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CHAPTER I

INTRODUCTION

General Statement

Characterization of compartmentalized natural gas reservoirs in the Vicksburg

Formation is the primary objective ofthis study. The overpressured low-contrast/low

resistivity (LRlLC) reservoirs were often bypassed because their detection and evaluation

were difficult with existing wire-line logging technology. The difficulty of identifying

reservoir and seal facies is further compounded in LRILC intervals. These intervals are

becoming increasingly important exploration targets in mature basins.

This analysis of low-contrast Gulf Coast reservoirs focuses on a comprehensive

and integrated evaluation of "shaly" intervals in the Oligocene Vicksburg Formation.

These intervals are problematic to operators in that their suppressed wire-line log

signatures make net-pay and water saturation calculations difficult to obtain.

Furthermore, these "shaly" reservoirs may have unpredictable productivity and

recoverable reserves and even recognition where production is coming from within the

borehole. These problems are expanded by a lack of rock data. As an example, the

primary productive low-contrast reservoir in the study area was only recently cored and is

not described in the literature.
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Improved reservoir characterization and petrophysical evaluation are dependent on

understanding rock properties. This comprehension is essential for predicting the

interactions between reservoir rocks and petrophysical. It provides the foundation for the

series of studies related to the development of improved evaluation techniques for these

complex reservoirs.

The 9900-ft sandstone ofthe Vicksburg Formation was selected for this

investigation. It is composed ofthinly bedded and interlaminated sandstone and shale and

is considered as an example ofa low resistivityllow-contrast (LR/LC) sandstone reservoir.

Conventional wire-line signatures are usually suppressed, and therefore their utilization as

interpretation tools becomes less effective. Reserve calculations and economic evaluation

are usually based on net-pay calculations derived from wire-line log measurements. In

many instances, wire-line logs are the only tool available to perform this essential task.

The availability ofhigh-resolution resistivity and porosity tools and formation micro

imaging logs has greatly improved interpretation ofthese rocks.

The cores used in this project were calibrated to high resolution and micro-imaging

logs. Micro imaging is used to identify sedimentary bedding and diagenetic banding less

than one inch thick. Chromatic variations which reflect resistivities of the formation can

be attributed to changes of lithofacies and diagenetic patterns. Accurate measuring ofthe

relative thickness of cemented and porous beds in LR/LC zones can improve net

reservoir/net pay calculations and economic evaluation.

In addition to formation micro-imaging, various methods and techniques were used

in the identification and characterization ofcompartments and seals. They are fluid
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inclusion stratigraphy (FIS), formation pressure data, and capillary pressure

measurements. The emphasis on characterization processes was two fold:

a. To examine the spatial relationship between reservoir and seal intervals within

overpressured compartments, and

b. To provide a specific petrophysical and capillary pressure sealing capacity

parameter for intra-compartment seals.

Objectives

The primary objective ofthis study is to provide a detailed petrographic analysis of

the Vicksburg Sandstone in the TCB field from the subsurface of Texas. More

specifically, the 9900-ft sandstone was of interest to the operators in the field since it had

not been studied. This zone is unpredictable since it is very difficult to interpret using

conventional petrophysical techniques and its production characteristics and reserve

estimates are difficult to estimate. The primary objectives of this investigation are:

1) Examination of cores, wire-line logs, maps and cross sections pertaining to the

Vicksburg reservoirs.

2) Detailed core descriptions including lithology, grain size, sedimentary structures,

constituents, porosity, and bedding contacts.

3) Correlation high-resolution resistivity images to core for detennination of specific

features.

4) Preparation of thin sections, x-ray diffraction analyses, and examination of selected

samples with the SEM.

5) Characterization of porosity types and quantities
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6) Describe the composition and occurrence ofcements and their relative timing to

porosity reduction and/or enhancement.

7) Verification of seal intervals using log signature and FMl (Formation Micro
Imaging)

Study Area

A LR/LC gas-producing interval was examined in the TCB field in Kleberg

County, Texas (Figure 1). This interval was chosen because of data availability and its

economic significance. TCB field has produced in excess of 172 billion cubic feet (BCF)

gas and 4 million barrels of liquids (MBL) from the Vicksburg formation since 1942

(petroleum InformationlDwights, 1999; International Oil Scouts Association, 1997; and

Taylor and Al-Shaieb, 1986). LRILC Vicksburg reservoirs within TCB field had a

cumulative production in excess of 20.4 BCF and 451 thousand barrels ofliquids, before

field consolidation in 1993 (p.I./Dwights and Int. Oil Scouts Assoc.). TCB field is part of

the greater Vicksburg trend (Figure 2) that has a cumulative production of over 5.0 trillion

cubic feet (TCF) gas and 320 MBL (Combes, 1993). LRILC reservoirs are a significant

contributor to this production and are becoming increasingly important as exploration

targets. As a result of the difficulty interpreting these economically important reservoirs,

Oryx Energy Company provided various data including cores, wire-line logs, and core

analyses of the LR/LC "9900-ft" sandstone for this study. While this study focuses on the

TCB field, the results may improve evaluation strategies ofLRlLC reservoirs along the

Vicksburg trend and elsewhere.
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Figure 1. Location of TeB Field in K1eberg and Jim Wells Counties, Texas.
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Methods ofInvestigation

Two cores provided by Kerr-McGee from the Vicksburg sandstone located in the

T.C.B. field were examined. A literature search regarding the geology ofthe Gulf Coast

was conducted to provide information regarding the tectonic and depositional framework

of the region. This investigation was focused on the examination on the two LR/LC cores

because they were obtained from wells that were logged with high-resolution wire-line

tools. Integrated analysis was performed using micro-imaging logs, high resolution logs,

fonnation pressures, core data, fluid inclusion stratigraphy (FIS) and capillary pressures.

In addition, petrographic analysis utilizing these techniques: thin section petrography,

scanning electron microscopy (SEM), and x-ray diffraction were also used.

Petrographic Analysis

Analysis of obtained cores focused on the identification of sedimentary structures,

textures, and lithofacies. Samples were selected from sandstone intervals with varying

porosities and penneabilities within each core. Each core was described and data were

recorded on a petrolog form for depositional and diagenetic analysis that was designed at

Oklahoma State University.

The petrographic investigation involved the examination of27 thin sections under

the polarizing microscope. Thin section analysis concentrated on the identification and

characterization of detrital constituents, diagenetic imprints and porosity. Each sample

was impregnated with blue epoxy to assist in the identification ofporosity. Quantitative
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measurements of the petrofabric were obtained through point-counting (10 points per

sample).

Samples were prepared for x-ray diffraction for mineralogic and petrographic

description. SC8W.-ung electron microscopy was used to detennine the fabrics and clay

minerals, as well as secondary porosity features not visible in petrographic thin sections.

Using this method it was possible to observe delicate structures ofauthigenic clays,

framework ofmicropores and abundance of grain dissolution or leaching.

Formation Micro-Imaging

Micro-imaging tool is designed to focus small beams of electrical current into

subsurface fonnation to measure changes in resistivity along the borehole wall that

coincide to subtle changes in rock composition, grain texture, and fluid properties. The

resolving capabilities ofmicro-imaging logs allowed their correlation to cores on an inch

scale. High-accuracy correlation facilitated sampling of the core and characterization of

the rocks representing various chromatic bands to micro-imaging logs. Important

information needed to understand and identify these interbedded and laminated reservoirs

can be obtained from this instrument.

Micro-imaging tools measure micro-conductivity using closely spaced button

electrodes mounted on pads. Each pad contains 24 sensor electrodes, resulting in

measurement resolution of0.2 to 0.3 inches. These tools typically have 6-8 articulating

pads mounted on independent arms. This design allows relatively free movement to

improve electrode to formation contact (Halliburton, 1997 and Schlumberger, 1992).

Like other micro-resistivity tools, micro-imaging tools are designed to be run in
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conductive, water based mud. The depth of investigation for micro-imaging tools is up to

30 inches. When used as dipmeters or high-resolution tools for sedimentological, vug, or

fracture analysis, their nonnal investigation depths are typically a few inches. This shallow

depth of investigation limits the resistivity measurements to the flushed zone (Rxo). As a

result, formation fluids have minor affect micro-imaging tools and the recorded resistivity

measurements reflect only rock properties. Variations in current recorded by micro

imaging tools are converted to synthetic color images. Dark colors reflect high micro

conductivity (low resistivity), while light colors reflect low micro-conductivity (high

resistivity) zones.

Most micro-images are viewed in two forms, static and dynamic. The static view

has a fixed resistivity scale over the logged interval so that beds with the same color shade

have the same resistivity. The dynamic view presentation uses a sliding resistivity scale

that is applied at I-ft intervals. This view enhances the visibility of small details by

maximizing the contrast between features. The static view allows the comparison of

resistivity over depth. When these resistivity values are core-calibrated, the micro-imager

becomes a powerful tool for estimating rock properties.

Pressure Data

Pressure data obtained from scout tickets were used to calculate pressure gradients

within the study area. These sources include calculated pressure data from initial wen

head shut-in pressures, wire-line bottom hole pressure tests, wire-line formation tests and

repeat formation tests.
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Fluid Inclusion Stratigraphy

Fluid inclusion stratigraphy involves the complete analysis of volatiles trapped in

fluid inclusions using a quadrapole mass spectrometer. Samples of rock cuttings were

obtained and sorted into appropriate bottles. Cleaned samples are loaded, together with

appropriate standards, into 630-hole trays, covered with a metal impact slug and placed

into a vacuum oven at an elevated temperature. This is done to remove remaining

adsorbed organic and inorganic volatile material up to en. Sample trays are then placed

into an ultra-high vacuum chamber and evacuated for approximately 8 hours. Bulk fluid

inclusion volatiles are afterwards instantaneously released from each sample in a sequential

manner by automated mechanical crushing. Volatile organic and inorganic species are

dynamically pumped through four quadrupale mass analyzers where molecular species are

ionized by electron bombardment. The species are then separated according to their mass

to charge ratio (m/z) where millivolts are approximately proportional to concentration in

the ionized flow (Hall, 1999).

Fluid Inclusion Stratigraphy (FIS) analysis was carried out on a total of403

cuttings and core samples from several wells to produce a nearly continuous section from

the lower part of the Frio Formation, through the Vicksburg and into the Jackson shale.

Samples span from depth intervals 5990-11616 feet.

High-Resolution Logs

Array induction, gamma ray and neutron-density logs were correlated to cores.

The measurement accuracy of these tools in thinly bedded and laminated reservoirs was
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detennined. The presence ofthin highly cemented sandstone and shale beds in the cored

intervals permitted a close correlation (within 1 ft.) of cores to the high-resolution logs.

Array induction logs provide resistivity measurements of five different depths of

investigation: 10, 20, 30, 60, and 90 inches. These tools can resolve beds down to one

foot thickness (Sneider and Kulha, 1995). Shallow investigation curves (10" and 20")

effectively defined boundaries for beds greater than 1.5 ft. thick, but the thin beds limit the

effectiveness ofthe deeper curves in measuring beds less than three feet thick.

High-resolution gamma ray logs can resole beds thicker than 2 to 3 feet (Sneider

and Kulha, 1995). In the Vicksburg interval, gamma ray responses identified sandstones

greater than 3 feet thick and detected thinner shales (approximately 1.5 feet thick). In the

Vicksburg interval, many beds are less than one foot thick indicated by the cores and FMI

logs.

High-resolution neutron and density porosity logs efficiently to changing rock

properties. Density porosity correlates well with core-plug porosity measurements for

beds thicker than one foot. Neutron values are consistently higher than density porosity

values. In addition, core plug data on porosity, penneability, grain density and fluid

saturation were also available. These data were augmented with additional core plug

samples that were selected on the basis ofwire-line log to core correlation.

Capillary Pressure

Capillary pressure data were obtained through mercury injection ofrock chips.

Injected mercury volume as a function of pressure is then attained. Mercury injection

pressure in mercury/air system is converted to capillary pressure in gas/water system.

11



CHAPTERll

GEOLOGIC SETTING

Stratigraphy and Depositional Setting

The Tijernia-Canalas-Blucher (T.C.B.) field area in KJeberg and Jim Wells counties

has produced significant volumes of hydrocarbons from the Oligocene Frio and Vicksburg

(Taylor and Al-Shaieb, 1986). The Vicksburg Formation was deposited during the Early

Oligocene and consists of sandstone, siltstone and shale. The Vicksburg Formation

confonnably overlies the Eocene Jackson shale and is overlain by the Oligocene Frio

sandstone.

The Oligocene-age Vicksburg Fonnation (Figure 3) is interpreted as a series of

prograding deltas that are separated by marine transgressions (Combes, 1993; Combes

Coleman, 1990; and Taylor and Al-Shaieb, 1986). The Vicksburg is overlain by the Frio

Formation, which was deposited in a fluvial environment (Nanz, 1954; Shelton, 1973).

The Vicksburg overlies the Eocene-age Jackson Shale that provided an unstable shelf

margin for Vicksburg deposition. Sediment loading on the undercompaeted Jackson mud

caused large-scale slope failure along listric glide planes. Defonnation of the Jackson into

ridges and diapirs, along with regional extension generated accommodation space for

Vicksburg sediment accumulation. Rollover anticlines were generated and segmented by

12



TCB LOCAL SUBSURFACE
FIELD NAMES

Frio Fm Frio

Nowacek sandstone.. Wilson sandstone8- 7900-ft sandstoneQ.

LU
~ 8500-ft sandstone

Z I 8650-ft sandstone,

LU 8800-ft sandstone
()
0 Vicksburg Fm 900().ft Sandstone
(!) 940().ft Sandstone- 955().ft Sandstone-J ...
0

CD 990().ft Sandstone
~ 1025().ft Sandstone...J

10500-ft Sandstone
1060().ft Sandstone
1100().ft Sandstone
1180().ft Sandstone

UJ
Z
UJ Jackson Group Jackson Shale
()
0
LU (After Taylor and AI-Shaieb. 1986)

Figure 3. Stratigraphic nomenclature in the TCB field, Kleberg County, Texas.
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synthetic and antithetic faults (Figure 4). Vicksburg depositional style was influenced by

structure as thicker sand sequences accumulated on the downthrown side offaults. These

sequences thinned over the crest of the anticlines and disUilly into the basin (Figure 4).

Major sand accumulations in the lower and upper Vicksburg reservoirs (Figure 5)

represent fluvial-deltaic progradation depositional facies. Analysis of cores and electric

logs from the TCB field indicate that the sandstones were deposited in shallow water. The

9900-ft intervals show abundant evidence ofmarine influence such as fossils, trace fossils

and glauconite. This interval represents the transgressive phase of the Vicksburg and

interpreted to have been deposited in a shallow marine shoreface environment (Figures 6

and 7).

Generalized seismic stratigraphy indicates the Lower Vicksburg section (lO250

11800 ft sandstone zones) represents a progradational wedge deposited in a lowstand

systems tract (Combes, 1990 and 1993; AJ-Shaieb et al., 2000). Basic structural timing of

the movement along the growth fault can be determined from seismic data. A visible

thickening of sandstone and shale interbeds is evident in the Vicksburg 9400 - 9900-ft

intervals, suggesting that movement along the fault was the greatest during this time

(Figure 8). The 9400 - 9900 ft. interval is interpreted as a transgressive systems tract (AJ

Shaieb et al., 2000). The Upper Vicksburg Wilson - 9000-ft sandstones are interpreted as

sheet sands deposited in a prograding highstand systems tract. They are represented by

continuous high amplitude beds on the seismic cross section (Figure 9).

Thick shale intervals separating sandstones are interpreted as flooding events. The

intensity ofprogradation., subsidence and marine reworking influenced sediment

accumulation and ultimately reservoir geometry and distribution. LR/LC intervals such as

14
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11000 ft.

Vertical Exaggeration· 2X

Figure 4. Structural cross section showing the influence of structure on depositional style.
Sediment accumulation is thicker on the downthrown sides of faults and thins
over the crest of the rollover anticline. Colors separate depositional intervals,
which show similar patterns of thickening toward the fault. Numbers identify the
upper most sandstone unit (local subsurface names) in each interval.
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Figure 7. Thickness map showing distribution of net channel sandstone
in the lower 10250-ft Vicksburg zone.
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the 9900-ft sandstone may be interpreted as transgressive lower shoreface deposits. These

interbedded and interlaminated sandstones and shales contain a variety oftrace fossils

includingpaleophycus, planolites, skolithos, teichichnus, and zoophycos that are

indicative ofa shallow marine setting. The distribution and geometry of individual

reservoirs within the 9900-ft zone were difficult to establish, but the total interval

thickness was mapped (Figure 9). It also thickened toward the fault and showed a marked

increase in sandstone along the fault trend.

Structural Features

The local structure at T.C.B. field area is characterized by a major, listric normal

fault (Figure 3). The Vicksburg fault has a continuous growth as shown by the increased

thickness of lower Vicksburg intervals on the downdip side and by increasing dip and

structural complexity in deeper horizons. Numerous subsidiary faults are present, also

downthrown to the east and convergent downward with the major fault zone. The

structure shown by the cross section (Figure 4) and maps is highly generalized, and not all

of the possible faulting is shown.

The structural-tectonic features of South Texas are extremely important in defining

entrapped Vicksburg hydrocarbons such as those found in T.C.B. Field. The South Texas

Vicksburg, Frio and Wilcox depocenters are similar in their depositional environment

types and simply represent an infilling of sediments into the Gulf Basin by an ancestral Rio

Grande. The Cenozoic History of the Gulf Coast is essentially a conflict between land and

sea derived processes for possession of the area ofthe present Gulf Coast Plain

(Williamson, 1959). This describes what was happening at the various sediment input of

21



the rivers that were confronting the Gulf ofMexico, but on the much grander plate

tectonics scale, the processes that were controlling the overall picture were not nearly as

simplified. The Rio Grande Embayment is the main feature, which contains the bulk of

hydrocarbon-laden sediments in south Texas. Next in importance are the major fault

flexure zones which were generated contemporaneous with sediment loading. The major

growth fault zones and structural features are the main trapping mechanisms in the South

Texas subsurface. The general package of growth faulted sediments within the Rio

Grande Embayment is bounded to the northeast by the San Marcos Arch; the southwest

by the Sierra Madre Oriental, Sierra Madre Occidental and the Laramide fold shear belt; to

the northwest by the Trans-Pecos volcanic Field, Southern Rockies and again the Sierra

Madre Occidental; and finally to the south and south east by the Gulf ofMexico Basin

(Han, 1981).
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CHAPTER ill

PETROLOGY

Introduction

The Vicksburg sandstone 9900-ft zone studied consists ofboth detrital

constituents and diagenetic products. The sedimentary rock in the Vicksburg Fonnation

can be best named according to the classification cited by Folk's (1974) QRF ternary

diagram. Sublitharenite, feldspathic litharenite, subarkose and lithic arkose were the

lithologies present in the thin sections examined. The mean rock type ofboth logged

cores intervals plotted as feldspathic litharenite. The average grain size of the samples

studied varies from coarse siltstone to very fine sandstone. The majority of the samples are

medium sorted, subangular to subrounded and submature to immature in structural

maturity. The major detrital constituents in the 9900-ft Vicksburg sandstones are quartz,

feldspar, chert and volcanic and metamorphic rock fragments.

Detrital Constituents

Quartz is the most abundant mineral which was chiefly monocrystalline. The

feldspar is 5.3% in average, with plagioclase being the most abundant feldspar found more

prominent. Feldspar grains commonly show dissolution and alteration in thin section. Due

to the high degree of dissolution, potassium-feldspar only occurs in trace content in the 27
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samples studied. Secondary porosity created the leaching of potassium-feldspar grains

contributed to a great amount ofporosity in the studied wells.

Volcanic rock fragments are abundant, being 6.4% in average and up to 10% in some

samples. Volcanic textures are well preserved in some volcanic rock fragments, with

feldspar laths easily identified. Dissolution of volcanic rock fragments is also commonly

encountered. Therefore, it is somewhat difficult to identify extremely to slightly altered

grains. Argillaceous rock fragments are the next important rock fragments, taking up 2.7%

in average. Chert and metamorphic rock fragments are relatively less important, but also

commonly exist in the sample studied. The content of minor detrital constituents ranges

from 0.3%-2.4%, with an average of 1.2 %, including glauconite, muscovite, biotite,

pyrite, zircon, tourmaline and fossils.

Diagenetic Constituents

Cements. Calcite is the major cement, with an average content of 11.8%.

Carbonate cement profoundly affects the reservoir quality, commonly occluding primary

and secondary pores. Siderite, quartz overgrowth and anhydrite are a minor component.

Authigenic Clay. The authigenic clays observed in samples studied include illite

smectite mixed layered clay, illite, kaolinite and chlorite.

Porosity

The porosity of the thin section analysis ranges from 0.3%-15.8%, with an average

of 7.1%. Most of the pores are secondary, including both intergranular and intragranular.
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Pore systems are complex and variable, consisting of a mixture of severely reduced

intergranular pores, leached-grain pores, and a large amount of micropores among clays.

Mechanical deformation, leaching of detrital grains and calcite cement, precipitation

of calcite cement, authigenic clays greatly altered the original depositional fabric.

Compaction and Mechanical Defonnation

Vicksburg sandstones have undergone moderate to strong degrees of compaction.

Deformation of ductile components such as argillaceous rocks, volcanic rock fragments,

mica., and glauconite are one ofthe main diagenetic features. Under compaction, they are

crushed and squeezed between quartz and feldspar and other hard grains, increasing the

compaction and in response decreasing porosity.

Chemically Unstable Constituents

In all samples studied, the majority of the macroporosity comes from the partially to

completely dissolution of detrital grains. Quartz, feldspar, argillaceous rock fragments,

volcanic rock fragments and cement exhibit moderate to high degree of dissolution. The

leaching of feldspar and volcanic rock fragments are especially important. This is a

predominant factor for the formation of secondary pore system. In addition, dissolution

may also have provided the source material for the precipitation of the late stage cement

and authigenic clays.
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Cement and Authigenic Clay

Major precipitation features consist of formation of quartz overgrowth, calcite and

siderite. Generally, carbonate cements are fonned in two stages. In several samples,

carbonate cement, which nearly occludes all the primary pores, is believed to precipitate in

early stage. Those ductile grains show little to no mechanical deformation. Late stage

carbonate cement also commonly exists in samples studied. They can refill the pores

produced by the dissolution of feldspar and volcanic rock fragments and other detrital

grains. In addition, calcite cements tend to concentrate along bends or in patchy pattern

radiating outward.

Authigenic clays are abundant in most of the samples, including pore-lining illite

smectite mixed layered clay, illite, chlorite and pore-filling kaolinite. The formation of

authigenic clay mainly plays a destructive role for the establishment ofconnective pore

system, although abundant micropores exist among authigenic clay. Micropores generally

have a pore throat radius less than 0.5 microns and primarily occur as intercrystalline

pores within the clay. In addition, the formation of abundant authigenic clay is also related

to the originally chemically unstable feature of Vicksburg sandstones. Most ofthe

authigenic clay found in the samples appears to have crystallized from pore fluids, since

they occur in the fonn of well-developed crystals. The potassium necessary for the

formation of kaolinite may comes form the dissolution ofK-feldspar.

Other minor diagenesis processes include: 1) replacement of detrital grains by calcite

and dolomite; 2) replacement offeldspars and volcanic rock fragments by authigenic clays;
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4) Devitrification ofvolcanic rock fragments; 5) shrinkage ofglauconite, forming some

shrinkage pores around the glauconite; 6) precipitation of pyrite from organic matter.

There appears to be a correlation between grain size and visible porosity. Finer

grained sandstones have lower average visible porosities, whereas the relatively coarser

grained samples are higher in average visible porosities. At the same time, a greater degree

of diagenesis alteration is typically predominant in coarser, mores porous rocks.

According to thin section observation, several coarser grained samples are completely

cemented by calcite. The grains are floating in the carbonate cement. Therefore, this type

of carbonate cements is formed in early stage before severe compaction. Subsurface water

rich in carbonate first entered the coarser grained and more porous part of the sandstone,

occluding nearly all of the primary pores. With deep burial, the leaching of unstable

detrital grains (feldspar, volcanic rock fragments, etc.) and carbonate cement will form

some secondary pores. But, porosity ofthis type of samples is relatively low because the

early stage carbonate may be a factor occluding the subsurface water flowing in early

stage of dissolution, slowing down the leaching speed of unstable constituents. Other

diagenetic processes, such as seritization and precipitation of authigenic clays are also

slowed down. Volcanic fragments and feldspar show relatively less degree of alteration,

with fresh surfaces.

The ductile flowing of the argillaceous and volcanic rock fragments between hard

detrital grains further decreases the primary and secondary pores. The dissolution of

grains, such as quartz, feldspar and volcanic rock fragments, especially the dissolution of

feldspar and volcanic rock fragments provide almost all of the secondary visible pores.

27



Petrology and Petrography ofReservoir and Seal Facies

Kerr-McGee Company cored the 9900-ft zone in two weDs: A.T. Canales #81 and

A.T. Canales #85. The cores were correlated and calibrated to Schlumberger Formation

Micro-Imager (FMI) logs and High Resolution Array Induction, Density-Neutron

Gamma-Ray and Spontaneous Potential logs. Geologic features such as bedding planes,

flowage structures, burrows and cross beds were identified in the core and on the FMI

images. Chromatic changes associated with these features allowed an inch-scale

calibration of the core to the FMI. Calcite and silica-cemented zones identified on the

FMI were correlated to clean, low porosity zones on the High Resolution Gamma-Ray

and Density-Neutron logs.

The cores were described, and sampled for thin-section, x-ray and SEM analyses.

Thin-section porosity was correlated to porosity measurements from logs. Detrital and

diagenetic constituents determined by thin section analysis. These sections provided data

to augment the macroscopic examination of the cores. Clay minerals were identified using

powder X-ray diffraction and SEM analysis.

Classification

The major detrital constituents in the 9900-ft Vicksburg sandtones are quartz,

feldspar, chert, and volcanic and metamorphic rock fragments. The sandstones were

classified on the basis of the relative percentages of these grains using the Folk (1974)

(QRF) ternary diagram (Figure 10). In general, sublitharenite, feldspathic litharenite,

subarkose and lithic arkose were the major lithologies determined from individual thin

sections. The average compositions for both cores plotted as feldspathic litharenites.
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These lithologies represent the present (post-dissolution) composition. Restoring

dissolved feldspar and rock fragments would shift the original composition plots toward

the base of the feldspathic litharenite and lithic arkose fields.

Framework Constituents

The 9900-ft zone is primarily silty very-fine grained sandstone and shale.

The sandstones are moderately sorted. Quartz is the major constituent, while feldspar and

sedimentary and volcanic rock fragments are present in various amounts. Minor

constituents include chert, metamorphic rock fragments, muscovite, biotite, glauconite,

zircon, pyrite, tourmaline and skeletal fragments.

Major Constituents. The most abundant detrital grain in the Vicksburg sandstones

is quartz (Figure 11). Most grains are monocrystalline and exhibit uniform extinction.

Polycrystalline quartz is present in minor amounts and likely represents a metamorphic

source. Fluid and mineral inclusions are present in some monocrystalline grains.

Plagioclase feldspar is the second most abundant detrital grain. Plagioclase grains

are easily identified by their albite twinning (Figure 11).

Rock fragments are a common constituent in the Vicksburg sandstones. Volcanic

fragments are abundant (6-10% ofthe total rock) and easily identified by the randomly

oriented plagioclase phenocrysts of their microphyric texture (Figure 12). Seritization and

devitrification of these grains are common, making grain identification more difficult.

Sedimentary rock fragments are present in various amounts. Argillaceous fragments are
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Figure 11. Quartz (Q) and plagioclase feldspar (Pf) are major framework grains i
the 9900-ft sandstone. Albite twinning is characteristic of plagioclase.
A. Plane-polarized light (PPL).
B. Cross-polarized light (CPL).

A

B
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Figure 12. Volcanic rock fragment (Vrf) with randomly oriented phenocrysts of
plagioclase feldspar. Glauconite (GI) is a common constituent.
Oxidation of ferrous iron changes green glauconite to brown.
A. PPL B. CPL
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common in some samples, while chert and carbonate grains are minor constituents (Figure

13). Metamorphic rock fragments occur as a minor constituent.

Other Constituents. Glauconite is a common secondary constituent. It occurs as

rounded grains that are typically green color in plane-polarized light (Figure 12). It is

green with moderate birefringence in cross-polarized light.

Muscovite and biotite were widespread accessory grains in both cores. Muscovite

was identified by its distinct morphology, color and birefringence. Biotite was recognized

by its pleochroism, color and extinction.

Pyrite, zircon, tourmaline and skeletal grains are all present in minor amounts. The

dominant skeletal grains are forams, which occur as several grains per thin section.

Detrital clay is present as true or pseudomatrix (Figure 14). The latter was formed by

ductile deformation of softer grains such as argillaceous and volcanic rock fragments.

Diagenetic Constituents and Features

Sandstones not cemented in early diagenesis often show signs of compaction.

Flexible and soft components were ductilly defonned. Argillaceous and volcanic rock

fragments flowed between quartz grains fonning pseudoinatrix. Elongate muscovite and

biotite grains were bent or fractured by harder quartz and feldspar grains (Figure 15).

Chemical diagenesis has significantly modified the Vicksburg sandstones, which have

experienced several episodes of cementation and dissolution. Calcite is the dominant

cement, but silica cement is significant in some areas.

33

q

--



...

Figure 13. Carbonate grains (Cb), and argillaceous rock fragments (Arf) are
common in the Vicksburg sandstone.
A. PPL B. CPL

34



O.lmm

Figure 14. A. Detrital clay matrix that impeded fluid movement and reduced
grain dissolution. PPL

B. Pseudomatrix formed by the ductile deformation of argillaceous
rock fragments. PPL
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Figure 15. Compaction deformation of muscovite (A) and biotite (B)
between harder quartz and feldspar grains.
A. PPL B. PPL
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Carbonate Cement

Calcite is the major cement and completely occludes porosity in some sandstones.

It varies from being isolated patches to widespread zones. Calcite replaces quartz grains

in the latter area and fonns poikilotopic texture where quartz grains "float" in calcite

cement (Figure 16). Zones cemented by calcite are identified as white color bands on FMI

logs (Figure 17). Siderite is a minor constituent and occurs as subhedral crystals.

Silica Cement

Silica cement as syntaxial quartz overgrowth is common (Figure 18). The

overgrowths are easily recognized when they are separated from the detrital grain by a

clay "dust rim." In some cases the boundaries between the overgrowths and detrital grains

are not distinct, but the cement contains fewer inclusions than the detrital grain. Silica

cement is more prevalent in cleaner sandstones with lesser amounts ofclays. Here,

advanced stages of overgrowth occur. Silica-cemented zones appear as white color bands

on the micro-resistivity imaging logs (Figure 17).

Clay Minerals

Authigenic clays in the 9900-ft interval are smectite-illite mixed layer, illite,

kaolinite and chlorite. Mixed layer smectite-illite is the most abundant. It is identified by

its characteristic peaks on X-ray diffractograms.. SEM photomicrographs reveal mixed-

layer smectite-illite is pore lining and bridging. Kaolinite is the second most abundant

clay. It is identified in thin-section by its crystal morphology, color and low birefringence.

Kaolinite was also identified using X-ray diffiaction and SEM (Figure 19). Authigenic
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Figure 16. Poikilotopic texture formed by the replacement of quartz and other
framework grains by calcite cement.
A. PPL B. CPL
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Core Plug Core Plug Core Plug
Sample Porosity Permeability

(feet) (%) (md)

• 412.1 19.6 0.013

• 413.0 21.9 0.156
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Figure 17. A comparison of FMI colors and porosity and permeability
measurement from core plugs. VVhite zones are calcite and/or
silica cemented and low porosity and permeability. Yellow zones
are typically high porosity and permeability. Orange zones are clay
rich and high porosity, but low permeability. Gray color represents
claystone or shale. (From AI-Shaieb et aI., 1998.)
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Figure 18. Silica cement in the form of syntaxial quartz overgrowths. Clay dust
rims (arrows) separate cement from detrital grains.
A. PPL B. CPL
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A

B

B. SEM micrograph of pore-occluding kaolinite (K)
from a seal zone in the Vicksburg sandstone.

Figure 19. A. Thin-section photomicrograph of pore-filling
kaolinite (K). PPL and CPL
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illite occurs as highly birefringent crystals that line pores. It is identified throughout the

core, but is not readily abundant. Chlorite is a minor authigenic constituent that was

identified by X-ray and SEM (Figure 20). Intervals with abundant clay minerals and

lower resistivity are identified as darker yellow and orange bands on the micro-resistivity

imaging logs (Figure 17).

Porosity

Both primary and secondary porosities are preserved in the 9900-ft sandstone.

Volumetrically, secondary porosity is much more significant than primary. Primary

porosity is believed to have provided the avenues for pore-fluid migration, which resulted

in partial or complete dissolution of metastable constituents to generate secondary

porosity. Porosity estimated from thin section was consistently lower than porosity

measured by core plug analyses. This discrepancy may be due in part to underestimating

microporosity between clays or in partially dissolved grains. Core plug porosity was

consistent with density porosity measurements in zones within the logging tool's

resolution capability (Al-Shaieb et al., 1998).

Color variation in the micro-resistivity log indicates porosity range on less than

one-inch scale. Yellow and orange color bands consistently indicated porosity exceeding

18%. White band porosity values are less than 10% (Figure 17).

Primary Porosity Intergranular porosity is the fonn of primary porosity preserved

in these rocks. As a result of compaction and cementing, primary porosity is present in

only trace amounts. It typically occurs as small (.01-.03 rom diameter) planar-sided pores
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Figure 20. SEM micrograph of authigenic illite and chlorite, Vicksburg
sandstone, Tee field.
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bordered by syntaxial quartz overgrowths (Figure 21). In cleaner sandstones, near-total

destruction of primary porosity is conunon.

Secondary Porosity. Secondary porosity is the volumetrically significant porosity

in the 9900-ft sandstone. It can be attributed to the partial and/or complete dissolution of

metastable siliceous grains. Pore morphologies range from partial leaching ofgrains to

total grain dissolution and oversized intergranular porosity (Figure 22).

Plagioclase feldspar dissolution accounts for the largest share of secondary

porosity. Leaching of volcanic rock fragments also generated significant secondary

porosity. Lesser amounts of porosity were formed by the dissolution of other constituents

including glauconite, argillaceous rock fragments and matrix.

Feldspar and volcanic rock fragments exhibit various stages of dissolution.

Initially, leaching fonned intragranular microporosity. As dissolution progressed, the

grains were skeletonized and finally totally consumed.

Moidic porosity with near-circular shape suggests the total dissolution of rounded

rock fragments or glauconite grains. Shrinkage porosity around glauconite may represent

the initial stage of the latter form of moldic porosity. Infrequent oversized pores appear to

be the result of multiple grain dissolution.

Microporosity is an important feature in the 9900-ft sandstone. It developed

within partially dissolved grains and/or when available pore space was filled with

authigenic clays. These intercrystalline micropores generally have small pore throat radii

(less than 0.5 microns) and significantly reduce penneability (Al-Shaieb, et aI., 1998).
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Figure 21. A. Primary porosity (arrow) rimmed by planar crystal faces.
B. Secondary porosity: Oversized pores (Op) resulted from multiple

grain dissolution. Authigenic clays precipitated prior to grain
dissolution ring late-stage moldic pore (Mp). Ma.instage
secondary porosity is commonly filled with authigenic clay (green).
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Figure 22. Dissolution stages of siliceous grains. Partial leaching of feldspar and
volcanic rock fragments generated intragranular microporosity (Imp).
As dissolution progressed, grains were consumed and finally
completely dissolved.

46

--



-

CHAPTERN

FORMATION MICRO-IMAGING AND CHROMATIC ZONE IDENTIFICATION

Introduction

One of the primary goals in wire-line logging is to identify reservoirs and seals.

High-resolution logging technology has greatly enhanced this process. Borehole micro

imaging has added a new dimension to wire-line logging by providing an outstanding

visualization of rock properties. These high-resolution resistivity images when integrated

with core analysis aids in locating and identifying potential low contrast/low resistivity

reservoirs. FMI provides the resolution of bed thickness and other lithogical features such

as sedimentary structures, burrows and trace fossils and fault zones to name a few.

Micro-imaging Tools

The introduction of micro-imaging tools in the mid-1980's has benefited the

petroleum industry. These tools are designed to focus small beams of electrical current

into subsurface formation to measure changes in resistivity along the borehole wall that

coincide to subtle changes in rock composition, grain texture, and fluid properties.

Important information needed to understand and identify these thinly laminated and

bedded reservoirs can be obtained from this instrument.
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Micro-imaging tools measure micro-conductivity using closely spaced button

electrodes mounted on pads. Each pad contains 24 sensor electrodes, resulting in

measurement resolution of0.2 to 0.3 inches. These tools typically have 6-8 articulating

pads mounted on independent anns (Figure 23). This design allows relatively free

movement to improve electrode to formation contact (Halliburton, 1997 and

Schlumberger, 1992). Like other micro-resistivity tools, micro-imaging tools are designed

to be run in conductive, water based mud. The depth of investigation for micro-imaging

tools is up to 30 inches. When used as dipmeters or high-resolution tools for

sedimentological, vug, or fracture analysis, their normal investigation depths are typically a

few inches. This shallow depth of investigation limits the resistivity measurements to the

flushed zone (Rxo). As a result, formation fluids have minor affect micro-imaging tools

and the recorded resistivity measurements reflect only rock properties. Variations in

current recorded by micro-imaging tools are converted to synthetic color images. Dark

colors reflect high micro-conductivity (low resistivity), while light colors reflect low

micro-conductivity (high resistivity) zones.

Most micro-images are viewed in two forms, static and dynamic. The static view

has a fixed resistivity scale over the logged interval so that beds with the same color shade

have the same resistivity. The dynamic view presentation uses a sliding resistivity scale

that is applied at I-ft intervals. This view enhances the visibility of small details by

maximizing the contrast between features. The static view allows the comparison of

resistivity over depth. When these resistivity values are core-calibrated, the micro-imager

becomes a powerful tool for estimating rock properties.
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Figure 23. Schematic representation of FMI tool.
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Imaging Filtering

Most micro-images are viewed in. two fonns, static and dynamic. The static view

has a fixed resistivity scale over the logged interval so that beds with the same color shade

have the same resistivity. The static view allows comparison of resistivities over depth.

The dynamic view presentation uses a sliding resistivity scale that is applied at I-ft

intervals. This view enhances the visibility of small details by maximizing the contrast

between features. Electrical images allow a different approach to sedimentary rock in

boreholes. The data enhance sedimentological interpretations as well as reservoir

characterizations. When these resistivities are core-calibrated, the micro-imager becomes

a powerful tool for estimating rock properties.

Chromatic Variation in LR/LC Sandstones

Kerr-McGee Company provided static micro-imager views over two intervals that

were cored. These cores were in the LR/LC section infonnally called the "9900 fill

sandstone. Lithologic heterogeneity provided ample bed boundaries to pennit image to

core correlation on an inch-scale. Once correlated, core sampling allowed the detailed

analysis of the rocks to detennme properties that were responsible for chromatic changes

in the images.

Four basic color groups were identified on the micro-images: 1) dark gray to

brown, 2) white, 3) yellow, and 4) orange. Mixing and transitional zones also occur.
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Dark Gray to Brown Zones

Dark gray to brown-colored zones represent clay-rich rocks. Shale and claystone

beds and laminae appear as dark bands on the static view. Some dark bands contain sand

and/or silt-rich laminae, burrows, and flowage features that are more resistive (lighter

color) and contrast with the clay-rich rocks (Figure 24).

White Zones

White zones represent the least conductive (most resistive) rocks. Thin section

microscopy of this zone indicates resistivity is directly related to abundant cement (Figure

25). Calcite cement is predominant (Figure 25) and nearly occludes porosity in this zone.

Silica cement is less pervasive, but gives the same white signature as the calcite. In some

white zones, kaolinite is important cement (Figure 26).

Yellow Zones

Yellow zones are porous sandstones (Figure 25 and 27). They contain authigenic

clay, but have significant moldic or enlarged moldic porosity that is relatively clay free

(Figure 27).

Orange Zones

Orange image color is related to the abundance of authigenic clay in this zone

(Figure 25 and 28). Clay-free moldic porosity is uncommon. Bound water associated

with these clays reduces resistivity and gives the darker (orange) color characteristic of

this zone.
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Figure 24. Static view micro-imaging log over a portion of the LRILC 9900-ft Vicksburg reservoir.
Four basic color groups that are correlated to lithologic properties are (1) dark gray to
brown =shale or Claystone, (2) white =tightly cemented sandstone, (3) yellow =
porous and penneable sandstone, and (4) orange =porous, Clay-rich sandstone.
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Figure 25. SEM photomicrographs with porosity and permeability data that
illustrate the general petrographic and reservoir characteristics of
sandstone.

(A) VVhite zones (highest resistivity) are cemented and low porosity.

(B) Yellow zones (intermediate resistivity) are high porosity and
permeability.

(C) Orange zones (lowest resistivity) are high porosity, but low
permeability as the result of abundant pore-filling authigenic clays.
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Figure 26. Petrographic characteristics of a white chromatic zone.
A. Photmicrograph indicates extensive calcite cement and scattered patches of kaolinite (K). PPL and CPL.
B. SEM photomicrograph of pore-filling kaolinite (K). Kaolinite-filled pores in calcite-cemented sandstone are

an important component of white zone seals.
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Figure 27. Petrographic characteristics of a yellow chromatic zone.
A. Photomicrograph of porous and permeable yellow zone

with distinct blue-filled moldic porosity. PPL
B. SEM micrograph showing intergranular and moldic porosity

common to yellow zones.
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Figure 28. Petrographic characteristics of an orange chromatic zone, Vicksburg
sandstone.

A. Photomicrograph of very fine grained sandstone with most pores
partially filled with authigenic clays. Open moldic porosity is noticeable
absent. PPL

B. SEM photomicrograph of extensive authigenic clay coating grains and
filling pores.
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Transition and Mixed Zones

Transition and mixed color zones are common in the Vicksburg LRJLC interval.

Yellow zones frequently contain white areas that represent patches of cement.

Alternately, white zones contain yellow areas where higher porosity was preserved.

Orange patches are common in yellow zones, but are noticeably absent in white ones.

Frequently, yellow and orange zones have transitional contacts as clay content changes

across the sandstone. Yellow to white transitions also occur, but are less common. Many

small-scale depositional, diagenetic and biogenic features are evident in the gray-brown

zones. These features are detected because their higher resistivity contrasts with the

adjacent clay-rich beds.

Reservoir and Seal Properties

All chromatic zones were sampled for core-plug analyses and capillary pressure

measurements. In addition, mini-penneameter measurements were also available for one

core. When possible, thin sections were made of core plugs to improve the visualization

of rock architecture. Porosity values derived from core plug and thin-section analysis

were compared to porosity log signatures of density and neutron porosity curves. Wire-

line log characteristics were determined for each zone and used to develop a quick-look

approach to log analysis. Figure (29) are shallow ,(20 inch) resistivity and micro-resistivity

logs shown on track 2. This micro-resistivity log is derived using one pad from FMI tool.

Gamma ray log is also displayed on track one. The spatial distribution ofwhite, yellow,

orange and brown chromatic zones were represented on this log.
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Figure 29. Micro-resistivity log of chromatic distribution in the LRfLC interval.
In thicker beds (>1.5 ft) micro-resistivity and high resolution resistivity

display similar patterns. In zones <1.5 ft thick, the microresistivity tool
provides more accurate measurements by minimizing the effects of
adjacent beds. Note that white chromatic zones are shaded pink in
this illustration.
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Dark Gray to Brown Zones

These clay-rich rocks (shales and claystones) have high porosity (approximately

18%) and low permeability «0.005 md). Ifthe bed thickness is greater than 1.5 ft, they

exhibit nonna!! high ganuna-ray log readings that approach the shale base line, and low

resistivity (0.5-0.7 ohm-m) (Figure 30). Adjacent beds often mask gamma-ray signatures

of thinner units « 1.0 ft.). However, resisitivity signatures respond to the clays and

decrease to around 0.5 to 0.7 ohm-m (Figure 30). High-resolution neutron porosity

curves are very responsive to thin shales/claystones and delineate discrete beds around 1.0

ft thick (Figure 30). In this area, Vicksburg sandstones and shales have similar porosity,

so the density tool was not effective in identifying clay-rich beds.

White zones

Core plug measurements indicate that highly cemented white zones have low

porosity «8%) and permeability «0.001 to 0.003 md). White zones >1.5 ft. are readily

recognized on high-resolution resistivity and porosity curves. Reduced smectite-illite

content and low porosity cause a 12 to 18% decrease in neutron porosity from the values

measured for adjacent beds. A concurrent decrease in density porosity of 6 to 10%

occurs across these zones (Figure 31). White zones in LRfLC intervals are recognized by

a marked relative increase in resistivity (3-4 ohmrn). Beds >1.5 ft. thick have a deep

invasion profile and a spike-like signature in which all resistivity curves have a similar

form. Thinner beds «1.5 ft.) have a similar spike-like signature, but the increase in

resistivity is reduced as a result of the tool detecting porosity in adjacent porous beds

(Figure 31). Gamma-ray logs indicate that white zones are less radioactive than adjacent
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Figure 30. Wireline log characteristics of static view chromatic zone. Porosity and permeability
measurements are from conventional core analysis. LRILC 9900-ft sandstone, TCe field.
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Figure 31. Wireline log characteristics of static view chromatic zone. Porosity and permeability
measurements are from conventional core analysis. LRILC 9900-ft sandstone, TCB field.
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sandstones rich in smectite-illite. This cleaning affect becomes more apparent if the zone

is>1.5 ft. thick.

Yellow Zones

YeHow bands are sandstones with high porosity and relatively high penneability.

Core plug analyses indicate these zones average 21% porosity and 0.16 md penneability.

The increased penneability in yellow zones is readily evident in thin section and scanning-

electron microscopy (Figure 21). In thicker zones (>1.5 ft.) convergence of neutron and

density porosity is also observed, however neutron-density crossover is rare. Gamma-ray

response shows a decrease in radioactivity that results in a 45 API units deflection from

the shale baseline.

A key to recognizing yellow zones is their invasion profile. Penneability in these

sandstones is re.flected in a separation between the deep (90, 60, 30, & 20 in) and shallow

(lOin) resistivity curves. Separation indicates fresh-water filtrate invasion has increased

resistivity adjacent to the wellbore. This profile is most evident when yellow zones are

adjacent to shales or claystones (Figure 32). Resistivity curves of clay-rich rocks track

one another and often appear as one curve. When a yellow zone is encountered, the

resistivity curves separate and the 10 in.-curve has the highest value (Figure 32).

Orange Zones

Orange zones on the static micro-imager view are sandstones with relatively high

porosity, but low penneability. Core plug measurements indicate orange zones average
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Figure 32. Wireline log characteristics of static view chromatic zone. Porosity and permeability
measurements are from conventional core analysis. LRILC 9900-ft sandstone, TCB field.
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18% porosity and .06 md permeability. Thin-section and scanning-electron microscopy

reveal the porosity in these sandstones is greatly reduced by pore-lining and filling

authigenic clays. Log signatures resemble those ofyellow zones. Resistivity curves

separate as a result offiltrate invasion, but the spread is less than that ofyellow zones

(Figure 32 and 33). This pattern reflects the reduction of permeability and/or less gas

content in this zone.

Capillary Pressure. Sealing Capacity and Pore Structure

Capillary pressure curves were used to determine sealing capacity and pore

structure. Sealing capacity was defined in terms of (1) the height ofa hydrocarbon column

the rock will hold without leaking and (2) displacement pressure (Pd). Pore structure

evaluation included size, sorting, and distribution of pore throats. Phillips Petroleum

Company provided mercury injection measurements for core samples of sandstones

representing all chromatic zones.

White zones have the highest displacement pressures (pdma) (up to 2454 psi) and

the highest gas column heights (Hpd) (up to 547 ft.) (Figure 34). Yellow zones have the

lowest displacement pressures (pdrna <200 psi) and gas column heights at displacement

pressure that are commonly less than 10ft (Figure 35). Orange wnes display a wide range

of displacement pressures and gas column heights. One orange zone sample with

microporosity, but no apparent moldic porosity (all pores were clay filled), had a

displacement pressure of 682 psi and gas column height of 152 ft. A second orange

sample exhibited typical values for displacement (pdma = 171 psi) and gas column height

(38 ft).
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Figure 33. Wireline log characteristics of static view chromatic zone. Porosity and permeability
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Figure 34. VVhite zone

A. FMI, core photo, and photomicrograph of white zone demonstrates 10
porosity and permeability due to high cementation.

B. White zone with high displacement pressure (Pdma), and highest gas
column heights (Hpd).
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Figure 35. Yellow Zone

A. Photomicrograph of yellow zone with moldic porosity.

B. Capillary pressure data demonstrates low displacement pressures
(Pdma), and low gas column (Hpd) height.
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Pore throat size, sorting, and distribution were derived from capillary pressure

curves. The sorting ofpore throats reflects the rocks ability to acCept hydrocarbons. Pore

space in well sorted rocks rapidly saturate with hydrocarbons once a threshold buoyancy

pressure is reached. Poorly sorted rocks saturate slower and require a pressure increase

over a much broader range to obtain the same hydrocarbon saturation (Jennings, 1987).

Pore throat sorting for all samples ranges from moderately to poorly sorted. Median pore

throat size ranges from 0.03 to 0.96 microns. Median pore throat size for white zones is

less than 0.1 micron. Yellow zones have median pore throat apertures that range from 0.2

to 0.96 microns. Orange zones also have a wide range of median pore throat apertures

that reflect the amount of dispersed pore-filling clay. Mercury injection curves for most

yellow and orange zone samples indicated a bimodal distribution of pore-throat apertures

between large rooldic pores and clay-grain micropores between authigenic clay particles

(Figure 36).
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Figure 36. A. Photomicrograph of macro and micro-porosity.

B. Capillary pressure curves showing bimodal pore throat sizes.
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CHAPTER V

FLUID INCLUSION STRATIGRAPHY RELATIONSHIP TO OVERPRESSURE

Introduction

The purpose of this chapter is to compare preserved fluid inclusions with the

known over pressuring in the Gulf Coast Region. Fluid inclusions provide the only direct

evidence ofpaleotluids existing in the subsurface, and as such have the potential to

record conditions accompanying geologic processes, including petroleum migration. By

studying the subsurface distribution of paleotluid chemistries through Fluid Inclusion

Stratigraphy (FIS) - a petroleum exploration and exploitation risk tool developed at

Amoco, which obtain valuable and unique information on three major topics relevant to

exploration: 1) hydrocarbon migration 2) seals and 3) proximity to reservoired petroleum

and two major relevant to production 1) pay zone\by passed pay delimitation and 2)

reservoir-scale compartmentalization.

Fluid inclusion stratigraphy involves the complete analysis of volatiles trapped in

tluid inclusions using quadrapole mass analyzers. This includes most geologically

important inorganic species in addition to organic species with less than or equal to 13

carbon atoms. The resulting analysis of the petroleum fraction is comparable to the low

molecular weight fraction of a whole-gas chromatographic - mass spectrometer (GCM)

analysis (Hall, 1999).
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Procedure

Samples of rock cuttings are washed, picked and separated to remove drilling

fluid, lost circulation materials and other metallic particles from the drillstring. Cleaned

samples are loaded, together with appropriate standards, into 630-hole trays, covered with

a metal impact slug and placed into a vacuum oven at elevated temperature for a

minimum of 24 hours. This is done to remove remaining adsorbed organic and inorganic

volatile material up to e\3. Sample trays are then placed into an ultra-high vacuum

chamber and evacuated for approximately 8 hours. Bulk fluid inclusion volatiles are

afterwards instantaneously released from each sample in a sequential manner by

automated mechanical crushing. Volatile organic and inorganic species are dynamically

pumped through four quadrupale mass analyzers where molecular species are ionized by

electron bombardment, separated according to their mass to chare ratio (m/z) by

application of combination ofRF and DC fields, amplified by electron multipliers and

recorded as voltage, where millivolts are approximately proportional to concentration in

the ionized flow (Hall, 1999).

Fluid Inclusion Stratigraphy (FIS) analysis was carried out on a total of 403

cuttings and core samples composited from several wells to produce a nearly continuous

section centered on the Vicksburg Formation, sampled at about 1 ft intervals. Samples

span from depth intervals 5990-11616 feet. The goals of the analysis were to determine

the distribution and chemical characteristics of hydrocarbons that have migrated through

the penetrated section, to look for prominent seals that may correlate with known

pressure cells and to establish whether or not nearby, undiscovered pay within potential

reservoir intervals can be inferred. Additionally, FIS data was to be compared with EMI
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data collected on the same section, to see if diagenetica1ly controlled porosity bands can

be correlated with fluid inclusion distribution.

Seal and Reservoir Identification

Fluid inclusion stratigraphy was carried out on a total of403 cuttings and core

samples from several wells to produce a nearly continuous composite section from the

lower part of the Frio Fonnation, through the Vicksburg and into the Jackson Shale.

These samples spanned a depth interval of5990-11616 ft. The goals of this analysis

were: (1) to detennine the distribution and chemical characteristics of hydrocarbons that

have migrated through the section, (2) identify zones of high inclusion frequency that

might correlate to 1st and 2nd order seals and (3) establish the impact of these seals on

migration paths and oil and gas accumulations. In addition, FIS data were compared with

FMI data to determine if cemented bands and reservoirs could be identified at the core

scale using fluid inclusion frequency distribution.

Pore fluids in the Gulf Coast are divided into two hydrologic regimes,

hydropressure and geopressure. In the hydropressure zone, the pressure gradient is 0.465

psi/ft (nonnal hydrostatic), and rocks are under lithostatic pressure approximately 1.0

psi/ft. In the "soft" geopressure zone (pressure gradient 0.465 to 0.7psi/ft) the pore fluid

supports part of the overburden load. Thus, the effective pressure on the rocks is less

than the lithostatic pressure. At a pressure gradient of 0.7 psi/ft, the zone of"hard"

geopressure is encountered. The 0.7 psi/ft value was chosen to define the top ofthe

"hard" geopressure regime because it is at this value that resistivities increase
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dramatically. Thus, this zone can easily be picked from electric logs (Loucks and others,

1981).

Fluids flow most readily through permeable units to areas of lower pressure,

which are generally shallower in the section. Therefore, the distribution of sands and

sandstones defines the major fluid flow path in the section. However, fluid also flow

through shales but at diminished rates as a result oflow permeabilities (lO-6md; Magara,

1978). Significant volumes of fluid may migrate through shales, given geologically

significant periods of time. Hydrofractured shales at depth, may flow fluids through them

more easily (Sharp, 1980).

Several sources were utilized to collect pressure data in the TCB field. The

sources include calculated pressure data from initial well-head shut-in pressures, wire

line bottom hole pressure tests, wire-line formation tests and repeat formation tests.

Overpressured Vicksburg Formation developed complex sealing patterns which reflect

the deposition and compositional parameters of this formation. In general, these seals

have a specific functional hierarchy and may be classified in three different categories.

I. 1st Order: 18t order seals are regional and separate normally pressured intervals

from overpressured ones.

2. 2nd Order: These seals conform to various stratigraphic boundaries within the

overpressured interval and subdivide it into reservoir-size compartments

3. 3rd Order: These are intra-reservoir seals that are relatively smaller scale. These

seals further subdivide reservoir-sized compartments into smaller intra-reservoir

ones and contribute to reservoir heterogeneity.
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Figure (37) is pressure-depth profile of the data obtained from the TCB field. The 1st

order seal separates the normally pressured to slightly overpressured Frio from the

overpressured Vicksburg Formation. The 2nd order seals separate the high-stand system

tract (Upper Vicksburg) from the lowstand system tract deposited (Lower Vicksburg).

The 3rd order seals are intra-compartment seals. The seals are highly cemented

containing abundant hydrocarbon fluid inclusions (Figure 38). During the cementation

episode of a seal often entrapped pore fluid as inclusions. These inclusions contain a

sample of the precipitating fluid and record a history of fluid migration in the basin.

These seals are also represented as highest intensities ofvolatile responses on PIS pattern

(Figure 39).

The FrS analysis indicated a marked change in the total volatile response that

coincides with the regional seal that separates the Frio and Vicksburg Formations (Figure

39). This seal is recognized on the pressure-depth plot by an obvious shift in pressure

values around 8000 ft deep (Figure 40). Furthermore, changes in the relative amounts of

ionic species suggest different sources or migration pathways for hydrocarbons that filled

reservoirs above and below this seal. Frio inclusions are relatively enriched in aromatics

and naphthalene, while Vicksburg inclusion are enriched in lower molecular weight

paraffins, including CH4 and C5 - C 13 .

FrS analysis ofFMI-calibrated core samples indicate that white chromatic zones

are richer in volatiles than adjacent orange and yellow zones (Figure 41). This response

reflects an increased inclusion frequency in cements and suggests this tool is useful in

identifying seals.
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Figure 37. Compartmentalization of the Frio and the Vicksburg formations
showing first and second order seals.
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Figure 38. Photomicrograph of fluorescing petroleum inclusions.
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Figure 39. Changes in relative amounts of selected ionic species and ratios of ionic species. Peak intensity (relative
amounts of species) increase to the right. Noticeable changes between responses in the Frio and
Vicksburg sections suggest different sources and/or migration pathways on either side of the Vicksburg
seal. Frio fluid inclusions are relatively enriched in aromatics (Arm) and naphthalene (Nap). Vicksburg
inclusions are enriched in paraffins (Par), in particular, CH4,C2HS, Cs - C13 species, benzene and toluene.
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Figure 40. Correlation between pressure compartments, seals, and fluid
inclusion stratigraphy (FIS) in TeB field, south Texas Gulf
Coast. FIS indicates a marked change in total volatile
response (increasing intensity to the right) that coincides with
the regional pressure seal at the top of the Vicksburg Formation.
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Figure 41. Relative intensities of volatile responses (increasing in the direction
of the arrow) compared to chromatic and digital FMI data. FIS
response to cement patches in mixed zones and white zones
suggest the potential for using FIS to detect cement bands that
contribute to reservoir heterogeneity.
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CHAPTER VI

CONCLUSIONS

After analyzing various aspects of the low-contract/low-resistivity reservoir rocks

in the Vicksburg FOImation, several conclusions were made. These include:

1. Low resistivity/low contrast intervals in the Vicksburg Formation are composed of

discrete thinly bedded reservoirs that are separated by seals. The reservoir beds are

primarily silty, very fine-grained sandstones. Porosity values in the sandstones are

highly variable as a result ofpresence ofcalcite, silica and clay minerals cements.

Permeability is affected by the presence ofvarious cements.

2. The Vicksburg Formation in the TCB is overpressured and compartmentalized.

Highstand system tract reservoirs (Upper Vicksburg) and lowstand system tract

reservoirs (Lower Vicksburg) are the two major compartments identified. The

overpressured Vicksburg is separated from the Frio by 1st order seal. The upper and

lower Vicksburg compartments exhibit different pressure regimes and are separated

from each other by 2nd order seals. Intra-compartment seals are 3rd type seals which

subdivide the major compartment into smaller ones.

3. Chromatic zones on FMI logs reflect specific petrographic and petrophysical

properties. White color bands represent the highest relative resistivity rocks. These

are calcite- and/or silica-cemented. sandstone with low porosity «8%) and

80

....



permeability «0.003 md). Yellow bands represent sandstone with high porosity

(average 21%) and higher permeability (average 0.16 md). Orange bands are

sandstone with high porosity (average 18%) and lower permeability (0.06 md).

4. Capillary pressure measurements can be used to distinguish reservoirs from seal

intervals. The yellow chromatic bands on FMl exhibit low displacement pressures

(Pd) on capillary pressure curve. White chromatic bands that form intra-formation

seals, can be identified by high injection, displacement pressures and sealing capacity.

5. Regional seals may be recognized in sample strings taken from well cuttings.

Integration ofhigh resolution logs, FMI, capillary pressure data and fluid inclusion

stratigraphy may be the most suitable method in recognizing reservoirs and seal

intervals.

6. Seal zones may be identified using fluid inclusion stratigraphy (PIS). Intra-reservoir

seals usually contain abundant fluid inclusions, both aqueous and hydrocarbon due to

extensive cementation.
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Core interval .433 - ,443 feet
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Core interval 444 - .45S feet



Core interval 466 feet
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Core intervaJ 467 - .471 feet
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Core interval 9,912 - 9,923 feet
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Core interval 9,912 - 9,923 feet
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Core interval 9,924 - 9,935 feet
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Core interval 9,936 - 9,942 feet
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