
ON-LINE SCHEDULING FOR REAL-T1ME

CORBA ENVIRONMENTS

By

DIANA AURA DUMITRU

Master of Science

Western University of Timisoara

Timisoara, Romania

1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2000

Oklahoma State University Library

o~ -LINE SCHED LING FOR RE L-TIME

CORBA ENVIRO MENTS

Thesis .-\.pproYed:

II

ACK OWLEDG E TS

I wish to express my sincere appreciation to my research advi or, Dr. B. E.

Mayfield for his outstanding supervision, guidance and moral support. My incere

appreciation extends to my other committee members, Dr. J. P. Chandler and Dr.

H. K. Dai for their excellent guidance and assistance. Special thanks go to Dr. K.

M. George and to Dr. M. Samadzadeh for their help.

I would like to give my special appreciation to my husband, Daniel for his kind

encouragement. love and understanding throughout this process.

Finally, I wish to thank to the Department of Computer Scienc and esp ially to

Dr. B. E. Mayfield and Dr. J. P. Chandler for their friendly support and sup rvision

during these two years of study.

111

TABLE OF CO TE TS

Chapter

INTRODUCTIO

2.1 The Object Management Group.

2.2 The Architecture of a CORSA Application .

2.3 CORSA Benefits

3 0 -LI E SCHEDULING OF REAL-TIME TASKS.

3.1 Introduction to On-line Scheduling

3.2 Real-time Scheduling

3.3 Performance Measures of On-line Schedules

THE TEST SYSTEM ..

THECORSASTA DARD

1

5

5

7

11

13

13

15

16

19

21

21

23

26

28

32

32

Pag

The On-line Scheduling Algorithm

The Off-line Scheduling Algorithm

A General System Model

A Proposed System Model (Problem Statement) .

5.2.1

5.2.2

The On-line System Architecture6.1

5.1

5.2

RELATED WORKS

O. -LI. E SCHEDULING FOR CORSA ENVIRO ME TS

2

4

5

6

IV

Chapter

6.1.1

6.1.2

6.1.3

The Controller

Clien s and Client Factories .

The Scheduler

P

33

36

3

6.2 The Off-line System Architecture 40

6.2.1

6.2.2

6.2.3

The Loader .

The Off-line Scheduler .

The Execution Simulator

4

41

42

6.3 Performance Tests . 42

'"'I

6.3.1

6.3.2

6.3.3

6.3.4

CO CLUSIONS

Experimental Configuration .

Running the Test

Test Input .

Test Results

43

43

44

46

52

BIBLIOGRAPHY ..

v

55

LIST OF TABLES

6.1 Operating environment used for tests. 43

Vl

LIST OF FIGURES

2.1 The typical structure of a CORBA application. 9

5.1 The simplest scenario involving ORBs. 21

6.1 On-line Test System Architecture " 33

6.2 The umber of Late Jobs as a function of the System Load for On-line

(solid) and Off-line (dotted) algorithms.. 47

6.3 The variation of the Total Scheduling Cost with the System Load for

On-line (solid) and Off-line (dotted) algorithms. 48

6.4 The variation of the Waiting Cost with the Syst m Load for On-lin

(solid) and Off-line (dotted) algorithms.. 49

6.5 The variation of the Lateness Penalty Cost with the System Load for

On-line (solid) and Off-line (dotted) algorithms. 50

6.6 The variation of the Processing Cost with the System Load for On-line

(solid) and Off-line (dotted) algorithms.. 51

Vll

) I

CHAPTER 1

I. TRODUCTIO

As the computer technology develops distributed computing systems gain more

and more importance because of their advantages over large centralized mainfram s:

flexibility, increased informatjon transparency interoperability etc. Consequently

the availability of low-cost microcomputers and the progress of the communication

technology force the trend towards distributed syst~ms.

An important problem arising from th use of di tributed sy t m is 0 nabl

the interaction between machines built by diff rent vendor which work und r various

operating system . As a result great effort is put nowadays into s tting some stan-

dard general frameworks which ;tHow the integration of all common machines and

operating systems. Examples of such stand~rds are the OSF Distributed Computing

Environment (DCE) the ISO Open Distributed Processing (ODP) Reference Model

and the Object Management Group's (OMG) CORBA Specifications.

In the present work we use the OMG's Common Object Request Broker Architec-

ture (CORBA) standard as an environment for distributed systems. The CORBA

standard defines an architecture for distributed object-oriented systems which al-

lows the integration of very heterogeneous components, using different programming

1

" '

~

of

rk . in

of h pI -models and programming lal1guag . Fur h rmor

form and of the machine p on which h ar

stated COREA allows appli a ion 0 communi e

their location or implementation languag . Th

a good choice for industrial application in areas su h

aerospace/defense, banking/finance, chemical/petrochemi I electronic omm r

health care/insurance, 'manufacturing, publishing/mul im dia, retail, tel communi

cations, transportation/travel etc.

On the other hand, real-time applications are incr asingly merging in some of

the above-mentioned areas such as telecommunication, automated manufac uring,

aerospace, medical patient monitorino ' multimedia and others. Therefore a natural

demand for providing support for real-time applications arise. For uch applications

the CORBA environment must provide servic that m t th fun tion I r quir

ments within the real-world timing on traints. Giv n a COREA oftw r

to perform more than one task at a time (.g. handle two con urr nt r qu sts) a

wa.y of a.llocating the resources needed for these tasks must be determined su h that

the time constraints are respected. Thes resources can be internal to th CORBA

environment: processing resources, storage resource, communication resourc s or

external ones such as server applications. For the moment the CORBA specifica

tions do not contain approaches to ensure a good performance for real-time end

applications. Therefore the design, implementation and performance measurements

of different real-time strategies for CORBA environments have become an important

research topic for the past few .vears.

2

ofThe aim of hi th is i 0 propo impl III n and

such a real-time ervice stra e . Th on-lin algori hm h

was first proposed by Hong and Leung [10] in 1992 and fall wi hin h in of

Operating System Theory. We win tran £ r and ad p i to our CORB nvironm n

in order to determine whether it is suitable or not for di tribut d iOns.

few changes were made to the initial algorith n in order to improve it. hil initiall

its only goal was to build a feasible schedule, now it is also attempting to minimize

as much as possible the total scheduling cost (i.e the sum of waiting, penalty and

processing costs). In on-line computation theory the performance of an algorithm is

usually determined by comparing it with the performance of an equivalent optimal

off-line algorithm. Unfortunately, a comparison of our preemptive on-line algorithm

with an equivalent preemptive off-line one is not feasible. Despite the fact that the

cheduling re ult of such an off-line algorithm would probably be mor effici nt than

those of our on-line one, the time required to determine the optimal schedul is very

large even for a small number of task. Therefore preemptiv off-line algorithms ar

not suitable for real-time applications.

Our purpose is to implement both the preemptive on-line scheduling and a non

preemptive off-line scheduling commonly used for this type of problems and to om

pare their performances.

The thesis is organized as follows. Chapter 2 gives a short overview of the OMG's

CORBA standard. A brief introduction to scheduling theory is pre ented in Chapter

3. Here we focus on the basic concepts of the on-line approach, introduce the notion

of real-time scheduling and explain the methods used in the performance measures

3

of scheduling algorithms. In Chapter 4 a brief re

of real-time COREA technolog is pr en ed.

of the literatur on th ubj ct

stem model to b tudi d i

proposed in Chapter 5 and two different scheduling s rategi (stati and dynami)

are presented for further evaluation. Chapter 6 describes the te stem d v lop d

for the evaluation of the strategies and the results obtained. In addition to th

architecture of the system, the functionality of the s tern components and their

implementations are explained in detail. Chapter 7 contains our conclusions and

suggestions for further work. I'

4

CHAPTER 2

THE CORBA STA DARD

During the beginning of the 1990 s two technologies began to be actively used:

distributed computing and object-oriented programming. In order to benefit from th

advantages of these technologies it was logical to use them together while developing

applications. As a consequence the Object Management Group (OMG) was form d

with the purpose of setting some standards for distributed object computing. The

Common Object Request Broker Architecture (CORB) is th result ofOMG' ffor

in this area [12].

2.1 The Object Managelnent Group

The Object Management Group was founded in 1989. On start-up. there w r less

than a dozen corporate members in the consortium. They were anticipating that the

computing superstructure was about to change and their vision was to organize the

various system vendors and software developers into a consortium which would set

some standards for developing portable distributed applications for heterogeneous

systems. OMG has received a tremendous amount of industry backing since then

5

and is now the world s larg t software con ortium, ith mol' 00 m mb

including system vendors, application developers a~ademic institution and u r.

The primary goal of the OMG is to olve problem arising from the d v lopm nt of

large software systems. Because software grows more and more complex, traditional

approaches to producing software are no longer sufficient to develop programs in

efficient way. This increased complexity of modern application is al 0 au ed by

the fast emergence of very heterogeneous systems (i.e. ystems produced by different

vendors and running different operating system).

To solve this problems, the OMG proposes a framework for software development

which is based on two computing paradigms. First, the object-oriented programming

paradigm is adopted because it proved to be a suitable method for construction of

large software systems. The second paradigm integrated is inspired by the trend

towards distributed computing. which has a great influence on the dev lopm nt of

future information systems. Thus the OMG's efforts on ntrate on th d finition

of a framework for the development of distributed object-oriented software systems.

Object-orientation provides a method for improving reusability, portability and in

teroperability of software products. By defining individual components in terms of

object-oriented interfaces, which do not tackle implementation aspects, the platform

independence of the interfaces is guaranteed and an interaction between components

running in a heterogeneous environment is therefore enabled. Another important

aspect for the OMG is the conformance of the released standards with existing stan

dards in the software industry so that an integration into existing systems is possible

and the intera.ction with systems conforming to other standards is enabled.

6

2.2 The Architecture of a CORBA Appli ati n

The main components of a CORBA application are the client code, the r er

code (which contain the implementation of the server object), the Obj ct Requ t

Broker (ORB). the Object Adapter. the object's interface declaration, th skeleton

and the stub codes.

The Client and Server Applications. Both the client and the server (object im-

plementation) codes can be written by the CORBA user in any object-oriented

language supported by the CORBA environment. The client sends a re-

quest/message which needs to be carried out by the object instantiated within

the server application. The two applications can reside on different hosts having

different operating systems, with the only constraint that a CORBA software

(but not necessarily the same one) be installed on both machin s.

The Object Request Broker (ORB). The ORB is the or part of an ORB

application and it is responsible for all interactions betw en the client and th

server codes. It processes any client invocation, converts it into a message for-

mat (mar haling) and sends it to an appropriate server object in a transparent

manner. On the server side. the ORB receives the messages from the cli nt,

processes the messages (demarshaling) and passes the results back to th lient

application. Thus. the ORB takes care of the most of the house-keeping ac-

tivities such as creating and closing sockets. network operations and request

demul tiplexing.

-I

The Object Adapter (OA). h n a eli n mak in ocations on a rv r obj

the OA helps the ORB to activate the appropriate object and to deliver r qu t

to it. The OMG has defined a Basi Obj dapter (BOA) whi h h o be

supported by all CORBA-compliant ORBs. The BOA is being uper eded b

the Portable Object Adapter (POA), which is more tightl pecified and it is

aimed to increase the portabilit of obj t impl III ntations.

The Object's Interface. The interface of the object that performs the erVlces IS

defined by the user in the OMG Interface Definition Language (IDL). This en

sures that the interface is not dependent on the particular language in which

the object is implemented. The interface definition specifie the operations the

object is prepared to perform, the input and output parameters they require

and any exceptions that may be raised along the way. All this information is

needed by the client in order to build it r quests. 11 advantage brought by

the interface i that clients see only the object's interface and not th impl

mentation details.

The Stub and the Skeleton. The tub and the skeleton codes ar produced by

compiling the object's interface code with the IDL compiler. They r present

the client-sidejserver-side mappings of the interface and they int rmediate th

interaction between the client/object code and the ORB. While the stub con

tain function declarations used to issue invocations for the object implemen

tation. the skeleton contains function calls which pass the incoming requests to

the object implementation.

8

OBJECTS INTERFACE
1.

OBJEc,T IMPUMENTAll0N
.-----.t 3. 4. If. 4.

Figure 2.1: The typical structure of a CORBA application

The typical interaction between these elements is presented in Figure 2.1. Different

shades of gray are used to distinguish between components with different origination.

The Object's Interface, the Client and the Object Implementation (in white)

represent the code written by the CORBA us r while the IDL Compiler, th BOA

Interface and the ORB (in dark gray) constitute the CORBA environm nt its If.

Finally. the Skeleton and the Stub (in light gray) are generated by th CORBA

software in a particular programming language: they are used as starting point of

the code created by the user. Let us describe briefly how the various application

components interact with each other.

1. The object's interface produces by compilation the stub and the skeleton code.

2 After receiving a reference to the server object, the client calls methods on this

object through the stub.

9

3. The ORB hands the r quests oming from h

Yates the implementation.

o th B . 1-

4. The implementation invokes BOA to indicate that it i active and availabl .

5. The BOA passes method requests to the implementation via the keleton.

6. The implementation returns the result (or exception) back to th lient through

the ORB.

For realistic applications, the basic interaction facilitie provided by the ORB are not

sufficient. To support further functionality, Object Services and Common Facilities

are provided. The Object Services perform system-oriented low-level services for

application development such as the Naming Service which allows clients to obtain

references for objects of certain types, or the Object Life Cycle Services which are

used to create. delete. move or copy object. In contrast to th s basi servi s,

the Common Facilities provide more application-ori nt d s rvices at a high r I v I,

such as compound document management, electronic maiL or help s st ms. Th

overall goal of these service is to reduce the complexity of software developm nt by

supporting services which are often needed in many appli ation program.

Another illlportant point which has not been entirely covered yet is how lients

specify to which object implementation they wish to send a request. For this pur

pose each object implementation is assigned by the ORB an unique object reference,

which is an opaque representation used to denote an object in the CORBA-based

environment. There are everal techniques that can be adopted by the client in or

der to obtain a reference to the desired server but the one used in the present work

10

i through the aming S rvi e. The obj c n d to r gi t r ,h 'r r £<

this ser ice in order to be lao er looked up a.nd

no information a.bout the location, the languag , or an r 0 h r d tail of h obj ct

implementation and therefore it becomes the responsibilit of the ORB to locat and

deliver the requests to the appropriate object.

2.3 CORBA Benefits

CORBA provides the abstractions and services one need in order to develop com

plex distributed object-oriented applications. Some of it mo t important features

can be summarized as follows:

platform independence; CORBA objects can be used on any platform for which

there is a CORBA ORB implementation (thi includes virtuall all modern

operating ystems as well as some not- o-modern on s).

language independence; CORBA clients and servers an be implem nted in any

object-oriented programming language.

portability and easy integration of legacy systems; CORBA's s paration of

the object definition from its implementation is perfect for encapsulating exist

ing applications.

multiple request-respond capabilities; CORBA provides support for multiple

request-respond models.

11

high-level language bindings; CORR pro ides language-n urI da a p an

instructions which make object interaction pos ibl a ro laugu

erating systems without worr ing abou low-lev] de ail .

local/remote transparency; an ORB can run in a taud-alon mod or an be

interconnected to other ORB's using CORBA 2.0' Ip.t rn tIner-ORR Pro

tocol (lIOP) services. Since the communication betwe n ho t in a ORBA

application is done at the ORB level, the location transparency of the server

object with respect to the client is ensured.

built-in security of transactions; the ORB includes context information in its

messages to handle the security of transactions across machine and ORB bound-

anes.

static and dynamic method invocation; a CORB ORB allows on to ith r

statically define the method invocations at compile time or to dynami ally

discover them at run-time.

polymorphic messaging; ince the ORB invokes a fun tion on a target bject

the same function call will have different effects, depending on the obj t that

receives it.

12

CHAPTER 3

o. -LL E SCHEDULING OF REAL-TIME TASKS

We start with the ancient scheduling problem in which a s quence of n task /jobs

have to be scheduled on m machines or other available resources. Th tasks ar

assumed to arrive at different moments in time are u uall characteriz d by their

running time (also called processing time) and have to be assigned for that tim

period to one or more resources. The goal of any schedule is to distribute the jobs

to the variou re ources a efficiently as possible, such that som obj iv fun tioD

(performance measure) is optimized.

3.1 Introduction to On-lin Sch duling

There exist two distinct scheduling paradigm for the above prabl m, nam ly the

off-line (tatic) approach and the on-line (dynamic) one. Off-line scheduling consists

in building a scheduling plan at the beginning of a scheduling p riod and results in

a complete. fixed schedule for that period. One of the major disadvantages of this

approach is that it must make assumptions about the exact parameters (such as,

for instance. the execution time) of each task to be scheduled. Whenever the actual

13

parameter differ from th e assumptions the h dul will b om in 1J. h'

problem can be solved b he on-line scheduling algorithms in hich

is performed at runtime anI with a partial knowledge of he illpU . kll W onl

past evellts. without having any information about th future. Th I orithm fi

much better into a realistic scenario than the off-line algorithm, wh re the cheduler

handles the requests knowing ahead of time the parameter value of all the task in

the system.

The on-line scheduling algorithms have been explicitl~ studied for more than 30

years. The first article to propose an efficient on-line chedule was publi hed in

1966 by Graham [9] and it analyzed a simple greedy algorithm, nowadays commonly

called List Scheduling. Two other early results about on-line scheduling algorithm

are developed by Sahni and eho [Ii] ill 1979 and by Davis and Jaffe [4] in 198!.

Since then. many other article were publish d, one rning diff r 11t vari l1t of on

line scheduling. The on-line cheduling algorithms can be lassifi d a ording t h

information given on-line at the task arrival time [5]:

• Scheduling jobs one by one

In this paradigm each job i scheduled at arrival tim . b for the next job

is encountered. As soon as a job is presented, the scheduler also learns its

characteristics. including the running time.

• Unknown running time

Unlike the previous paradigm. this algorithm assumes that the running time of

the tasks remains unknown at arrival time and. even more. it will not be de-

14

tennined until the task i comple d. Therefore h on] inform ion ail I

about a task at an time is i 5 tate. which can be one f h hr :

available , running or terminated. Another differ n b tw

and the previous one is that now all available job r a h di po I f th

scheduler in order to be either scheduled or further dela d.

• Clairvoyant algorithms (Tasks arrive over time)

This paradigm is similar to the previous one with the only differ nee that the

running times are known at job arrival. Therefore the single on-line featur IS

the lack of knowledge of jobs arriving in the future

• Interval scheduling

In this case. when the scheduler "learns" about a new arriving job it i also on

strained to schedule it within a certain time interval. Contrary to th previou

three paradigms, this one does not allow a job to be postpon d ind finitely,

The on-line schedule which will be tudied in this work is an interval sch dul .

3.2 Real-time Scheduling

In the real-time scheduling there are rigid time constraints on the operation of

the resources or the flow of data in the system. If these constrains are not respected

the system will fail. Each task is usually characterized by its release time which is

the earliest time when it can be scheduled and in the on-line setting it al 0 represents

the time when the scheduler learns about the existence of that particular task. While

15

in real-time, off-line cheduling ach ask i al 0 d crib d . an r paraIDJeter

namel it individual deadline i has been pro en that in h ch dul-

ing there can exist only a single deadline, ommon to all 'l::Ul::t,~)rn (10].

Otherwise no feasible on-line sch duling algorithm can ibl w

mean that each task has to be terminated prior to the expiration of it d adline.

3.3 Performance Measures of On-line Schedul

The traditional approach to studying the quality of an on-line scheduling algo-

rithm falls within the framework of distributional complexity (or average-case com-

plexity). In this case an assumption is made regarding the distribution of the events

(i.e. the distribution of task arrivals over time) and the expected total cost or ex-

pected cost per event is evaluated. During the past 10 years the interest in this

subject has been redirected towards a new approach called competitive analysis [2],

In this latter theory the performance of an algorithm is d t rmined by th valu of

the competiti've ratio (J w.r.t. some objective function J and an b expr ss d as:

Jon-line alg (workload)
fT = ------=--'-----'-

Jol I-line alg(workload)
(3.1)

Therefore competitive analysis fall within the framework of the worst-ca e com-

plexity. An on-line algorithm is said to be (J - competitive if for each input sequence

the objective value is at most (J times larger than that of an equivalent optimal

off-line algorithm. The competitive ratio may depend on the number of resources

or other system parameters and it is usually a number greater than 1. However,

since our off-line and on-line schedules are not equivalent (that is. they are not both

16

preempti e), the latter can have a or p dorman and the mp

become less than 1 for som inputs.

There is a large number of objecti ~

that we try to ac omplish by using he cheduling algorithm. S m f th m

important measures are enumerated in [20]:

• Processing Time or Makespan which i the time interval during which all tasks

have been carried out for a given input sequence.

• Waiting time which for a particular job is defined as the total sum of the periods

spent waiting in the ready queue.

• Tardiness which for a particular job is defined as the amount by which the com

pletion time of the job exceeds its deadline, thus a po itive tardine indicates

that the job will not meet its deadline.

• Turnaround time which for a particular job is defined as th interval from th

time of its submission to the time of its completion.

• Response time which for a particular job is defined as th time from the ub

mission of a request until the first response is produced.

• Resource utilization which for a particular resource is defined as the time the

resource is busy.

The objective functions are defined as the ums of these values over all jobs or the

average values over all jobs. since these differ from the first ones only by a factor

proportional to the number of jobs.

17

The on-line scheduling algorithm which will be studied in thi the i a t mp a

determine a feasible schedule. If such a feasibl chedule annat be found for h

input task system, the algorithm builds a schedule in which a minimum numb r of

jobs miss their deadlines and for which the sum of the pro e ing time waiting time

and tardiness is minimized.

18

CHAPTER 4

RELATED WORKS

During the past few years CORBA applications became more and more popular

in the industry and the demand for real-time support increased accordingl . This is

why a new research topic started to develop rapidly: real-time COREA te hnology.

There are a lot of articles published lately on thi subject but one of the most im

portant contributions was made by the Real-Time Special Interest Group (RTSIG).

The group was created in 1995 and work within the Obj t Manag m nt Gr up

their goal being to augment exi ting CORBA technology for the r quir ments f r al-

time systems. The group has put together a joint proposal for R aI-Tim ORB

Specifications which describes the features that should be supported by a real-time

ORB and provides pointer on how to implement these features. Th proposal h

passed the voting stage and the joined revised submission [13] has been recently

completed. However. the roles of certain modules such as the Real-Time Schedul

ing Service (RTSS) are loosely defined. It is important to realize that real-time

applications are diverse and require different levels of service quality. The RTSIG

has proposed a priority-based approach to provide real-time support for the objects.

However. studies have shown that a priority-based approach is not always suitable

19

for handling multimedia applications [8, 21] and therefore ther i n d 0 pro id

alternative real-time support for the e type of object. Another drawback of R al

Time CORBA Version 1.0 proposal is that it do not addre d nami ch duling.

The group is currently working on a second project who e obj ctive i to xt nd the

scheduling mechanism and the interfaces defined in the Real-Time CORBA 1.0 to

support applications requiring dynamic resource allocation.

Another important result is the TAO project developed by the Di tributed Ob

ject Computing Group at Washington University [18]. TAO is a real-time CORBA

implementa.tion which uses a nearly on-line scheduling mechani m. Thi mean that

it schedules the tasks like an on-line scheduler except that it need some additional

information about the jobs coming in the future.

A number of other real-time CORBA implementations exist on the market today

with varying level of support for real-time applications. Som xampl ar ORBI

from IO~A Technologies [11] and DI 1MA - the microkernel ORB from A A [1].

However. a lot of work still needs to be done to provide nd-to-end support for

real-time objects.

20

CHAPTER 5

O~ "-LI. E SCHEDULING FOR CORBA E.. VIRO ME T

5.1 A General System Model

As discussed in the second chapter, CORBA applications are basically client/server

systems in which one or more client applications request services from a et of server

applications. The services are subsequently carried out by different re ources avail

able to the servers. Each client performs a sequence of operations. where each op

eration may invoke a request from a. specific server. The simplest scenario involving

ORB . namely a ingle client interacting with a single server is shown in Figur 5.l.

The solid a.rrows represent the reque t made by the client and routed by th ORB

ICLIENT ~m---- ...1·· O~8 ~. ._ ..~~ SERVER i

Figure 5.l: The simplest scenario involving ORBs.

toward the server. The dashed arrows represent the message that might be sent by

the server in response to the request (however. this is not necessary to happen).

21

In real-time appli ation we are u uall 111 er t d in chi ing n nd-to- nd

high service quality, which means that we are tr ing to minimize th period of tim

from the issue of the request until its completion. Gi en the ompl xit of th

underlying mechanism that enables the server-client interac ion (i.e. h ORB it If)

this problem becomes a very complicated one. The overhead that occur in such

applications is influenced by a large number of factors. mo t of them being pointed

out by Smith in some of his papers [50, 7, 19]. These include:

• the speed of the IDL compiler

• non-optimized da.ta copying and memory management

• inefficient receiver-side demultiplexing

• excessive control information carried in request messages

• inefficient design of network adapters

• inefficient protocol implenlentations and Improp r int grati 11 with th II

ub y tem

• inefficient implementations of the ORB tran port protocols

• lack of proper integration with the operating stem.

We can conclude that there are various ways of reducing the overhead but in the case

of multiple servers and clients it is obvious that the most important one remains the

scheduling algorithm itself. The implementation and performance te ting of such a

scheduling algorithm will make the object of our study.

22

. I

5.2 A Propos d S st m od 1 (Probl ill S a ill nt)

The proposed scenario for our study is the following: h 5 tern will con i

of a set of client applications. a set of identical re ource (erver) and a seh dul r

that has to route the requests made by the client to he variou servers. In fa t,

this is the most common general structure of nontrivial application in a CORBA

environment. All the service requests will be treated by the scheduler as unrelated

tasks. We assume that the clients make requests in a random manner (i.e. from th

scheduler viewpoint the tasks have random arrival times) and that the tasks have

soft deadlines.

We will also consider that the system can handle urgent tasks. that i task that

must be assigned to a resource as soon as they are created. Even more. we will

allow these urgent tasks to have arbitrilry deadlines as long as the non-urgent ones

till have one common deadline. Introducing urg nt task in our system allows us to

also handle cases in which the re ources can become unexpe t dly unavailabl . Thi

situation can be imulated by using the urgent tasks. with the only restri tion that

the duration of the down time has to be made known. Thus whenev r a resour

becomes unavailable we can consider that it is executing an urgent task that has just

arrived.

The following notations can be used to describe the system in study:

{R j . j = 1..m} the set of available resources in the system. m ~ 1

{Gil i = 1../} the set of clients in the y tem

{Tk . Ii = 1..n} the set of tasks/requests in the ystem generated by the clients.

23

Each task Tk i characterized by the following set of data (rk. dk·. k. Wk, pd wh r :

• rk stands for the release time or arrival time, which repre ent the time wh n

th(' scheduler learns about the new service reque t Tk .

• dk stands for the deadltne. which represents the time when the task Tk i due.

• ek' stands for the execution time. which repre ents the time neces ary for 0111-

pletion of task h.

• U'k stands for the waiting cost per waiting time unit associated with task Tk .

• Pk' stands for the lateness penalty cost per delay time unit as ociated with task

Since all the resources are identical. the only parameter describing them, the pro-

cessing cost per resource, will have the same value for all reo our es. We will consid r

that a task sy tem T is feasible if there exi ts a scheduling algorithm su h tha a h

task Tk is executed within its executable interval Eh = h·. dk]. Al 0, using th

notations. the deadline of any urgent task Tk can be express d as dk· = rk + k. F r

each task Tk• the waiting and lateness penalty co ts can be computed as follows:

Wk x job waiting time

H· Pk x job tardiness

and therefore the global waiting and lateness penalty costs will be the sum over all

jobs in the ystem:

n

Tr L n-k

k=l

24

The processing cost of the given task ystem can be expres ed as:

PR = m x processing time x pr (5,1)

where pr is the processing cost per time unit and per resource. We can compute now

the total scheduling cost for scheduling the given task system as:

n

C = W + P + PR = ~)Wk + P,.) + P R
k=1

(5.2)

Because of the unpredictable nature of request arrivals, it is extrem ly difficult

to design a. dynamic real-time system which guarantees that the deadline of all tasks

will be met. In practice, for heavily loaded systems we are concerned with as uring

the completion of as many tasks as possible in the case of tasks with equal priorities

or the completion of the most important tasks in th ase of priorit bas d sch d-

ules. Consequently we need to build an algorithm which works follow. Ev ry

time a new task is created. its release time, execution tim , deadline and waiting

and lateness penalty costs are made known to the system. xt, the sch duler has

to evaluate whether the newly arrived task along with the other unfinished tasks,

currently executing, can be completed so that all the deadlines are met. If all the

deadlines can be met. the system will execute the tasks according to the schedule

constructed by the on-line scheduler. Otherwise, the system will try to execute as

many tasks as possible or the most important tasks prior to the expiration of their

deadlines, allowing the remaining tasks to exceed their deadlines. Even more, the

total scheduling cost of the system will be minimized. Such an on-line algorithm is

25

proposed in the next section and will be implemented in our CORB

5.2.1 The On-line Scheduling AlgorithlTI

Vlronm n .

The on-lin~ scheduling algorithm proposed in this ection us as s ar ing point

the Hong and Leung s algorithm [10] which was designed for a sy tem having featur

similar to those discussed previously. As mentioned before. the goal of the original

version was to construct only feasible schedules and it has been modified in order to

minimize the total scheduling cost as well. The algorithm employ a subprocedure

called Slack-Time Algorithm to reschedule tasks whenever new task arrive. To

describe this subroutine we have to define one extra parameter characteristic to all

the tasks in the system called slack time. For an active task Tk the slack time

is defined to be Sk = dk - t - ek where t is the current time value and e", is the

remaining execution time for TJ... Thus the lack time of an urgent task is 0 tits

release time. The policy of the Slack Time Algorithm i to schedule th tasks with

the shortest slack time first. one task per resource. If th re ar everal t ks having

the same slack time and if the number of resources left over is less than the number

of these tasks. then the remaining resources will be shared among those tasks. Ea h

of the resource sharing tasks will be allocated a resource time proportional to th

sum of its waiting and lateness penalty costs. On the other hand, since a task cannot

be executed concurrently on two different resources. it cannot be allocated a time

larger than the time for which the resources are shared. Let's denote the set of the

active tasks in the system at the current time t by A(t). The Slack-Time Algorithm

26

has he structure presented beloVo.

I The Slack-Time Algorithm

1. FORALL tasks Tk E A(t) DO
COMPUTE the current slack time Sk;

00

2. IF ::I tasks TI; E A(t) such that Sk < 0
OR the number of tasks TI; with SI;- = 0 is larger than m

THEN declare the system infeasible;
FI

3. WHILE the number of available resources >0
AND the number of tasks in waiting queue >0 DO

ASSIGN the tasks starting with those having the lowest slack times
to the resources starting with the highest indexed ones;

IF several tasks Tk have the same slack times SI;

AND there are not enough resources to be assigned to the tasks
THEN the tasks share the remaining resources proportionally to their

waiting and lateness penalty costs;
FI

00

4. IF a task Tk is executing at a faster rate than other tasks with
smaller slack times OR a task is finished

THEN {
release all resources;
place the unfinished jobs back in the waiting queue;
goto Step 1;}

FI

5. IF the constructed schedule has missed a deadline
THEN declare the task system infeasible
FI

The Slack-Time procedure can be implemented to run in O(n2
) time. There

IS one important feature of this subroutine that needs to be highlighted: it IS a

resource-sharing schedule or a preemptive one. In thi case we can use both terms

interchangeably since, as shown in [3]. a resource-sharing algorithm can always be

transformed into a preemptive one and the tasks will preserve their previous comple-

tion times. Furthermore. the tasks which share some of the resources will obtain in

27

..
)

the preemptive cas the am amoun of pro Lng lID In

algorithm a each integer-valu d im . Th r fore an main ain in bo h

the same slack time at each int ger-valued ime. Sin

are integers this property can b maintain d at ever In an wh n n t k·

released.

Using the Slack Time procedure we can now introdu e th actual ch during

algorithm to schedule the requests COlUing from the client application.

I The Scheduling Algorithm

Whenever new tasks arrive DO
{

t ~ the current time
.4(t) ~ the set of active tasks in the system at time t
Call the Slack-Time Algorithm to schedule the tasks in A(t)

Hong and Leung specify Ln their paper that the running time of th s h duling

algorithm is O(r n2
) where r is the number of release time and n th numb r of

tasks. Since more than one task can be releas d at one time by clift r nt clients, the

number of release times in the system can be at most equal to the number of tasks

in the system. Therefore the worst-case running time for th scheduling algorithm

becomes O(n3
).

5.2.2 The Off-line Scheduling Algorithm

We will determine the performance of the previous on-line scheduling algorithm

by comparing it with the performance of an optimal off-line algorithm proposed by

Rajaraman [16]. Given the complexity of the problem to be solved i.e. the existence

28

of more than one resourc s of differ n ask rri al im and of ariou d dlin

well as all the optimization criteria on id d i b diffi ul

an efficient static scheduling algori hm. Thi is b au III nl

way of finding an optimal job sequence is a enum a all th

into account the task arrival time and resourc availabili on rain s. For Om

particular cases (i.e. scheduling on a singl resource) or b making simplifioations

regarding some parameters (e.g arrival times, deadlin) or even by totall liminating

them, the scheduling problem can be reduced to a maximal-flow n twork problem.

This approach can be more efficient than the enum ration m thad but still r quir s

O(n3
) running time.

There exist several attempts to improve the enumeration algorithm with similar

results. Among them is Rajaraman's [16] iterative solution which eliminates at each

stage the task equences that promise to perform worse than oth r exist nt on s. Thi

reduces to some extent the run-time, depending on the input task syst m consid r d.

Still. the algorithm has to take into consideration a relatively larg number of task

permutations. Therefore job preemption cannot be taken in consideration as it would

increase significantly the already large number of task permutations to be analyzed.

This is why one of the constraints imposed upon this off-line algorithm is that once a

job starts executing on a resource, it proceeds until completion (that is, job splitting

is not allowed).

The static algorithm which will be implemented starts by constructing C~ partial

sequences of length m, such that each sequence has an unique set of m jobs out of

the total of n jobs in the system. Although the sequences are aimed to indicate the

29

),
)

order in which he job will later obtain r our

jobs is not important since all the m r ourc can id r d

th ,rd r f h

beginning. Hence each of the job in thi initial equen

arrival time, with no dela and the sequ nc ord r is ignor d. Fran th e qu n

new sequences of length m + 1 are generated b taking ach qu nc of 1 ngth m

and adding. in turn, all the (n - m) possible jobs to it. Thus C~ (n - m) equen e

of length m + 1 are constructed. From these new sequences we form group such

that each group has the same m + 1 jobs but in a different order. In ea h group w

consider sequences in pair and eliminate one of them if the criterion below is rn b

both sequences:

• Let i and j be two permutations of the same job sequence.

• Eliminate sequence i if aj > aj and C j ~ Cj .

• Eliminate sequence j if ai ~ aj and C j ~ Cj .

where ai(j) is the earliest resource available time and Ci(j) is the total sch duling

cost for the sequence iU). In other words, if for a given set of tasks th r xists a

permutation such that its total scheduling cost is minimal and, in addition, it releases

a resource earlier than another existing permutation. then it becomes optimal and

will perform better even when new tasks are added to the system. This allows us

to discard the inefficient permutations. If none of the previous conditions are met,

both sequences will be retained. This procedure is repeated for all possible pair in a

group and for all groups. Notice that paired comparison is done only within groups.

30

With the remaining sequences of length m+ 1 e generate n w quen of 1 ngth

m + 2. Thereafter we form the groups once again and go through the limination

procedure. Finally, when we arrive at sequences of leng h n there will b onion

group which can be searched for the optimal sequence. We Vi ill look for a qu nc

that has the minimum number of tasks missing their deadline and the minimum

scheduling cost.

The main advantage of the algorithm is that it essentially eliminat a c rtain

number of partial sequences at each stage. The larger the numb r of partial equences

eliminated and the earlier the elimination takes place. the better the performance

of the algorithm will be. If, for example, at any stage when the equence are of

length i we eliminate one partial sequence, then (n - i)! sequence are discarded from

future consideration. The algorithm requires (n - m) stages for finding the optimal

solution. Since the run-time can vary con iderably from on input to anoth r, w an

only say that the worst case run-time for this algorithm i th same as th on for th

enumeration algorithm, but the best case is slightly improv d. Still, this algorithm

can not be used for large sets of job to be chedul d.

31

CHAPTER 6

THE TEST SYSTEM

This chapter describes the test system developed for the evaluation of the on-lin

scheduling algorithm for CORBA environments.

6.1 The On-line System Architecture

The main components of the on-line test system are: the Controller, the Client

Factories the Clients and the Scheduler. The gen raj tru tur of the s st m and

the way these different parts interact with each other are pres nted in Figure 6.1.

Furthermore, the test system contains some additional components such as a test

input parameter file and a test output parameter file. which are aim d to set up th

tests and collect the results of the evaluation.

The general procedure for performance tests is as follows: the Controller reads

the test parameters from an input file. Some of the most important parameters

set at this point are the period of time for which Clients will be generated and the

names of the machines on which the Controller can randomly create them. A Client

Factory application will be running on each of these host . The task of the Client

32

CONTROLLER

HOST,

SCHEDULER

Figure 6.1: On-line Test System Architecture

Factories is to generate local Client objects each time they receive a request from

the Controller to do so. Once a new Client is created, the Scheduler is notified

immediately of its existence and decides. depending on the other Cli nt xistent in

the system. whether to allocate a resource to it or to place it in the waiting qu u .

The Scheduler is the central part of the whole application. Having a ess to the

waiting queue and knowing at each moment the status of all re our s. it sch dul s

the Clients dynamically on the available resources such that the output parameters

are optimized.

6.1.1 The Controller

The Controller is the component responsible for the te t system initialization.

Every time a new test is started. the Controller reads from an input file the test

33

parameters which may vary from one tes pas to another.

The first parameters to be specified are the ho t on which a lien Fa tor

application is running and on which the Controller can random!

since the Controller will actually interact '" ith a Client Factor obj c in tantia d

within the Client Factory application. the Controller must obtain a reference to this

object. There are many ways to do this in CORBA, but the one cho en in thi as

is the aming Service, which is a CORBA Facility. Therefore the Naming Service

application has to run as a background process on each of the host on which Clients

will be created as well as on the host on which the Scheduler application reside as w

will see later. Before the Controller can be started, each Client Factory object rou t

register its reference with the local aming Service. This service acts as a whit

pages" sen'ice and can be used by any application which needs to find the r f r n e

of a registered object. Whenever the Controller s nd a m sag to a Cli nt Fa tory,

the only pieces of information at its disposal are the nam of th host on which it

resides and a preset communication port to the host (for in plicity we hav d fin d

the same port number for all Client ho ts). Using this information, th Controll r

obtains from t.he ORB a reference to the Naming Service running on the giv n host

which. in turn. provides a reference to the desired Client Factory.

Another parameter read by the Controller at startup is the host name on which

the Scheduler resides. This information is pas ed to all Client Factories before any

Clients are created and helps them locate the Scheduler and make the scheduling

request.

Finally. the last parameters specified in the input file are:

34

• the period ofime for whi h lien

• the maximum amount of time which can elap bet

creation requests made to the Client Fac ories b the ontroll r;

• the maximum execution time requested b a Client (i. . the maximum amount

of time a Client needs to use the resources);

• the number of resources available in the system'

When the Controller makes a request for a Client creation thes param ters xcept

for the second one, are passed along. The Client Factor produces in response a Client

with random parameter values some of them being limited by the abov maximum

values. Besides influencing the client attributes these parameter will alE ct a more

global system property: the sy~tem load. By modjfying their values we can perform

tests for more relaxed or lUore heavily loaded yst ms.

A few more aspects need to b discus ed at this point. Sinc this is a sch dulin

simulation, the system clocks of the different machines involved in the t sting ar

used extensively. But it is very possible that the e clocks do not show th xact sam

time value at the same moment in time. Therefor , the current time of th ho t on

which the Controller runs is passed to all the other ho ts for clock synchronization.

Another issue is that the seed for the random number generator is set to be equal

to the system time for each test pass in order to obtain a different set of random

numbers for each test.

After all the system parameters are initialized the Controller is ready to start

the Client creation. At this point it enters a loop which has the following structure:

35

the Controller choo es randoml a ho which i will I

obtains from the or .

and sends the message. A new creation r qu t is mad af r randoln p ri d of

time. The Controller exits the loop at he end of th tes ing p dod and t rmina

but not before sending a termination message to all Client Factori s.

6.1.2 Clients and Client Factories

The CORBAservices [12] Life Cycle Service specification provide a few guid lines

on how CORBA objects can be created copied, moved and destroyed. The Object

Life Cycle is one of the most challenging topics III distributed systems and the way the

OMG specifications suggest to solve the object creation issue is by u ing the factory

design pattern. A factory is a CORBA object that offers one or more operations

to create other objects of a particular type. In other words, factory op r tion in a

distributed system play the role of the constructor in C++.

Let us now describe briefly how the factory pattern work in our case. As spe ifi d

in the previous section. the Client Factorie should be registered on every machine

on which Clients will be started. To create a new Client obje t, th Controll r

obtains from the aming Service the reference to the desired Client Factory and

invokes an operation on it. The operation s implementation, which can be located

on the same machine as the Controller application or on a remote ho t, creates a

local Client object. It is obvious now that the major difference between a factory

and a regular C++ constructor is that the factory operation can create a CORBA

36

object in a possibly remote addr s space as oppo o a ++ on ru or hi h

always creates a C++ object in the local addr pa e. I an al 0 b

one needs to instantiate a factor object in order to invok th fa tor op ra ions

on it. whereas C++ constructors can be invoked ++ withou ha ing a pr exi ting

object.

For a. realistic simulation it is necessary that Client originat independ ntly on

different hosts and request resources immediately after creation. Th first r quir

ment is met by implementing the Client creation request, CreateClient () made by

the Controller, as a CORBA oneway operation. This means that the Controller i not

blocked after issuing its request and can therefore proceed immediately to make new

once. Otherwise, it would have to wait until its request is completed. nfortunately

there is a limitation to oneway operations: they can be invoked only when no resul s

are expected back by the caller and thus the caller doe not have to wait for the op

eration to complete. The second requirement, which i th prompt r gistration of th

Client with the Scheduler right after its creation is realized through multi-thread d

programming. This aspect will be covered in more detail in the next following s ction.

To conclude. by starting the Clients with oneway operations and by using a thr aded

policy for scheduling, it is guaranteed that Clients originate indep ndently of each

other and that they are executed in parallel. Hence, a sophisticated simulation of

real systems is made possible.

Let us summarize the operations performed by a Client Factory. At the beginning

it instantiates a Client Factory object and registers it with the Naming Service to

be accessed by the Controller. After the Controller provides the name of the host on

37

which the Scheduler resides, he Factory ob ain a ref r n e a th Scheduler obj

from the Naming Service in a manner similar to 10

the references to the Client Factories. At thi point th Fa or is re d to t

Clients whenever it receives a request b generating random Cli IiI. param r valu

such as: start time execution time deadline waiting co t and latene s p nalt 0 t.

Each creation is followed by a request for resource cheduling made on the b half of

the Client and for this reason the Chent parameters are passed to the Schedul r. At

the end of the test period the Client Factory receives a termination signal from the

Controller, transmits it to the Scheduler and exits.

6.1.3 The Scheduler

The Scheduler is the key pa.rt of the simulation. Its task is to schedule the Clients

created dynamica.lly by the Client Factorie based on the on-line algorithm pr nt d

in Chapter 5. Since our Client objects are task which require r source allocation,

we will use from now on the terms client, job and task interchangeably.

At startup. the application instantiates a Scheduler object and regist rs its r f

erence with the aming Service. This enables the Clients to make the scheduling

requests. Whenever the Scheduler receives such a call. it checks th status of the

resources. analyzes the jobs waiting in the waiting queue and decides in accordance

to its scheduling algorithm whether to assign the newly arrived job to a resource or

to place it in the waiting queue. After the Controller and the Client Factories have

terminated. the Scheduler continues to service all the jobs in the waiting queue and

38

exits in the end.

Let us consider the si uation in which two differ n origin t th m

moment on two different machines. In thi cas th will nd th ir

requests concurrently. But as we know, the conventional progr mming m th d do

not allow tv-o operations to be performed at the same time 011 he ame obje t, in our

case the Scheduler. Hence the Scheduler will start by completing one of the r qu t

while blocking the other one. Only after the first request i completed, the e ond

one can be considered. In the case of a heavily loaded system this can result in a

queue of Scheduler calls waiting for a busy Scheduler. In order for our simulation to

be accurate. it is imperative that the Scheduler learns about a newly generated Client

immediately after its creation. We will a.ccomplish this requirement with concurrent

programming techniques.

COREA allows different multi-threaded concurr ncy mod Is to b tablish d for

the client and server activities of an application. The on that fits our situati n

and proves to be useful is the thread-per-client server concurrency model. In this

activation policy. for every request sent by the client to the s rver, i.. the Sch dul r.

a new proces is started to handle this feque t. This will allow the Scheduler to r c IV

and attempt to resolve multiple requests in parallel.

A very common problem in multi-threaded programming occurs when proc sses

have concurrent access to shared data. It is known that such situations can lead to

data inconsistency. In our simulation the threads have to share objects such as the

waiting list or the resources. The solution to this problem is to ensure that parallel

processes have mutually exclusive access in time over the shared data. The CORBA

39

software used in the present simulation facilitate thi task ince it i pro id d wi h

a high-level thread abstraction library called JThread jC++ [14] imilar 0 th on

existent in the Java language. Thi library upport monitor that n ur h

mutual exclusion with two easy to use classes: JTCMonitor and JTCSynchronized .

There exist two types of threads in the ystem. The first one i a thread start d

by us manually in the main procedure of the Scheduler implementation. Thi thread

controls the scheduling process and requests a rescheduling whenever thi i neces ar

according to the rescheduling criteria presented in Chapter 5. In addition there are

threads created by the ORB for each Client request. Such a. proces register a new

Client with the Scheduler and attempts to allocate a resource to it.

One of the limitations of the thread-per-client model is that the ORB allows only

one active thread for each client in the user code. Since in our case each Client makes a

single request. this limitation becom s of no importan e. Another drawba k ould b

the overhead created by new thread production. that uch a concurr n y mod I could

induce. The performance measure presented in the CORBA software's sp cifi ations

[15] show that the model is fairly efficient. but still induce some overh ad esp cially

for large numbers of jobs.

6.2 The Off-line Systenl Architecture

The off-line scheduling simulator has three distinctive logical component: the

Loader. the Off-line Scheduler and the Execution Simulator, each of them performing

a very specific task.

40

6.2.1 The Load r

The Loader is the piece of code respon ible for t m etup at h b ginning of

each test. It loads fro111 an input file the parameter value for he r our nam

the number of resources and the processing co t per resource and per tim uni as w 11

as information regarding the jobs that need to be sch duled and forwards them to th

Scheduler. The following attributes are attached to each job: start time, ex cution

time, deadline, waiting cost and lateness penalty cost. Another responsability of the

Loader is to send these jobs to the Simulator at simulation time.

6.2.2 The Off-line Scheduler

As opposed to the on-line scheduling, in this case the scheduler and the simulator

components are completely separated due to the static feature imposed.

Given a set of jobs and a fixed number of resources. the off-lin s h dul r has th

role of finding the optimal resource di tribution among the jobs, in a ordan e to th

algorithm presented in Chapter 5. As described there. the schedul r builds various

job sequences corresponding to the order in which the jobs would r eive a r sour

and eliminate the sequences that prove to be inefficient. This proc S5 is rep ated

until the optimal job sequence is found. Because sequ nces are continuously cr ated

and eliminated. the necessity of using a flexible data structure to keep track of all

sequences arises. We opted for the vector container from the Standard Template

Library. Having a. vector of sequences. an entry can be easily added to or removed

from the vector with the help of stack operations such as push_back() and pop_back()

41

defined for ec or . Th e fune ions perform all the baeks age work such

memory allocation and deallocation.

A very important issue in choosing an optimal schedule i that as h

d nami

I.

Dum r

of jobs competing for the resources increases. the number of job permutation to

be considered increases dramatically. This leads to a heavy utilization of t 111

resources and therefore dynamic memory deallocation of all the variables which

become useless while running the program was of great can ern to us.

6.2.3 The Execution Silllulator

After an optimal job sequence is established. the execution of the jobs on the

resources is simulated. The jobs reach the resources in the order pecified by the

optimal sequence. \Vhen a job receives a resource. it uses it for a period of time

equal to its execution time. Whenever a resource is released. it is reallocat d to th

next job in the remaining sequence.

6.3 Performance Tests

This section describes the performance tests carried out with the two test systems

presented previously in this chapter and the two scheduling strategies presented in

Chapter 5.

42

6.3.1 Experimental Configura ion 'II

For all performance tests the fundamental system configuration was kept id nti-

cal to allow an easy comparison of the results. Two Sun Work tation ha ing th

parameters presented in Table 6.1 were used. The test were et uch that for th

on-Line scheduling the Controller was running on the first host and the Scheduler

on the second one. Both machines were used for Client creation. For the off-line

algorithm the jobs were sent from the first host to be scheduled on the econd one.

I Parameter Host #1 Host #2
Node Name z.cs.okstate.edu a.cs okstate.edu
Machine Type Sun SparcStation 5 Sun Microsystems

Enterprise 3000
Number of Processors 1 2
CPU Info Sun Microsystems Sparc CltraSparc 250 Mhz
Main Memory 32 MB 512 MB
Operating System Solaris 7 Solaris 7
Name of ORB ORBacus 3.2.1 provided ORBacus 3.2.1 provided

with JThreadsjC++ 1.0.8 with JThreadsjC++ 1.0.8
support support

Language Mapping C++ C++
Compiler Info gcc 2.95.2 gcc 2.95.2
Measurement Method gettimeofday getttim ofday

Table 6.1: Operating environment used for tests.

6.3.2 Running the Test

The tests for the two schedulers are performed by running them con ecutively on

the same set of jobs to be processed. We begin with the dynamic algorithm by starting

its component applications in the following order: first we start the aming Service

application as a background process on each machine where Clients are going to be

created and on the host on which the Scheduler application will run.. ext we start

43

the Clien Fac ori and the S h cluJ r. AU h appli ion p form om. ar up

operations such as ariable initializa ions and h h r

incoming requests. Only when the Con roll r i start d job ar

and the actual scheduling process begins. The on-line test i follow d b he off-lin

one which first starts both the Scheduler and the Ex cution Simula or and n t th

Loader.

6.3.3 Test Input

The goal of the tests is to analyze the behaviour of the two algorithms for various

system load values, where the load' is defined as the average amount of work per

resource. The load within the test system is determined by three factor : it increases

with the number and size of the jobs to be scheduled and decreases with the number

of resources. Hence, we can expre the load using the notations from S ion 5.2

nX(Lei/n) Lei
= canst x = can t x --

m m
(6.1)

where canst is a constant and 1 ~ i ~ n. The system load is tun d indir ctly

for the on-line algorithm by giving different value to the input param t rs r ad by

the Controller from the input file. The number of jobs in the system was modified

for different test passes by varying the Controller maximum waiting tim betw en

t.wo consecutive Client creations in the range 9 - 19 seconds. The execution time

requested by a job took values in the range 1 - 50 seconds and ystems having 1 -

5 resources were considered. Each of the two cheduling strategies was tested for a

total of approximately 20 hours.

44

To compare the performan of the two ch duling r gi w n d to run h 1

on the same sets of jobs. For each t t

randomly and the final complete set is saved in a emporar fil whi h will

input for the off-line algorithm.

Let us discuss in more detail this aspect. As we know, the off-line s heduling

method is a static one and therefore all jobs in the system ne d to be known ahead

of time, prior to their arrival. This is of course impossible in practice but ther are

a few technique which attempt to make predictions about the job ystem.· ually

these techniques rely on the past history. i.e. on information about jobs cr ated pr

viously in the system. In this case the assumption is made that the next coming job

set will have parameters similar to the previous ones and a schedule i set for the e

predicted jobs. When the real jobs are created they are allocated to the resource ac

cording to the chedule generated for the predicted ones, which mans that h wors

the predictions. the wor e the off-line algorithm will perform. Good results can b

obtained for periodic task system where job parameters follow specific distributions

within the periods. But for random job, as in our case, it b comes impossibl to

make reasonable predictions and the performance of the off-line s heduler is poor.

Another problem arising for the particular case studied by us is that ach job is

characterized by five different parameters, and thus the predictions are even more

complicated. Therefore we chose to not make any predictions about the incoming

jobs. After saving the set of tasks on which the on-line algorithm was tested, we

forward them to the off-line algorithm and the static scheduling is performed. Since

the e jobs are the" real"' jobs created by the system. the ituation is equivalent to

45

the ideal case in which the off-line algorithm would predi t the future job with no

errors. In other words, we perform the off-line tests for ideal ituation wh r

the on-line ones are performed for realistic situation. Hence the performan e of the

dynamic method is compared to the best case performance of the static one.

6.3.4 Test Results

To compare the performance of the two algorithms several performance mea-

surement objects such as: number of late jobs total scheduling cost, waiting cost

lateness penalty cost and processing cost were analyzed. More exactly, we trace their

evolution as changes in the system load occur.

Because our work focuses on the real-time systems, the measurement parameter

of most importance becomes the number of jobs that do not meet their deadline

during a test pass. The variation of this parameter with the system load is pr sented

in Figure 6.2.

It can be noticed that for reasonable loads the on-line algorithm manag s to

minimize the number of job that fail to meet their deadline. This can be explained

considering how the algorithm works: whenever a resource becomes available it is

allocated to the job with the smallest slack time value. i.e. to the job which is

in greatest danger to miss its deadline. The resources are shared in time by such

problematic jobs. each job receiving a time slice proportional to the inverse of their

slack times. This policy proves to save as many jobs as possible if the number of

jobs in danger is reasonable. However. as their number increases, all the problematic

46

10 ,....-,---....---,----...----..----.....----.------,

8

2

o

"

"

~•....

40 60 80 100 120
System load

140 160

Figure 6.2: The Number of Late Jobs as a function of the System Load for On-lin

(solid) and Off-line (dotted) algorithms.

jobs are allocated resources for a time period which usually is not large enoug.h to

ensure that delays are avoided. For heavily loaded y t 111S th off-lin poli om

more efficient because it sacrifices from the beginning some of the probl mati jobs

in order to save as many as possible of the remaining ones. The off-lin algorithm

decides which jobs are of less importance and have small or no chances to execu ed

on time and leaves them to be last scheduled. Hence the number of the remaining

problematic jobs decreases and their chances to meet their d adline improve. This

explains the better performance of the off-line algorithm for busy systems.

The second important parameter used as a performance measurement object is

the total scheduling cost defined by the Equation 5.2. Its dependency on the system

load is drawn in Figure 6.3. In order to understand and interpret this result we

47

1750

1500

(j) 1250
0
(;)

01
~ 1000i.c:
(;)
(I)

750
Iii
~

500

250

.... .

."......

40 60 80 100 120
System load

140 160

Figure 6.3: The variation of the Total Scheduling Cost with the S stem Load for

On-line (solid) and Off-line (dotted) algorithms.

should first analyze the behaviour of its components, namely the waiting cost, the

lateness penalty co t and proce sing co t. Th se result ar shown in Figur 6.4,

6.5 and 6.6 respectively. They all follow a g neral pattern in whi h th on-lin

algorithm performs slightly better for reasonable system loads and wars n for larg

load values. The behavior of the waiting and latene s co ts can be explained through

the same mechanism used for the number of late jobs. As previously describ d,

the off-line algorithm chooses some less important jobs having small waiting and

lateness penalty costs and large sizes and postpones them until all the other jobs

are completed ignoring the fact that they will miss their deadline. The advantage

of this policy in the case of busy systems is that the expensive jobs are executed as

early as possible, hence the waiting and lateness costs are optimized. On the other

48

600

500

400
iii
0
0

~ 300
:0:::

~
200

100

0

40 60 80 100 1.20
System load

...

140

... . ..

160

..

Figure 6.4: The variation of the Waiting Cost with the System Load for On-lin

(solid) and Off-line (dotted) algorithms.

hand the on-line scheduler attempts to service all the problematic jobs concurrently

through resource sharing. This leads to long waiting tim and lat ompl tion tim

that explain the results obtained. The co ts playa much I ss important rol in

dynamic scheduling. They are considered only in cases in which th r ar two or

more problematic jobs having identical slack time values

Slightly different than the other plots is that of the processing cost versus syst m

load presented in Figure 6.6.

In this case, the on-line algorithm has an overall better performance. The expla-

nation for this behavior is the following. As mentioned before, the off-line algorithm

has all the job system information prior to runtime and it constructs a schedule that

attempts to minimize the measurement parameters. In the case of relaxed systems,

49

.... A.

500

1ii 400
8
~

~ 300
~
~
~ 200
~
l\l
-J

100

o
... ,..,

40 60 80 100 120
System load

140 160

Figure 6.5: The variation of the Lateness Penalty Cost with the Sy t m Load for

On-line (solid) and Off-line (dotted) algorithms.

this may result in schedules with gaps, since the algorithm is nonpreeptive. A gap in

the schedule is defined as the period of time for which a r sourc is idl v n though

there are jobs waiting to be scheduled. Gaps can occur in cas s wh n th s h dul r

knows that a more expensive job will soon be created and that a bett r ov rall perfor-

mance will be obtained if the idle resource is reserved for it. Hen e th performan

is sometimes improved at the cost of a worse completion time and processing cost.

The on-line algorithm does not have information about future jobs, is preemptive

and dynamic and therefore gaps do not occur in its schedule. For heavily loaded

systems. gap-free schedules are created, even in the case of the off-line algorithm.

For this case. the processing time of the on-line schedule becomes slightly worse due

to communication overhead between the applications involved.

50

800

700

..
600 ..

iii
8 500 • ."....
Ol ..·S ~
tI)
tI) 400CI>u

~
300 ...

200

100

40 60 80 100 120 140 160
System load

Figure 6.6: The variation of the Processing Cost with the System Load for On-line

(solid) and Off-line (dotted) algorithms.

Finally we can come back and analyze Figure 6.3. For small loads, the difference

between the results produced by the two algorithms for the waiting and laten ss costs

are negligible compared to the differences in the proces ing cost. Hence th obvious

dominance of the on-line algorithm over the off-line one, visible in Figure 6.3, is

inherited from the processing cost. For large load values its contribution be om s

irrelevant and therefore the features from Figures 6.4 and 6.5 become dominant.

51

CHAPTER 7

CO CLUSIO S

In this work we propose an on-line scheduling strategy which could b imple

mented at CORBA level for distributed real-time systems. Although a good nd

to-end performance in CORBA environments is influenced by many factors as: m s

saging mechanism, network adapters design, protocol implementation, integration

with the operating system, etc., the most important factor remains the cheduling

policy. A distributed client-server type te t system involving two hosts has b n

implemented in order to analyze the behaviour of the dynami algorithm. To obtain

a lUore realistic simulation, multi-threaded programming was applied for job r gis

tration with the scheduler and for job cheduling. The performance of th algorithm

was evaluated by comparing it to the best case performance of a traditional off-lin

strategy. For both algorithms the tests were performed with different loads. Output

parameters such as the number of late jobs and the total scheduling cost defin d as

the sum of waiting lateness and processing costs were used as primary measurement

objects.

We found that the dynamic scheduling method produces good results for both

the number of late jobs and the total scheduling co t for reasonable load values.

52

The communication overhead for his i in ignifi nt bing

a good job management. nfortunateI as the load in r p rform f

the algorithm decreases dramaticall . This ph nomenon 0 cur be ause the on-line

scheduling policy is to share the resources between the job whi h have th small t

chances to finish on time, rather than to pick some of the mo t important problematic

jobs and to concentrate its effort on their completion, as the off-line algorithm doe.

Another reason for this worse performance is that as the number of clients increase ,

the communication overhead between the applications involved increase as well. We

need not forget though that the results are compared with the results produced by

the ideal case off-line scheduling, hence we could say that the performance of the

on-line algorithm is satisfactory.

For real-time systems an important feature offered by the static schedule is that

it provides information about the task ystem schedulability prior to run-time. An

other advantage of the off-line scheduling is the low run-time computation overhead.

However. the off-line algorithm has it drawbacks. First. the id a of I arning the task

parameters at arrival time (as used in the on-line scheduling) seems mor natural and

more feasible than the requirement of knowing all this information ahead of tim in

the case of the off-line algorithm. The latter becomes even more unnatural when th

jobs have totally random arrival times. which is exactly our case. Another drawback

of off-line algorithms is that the computation of the optimal schedule prior to th

run-time is very time consuming for large numbers of tasks in the off-line case. We

can conclude that on-line scheduling approaches offer potential solutions to these

complex problem but at some significant cost.

53

As further v.ork a mixed on-line/off-linealgori hm could b onid r d for h

system in study. Such an algorithm could lead to a high r r our u iliz ion than

purely static scheduling strategies with acceptable run-time 0 t .

54

BIBLIOGRAPHY

[1] APM Ltd. DIMMA. 'A ovel Design for an Advanced Real-Time Object Re

quest Broker (ORB)".

http://www.ansa.co.uk/A ·SATech/software/dimma.tar.gz.

[2] Borodin. A. and EI-Yaniv, R., "Online Computation and Competitive Analysis',

Cambridge University Press, 1998.

[3] Coffman. E.G. Jr. and Denning, P.J., .. Operating System Theory", Englewood

Cliffs, NJ Prentice-Hall 1973.

[4] Da.vis. E. and Jaffe J.M., "Algorithms for s heduling tasks on unrelat d proc s

sors", J. ACM, 28(4):721-736, 1981.

[5] Fiat. A. and Woeginger, G.J., "Online Algorithms", Lecture otes in Computer

Science 1442. Springer-Verlag 1998.

[6] Gokhale. A. a.nd Schmidt, D., "Measuring the performance of Communication

Middleware on High-Speed Networks", Special Interest Group on Data Commu

nication. August 1996.

[7] Gokhale. A. and Schmidt, D.. ,. Evaluating CORBA Latency and Scalability

Over High-Speed ATM :'J'etworks". ICDCS. 1997.

55

(8] Go al P.. Guo X. and in H. 11., Hierarchi al P Sch dul for ul inl i

Operating Systems Second enix S mpo ium on Op ra ina' S

and Implementation 1996.

miD in

(9] Graham, R.L., Bounds for certain multipro

Technical Journal 45:1563-1581, ov. 1966.

B I ~vs:ten)

[10] Hong, KS. and Leung, J.Y.-T., "On-line scheduling of real-time tasks", IEEE

Transactions and Computers 41(10):1326-1331 1992.

[11] 10 A Technologies http://www.iona.com/products/orbix.

[12] Object Management Group, II CORBAservices: Common Object Services Spec

ification·. ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf, ovember 1997.

[13] Object Management Group, "Realtime CORBA Version 1.0 - Proposal",

http://www.omg.org/cgi-bin/doc?orbo /99-02-12,1999.

[14] Object Oriented Concepts Inc.. "JThread /C++. Java-lik Thr ads for C++",

ftp:/ /ftp.ooc.com/pub/JTC/1.0/JTC-1.0.1O.pdf.gz, 2000.

[15] Object Oriented Concepts Inc .. "ORBacus for C++ and Java' ,

ftp:j/ftp.ooc.com/pub/OB/3.3/0B-3.3.1.pdf.gz. 2000,

[16] Rajaraman. M.K., ,. A parallel sequencing algorithm for minimizing total cost",

aval Research Logistics Quarterly 24(3):775-783, Sept 19//.

[17] Sahni. S. and Cho. Y., 'Nearly on line scheduling of a uniform system with

release times". SIAM J. Comput .. 8(2):275-285, 1979.

56

[18] Schmidt, Do Bector, R.. Le in I D. ung S. and Parulkar G. T 0: A

Middleware Framework for Real-Time ORB Ends m IEEE or hop on

Middleware for Distributed Real-Time S stem ans Ser i 19970

[19] Schmidt. D.. Gokhale, A., Harrison, T. and Parulkar, G.' High Pedorman

Endsystem Architecture for Real-Time CORB ", IEEE Communication Mag

azine, 14(2), 1997.

[20] Silberschatz, A. and Galvin PoB., "Operating System Concept l\, Addi on

Wesley, 1997.
r I

[21) Wolf 1., Burke W. and Vogt Co, 'Evaluation of CPU Scheduling Mechanism

for Multimedia Systems', Software Practice and Experience, 26:375-398 19960

1. .,

57

VITA J-

Diana Aura Dumitru

Candidate for the Degree of

Master of Science

Thesis: ON-LINE SCHEDULING FOR REAL-TIME CORBA ENVIRONMENTS

Major Field: Computer Science

Biographical:

Education: Graduated from C. D. Loga High School, Timisoara, Romania in
1991; received a Master of Science Degree in Physics from Western
University of Timisoara, Timisoara, Romania in 1996. Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in July, 2000.

Experience: Employed by the Oklahoma State University, Computing and In
formation Services as a Computer Lab Assistant, 1998-1999.

