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PREFACE

The validation of data from sensors has become an important part in the operation

and control of modem industrial equipment. To validate a signal, the sensor must be

shown to consistently provide the correct measurements, and the analysis of the

validation hardware or software should trigger an alarm when the sensor signal deviates

appreciably from the correct value. Neural network based models can be used to estimate

critical sensor values when neighboring sensor measurements are used as inputs. The

discrepancy between the measured and predicted sensor value may then be used as an

indication of sensor health.

Traditional neural network such as Multi-layer Perceptron (MLP) network and

Radial Basis Functions (RBF) network have been proved successful as universal function

approximators. But the training algorithm is typically too slow for solving real world

problems. In addition, when the problem becomes complicated, most of the systems even

could not converge to a local minimum in a reasonable time due to the limitation of the

hardware.

The proposed Winner Take All Experts (WTAE) network is based on 'divide and

conquer'. It employs growing fuzzy clustering methods to di vide a complicated problem

into a series of simple sub-problems and assign an expert to each of them. It also

allocates every new case to one of the experts, and, if the output is incorrect, the weight
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adaptation is localized to the local expert. As a result, it is a fast learning algorithm

without knowing a priori information.

After the sensor approximation, the outputs from the estimator and the rea] sensor

readings are compared both in time domain and in frequency domain. Three fault

indicators are used to detect the sensor failure. In the decision stage, the intersection of

three fuzzy sets accomplishes a decision level fusion, which indicates the confidence

level of the sensor health.

Two data sets, the Spectra Quest (SQ) Machinery Fault Simulator data set and the

Westland vibration data set were used in simulation experiments to demonstrate the

perfonnance of the WTAE network. Comparisons of tracking performance among the

proposed network and MLP, RBF network were performed. The WTAE was found

competiti ve with or even superior to the others. Comparisons for decision making

processes between WTAE network and traditional time domain indicators were also

performed. The WTAE achieved 100% correct detection for both testing data set without

knowing a priori information. Using the same testing sets, the traditional indicators only

detected Jess than 87.5% failure states depending on knowledge of characteristics of both

the sensors and the environments.
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CHAPTER I

INTRODUCTION

1.1 Motivation and importance of the research

At 12:36 a.m. EDT, July 20,1999, NASA aborted the launch of the space shuttle

Columbia just about 7 seconds before lift off. NASA equipment detected an increased

concentration of hydrogen before the three main engines ignited. While engineers at first

said that the problem appeared to be a potentially dangerous build-up of hydrogen in the

engine compartment, NASA officials later confirmed there was no indication of any fire

in the shuttle, a faulted sensor reading caused the false alarm.

Just as numerous similar sensor health accidents, the above incident once again

shows that the sensor data validation has become an essential part in the operation and

control of modem industrial equipments, which rely completely on available sensor

measurements.

On one hand, in order for a situation to be fully comprehended and controlled,

reliable data acquisition and interpretation is of the utmost importance in modern control

systems. Sensor data validation is therefore becoming an integral part of the modem

decision-making processes.
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On the other hand, an increasing functional control system makes it more

complex and costly to accomplish the task of sensor validation and diagnosis. Major

contributors to the increase are the sensor failure detection, identification and

accommodation. While advances in integrated circuits continue to push down the cost of

computing power, sensor technology has not kept pace so the relative cost of sensors has

increased. Furthermore, in most cases, sensors must be built robust enough to withstand

the harsh environment, which often account for the biggest single cost factor for a sensor.

In addition, control systems for critical plants, where operation must not be

interrupted for safety reasons, are often configured with redundant sensors to provide

fault tolerance and ensure the required degree of safety. Thus, the redundant sensors once

again increase the whole system cost.

To achieve substantial savings of hardware redundancy, and, at the same time, to

meet the requirements of reliable and accurate sensor measurements for the modern

control systems, intelligent sensor data validation scheme was discussed in this the is.

1.2 Concept of sensor validation

A sensor is an electrical or mechanical device that indicates characteristics of some

form of energy impinging on them. [Manu95]

Sensor imprecision is an inherent property because sensors are subjected to noise.

Justifications for the occurrence of noise are a poor understanding of the principles

governing the sensor behavior, a lack of understanding of the environment, changing

environmental conditions, tolerances within the sensor, and etc. Because of the sensor
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imprecision, automated sensor validation is needed for both real-time safety and post-test

diagnosis. [NaSi98]

In the broadest sense, sensor validation is related to reliability, and is a

determination that a sensor is or is not providing the correct signal. It also has other

attributes such as diagnosis of the physical causes of the fault, a list of actions to take in

priority in order to remedy the fault, and ways to ameliorate the fault by substitution,

recalibration, or control action. In this thesis, most discussion will concentrate on sensor

failure determination scheme.

1.3 Objectives of the thesis

The thrust of this thesis is on dealing with fuzzy-neural system based sensor

validation scheme. To validate a signal, the sensor must be shown to consistently provide

the true measurements, and the analysis of the validation hardware or software should

trigger an alarm when the sensor signal significantly deviates from the correct value.

Neural network based models can be used to estimate critical sensor values when

other neighboring sensors measurements are used as inputs. This framework is based

upon the assumption that physically closed sensors are analytically related. [Brow92] The

discrepancy between the measured and predicted sensor value may then be used as an

indication of sensor health. The estimated sensor value may also be used as a synthetic

data in the event of a sensor failure, often called soft sensor or inferential sensor.

Application of fuzzy set theory for the decision making process is advantageous,

because the soft decision boundaries in fuzzy logic environments result in a flexible,
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more human-like decision. [Zade65] The information that the validation system deals

with is often fuzzy rather than precise in nature, and fuzzy set theory allows us to model

this imprecision appropriately and later permits us to reason in a linguistic language.

In this thesis, the sensor signal to be processed is a vibration signal. This kind of

signal is one of the most common tools for detecting mechanical defects. The area of

vibration signal validation has been considered difficult because vibration signals are

influenced by factors such as noise, presence of multiple faults, severity of the fault.

machine geometry, and speed variations. All these peculiarities make it difficult to

vibration signal validation. [EsDi98]

To remedy this undesired situation, one can try to filter out the noise or use some

kind of redundancy to back up the given sensor readings. Unfortunately, two (or more)

sensor readings will never coincide. If they give readings in acceptable limits, it is not a

big concern. However, when the readings are far apart, the signal from sensors need to be

validated before they can be further used.

The standard approach to accomplish sensor validation is to use probabilistic

means. In order to simplify the computation, probabilistic approaches commonly assume

zero mean, Gaussian distribution of noise. This assumption is not always valid.

Therefore, we propose to use fuzzy-neural system for sensor validation because no

assumption on the noise characteristics needs to be made. Furthermore, unlike many

probabilistic or knowledge based approaches in which the variance of the system

perturbation must be known in advance, no such assumptions is made for this approach.

The fuzzy-neural system proposed in this thesis is called Winner Take All Expert

(WTAE) network. As shown in Figure 1.1, the general idea of this algorithm is to divide
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a complicated problem into a senes of sub-problems and assign a set of function

approximators or 'experts' to each sub-problem. If a set of training cases may be

naturally divided into subsets that correspond to distinct subtasks, interference can be

reduced by using a system composed of several different 'expert' network with a Fuzzy

Membership Clustering network that decides which of the experts should be used for

each training case.

Sensor Value
Validation Gate

Power Spectrum
Validation Gate

Y2

IJ.. f.Jz

~
Expert Expert ...... Expert

Network .1 Network 2 Network M·
--rzsl- Fuzzy e -IZSJ- Fuzzy a: IZS] Fuzzy a:Membership Membershjp Membership
Function 1 Function 2 Function M

x t x x

x ' x x

Decision Fusion __-----l Residual Aulocorr
Validation Gate

Figure 1.1: WTAE Network Architecture

In a similar spirit as the Hierarchical Mixtures of Experts networks [JoJa94],

WTAE network works on the principle of 'divide and conquer'. The model employs

growing fuzzy clustering method to divide the input space into overlapping regions on

which 'experts' act. A simplification of the criterion leads to two joint criteria on the
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distance of the present pattern and the ex.isting prototype centers in the input space and on

the approximation error of the network for the given observation to be satisfied together.

[KaNi93] A Fuzzy Membership Clustering network weights these expelts' results to form

a network output. The rational behind such a system is that the network allocates a new

case to one expert, and, if the output is incorrect, the weight adaptations are localized to

this single expert.

In learning stage, not only the relationship function of the sensors is built up, but

also the characteristics of the critical sensor, both in time domain and frequency domain,

are recorded for detection purpose. A time window is specified, and the variation of the

sensor signal, residual autocorrelation, and power spectrum are all monitored and learned.

The signals from all the correlated sensors are fed to each expert of WTAE

network simultaneously in the detecting stage. After the outputs of each expert are

available, the Fuzzy Membership Clustering network will select the winner from them to

form the tracking output.

Finally, the output from the estimator and the real sensor are compared both in

time domain and frequency domain. Three fault indicators are used to identify the sensor

failures. The first validation gate, sensor value validation gate, compares the tracking

output directly with the real sensor data. In the second validation gate, the residual of the

two time series is investigated by the autocorrelation coefficient. The power spectrum

density of the two signals is compared in the last validation gate. A decision level fusion

of the three validation gates is accomplished by the intersection of the three fuzzy sets.

The output from the decision stage shows the sensor health confidence level of the
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critical sensor, which will provide as an indication for the human operator taking

necessary actions in order to remedy or ameliorate the sensor faults.

1.4 Organization of the thesis

In Chapter 2 of this thesis a literature review of sensor validation algOlithms is

presented. Eight common sensor failure modes and the concept of sensor validation are

described in the introduction part. Knowledge-based system, Kalman filter, neural

network, and fuzzy logic based sensor validation schema are also discussed. Chapter 3

introduces the proposed WTAE network architecture and the validation algorithm.

Chapter 4 shows the simulation results and comparisons to Multi-layer Perceptron (MLP)

network estimator, Radial Basis Function (RBF) network estimator, and time domain

fault indication scheme on benchmark problems. Finally, Chapter 5 provides the

conclusion of the research and possible future work.
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CHAPTER II

LITERATURE REVIEW

2.1 Sensors

A sensor is an electrical or mechanical device that indicates characteristics

(presence, absence, intensity, or degree) of some fonn of energy impinging on it.

Generally, it converts the energy (i.e. the physical stimulus) into electrical currents. We

use these electrical signals for measurements or control purpose. [ErUp90]

There are all s011s of sensors used in different areas. [SmGa9 L] The

accelerometers are used for measurement of vibration and acoustic emission. The sonar

sensor generates a sound wave that spreads outward and is reflected back by a target,

which can be analyzed for determination the range, bearing, and motion of the object.

The pressure sensor uses the force applied by a diaphragm to a stack of quartz crystals to

measure pressure. Radar is an electromagnetic sensor transmitting electromagnetic wave

toward targets and observing the echoes returned. Many other sensors that derived from

different technology, like optical sensor, mass flow, and thermocouple, measure all kinds

of physical values. [Clar95]

8
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2.2 Sensor failures

A sensor is declared faulty when it displays a non-pennitted deviation from the

characteristic properties of the objects it is monitoring. Sensor failure arises from every

part of the sensor system, e.g. a blown-out amplifier in an accelerometer, or a loose

connection in an optical sensor. Eight typical sensor failure modes [Yung92] can be

identified: hard-over, bias, spike, stuck, erratic, cyclic, drift, and nonlinear. Figure 2.1 to

2.4 shows the characteristics of the eight sensor failure modes in time domain.

Figure 2.1: Hard-over and Bias Sensor Failure

Figure 2.2: Spike and Stuck Sensor Failure
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Figure 2.3: Erratic and Cyclic Sensor Failure

Figure 2.4: Drift and Nonlinear Sensor Failure

2.3 Sensor validation scheme

Sensor validation scheme is composed of three stages: commissioning stage,

learning stage, and tracking stage. [YaCh97]

• In the commissioning stage, sensor specific data, like output limits, dynamic

range and probable failure modes are provided by manufacturers and stored in an

embedded memory. At the same time, validation information, including process

time limit is decided during major process modification.
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• Based on a period of failure-free observation, a time series model captures the

sensor output characteristic in the learning stage. In most cases, this can be done

by a stochastic Auto-Regressive Moving Average (ARMA) model. The unknown

parameters in the model usually can be estimated by the Recursive Maximum

Likelihood (RML) learning algorithm. In this stage, there is an assumption that

the measurement noise is stationary and has a rational spectral density function

(i.e. zero mean and uncorrelated). A modified ARMA model, Fuzzy Exponential

Weighted Moving Average, was proposed in [Goeb96]. The parameter of the

model was changed by fuzzy rules corresponding to system state, which improved

the tracking performance.

• Sensor validation in the tracking stage will trigger the scheme into the alert phase

when any detected abnormality occurs. [GoRi94] Usually, one or more fault

indicators are used to indicate the level of difference between the tracking output

and the real sensor signal.

2.4 Sensor validation based on hardware redundancy

Although tracking technology provides various methods for approximating sensor

signal, hardware sensors are still the dominant references for sensor validation in modem

control system.

In most cases, validation scheme uses a number of hardware sensors provided a

redundancy of information monitoring each important system datum, from which a more
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reliable value was extracted. There are three different techniques used In this area.

[SmGa91]

• More than one sensors of the same kind monitor the same scenario. In this case,

any disagreements among sensors can be solved statistically for the overall data

values.

• Providing different kind of sensors in proximity to monitor the same datum. The

advantage of this situation from the above is minimizing the possibility of

common fault problems of same kind sensor. For example, to measure the

temperature, half sensors might be thennocouples while the other half might be

mechanical temperature-sensors.

• Using different types sensors in different locations to infer the same target. In this

situation, the values can be obtained not only directly but also from other system

data based on well-established analytical relationship. In particular, the

redundancy obtained through a functional relationship i often referred to a an

anal ytical redundancy [Lee94].

While hardware redundancy IS popular and solves many sensor validation

problems, it has some disadvantages:

• The expense of the redundant sensors, and the installing, maintaining of them for

each important observation greatly increase the cost of the system.

• Common fault failures still happen to all sensors.
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2.5 Knowledge based system

The technology from Artificial Intelligence (AI) helped to establish Knowledge

Based System (KBS) that diagnose sensors utilizing system operational knowledge in

validating sensor values. [Lee94]

To find out a potential fault from the observed sensor, it is necessary to derive the

normal expected values of the sensor under current operating environment. The

relationships existing among the sensors are defined as the Causal Relations (CR).

Consequently, a chain of several CRs can be realized by a data structure called Sensor

Redundancy Graph (SRG). CR represents the vertex in an SRG, and two CRs having any

common sensor are directly connected through an edge. Any sensor belonging to a SRG

can be used to validate others in the same SRG and vice versa.

An example of SRG is shown in Figure 2.5. Each R
II

represents a CR. Two CRs

having any common sensors are connected through an edge F,,,.

Figure 2.5: An Example of SRG
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A CR can be expressed as an equation or a table, and can be obtained by physical

laws, system design, and operational data. Because the fault source more likely affects

the sensors nearby, a CR should be formed with sensors that are close together along

system configuration.

The consistency index of a relationship, R;, is denoted as [R;]

{

I, if R, consistent.

[R, ] :::: 0, if R, not tested.

-1, if R, not consistent.

(2.1)

An inconsistent CR can be made consistent if it becomes consistent with any

sensor substituted from adjacent CRs.

The Validity Level (VL) of a sensor is denoted as (Sk]' It is i level if the

summation of the consistent index of all CR supporting this sensor is number i , or it is

supported by a set of sensors whose minimum validity is i .

The knowledge-based system is efficient and helpful to yield valuable clue to the

fault diagnosis and their locations. But it requires accurate models with a comprehensive

understanding of the basic physics and the knowledge of all the potential variables, which

are often unavailable in most cases.

2.6 Soft sensor used in tracking stage

A soft sensor [Gonz94], or virtual sensor, is a system designed to substitute the

momentary or pennanent unavailability of a sensor in a plant. For sensor validation

purpose, it is compared with the real output of the sensor to detect the sensor failure

modes. Several aspects have to be considered in establishment of soft sensor model:
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• A soft sensor model is different from the control model. The control model is

required to predict a si.gnal within a relatively short period, while in the case of

soft sensor model a larger time prediction span is usually necessary.

• The larger the part of plant where soft sensor derived from, the more complex the

model will be, and the time required to train the parameter may be much longer.

So a model using only a small part of the plant would be desirable.

The main tracking algorithms used in this area are Kalman Filter and Extended

Kalman Filter. The fundamental assumptions of the Kalman Filter are that the linear plant

equations are known and has zero mean white noise with known covariance. These

assumptions make this approach difficult to model nonlinear system and vulnerable to

correlated noise. The Extended Kalman Filter tries to linearize the nonlinear functions,

but it is sensitive to the accuracy of the initial conditions. [Goeb96]

2.7 Neural network for sensor validation

Neural network can be proposed as a tracking algorithm for sensor validation. It

has the following properties [NaWi98]:

• Applicability to Nonlinear System: It was shown that neural network with one

hidden layer could uniformly approximate any continuous function. [Horn89]

• Parallel Distributed Processing: These architectures have high degree of fault

tolerance and high processing speed, due to the simplicity of the computations.

• On-line learning and Adaptation: Network can be trained by both prerecorded

data and current data.
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• Applicability to multivariable systems: Neural network can be Multi-input

Multi-output (MIMO), and this naturally leads to their applications to multivariable

systems. [GuNu91]

Neural network based models can be used to estimate critical sensor values when

other sensor measurements are used as inputs. The basic premise behind this framework

is that the sensed plant variables are not independent of each other. [Brow92]

The most popular neural network in use today is the Multi-layer Perceptron

(MLP) network. The feasibility of using MLP network in sensor validation [ErUp90]

IGuNu91] has been studied since 1990. And a modified MLP network [NaSi98] was

implemented for hardware based on-line learning soft sensor in 1998.

A Kalman Filter based sensor validation scheme and an on-line learning MLP

network were compared in [Marc98]. On one hand, the Kalman Filter based scheme is

good at the robustness capabilities. On the other hand, the neural network scheme has

potential for on-line learning, particularly in the case of poorly modeled dynamics.

However, MLP network is easily getting stuck in local minima on the error

surface in training stage. Yet, there is no efficient method available for determining a

minimal and adequate architecture for a given problem.

A Radial Basis Function (RBF) neural network was investigated in [WhDh94] for

sensor signal tracking. The network used the K-Means clustering algorithm for placement

of the basis function centers. The result showed that RBF network is good at tracking the

sensor signal when it changes slowly. But a general RBF network could not accurately

learn the data and became unstable when the problem becomes more complex.
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In Summary, neural network has been studied for tracking sensor signal in sensor

validation area for about ten years. Traditional neural network such as Multi-layer

Perceptron (MLP) network and Radial Basis Functions (RBF) network have been proven

successful as universal function approximators. But the training algorithm is typically too

slow for solving real world problems. In addition, when the problem becomes

complicated, most of the tracking network even could not even converge to a local

minimum in a reasonable time due to the limitation of the hardware and inefficiency of

the learning rule.

It was concluded in [HaLi98] that if a neural network could not be established to

learn the relationship from the available data, the reason will be one of the foHowing:

• Insufficient training data,

• No relation among the variables,

• Inappropriate architecture of the neural network, or

• Inappropriate training algorithm.

If the problem is caused by the first two reasons, there's nothing we can do by

using neural network. Therefore, most research efforts in this area were made on the

searching for appropriate structure and modified learning algorithm.

2.8 Time domain indicators used in detecting stage

Five failure alarm indicators are used in literature to classify the aberrations

observed: limit indicator, jump indicator, mean indicator, noise indicator, and drift

indicator. [Yung92]
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• The limit indicator simply tracks the raw sensor data and its derivative exceeding

the physical limit of sensors and the operating environment. It primarily targets

for the hard-over failure mode.

• The spike and bias failure modes can be detected by the jump indicator and the

mean indicator, which monitor the excessive deviation from the data's mean

level. When the mean changed significantly, and jump happens, the failure mode

is in a bias mode. While the time series jump without significant mean change, it

is spike.

• The noise indicator follows the variance of the time series. When the noise is low,

a high variance indicates erratic fail, and a low variance below the minimum

variance is a symbol of stuck. Under high noise environment, the influence is

analyzed to check the cyclic failure mode.

• The last indicator, drift indicator, registers the significance and the persistence of

drifting actions.

A series of simulation results showing eight failure modes detected by time

domain indicators are shown in Figure 2.6.

The Combination of all alarm indicators in time domain provides an efficient and cost

effective method to analyze the sensor failure modes. But the detecting system needs

sufficient information of both sensor characteristics and environments feature, which in

most cases are unavailable or insufficient. In addition, when the amplitude of the fault

signal is not big enough to trigger the 'Noise indicator', it is impossible for time domain

indicators to detect and identify some of the failure modes.
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2.9 Fuzzy sensor validation gate

A new algorithm for fuzzy sensor validation was described in [Goeb96]. The

redundancy situation is more than one sensor of the same kind monitoring the same

operating environment.

In the detecting stage, a dynamic validation curve based on fuzzy membership

technology was introduced for each involved sensor. After the validation, the validity

levels, or confidence levels from the results of each validation gate were combined for

data level sensor fusion. This fused value is then used for prediction of the next possible

sensor output, which in turn is necessary to perform the validation of the next step. The

confidence level of the critical sensor depends on the specific sensor characteristics, the

predicted value, and the physical limitations of the sensor signal variation.

A choice for validation curves v(z) for a particular situation could be a piecewise

bell curve of the form v(z) =e{xa~<'r,where aw has to be chosen separately for the left

curve and the right curve.

An example formula of validation gate could be:
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0 Z > V right

where

(J' is the confidence value for a particular sensor,

V right and vle/t are the right and left validation gate borders, respectively,

aright and a/eft are the parameters for the left and right validation curve,

respectively,

z is the sensor reading, and

X is the predicted value.

Fuzzy rules were used to determine the shape of the validation curve. The curve

changes dynamically with the operating conditions, which allow capturing the change in

sensor behavior. Other effects, like environmental conditions, can be integrated into the

curve as well.

The fuzzy validation scheme was shown working very well in the unknown noise

type environment and non-symmetric noise distributions. But it petfonned slightly worse

compared to the Kalman filter in the presence of Gaussian noise.
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CHAPTER III

NETWORK ARCHITECTURE AND DETECTING ALGORITHM

3.1 Multi-layer Perceptron (MLP) neural network

Artificial neural network has obtained attention recently because they seem to

resemble functions which are similarly performed by biological neurons. A network of

artificial neurons is a data processing system consisting of a large number of simple,

highly interconnected processing elements in architecture inspired by the structure of the

cerebral cortex portion of the brain. [Ande72]

The first description of Multilayer Perceptron (MLP) neural network was

introduced in the thesis of Paul Werbos in 1974 [Werb74]. It was not until the mid 1980s

that the back-propagation training algorithm was rediscovered and widely publicized. It

was independently developed hy David RumelhaI1, Geoffrey Hinton and Ronald

WilJeams [RuHi86], David Parker [Park85]. The multi-layer perceptron neural network,

trained by the back-propagation algorithm, is currently the most widely used neural

network.

22
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Figure 3.1: Topology of a Three-layer MLP Neural Network

During training of the MLP network, the information flows forward from the

input layer to the output layer, and the error, which is the difference between the target

and the output of the network, is propagated backwards through the weights to calculate

the weight adjustments. Training involves the modification of the weights until the error

is reduces to an acceptable limit. The first layer receives the input, modifies it using the

set of weights, and passes it to the hidden layer; each hidden layer in tum propagates the

modified inputs to the next layer and eventually to the output layer where the overall
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error is calculated. The hidden layers are used to represent nonlinear characteristics of the

data set. The architecture of a typical three-layer MLP network is shown in Figure 3.1.

The gradient descent with momentum training algorithm is often too slow for

practical problems. In this thesis we employ a heuristic techniques, Resilient Back-

propagation [RiBr93], which can converge from ten to one hundred times faster than the

standard steepest descent algorithm.

The majority of adaptive algorithm perfonns a modification of learning rate

according to the observed behavior of the perfonnance function. What is often

disregarded is that the size of the actually weight update step L1w7: is not only depend on

dE
the learning rate, but also on the partial derivative MLP network typically use

dW;

sigmoid transfer function in the hidden layers. Sigmoid functions are characterized by the

fact that their slope will approach zero, as the input gets large. This causes small changes

in the weights and biases, even though the weights and biases are far from their optimal

values.

In order to detennine the size of the weight-update, we define individual update-

value L1 ji for each weight. The learning rules are following:

L1~i(k+1)= rrS~i(k)

L1~i (k)

if
·dECk) dECk -1) 0

, l >
ow; dw;

, if dECk) oE(k -1) < 0

dw; dw;
else

(3.1)
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Every time the partial derivative of the corresponding weight w; changes its sign,

which indicates that the last update was too big and the algorithm has jumped over a local

minimum, the update-value !l ji is decreased by the factor 17-. If the derivative retain its

sign, the update-value is slightly increased in order to accelerate convergence in shallow

regions.

Besides the convergence speed, there are a number of practical concerns when

using MLP network. The first is what size network best for a given problem. With little

or no prior knowledge of the problem, one must determine the network size by trial and

error. A methodical procedure is recommended. One approach is to start with the smallest

possible network and gradually increase the size until the performance begins to level off.

The second is the time complexity of learning. That is, we may ask if it is possible

to learn the desired mapping in a reasonable amount of time. If we have a very large

problem, e.g. if the dimension of the input space is very large, or the relationship between

input and output is too complex, then it is unlikely that we will be able to determine if a

weight solution exists in a reasonable amount of time. [BIRi88] On the other hand,

learning algorithm like Back-propagation are based on a gradient search, which is a

greedy algorithm that seeks out a local minimum and thus may not yield the exact

mapping. Usually it is dangerous to increase the learning rate, because the algorithm may

be unstable when it reaches the steep parts of the surface. But there are still several

somewhat successful simple gradient search algorithms. Most of them introduce

additional parameters which are difficult to determine, and must be varied depend on the

characteristics of the problems.
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3.2 Radial Basis Function neural network

The Radial Basis Function Neural Network (RBF) learns the mapping from a set

of data in the fonn of input-output observation pairs (xn , yJ. In sensor validation

problem, xn is a M -dimensional input vector and Yn is an output scalar. The nIh

observation can be descrihed as:

(3.2)

where D is a subset of the space of all real valued M -dimensional vectors R M
• The

observation I (II) • n = 1'00" N are assumed to be consistent with an underlying function:

f* (x,.) = Y,,·

The mapping descrihed by RBF is denoted by:

f : x ---t y(D ---t R) .

(3.3)

(3.4)

The single hidden layer RBF linearly combines the output of the hidden units.

Each of the hidden units construct a mapping and hence these mapping can be viewed as

the basis functions <t> k' k = 1,... , K , the total number of hidden units. The output is thus

represented as:

K

f(x) = :Lak<t>k (X),
k=1

where (Xk is the weighs in the output layer.

The most common Radial Basis Functions are:

(3.5)

(3.6)
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k II tl1 2
2Yk =!t(X,W )=exp[-x-w 1(2ak )]=<P t (x), k=l, .. .K (3.7)

with center at w t
, and a k representing the required smoothness. The parameter at IS

the spread of the RBF representing its span around w k in the input space.

A typical Radial Basis Function with wk =[12, 12f and a k =3 In three

dimensions is shown in Figure 3.2:
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Figure 3.2: Typical Radial Basis Function
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Figure 3.3: Topology of RBF Neural Network

Each RBF of the neural network shown in Figure 3.3 is influential only on its

receptive field, which is a small region of the input space R M
. The important regions of

the input space, where training samples are covered jointly hy the K RBFs, are centered

on the clusters that represent subclasses.

The training is broken down into two stages: [PaSa91] learning in the hidden

layer, followed by learning in the output layer. Learning in the hidden layer is typically

perfonned using a clustering algorithm. A popular choice is the K -means algorithm. It
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requires the number K of clusters to be given, K < Q, where Q is the total number of

the training samples. The process begins by assigning the first K sample input vector

Xl""X K to be the center Wi , ...w K
, respectively. Then, it assigns each of the left Q - K

input vectors XK+1,,,,XQ to the cluster it is closest in Euclidean distance. The input vectors

for each en cluster are averaged to detennine a new cluster center wk
• Next, each of the

Q input vectors is again assigned to the class to whose new representative center it is

closest. This loop is repeated until no clusters change any more.

The variance CT; for each cluster k is determined by:

2 1 L II 11 2
CT =-- X -w

k n(k) [q:c1ass(q)=k} q k'

where n(k) is the number of vectors in each cluster k.

(3.8)

Learning in the output layer is performed after the parameters of the basis

functions have been determined. That is after learning in the hidden layer is completed.

The output layer is typically trained using the Least Mean Squares algorithm. Here, we

will use the Moore-Penrose algorithm for numerical convenience.

The RBF can be represented in state space form:

where,

and

Y=4>·a,

4> =[exP[-jh - w'II' 1(2a,')

exp[-llxQ - Wir/(2CT I
2

)

exp[-llx, - ~K II' 1(2a:)].

exp[-llxQ - w
K I1 2

/(2CT;)

(3.9)

(3.10)
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The weights in the output layer then can be caJculated with the Moore-Penrose inverse:

(
T )-1 Ta= <1> ·<1>+/-11 .<1> ·Y,

where J.1 is a constant less than 1, and I is the identity matrix.

(3.11 )

One of the major advantages of the RBF network is that learning tends to be faster

than in MLP. [WhDh94] Once the hidden layer parameters are fixed, learning in the

output layer parameters is easier because the network output is linear in weights. The

most difficult part is the training in the hidden layer. When a cluster had a population,

which was small in comparison to the neighborhood size, the variance of that cluster

could be made so large that significant error occurred. On the other hand, when a cluster

had a population that was great in comparison to the neighborhood size, the variance

could be made so small for that cluster that inadequate generalization occurred. [XuOj93]

3.3 Fuzzy logic basis

In 1965, Zadeh introduced tools for working with fuzzy natural language terms,

which he called "fuzzy logic". [Zade65] Terms used in natural language to describe some

concepts with vagueness are called linguistic variable such as "small", "medium", and

"large". To further refine these variables, adverbs such as "very" or "somewhat" can be

added at will.

The ability to reason in imprecise terms is a great advantage especially when

solving complex tasks. In Boolean or classical logic, each statement has a value "true" or

"false". In fuzzy logic, as in some types of multi-valued logic, the transition from

membership to non-membership of elements in the set is gradual rather than abrupt, and
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the membership can take any value in the closed interval [0,1]. Using fuzzy set theory as

the basis of inference establishes an estimated foundation for obtaining an accurate form

that carries out the condition of inexact rather than exact rationale. The main advantage

of fuzzy logic lies in the face that they provide a soft decision, a value that describe the

degree to which a pattern fits within a class.

One should differentiate between randomness and fuzziness. Randomness has to

do with uncertainty of an object in a crisp subject. Fuzziness is associated with the fact

that classes do not have sharp boundaries, and that there is no sharp transition between

membership and non-membership. The theoretical foundation of the fuzzy logic has a

well established mathematical framework. Thus, the source of imprecision is not the

theory itself, but rather the manner in which linguistic variables are applied to the

formulation of a real world problem. [ZhKa94]

We usc fuzzy set membership functions to assign fuzzy truths to proposition

involving linguistic variables. A membership function is a curve that defines how each

point in the input space is mapped to a membership value (or degree of membership)

between °and 1. The bell-shaped (Gaussian) fuzzy set membership function shown in

Figure 3.2 is a convenient form defined by:

f(x) =exp[-(x-c)2/2O'2] (3.12)

which depends upon the two parameters c and 0'2.

Fuzzy logic operators, used to combine two or more fuzzy sets to produce a single

set, are defined by a function:

f : [0,1]" ~ [0,1], n ~ 2, (3.13)
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Where n is the number of aggregation sources. The basic fuzzy logic operators are

intersection and union.

The union of two fuzzy sets is defined as

#AuB (x) =max[#A (X)'#B (x)],

while the intersection is defined as

(3.14)

(3.15)

Often a crisp value is necessary to interact with a real environment which is

accomplished in the defuzzification step. One popular method is the centroid method:

i=lYj =--'---'-p---

LJl(Y;)
;=1

(3.16)

where, Y j is the overall value, and Y; is the value according to rule i with memhership

value, #(Yi)'

It is proven in [WaMe92] that fuzzy system with Gaussian fuzzy set membership

function is a universal appximator on compact sets. It implies that for normalized

features, the feature vectors in the hypercube [O,l]N can be mapped to any output

identifier vectors as closely as desired, provided that there are sufficient number of fuzzy

sets and fuzzy rules.

3.4 Introduction to WTAE network

Traditional neural network such as Multi-layer Perceptron Network and Radial

Basis Functions Network have proved successful as universal function approximators and
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have been used in various problems. But the training algorithm is typically too slow for

solving real-world problems in real time. In addition, when the problem becomes

complicated, most of the systems could not even converge to a local minimum in a

reasonable time due to the limitation of hardware and the inefficiency of the learning

rule. Motivated by such concerns, a number of researchers have investigated methods of

function approximation incorporating ideas from the communities of both statistics and

neural network. [ChPu88] The general approach is to divide a complicated problem into

several simpler sub-problems and assign a set of function approximators or <experts' to

each sub-problem. [JoJa94]

If a set of training cases may be naturally divided into subsets that correspond to

distinct subtasks, interference can be reduced by using a system composed of several

different <expert' network plus a fuzzy membership clustering network that decides

which of the experts should be used for each training case. [FePu98} A system of this

kind can be used only when the division into subtasks is known pIior to training.

The proposed Winner Take All Experts network architecture is a modular

architecture that works on the principle of 'di vide and conquer'. The model employs

growing fuzzy clustering method to divide the input space into overlapping regions on

which 'experts' act, and a fuzzy membership clustering network to weight these experts

to form a overall network output. The idea behind such a system is that the growing fuzzy

clustering algorithm allocates a new case to one of the experts, and, if the output is

incorrect, the weight adaptations are localized to this expert.
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3.5 The Winner Take All Experts (WTAE) network architecture

Winner take all

a =compet(J.i)

Sensor Value
Validation Gate

Power Spectrum
Validation Gate

Decision Fusion __----I- Residual AutocolT.
Validation Gate

Expert Expert Expert
Network 1 Network 2 Network M

-®- Fuzzy at -®-Fuzzy e -®- Fuzzy a:Membership Membership Membership
Function I Function 2 Function M

x i x

x i x

.t

X

Figure 3.4 WTAE Network Architecture

The proposed Winner Take All Experts Network model is shown in Figure 3.4.

In the given architecture, each expert network is a typical single hidden layer

MLP network. The network input vector x consists of the signals from each related

sensors that located nearby the sensor of interest. The outputs from every sub-network

fonn an output vector Y = [YI' Y2 ,... ,YM ].

The vector x is simultaneously fed into the Fuzzy Membership Clustering

network, which produces membership level. f.Ji (x) E [0,1], where i =1,... , M . Each
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membership level corresponding to each sub-network altogether forms a membership

vector fl = [fl" fl 2 , ... , flM ].

The fuzzy membership clustering network is a single layer network with a

Gaussian output non-linearity. Let the t h center and the i 'h variance of the fuzzy

respectively, where N is the dimension of input space and' T' denotes the transpose

operation. The corresponding output flj (x) after the Gaussian non-linearity is given by:

N

flj(x) =II e
j=l

(xrCij)2

2a,~ (3.17)

The Gaussian function is to ensure that

flj E [0,1],

and

Ilx- Cjli < IIx - Cjll~ jij >)J,j'

where j = 1,2,... , i-I, i + 1,... ,M , and M is the number of total experts.

Thus, the i,h expert's influence is localized to a region around C,.

(3.18)

A Winner Take All function is denoted by as a =compet(ji), which takes one

input argument ji, and returns output vector with 1 at the i th element having maximum

membership value (i =argm~x (~/x»), and ° elsewhere. The Winner Take All
J

function selects the winner expert network outputs to form the overall outputs,
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Finally, the output from the estimator and the real sensor are compared both in

time domain and frequency domain. Three fault indicators are used to identify the sensor

failure. The first validation gate, sensor value validation gate, compares the tracking

output directly with the real sensor data. In the second validation gate, the residual of the

two time series is investigated by the autocorrelation coefficient. The power spectrum

density of the two signals is compared in the last validation gate. A decision level fusion

of the three validation gates is accomplished by the intersection of the three fuzzy sets.

The output from the decision stage shows the sensor health confidence level of the

critical sensor, which will provide as an indicator for the human operator taking

necessary actions in order to remedy or ameliorate the sensor fault, if any.

3.6 Training algorithm

The Winner Take All Experts network is trained using Growing Fuzzy Clustering

algorithm, where the data are trained sequentially. The network will continuously add

experts that contribute to the final estimate in off-line training step. The growth criterion

is so important that if the new expert contributes little to the output, then, not only does

the complexity of the network increase unnecessarily, it adds to the computational

burden. This leads to the question of how the network growth must be limited.

Figure 3.5 shows us the training steps used in the WTAE network, where the

training data are received sequentially. The network begin with no hidden unit. The first

observation (Xl ,t l
), where Xl is the input and [1 is the corresponding target output, is
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used in initializing the first fuzzy membership center C t =Xl. And the initial variance for

the first cluster is set as:

(3.19)

where N is the number of input dimension. Now, we get our first fuzzy membership

center as:

Sensor Output

x
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Membership
Function I

x
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~
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Figure 3.5: WTAE Network Training Algorithm

N

#, (Xl) = ITe
j=J

(x: -C
'j

)1

2(T~j (3.20)

At the same time the first sample is stored locally In the first training set

corresponding to the first fuzzy center defined above.

Next, a simple architecture MLP expert is built up and trained by the first training

set. The structure of the MLP is detennined by the complexity of the problem. The
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training goal, which decides the stopping criteria for the MLP training. is detennined by

the maximum difference between estimator and the real sensor output (target) we can

tolerate.

The overall output is calculated based on winner take all rule. First, the whole

output !J- from fuzzy clusters goes through the competition layer where each neuron

excites itself and inhibits all the other neurons. The transfer function of competition layer

is defined as following:

a = compet(!J-), (3.21)

where !J- = Lul ,!J-2,· .. ,!J-M]· It works by finding the index ,.. of the neuron with the largest

net input, and setting its output to 1 (with ties going to the neuron with the lowest index).

All other outputs are set to O.

{
l i =t

a; = '. .• ' where !J-( ~ !J-i' \;fi -:f:. t .
0, I -:f:. l

Next, the overall output y is calculated as following:

y=y. aT,

(3.22)

(3.23)

where Y = [Yl' Y2 ,... , YM ], the outputs from every expert. Actually, it is unnecessary to go

through every expert. After the winner is selected by fuzzy membership function, the

only MLP has to be calculated is the winner expe.rt.

As observations are received, the network grows by adding new experts. The

decision to add a new expert for an observation (x* ,t*) depends on its novelty, for

which the following two conditions must be met:

(3.24a)
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(3.24b)

where C( is the nearest fuzzy center to xk in the input space, yk is the resulted outpul

from WTAE network, and £ .. £2 are thresholds. The first criterion decides that the input

must be far away from the existing fuzzy centers, and the second criterion says that the

error between the network output and the target value must be significant. The criterion

£. represents the scale of resolution in the input space. On the other hand, the value £2 is

chosen to represent the desired accuracy of the network output. [WaL096]

When a new expert is added to the network, the parameters associated with this

expert are assigned as following:

The new fuzzy center:

a M+I,J = a M+I,2 = ... ,= a M+I.N = 1,

(3.25)

(3.26)

N

I-lM+! =ITe
)=1

(X~-CMtI,I)2

2/7~ +I,J (3.27)

The new sample set SM +1 :

(3,28)

Also, the new expert network is built up and trained by the sample set SM+I • Figure 3.6

shows two fuzzy clusters overlapping in a two-dimensional input space.

When the observation (x k
,lk) does not satisfy the two novelty criteria, the

Resilient Back-propagation training algorithm is used to adapt the winning MLP expert

network parameters as described in Section 3.1, while other losing experts remain
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unchanged. The fuzzy center is updated by calculating the mean of the winning sample

set S.:,

1 R
C. =-Lx r

,

I R r=1

(3.29)

1.0 ()

l.
(Xj _CI/)2

2

f-L,(X) =ne
2U1

2
/

j=1
(x/-C2j )2

2

f-LJ(X) =ne
2u;j

j=1

0 X.

Figure 3.6: Two Fuzzy Clusters Structure

where R is the number of the samples in S. ={Xl. ,x~ ,...,x~}. The variance of the fuzzy
{ I I 1

cluster is determined by both the previous variance and the current statistic variance of

the updated sample set S( = {S,. ,x k
}. We use a momentum to combine these two factors

together:
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I I R ,=1 I
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(3.30)

When the first several samples are added to the sample set S., the statistical variance
I

will be close to zero. The momentum helps to avoid the risk of zero variance and also

keep the statistical characteristics of the variance.

The last step is executed after the whole training samples were trained. The

number of samples in each sample set is always showed dramatically different. So, the

purpose of the last step is pruning the expert that contains very little training samples and

cl.assifying these samples to the other fuzzy cluster by Euclidean distance. Then, the

whole experts are updated with the new sample sets.

The overall training step is described as follows.

Growing Fuzzy Clustering Algorithm

Inputs: The training patterns {x k
} and the corresponding targets {l}; number of

input nodes N ; number of training patterns P;

Outputs: The experts {£,}: the sample sets {S,.};

Step 1: determine the architecture of MLP expert based on Vapnik and Chervonenkis

theory. [VaCh71] [BaHa89]

Step 2: initialize the first expert:

C =Xl.
I '
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Number of experts: M =1 ;

train the first MLP expert by sample set SI'

Step 3: for k =1 to P do

for i =1 to M do

N

/-li (x) =IT e
}=I

(x: -C'i)!

2ug

a =compet(/-l) , select the winner expert E .. ;,

C -xk •
M+l - ,

a M+l,l = (JM+I,2 = ... ,= (jM+I.N = 1;

N

/-lM+I =IT e
}=I

(X
j
-CMd ,i)2

2CT~+I.j

train MLP expert EM+1 by sample set SM+I'

else, do

1 R
C. =- L.x' ;(R is the number of samples in S;,)

I R r=l
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2 2 1~ ,a. (t) = ya. (t -1) + (1- y)- L.J (x r
- C.)- ;

I I R r=1 '

train MLP expert E.. by sample set S ...
I ,

Step 4: Prune the small sample set, class the samples by Euclidean distance, and update

the whole experts with the new sample sets.

3.7 Sensor failure mode detection algorithm

The first part of Winner Take All Experts network provided us the estimated

critical sensor value when other sensors measurements are used as inputs. To validate a

sensor signal, the validation algorithm should trigger an alarm when the sensor signal

significantly deviates from the corrected value.

In order to build up the validation gates, the characteristics of both the sensor and

the monitored operating environment have to be learned. The validation scheme proposed

in this thesis contained both time domain and frequency domain sensor failure detection

by using three fuzzy sensor validation gates. So, in learning stage, the statistical

information both in time domain and frequency domain has to be learned and recorded by

three memories. The first one is used to store the minimum, maximum, and mean value

of the sensor signal in training data set. The other two memories are used to record the

variation of autocorrelation coefficients r of the residual of the sensor signal, and power

spectrum p of the time series. A time window was specified in order to calculate rand

p • which are defined as following:
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Definition 1: For a series of data {x k
: k =1,... , K}, the nth auto-covariance coefficient is

defined as:

K

gn = L(xk _x)(xk
-
n -x)/ K

k=n+\

Where x is the sample mean:

K

X =(Lx k
)/ K.

k=1

Then the nth auto-correlation coefficient is

Definition 2: For a series of data, {x k
: k =1,... , K} can be represented by its Fourier

senes:

K-I

x
k = (1/ K)L C"ej211lTkl K ,

,,=0

where Cn is the Fourier coefficients.

Then, Power Density Spectrum Coefficient can be defined as:

After each rand p corresponding to each time window in the learning data set is

available, the time series, the auto-correlation coefficients, and the power spectrum

density of the sensor signal are learned and analyzed with the eight commonly found

sensor failure modes. [Yung92] As shown in the following Figure 3.7, it is worth noting

that by inspecting the signatures from different feature spaces, it is easier to identify a

good sensor from a faulted one.
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In the figure, the first column shows the eight failure modes signal comparing

with the nominal state signal in time domain. The other two columns are used to compare

the autocorrelation coefficients of the residual, and the power spectrum density for the

interested frequency range (for example, in the Westland data set, 3kHz to 10kHz). It is

also clear from the figure that using signatures from only one feature space is not

sufficient to detect the normal signal form aU the other failure modes signals. However, it

is easier to detect the faults by combining the comparison results from all three feature

spaces.

In order to measure the distances between objects or points in the feature space, a

distance measure is used. There are a number of distance metrics that can be used as a

tool to measure a similarity between vectors, for example, Euclidean distance,

Mahalanobis distance, and Minkowski distance. Without loss of generality, to calculate

the difference between the signatures the Manhattan distance is chosen as the distance

between two vectors measured along the orthogonal axes.

(3.31 )

where x = [XI' x 2 , ... , XII]' Y = [YI' Y:2- ,... , YII ] are the two vectors to be measured.

To investigate the variation of the autocorrelation coefficients r for each time

window, the Manhattan distances between each vector are calcul.ated with result d;,

. n(n -1)
where l =l,... ,m, m = . n is (he number of the time window in the training data

2

set. The mlmmum, maXimum, and mean value of d, is recorded as the variation

characteristics of the autocorrelation coefficients r. The average vector r is also

recorded for comparison purpose in the detecting stage.
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Similar procedure is applied to the power spectrum density p.

Three Validation Gates were established using the information from learning

stage. The gates are Sensor Value Validation Gate, Residual Autocorrelation Validation

Gate, and Power Spectrum Validation Gate. The basic structure of each gate is based on

the dynamic fuzzy validation curve introduced in the second chapter. The mean values

from the three memories are set as the highest confidence value for the bell shape

validation function. The minimum and the maximum values are set as 10% confidence

value points as show in the following figure.
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In detecting stage, the auto-correlation of the residual of the sensor output was

calculated every time window, which was compared with the mean autocorrelation

coefficients r in Manhattan distance by the corresponding validation gate. The output

will be the sensor health confidence level in autocorrelation feature domain. Similar

approach is applied for the power spectrum density and each sensor output datum.

Finally, the three outputs from the three gates are fused by fuzzy intersection

mentioned in Section 3.3. The decision level fusion output is a final confidence level of

the interested sensor health.

Fuzzy Sensor Validation Algorithm

Input: The signal from real sensor; the estimation value from winner take aIL

experts network; the time window size; the length of FFT.

Outputs: the confidence level of the sensor.

Step 1: Filter the real sensor signal y and the estimation value y from Winner Take AIL

Experts Network by time window;

Step 2: Transfer the two time series to frequency domain by FFT with the given length;

Step 3: Calculate the Power Spectrum Density PI and P2 of the two time series;

Step 4: Calculate the residual of the 1) and r2 of the two time series;

Step 5: Compare PI and P2 by Manhattan distance with result d p ;

Step 6: Compare 1) and r2 by Manhattan distance with result dr ;

Step 7: Calculate the confidence level of the sensor by the three validation gates;
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Step 8: Decision level fusion by intersecting the three fuzzy sets.

3.8 Summary of the WTAE algorithm

The WTAE algorithm divides a complicated problem into a senes of sub­

problems. It uses a growing fuzzy membership clustering method to divide the input

space into overlapping regions on which 'experts' act, and the Gaussian membership

function localizes the expert's influence into a region around the cluster center. A

simplification of the criterion leads to two joint criteria on the distance of the present

pattern and the existing unit centers in the input space, and on the approximation error of

the network for the given observation to be satisfied together. The last step, comparisons

between the real sensor vaJue and estimation signals are based on three validation gates.

The first validation gate, sensor value validation gate, compares the tracking output

directly with the real sensor data. In the second validation gate, the residual of the two

series is investigated by the autocorrelation coefficient. The power spectrum density of

the two signals is compared in the last validation gate. A decision level fusion of the three

vaJidation gates is accomplished by the intersection of the three fuzzy sets. The fusion

result is considered to be more reliable and robust than using only one validation gate

alone.

•



CHAPTER IV

SIMULATION RESULTS

Software simulation is used in our experiments to demonstrate the expected

perfonnance of the WTAE network. The simulation programs were coded under the

MATLAB software environment (version 5.2). A Pentium 233MMX PC hosted the

simulation programs. Two data sets were used for training and testing the sensor

validation system in our studies. The first benchmark data set was generated from a

Spectra Quest (SQ) Machinery Fault SimuJator. The second data set was a time-series

vibration data set, commonly known as Westland vibration data.

4.1 SQ Machinery Fault Simulator data set

This data set consists of vibration data recorded from SQ Machinery Fault

Simulator, which is shown in Figure 4.1. The instrument is constructed with special

kinds of bearings, rotors with split collar ends, and a split bracket bearing housing. The

simulator offers a wide range of predictive maintenance and the signatures of various

bearing faults.

5U
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Because the purpose of this thesis is sensor fault detection, not the machinery

fault identification, the signal used in the simulation is the nominal system state signal.

Figure 4.2 shows one sample time series from the accelerometer of the simulator.

Figure 4.1: SQ Machinery Fault Simulator
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Figure 4.2: A Time Series of SQ Machinery Simulator Sensor Signal
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Here, we use another three accelerometer sensors in proximity, which have the

similar high frequency wavefonn, to approximate the sensor measurements of interested.

The relationship of the sensors is obviously nonlinear, and the modeling work is very

complex.

The sample data set was separated into two parts. The first 3,000 observation

pairs are used as the training set, and the remaining 3,000 points serve as the testing set.

The WTAE network was trained and compared with MLP and RBF based

estimators. Figure 4.3 shows part of the tracking result. The solid line is the real output

from sensor (the target), and the dash line is the estimation value from the WTAE

network.
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Figure 4.3: Outputs of WTAE and Targets of Training Set
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The perfonnance function for the experts is mean square error (MSE) function,

the average squared error between the network outputs and the target output. A ten

hidden nodes MLP structure was heuristically chosen to be the local expert with Resilient

Back-propagation training algorithm. After the WTAE network has been trained for

totally 41 minutes, the MSE of the training set equals to 0.0234. The resulted network

incorporates with 73 experts, with a pruning criterion 10 samples per sample set. Part of

the testing result is shown in Figure 4.4:
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Figure 4.4: Outputs of WTAE and Targets of Testing Set
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The mean square error of the 3,000 testing samples using WTAE network is

0.1631.

The same training set was also applied for training MLP network. The total

number of nodes of MLP is detennined by VCdim theory [VaCh71] [BaHa89], which is

estimated to be 300. After training several pre-selected structures, the structure wi th the

best result is a MLP with a 150-node hidden layer. The network was trained by Resilient

Back-propagation algorithm as well. After 41 minutes, the MSE is 0.0554. Also, the

network were tested by the same 3,000 samples as the WTAE network did. The resulted

MSE is 5.9529.

The third estimation method used for comparison is RBF network. Here, we used

the k -Means Clustering Algorithm to train the first layer and the Moore-Penrose

algorithm for the second layer as described in Chapter 3. Because of the high

computational cost involving matrix inversion, the RBF network can only be trained by

775 samples in 41 minutes. The resulted MSE for the training set is 0.0550. The resulted

number of first layer clusters is 339 because of the complexity of the input space. The

next 775 samples were tested with a MSE 0.0787.

From the above simulation results, we draw the following conclusions:

1. WTAE network is a model free algorithm: Just like any other neural network based

method, WTAE can also unifonnly approximate any continuous function without

knowledge of system model, as long as the number of experts units is sufficient. This

is because the basic unit of the network is a small single hidden layer MLP network,

which realize the nonlinearity of the system locally. It is a great advantage of neural

network based algorithm over the traditional knowledge based tracking system.
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2. WTAE network have outperformed other neural network based system in complex

problems, Based on the 'divide and conquer', the model employs a growing fuzzy

clustering method naturally divide the input space into overlapping regions on which

'experts' act. In this way, a complicated problem was divided into a series of simpler

sub-problems and assigned a set of function approximators to each sub-problem.

3. The growing fuzzy clustering algorithm is able to build clusters of both linear and

nonlinear separable decision houndaries: In most of sensor value tracking problems,

the input sample sets are always nonlinear separable. So, the ability of building the

decision boundaries to separate both linear and nonlinear separable classes is

necessary.

4. The growing fuzzy clustering algorithm is able to make decision boundaries of

overlapping classes: The overlapping is another feature of the input sample sets in

sensor tracking problems. The algorithm we used has overcome the overlapping

problems by using Gaussian fuzzy membership functions in each dimension of input

space.

A comparison performance among the three algorithms were listed in Table 4.1:

Tahle 4.1: A Comparison Performance Among Estimators

41 Mins Training WTAE network MLP network RBF network

Architecture 73 of lO-hidden 150 hidden nodes 339 clusters In the
nodes MLP experts first layer

Training Growing fuzzy Resilient-BP k -means clustering
Algorithm Resilient-BP Moore-Penrose
Training samples 3,000 3,000 775
MSE of training 0.0234 0.0554 0.0550
Testing samples 3,000 3,000 775
MSE of testing 0.1631 5.9529 0.7874
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A time window was defined with length of 300 points. Both the real sensor time

series and the tracking time series were transferred to frequency domain by FFf with

given length 256. Both the power spectrum density and the autocorrelation of the residual

were calculated. The necessary information for establishing the three fuzzy sensor

validation gates was recorded. Based on the collected information the following

validation gates were built:

01 , " , •••••

..... 01 .......
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Figure 4.5: Three Fuzzy Sensor Validation Gates

The results from the three validation gates and the final confidence level from

J

r·
fuzzy intersection are shown in Table 4.2. Compared with the traditional time domain

indicators, WTAE network is more reliable and robust. When the amplitude of noise is

not big enough to trigger the noise indicator, the traditional indicators could not detect

several failure modes, especially 'Cyclic', which means in the same condition the

traditional indicators could only detect less than 87.5% failure states. In addition, the

·..···'j'.
traditional indicators need sufficient knowledge of characteristics of both the sensor and

the envi ronment, which is unnecessary for the proposed WTAE network.



Table 4.2: Comparison Results of Three Validation Gates and Fuzzy Intersection Output

Residual Autocorrelation Power Spectrum
Sensor Sensor Va1 ue Validation Gate Validation Gate Fuzzy
States Validation Gate Manhattan Confidence Manhattan Confidence Intersection

Distance Level Distance Level

Normal 0.9046 1.6723e+003 0.9832 0.0771 0.9447 0.9046

Hard-over 2.8921e-014 6. 1907e+005 1.0613e-008 2.7423 1.0854e-024 1.0854e-024

Bias 7.1865e-016 7.2108e+005 1.0613e-008 3.1193 1.0854e-024 1.0854e-024

Spike 7.1858e-016 1.6460e+OO3 0.9989 0.0822 0.9721 7.1858e-0J6

Stuck 0.8460
.

5.6381e+OO3 1.0591e-008 1.5572 1.0854e-024 I.0854e-024
o!
~,

Erratic 0.9268 1.5550e+004 1.0613e-008 0.4496 1.0854e-024 1.0854e-024

,
Cyclic 0.4501 4.4328e+OO4 1.0613e-008 0.4698 J.0854e-024 1.0854e-024

Drift 1.2242e-006 6. 1678e+004 1.0613e-008 0.8432 1.0854e-024 1.0854e-024

Nonlinear 5.2260e-0 14 3. 1871e+OO4 1.0613e-008 1.1034 1.0854e-024 1.0854e-024

Correction
66.67% 88.89% 88.89% 100%

Rate

............... "' •••• _.. • .o , • _ ••• .a. _ • .. __ _. _
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-l



58

4.2 The Westland vibration data set

The Westland data set was acquired using an array of eight accelerometers fixed

in specific locations on a set of faulted and unfaulted aft main power transmission of a

u.s. Navy CH-46 helicopter. These accelerometer-equipped transmissions were mounted

on a laboratory-based "test rig" and run at a sampling rate of 103,116.08 Hz. The sensor

validation experiment data set was sampled at no-fault condition at one of the several

torque load levels (i.e., 100%).
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As shown in Figure 4.6, sensor 4, 5, 6, and 8 are located within a neighborhood.

Assuming they are related to each other, we choose sensor 8 as the target of our

estimator, and the other three as the input signals. Figure 4.7 shows one sample time

series from the Westland Data Archive.
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Figure 4.7: A Time Series of Westland Data Set

Because of the complexity of the data set, we included 3,000 samples both in the

training set and testing set. The estimation results were listed in Table 4.3:
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Table 4.3: A Comparison Perfonnance Among Estimators (2)

63 Mins Training WTAE network MLP network RBF network

Architecture 50 of IS-hidden 150 hidden nodes 385 dusters in the
nodes MLP experts first layer

Training Growing fuzzy Resilient BP k -means clustering
Algorithm Resilient BP Moore-Penrose
Training samples 3,000 3,000 813
MSE of training 0.3985 0.7756 42.5571
Testing samples 3,000 3,000 813
MSE of testing 2.1402 45.9567 42.3122

Although we added more hidden neurons to the experts than the first application,

the MSE of both training and testing sets are still big. The other two networks also had

the similar results as WTAE network. The possible reason is that the sensors used are

probably not strongly cOITelated. That means the assumption we made before building up

the estimator is probably invalid. Further study needs to be invested. ..



CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions of the research

An architecture for estimating sensor measurements and detecting sensor failure

has been developed in this thesis. The method allows us to estimate a critical sensor data

when other neighboring sensors measurements are used as inputs. Three fuzzy sensor

validation gates based on the information from both time domain and frequency domain

were used to detect the sensor failure.

The network is a synergetic combination of fuzzy logic and neural network. It

employs the fast parallel computation and learning capability of neural network. In

addition, fuzzy set theory adds the ability to represent and manipulate imprecise

information.

The WTAE network consists of two main layers: Fuzzy membership clustering

layer and MLP experts layer. The cluster layer employs the Gaussian radial basis function

as a fuzzy membership function. The general idea is to divide a complicated problem into

a series of simpler sub-problems and assign a function approximator to each sub-
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problem. A growing fuzzy membership clustering method was used to divide the input

space into overlapping regions on which 'experts' act.

After the WTAE network was fully trained in sensor nominal state, the estimation

result was compared with real sensor outputs by three fuzzy validation gates, which were

built up based on the information collected in the learning stage. The auto-correlation of

the residual and the power spectrum of the time series are analyzed by Manhattan

distance. The results from the three validation gates were combined together by fuzzy

intersection logic. This decision level fusion finishes the whole sensor failure detection

procedure providing the final confidence level of the interested sensor health.

Two benchmark data set: the SQ Machinery Fault Simulator data set and the

Westland vibration data set were used in simulation studies to demonstrate the

performance of the WTAE network. Comparisons between the WTAE network and the

other two neural networks estimators were made. The results show that, in terms of

estimation performance (MSE), the WTAE is competitive with or even superior to the

MLP network and RBF network.

Furthermore, the fuzzy sensor validation gates algorithm was used to investigate

the eight sensor failure modes. The results from the simulation studies have shown that

the proposed validation algorithm is efficient for detection all of the eight faults as long

as the basic assumption, that the neighboring sensors do exist an analytical relationship,

is valid.
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5.2 Recommendation of possible future work

The future research could concentrate on distinguishing the sensor failure mode

from the system failure mode. A possible approach was described below,

Feature Extraction

Feature 1
Feature 2
Feature 3
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Figure 5.1 Sensor Validation and Fusion Structure

Figure 5.1 shows a simple architecture of machine health monitoring system. The

characteristics of physical plant are monitored by sensors. From the sensors, digital signal

processing and feature extraction are used to preprocess data, as well as the sensor
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validation part. The data was validated, and at the same time, the dimension of data was

reduced in order to obtain patterns containing enough information to discriminate in a

lower dimension, Next pattern classification classifies and identifies the types of fault

conditions in two different channels, One is the critical sensor channel, which plays a

dominated role in system fault identification. The other one is the feature level fusion

channel, which combined the information from all sensors. The results then are integrated

by a decision level sensor data fusion algorithm. [Luka89] [FiMi90]

The sensor validation network will have several estimation models corresponding

to each system failure modes. They will be trained off-line under these anticipated failure

modes. After the training, the system will operate in the following: when the sensor

validation alarms, the signals are put forward through the system to the output. The class

declaration part will give out a declaration of which state the system is in. This result not

only depends on the critical sensor, but also from the other related sensors monitoring the

same operating system. Therefore, even though we have a fault critical sensor, we still

have a correct system state result with high possibility. Then, based on this result, the

model selector will decide which WTAE model will be used for current sensor validation,

and the critical sensor will be validated again. If the validation result repeats the same

alarm (trending), we can draw a conclusion that the sensor is in failure mode and the

operator will be instructed to take necessary actions.
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