino acids). Most scoring schemes represent the 210
pairs of scores as a 20 x 20 matrix of similarities where identical amino acids and those
of similar character (e.g. I, L, see Figure 3.2.3) give higher scores compared to those of
different character (e.g. I, D, sce Figure 3.2.3). Since the first protein sequences were
obtained, many different types of scoring scheme have been devised. The most
commonly used are those based on observed substitution and of these, the Blosum matrix
set (Henikoff and Henikoff 1992) and Dayhoff matrix for 250 PAMS (Dayhoff 1978) are
good examples of widely used matrices. Different scoring schemes are discussed in the

following sections.
3.2.1 Identity Scoring

This is the simplest scoring scheme: amino acid pairs are classified into two
types: identical and non-identical. Non-identical pairs are scored 0 and identical pairs
give a positive score (usually 1). The scoring scheme is generally considered less
effective than schemes that weight non-identical pairs, particularly for the detection of
weak similarities (Feng 1985 and Schwartz 1978). The normalized sum of identity scores

for an alignment is popularly quoted as “percentage identity”, but this value can be useful

10

to indicate the overall similarity between two sequences, there are pitfalls associated with

the measure.
3.2.2 Genetic Code Scoring

Whereas the identity scoring scheme considers all amino acid transitions with
equal weight. genetic code scoring, introduced by Fitch (1966), considers the minimum
number of DNA/RNA base changes (0,1,2 or 3) that would be required to interconvert
the codons for the two amino acids. The scheme has been used both in the construction
of phylogenetic trees and in the determination of homology between protein sequences
having similar three-dimensional structures (Cohen 1981). However, today it is rarely

the first choice for scoring alignments of protein sequences.
3.2.3 Chemical Similarity Scoring

Chemical similarity scoring schemes give greater weight to the alignment of
amino acids with similar physic-chemical properties that other schemes. This is desirable
since major changes in amino acid type could reduce the ability of the protein to perform
its biological role and hence the protein would be selected against during the course of
evolution. The intuitive scheme developed by McLachlan (1972) classified amino acids
on the basis of polar or non-polar character, size, shape and charge and gives a score of 6
to interconversions between identical rare amino acids (e.g. F, F) reducing to O for
substitutions between amino acids of quite different character (e.g. F, E). Figure 3.2.3
shows the classification of different amino acids. Feng et al. (1985) encoded features
similar to McLachlan’s (1972) by combining information from the structural features of

the amino acids and the redundancy of the genetic code.

aliphatic

aromatic

polar

hydrophobic positive

positive

Figure 3.2.3 Classification of different amino acids (from Taylor 1986)
3.2.4. Observed Substitutions

Scoring schemes based on observed substitutions are derived by analyzing the
substitution frequencies seen in alignments of sequences. Early schemes based on
observed substitutions worked from closely related sequences that could easily be aligned
by eye. More recent schemes have had the benefit of the earlier substitution matrices to
generate alignments on which to build. Experience with scoring schemes based on
observed substitutions suggests that they are superior to simple identity, genetic code, or

intuitive physical-chemical property schemes.

12

3.2.4.1 The Dayhoff Mutation Data Matrix

Possibly the most widely used scheme for scoring amino acid pairs is that
developed by Dayhoff and his co-workers (Dayhoff 1978). The system arose out of a
general model for the evolution of proteins. Dayhoff and co workers examined
alignments of closely similar sequences where the likelihood of a particular mutation
(e.g. A-D) being the result of a set of successive mutations (e.g. A-x-y-D) was low.
Since relatively few families were considered, the resulting matrix of accepted point
mutations included a large number of entries equal to 0 or 1. A complete picture of the
mutation process including those amino acids which did not change was determined by
calculating the average ratio of the number of changes a particular amino acid type
underwent to the total number of amino acids of that type present in the database. This
was combined with the point mutation data to give the mutation probability matrix (M)

where each element M; ; gives the probability of the amino acid in column j mutating to

the amino acid in row i after a particular evolutionary time.

The mutation probability matrix is specific for a particular evolutionary distance,
but may be used to generate matrices for greater evolutionary distances by multiplying it
repeatedly by itself. The PAM (point accepted mutation) matrix which was invented by
Dayhoff and his co-workers can be used for measuring the evolutionary distance. At the
level of 2,000 PAM Schwartz (1978) and Dayhoff (1978) suggest that all the information
present in the matrix has degenerated except that the matrix element for Cys-Cys is 10%
higher than would be expected by chance. At the evolutionary distance of 256 PAMs one

amino acid in five remains unchanged but the amino acids vary in their mutability; 48%

13

of the tryptophans, 41% of the cysteines and 20% of the histidines would be unchanged,
but only 7% of serines would remain.

When used for the comparison of protein sequences, the mutation probability
matrix is usually normalized by dividing each element M; ; by the relative frequency of
exposure to mutation of the amino acid i. This operation results in the symmetrical
“relatedness odds matrix’” with each element giving the probability of amino acid

replacement per occurrence of I per occurrence of j. The logarithm of each element is

taken to allow probabilities to be summed over a series of amino acids rather than
requiring multiplication. The resulting matrix is the “log-odds matrix” which is
frequently referred to as “Dayhoff’s matrix™ and often used at a distance of close to 256
PAM since this lies near to the limit of detection of distant relationships where
approximately 80% of the amino acid positions are observed to have changed (Schwartz

1978).

3.2.4.2 PET91 — An Updated Dayhoff Matrix

The 1978 family of Dayhoff matrices was derived from a comparatively small set
of sequences. Many of the 190 possible substitutions were not observed at all so suitable
weights were determined indirectly. Recently, Jones et al. (Jones 1992) have derived an
updated substitution matrix by examining 2,621 families of sequences in the
SWISSPROT database release 15.0. The principal differences between the Jones et al.
(1992) matrix (PET91) and the Dayhoff matrix are for substitutions that were poorly
represented in the 1978 study. However, the overall character of the matrices is similar.
Both reflect substitutions that conserve size and hydrophobicity, which are the principle

properties of the amino aids (Taylor 1986).

3243 BLOSUM - Matrix From Ungapped Alignment

Dayhoff-like matrices derive their initial substitution frequencies from global
alignments of very similar sequences but they do have limitations. An alternative
approach has been developed by Henikoff and Henikoff using local multiple alignments
of more distantly related sequences (Henikoff and Henikoff 1992). First a database of
multiple alignments without gaps for short regions of related sequences was derived.
Within each alignment in the database, the sequences were clustered into groups where
the sequences are similar at some threshold value of percentage identity. Substitution
frequencies for all pairs of amino acids were then calculated between the groups and this
used to calculate a log odds BLOSUM (blocks substitution matrix) matrix. Different
matrices are obtained by varying the clustering threshold. For example, the BLOSUM 80

matrix was derived using a threshold of 80% identity.
3.2.5 The Selection of a Suitable Scoring Matrix

The general consensus is that matrices derived from observed substitution data
(e.g. the Dayhoff or BLOSUM matrices) are superior to identity, genetic code or physical
property matrices (e.g. see Feng et al. 1985). However, there are Dayhoff matrices of
different PAM values and BLOSUM matrices of different percentage identity and which
of these should be used?

Schwartz and Dayhoff (Schwartz er al. 1978) recommended a mutation data
matrix for the distance of 250 PAMs as a result of a study using a dynamic programming
procedure (Needleman and Wunsch 1970) to compare a variety of proteins known to be
distantly related. The 250 PAM matrix was selected since in Monte Carlo studies

matrices reflecting this evolutionary distance gave a consistently higher significance

S AAISIERSIANMING | DAWTLSS W VNI

score than other matrices in the range 0-750 PAM. The matrix also gave better scores
when compared to McLachlan's substitution matrix (McLachlan 1972), the genetic code
matrix and identity scoring. Recently, Altschul (1991) has examined Dayhoff style
mutation data matrices from an information theoretical perspective. For alignments that
do not include gaps he concluded, in broad agreement with Schwarz and Dayhoff, that a
matrix of 200 PAMS was most appropriate when the sequences to be compared were
thought to be related. However, when comparing sequences that were not known in
advance to be related, for example when database scanning, a 120 PAM matrix was the
best compromise. When using a local alignment method Altschul suggests that three
matrices should ideally be used: PAM40, PAM120 and PAM250, the lower PAM
matrices will tend to find short alignments of highly similar sequences, while higher
PAM matrices will find longer, weaker local alignments. Similar conclusions were
reached by Collins and Coulson (1988) who advocate using a compromise PAM 100
matrix, but also suggest the use of multiple PAM matrices to allow detection of local
similarities of all types.

Henikoff and Henikoff (1993) have compared the BLOSUM matrices to PAM,
PET, Overington et al (1990), Gonnet (1992) and multiple PAM matrices by evaluating
how effectively the matrices can detect known members of a protein family from a
database when searching with the ungapped local alignment program BLAST (Altschul
et al. 1990). They concluded that overall the BLOSUM 62 matrix is the most effective
for ungapped matching. Pearson (1996) found that BLOSUM 50 is perhaps better for
alignment with gaps. However, all the substitution matrices investigated perform better

than BLOSUM 62 for a proportion of the families. This suggests that no single matrix is

the complete answer for all sequence comparisons. It is probably best to compliment the
BLOSUM 62 matrix with comparisons using PET91 at 250 PAMS, and Overington
structurally derived matrices. It seems likely that as more protein three-dimensional
structures are determined, substitution tables derived from structure comparison will give
the most reliable data. The BLOSUM 50 matrix is employed for gapped sequence

alignment. Table 3.2.5 shows the entire BLOSUM 50 matrix used in our program.

A R NDCOQ E G H I L K M F P 8 T W Y V

A 5

R =2; 7
N =1 =1 7

D =22 2. 8
c -1,-4,-2,-4,13

Q =1 1, 8@; 0.=3; 7

E =% Dy 0, 2:=3% 2, 6

0,-3, 0,-1,-3,-2,-3, 8

=25 0, A, =-%.~3, 1, 0,-2,10

=1 ;=8;-3; —4;-2;~3,;~4;~4,;~-4, 8§
=253k, A2 =2; =378, -3 2,8

=Ly B Oy =lp=3 2 L2y 03=3,=3; B

=l =222, =25 022 =3=1y 25 3,725 7
=3=3y=4;~5;-2;~4;=3;~4;=1; 0; 1;,-4; G, 8

~Ll;=3;=2 L8, -1;71; =2,;-2-3;-4,-1;-3;~4,10

Lii=Lop Ay W=y 0551 0=l =3,~3; Q;=2;=3,=3; 8

Or=Ly: 05 ==l =X =1 =2 =2 =Ly=Ly=Yu=lu=2p=1; 3y B
-3,-3,-4,-5,-5,-1,-3,-3,-3,-3,-2,-3,-1, 1,-4,-4,-3,15
=dy=le=2i=3:=3mlp=2:=3u 2Zur=ky=1;=2; 0, 4;=3:=2:=2; 24 8
0,-3,-3,-4,-1,-3,-3.,-4,-4;, 4, 1.-3; 1.-1,-3.-2, 0.-3,-1, 5

SHKEHOUMEBRERDODHDO

Table 3.2.5 BLOSUM 50 matrix (entries on the main diagonal for identical residue
pairs are highlighted in bold)

3.3 Gap Penalty

Until now, the central constructions used to measure the value of an alignment
have been matches, mismatches and spaces. Now we introduce another important
construct, gaps. Gaps help create alignments that conform to underlying biological

models better and that more closely fit patterns that one expects to find in meaningful

alignment. They take account of the number of continuous gaps and rather than only the
number of spaces when calculating an alignment mark. This section presents a gap
penalty model for evaluating the weight of a sequence of consecutive indel operations.
The model states that consecutive indel operations have different total weight than simply
the sum of their weights.

A gap is any maximal, consecutive run of spaces in a single string of a given
alignment. Figure 3.3 is a example:

S
T

at tec ==

g a
a--cgtga

I

Figure 3.3 Alignment with gaps

There are four gaps containing a total of eight spaces in this example. That
alignment would be described as having seven matches, no mismatch, four gaps and eight
spaces.

The length of the gap will be the number of indel operations in it. The number of
gaps in the alignment will be denoted as # gaps.
3.3.1 Motivation

The concept of a gap in an alignment is important in many biological applications,
because the insertion or deletion of an entire substring often occurs as single mutational
event. Moreover, many of these single mutational events can create gaps of quite varying
sizes. At the protein level, two protein sequences might be relatively similar over several
intervals but differ in intervals where one contains a protein subunit that the other does
not.

One concrete illustration of the use of gaps in the alignment model comes from

the problem of cDNA matching (Gusfield 1997). In this problem, one string is much

longer than the other, and the alignment best reflecting their relationship should consist of
a few regions of very high similarity interspersed with ‘long’ gaps in the shorter string.
Note that the matching regions can have mismatches and spaces, but these should amount
only to a small fraction of the region.

An RNA molecule is transcribed from DNA of the gene. That RNA transcript is a
complement of the DNA in the gene in that each A in the gene is replaced by U in the
RNA, each T is replaced by A, each C by G, and each G by C. Moreover, the RNA
transcript covers the entire gene, introns as well as exons. Then in a process that is not
understood completely, each introns-exon boundary in the transcript is located, the RNA
corresponding to the introns is spliced out, and the RNA regions corresponding to exons
are concatenated. Additional processing occurs. The resulting RNA molecule is called
the messenger RNA (mRNA): it leaves the cell nucleus and is used to create the protein it
encodes.

Usually, each cell contains a copy of all the chromosomes; and hence, of all the
genes of the entire individual, yet in each specialized cell (a liver cell for example) only a
small fraction of the genes are expressed. That is, only a small fraction of the proteins
encoded in the genome are actually produced in that specialized cell. A standard method
to determine which proteins are expressed in the specialized cell line, and to hunt for the
location of the encoding genes, involves capturing the mRNA in that cell after it leaves
the cell nucleus. That mRNA is then used to create a DNA sequence complementary to
it. This sequence is called cDNA (complementary DNA). Compared to the original
gene, the cDNA sequence consists only of the concatenation of exons in the gene. After

c¢DNA is obtained, the problem is to determine where the gene associates with that cDNA

resides, and it becomes one of aligning the cDNA sequence against the longer DNA

sequence in a way that reveals the exons.
3.3.2 Gap Penalties Types
There are four types of gap penalties as follows:
e Constant: solved in O(mn) time.
e Affine: solved in O(mn) time
e Convex: solved in O(mnlogm) time
e Arbitrary: solved in O(mn’ + nm®) time
3.3.3 Constant Gap Weight Model
The simplest choice is the constant gap weight, where each individual space is

free, and each gap is given a weight of Ws independent of the number of spaces in the
gap. Letting o denote the weights of match and mismatch only (o(x, =) = (—, x) =0

for every character x). Thus we have to find an alignment that maximizes:

2o(S{, Ti) + W, x (No. of gaps)
where S'and T' represent S and T after inscrting space(s). A generalization of the
constant gap weight model is to add a weight W; for each space in the gap. In this case,
W, represents the cost of starting a gap, and W, represents the cost of extending the gap
by one space. This leads us to the affine gap weight model. This is called affine gap
weight model because the weight contributed by a single gap of length g is given by the
affine function W, + gW,. The constant gap weight model is simply the affine model

with W; =0 . Thus we have to find an alignment that maximizes:

2o(S/, T/ + W, x (No. of gaps) + Ws x (No. of spaces)

20

while S' and T' represent S and T after inserting space and o(x, =) = (=, x) =0 for

every character x.

It has been suggested that some biological phenomena are better modeled by a
gap weight function where each additional space in a gap contributes less to the gap
weight than the preceding space. In other words, a gap weight that is a convex, but not
affine function of its length. An example is the function W, + logq, where g is the
length of the gap. Finally, the most general gap weight that might be considered is the

arbitrary gap weight, where the weight of a gap is an arbitrary function aXq) of its

length g. The constant, affine and convex weight models are of course restricted cases of

the arbitrary weight model.

3.3.4 Affine Gap Penalty

To align strings S, 7' consider as usual the prefixes S; ;of Sand 7 _jof T. Any

alignment of these two prefixes is one of the following three types:

Alignment of §; ;and T; _; where characters S(i) and 7{j) are aligned opposite each

other. This includes both the case that S; = T} and that §; # 7.

Alignment of §; ;and T . j where character S;is aligned to a character strictly to the left

of character 7;. Therefore, the alignment ends with a gap in 5.

21

Alignment of §;_; and T ; where character S; is aligned to a character strictly to the
right of character T}. Therefore, the alignment ends with a gap in 7.
We will use G(i, j) to denote the maximum value of any alignment of type 1,

EX(i, J) as the maximum value of any alignment of type2 and F(i, j) as the maximum
value of any alignment of type3. We finally define V(i, j) as the maximum value of the
three terms E(Z, j). F(i, j), G(i, J). Hence the base conditions are:

V(i, 0) = E(i, 0) = W, + iW;

V(0, /) = F(0,)) = W, + jW,
and the recursive computation of V(i, j) will be:

V(i, j) =max { E(,)), F(i, j), G(i,) }
while

G@i,)=Vi-1,j-1)+0o(S, T
EG@p)=max { EG,j-1)+ W, V(i,j— 1)+ W, + W,}
Fi,j))=max { F(i- 1,))+ W, V(i- 1,)) + W, + W)

The optimal value alignment is the maximum value in the nth row or mth

column. The complexities of affine gap penalty are:

e Time complexity - As before Q(nm), as we compute four small matrices instead of

large one.

22

® Space complexity - There's a need to save four matrices (for E, F, G, and V

respectively) during the computation. Hence, O(nm) space is needed for the trivial
implementation.
3.4 Pairwise Sequence Alignment

There are two major methods for sequence alignment: Pairwise alignment and
multiple sequence alignment. Pairwise alignment, as the term suggests, aligns two
sequences at one time.

Pairwise sequence alignment is a cornerstone of sequence alignment. Molecular
biologists frequently compare biosequences to determine whether any similarities can be
found hoping that what is true of one sequence either physically or functionally is true of
its analogue. Generally, such comparison involves aligning sections of the two sequences
in a way that exposes the similarities between them.

Given a scoring scheme, the next problem is how to compare the sequences to
decide how similar they are, then to generate an alignment. This problem may be
subdivided into alignment methods for two sequences, multiple alignment methods, and
methods that incorporate additional non-sequence information; for example, from the
tertiary structure of the protein.

The simplest two-sequence comparison methods do not consider insertions and
deletions (gaps) explicitly. More sophisticated methods make use of dynamic
programming to determine the best alignment including gaps (see Section 3.2.2.1 and

Chapter IV).

23

3.4.1 Alignment Without Gaps — Fixed Length Segments

Given two sequences S and 7 of length m and n, respectively, all possible
overlapping segments having a particular length (sometimes called a ‘window length’)
from § are compared to all segments of 7. This requires of the order of m x n
comparisons to be made. For each pair of segments the amino acid pair scores are
accumulated over the length of the segment. For example, consider the comparison of
two 7-residue segments: ALGAWDE and ALATWDE using identity scoring. The total
score for this pair wouldbe 1 + 1 +0+0+1+1+1=5.

In early studies of protein sequences, statistical analysis of segment comparison
scores was used to infer homology between sequences. For example, Fitch (1966)
applied the genetic code scoring scheme to the comparison of o- and 3-hemoglobin and
showed the score distribution to be non-random. Today, segment comparison methods
are most commonly used in association with a “dot plot” or “diagram” (Gibbs and
Mclntyre 1970) and can be a more effective method of finding repeated sequences than
using dynamic programming, but they have less effective in global and local alignment.

The scores obtained by comparing all pairs of segments from § and T may be
represented as a comparison matrix R where each element R;;represents the score for

matching an odd length segment centered on residue S; with one centered on residue 1

This matrix can provide a graphic representation of the segment comparison data
particularly if the scores are contoured at a series of probability levels to illustrate the
most significantly similar regions. Collins and Coulson (1987) have summarized the
features of the “dot-plot”. The runs of similarity can be enhanced visually by placing a

dot at all the contributing match points in a window rather than just at the center.

24

AL TCI ST VAN § el AV Snd W W Bt

McLachlan (1972) introduced two further refinements into segment comparison
methods. The first was the inclusion of weights in the comparison of two segments in
order to improve the definition of the ends of regions of similarity. For example, the
scores obtained at each position in a S-residue segment comparison might be multiplied
by 1,2,3,2,1 respectively before being summed. The second refinement was the
development of probability distributions which agreed well with experimental
comparisons on random and unrelated sequences and which could be used to estimate the

significance of an observed comparison.
34.1.1 Correlation Methods

Several experimental, and semi-empirical properties have been derived associated
with amino acid types, for example hydrophobicity (e.g. Jones 1975), and propensity to
form an a-helix (eg. Chou and Fasman 1978). Correlation methods for the comparison
of protein sequences exploit the large number of amino acid properties as an alternative
to comparing the sequences on the basis of pair scoring schemes.

Kubota et al. (1982) gathered 32 property scales from the literature and through
application of factor analysis selected 6 properties which for carp parvalbumin gave good
correlation for the comparison of the structurally similar CE- and EF-hand region Ca®*
binding sites and poor correlation in other regions. They expressed their sequence
comparisons in the form of a comparison matrix similar to that of McLachlan (1972) and
demonstrated that their method could identify an alignment of «-lytic protease and
Streptomyces Griseus protease A which agrees with that determined from comparison of

the available crystal structures.

25

PRI dadd WA N B kb Wt W W Wt B

Argos (1987) determined the most discriminating properties from a set of 55 by
calculating correlation coefficients for all pairs of sequences within 30 families of
proteins that had been aligned on the basis of their three-dimensional structures. The
correlation coefficients for each property were then averaged over all the families to
leave 5 representative properties. Unlike Kubota et al. (1982), Argos applied the
correlation coefficients from the five properties in addition to a more conventional
segment comparison method using the Dayhoff matrix scoring scheme. He also
combined the result of using more than one segment length on a single diagram such that

the most significant scores for a particular length always prevail.
3412 Variable Length Segments

The best local ungapped alignments of variable length may be found either by
dynamic programming with a high gap-penalty, or using heuristic methods. Since the
heuristic methods are primarily used for database searching.

3.4.2 Alignment with Gaps

The segment based techniques described in section 3.2.1 do not consider
insertions and deletions explicitly. Deletions are often referred to as “gaps”, while
insertions and deletions are collectively referred to as “indels”. Insertions and deletions
are usually needed to align accurately even quite closely related sequences such as the a-
and (-globins. The naive approach to finding the best alignment of two sequences
including gaps is to generate all possible alignments, add up the scores for equivalencing
each amino acid pair in each alignment then select the highest scoring alignment.
However, for two sequences of 100 residues there are more than 107° alternative

alignments so such an approach would be time consuming and infeasible for longer

26

L e R A e

FA W W T L S T

sequences. Fortunately, there is a group of algorithms that can calculate the best score
and alignment in the order of mn steps. These dynamic programming algorithms were

first utilized for protein sequence comparison by Needleman and Wunsch (1970), though
similar methods were independently devised during the late 1960’s and early 1970’s for

use in the fields of speech processing and computer science (Kruskal 1983).
342.1 Finding the Best Alignment with Dynamic Programming

Dynamic programming algorithms are discussed in detail in Chapter IV.
Dynamic programming algorithms may be divided into those that find a global alignment
of the sequences and those that find local alignments. The difference between global and
local alignment is illustrated in Figure 3.4.2.1. Global alignment is appropriate for
sequences that are known to share similarity over their whole length. Local alignment is
appropriate when the sequences may show isolated regions of similarity, for example
multiple domains or repeats. Local alignment is best applied when scanning a database
to find similarities or when there is no a priori knowledge that the protein sequences are

similar.

27

W B AW B A W W W

LA S

A I |

= —

I I

Global
Alignment

A | | —

|
B \ \ / /
I I I I
Local
Alignment

Figure 3.4.2.1 The difference between global and local alignments

There are many variations on the theme of dynamic programming applied to
protein comparisons. Here is a brief account of a basic method for finding the globally
best score for aligning two sequences. Kruskal and Sankoff (1983) give a clear and

detailed explanation of dynamic programming.

Let the two sequences of length mand n be S = (S, S2,...5.), T = (T},
T5,...T,) and the symbol for a single gap be A. At each aligned position there are three

possible events:

1). (S;, T;) substitution of S; by 7.

2). w(S;, A) deletion of S;.

28

3). (A, Tj) deletion of T;.
The substitution weight @(S;, ;) is derived from the chosen scoring scheme,

perhaps Dayhoff's matrix. Gaps, A, normally are given a negative weight often referred

to as the “gap penalty” since insertions and deletions are usually less common than

substitutions.

The maximum score M for the alignment of § with T"may be represented as
(S, ..m T,). This may be found by working forward along each sequence

successively finding the best score for aligning S; ;with T _;forall i, j where 1 <i<m

and | <j <.n. The values of are stored in a matrix H where each element of H is

calculated as follows:

Hi_; j-1+ wsi 15
H; j = max Hij 1+ ws;a
H,'_;_j'l" W4, 7

The element H,, ,contains the best score for the alignment of the complete

sequences.

If the alignment is required as well as the best score, then the alignment path may
be determined by tracing back through the A/ matrix. Alternatively, a matrix of pointers
can be recorded to indicate which of the threc possibilities was the maximum at each

value f; ;.

29

3422 Alternative Weight for Gaps

The above scheme showed a simple length-dependent weighting for gaps. Thus
two isolated gaps give the same score as two consecutive gaps. It is possible to
generalize the algorithm to allow gaps of length greater than 1 to carry weights other than
the simple sum of single gap weights (Waterman et al. 1976). Such gap weighting can
give a more biologically meaningful model of transitions from one sequence to another
since insertions and deletions of more than one residue are not uncommon events

between homologous protein sequences. Most computer programs that implement

dynamic programming allow gaps to be weighted with the form v + uk where k is the

gap length and v and u are constants > 0, since this can be computed efficiently (Gotoh
1982).

3.4.3 Identification of Local Similarities

Although segment based comparison methods (see section 3.2.1) rely on local
comparisons, when insertions and deletions have occurred, then the match may be
disrupted for a region of the order of the length of the segment. In order to circumvent
these difficulties algorithms which are modifications of the basic global alignment
methods have been developed to locate common subsequences including a consideration
of gaps (e.g.Bosewell 1984, Smith and Waterman 1981a and Sellers 1984). For protein
sequences, the most commonly used local alignment algorithm that allows gaps is that
described by Smith and Waterman (1981b). This is essentially the same as the global
alignment algorithm described in section 3.2.2.1, except that a zero is added to the

recurrence equation.

30

B i @it W

I W TN ¥

Hi_jj_ 1+ 05 1

Hf.j = max H.IJ—!-'-OJSLJ
Hi) j+ a7
0

Thus, all H; ;must have a value > (). The score for the best local alignment is

simply the largest value in a cell of H and the corresponding alignment is obtained by
tracing back from this cell.
343.1 Finding Subsequence - Best Local Alignment

The Smith-Waterman algorithm returns the single best local alignment, but two
proteins may share more than one common region. Waterman and Jones (1990) have
shown how all local alignments may be obtained for a pair of sequences with minimal
recalculation. Recently, Barton (1993) has described how for a simple length dependent
gap-penalty, all locally optimal alignments may be determined in the order of steps

without recalculation.
3.5 Multiple Sequences Alignment

This thesis mainly focuses on pairwise sequence alignment, so we only briefly

introduce multiple sequence alignment here.
3.5.1 Introduction

Multiple sequence alignment is the process of aligning three or more sequences
with each other to bring as many similar sequences characters (nucleotides or amino
acids) into register as possible. The resulting alignments can be used for two purposes:
1) To find regions of similar sequence in all of the sequences that define a conserved

consensus pattern or domain.

31

& Vi Bd VB AW WE B

2) If the alignment is particularly strong, to use the aligned positions to try and
derive the possible evolutionary relationships among the sequences.

When dealing with a sequence of unknown function, the presence of similar
domains in several similar sequences implies a similar biochemical function or structural
folding that may become the basis of further experimental investigation. A group of
similar sequences may define a protein family that may share a common biochemical

function or evolutionary origin.
3.5.2 Multiple Alignment Algorithms

Two types of methods are used for aligning sequences: global alignment and local

alignment. Global methods attempt to find an ‘optimal’ alignment throughout the length

of sequences (Barton and Sternberg 1987a, 1987b; Feng and Doolittle 1987; Taylor 1987,

Lipman et al. 1989; Subbian and Harrison 1989; Higgins and Fuchs 1992). A sub-class
of global methods attempts first to identify an ordered series of motifs and then proceeds
to align the remaining regions (Martinez 1988; Vingron and Argon 1991). Local
methods, such as the Multiple Alignment Construction Workbench (MACAW; Schuler et
al. 1991) and PIMA (Smith and Smith 1990; Waterman and Jones 1990), which use the
Smith-Waterman algorithm, only attempt to identify motifs and do not attempt to align
regions between motifs. Global methods are best for both evolutionary and structural
studies of unequivocally related sequences, whereas local methods are best for seeking
distant relationships and for motif identification.

Global methods rarely attempt to compare all sequences simultaneously because
of the computational expense of doing so. Usually the two most closely related

scquences (determined by pairwise comparisons) are aligned and the others, in order of

32

R S

similarity, are added progressively. This method of progressive multiple alignment was
introduced in 1987 (Feng and Doolittle 1987: Taylor 1987). The alignment continues in
an iterative fashion, adding gaps where required to achieve alignment, but only to all
members of each growing cluster. The most widely used variant of this approach is
CLUSTAL V (Higgins and Fuchs 1992). The shortcoming of this approach is the
mherent bias when one subset of sequences is over-represented (Altschul er al 1989).
Other methods directly produce a progressive multiple alignment or an optimal alignment
defined in some way (Subbiah and Harrison 1989; Lipman e al 1989; Vingron and Argos
1991). Barton and Sternberg’s method (1987b) allows the user to analyze sequences
following either strategy.

A comparative study of global and local methods was made by McClure et al.
(1994). Four data sets, each containing sequences from the globin, kinase, retroid
aspartic acid protease and ribonuclease H sequence families, were aligned and used to
test the ability of twelve global and local methods to accurately identify their
characteristic motifs. It was found that CLUSTAL V and Dfalign (also called PILE-UP
in the GCG package) perform better than the others; the global methods were better than
the local methods, PIMA was slightly better than MACAW. CLUSTAL V is flexible and
user-friendly, its instructions and interactive interface are clear, it can align both nucleic
acids and proteins and there are DOS, VMS and UNIX versions.

Other new approaches to multiple sequence alignment are being tested. One such
is the use of Hidden Markov Models (HMM) with adaptive algorithms for parameter
training, which has also been used for speech recognition (Baldi er al. 1994; Krogh et al.

1994). The method creates a stochastic model using the sequences being studied as a

33

& St S bemss SE wE

‘training set’. At each position of a sequence there is the probability that a residue, a
deletion or an insertion will occur. The model starts with a uniform probability of each
type; one chance out of three for a nucleotide, deletion or insertion and one out of 20 for
a particular amino acid for the residue or insertion states. As the model “learns” from
each sequence these probabilities are adjusted. Thus the differences in a family of
sequences are incorporated in to the model, so there is no need for a separate dissimilarity
matrix. The final model is uscd as a template for aligning individual sequences to
produce a multiple alignment, and for identifying related sequences.

None of the currently available computer methods is foolproof, and manual
refinement of the alignment may be required. A skilled scientist can identify and correct

small regions of similarities not detected by multiple alignment programs.

34

B St e m b we w

CHAPTER IV

DYNAMIC PROGRAMMING
AND
PAIRWISE BIOLOGICAL SEQUENCE ALIGNMENT

4.1 Introduction

Dynamic programming is a term from operations research where it was first used
to describe a class of algorithms for the optimization of dynamic systems (Bellman
1957). In dynamic programming the principle of divide-and-conquer is used extensively:
subdivide a problem that is too large to be computed into several smaller problems that
may be computed efficiently. Then the answers are assembled to give a solution for the
large problem. Here, this principle is carried to the extreme: when we do not know which
smaller problem to solve, we simply solve all smaller problems, store the answers and
assemble them later to a solution for the larger problem. Dynamic programming methods
assume the principle of optimality, stating that each part of a globally optimal solution is
itself an optimal solution to its corresponding partial problem. This inference of global
properties from local properties is, unfortunately, not valid for all biological problems,

but the principle can be used to find globally optimal sequence alignments very

efficiently.

Globally optimal alignment is a difficult problem. The major difficulty comes
from the fact that one cannot simply slide one sequence along another and sum over the
similarity scores looked up in the appropriate mutation data matrix. This does not work,
because biological sequences may have gaps or insertions of sequences relative to each
other. Thus one cannot know exactly which residue is paired with which other residue,

and in principle one should try all possible combinations to find the optimal one,

35

maximizing the number and quality of matches while at the same time minimizing the
number and length of necessary gaps in the alignment. Obviously, this is a problem that
quickly explodes in its requirements for computational resources with the size of the

sequences to be searched.
4.2 Needleman-Wunch Algorithm and Global Sequence Alignment

Saul Needleman and Christian Wunsch were the first to use dynamic
programming approach for aligning biological sequences (Needleman and Wunsch
1970). The algorithm is a way to find an alignment that maximizes a particular score
(The score can be calculated in a variety of methods - as is indicated below). The overall
method is reminiscent of the dot plot (though this was not popular in the 1970's, so there
is probably no connection). The first step is to place the two sequences along the margins
of a matrix as shown in Table 4.2.1

In this first step, simply place a 1 anywhere the two sequences match and a 0
elsewhere. If done on a larger scale than is shown in Table 4.2.1, this exactly recreates
the dot plot shown in Figure 1. In this case however, we search for a path through this
matrix to define a more conventional alignment. For example, proceeding along the
diagonal with no deviations would imply an alignment without any gaps. The
introduction of a gap (either by an insertion or a deletion - an indel) in either sequence
would correspond to moving either above or below the main diagonal.

To find the best route, Needleman and Wunsch suggested that one modify the
matrix to represent this idea of tracing different pathways through the matrix. However,
one wants to include all possible pathways and from among these choose only that one

that is best (in the sense of maximizing some score). Their method consists of two passes

36

through the matrix. The first traces a score for all possible routes and moves right to left,
bottom to top. Once the score for all possible routes are found, the maximum can be
chosen (somewhere on the topmost row or leftmost column) and a second pass can be
carried out, this time running left to right, top to bottom to find the alignment that gives

the maximum score.

ABCNJRQCLCRPM

A 1

J 1

© 1 L 1
J 1

N 1

R i 1
& 1 1 1
K

(& 1 1L .
R 1 1
B 1

p 1

Table 4.2.1 Initial Step

The way to trace a score for all possible paths is shown in Table 4.2.2. For each

element M; ;in the matrix is computed as:
M,"J:Z Mf.j + max (M'~k.j1 M,"j_!)
where k is any integer larger than i and [is any integer larger than j. The process alters

the matrix by adding to each element the largest element from the row just below and to
the right of that element and from the column just to the right and below the element of

interest. This row and column for one element are shown in Table 4.2.2 by boxes. The

37

number contained in each cell of the matrix after this operation is completed is the largest
number of identical pairs that can be found if that element is the origin for a pathway

which proceeds to the upper left.

ABCNJRQCLCRPM

A |1

J 1

C 1 11
J 1

N 1

R fila 3322
C 3343333331
K 133333333321
¢ lz223z222pRPB 2321
R{211112f1h112
Blz2121r2hhr1ia
P 1

Table 4.2.2 Half way through the second step

To have an alignment which covers the entire sequence, we find on the upper row,
or on the left column, the element of the matrix with maximum value. An alignment
must begin at this point then proceed to the lower right. This is the second pass through
the matrix. At each step of this pass, starting from the maximum, one moves one row and
column to the lower right and finds the maximum in this row or column. The alignment
must proceed through this point. The alignment finishes with a hit of either the bottom
row or the rightmost column. This tracing pattern is shown in Table 4.2.3. The optimal

alignment is not necessarily unique. Two alignments both give the optimal score of 8

matches.

38

ABCNJROQCLCRPM
Ale7665443321%00
T |7 6664243321400
c 666544433100
J665§544332100
N |55 5 %4332100
R |4 444 4332200
C 3343333433100
K |333333339%2100
cl2232222329%100
R[(2111121111%200
B12111111111Yo
P |0000000O0O0O0DOCY O

Table 4.2.3 Trace the alignment
These two alignments can be written in more familiar form as either
ABCNJ-RQCLCR-PM

* * k% * * KKk *

AJC-JNR-CKCRBP-
OT as

ABC-NJRQCLCR-PM

* * * * *k Kk *

AJCIN-R-CKCRBP-
both with 8 asterisks to denote the 8 matches. Note that in this particular case, gaps are
given the same penalty as a mismatch. They simply do not add to the score.

4.3 Smith-Waterman Algorithm and Local Sequence Alignment

The Needleman-Wunsch algorithm creates a global alignment. That is, it tries to
take all of one sequence and align it with all of a second sequence. Short and highly
similar subsequences may be missed in the alignment because they are outweighed by the
rest of the sequence. Hence, one would like to create a locally optimal alignment. Smith

and Waterman (1981a) find an alignment that determines the longest/best subsequence

39

pair that gives the maximum degree of similarity between the two original sequences.
This means that not all of the sequences might be aligned together.

Only minimal changes to the Needleman-Wunsch algorithm are required. These

are:
L. A negative score/weight must be given to mismatches.

2 Zero must be the minimum score recorded in the matrix.

3. The beginning and end of an optimal path may be found anywhere in the matrix -

not just the last row or column.

The first point is required to cause the score to drop as more mismatches are
added. Hence, the score rises in a region of high similarity, then falls outside of this
region. If there are two segments of high similarity then these must be close enough to a
path between them to be linked by a gap or they will be left as independent segments of
local similarity.

The second point is computed so that each pathway begins fresh. Thus each short
segment of similarity should begin with a score of zero. The third point indicates that the
entire matrix must be searched for regions with high local similarity.

Each element in the matrix comes from the computation:
M; =M, ;+max (M;_;, M;;_1)
In this case it is easier to go left to right, top to bottom in the matrix -- here k is
any integer smaller than i and [is any integer smaller than j. Also, for a local

alignment M; ; must be some negative penalty if residue I is not the same as residue j.

40

TN =xRMQM™mZ249n04g)y

As an example the previous alignment can be reproduced with a penalty of -0.5

for each mismatch. The matrix will then be as given in Table 4.3.1.

A B C N Jd R Q@ € L € R P M
1. 0 0 0 0 0 0 0 0 0 0 0 0
0>N.50.50.5 2 0.50.50.50.50.50.5 0.5 0.5
0 0.5M.5.0 0 1.51.5 3 1.5 3 1.5 1.5 1.5
0 0.5 0?7.5 1.5 1 1 2.5 2.5 2.5 2.5 2.5
0 0.5 0 .5%2 2 2 2.5 2 2.5 2 2
0 0.5 0 1 2~3.5.2 2 2.5 2 4 2 2
0 0.51.5 1 2 2 3.5 .3 4.5 3 3.5 3.5
0 0.5 0 1 2 2 3 2.5N_ 4 4 4 4
00 0.51.5 1 2 2 3 4 4\5 4 3.5 3.5
0 0.5 0 1 2 3.5 3 2.5 4 3.5°6. 4.5 4.5
0 2 0 1 9 2 3 3 4 3.54. Ns 5.5
0 0.51.51.5 2 2 3 2.5 4 3.5 4.5V

Table 4.3.1 An example of Smith-Waterman algorithm (with penalty of — 0.5)

In this case the same alignment is found. However, the Smith-Waterman
algorithm does not include the final M/P mismatch in its path as it is not part of the
locally optimal solution. More generally, large chucks of each sequence may be missing
from the local alignment (as in the alignment presented by BLAST).

It is not always the case that these two methods give the same answer; for
example, a global and a local alignment of TTGACACCCTCCCAATTGTA with
ACCCCAGGCTTTACACAT.

If the sequences are not known to be homologous throughout their entire length, a
local alignment should be the method of choice. Often the two methods will give similar
answers (as above) but if the homology is distant, a local alignment will be more likely to

find the remaining patches of homology.

41

4.4 Repeated Matches Algorithm

Local alignment gives the best single local match between two sequences. If one
or both of the sequences is long, it is possible that there are many different local
alignments with a significant score, and in most cases all are of interest. For example,
we may find many copies of repeated domains or motifs in a protein sequence. To find
those repeated matches effectively, we need the method called the repeated matches
algorithm.

If there are two different sequences: x = HEAGAWGHEE and y = PAWHEAE,

repeated matches of y in x is that all of x must be aligned with some (possibly repeated)

subsequences from y:

HEAGAWGHEE
HEA .AW-HE.

A dash (-) indicates that the corresponding X; is matches by a gap ina y
subsequence, a dot () means that the corresponding X; is matched by no subsequence of

y. Every two matched subsequences of x are separated by one or more unmatched

subsequences
This method is asymmetric: it finds one or more non-overlapping copies of

sections of one sequence (e.g. the domain or motif) in the other. An example of the

repeated matches algorithm is given in Figure 4.4. We again use the matrix M, but the
recurrence is now different, as is the meaning of M(i, j). In the final alignment, x is
partitioned into regions that match parts of y in gapped completed match region as being

its standard gapped alignment score minus the threshold 7. All theses matches scores

will be positive. M(i, j) for j > 1 is now the best sum of match scores to X, _;, assuming
that x; is in a matched region, and the corresponding match ends in x; and y; (they may
not actually be aligned, if this is a gapped section of the match). M(i, 0) is the best sum

of completed match score to the subsequence X; _;, i.e. assuming that x; is in an
unmatched region.

To achieve the desired goal, we start by initializing M(0, 0) = 0 as usual, and
then fill the matrix using the following recurrence relations:

M@i-1,0),
M(i, 0) = max { 4.4.1)
M@Gi-1,/))-T, j=1,....m;

M(i, 0),
M@i-1,j-1)+ 8, y),
M(i, j) = max (4.4.2)
M@i-1,)) —d,
M@, j-1)-d.

Equation (4.4.1) handles unmatched regions and ends of matches, only allowing
matches to end when they have score at least 7. Equation (4.4.2) deals with starts of
matches and extensions. The total score of all the matches is obtained by adding an extra
cell to the matrix, M(n + 1, 0), using (4.4.1). This score will have T subtracted for each
match; if there were no matches of score greater than 7' it will be 0, obtained by repeated

application of first option in (4.4.1).

The individual match alignments can be obtained by tracing back from cell

43

(n+1,0) to (0, 0), at each point going back to the cell that was the source of the score in
the current cell in the max operation. This traceback procedure is a global procedure,

showing what each residue in x will be aligned to. The resulting global alignment will
contain sections of more conventional gapped local alignments of subsequences of x to

subsequences of y.

The algorithm obtains all local matches in one pass. It finds the maximal scoring

set of matches, in the sense of maximizing the combined total of the excess of each match
score above the threshold 7. Changing the value of T changes what the algorithm finds.
Increasing 7" may exclude matches. Decreasing it may split them, as well as finding new
wecaker ones. A locally optimal match in the sense of the preceding section will be split
into pieces if it contains internal subalignemnts scoring less than —7.. However, this may

be what is wanted: given two similar high scoring sections significant in their own right,
separated by a non-matching section with a strongly negative score, it is not clear

whether it is preferable to report one match or two.

4.5 Overlap Matches Algorithm
If there are two different sequences: x = HEAGAWGHEE and y = PAWHEAE,
an overlap matches means that a prefix or suffix of x must be aligned with a prefix or

suffix of y:

GAWGHEE
PAW-HEA

44

This is similar to local alignment, but the alignment must begin on the left-hand
or top border and must end on the right-hand or bottom border, that means an alignment
cannot begin or end inside the matrix.

Overlap Matches Algorithm uses an algorithm similar to the algorithm of Wilbur
and Lipman (1983) to compare one sequence (the query) to any group of sequences. We
may think of the comparisons as a set of dot-plots with the query as the vertical sequence
and the group of sequences to which the query is being compared as the different
horizontal sequences (the search set). This often occurs when comparing fragments of
genomic DNA sequence to each other. or to larger chromosomal sequences. Several

different types of configuration can occur, as shown Figure 4.5.1 (a) and (b):

X X
y y
£ X
y h
(a) (b)

Figure 4.5.1 Different types of overlap matches
To find a global alignment that does not penalize overhanging ends a match starts

on the top or left border of the matrix, and finishes on the right or bottom border. The

initialization equations are therefore that M(i, 0) =0 for i = 1,...,n and M(0, j) = 0 for
Jj=1,...,m, and the recurrence relations within the matrix are simply those for a global

alignment (See Equation 4.5.1). We set M5, to be the maximum value on the right

45

border (i, m), i = 1,...,n, and the bottom border (n, j), j = 1,...,m. The traceback starts

from the maximum point and continues until reaching the top or left edge.
There 1s a repeated match version of this overlap match algorithm, in which the

analogues of (4.5.1) and (4.5.2) are:

Mi-1,0),

M(i, 0) = max { (4.5.1)
Mi-1,m-T,
M@i-1,j-1)+8(x,y),

M, j) = max { M@i-1,)-d. (4.5.2)
MG, j-1)-d.

The line (4.5.1) in the recurrence for M(i, 0) is now just looking at complete
matches to y; ., rather than all possible subsequences of y as in (4.4.1) in the previous
section. However, (4.4.1) is still used in its original form for obtaining M(n + 1, 0), so
that matches of initial subsequences of y to the end of x can be obtained.

4.6 Dynamic Programming and Linear Space Algorithm
The standard dynamic programming algorithm requires storage of at least on m x

n matrix (m and n are the length of two sequences, respectively) in order to calculate the

alignment. On modern computers, this is not a problem for alignment of sequences with
short length, but for computing large DNA sequences or complete genomes, space
requirements can be prohibitive.

Myers and Miller (1988) introduced a linear space algorithm for dynamic

programming to overcome the space requirement for long sequence alignment. This

46

algorithm gives the optimal alignment in limited memory of order 2 + m rather than nm.

This algorithm does not propagate the traceback pointer ¢(Z, j), but instead finds the

alignment midpoint (&, v) by combining the results of forward and backward dynamic

programming passes at row K. Figure 4.6 provides detailed pseudo-code for the linear

space alignment algorithm.

shared strings ad>---Awm, b|b2"'bN
shared temporary integer arrays S0...N], S*[0...N]

procedure Align(M, N)
if M =0 then

else

forj « 1toNdo
write [b,]

path(0, 0, M, N)

recursive procedure path(iy, ji, 2, J2)
if!] + 1= izOl'jl =j2 then

else

write aligned pairs for maximum-score path from (iy, J1) to (i2, j2)
mid | (i, + i2)/2]

/* find maximum path scores from (il, j1) */
Sji] <0
for j < j +1 toj2 do

Syl « SGi-1+o([5])

for [« i) + 1 to mid do

s« STl

SUileceSHl+o(2D

forj < j; + 1 toj,do
¢« max{ S[] +o((™ . s+o(b D

cto(l i, D)

s« Sl
SUl«c

/* find maximum path scores to (i3, j2) */

y[}g](—O
for j « j, — 1 down to j, do

47

Sl « S+ 11 +0o(y,, D
for [«— i — 1 down to mid do
S(—S+[j3]
S'Ua) < c « STl +o((*'])
for j < j,— 1 down to j, do
¢ max{S*[j] + o((* 1), s + o([by Ds ¢ + o(5, D)
s« Sl
STl «c

/* find where maximum-score path crosses row mid */
J < value x [f,, j-] that maximizes S[x] + S*[x]
path(iy, j1, mid, J)

path(mid, J, Iz, J2)

Figure 4.6 Linear space alignment algorithm (from Chao et al 1994)

In this project, we want to combine linear space alignment algorithm and dynamic

programming methods to reduce the space complexity from O(mn) to O(m + n).

48

CHAPTER V

PROGRAM DESIGN AND IMPLEMENTATION
This project focuses on the dynamic programming and its application to pairwise
biological sequence alignment. The program was written in Java language. The program

design and implementation are described in this chapter. Details see as follows:
5.1 System Requirements

Table 5.1 summarizes system requirements for the user side and server side.

Server Side e Unix System

User Side e Any platform with the Java Virtual Machine

Table 5.1 System Requirement
5.2 Algorithms Used For Programming
Nine algorithms are covered in this thesis to demonstrate dynamic programming

and its applications to pairwise biological sequence alignment. Table 5.2 shows the brief

description of each algorithm used in the program.

Algorithms Description

NWSimple Global alignment with simple linear gap costs, using the
Needlemam-Wunsch algorithm

SWSimple Local alignment with simple linear gap costs, using the
Smith-Waterman algorithm

RMSimple Repeated Matches with simple linear gap costs

OMSimple Overlap matches with simple linear gap costs

NWAffine Global alignment with affine gap costs, using the
Needlemam-Wunsch algorithm

NWSmart Global alignment with simple linear gap costs. Where all
the above implementations require space proportional to
the product of the sequence lengths, this one requires

49

only space proportional to the sum of the sequence
lengths. It reconstructs the full alignment using a
recursive divide-and-conquer algorithm, calling
NWSimple to solve the base cases(when one of the
sequences have length 1)

SWSmart Local alignment with simple linear gap costs, using the
smart linear space algorithm (as in NWSmart)
AlignSmartAffine Global alignment with affine gap costs, using the smart
linear space algorithm (as in NWAffine and NWSmart)
SWSmartAffine Local alignment with affine gap costs, using the smart
linear space alignment (as in AlignSmartAffine and
SWSmart)

Table 5.2 Algorithms Used in Program
5.3 Input and Output

The program enables users to input two sequences to be compared and then the

results of all algorithms running will be displayed. The format of input is as follows:
5.3.1 The Format of Input

Under the UNIX environment, at the prompt sign, just type java, and then
followed by the program named PairAlign, then followed by the stings of two sequences
which are going to be aligned:

$ java PairAlign EFHGHYYTRRICKQK AEGHYRICK

Press “Enter” key, the program will run immediately.
5.3.2 The Sample of Output

After the program run, the result will be output like the followings:

GLOBAL ALIGNMENT:

Score = B

The F matrix:

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -B0 -88 -96 -104 -112 -120

-8 -1 -9 -17 -24 -32 -40 -48 -56 -64 -72 -B0 -BB -96 -104 -112
-16 -2 -4 -9 -17 -24 -32 -40 -48 -56 -64 -72 -B0O -87 -94 -102
-24 -10 -6 -6 -1 -9 -17 -25 -33 -41 -49 -57 -65 -73 -81 -89
-32 -18 ~-11 4 -4 9 1 -7 -15 -23 -31 -39 -47 -55 -63 -71
-40 -26 -14 -4 1 1 17 9 1 -7 -15 -23 -31 -39 -47 -55
-48 -34 -22 -12 -7 1 9 16 B8 8 0 -8 -16 -24 -32 -40

50

-56 -42 -30 -20
-64 -50 -38 -28
-72 -58 -46 -36

An optimal alignment:

EFHGHYYTRRICKQK
A-EGH-Y--RIC--K

LOCAL ALIGNMENT:
Score = 33
The F matrix:

0 0 0 0
0 0 C 0
0 6 G 0
0 0 2 0
0 0 o] 12
o o] 4 4
0 0 0 4
0 0 0 0
0 0 0 0
0 1 4] 0
An optimal alignment:
GHYYTRRICK
GH-Y--RICK

REPEATED MATCHES:
Score = 17
The F matrix:

[=N=]

CO00000000
HoOoooooom
COoOO0OO0Ob_ONOOO
-
cCoOobbRNOODOO

An optimal alignment:

EFHGHYYTRRICKQK
...GHY...RICK..

OVERLAP MATCH:
Score = 30
The F matrix:

0 0 0 0
0 =1 -3 -2
0 6 -2 -3
0 ~2 2 -4
0 0 -3 12
0 -2 4 "
0 0 -4 4
0 -4 0 -4
0 -3 -6 -3
0 3 -7 -6

An optimal alignment:

FHGHYYTRRICK
AEGH-Y--RICK

AFFINE GLOBAL:
Score = 20
The F matrix:
F[O]:

0 -Inf -Inf
-Inf -1 -11
-Inf -2 -4
-Inf -15 -6
-Inf -16 -11
-Inf -22 -10
-Inf -24 -21
-Inf =32 -22
-Inf -35 -28

=1
-2
-3

L

5
3
0

OO FWe OO OO

CcCoOOoOwOUBXTOCO

Mo Oaununoo

=7
-15
-23

e
COHWVWODOOOO

=
COoOHWVODOIDIOO

-2

-3
15

-3
-7

(= =00 = =]

coQo

10
26
18
10

Moo oo

18
25
17

-2
-4
=7
=1
15
22
14

-2

B
s Jdoocoo DO

=3
-6
-9

14
21

51

bt
~NnNooooo

16
20
19

v oooooo

13
12
23

=2
-2
-3
-6
=7

10

20

(54

o

o

(=]

18
11
15

-3
18
10

v TohnooooOooo

-

IO

10
31
23

-11
10
24

WO OoWoOooOoOo

e

=1

-6
-9
-11
-7
=5

30

=19

16

n=orHroHroNnNOoo

BJ =

17

17
17

17
17
17
17

-1

=2
=5
-10
-10
-10

22

-27

~~wowooor+Hroo

[y

-1
-1
-2
-7
-13

14

-Inf
Fl1l}:
0
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
Fi2]:
0

-8
-12
-16
=20
-24
-28
-32
-36
-40

-35

-8
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf

-Inf
-Inf
-9
-10
-14
-18
-22
-26
-30
-34

An optimal
EFHGHYYTRRICKQK
A-EGHY---RIC--K

SMART
Score
The F
-112
-104
-94
-81
-63
-47
-32
=19

2

16

-34

=13

=3
-10
-23
-24
-30
-32
-40
-43
-43

-Inf

-Inf
-19
=12
-14
-18
-18
-22
-26
-30

alignment:

GLOBAL:

matrix:

-120
-112
-102
-89
=71
-55
-40
=27
-6

8

An optimal alignment:
EFHGHYYTRRICKQK
A-EGH-Y--RIC--K

SMART LOCAL:

Score

= 33

The F matrix:

OO OoONOO

11
25

wWDoOWOoOOoOO+HOoo

17

An optimal
GHYYTRRICK
GH-Y--RICK

alignment:

SMART AFFINE LOCAL:

Score

= 41

The F matrix:

F[0]):

oHOMNOO

coocProo

52

103
o 0
7 3
29 29
Fl1]:
0 0
-8 -8
-7 _.6
-8 -8B
-8 -7
-8 -8
-3 -7
6 2
23 19
33 29
Fl2]):
0 o
-4 -4
-8 -8
-6 -7
-8 -8
-7 -8
-8 -8
i ug
-8 -8
-1 -5
An optimal alignment:
GHYYTRRICK
GHY---RICK
From the output, user may easily find out the result of different algorithms’
running.

54 Implementation
This project implements dynamic programming and its application to pairwise
biological sequence alignment. The program contains 21 classes for different purposes,

the main classes and their descriptions are shown in Table 5.4.1.

Main Classes Description

Substitution The class of substitution (scoring)
matrices

Blosum50 The BLOSUMSO substitution matrix for
amino acids |

Align Implements pairwise sequence
alignment

AlignSimple Implement alignment with simple gap
costs

53

Traceback

Implements traceback objects

Traceback2 Implements traceback objects for simple
gap costs

Traceback3 Implements traceback3 objects for
Affine gap costs

NW Implements global alignment with the
Needleman-Wunsch algorithm (simple
gap costs)

SW Implements local alignment with the
Smith-Waterman algorithm (simple gap
COSts)

RM Implements repeated matches (simple
gap costs)

OM Implements overlap matching (simple
gap costs)

AlignAffine Implements alignment with affine gap
costs

NW Affine Implements global alignment using the
Needleman-Wunsch algorithm (affine
gap costs)

AlignSmart Implements alignment with simple gap
costs; smart linear-space algorithm

NWSmart Implements global alignment (simple
gap costs, smart linear-space algorithm)

SWSmart Implements local alignment with the

Smith-Waterman algorithm (simple gap
costs, smart linear space algorithm)

AlignSmartAffine

Implements alignment with affine gap
costs; smart linear-space algorithm

SWSmartAffine Implements local alignment with the
Smith-Waterman algorithm (affine gap
costs, smart linear space algorithm)

PairAlign Test all eight alignment algorithms and
call other classes

Output Auxiliary classes for output

SystemOut Called by Output class

Table 54.1 Description of main classes

Some of the implementations of algorithms are as follows:

54

5.4.1 Implementation of Global Alignment Algorithm
54.1.1 Initialization

Upper border position (i, 0) represents the alignment of x,_; to the empty prefix
of y. That is the prefix x;_; has been matched with gaps in y. With the simple linear gap

costs, the score is — d * i. The traceback pointer at (7, 0) points to (i - 1, 0), and the same

thing happens on the left-hand border. So the border can be initialized as follows:

for (int i=1; i<=n; i++) {

F[i][0]) = -4 * i;

B[1i] [0] = new Traceback2(i-1, 0);
}
for (int j=1; Jj<=m; Jj++) {

F[0][3] = -4 * 3j;

B[0][j] = new Traceback2(0, j-1);
}

54.12 Filling in the Matrix
Position (i, /) may be reached:
e From (i ,j— 1) with a match, adding score [xi][y;] to the score;
e From (i — 1, j) with a gap in y, substracting d trom the score; or
e From (i, j - 1) with a gap in x, substracting d from the score.

The traceback B(i, j) points to the source of the maximal resulting score F(i, j). Thus:

for (int i=1; i<=n; i++)
for (int j=1; j<=m; Jj++) {
int s = score[segl.charAt(i-1)][seq2.charAt(j-1)];

int val = max(F([i-1][j-1]+s, F[i-1]1[j]-4d, F[i][j-1]1-4);
F(i][3] = val;
if (val == F[i-1][j-1]+s)

B[i][j] = new Traceback2(i-1, j-1);

else if (val == F[i-1][j]-4d)

B[i][j] = new Traceback2(i-1, j);
else if (val == F[i][j-1]1-d)
B[i][j] = new Traceback2(i, j-1);

}
B0 = new Traceback2(n, m);

The start BO of the traceback is cell (n, m).

55

5.4.2 Implementation of Local Alignment Algorithm
5421 Initialization

The position of upper border (i, 0) represents the alignment of a suffix x; , to an
empty sequence. An empty match, with score 0, is the best we can do (provided gaps
have negative scores). Then (i, 0) is the start of a new local alignment, and the traceback
pointer at (Z, 0) points nowhere. The left-hand border is similar. So the border cells can
be initialized to 0 and the traceback to null (this require no action in Java).
5422 Filling in the Matrix

Positions (i, j) may be reached:

e From nowhere, with score 0, because we can always start a local alignment;

e From (i — 1, - 1) with a match, adding score [x;][y;] to the score;

e From (i - 1, j) with a gap in y, substracting d from the score; or

e From (i, j — 1) with a gap in x, substracting d from the score.

The traceback B(i, j) points to the source of the maximal resulting score F(i, j), if

any. Thus:

for (int i=1; i<=n; i++)
for (int j=1; j<=m; Jj++) {
int s = scorel[seqgl.charAt(i-1)][seqg2.charAt(j-1)];
int val = max(0, F[i-1)(j-11+s, F[i-1)[j]l-d, F[i](j-1]1-4);
F(i][3] = wval;

if (val == 0)

B(1][3] = null;
else if (val == F[i-1]1[j-1]1+s)

Bli] [j] = new Traceback2(i-1, j-1);
else if (val == F[i-1][j]1-4)

B[i] [j] = new Traceback2(i-1, 3j);
else if {val == F[i][j-1]1-4d)

B[i][j] = new Traceback2(i, j-1);

56

The start BO of the traceback must be set some cell (Z, J) in F with maximal score.
5.4.3 Implementation of Repeated Matches Algorithm
543.1 Initialization
The position (0,) on left-hand border represents the best alignment of an empty
subsequence of x to a subsequence of y. This must have score 0. The traceback pointer
at (0, j) points nowhere.
543.2 Filling in the Matrix
Position (i, 0) may be reached:
e From (i — 1, 0) by letting x; be unmatched be nay part of y, keeping the old
score; or
e From (i - 1, j) by completing a match score is at least T, substracting T from
that score.

Position (Z,) for j > 0 may be reached:

From (i, 0), because we start a new local alignment, keeping the old score;

From (i - 1, j — 1) with a match, adding score [x;][y;] to the score;

From (i — 1, j) with a gap in y, substracting d from the score; or

From (i, j — 1) with a gap in x, substracting d from the score.

As always, the traceback B(i, J) points to the source of the maximal resulting

score F(i, J).

57

Letmaxj (i - 1) bej>0if F(i — 1, j) - Tis greater than F(i — 1, 0) and

maximal; otherwise 0. This gives:

for (int i=1; i<=n; i++) {
int maxj = maxj(i-1);
F[i] (0] maxjval (i-1, maxj);
B[1i] [0] new Traceback2(i-1, maxj);
for (int j=1; j<=m; j++) (
int s = score[seqgl.charAt(i-1)] [seq2.charAt(j-1)];
int val = max(F[1)[0], F[i-1])[j-1]+s, F[i-1)[j]-4d,
Fli) [5-1]-d)
F[i]l[3] = val;
if (val == F[i][0])

B[i][j] = new Traceback2(i, 0);
else if (val == F[i-1][j-1]+s)

B[(i]{j] = new Traceback2(i-1, j-1);
else if (val == F[i-1][j]1-4)

B[i][j] = new Traceback2(i-1, j);
else if (val == F[i][j-1]-4)

B[i][j] = new Traceback2(i, j-1);

The start BO of the traceback is (2, maxj (n)). That is, (n,) if there is a last
match with score > T, otherwise (1, 0), if some suffix of x is unmatched.
5.4.4. Implementation of Overlap Matches Algorithm
544.1 Initialization

The position (0, j) on left-hand border represents the best alignment of an empty
subsequence of x to a subsequence of y. Similarly, the position (Z, 0) on right-hand
border represents the best alignment of a subsequence of x to an empty subsequence of y.

The traceback pointers at either (0, j) or (i, 0) point nowhere.

58

5442 Filling in the Matrix

5.44.2.1 Finding Maximal Score on Left-hand and upper Borders

for (int i=1; i<=n; i++)
for (int j=1; j<=m; Jj++) {
int s = score[seqgl.charAt(i-1)] [seqg2.charAt(j-1)];
int val = max(F[i-1][j-11+s, F[i-1])[3j]-4,
F(i] [j-11-4);
F[(i]) [j] = val;
if (val == F[i-1][j-1]+s)
B[i][j] = new Traceback2(i-1, j-1);
else if (val == F[i-1][]]1-4)
B[i]l][j] = new Traceback2(i-1, 3j);
else if (val == F[i][j-1]-4d)
B(i][j] = new Traceback2(i, j-1);

5.4.4.2.2 Finding Maximal Score on Right-hand and Bottom Borders

int maxi = -1, maxj = -1;
int maxval = NegInf;
for (int 1i=0; i<=n; i++)
if (maxval < F[i][m]) {
maxi = 1i;
maxval = F[i] [m];
}
for (int j=0; j<=m; Jj++)
if {(maxval < F[n][j]) (
maxj = j;
maxval = F[n][j);

}

if {(maxj != -1)

B0 = new TracebackZ2(n, maxj);
else

B0 = new Traceback2 (maxi, m);

59

CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE WORK

This project implements nine dynamic programming algorithms and their
application in biological sequence alignment. Sequence alignment is a very important
tool in analysis of the structures and functions of DNA and protein molecules, so the
selection of better algorithms for aligning those sequences is very critical to get an
optimal result.

This study focuses on dynamic programming algorithms because dynamic
programming algorithms are guaranteed to find the optimal scoring alignment or set of
alignments. In this project, global alignment algorithm, local alignment algorithm,
repeated alignment algorithm and overlap alignment algorithm are discussed and
analyzed extensively.

A program is designed and implemented to demonstrate the output of each

algorithm with different gap costs. In this program, the time complexity and space
complexity of each algorithm with simple linear gap costs are Q(mn). If affine gap costs
is used, the time and space complexity remain same as O(mn), but it is desirable when

gaps of a few residues are expected almost as gaps of a single residue because affine gap
costs allows long insertions and deletions to be penalized less than what they would be by

linear gap cost. The time complexity of each algorithm with linear space algorithm is
O(mn), but the space complexity is reduced to O(m + n). Table 6.1 shows the different

running and space complexity among the algorithms used:

60

Algorithm Gap Penalty Space Time Space
Name Used Algorithm Required Required
NWSimple Constant Gap Regular O(N°) O(N’)
SWSimple Constant Gap Regular O(N°) O(N°)
RMSimple Constant Gap Regular O(N°) O(N°)
OMSimple Constant Gap Regular O(N°) O(N)
NW Affine Affine Gap Regular O(N°) O(N°)
NWSmart Constant Gap | Linear Space O(N°) O(N)
SWSmart Constant Gap | Linear Space O(N°) O(N)
SWSmartAffine Affine Gap Linear Space O(N?) O(N)
Table 6.1 Performance of the algorithms used in the program

The advantages of the designed program are:

e Gives all output of each dynamic programming algorithm with simple gap
costs, affine gap costs and linear space algorithm, respectively.

e Can easily find the repeated matches and overlap matches between two
biological sequences

e Because it is written in Java, the implementation is modular so that new
scoring matrices can be used and new alignment algorithms can be developed
very easily.

The program is designed to run under UNIX. In the future, a Java Applet should

be added in the program so that any user can run the program through web browser such

61

as Netscape and Microsoft IE, and different scoring matrices might be changed for

different alignment purpose.

62

Appendix A

Glossary

a-helix A secondary structure in proteins; the right-handed helical folding of a
polypeptide such that amide nitrogens share their hydrogen atoms with the carbonyl
oxygens of the fourth amide bonds towards the C-terminal end of the polymer.

amino acid Any of a class of 20 molecules that are combined to form proteins in living
things. The sequence of amino acids in a protein and hence protein function are
determined by the genetic code.

B-sheet A form of secondary structure of a protein in which the amide hydrogens of a
peptide bond of one extended polypeptide sequence are shared with the carbonyl oxygens
of a peptide bond on a second polypeptide sequence. A sheet that often consists of three
or more polypeptide sequences is said to be parallel (i.e. both adjacent strands run in the
same direction; N- to C-terminal) or anti-parallel.

base sequence analysis A method, sometimes automated, for determining the base
sequence.

bioinformatics The study of the application of computer and statistical techniques to the
management of biological information. In genome projects, bioinformatics includes the
development of methods to search databases quickly, to analyze DNA sequence
information, and to predict protein sequence and structure from DNA sequence data.

BLAST BLAST (Basic Local Alignment Search Tool) is a popular program for
searching biosequences against databases. BLAST was developed and is maintained by a
group at the National Center for Biotechnology Information (NCBI).

c¢cDNA Complementary DNA; DNA that is synthesized, by reverse transcriptase, from an
mRNA template, and therefore has no introns.

c¢DNA library A collection of cells, usually E. coli, transformed by DNA vectors each of
which contains a different cDNA insert synthesized from a collection of mRNA species.

complementary sequences: Nucleic acid base sequences that can form a double-
stranded structure by matching base pairs; the complementary sequence to G-T- A- C is
C-A-T-G.

conserved sequence A base sequence in a DNA molecule (or an amino acid sequence in
a protein) that has remained essentially unchanged throughout evolution.

DNA Deoxyribonucleic acid; a macromolecule formed of repeating deoxyribonucleotide
units linked by phosphodiester bonds between the 5'-phosphate group of one nucleotide

63

and the 3'-hydroxy group of the next. DNA appears in Nature in both double-stranded
(the Watson-Crick model) and single-stranded forms, and functions as a repository of
genetic information that is encoded in its base sequence.

DNA sequence The relative order of base pairs, whether in a fragment of DNA, a gene,
a chromosome, or an entire genome. See base sequence analysis.

domain A discrete portion of a protein with its own function. The combination of
domains in a single protein determines its overall function.

exons The protein- coding DNA sequences of a gene. Compare introns.

FASTA FASTA is a similarity search program which can be used to search a nucleotide
sequence database with a nucleotide query sequence, or a protein sequence database with
a protein query sequence. Its companion program TFastA (or FastA-Trans) is used to
search a 6 frames translation of a nucleotide sequence database with a protein query
sequence. FASTA accelerates database searching by using several passes over the
database and only retaining a “best matching' subset for further analysis at each pass,
therefore “pruning down' the database progressively.

folding Also protein folding, the process of newly synthesized protein forming a certain
3D structure so that it can function correctly.

gene The fundamental physical and functional unit of heredity. A gene is an ordered
sequence of nucleotides located in a particular position on a particular chromosome that
encodes a specific functional product (i.e., a protein or RNA molecule). See gene
expression.

gene expression The process by which a gene coded information is converted into the
structures present and operating in the cell. Expressed genes include those that are
transcribed into mRNA and then translated into protein and those that are transcribed into
RNA but not translated into protein (e.g., transfer and ribosomal RNAs).

genetic code The sequence of nucleotides, coded in triplets (codons) along the mRNA,
that determines the sequence of amino acids in protein synthesis. The DNA sequence of a
gene can be used to predict the mRNA sequence, and the genetic code can in turn be used
to predict the amino acid sequence.

genomic DNA DNA that has been isolated from a cell and therefore contains introns, as
opposed to cDNA.

genomic library A collection of transformed cells, each of which contains DNA
fragments; the entire population represents the total genome of an organism, e.g., a rat
library containing DNA fragments which together comprise the entire rat genome.
Appropriate screening methods can select a single transformed cell that contains a
specific gene.

homology Sequence similarity which is attributed to evolutionary descent from a
common ancestor. In molecular biology, homology is often inferred from a high degree
of sequence similarity. Sequence similarity does not necessarily infer homology. In
general, if two sequences are longer than 100 residues and are more than 25% identical
(after suitable gapping), they are very likely homologous. If two sequences are less than
15% identical, they are probably not homologous.

introns The DNA base sequences interrupting the protein- coding sequences of a gene;
these sequences are transcribed into RNA but are cut out of the message before it is
translated into protein. Compare exons.

messenger RNA (mRNA) RNA that serves as a template for protein synthesis. See
genetic code.

PAM An acronym for Percent Accepted Mutations. 1 PAM means there has been 1
mutation per 100 residues. 250 PAM means there has been 250 mutations per 100
residues or 2.5 mutations per residue. The PAM concept was developed by M.O.
Dayhoff in the 1960s to measure the evolutionary pressure that had been placed on a
protein sequence.

protein A large molecule composed of one or more chains of amino acids in a specific
order; the order is determined by the base sequence of nucleotides in the gene coding for
the protein. Proteins are required for the structure, function, and regulation of the bodys
cells, tissues, and organs, and each protein has unique functions. Examples are hormones,
enzymes, and antibodies.

RNA Ribonucleic acid; a macromolecule formed of repeating ribonucleotide units linked
by phosphodiester bonds between the 5'-phosphate group of one nucleotide and the 3'-
hydroxy group of the next. RNA has several biological functions, most of which depend
upon its ability to form sequence-specific interactions with DNA. RNA comprises the
genome of some viruses.

sequence The order of nucleotide bases in a DNA molecule or the order of amino acid in
protein molecule.

65

Appendix B

Table of acronyms and abbreviations

Acronym or
Abbreviation Meaning
A Adenine
c Cytosine
G Guanine
T Thymine
ALIGN a program used for sensitive sequence comparison
BLAST basic local alignment search tool
BLOCKS a database of protein motifs
BLOSUM an amino acid substitution matrix derived from BLOCKS
cDNA complementary or copy DNA
CLUSTAL a program used for profile-based progressive multiple alignment
DNA deoxyribonucleic acid
dNTP a mixture of dATP (A), dGTP (G), dCTP (C), and dTTP (T)
FASTA a program for sequence alignment, short for “fast-all”
GCG genetic computer group
MOTIFS a recurring pattern of protein supersecondary structure
MSA a program used for multiple sequences alignment
PAM point accepted mutation, used as a unit of evolutionary distance
PROSITE a regular expression database for significant patterns in protein
RNA ribonucleic acid

REFERENCES

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson J.D. (1989)
Molecular Biology of the Cell. Garland Publishing, New York and London.

Altschul S.F., Carroll R.J. and Lipman D.J. (1989) Weights for data related by a tree.
Journal of Molecular Biology 207:647-753.

Altschul S.F. (1991) Amino acid substitution matrices from an information theoretic
perspective. Journal of Molecular Biology 219:555-565.

Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990) Basic local
alignment search tool. Journal of Molecular Biology 215:403-410.

Argos P. (1987) A sensitive procedure to compare amino acid sequences. Journal of
Molecular Biology 193:385-396.

Baldi P., Chauvin Y., Hunkapiller T. and McClure M.A. (1994) Hidden Markov models
of biological primary sequence information. Proceedings of the National
Academy of Science of the USA 91:1059-1063.

Barton G.J. and Sternberg M.J.E. (1987a) A strategy for the rapid multiple alignment of
protein sequences. Journal of Molecular Biology 198:327-337.

Barton G.J. and Sternberg M.J.E. (1987b) Evaluation and improvements in the automatic
alignment of protein sequences. Protein Engineering 1:89-94.

Barton G.J. (1993) An efficient algorithm to locate all locally optimal alignments
between two sequences allowing for gaps. Computer Applications in the
Biosciences 9:729-734.

Bellman R. E. (1957) Dynamic programming. Princeton University Press.

Boswell D.R. and Mclachlan A.D. (1984) Sequence comparison by exponentially
damped alignment. Nucleic Acid Research 12:457-464.

Chao K. M., Hardison R. C. and Miller W. (1994) Recent developments in linear-space
alignment methods: A Survey. Journal of Computational Biology. 1:271-291.

Chou P.Y. and Fasman G.D. (1978) Prediction of the secondary structure of proteins
from their amino acid sequences. Advances in Enzymology 47:45-148.

Cohen F.E., Novotny J., Sternberg M.J.E., Campbell D.G. and Williams A.F. (1981)

67

Analysis of structural similarities between brain Thy-1 antigen and
immunoglobulin domains: evidence for an evolutionary relationship and a
hypothesis for its functional significance. Biochemical Journal 195:31-40.

Collins J.F. and Coulson A.F W. (1987) In Bioshop M.J. and Rawlings C.J. (ed.), Nucleic
acid and protein sequence analysis — A practival approach, pp 323-358 IRL
Press.

Collins J.F., Coulson A.F.W. and Lyall A. (1988) The signiticance of protein sequence
similarities. Computer Applications in the Biosciences 4:67-71.

Cooper N. (1994) The Human Genome Project. Univ. Science Books, Mill Valley,
CA.

Dayhoff M.O., Schwartz R.M. and Orcutt B.C. (1978) A model of evolutionary change in
proteins. matrices for detecting distant relationships. In Dayhoff M.O. (ed.), Atlas
of protein sequence and structure, 5:345-358 National biomedical research
foundation Washington DC.

Doolittle, R.F. (1986) Of Urfs and Orfs: A primer on how to analyze derived amino acid
sequences. University Science Books, Mill Valley, CA.

Feng D.F., Johnson M.S. and Doolittle R.F. (1985) Aligning amino acid sequences:
Comparison of commonly used methods. Journal of Molecular Evolution 21:112-

125.

Feng D.F. and Doolittle R.F. (1987) Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. Journal of Molecular Evolution 25:351-360.

Fitch W.M. (1966) An improved method of testing for evolution homology. Journal of
Molecular Biology 16:9-16.

Gibbs A.J. and Mclntyre G.A. (1970) The diagram, a method for comparing sequences.
Its use with amino acid and nucleotide sequences. European Journal of

Biochemistry 16:1-11.

Goad, W. (1986) Computational analysis of genetic sequences. Annual Review in
Biophysics and Chemistry 15:79-95.

Gonnet G.H., Cohen M.A. and Benner S.A. (1992) Exhaustive matching of the entire
protein sequence database. Science 256:1443-1445.

Gotoh O. (1982) An improved algorithm for matching biological sequence. Journal of
Molecular Biology 162:705-708.

Gusfield D. (1997) Algorithms on strings, trees, and sequences: Computer science and

68

computational biology. Cambridge University Press.

Heijne, G. (1987) Sequence analysis in molecular biology: Treasure trove or trivial
pursuit? Academic Press, London,

Henikoff S. and Henikoff J.G. (1992) Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences of the USA 89:10915-
10919.

Henikoff S. and Henikoff J.G. (1993) Performance evaluation of amino acid substitution
matrices. Proteins 17:49-61.

Higgins D.G. and Fuchs R. (1992) CLUSTAL V: improved software for multiple
sequence alignment. Computer Applications in the Biosciences 8:189-191.

Hudson T.J., Lander E.S. (1995) An STS-based map of human genome. Science,
270:1945-1954.

Jones D.D. (1975) Amino acid properties and side-chain orientation in protein: A cross
correlation approach. Journal of Theoretical Biology 50:167-183.

Jones D.T., Taylor W.R. and Thornton J.M. (1992) The rapid generation of mutation data

matrices from protein sequences. Computer Applications in the Biosciences
8:275-282.

Krogh A., Brown M., Mian LS., Olander K. and Haussler D. (1994) Hidden Markov
models in computational biology: applications to protein modeling. Journal of
Molecular Biology 235:1501-1531.

Kruskal J.B. (1983) An overview of sequence comparison, In Sankoff D. and Kruskal
J1.B., (ed.) Time warps, string edits and macromolucules: The theory and practice
of sequence comparison, ppl-44, Addison Wesley.

Kubota Y., Nishikawa K., Takahashi S. and Ooi T. (1982) Correspondence of
homologies in amino acid sequence and tertiary structure of protein molecules.
Biochemical Et Biophysical Acta 701:242-252.

Lee, C. (1999) Bioinformatics Interdisciplinary Program Proposal. htp://www.doe-
mbi.ucla.edu/peoplefleec/UCLA-bioinf/bioinf-RFC.htm!

Lesk, A. (1988) ed.: Computational molecular biology: sources and methods for

69

sequence analysis. Oxford University Press, Oxford,

Lipman D.J., Altschul S.F. and Kececioglu J.D. (1989) A tool for multiple sequence
alignment. Proceedings of National Academy of Sciences of the USA 86:4412-
4415.

Martinez H.M. (1988) A flexible multiple sequence alignment program. Nucleic Acids
Research 16:1683-1691.

McClure M.A., Vasi T.K. and Fitch W.M. (1994) Comparative analysis of multiple
protein sequence alignment methods. Journal of Molecular Evolution 11:571-592.

McLachlan A.D. (1972) Repeating sequences and gene duplication in proteins. Journal
Molecular Biology 64:417-437.

Myers E. W. and Miller W. (1988) Optimal alignments in linear-space. Computer
Applications in the Biosciences 4:11-17.

Needleman S.B. and Wunsch C.D. (1970) A general method application to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology 48:443-453.

Overington J., Johnson M.S., Sali A. and Blundell T.L. (1990) Tertiary structural
constraints on protein evolutionary diversity: templates, key residues and structure
prediction. Proc. R. Soc. Lond. B Biol. Sci., 241:132-145.

Pearson, W. R. (1996) Effective protein sequence comparison. Methods in Enzymology
266:227-258.

Risler J.L., Delorme M.O., Delacroix H. and Henaut A. (1988) Amino acid substitutions
in structurally related proteins: a pattern recognition approach, determination of a
new and efficient scoring matrix. Journal of Molecular Biology 204:1019-1029.

Schuler G.D., Altschul S.F. and Lipman D.J. (1991) A workbench for multiple alignment
construction and analysis. Proteins 9:180-190

Schuler G.D., Lander E.S. and Hudson T.J. (1996) A gene map for the human
genome. Science, 274:540-546.

Schwartz R.M. and Dayhoff M.O. (1978) In Dayhoff M.O. (ed.), Atlas of protein
sequence and structure, 5:353-362 National biomedical research foundation
Washington DC.

Sellers P.H. (1984) Pattern recognition in genetic sequences by mismatch density.
Bulletin in Mathematical Biology 46:705-708.

70

Smith R.F. and Smith T.F. (1990) Automatic generation of primary sequence patterns
from sets of related protein sequences. Proceedings of the National Academy of
Sciences of the USA 87:118-122.

Smith T.F. and Waterman M.S. (1981) Identification of common molecular
subsequences. Journal of Molecular Biology 147:195-197.

Smith T.F. and Waterman M.S. (1981) Comparison of bio-sequence. Advances in Applied
Mathematics 2:482-489.

Stryer, L. (1988) Biochemistry. W.H. Freeman, New York.

Subbiah S. and Harrison S.C. (1989) A method for multiple sequence alignment with
gaps. Journal of Molecular Biology 209:539-548.

Taylor W.R. (1986) The classification of amino acid conservation. Journal of Theoretical
Biology 119:205-218.

Taylor W.R. (1987) Multiple sequence alignment by a pairwise algorithm. Computer
Applications in the Biosciences 3:81-87.

Vingron M. and Argos P. (1991) Motif recognition and alignment for many sequences by
comparison of dot-matrices. Journal of Molecular Biology 218:33-43.

Waterman M.S., Smith T.F. and Beyer W.A. (1976) Some biological sequence metrics.
Advances in Mathematics, 20:367-387.

Waterman M.S. and Jones R. (1990) Consensus methods for DNA and protein sequences
alignment, in Molecular Evolution: Computer Analysis of Protein and Nucleic
Acid Sequences, (eds. Doolittle R.F.) 183:221-237, Academic Press, Inc., San
Diego.

Wilbur W.J. and Lipman D.J. (1983) Rapid similarity searches of nucleic acid and

protein data banks. Proceedings of the National Academy of Sciences of the USA
80: 726-730

71

VITA

Yanwen Guo

)

Candidate for the Degree of '
Master of Science

Thesis: DYNAMIC PROGRAMMING AND ITS APPLICATION TO PAIRWISE
BIOLOGICAL SEQUENCE ALIGNMENT

Major Field: Computer Sciences
Biographical:

Personal Information: Born in Jinling, Hubei Province, the People’s Republic of
China, on October 15, 1966, the son of Fajun Yuan and Zhonghui Long.

Education: Graduated from the First High School, Gongan County, Hubei, China,
in July 1983; received Bachelor of Science degree in Cell Biology from Wuhan
University, Wuhan, Hubei, China, in July 1987; was Ph.D candidate in Biochemistry at
The Chinese University of HongKong from January 1994 to November 1995. Completed
the requirements for the Master of Science degree with a major in Computer Science at
Oklahoma State University in May 2000.

Professional Experience: Research Assistant and Associate, Shanghai Institute of
Cell Biology, Academia Sinica, from July 1987 to July 1992. Visiting Scholar, The
Chinese University of HongKong, from September 1992 to March 1993. Ph.D candidate
at The Chinese University of HongKong, from January 1994 to November 1995.
Laboratory Technologist at Oklahoma State University, from July 1996 — present.

Professional Memberships: Association for Computing Machinery

