
DESIGNING A WEB EES MODIFIC TIO

REQUEST (EkfR) SYSTEM

By

WEIMINGGAN

Bachelor of Engineering

Xi'an Highway Institute

Xi'an, Shanxi

P. R China

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2000

DESIG G WEB EE MODIFI Tl

REQ T (EJvfR) S TE

Thesis Approved:

Dean of the Graduate allege

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. K. M George for his

intelligent supervision, constructive guidance, inspiration and friendship. My sincere

appreciation extends to my other committee members Dr. Jacques Lafrance and Dr.

Nohpill Park, whose guidance, assistance, encouragement, and friendship are also

invaluable.

More over I would like to thank my supervisor, Mr. Jim Gepner, for providing me with

this research opportunity and encouraging me to complete my Master Degree.

I would also like to give my special appreciation to my wife, Z. Julia Jin, for her

precious suggestions to my research, her strong encouragement at times of difficulty, love

and understanding throughout this whole process. Thanks also to my parents for their

support and encouragement.

Finally, I would like to thank the EES group of the Lucent Technologies for supporting

me with a lot of helpful resources.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

II. RALATED WORK 5

The EMR. System 5
Work Related to EMR 7

The First Design of the emr Tool 7
Release 2 of the emr Tool 11

Related Tools 17
Hybrowse 17

III. NEW DESIGN: WEB EMR SySTEM IH

The Architecture , 18
Retrieve and Restore a File 19
The Web Server of the New EMR System .19
The CGI Programing of the EMR System 20

The Interface for Searching an EMR 20
The CGI program for Searching an EMR 21
The Interface for Creating an EMR 22
Restore an EMR Document. 25

IV. COMPARISON OF WEB EMR and EMR 26

V. CONCLUSION AND FUTURE WORK 27

REFERENCE 28

APPENDIXES 30

APPENDIX A--THE SOURCE CODE
OF THE PROGRAMfindemr.cgi 30

APPENDIX B -THE SOURCE CODE
OF THE PROGRAM uploademr.cgi 40

iv

Figure

LIST OF FIGURES

Page

1. EES Development Phases with Major Outputs 2

2. The Architecture of the Original Electronic EMR System 5

3. The EMR File Structure 6

"
4. EMR States , , 12

5. The Architecture of the Web EMR System 18

6. The Web EMR System Interface and the source 20

7. The Interface to Show All EMRs 21

8. The Interface to Show All Items of an EMR 22

9. The Interface to Create an EMR 23

10. The Source of the EMR Creating Interface '" 24

11. The Interface for Uploading an EMR File ,..25

v

CHAPTER I

INTRODUCTIO

The 5ESSTM Switching System is a major product of the Lucent Technologies Inc. It is

a digital time division, distributed control system [1). There are two test environments

for the 5ESSTM Switch development community: the Laboratory Test System (LTS),

which is a small office rigged with debugging equipment, and the Execution Environment

System (EES), which is a software simulation of a small office that runs under the

UNJX® operation system [2]. LTS is more complete and covers more tests accurately,

but EES is more flexible and economical.

The developments ofEES software products include the new products or enhancements

to existing products. The EES Software Development Methodology is based on the ISO

9000-3 guidelines. Generally, most terms have been retained from the [SO

standards/guidelines [3]. Figure I shows that there are 6 major phases from the original

request for the software to the actual customer acceptance of the final product. Major

outputs (primarily documentation) are shown for each stage with the output(s) requiring

customer participation in italics.

There are two primary classifications ofEES documentation produced during the

development of software: (1) those produced as a result of driving or following the EES

Software Development Methodology itself, e.g., Design, Test Plan, and (2) those

COUSTOMERREQUIREMENTS EES Modification Request (EMR)

SPECIFICATION (5.3) CornmitmentINon-Commitment

~
DEVELOPMENT PLANING (5.6) Development Plan

~
DESIGN (5.6)

Design

~
Inspected Code ,

IMPLEMENTATION/CODING
(5.6)

~
TESTING (5.7)

Test Plan & Test Results

! Customer Acceptance Record

DEPLOYMENT & CUSTOMER
ACCEPTANCE (5.8)

Figure 1. EES Development Phases with Major Outputs (ISO
9000-3 clauses are indicated in parenthesis)
"

primarily for users to be able to utilize the final product, e.g., man pages, user manuals.

In the beginning of the EES development, the EES Modification Requests (EMRs) was

a documentation system for the EES Software Development Methodology. It was a

paper-based system that included the US EMR system and the international Problem

Statement-based system. The paper-based EMR system had been in use for a long time.

2

In 1993 ·0 help the custome (8) and developer(s) execute the EES dev lopm ntph

air lined in the -S methodology an electronic EMR system as develop _d. The system

was invo ed by a tool called emr (emr is an acronym for EES Modification Request)

hich is a UNIX shell program. The EMR system not only maintains and records all

necessary documentation during development, but also provides an electronic interface

and facilitates the kind of development tracking that is needed for ISO compliance [3].

The electronic EMR system works like an information system. Because of its good

reliability and convenience, it has been used until today. However comparing with

current information system, for example, an information system running a Web server

with CGI (Common Gateway Interface), the EMR system has several disadvantages:

• Complexity: The command-line interface with too many keywords is not friendly.

• Limitation: The execution is restricted in UNIX system only.

• Difficulty: The UNIX text file with nrojfor trojfformat is hard to edit.

To solve the above problems, a new design of the EMR system was given in this thesis.

The new design used the similar EMR file structure, but replaced the emr tool with the

Web server and the CGI programs. This approach allows the customer(s) and the

developer(s) to use a Web browser to run the EMR system via the Internet. It also gave

the possibility that an EMR document could be an HTML format.

3

Since EMR system includes a lot of functionality and features, it is impossible to cover

all designs in this thesis. Based on the major requirements, the thesis have given the

following solutions:

• Creating or opening an EMR: A user can create or open an EMR.

• Searching an EMR: A user can search all documents in the EMR file system via

the Internet. The documents could be HTML format.

• Updating or modifying an. EMR: A user can download or create an EMR

document into his/her local machine, edit or modify it by using a Web browser,

then send or upload it back to the EMR file system.

...

4

CHAPTER II

RELATED WORKED

The EMR System

Figure 2 shows the architecture of the original electronic EMR system. It includes a

browser called Hybrowser, the emr tool, and the EMR files system.

browser EMR file system

Figure 2. The Architecture of the Original Electronic EMR System

Hybrowser is a menu interface where the users can browse information or perfonn

various operations by entering certain key combinations.

The emr tool was used to invoke the browser and connect to the EMR file system. Its

primary functions are:

• To provide a centralized, electronic means of tracking EES development.

• To aid the writing process by supplying templates and/or guidelines.

5

• To aid the execution of the methodology by supporting operations on those

documents.

[common] [issub] [uscbu] [ERMl] [EMR2] ... [EMRx]

Figure 3. The EMR File Structure

Figure 3 shows the EMR file structure. There are three official nodes common, issub,

and uscbu. Each node has a different purpose.

• common: The node serves as the root for all base system files. In all decisions,

it serves as the default.

• iscbu: The node serves as the root for the international EES domain. It

contains any variance from the base system.

• uscbu: The node serves as the root for the U.S. EES domain. It contains any

variance from the base system.

When an EMR is entered into the system, its root node appears at the same level as these

three.

6

Work Related to EMR

The First Design of the emr Tool

In October 1993, Gary Barrett designed the first emr tool (4). The following subsections

describe the major components in his design.

Viewpathing. The viewpathing tool is used to resolve any conflict that may arise

surrounding template contents, naming conventions, and anything that the tool displays to

the user. The choice to viewpath influences the node structure within which information

is stored.

A Generalized Ah:oritbm. The emr tool's specific behavior is to be driven by

information contained in files found down the viewpath. These files come in the

following varieties:

• Rules files: These specify the action to take.

• Informative files: These supply information to be displayed.

• Menus: These provide the user with a choice of alternative actions.

• Naming conventions: These determine the name ofphase and source files.

• Templates: These provide the user with starting points to writing documents

The algorithm is simple. It consists ofa loop, which executes until the user chooses to

quit. Each loop locates the rules file, gives the current node and the viewpath, and

executes, in sequence, each rule that it finds in that file.

7

Node Structure. There is one node under the root node for each developm nt

phase. A node is a directory and contains some subdirectories (subnode) and files. The

nodes are named as follows.

Node Phase

rqs requirement

plan development plan

des design

code implementation

to customer acceptance

To accommodate the differing levels of testing and to assign the proper perspective to

those levels, nodes that pertain to testing are contained within the various phase nodes.

Phase nodes typically contain the following subnodes.

Node Purpose

test Infonnation for this phase-level of testing

review Information about reviews

change Change records

doc phase document source

The reqs node also contains the commit subnode, for the commitment record. The plan

contains no test node. The to node contains only the doc node.

A test node contains the following subnodes.

8

Node Purpose

review Information about reviews

change Change records

result Test results

doc Test plan document source

The following table enumerates the files that can exist within system nodes.

File Number allowed Purpose

rules one node has one drives the emr toll

informative one node may has any

menus one node may has any

docname one node has one specifies source name

name one node may has one specifies title of node

The names of menu and informative files are determined by the content of the rules

files.

All document sources is kept in EMR terminal node. Terminal nodes can also contain

the following files.

File Purpose

partitions Design unit information

versions Version history

original Original document source

save Saved document source

alist Approver list

approved Approval record

sent Timestamp for commitment record sending

out Document source lock file

9

Additionally, EMR root nodes can contain the following information source files.

File Purpose

who Originator identity, copy-to list

owners EES developer identifies

state EMR state

abstract EMR abstract

ack EMR receipt acknowledgment

Convention. The EMR number is constructed of a six-digit date, the originator's

login id, and a two-digit numeric suffix. Login id's that are longer than six characters are

truncated to six so that the EMR number is no longer than fourteen. The date portion of

the EMR is constructed of the year, month and day of month so that EMRs can be easily

sorted in chronological order. The EMR number is used as the name for the EMR's root

node.

Locks are implemented as files that contain the login id of the person who has the file

out for edit. The lock files, called out, are co-located with the document source. A file is

locked when it is taken out for edit. It is unlocked when it is put back if any of the

following conditions is true:

• The approval process for that document has not yet begun.

• The document is approved and the change made to it requires no additional

approval.

Under all other conditions, the file remains locked. While locked, it is only the owner of

the lock who can continue to take the file out for edit.

10

The file can also be unlocked by the lock's owner via manual procedures.

The MainPro~Loop. The program begins by initializing variabl s. It is this

point where the CBU must be mown so that a viewpath can later be constructed. B fore

entering the main program loop, the command line is scanned for input arguments and

parsed. If there are no arguments, then the high level interface is invoked. Low-level

invocations of the tool are made interactively, by passing 'arguments, or from the high

level via hybrowse application macros. At the low level, after input commands are parsed

and additional infonnation is received, if needed, from the user, the program enters a

large switch block where preliminary handling differs from one operation to anther.

Some operations can be completed right there. Most others, however, complete by

invoking the main program loop that locates the rules file and processes it one line at a

time.

Release 2 of the emr Tool

In 1994, David Newkirk described a simplified user interface for the emr tool. The

following subsections are the major components in Newkirk's description.

EMR states. An EMR can have the following states:

• open A new EMR that has not been submitted. An open EMR is created and

owned by the originator. The originator can submit or cancel an open EMR.

11

• submitted An EMR that has been submitted but is unassigned. The administrator

can reject, close, acknowledge or assign submitted EMR's.

• in-prograss An EMR that has been assigned. The developer or administrator can

close or hold an in-progress EMR. The administrator can re-assign an EMR to a

different developer.

• hold An uncommitted EMR is being held until it can be re-evaluated. The

administrator can assign or close an EMR in the hold state.

• closed An EMR is closed after development is complete or it's uncommitted. The

administrator can reopen a closed EMR, putting it in its previous state. The

administrator can also delete a closed EMR from the database when it is no longer

needed..

Figure 4 shows the state transition allowed for EMR's:

Create

cancel
OPEN

submit

reject

close

acknowledge

hold

assign

assign

.......t-~d~e<..::le~te'-----tl CLOSED 11-oI...-_C:::.:I~os::.:::e'--__.1 HOLD I
reopen

Figure 4. EMR States

Menu System. The emr tool includes eight menus as follows:

• MAIN MENU Select an existing EMR to work on or create a new one.

12

• EMR OPERATIONS Perform operations on the EMR (such as printing its

status).

• DOCUMENTS A list of EMR documents the user can choose to access.

• DOCUMENT OPERATIONS Operations specific to individual documents

(create, browse, edit, etc).

• REVIEW & AFPROVAL MENU Access the document review and approval

data.

• CODE INSPECTION MENU Access data about a code inspection session.

• VERSION HISTORY MENU Access previous versions of approved

documents and their review data.

• ADMINISTRATOR MENU Operations for the EMR Administrator, such as

assigning or closing EMR's.

Main Menu is the [LTst menu presented by the emr tool unless EMR environment

variable is set to a valid EMR identifier. The current EMR number is displayed in the

menu header field. The following list is the operations in the menu:

a access an existing EMR (ACCESS EMR dialog)

c create a new EMR (CREATE EMR dialog)

s show summary of all EMR's (SUMMARY output)

f send feedback about EMR tool (FEEDBACK dialog)

A administrator menu (ADMINISTRATOR menu)

h help (run the pager on the Main Menu Help file)

13

q quit (QUIT dialog)

The "A" operation is only visible ifthe user is the EMR administrator or the alternate.

EMR Operations menu lets the user choose a document to examine or perform an

operation on the EMR. If the EMR environment variable is set to a valid EMR identifier,

this is the first menu displayed. The EMR number appears in the menu header field. The

following list is the operations in menu:

s short EMR status (STATUS output)

f full EMR history (HISTORY output)

d choose a document (DOCUMENT menu)

p print all EMR documents available (pRINT ALL dialog)

r* submit the EMR requirements to the· EES

c* cancel EMR (CANCEL EMR dialog)

a* change the abstract (CHANGE ABSTRACT dialog)

i* change the related IMR number (CHANGE IMR dialog)

H* hold EMR (HOLD EMR dialog)

C* close EMR (CLOSE EMR dialog)

m return to MAIN MENU

h help

q quit (QUIT dialog)

Documents menu lets the user choose a document to examine. The EMR number

appears in the menu header field. The following list is the operations in the menu:

14

r requirements

e commitment

n non-commitment

p development plan

d design

i code inspection menu (CODE INSPECTION menu)

t test plan

T test plan results

u user documentation

a acceptance

o return to EMR OPERATIONS menu

h help

q quit (QUIT dialog)

The 'e', 'n', 'p', 'f!, 'i', 't', 'T, 'u' and 'a' operations are visible if the user owns the

corresponding document or the EMR, or official documents are available.

Document Operations menu contains all the operations relevant to individual

documents. Besides viewing and updating documents, this includes their review and

version information, and ownership. The EMR identifier and the selected document

name appear in the menu header field. The following list is the operations in the menu:

b browser (BROWSER DOCUMENT dialog)

p print (PRINT DOCUMENT dialog)

e* create (create a private document using the online

15

and lock the document)

e* edit (EDIT DOCUMENT dialog)

r review & approval menu

s* submit change (SUBMIT DOCUMENT dialog)

v version history menu

u* undo private change (UNDO CHANGE dialog)

B* backout official change (BACKOUT CHANGE dialog)

p* change owners (OWNERSHIP dialog)

C* create design unit (CREATE DU dialog)

o open design unit (OPEN DU dialog)

E end design unit

Close the current design unit, returning to high

level document and updating the menu header.

D* delete design unit (DELETE DU dialog)

d return to DOCUMENTS menu

o go to EMR OPERATIONS menu

h help (run the pager on the Document operation Help file)

q quit (QUIT dialog)

The operations marked by an asterisk (*) do not appear in the menu unless the user owns

the current document. In addition, the 'e' operation is visible ifno private or official

document exists. The 'b', 'pi, 'e' and 'y' operations are visible if an official or private

document exist. The's' and 'Ui operations are visible if a private document exist. The 'V'

operation is visible if there is more than one version of the official document. The 'B'

16

operation is visible if there is an unlocked and unapproved official document. The 'e

operation is visible only when the current document is a design. The '0' and 'D' operation

are visible if a design unit exists and the current document is a design, test plan or test

result. The 'E operation is visible if the current document is inside a design unit.

The other menus are ignored since this thesis doesn't cover the designing for those

features. The information could be found in Newkirk's paper [5].

Related Tools

Hybrowse

The emr tool uses Hybrowse as the browser interface. The Hybrowse is a program that

simplifies access to online documentation by taking advantage of the structure provided

by memorandum (rom) macros [6]. It provides readers with an annotated catalog of

available documents, a Table of Contents for each document, commands to jump to

selected sections, automatic lookup of references, and a context display (section heading

and page number) on each screen of information.

Hybrowse was designed to minimize the cost ofconversion, training, and

administration, so it is practical for small applications. Hybrowse is useful for

implementing online reference manuals, help systems, interactive tutorials, and browsing

systems for collections of existing documents.

17

CHAPTER ill

NEW DESIGN: THE WEB EMR SYSTEM

The Architecture of the New EMR System

The new EMR system is a Web EMR system. The design adopted the traditional

architecture of a Web documentation information system shown in Figure 5. It is a

client/server structure. The client site is a Web browser running on a local machine. The

server site is composed of Web server, Common Gateway Interface (CGI), and the EMR

file system [7,10,11].

Client Site

Browser

(a fonn)

Browser
(a btml
page)

Server Site

Figure 5. The Architecture of the Web EMR System

18

Retrieve and Restore a File

To retrieve the documentation, a user can input the request in the form that the Web

server supplies. After getting the request of the user, the Web server will invoke tbe CGI

program, retrieve the documentation from the EMR file system, and send it back to th

user.

To restore a file back to the EMR file system, the user uses the Web browser to edit the

document first, then saves this document somewhere in the local machine. Finally, the

user can use the upload feature that Web browser supports to send the document back to

the EMR file system to the remote machine.

The Web Server of the New EMR System

Since the EMR file system is a UNIX file system, the Web server for the new EMR

server should be a UNIX Web server. UNIX web servers are some of the most reliable

and secure servers that support a lot of Internet applications [7].

The new design selected the NCSA Web server l.5.2a for the Web EMR system.

NCSA HTTPd is an HTTP/l.O compatible Web server for making hypertext and other

documents available to Web Browsers [8,9]. Because of the very good reliability and

compatibility, it is widely used by the UNIX community. NCSA HTTPd server is written

in C language, and the all source code is free.

19

The CGI Programming of the EMR System

The Interface for Searchinf: an EMR

The Web EMR System works like an Internet search engine. It uses a fonn to get the

request. Figure 6 is the interface and the source code. When a user links to the URL of

Web EMR System -- A global EES Modification Request
System.

Please click the following keywords to do the EMR operations on an
EMR.

Search -- for searching an EMR

Create -- for opening the space to stroe a new EMR

Update -- for uploading a,document of an EMR

<html>
<head><title>Web EMR System</title>
</head>
<body>
WEB EMR SYSTEM - - A
global EES Modification Request System.
<p>Please click a keyword to do the operation on an EMR.

<p>Search -- for
searching an EMR

<a hi-ef=''http://127.0.0.1 :8000/create.html">Create -- for opening
the space to stroe a new EMR

Update -- for uploading
a document of an EMR
</body>
</html>

Figure 6. Web EMR System Interface and the Source

20

the Web EMR system, this interface will be displayed to the user. The user can enter an

EMR name into the open bar, and click the search button, then the request will send back

to the server. After decoding the request, the server will invoke CGI script, the program

findemr. cgi, search the EMR in the EMR file system, and send the result back to the user.

The CGI ProiUarn for Searchin~ an EMR

The CGI programfindemr.cgi can support the following functionality,

1. Search all EMRs and display them.

2. Search one EMR and display it.

3. Search any content ofone EMR, such as a design document, a test plan, or a

review report, and display it.

Figure 7 is an example that shows all EMRs. If the user uses the mouse click an EMR's

name, all items of the EMR will be displayed, as shown in Figure 8. If the user clicks

one

EMRName

910323abcdOl
931l01xyzOl
970823uyw02
990112rstOl

Last Modify Date

A EMR name using
hypelink link to the EMR in
the EMR file system.

Figure 7. The Interface to Shows All EMRs

21

item. such as the design item. he or she will see the design documentation of that EMR

via the Internet.

EMR name: 970823uvw02
Abstract: (arbitrary)

EMR items

requirement

desi~

revIew

Last modify date

Using hypelink link to the design
document. It could show more
than one version.

Figure 8. The Interface to Shows the All Items of an EMR

The source code of the prograrnfindemr.cgi is shown in Appendix A. This program is a

good example for a small Internet searching engine [12].

The Interface for Creating an EMR

To create a new EMR, the user can click Create button in Figure 6. Then the EMR Web

server will display the EMR creating interface, as shown in Figure 9 to the user. Figure

10 shows the source of the EMR creating interface.

22

From EMR creating interface, the user can enter the name, login ill, telephone number,

and EMR name, etc. The circular buttons are RADIO buttons for the RADIO input field.

A user can check the RADIO button to get the EMR ownership or the access pennission.

For example, a user can select requirement button and submit the request for opening an

EMR. After checking the request, the EMR administrator will set up the permission for

the user. Then the user can put the requirement documentation back to the EMR file

system. Similarly a developer should select the design button if he or she has a design

assignment and wants to send the design document back to the EMR file system.

Your Name I I Phone I I
Login ID I I

Enter an EMR name I I
(Fonnatyymmdd<keyword>)

a requirement

a design

o testplan

o review

Enter the abstract

Sub r~ I
Figure 9. The Interface to Create an EMR

23

<head><title> Create an EMR <ititle>
</head>

<h2>Create an EMR<00>
<p><form METHOD="POST" ACTION="/cgi-bin/createemr.cgi">

First Name:<input TYPE="TEXT" NAME="first name" MAXLEN="50" SIZE=" 15">
Last Name:<input TYPE="TEXT" NAME="last name" MAXLEN="50" SIZE="15">

Login ID:<input TYPE="TEXT" NAME="login_id" MAXLEN="20" SIZE="15">

Phone:<input TYPE="TEXT" NAME="phone" MAXLEN="20" SIZE="I5">

<Ii>

<input TYPE="radio" NAME="Document" VALUE="EMR requirement document">
requirement document</Ii>

<Ii>
<input TYPE="radio" NAME="Document" VALUE="EMR design document">
design document <iIi>

<Ii>
<input TYPE="radio" NAME="Document" VALUE="EMR testpIan">testplan

document
<Ii>

<input TYPE="radio" NAME="Document" VALUE="EMR review">
review document

<luI>
Enter the EMR name
<input TYPE="TEXT" NAME="emr_dir" MAXLEN="50" SIZE=" 15">
<P>
Enter the abstract:
<p><textarea NAME="Abstract" ROWS=15 COLS=60></textarea>
<p>
<INPUT TYPE="hidden" NAME="log_filename"

VALUE="/home/col/httpdlhtdocs/log.txt">
<INPUT TYPE="hidden" NAME="Iog_fields"

VALUE="frrst_name,last_name,login_id,phone,Document,Abstract">
<INPUT TYPE="hidden" NAME="Iog_delimiter" VALUE="I">
<INPUT TYPE="hidden" NAME="log_uid" VALUE="Ihome/col/httpd/htdocs/uid.txt">
<INPUT TYPE="hidden" NAME="recipient" VALUE="col@bIueston.com">
<p><input TYPE="submit" VALUE="Submit"> <input TYPE="reset"
VALUE="Clear">
<p></forrn>
</body>
</html>

Figure 10. The Source of the EMR Creating Interface

24

Restore an HTML Document Back to EMR System

The EMR creating interface doesn't support the remote edit feature. It only allocates the

space for a new EMR and gives the directory pennission to a user or a developer. To

restore an html file back to the EMR system, the design uses upload feature that the

Netscape has. After clicking the keyword Update button from the Web EMR System

interface, the upload interface will be brought up, as shown in Figure 10. The EMR name

and the document type are for locating the path. After clicking the button Browse, the

user can highlight a :file that he or she wants to restore, click the upload button. Then that

file will be send to the serve and written into the EMR file system. Before uploading the

documentation, the user should use Netscape to edit the document, and save it in the local

machine somewhere.

Upload an EMR file

To upload an EMR file, fill out the fonn below:

EMR Name: ,'- --'

o requirement document
o design document
o testplan document
o review document

I Upload File! I

Figure 11. The Interface for Uploading an EMR File

2S

CHAPTER VI

COMPARISON OF NEW EMR AND EMR

The new EMR system used HTTP server and CGI technologies. It makes the EMR

system more powerful and convenience. Comparing with the old EMR system, The Web

EMR system has the following advantages:

• Widely access: A user can get the information of an EMR, or do an EMR

operation via the Internet.

• Ease of operation: The Web EMR system replaced the menu system in the old

EMR system by using a friendly GUI interface. For EMR operations, a user

doesn't need to type a lot of keywords.

• HTML format: An EMR document can has HTML format. A user can change

the font of a document easily.

The disadvantages of the Web EMR system are:

• The old EMR documents with nroffor trofffonnat can not be displayed.

• The benefits that nroffor troffsupported, such as some useful macros, are lost.

26

CHAPTER V

CONCLUSION AND FETURE WORK

The Web EMR system is valuable because it inherits many benefits from the Internet

technologies. This thesis gave the solutions for the Web EMR system as the follows:

• Search an EMR. or a document of an EMR..

• Create an EMR node.

• Send a document back to an EMR node.

To completely build a Web EMR system, there is still more work to be done. The

following topics are the major components for the future works.

• Add the others EMR. operations, such approved, close, etc.

• Add the function to lock a document.

• Add the administration feature.

• Add the feature to display the old documents that have nroffor troffformat.

27

REFERENCE

1. Aditham, R, "5ESSTM Operating System and Communications - An introductory

description," AT&T Bell Laboratories, June 1984.

2. Lied, R, "Simulating 5ESSTM Switch Network Path Signals in the Execution

Environment System," AT&T Bell Laboratories, March 1990.

3. Barrett, G., Jones, 1., Phillips, R., Taylor, D., Turek, M., "EES software Development

Methodology," 5ESS™ Switchin~ Process Documentation, Lucent Technologies Inc.,

May 1995.

4. Barrett, G., "File Case Design of the emr Tool," EMR 931020bikerOl, Lucent

Technologies Inc., October 1993.

5. Newkirk, D., "Release 2 of emr tool," EMR 940222dcnOl, Lucent Technologies Inc.,

February 1994.

6. Stanfield, L., "Hybrowse - A Tool for Accessing Online Documentation," 55513

880629-01 TM, AT&T Bell Laboratories, June 1988.

7. Stanek, R W., "HTML CGr SGML VRML JAVA Web Publishing Unleashed,"

Sams.net Publishing, Indianapolis, 1996.

8. NCSA HTTPd Development Team, "NCSA HTTPd," January 1998.

http://hoohoo.ncsa.uiuc.edu/doc

9. Bemers-Lee, T., Fielding, R., Frystyk, H., "HypertextTransfer Protocol-

HTTP/1.0," RFC: 1945 http://www.ics.uci.edulpublietf/http/rfc1945.htrnl

10. NCSA HTTPd Development Team, "The Common Gateway Interface," January

1998. http://hoohoo.ncsa.uiuc.edulq~i/

28

11. Robinson, T., "The WWW Common Gateway Interface Version 1.1," Intemet

DRAFT, University of Cambridge, February 1996.

12. Patchett, c., Wright, A., "CGIIPerl Cook Book," Wiley Computer Publishing, New

York,1998.

29

APPENDIX A

THE SOURCE CODE OF THE PROGRAMfindemr.cg;

#!Iusrlbin/perl
File name: fmdemr.cgi
#############iff:ltt###h'f/################################
Define configuration constants
######### If #/1 NNfl###################11#11//###############

$ROOT_DIR is the full path to the root directory that FileSeek will look
for files in. (Note that it should end with a directory delimiter.)

$ROOT_DIR = '/home/col/httpd/htdocs/emr/';

$ROOT_URL is the URL of the directory specified by $ROOT_DLR

$ROOT_URL = 'http://127.0.0.1 :8000/emr';

$ROOT_NAME is the name of the root directory that will be used within the
program.

$ROOT_NAME = 'EMR';

$ICON_DIR is relative path from your server's root directory where the
icons for the different file types will be kept. (Note that it should end
with a forward slash.)

$ICON_DIR = '/fileseek/icons/';

%TYPES matches file types to the corresponding icon files. With the
exception of 'directory' and 'binary' default file types, each file
type corresponds to a filename extension.

%TYPES = ('parent', $ICON_DIR. 'parent.gif,
'directory', $ICON_DIR . 'directory.gif,
'binary', $ICON_DIR. 'binary.gif,
'txt', $ICON DIR. 'text.gif,
'gif, $ICON_DIR. 'graphic.gif,
'jpg', $ICON_DIR. 'graphic.gir,
'jpeg', $ICON_DIR. 'graphic.gif,
'htm', $ICON DIR. 'html.gif,
'html', $ICON DIR. 'html.gif,

30

'pdf', $ICON_DIR . 'pdf.gif');

$ALLOWED_DIR is the full path to the root directory that any files
specified by the user must be in (e.g., template files). (Note that
it should include a directory delimiter at the end.)

$ALLOWED_DIR = 'lhomelcol/httpd/htdocs/emrl';

$DATE_FORMAT holds the &format_dateO format for the file mod date & time

$DATE_FORMAT = '<wday>, <mon> <d>, <year>, <h>:<On> <AP>';

$PROGRAM_URL is the URL ofthis program

$PROGRAM_URL = 'http://127.0.0.1:8000/cgi-bin/findemr.cgi';

$ERROR_PAGE is the error page template that will be used by the error
subroutine.

$ERROR_PAGE = "lhome/collhttpdlerror-'page.html";

$REQUIRE_DIR is the directory in which all of your required files are
placed. On most systems, if you leave the required files in the same
directory as the CGI program, you can leave this variable blank.
Otherwise, if you move the required files to another directory, specify
the full or relative path here.

$REQUIRE_DIR = 'require';

###
Get required subroutines which need to be included.
###

Push $REQUlRE_DIR onto the @INC array for include file directories
and list required files.

push(@INC, $REQUIRE_DIR) if$REQUIRE_DIR;

require 'formdate.pl';
require 'template.pI';
require 'error.pl';

31

####/lJf !J!f!!# h'lflf fI#######!! II IIJI#H{f# lilt1tllllfl II II fI//Nlttl/IIlt/II/!!I# /I JIM!! fI fI Ii
Initialize other constants
#1I1!Nh' II1I1!###############Ifft'lt'tI#·#lf/l1!f/!t#Nlff! liNN!! !!#U# It IIl1 III/Ii till Nil

@DAYS = ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday');

@MONTHS = ('January', 'February', 'March', 'April', 'May', 'June', 'July',
'August' 'September' 'October' 'November' 'December')', , , , ,

$DAY SECS = 24 * 60 * 60'- ,

if ($ENV{'QUERY_STRING'} !- /sort=\dJ && $ENV {'QUERY_STRING'}) {
$adjust = '&' . $ENV {'QUERY_STRING'};

}
$NAME_TITLE = "Name";
$SIZE_TITLE = "Size";
$DATE_TITLE = "Last
Modified";

##
Parse emmame string
##

(@args) = split(/&/, $ENV {'QUERY_STRING'});
foreach $arg (@args) {

($arg, $value) = split(/=/, $arg);
$value =- tr/+/ /;
$valuc =--- s/%([\dA-Fa-f1[\dA-Fa-f1)/pack("C", hex($l»/eg;
if «$arg eq 'emmame') && ($value eq "» {$ARGS {$arg} = '.• ' }
else { $ARGS {$arg} = $value }

}
$sort order = ($ARGS{'sort'} II 0);
$directory = $ARGS {'dir'};
$VAR{'ernrname'} = $ARGS {'emmame'} if $ARGS {'emmame'};
$VAR{'root_name'} = $ROOT_NAME;

###
Perform security and validity checks on directories and files
###

Set the directory delimiter based on $ROOT_DIR and make sure the
different directory variables end or don't end with a delimiter as
called for.
$DD = substr($ROOT_DIR, -1);

32

if($DD !-/[V:]I) {
&error("\$ICON.J)IR must end with a directory delimiter.");

}
if ($ALLOWED_DIR !-/$DD$I) {$ALLOWED_DIR.= $DD }
if ($directory && (substr($directory, 0, 1) ne $DD» {

$directory = "$DD$directory";
}
$directory =- s/$DD$//g;
$VAR{'directory'} = $directory if $directory;
$VAR{'full_dir'} = "$ROOT_NAME$directory";

Change to root in case an invalid directory was specified

if(!$ROOT_DIR) {&error('$ROOT_DIR has not been defined.') }
if(!(-d $ROOT_DIR» { &error("$ROOT_DIR is not a valid directory ($!).") }
if(!(-r $ROOT_DIR» {&error("$ROOT_DIR is not readable ($!).") }
chdir($ROOT_DIR);

Make sure they're not trying to access an invalid directory

if ($directory =- /$DD\.\.I) { $directory = " }
$ARGS {'head'} =- s/("\$ALLOWED_DIR)I("$DD)I(\.\.($DDI$»//g;
$ARGS{'foot'} =- s/("$ALLOWED_DIR)I("$DD)I(\.\.($DDI$»//g;

##
Perfoan search or get directory listing
##

if ($ARGS {'emrname'}) {
$VAR{'page_title'} = "Search of$ROOT_NAME$directory for

\"$ARGS {'emrname'} \"";

Recursively search directory

&search("$ROOT_DIR$directory", ", $ARGS {'emmame'});
chdir("$ROOT_DIR$directory");

}
else {

$VAR{'page_title'} = "Directory of$ROOT_NAME$directory";

Read list of files

chdir("$ROOT_DIR$directory");
@1ink_files = @files = <*>;

33

..
)
•

}
$num_items = @files;

##
Get file information
#################################I!IIHf:tf:f##################

$count = 0;
foreach $file (@link_files) {

$filename = $files[$count];
$directory{$filename} = -d $file; # Directory flag
if (!$directory{$filename}) { $size{$filename} = -s $file} # Size (in bytes)
$modify{$filename} = $I\T - int«-M $file) * $DAY_SEeS); # Modification date
$readable {$filename} = -r $file; # Read permission
$full-.path{$filename} = $file; # Path from dir

Determine file type

$_ = $file;
tr/A-Z/a-zJ;
if «f\.([I\.]+)$/) && $TVPES{$l}) {$type{$filename} = $1 } # Use extension
elsif (-B $file) { $type{$filename} = 'binary' } # Check for binary
else { $type{$filename} = 'txt' } # Otherwise text
++$count;

}

##
Sort files
##

if ($sort_order = 1) {
@sorted_files = sort by_size @files;
$SIZE_TITLE = "Size";

}
elsif ($sort_order = 2) {

@sorted_files = sort by_date @files;
$DATE_TITLE = "Last Modified<!B>"

}
else {

@sorted_files = sort by_name@files;
$NAME_TITLE = "Name";

}

34

~

).

#######f1#I!J1f:Jlllt##lIll!l#N#!!#Nflf:I!I!I###/JI/##JfN(illtllltlJlIf##!f!!NNJI####
Generate the HTML page
#########/fNtttt#IIJ/####III1I1#f:I##lIl1ftNIiIfIlIlI/Ii##ft###nUII#IIII##II####

Generate the arguments for links back to the program

if ($ARGS {'sort'}) { $sort_arg = "sort=$sort_order&"} else { $sort_arg = " }
if ($ARGS {'head'}) {

$temp_arg.= "head=$ARGS{'head'} &";
}
if ($ARGS {'foot'}) {

$temp_arg.= "foot=$ARGS{'foot'}&";
}

Generate the HTML header

print "Content-type: textlhtml\n\n";

Insert the page header if specified

if ($ARGS {'head'}) {
if (!&parse_template("$ALLOWED_DIR$ARGS {'head'} ", *STDOUT» {

&error($Error_Message, ", ", 1);
}

}
else {

print «END_HTML;
<HTML>

<HEAD>
<TITLE>$VAR{'page_title'}</TITLE>

</HEAD>
<BODY BGCOLOR="#FFFFFF">

END HTML
}

Generate the directory header

print «END_HTML;
$VAR {'page_title'} :
<P>
<TABLE BORDER=O CELLPADDING=O WIDTH=100%>

<TR>
<TD HEIGHT=17 ALIGN=CENTER WIDTH=50 NOWRAP>

$num_items items

35

'."..

</TD><TD WIDTH=S ALIGN=LEFT>

</TD><TD ALIGN=LEFT>
$NAME TITLE

</TD><TD ALIGN=R1GHT WIDTH=1 00>
$SIZE_TITLE

</TD><TD WIDTH=5 ALIGN=LEFT>

</TD><TD ALIGN=LEFT WlDTH=900>
$DATE_TITLE

</TD></TR>
<TR>

<TD COLSPAN=6 HEIGHT=10>
<HR>

</TD></TR>
END HTML

Generate the link to the parent directory if appropriate

if ($directory && !$ARGS{'emrname'}) {
$parent = substr($directory, 0, rindex($directory, $DD»;
$file_link = U<A HREF=\"$PROGRAM_URL?$sort_arg$temp_arg";
$file_link.= "dir=$parent\">\n";
$file = '<I>Parent Directory<II>';
$link_close = '';

}

Generate the directory listing

foreach $file (@sorted_files) {

If the file is a directory, link back to the program

if ($directory{$file}) {
$file_link = "<A HREF=\"$PROGRAM_URL?$sort_arg$temp_arg";
$fileJink ,= "dir=$directoryDDfullyath{$file}\">";
$image_link = $TYPES{'directory'};
$file_size = '-';

}
else {

Otherwise link to the file and format the file size

$file_link = "";
$image_link = $TYPES {$type{$file} };

36

'.'.

$file_size = &size_format($size {$file});
}

Remove the link if the file isn't readable by the user

if (! $readable{$file}) { $file_link = $link_close =" I
else { $link_close = '<IA>' }

Calculate the modification date

$mod_date = &format_date($modify{$file} , $DATE_FORMAT);

if ($ARGS {'emmame'}) { $file = $fuUyath{$file} }

Print the file infonnation

print «END_HTML;
<TR>

<TD HEIGHT=17 ALIGN=CENTER>
$file link
$link_close

</TD><TD ALIGN=RIGHT>

</TD><TD ALIGN=LEFT>
$file_link$file$link_close

</TD><TD ALIGN=R1GHT>
$file_size

</TD><TD WIDTH=5 ALIGN=LEFT>

</TD><TD ALIGN=LEFT>
$mod date

<.ITD></TR>
END HTML
}
print" </TABLE>\n <HR>\n";

Insert the page footer if specified

if ($ARGS {'foot'}) {
if (!&parse_template("$ALLOWED_DIR$ARGS {'foot'}", *STDOUT)) {

&error($ErroT_Message, ", ", I);
}

}
else { print" </BODY>\n</HTML>"}

37

'r.

'I

#######N Ill/II ?! !t hi #II 1/ f:fli II If #!!I!J! f:I f.I tiff I! 11##/1/1# fJ #####N!!#11 If;; fI tI t: (I It' 11/1
Search subroutine
######11 II k' /I#/1 /I!! IINh' II 1/ If /I;; h'## /IN!!NN!! t!#UIt /I /!;'/ I!#If /I JlliJl #II ff;; t'I fJ I!!! J! 1/

sub search {

Initialize

local($SEARCH_ROOT, $search_dir, $search_query) = @_;
chdir("$SEARCH_ROOT$DD$search_dir");
local(@filenames) = <*>;
local($file);

Scan directory & subdirectories

foreach Stile (@filenames) {
if(-d $file && -r $file) {

if ($search_dir) (
&search($SEARCH_ROOT, "$search_dirDDfile", $search_query);

}
else { &search($SEARCH_ROOT, Sfile, $search_query) }
chdir("$SEARCH_ROOT$DD$search_dir");

}
if ($tile =- ISsearch_query/i) {

if($search_dir) (push(@link_files, "$search_dir$DD$file") }
else (push(@link_tiles, $file) }
push(@files, Stile);

}
}

##
File size format subroutine
111111111111###1111111111###########################11##############

sub size_format {

Initialize

local($size) = $_[0];

Fonnat

38

if ($size < 1024) {return("1K") }
elsif ($size < 1048576) { retum(int($sizel1024 + .5) . "K") }
else { return«int(lO * $size1l048576 + .5) 110) . II MB") }

}

#######################################1111##11###//111111######
Custom sort subroutines
###########################I! I!fI II II II #### It###################

sub by_size {
$a2 = $a;
$a2 =- trlA-Z/a-z1;
$b2 = $b;
$b2 =- trlA-Z/a-zJ;
($size{$b} <=> $size{$a}) II ($a2 cmp $b2) II ($modify{$b} <=> $modify ($a});

}

sub by_date {
$a2 = $a;
$a2 =- tr/A-Z/a-z1;
$b2 = $b;
$b2 =- trlA-Z/a-z1;
($modify{$b} <=> $modify{$a}) II ($a2 cmp $b2) II ($size{$b} <=> $size{$a});

}

sub by_name {
$a2 =$a;
$a2 =- trlA-Z/a-z1;
$b2 = $b;
$b2 =- trlA-Z/a-z1;
($a2 cmp $b2) " ($a cmp $b);

}

39

APPENDIXB

THE SOURCE CODE OF THE PROGRAM uploademr.cgi

#!Iusrlbin/perl
#
File: uploademr.cgi
#
set up configurable options.

BEGIN {
$SAVE_DIRECTORY = "lhome/col/httpdlupdatett

;

$ALLOW_INDEX = 0;
$SUCCESS_LOCATION = tI"

}

######
$1 = 1;
chop $SAVE_DIRECTORY if ($SAVE_DlRECTORY =- N$/);
use CGI qw(:standard);
$query = new CGI;

if((!(-e $SAVE_DIRECTORY) II
(!(-W $SAVE_DIRECTORY» II
(!(-d $SAVE_DlRECTORY») {

print header;
print «_END_OF_HTML_CODE_;

<HTML>
<HEAD>
<TITLE>Error: Bad Directory</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<Hl>Bad Directory</Hl>
<P>
The directory you specified:

<BLOCKQUOTE>
<TT>\$SAVE_DIRECTORY =

"$SAVE_DlRECTORY";</TT>
</BLOCKQUOTE>

40

.',

is invalid. This problem is caused by
one of the three following reasons:

The directory doesn't exist. Make
sure that this directory is a complete
path name, not a URL or something
similar. It should look similar to

<TT>/home/usemame/public_html/uploads</TT>
<P>
The directory isn't writable. Make
sure that this directory is writable by
all users. At your UNIX command prompt,
type <TT>chmod 777 $SAVE_DIRECTORY<!TT>
<P>
The directory you specified isn't
really a directory. Make sure that this
is indeed a directory and not a file.

<HRSIZE=l>
</BODY>
<fHTML>

exit~

}

foreach $key (sort {$a <=> $b} $query->paramO) {
next if ($key =-- f"\s*$/)~

next if ($query->param($key) =-- /"\s*$/);
next if ($key !- /"file-to-upload-

(\d+)$/);
$Nurnber = $l~

if ($query->param($key) =-- /(["'v\\]+)$/)
{

$Filename = $1 ~

$Filename =-- s/"\.+//~

$File_Handle = $query->param($key);
if (! $ALLOW_INDEX && $Filenarne =

/"index/i) {
print header;
print

« END OF_HTML_CODE_~
<HTML>
<HEAD>
<TITLE>Error: Filename

Problem</TITLE>

41

</HEAD>
<BODY BGCOLOR="#FFFFFF">
<Hl>Filename Problem<IHl>
<P>
You attempted to upload a
file that isn't properly
formatted. The system
administrator has decided
that you can't upload
files that begin with the
word 'index'.
Please rename the file on
your computer, and try
uploading it again.
<P>
<HR SIZE=l>
</BODY>
</HTML>

END OF HTML CODE- - -
exit;

}
} else {

$FILENAME_IN_QUESTION = $query-
>param($key);

print header;
print «_END_OF_HTML_CODE_;
<HTML>
<HEAD>

<TITLE>Error: Filename
Problem</TITLE>

</HEAD>
<BODY BGCOLOR="#FFFFFF">
<Hl>Filename Problem<lHl>
<P>
You attempted to upload a file
that isn't properly formatted.
The file in question is

<TT>$FILENAME IN QUESTION<IB></TT>
Please rename the file on your
computer, and attempt to upload it again. Files may not have forward or

backward slashes in their
names. Also, they may not be prefixed with one (or more) periods.
<P>
<HR SIZE=l>
</BODY>

42

</HTML>

END OF HTML CODE
- - -

exit;
}

if (!open(OUTFILE, ">$SAVE_DlRECTORYV$Filenamelt» {
print "Content-type: text/plain\n\n";
print "-------------------------\n";
print "Error:\n";
print"-------------------------\n";
print "File: $SAVE_DIRECTORYV$Filename\n";
print ,,-------------------------\n";
print "There was an error opening the Output File\n";
print "for Writing.\n\n";
print "Make sure that the directory:\n";
print "$SAVE_DIRECTORY\n";
print "has been chmodded with the pennissions '777'.\n\n";
print "Also, make sure that if your attempting\n";
print "to overwrite an existing file, that the\n";
print "existing file is chmodded '666' or better.\n\n";
print "The Error message below should help you diagnose\n";
print "the problem.\n\n";
print "Error: $!\n";
exit;

}

undef $BytesRead;
undef $Buffer;

while ($Bytes = read($File_Handle,$Buffer,1024» {
$BytesRead += $Bytes;

print OUTFILE $Buffer;
}

push(@Files_Written, "$SAVE_DlRECTORYV$Filenarne");
$TOTAL_BYTES += $BytesRead;
$Confinnation {$File_Handle} = $BytesRead;

close($File_Handle);
close(OUTFILE);

chmod (0666, "$SAVE_DlRECTORYV$Filenarne");

43

$FILES_UPLOADED = scalar(keys(%Confmnation»;

if ($TOTAL_BYTES > $MAXIMUM_UPLOAD && $MAXIMUM_UPLOAD >
0) {

foreach $File (@Files_Written) {
unlink $File~

}

print header;
print «_END_OF_HTML_CODE_;

<HTML>
<HEAD>

<TITLE>Error: Limit Reached</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<Hl>Limit Reached</Hl>
<P>
You have reached your upload limit. You attempted to upload

$FILES UPLOADED<IB> files, totalling
$TOTAL_BYTES. This exceeds the maximum limit of

$MAXIMUM_UPLOAD<IB> bytes, set by the system
administrator. None<lB> of your files were successfully saved. Please try

agam.
<P>
<HR SIZE=l>

</BODY>
</HTML>

exit;
}

if ($SUCCESS_LOCATION !- r'\s*$1) {
print $query->redirect($SUCCESS_LOCATION);

} else {
print header;
print «_END_OF_HTML_CODE_;
<HTML>
<HEAD>

<TITLE>Upload Finished</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<H l>Upload Finished</HI>

44

<P>
You uploaded $FILES UPLOADED<IB> files totalling

$TOTAL_BYTES<IB> total bytes. Individual
file infonnation is listed below:
<PRE>

END OF HTML CODE- - -

foreach $key (keys (%Confinnation» {
print "$key - $Confinnation{$key} bytes\n";

print «_END_OF_HTML_CODE_;

</PRE>
<P>
Thank you for using the File Upload! system.
<P>
<HR SIZE=l>
</BODY>
</HTML>

exit;
}

45

VITA

~J
Weiming Gan

Candidate for the Degree of

Master of Science

Thesis: DESIGNING A WEB EES MODIFICAnON REQUEST (EMR) SYSTEM

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Engineering degree in Mechanical
Engineering from Xi'an Institute of Highway Technology, Xi'an City,
Shanxi Province, People's Republic ofChina in Jun 1982. Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 1999.

Experience: Employed by China No 2 Automotive Manufacture as a mechanical
engineer, Beijing, P. R. China; employed by Oklahoma tate University,
Department of Computer Science as a graduate research assistant; employed
by the Lucent Technologies Inc. as a software engineer, 1997 to present.

Professional Memberships: Asian/Pacific American Association for Advancement
Lucent Technologies

