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CHAPTER I

INTRODUCTION

Traditionally, many of the major equine breed registries in the United

States recognize January 1 of the year a foal was born as that foals official birth

date. Thus, a foal born on March 1 and one born on August 23 would both be

considered a year old on the following January 1 even though there is a

considerable difference in their age. These two foals would compete on the

racetrack or ,in the show ring with the foal born earlier in the year having an

advantage. Therefore, it is desirable to breed mares so that foals will be born as

soon as possible after January 1. This poses a great challenge for reproductive

physiologists.

During the estrous cycle of the mare, one follicle is selected from a cohort

of follicles to become dominant. After selection the dominant follicle continues to

grow until ovulation, while the remaining cohort, or subordinate, follicles become

atretic and regress. Limited information is available regarding the physiological

mechanism of follicle selection and maturation in the mare. During preovulatory

development in the mare, follicular fluid IGF-I levels increase whereas IGFBP

levels decrease. In cattle, it has been hypothesized that estradiol and the

gonadotropins induce changes in the amount of IGF-I and IGFBPs produced by
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granulosa and thecal cells during follicular development. We hypothesize that, in

the mare, follicular development may involve steroid or gonadotropin induced

changes in the intrafollicular IGF system.

Therefore, the specific objectives of these experiments were to 1}

determine whether stage of the estrous cycle or follicle diameter influences

concentrations of steroids, as well as components of the IGF system, present in

follicular fluid of mares, 2) determine whether estradiol, insulin and/or FSH affect

steroid production by equine granulosa cells, and 3) determine what components

of the IGF system are produced by equine granulosa cells in culture, as well as

to determine whether estradiol, insulin and/or FSH affected IGF and/or IGFBP

production by equine granulosa cells.



CHAPTER /I

REVIEW OF LITERATURE

OVARIAN FOLLICULAR GROWTH AND DEVELOPMENT

The mare is a seasonally polyestrous, long day breeder with an ovulatory

season lasting from approximately May to October in the Northern Hemisphere

(Ginther, 1992). During the months of short daylength, or the anovulatory season

of the mare, follicular activity is suppressed. As daylength increases, follicular

activity, as indicated by an increase in the number and average diameter of

follicles, increases over a period' of several months (transitional period) until

ovulation. During this transition period, follicles grow and regress sequentially

(Ginther, 1979).

The estrous cycle of the mare lasts approximately 22 days (15 day

diestrus and' 7 day estrus) with ovulation occurring on the last day or two of

estrus (Ginther, 1979). Ovulation in the mare is unique in that it is limited to a

specific area on the ovary, the ovulation fossa, and is not triggered by a sudden

release of LH as seen in other mammalian species (Whitmore et aI., 1973). In

contrast, LH concentrations increase progressively during estrus and peak

approximately 1 day after ovulation (Whitmore et aI., 1973; Stabenfeld't et aI.,

3
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1975; Alexander and Irvine. 1982). The mare is also unique in that the number of

follicles involved in folliculogenesis is quite low compared to other species. For

example, Driancourt and co-workers (1982b) found that the ovaries of 2 to 4 year

old mares contained approximately 35,000 primordial and 100 growing follicles,

whereas cow ovaries contained 120,000 primordial and 280 to 435 gJOwing

follicles (Erickson, 1966) and ewes had approximately 56,000 primordial and 150

growing follicles (Cahill et al., 1979).

Follicular Waves

Mares, like cattle, are capable of producing one or two waves of follicular

activity during an estrous cycle (Evans and Irvine, 1975; Ginther, 1990). When

there are adequate amounts of circulating gonadotropins, follicles are recruited

from the reserve pool of small follicles (3 to 12 mm) to form major follicular

waves, or waves that develop a dominant follicle (Ginther, 1992). The wave

emerges as 6 mm follicles (n =5 to 6) on approximately day 12 or mid diestrus

and the follicles grow at similar rates until the largest follicle is about 23 mm. At

this point, the growth rates begin to differ and one follicle. the dominant follicle,

will continue to grow to approximately 35 mm in diameter, whereas the remaining

follicles regress (Ginther, 1992; Ginther, 1993). Divergence of the dominant

follicle is discussed in more detail in a later section of this review.

Major waves may be subdivided into primary and secondary waves.

Primary waves are major waves beginning during mid-diestrus with ovulation

occurring during estrus (Ginther, 1992). The day of emergence of a primary wave

occurs on average 6 days after ovulation, with day of emergence being the day
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before the diameters of growing follicles of a new wave exceed the diameters of

the regressing follicles from a previous wave (Ginther and Bergfelt, 1993). The

maximum diameter of the dominant follicle of a primary wave ranges from 36 to

53 mm (Ginther and Bergfelt, 1993). A secondary major wave may develop

during the end of estrus or early diestrus (Ginther, 1992). These secondary

waves occur in approXimately 42% of the ,interovulatory intervals, however, they

are more likely to occur in individual mares and some breeds (for review see

Ginther, 1992).

The dominant follicle of a wave either ovulates or anovulatory follicular

waves develop sequentially until conditions are right for ovulation to occur. The

dominant follicle of each wave causes the regression of the subordinate cohort

follicles and blocks the emergence of another wave until the dominant follicle

reaches a static phase (anovulatory wave) or approaches ovulation (ovulatory

wave) (Ginther, 1990). The mechanism by which the dominant follicle blocks

wave emergence is still unclear, but it has been suggested that the dominant

follicle produces a substance (inhibin or estradiol?) capable of suppressing

circulating FSH levels thus suppressing follicular development (Miller et aI., 1981;

Bergfelt and Ginther, 1985). Once the growth of the dominant follicle has

stopped, or ovulation approaches, another wave may emerge which contributes

to regression of the dominant follicle of the previous anovulatory wave or, if

ovulation has occurred, the new wave becomes the first wave of the

interovulatory interval (Ginther, 1990).
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Selection of the Dominant Follicle

As previously stated, approximately 12 days after ovulation a cohort

(n = 5 to 6) of similar-sized (approximately 6 mm), subordinate follicles will arise

(Ginther, 1979; Driancourt and Palmer, 1984; Pierson and Ginther, 1987). This

cohort will grow together until the time the ovulatory follicle is selected,

approximately 6 days prior to ovulation (Pierson and Ginther, 1987). Using a two­

follicle model that involved ablation of all follicles ~ 5 mm on Day 10 (Day 0 =

ovulation) to allow tracking of the two largest follicles, it was determined that the

future dominant follicle emerges approximately 1 day earlier than the future

subordinate follicle at an approximate diameter of 6 mm (Gastal et aI., 1997).

These two follicles (future dominant and largest subordinate follicle) grow in

parallel, with no significant difference in growth rates, until the future dominant

follicle reaches a diameter of approximately 21 to 23 mm. Once the future

dominant follicle reaches this critical diameter the growth rate of the smaller

follicle begins to decrease. This process is called selection or deviation (Gastal

et aI., 1997; Gastal et aI., 1999). Deviation begins and is fully established in less

than 1 day as indicated by the 1-day size advantage of the largest follicle over

the next largest follicle (Gasta I et aI., 1997), suggesting that when the la rgest

follicle reaches a critical diameter (21 to 23 mm in the mare), it inhibits the next

largest follicle before it reaches a similar critical diameter. At this time the

dominant follicle begins a period of accelerated growth until ovulation (Ginther,

1979; Palmer and Driancourt, 1980; Irvine, 1981; Ginther and Pierson, 1984;

Gastal et aI., 1997), while the second largest follicle undergoes atresia. Other
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large follicles not destined to ovulate begin to regress 6 to 7 days prior to

ovulation (Driancourt et aI., 1982a; Pierson and Ginther, 1987).

Studies in cattle (Ginther et aI., 1996; Ginther et aI., 1997) and mares

(Gastal et aI., 1997) indicate that when the larger follicle reaches a critical

diameter (21 to 23 mm in mares) it suppresses the next largest follicle before it

can reach the same diameter. The cause of this suppression is unclear, but

evidence suggests that low concentrations of FSH may playa role in the

deviation mechanism (for review see Ginther et aI., 1996). Specifically, it has

been suggested that the larger follicle suppresses FSH concentrations below the

concentrations required by the smaller follicle (Gastal et aI., 1999). This is

supported by studies indicating that exogenous FSH administered daily at the

onset of estrus (presumably prior to deviation) increases ovulation rate in mares

(Squires et aI., 1986; Rosas et aI., 1998). Similarly, circulating FSH

concentrations are low at the beginning of deviation (Bergfelt and Ginther, 1993;

Gastal et aI., 1997). It has not been determined if all follicles contribute to the

decline in FSH concentrations before deviation in the mare, but in cattle,

experimentally decreasing the number of follicles indicated that all growing

follicles contribute to the FSH decline after the time of wave emergence, but prior

to deyiation (Gibbons et aI., 1997). Involvement of estradiol in the deviation

mechanism has not been ruled out. Specifically, estradiol may function by

systemically inhibiting circulating FSH concentrations and by increasing LH

responsiveness by the larger follicle (for review see Ginther, 1996). However, LH
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is not directly involved in the initiation of deviation, but may playa role in growth

and maintanence of the dominant follicle after deviation (Gastal et aI., 2000).

Selection or deviation of the dominant follicle is not only a process of

selecting the ovulatory follicle, but it is also a process of selection against other

follicles in the cohort (Pierson and Ginther, 1990). Based on studies utilizing

follicle ablation and superovulation, it has been determined that prior to dominant

follicle selection, other follicles in the cohort are capable of dominance (Ginther et

aI., 1996; Gastal et aI., 1999). Furthermore, studies in cattle indicate that other

growing follicles of the wave are capable of becoming the dominant follicle if the

largest follicle is destroyed between the times of emergence and shortly after the

expected time of deviation (Ko et aI., 1991; Gibbons et aI., 1997). However, once

selection has occurred the remaining follicles in the cohort are committed to

atresia (Pierson and Ginther, 1990).

Initiation of Follicular Growth

The transformation of primordial to primary follicle appears to be an

extremely slow process of maturation rather than one of growth (Ginther, 1992;

Gougeon, 1996). Evidence in primates suggest that recruitment of primordial

follicles from the reserve pool of resting follicles begins by conversion of

flattened, squamous-type granulosa cells of primordial follicles into cuboidal,

epithelial type cells, thus increasing follicle diameter (Gougeon and Chainy,

1987; Gougeon, 1996). Moreover, the number and activity of granulosa cells in
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relation to diameter of the oocyte at initiation appears to be highly species

specific (McNatty et al., 1999).

The signal for initiation of follicular growth remains to be elucidated,

however several hypotheses exist. In the mouse, inhibition of binding of the

tyrosine kinase receptor c-kit with its ligand, stem cell factor, prevents follicu4ar

initiation without blocking the formation of primordial follicles (Huang et aI., 1993;

Yoshida et aI., 1997). Moreover, administration of a c-kit antibody to mice

stopped granulosa cell proliferation (Yoshida et al., 1997), and initiation failed to

occur in mice mutant for the kit ligand gene despite the presence of primordial

follicles (Kuroda et aI., 1988; Huang et aI., 1993). Other studies in the mouse

suggest that initiation of follicle growth is dependent on collagen and laminin, but

not on activin-A (Oktay et aI., 2000). Research in sheep suggests that two major

genes are involved in growth initiation. Specifically, ewes homozyous for the

Inverdale prolificacy gene exhibit abnormal follicular and oocyte growth

suggesting that this gene influences initiation of follicular growth, particularly by

inhibiting growth at the primordial/primary stage (Bodensteiner et aI., 2000).

Furthermore, ewes homozygous for the Belclare gene are sterile due to an

alteration in granulosa cell proliferation (Reynaud et aI., 1999). Recent studies in

the primate suggest that androgen treatment increases the number of primary

follicles in the primate ovary perhaps by stimulating an increase in both IGF-I and

IGF-I receptors thus triggering oocyte development and initiation of follicle growth

(Vendola et aI., 1999). Further studies are needed to determine if any of these

mechanisms may be involved in initiation of follicular growth in the mare.



10

Follicular Growth and Atresia

Follicular growth is initiated from a reserve of small follicles consisting of

resting follicles (follicles with an oocyte area smaller than 180 IJm2), transitional

follicles (follicles with an oocyte nuclear area between 180 and 250 IJm2 ) that

form a transitional population between the resting and growing follicles (follicles

with an oocyte nuclear area exceeding 250 IJm2 and a follicular area larger than

2000 IJm2 ; Driancourt et aL, 1982b). Follicular growth occurs by both proliferation

of granulosa cells and by an increase in the size of the oocyte (Gougeon, 1996).

As the primary follicle progresses toward a secondary follicle the stromal cells

near the basal lamina align parallel to one another, and the surrounding

connective tissue stratifies and differentiates into the theca externa (similar to the

undifferentiated cell type) and the theca interna (characterized by a change from

fibroblast-like precursor cells to epitheliod cells) (Gougeon, 1996). In equine

follicles a well-defined theca layer can not be detected until follicles reach 0.13

mm in diameter (Driancourt et aI., 1982b). Once epitheliod cells appear in the

theca interna, the follicle is no longer classified as a secondary follicle, but rather

a preantral follicle (Gougeon, 1996). When the follicle reaches a mean of

approximately 0.3 mm in diameter (Driancourt et aI., 1982b), formation of the

antral cavity begins by the development of small, fluid filled cavities that

aggregate to form the antrum (for review see Hillier, 1994). Antral formation is

dependent on stimulation by FSH, which acts via receptors on the granulosa cell

to stimulate cell division and synthesis of glycosaminoglycans, essential

components of follicular fluid (for review see Hillier, 1994). The number of these
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small antral follicles (2 to 5 mm follicles in the mare) is not constant throughout

the estrous cycle, but begins to increase around the time of ovulation (Pierson

and Ginther, 1987). Once the antrum forms the granulosa cells surrounding the

oocyte become known as the cumulus oophorus and the granulosa cells near the

basement membrane differentiate from cuboidal to columnar cells (Gougeon,

1996). Fluid accumulation within the antral cavity, and proliferation of granulosa

and theca interstitial cells continue until the follicle reaches a size suitable for

selection as the dominant follicle (25 to 30 mm in the mare; Pierson and Ginther,

1987; Gougeon, 1996).

The pituitary gonadotropins, LH and FSH, are important regulators of

folliculogenesis. Each follicle in the cohort of developing follicles must be

stimulated by FSH to begin development, otherwise it will undergo atresia (for

review see Hillier, 1994). Once the threshold for FSH stimulation is surpassed,

granulosa cell genes encoding aromatase, LH receptor and a.-inhibin are

increasingly expressed, mediated by second-messenger cyclic AMP (for review

see Hillier, 1994). The follicle with the lowest FSH threshold will become the first

follicle to produce estradiol (Hillier, 1981). Increasing estradiol will suppress FSH

secretion in a negative feedback mechanism with the hypothalamic-pituitary axis.

Circulating FSH levels will decrease to levels insufficient for development of other

follicles in the cohort (Hi.llier, 1981). Once the dominant follicle has been

selected, it is dependent on LH to maintain its status as dominant follicle. This is

accomplished through a paracrine signaling system that remains to be

elucidated; however inhibin has been implicated as an important factor (Hillier,
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1991). Toward the end of the follicular phase, plasma FSH levels begin to decline

and the LH surge suppresses granulosa cell proliferation and intitiates atresia of

subordinate follicles and luteinization of preovulatory follicles (for review see

Hillier, 1994).

Driancourt et al. (1982b) suggested that in the mare approximately 75% of

follicles are undergoing, atresia at any given time; however atresia was rarely

seen before follicles reached a medium antral size. The mechanism that

determines if a follicle is to become atretic remains to be determined.

Approximately six days prior to ovulation, coincident with the time of selection, all

follicles, with the exception of the dominant follicle, begin to regress (Ginther and

Pierson, 1984; Pierson and Ginther, 1987). It has been suggested that the

dominant follicle of each wave causes atresia of the cohort of subordinate

follicles and blocks emergence of the next follicular wave until ovulation occurs

(Ginther, 1990). Emergence of the next follicular wave induces regression of the

dominant follicle of an anovulatory wave (Ginther, 1990).

Follicular Steroidogenesis

Folliculogenesis is mainly under endocrine control of the pituitary

gonadotropins, LH and FSH (for reviews see Combarnous 1992; Adashi, 1994b;

Hillier, 1994). By binding to specific receptors on ovarian cells, the gonadotropins

stimulate synthesis and secretion of steroids that will act as endocrine and

paracrine regulators of gonadotropin levels. ovarian activity and follicular

development (for reviews see Gougeon, 1996). Steroidogenesis is dependent on
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the availability of cholesterol for conversion to pregnenolone, progesterone,

androgens and estrogens (for review see Conley and Baird, 1997). Steroidogenic

acute-regulatory protein (StAR) acts to transfer cholesterol from the outer

mitochondrial membrane to the inner mitochondrial membrane to allow the

enzymatic conversion of cholesterol to pregnenalone via cholesterol side-chain

c1evage (P450scc). Pregnenalone can then be metabolized by either the 64 or 65

pathway; the 64 pathway is preferential in equine follicles (Younglai and Short,

1970). The 64 pathway involves conversion of pregnenalone to progesterone via

3p-hydroxysteroid dehydrogenase (3PHSD). Progesterone is then converted to

androstenedione via 17a-hydroxylase (P45017o.) in the endoplasmic reticulum.

17P-hydroxysteroid dehydrogenase (17PHSD) then catalyses the conversion of

androstenedione to testosterone, which can then be converted to estrogen via

aromatase.

Steroidogenesis in the mare involves both granulosa and theca interna

cells as in the classic "two-cell theory" of follicular steroidogenesis (Senger,

1997). Briefly, when stimulated by LH the theca interna produces androgens that

are converted to estrogens in the granulosa cells when stimulated by FSH via the

aromatizing enzyme, aromatase. Granulosa cells in the mare follicle are

abundant in 3p-hydroxysteroid dehydrogenase (required for the conversion of

pregnenolone to progesterone) and aromatase (Jarrell and Robaire, 1982). The

presence of aromatase indicates that isolated granulosa cells are capable of

producing estradiol. In contrast, theca interna (Sirois et aI., 1991; Rodger et aI.,

1995), but not granulosa (Belin et aI., 2000) cells appear to be rich in enzymes
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such as cholesterol side-chain cleavage (P450sc:c), 17a-hydroxylase (P45017a),

and 3p-hydroxysteroid dehydrogenase (3PHSD), indicating that the theca interna

is the predominant site for androstenedione synthesis in equine preovulatory

follicles. The presence of P45017a in the theca interna (Sirois et aI., 1991; Rodger

et aI., 1995) of equine follicles is similar to observations in cattle (Arlotto et aI.,

1996), pigs (Conley and Baird, 1997; Tian et al., 1995) and sheep (Huet et aI.,

1997).

In many species, large dominant follicles are capable of producing large

amounts of estradiol-17P, whereas atretic follicles produce decreasing amounts

of estradiol-17P (cows - Ireland and Roche, 1982; pigs - Guthrie et aI., 1993;

humans - McNatty and Baird, 1978; Hillier et aI., 1981; sheep - Carson et aI.,

1981). Similarly in the mare, estradiol-17P and progesterone levels increase

during follicular growth, with maturation characterized by a decrease in estradiol­

17P and a further increase in progesterone levels (Gerard et aI., 1998; Gerard

and Monget, 1998; Belin et aI., 2000). Increased steroidogenic activity may be

the result of increased levels of steroidogenic enzymes such as P450scc , 3pHSD

and aromatase (Belin et al.. 2000). Moreover, subordinate follicles are

characterized by a decrease in P450scc , 3pHSD and aromatase, as well as

decreased levels of estradiol-17P and progesterone (Almadhidi et aI., 1995;

Gerard and Monget, 1998; Belin et aI., 2000). Thus, it appears that changes in

intrafollicular steroids during tolliculogenesis are determined by expression of the

various steroidogenic enzymes (Belin et aI., 2000).
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OVARIAN INSULIN-LIKE GROWTH FACTORS, THEIR BINDING
PROTEINS, AND RECEPTORS

Follicular development is controlled by numerous endocrine and paracrine

factors. Of the paracrine factors involved, the insulin-like growth factor system

has been implicated in modulation of gonadotropin action on proliferation and

differentiation of granulosa and thecal cells (Monget et aI., 1996). The IGF

system is composed of the following

• two ligands, IGF-I and -II (Humbel, 1990)

• two receptors, a type I receptor responsible for mediation of IGF-I and -II

action (Roth and Kiess, 1994), and a type II receptor or IGF-ll/mannose-6-

phosphaste (IGF-II/M6P) receptor that appears to be involved in IGF-II

degradation (Monget and Bondy, 2000).

• at least six high affinity binding proteins (IGFBP-1 through -6) (Rajaram et aI.,

1997).

Insulin-like Growth Factor (IGF)-I and -II

IGF-I and -II were first isolated from human serum by Rinderknecht and

Humbel in 1978 (Rinderknecht and Humbel, 1978a,b). Both are single chain

polypeptides with three intrachain disulfide bonds. IGF-I consists of 70 amino

acids with a molecular mass of 7.65 kDa, while IGF-II consists of 67 amino acids

with a molecular mass of 7.47 kDa. IGF-I and -II are over 60% homologous with

each other but less homologous with insulin and its precursor, proinsulin.

Furthermore, the amino acid sequence of both IGF-I and -II are highly
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homologous (i.e., >90%) across species (Spicer and Echternkamp, 1995). IGF-I,

-II and proinsulin are all composed of A and B insulin regions joined by two

disulfide bonds and a connecting C-peptide. The IGF-I gene is expressed as a

prepro IGF-I that requires post-translational modification to clip off both the amino

terminal signal peptide and the carboxy terminus E peptide to produce the 70

amino acid form of IGF-1 common in biological tissues and fluids (for reviews see

Baxter, 1988b; Rosenfeld et aI., 1990). The human IGF-I gene is approximately

100 kilobases found on the long arm of chromosome 12 (Brissenden et aI., 1984;

Tricoli et al., 1984) whereas the human IGF-U gene is on the short arm of

chromosome 11, near the insulin gene, and consists of approx'imately 30

kilobases (Brissenden et aI., 1984; Tricoli et aI., 1984; Bell et aI., 1985).

Both IGF-I and IGF-II are synthesized and secreted in a wide variety of

organs and tissues including the ovary. The IGFs have been detected in follicular

fluid of pigs (Spicer et aI., 1992; Echternkamp et aI., 1994b), cattle (Spicer et aI.,

1988; Spicer and Enright, 1991; Kirby et aI., 1993), mares (Spicer et aI., 1991),

women (Jesionowska et al., 1990) and sheep (Spicer et aI., 1995). Moreover,

IGF-I and -II mRNA have been detected in ovarian tissue of cattle (Einspanier et

aI., 1990; Spicer et aI., 1993; Yuan et aI., 1998), human (Voutilainen and Miller,

1987; Barreca et aI., 1993; EI-Roeiy et aI., 1993; EI-Roeiy et aI., 1994), sheep

(Spicer et aI., 1995), pigs (Samaras et aI., 1994) and rats (Murphy et aI., 1987;

Hernandez et aI., 1989; Oliver et aI., 1989). Specifically, in rats. IGF-I mRNA is

found almost exclusively within granulosa cells, whereas IGF-II mRNA is found in

thecal cells (Hernandez et aI., 1989; Oliver et aI., 1989). IGF-I mRNA has been
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found in granulosa cells of pigs (Hatey et aI., 1992) and in both granulosa and

thecal cells of cattle (Spicer et aI., 1993; Spicer and Echternkamp, 1995).

Moreover, granulosa cells of cattle (Spicer et aI., 1993; Spicer and Chamberlain,

2000) and pigs (Hsu and Hammond, 1987a,b) secrete IGF-1.

In addition to being species specific, the IGF gene is expressed in a cell­

specific pattern that is dependent on the developmental stage of the follicle

(Lucy, 2000). For example, IGF-I gene expression is localized within the

granulosa cells of healthy, developing follicles in mice (Adashi et aI., 1997), with

maximum levels found in granulosa cells of lar9'e preantral follicles and in the

cumulus of small antral follicles (Wandji et aI., 1998). Moreover, small antral

follicles «4 mm) of cattle (Echternkamp et aI., 1990; Spicer and Enright, 1991)

and pigs (Hammond et aI., 1988; Spicer et aI., 1992; Echternkamp et aI., 1994b)

had lower concentrations of IGF-I than did large (>5 mm ) antral follicles, and

IGF-I and -II mRNA were greater in granulosa cells of dominant bovine follicles

than in subordinate follicles during the first follicular wave (Yuan et aI., 1998).

Studies in IGF-I knock-out mice suggest that an increase in IGF-I gene

expression in large preantral follicles stimulates an increase in FSH receptors

and an increase in type I IGF receptors which ultimately amplify FSH action,

formation of the antrum, and expression of aromatase and LH receptors in fully

differentiated follicles (Zhou et aI., 1997). This positive feedback loop has also

been seen in sheep (Perks et aI., 11995) and cattle (Wandji et aI., 1992). In

contrast, IGF-I mRNA did not change as follicles grew from 2 to 8 mm

(preovulatory size) in weaned sows; however, IGF-II mRNA increased as follicles
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developed to 6 mm in diameter, but then decreased as follicles developed to 8

mm in diameter (Liu et aI., 1999). These results are similar to those found in

cyclic sows where IGF-I mRNA levels.did not change from small to large antral

follicles, while IGF-II mRNA levels increased as follicles grew (Yuan et aI., 1996).

In vitro, IGF-I stimulates both granulosa and thecal cell proliferation and

differentiation of several species (for review see Giudice, 1992; Monget and

Monniaux, 1995; Spicer and Echternkamp, 1995). Specifically, IGF-I acts

synergistically with gonadotropins to enhance progesterone and(or} estradiol

production by granulosa cells of cattle (Spicer et aI., 1993; Armstrong et aI.,

1996; Spicer and Chamberlain, 1999), humans (Erickson et aI., 1989; Iwashita et

aI., 1996) and rats (Adashi et aI., 1984). In the absence of FSH, IGF-I is a weak

stimulator of steroidogenesis but potent stimulator of granulosa cell proliferation

(Spicer et aI., 1993; Armstrong et aI., 1996; Spicer and Chamberlain, 1999). It

has been hypothesized that the IGF-I induced FSH amplification may distinguish

follicles destined to ovulate from those destined for atresia (Adashi, 1994a). In

recent in vitro studies, IGF-I in combination with FSH decreased the occurrence

of spontaneous apoptosis in porcine granulosa cells (Guthrie et aI., 1998). IGFs

may be required for entry of follicles into the pool of growing follicles and for their

gonadotropin-independent development, whereas, entry of follicles into the

gonadotropin-dependent stage of follicular development may require an increase

in FSH receptors and/or type IIGF receptors in cattle (Wandji et aI., 1992), and

IGF-II and/or type-I IGF receptors in sheep (Perks et aI., 1995). Studies utilizing

IGF-I null mice supply the first real evidence of the involvement of the IGF



19

system in folliculogenesis and fertility. These studies ind'icate that IGF-~ is

permissive but not crucial for the recruitment of primordial follicles, the growth of

preantral follicles, and cell proliferation, at least up to the antral stage of follicular

development (Baker et aI., 1996). Similar results have been found in cattle

(Gong et aI., 1991; Chase et aI., 1998).

Insulin-like Growth Factor Binding Proteins

IGFBP-1 through -6 share -35% sequence identity with one another

(Rajaram et aI., 1997). They each contain a cysteine rich region at both the

amino and carboxy terminal regions of the protein as well as 18 conserved

cysteines (with the exception of human IGFBP-2 which has 20) arranged in

approximately the same spatial configuration (Rosenfeld et aI., 1990 ).

Conservation of this spatial configuration is indicative of a well-conserved

secondary structure of the IGFBPs (Rosenfeld et al., 1990). There is also a

conserved Arg-Gly-Asp sequence near the carboxy terminal of all IGFBPs with

the exception of human IGFBP-3 (Rosenfeld et aI., 1990). However, there are

significant differences in the "spacer" regions between the conserved cysteines

as well as in the signal peptide sequences and in glycosylation of the IGFBPs

(Wood et aI., 1988; Zapf et aI., 1988; Lamson et aI., 1989b). The IGFBP genes

are members of a large gene family (Rosenfeld et aI., 1990) with human IGFBP-1,

and -3 genes located on chromosome 7 (Ehrenborg et aI., 1992), IGFBP-2 and­

5 on chromosome 2 (Allander et a\., 1993; Allander et aI., 1994), and IGFBP-4
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and -6 on chromosomes 17 and 12, respectively (Ehrenborg et at, 1992;

Allander et al., 1994).

IGFBP-1

IGFBP-1 is a 25 to 34 kDa ( for review see Spicer and Echternkamp,

1995) nonglycosylated, acid stabile protein (Ooi and Herington, 1988) first

isolated from mid term human amniotic fluid (Drop et aI., 1979). It binds IGF-I

and -II with equal affinity and acts to inhibit and/or potentiate IGF action

(Rajaram et aI., 1997). The amino acid sequence of IGFBP-1 consists of 12 N­

terminal and 6-C terminal cysteine residues (Lee et aI., 1997) and is 68 to 72%

homologous among cattle, mice, rats and humans (Chamberlain, 1999). The

amino acid sequence of equine IGFBP-1has not been determined.

IGFBP-1 is the primary binding protein in amniotic fluid (Giudice et aI.,

1991) and is also present in human plasma (Rabinovici et aI., 1997), serum

(Hartshorne et aI., 1990) and follicular fluid (Harstshorne et aI., 1990), as well as

milk, urine, synovial fluid, interstitial fluid and seminal fluid of humans (for review

see Rajaram et aI., 1997). IGFBP-1 mRNA has been localized in the placenta

(Brewer et aL, 1988; Lamson et aI., 1989b) and some breast cancer cell lines

(Yee et aI., 1989) of women, and is the most prominently expressed IGFBP in

decidualized, and to a lesser extent secretory, endometrial tissue (Brewer et aI.,

1988).

Although IGFBP-1 is present in follicular fluid, only a few studies have

been conducted to determine if the ovary or follicle produce it. IGFBP-1 is
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present in the ovary of women, butto date has not been identified in ovarian

tissue of other species. IGFBP-1 has been found in human luteinized cells of

hyperstimulated preovulatory follicles and cells of the corpus luteum (Seppala et

aI., 1984). In vitro, IGFBP-1 has been found in cultured human stromal and

thecal cells (Mason et aI., 1991), luteinized granulosa cells (Suikkari et aI., 1989;

Giudice et aI., 1991), and in human granulosa cell-conditioned medium (Suikkari

et aI., 1989). Human granulosa-luteal cells contain and express mRNA for

IGFBP-1 (Seppala et aI., 1984; Giudice et at, 1991) whereas thecal cells contain

IGFBP-1 mRNA, but not the protein (Jalkanen et aI., 1989). IGFBP-1 is not

produced by porcine granulosa ceUs, nor has IGFBP-1 mRNA detected by

Northern blot analysis (Grimes et aI., 1994a). Because human granulosa cells

contain and express IGFBP-1 mRNA it is likely that these cells contribute to the

amount of IGFBP-1 present in follicular fluid, at least in women.

IGFBP-2

IGFBP-2 is a 29 to 40 kDa (for review see Spicer and Echternkamp, 1995)

nonglycosylated, acid stabile protein (Ooi and Herington, 1988) first isolated in

from rat liver (BRL)-3A cell line (Mottola et aI., 1986). It binds IGF-II with greater

affinity than IGF-I and acts as an inhibitor of IGF action (Rajaram et aI., 1997).

The amino acid sequence of IGFBP-2 is 64 to 92% homologous among cattle,

mice, rats, pigs, humans and sheep (Chamberlain, 1999). The amino acid

sequence of equine IGFBP-2 has not been determined.

IGFBP-2 is the primary binding protein in the central nervous system,

cerebrospinal fluid (Binoux et aI., 1982) and in neonatal rat serum (Giudice et aI.,
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1991). It has also been found in adult rat serum (Shimasaki etal., 1991b), human

milk, follicular fluid and seminal plasma (Binoux et aI., 1991a,b), rat brain and

cultured neuron and glial cells (Lamson et aI., 1989a), as well as bovine

endometrium and, to a lesser extent, myometrium (Kirby et a'l., 1996).

Because IGFBP-2 is present in follicular fluid, other studies have been

conducted to determine if the ovary or follicle produce it. IGFBP-2 mRNA is the

primary binding protein mRNA present in the human ovary and is localized within

both granulosa and thecal cells (Voutilainen et aI., 1996). Moreover, IGFBP-2

has been detected in human granulosa cell conditioned media (Cwyfan Hughes

et aI., 1997). In cattle, IGFBP-2 mRNA has been localized to granulosa cells

(Yuan et aI., 1998) and cells of the corpus luteum (Kirby et aI., 1996), whereas

IGFBP-2 protein has been detected in both granulosa and thecal cells (Funston

et aI., 1996) as well as bovine follicular fluid. In other species, IGFBP-2 mRNA

has been localized within granulosa and thecal cells and corpora lutea of pigs

(Samaras et aI., 1992) and sheep (Perks and Wathes, 1996) and in theca

intersitial and secondary interstitial cells of the rat (Nakatani et aI., 1991).

Collectively, these findings suggest that IGFBP-2 produced by follicular cells

contribute significantly to follicular fluid concentrations of IGFBP-2.

IGFBP-3

IGFBP-3 is a 28 kDa to 53 kDa (Wood et aI., 1988; Spicer and

Echternkamp, 1995) N-glycosylated protein, and is the major IGFBP present in

human circulation (Baxter et aI., 1986) and follicular fluid (Cataldo and Giudice,
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1992a). In circulation, IGFBP-3 forms a 150- to 200-kDa complex consisting of

IGFBP-3, IGF- I or -U and an acid-labile subunit (Baxter, 1988a; Baxter, 1990).

IGFBP-3 binds IGF-I and IGF-II with equal affinity and acts as an inhibitor and/or

potentiator of IGF action (Rajaram et aI., 1997). The amino acid sequence of

IGFBP-3 is 78 to 89% homologous among cattle, mice, rats, humans and pigs

(Chamberlain, 1999). The amino acid sequence of equine IGFBP-3 has not been

determined.

In mammals, IGFBP-3 is present in serum, follicular fluid, milk, urine,

cerebrospinal fluid, amniotic fluid, synovial fluid, interstitial fluid and seminal fluid

(for review see Rajaram et aI., 1997). The main site of IGFBP-3 gene expression

is in the liver (Wood et aI., 1988) but has also been detected in bovine (Kirby et

aI., 1996) and human (Lamson et aL, 1989b) endometrium.

Because IGFBP-3 is present in follicular fluid, numerous studies have

been conducted to determine if the ovary or follicle produce it. In humans,

IGFBP-3 is present in granulosa (Cataldo et aI., 1993) and thecal (Hughes et aI.,

1997) cells, thecal conditioned media, and atretic follicles (Cwyfan-Hughes et aI.,

1997). IGFBP-3 mRNA has been localized in cultured human granulosa cells

(Giudice et aI., 1991), as well as granulosa and thecal cells of dominant human

follicles (EI-Roeiy et aI., 1994). However, in small antral follicles of women

IGFBP-3 mRNA has been detected only in thecal cells (EI-Roeiy et aI., 1994). In

rats, IGFBP-3 mRNA has been detected in regressing corpora lutea (Erickson et

aI., 1993), but not in granulosa or thecal cells (Nakatani et at, 1991). Localization

of IGFBP-3 mRNA in the porcine ovarian compartment is similar to that of the rat
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except that low levels of lGFBP-3 mRNA have been detected in thecal cells

(Samaras et aI., 1992) and IGFBP-3 protein is produced by porcine granulosa

cens (Grimes et aI., 1994a). In cattle, IGFBP-3 mRNA is localized in granulosa

but not thecal cells of small antral follicles (Yuan et aI., 1998). Because follicular

fluid levels of IGFBP-3 remain constant throughout the human menstrual cycle­

(Cataldo and Giudice, 1992b; Huang et aI., 1994) and the estrous cycle of pigs

(Grimes et aI., 1994b), cattle (Echternkamp et al., 1994a; de la Sota et at, 1996;

Funston et aI., 1996; Stewart et aI., 1996), sheep (Monget et aI., 1993; Spicer et

aI., 1995) and horses (Gerard and Monget, 1998), it is unlikely that intrafollicular

production of IGFBP-3 contributes significantly to the amount of IGFBP-3 present

in follicular fluid.

IGFBP-4

IGFBP-4 is a 25 to 30 kDa (for review see Spicer and Echternkamp, 1995)

nongycosylated protein first isolated from human osteosarcoma TE-89 cell

conditioned medium (Mohan et aI., 1989) and from adult rat serum (Shimonaka

et aI., 1989). IGFBP-4 binds IGF-I and IGF-II with equal affinity and acts as an

inhibitor of IGF action (Rajaram et aI., 1997). The amino acid sequence of

IGFBP-4 is 88 to 98% homologous among cattle, pigs, mice, rats, humans and

sheep (Chamberlain, 1999). The amino acid sequence of equine IGFBP-4 has

not been determined.

IGFBP-4 has been detected in serum, follicular fluid, seminal fluid,

interstitial fluid and synovial fluid (for review see Rajaram et aI., 1997) as well as
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conditioned media of normal human osteoblast-Jike cells (Mohan et aI., 1989),

fibroblasts (Camacho-Hubner et aI., 1992), endometrial stromal cells (Irwin et aI.,

1995) and neuroblastoma cells (Fielder et aI., 1990; Cheung et aI., 1991).

Because IGFBP-4 is present in follicular fluid, other studies have been

conducted to determine if the ovary or follicle produce it. Within the human

ovary, IGFBP-4 protein is primarily localized in granulosa cells of atretic follicles

(Cataldo et aI., 1993; Liu et aI., 1993;. Voutilainen et aI., 1996), but has also been

detected in granulosa and thecal cells of antral follicles of polycystic ovarian

syndrome women (EI-Roeiy et aI., 1994). IGFBP-4 mRNA has been localized in

granulosa and thecal cells of large (14 mm) human follicles, but is more

abundant in granulosa cells of small (11 mm) follicles (Voutilainen et aI., 1996).

In addition, IGFBP-4 mRNA has been detected in human luteal cells and in

oocytes from preantral to antral stages of development (Peng et aI., 1996). In

rats, IGFBP-4 protein is found in granulosa cells of atretic follicles and IGFBP-4

mRNA was weakly expressed in dominant follicles (Liu et aI., 1993). In pigs,

IGFBP-4 protein is present in atretic follicles as well as small healthy follicles

(Besnard et aI., 1997). Porcine IGFBP-4 mRNA has been localized to thecal cells

of medium size growing follicles, luteinizing granulosa cells (Gadsby et aI., 1996;

Zhou et aI., 1996) and luteal cells (Zhou et aI., 1996). In sheep, IGFBP-4 mRNA

has been localized in both granulosa and thecal cells of dominant follicles

(Besnard et aI., 1996a). IGFBP-4 mRNA has also been detected in granulosa

and thecal cells of atretic bovine follicles (Armstrong et al., 1998). Therefore, it is

likely that intrafollicular production of IGFBP-4 contributes significantly to the
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amount of IGFBP-4 present in follicular fluid; however, species differences exist.

Moreover, IGFBP-4 is likely a key factor in follicular atresia.

IGFBP-5

IGFBP-5 is a 29 to 31 kDa (for review see Spicer and Echternkamp, 1995)

O-linked glycosylated (Conover and Kiefer, 1993) protein first isolated from adult

rat serum, human bone extract and U-20S human osteosarcoma cell line

conditioned medium (Shimasaki et aI., 1991a; Bautista et aI., 1991). IGFBP-5

binds IGF-II with greater affinity than IGF-I and acts as a potentiator of IGF action

(Rajaram et al., 1997). The amino acid sequence of IGFBP-5 is 97 to 99%

homologous among cattle, mice, rats, pigs and humans (Chamberlain, 1999).

The amino acid sequence of equine IGFBP-5 has not been determined.

IGFBP-5 has since been detected in serum, follicular fluid and

cerebrospinal fluid (for review see Rajaram et aI., 1997) and mRNA has been

localized in numerous cells and tissues including rat liver, brain, lung, adrenal,

spleen, heart, kidney, intestine, stomach and testis homogenates (Erickson et aI.,

1992), and human fibroblasts (Camacho-Hubner et aL, 1992) and osteoblast

(Conover and Keifer, 1993; Canalis and Gabbitas, 1995) cells.

Because IGFBP-5 is present in follicular fluid, other studies have been

conducted to determine if the ovary or follicle produce it. IGFBP-5 mRNA has

been detected in human granulosa and thecal cells (Voutilainen et aI., 1996). In

pigs, IGFBP-5 protein is secreted by granulosa cells (Grimes et aI., 1994a),

however, no IGFBP-5 mRNA has been detected in porcine follicles (Zhou et al.,
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1996), suggesting that in pigs IGFBP-5 is not an important IGFBP in terms of

follicular selection or function. In sheep, IGFBP-5 mRNA has been localized in

granulosa cells of atretic follicles and thecal cells of healthy follicles (Besnard et

aI., 1996a). Similarly in the rat, IGFBP-5 mRNA is present in granulosa cells of

atretic follicles, secondary interstital cells and luteal cells (Erickson et aI., 1992).

Moreover, IGFBP-5 mRNA has been detected in cultured rat granulosa cells (Liu

et aI., 1993). Therefore, It is likely that intrafollicular production of IGFBP-5

contributes significantly to the amount of IGFBP-5 present in follicular fluid;

however, species differences exist.

IGFBP-6

IGFBP-6 is a 21 to 32 kDa (for review see Spicer and Echternkamp, 1995)

O-glycosylated (Shimasaki et aI., 1991 a) protein first purified from transformed

human fibroblast cell cultures (Martin et aL, 1990) and from human cerebrospinal

fluid (Bach et aI., 1992; Bach et aI., 1994). IGFBP-6 binds IGF-II with greater

affinity than IGF-I and acts as an inhibitor of IGF action (Rajaram et aI., 1997).

The amino acid sequence of IGFBP-6 is 67 to 83% homologous among cattle,

rats, mice, and humans (Chamberlain, 1999). The amino acid sequence of

equine IGFBP-6 has not been determined.

IGFBP-6 is primarily found in humans and rats. It has been localized in

many body tissues and fluids including serum (Zapf et a!., 1990), retinal pigment

epithelial cells (Feldman and Randolph, 1994), prostate cancer cells (Srinivasan
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et aL, 1996), osteoblasts (Gabbitas and Canalis. 1997), amniotic fluid (Rajaram

et aL, 1997) and bovine mammary epithelial cells (Cohick and Turner, 1998)

IGFBP-6 mRNA has been localized in human granulosa, thecal and

stromal cells (Voutilainen et aL, 1996) and rat granulosa and thecal interstitial

cells (Rohan et aL, 1993). Although IGFBP-6 is present in porcine follicular fluid

(Shimasaki et aL, 1990), IGFBP-6 is not produced by porcine granulosa cells

(Grimes et aL, 1994a). Moreover, IGFBP-6 mRNA has not been detected in

porcine granulosa cells by Northern blot analysis (Grimes et aI., 1994a). This

suggests that in swine, intrafollicular levels of IGFBP-6 are most likely produced

by other types of follicular cells. To date, IGFBP-6 does not appear to be a major

contributor to intraovarian IGFBP content in most species.

NewlGFBPs

Recently, several new gene products have been suggested to be part of

the IGFBP family. The mac25 gene, encoding a 277 amino acid preprotein, has

been cloned and sequenced from leptomeningial and mammary epithelial cells

(Swisshelm et aL, 1995). The mature protein has not yet been identified I but the

deduced amino acid sequence of the mac25 propeptide shows 40 to 45%

similarity and 20 to 25% identity to IGFBPs (Oh et aL, 1996). The mac25

propeptide contains the common IGFBP motif (GCGGCCx.xC) at the amino

terminus, in an area containing a cluster of 12 conserved cysteines, 11 of which

are found in mac25 (Oh et aI., 1996). Thus, mac25 meets structural criteria to be

considered another member of the IGFBP family. Moreover, mac25 specifically
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binds IGF-I and -II and insulin, but with rather low affinity (Oh et aI., 1996).

Therefore, mac25 has been named IGFBP-7. Sim'ilarly, a family of closely related

gene encoding connective tissue growth factor (CTGF; Bradham et at, 1991),

the nov oncogene (Martinerie et aI., 1992) and cyr61 (O'Brien et aI., 1990) have

been identified and suggested to be members of the IGFBP family. These

proteins have 30 to 38% sequence identity with IGFBP-1 through-6.

Furthermore, these proteins contain the characteristic 'IGFBP motif

(GCGCCXXC) in their amino terminus and 17 of the 18 cysteines are conserved

(Bork, 1993). OTGF has also been found to bind IGF-I and -II, although with

relatively low affinity (Kim et aL, 1997). CTGF, nov, and cyr61 have been named

IGFBP-8, -9 and -10, respectively (Kim et aI., 1997). However, Baxter and

coworkers (1998) have suggested that these proteins not be named IGFBPs, but

insulin-like growth factor-related proteins (IGFBP-rP) until their molecular,

biochemical and physiological relationships can be more closely related to the

IGFBPs.

IGFBP actions within the ovary

In gleneral, each IGFBP has a specific function that is determined by

structural differences of the binding protein (for example, glycosylation, number

of cysteines, RGD sequence), binding affinity and tissue-specific expression

(Rajaram et al., 1997). In particular, each IGFBP may either stimulate or inhibit

IGF action depending on posttranslational modifications such as phosphorylation

(Koistinen et aI., 1993), proteolysis and cell surface association (Hossenl,opp et
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aI., 1990; Conover, 1992; Frost et aI., 1993; Lalou and Binoux, 1993; Liu et aI.,

1993). These factors act by altering the binding affinity of the IGFBPs to IGF

(Rajaram et aI., 1997) thus increasing (Elgin et aI., 1987) and/or decreasing:

(Ritvos et aI., 1988; Knauer and Smith, 1980) the responses of cells to the IGFs,

suggesting that IGFBPs regulate the bioavailability of IGFs to their target tissues

(Hardouin et aI., 1989). For the most part, IGFBPs function to inhibit IGF action

by sequestering free IGF thus preventing it from binding to its receptor (Rechler,

1993). When bound to IGF, the JGFBPs also function to increase the half-life of

IGF thus creating large pools of IGFs within the body (Monget et aI., 1996;

Monget and Bondy, 2000) and maintaining the high levels of IGF in circulation by

limiting their transport out of the vasculature (Conover, 1996).

The IGFBPs have al:so been suggested to act as antigonadotropins by

sequestering endogenous IGF, therefore limiting optimal FSH action (for review

see Adashi, 1998). Specifically, IGFBP-2, -3, -4 and -5 are potent inhibitors of

FSH, but not LH, stimulated steroidogenesis in cultured rat granulosa cells (Ui et

aI., 1989; Bicsak et aI., 1990; Liu et aI., 1993). However, IGFBP-3 had no effect

on FSH-induced progesterone or estradiol production by culture bovine

granulosa cells (Spicer and Chamberlain, 1999). Rather, IGFBP-3 inhibited IGF-I

induced progesterone and estradiol production by bovine grc;lnulosa cells (Spicer

and Chamberlain, 1999). In bovine thecal cells, IGFBP-2 and -3 inhibited IGF-I

induced (but not LH induced) progesterone and androstenedione production

(Spicer et aI., 1997). Conversely, FSH has been found to decrease ovarian

expression of the low molecular weight binding proteins in growing healthy
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follicles; whereas atretic follicles are characterized by a loss of sensitivity to

gonadotropins that allows an increase in expression of the low molecular weight

binding proteins (Monget et aI., 1996). Specifically, within the granulosa cells of

the rat (Uu et aI., 1993), FSH substantially inhibits production of the IGFBPs.

Similarly, FSH has been found to inhibit bovine granulosa cell IGFBP-2 gene

expression (Armstrong et aI., 1998; Schams et aI., 1999). However, in the mouse

FSH had no effect on granulosa ceIlIGFBP-4 or-5 (Adashi et aI., 1997),

suggesting species specificity regarding follicular IGFBP production. Inhibition of

IGFBP production may serve to increase free IGF resulting in a stimulatory effect

on follicular development (for review see Adashi, 1998).

Estradiol also influences intraovarian IGFBP synthesis, but it appears to

affect each IGFBP differently. For example, estradiol decreases IGFBP-1 protein

and mRNA levels in human luteinizing granulosa cells (Iwashita et aI., 1996).

Estradiol increases IGFBP-2 mRNA in rat theca-interstitial cells (Ricciarelli et aI.,

1991), but decreases IGFBP-2 protein synthesis in rat (Ricciarelli et aI., 1991)

and pig (Mondschein et all., 1990) granulosa cells. Furthermore, I,GFBP-2 levels

decrease with increases in estradiol concentrations in human (San Roman and

Magoffin, 1993), bovine (Echternkamp et aI., 1994a; Funston et aI., 1996;

Stewart et aI., 1996), porcine (Howard and Ford, 1992), and.ovine (Spicer et aI.,

1995) follicular fluid. Estradiol does not affect IGFBP-3 or -4 production by

porcine granulosa cells (Mondschein et aI., 1990). However, diethylstilbesterol

(DES) increased IGFBP-4 (Ricciarelli et aI., 1991), but decreased IGFBP-6

(Rohan et aI., 1993) mRNA in hypophysectomized rats. In comparison, insulin



32

decreases IGFBP-1 transcription in rats (Orlowski et at., 1991) and humans

(Powell et aI., 1991), but incre'ases IGFBP-2 (Grimes and Hammond, 1992;

Samaras et al., 1993) and -3 (Grimes and Hammond, 1992) production in

cultured porcine granulosa cells.

Insulin-like Growth Factor Receptors

The IGFs act by binding to and activating specific membrane bound

receptors present on most cells (Conover, 1996). The type IIGF receptor is a

a2p2 tetramer, both structuralfy and functionally related to the insulin receptor

(Roth and Kiess, 1994), that mediates most actions of IGF-I and -II through the

classical growth factor signaling cascade involving activation of the tyrosine

kinase domain of the receptor (LeRoith et al., 1995; Stewart and Rotwein, 1996).

It is synthesized on the ribosome as a single polypeptide chain. Post-translational

modifications remove a 3D-amino acid signal peptide and cleave off the

proreceptor into a 706-amino acid extracellular a-subunit and a 626-amino acid

transmembrane J3-subunit . The a- and f3-subunits are linked by disulfide bonds
I

to form a aJ3-half-receptor; two aJ3-half-receptors are then joined by disulfide

bonds to form the mature a2J32 - holoreceptor. The cysteine-rich a-subunit

extracellular domain provides the ligand binding specificity, whereas, the

cytoplasmic f3-domain provides the tyrosine kinase activity (for review see

Werner et aI., 1991). The cysteine rich area of the type IIGF receptor is

necessary for recognition of IGF-I by the receptor (Andersen et aI., 1991;

Gustafson and Rutter., 1990; Schumacher et aI., 1991; Andersen et aI., 1992;
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Schumacher et aI., 1993). The type IIGF receptor binds IGF-It with a 2- to 15­

fold lower affinity and insulin with a 100 to 1000-fold lower affinity than for IGF-I

(Steel et aI., 1988; Germain Lee et aI., 1992; LeRoith et aI., 1995; Stewart and

Rotwein, 1996). The type I IGF receptor and insulin receptor are approximately

50 to 60% homologous overall, with 84% homology among the tyrosine kinase

domains (Czech, 1989). The type IIIGF, or IGF-lI/mannose-6-phosphate (IGF­

II/M6P) receptor is a single-chain membrane-spanning receptor (Lucy, 2000) that

functions to clear IGF-II from the cell surface, but does not appear to playa role

in the c1assicallGF actions such as mitogenesis (Monget et aI., 1996). Unlike the

type I receptor, the type II IGF receptor does not act via the c1assicallGF second

messenger pathway (Lucy, 2000) but acts by binding IGF-II, internalizing it via

endocytosis, and then degrading' it via intracellular Iysosomes (Oka et aI., 1985;

Nolan et aI., 1990; Braulke, 1999). The type II/M6P receptor binds IGF-II and

molecules with an M6P residue (Nissley and Kiess, 1991) with preferential

affinity, binds IGF-I with a 500-fold lower affinity than IGF-II and does not bind

insulin (Nissley et aI., 1991). Interestingly, the IGF-II binding site is distinctly

different than the binding site for mannose 6-phophate (Braulke et aI., 1988) and

both sites can be occupied simultaneously, however they can interfere with each

other (Kiess et aL, 1988; Oka et aI., 1985; Kiess et aI., 1990). Furthermore, the

extracellular domain of the type II/M6P IGF receptor can be cleaved by proteases

producing a soluable form that may act as a carrier of IGF-II (Clairmont and

Czech, 1991).
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Within the ovary, IGF receptors and IGF receptor mRNA have been found

to exist in porcine (Baranao and Hammond 1984; Otani et al., 1985), bovine

(Spicer et aL, 1994), rat (Davoren et aI., 1986) and human (EI-Roeiy et aI., 1993;

EI-Roeiy et aI., 1994) granulosa cells, as well as bovine (Stewart et aI., 1996), rat

(Hernandez et aI., 1988a,b) and human (Bergh et aI., 1993; EI-Roeiy et aI., 1993;

1994; Samoto et aI., 1993a,b) thecal cells. In addition, bovine (Sauerwein et aI.,

1992), rat (Ladenheim et aI., 1984; Parmer et aI., 1991; Talavera and Menon,

1991) and human (Samoto et aI., 1993a,b) luteal cells and human stromal cells

(Jarrett et aI., 1985; Poretsky et a!., 1988; Hernandez et aI., 1992) contain IGF

receptor mRNA and protein.

Type I receptors increase as granulosa cells develop and decrease during

atresia (Spicer and Echternkamp, 1995). Specifically, cultured bovine granulosa

cells from large follicles had a much greater number of IGF-I receptors than did

granulosa cells from small follicles (Spicer et aI., 1994) and IGF-I receptor activity

increased as follicles grew from preantral to antral size in bovine fetuses and

neonatal calves (Wandji et aL, 1992). However, numbers of IGF-I receptors in

granulosa and thecal cells do not differ between dominant and subordinate

bovine follicles (Stewart et aI., 1996). In rats, IGF-I receptor mRNA increased in

healthy follicles as granulosa cells differentiated and luteinized, but disappeared

from granulosa cells of atretic follicles (Zhou et aI., 1991). Furthermore, IGF-I

binding sites were significantly lower in atretic follicles than in nonatretic follicles

of mice (Baker et aI., 1996; Adashi: et aI., 1997; Wandji et al., 1998). In contrast,

granulosa celllGF receptor numbers remained constant among small, medium
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and large porcine follicles (Maruo et aL, 1988) and type IIGF receptor mRNA did

not change as follicles increased from 2 to 8 mm (preovulatory) in diameter in

weaned sows (Liu et aL, 1999).

Within granulosa cells, type IIGF-I receptors appear to be both

gonadotropin and estrogen dependent (for review see Adashi, 1998).

Specifically, FSH increases IGF I receptors in granulosa cells from small bovine

follicles (Spicer et aL, 1994). Furthermore. FSH and LH increases granulosa-cell

IGF-I receptor numbers in hypophysectomized DES treated rats (Adashi et aI.,

1986; Adashi et al., 1988). Estradiol treatment increases IGF-I receptor number

in cultured porcine granulosa cells (Veldhuis et aL, 1986). Similary, estradiol, but

not progesterone, stimulateslGF-1 receptor numbers in bovine granulosa cells

(Spicer et aL, 1994). However, in vivo, estradiol treatment decreases IGF-I

receptor numbers in rat corpora lutea (Parmer et aL, 1991). Thus, numbers of

granulosa-ceIlIGF-1 receptors are increased by FSH and(or) estradiol in all

species evaluated to date.
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CHAPTER III

Effect of Follicle Size on in vitro Production of Steroids and
Insulin-like Growth Factor (IGF)-I, IGF-II and the IGF

Binding-Proteins (IGFBPs) by Equine Ovarian Granulosa Cells

Abstract

The objectives of this study were to determine 1) if stage of the estrous

cycle or follicle diameter influences steroid concentration or components of the

IGF system present in follicular fluid of mares (Experiment 1), 2) if estradiol,

insulin and/or FSH affect steroid production by equine granulosa cells

(Experiment 2A), and 3) if the components of the IGF system are produced by

equine granulosa cells in culture, as well as whether estradiol, insulin and/or FSH

affects IGF and/or IGFBP production by equine granulosa cells (Experiment 2B).

Follicular fluid and granulosa cells from small «15 mm), medium (16-25 mm) and

large (>25 mm) follicles were collected from luteal (n=6) and follicular (n=8)

phase mares. Granulosa cells harvested from follicular fluid were cultured 2

days in medium containing 10% fetal calf serum, washed, and then treated for an

additional 2 days in serum-free medium with or without added hormones. In

Experiment 1, follicular fluid estradiol concentrations differed (p<0.05) with

estrous cycle stage and follicle diameter. In contrast, progesterone levels were
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not affected (p>0.1 0) by either estrous cycle stage or follicle diameter.

Concentrations of IGF-l did not differ (p>0.1 0) with estrous cycle stage, but

increased with follicle diameter (p<0.05). In comparison, IGF-H concentrations

differed (p<0.05) with estrous cycle stage, but did not differ.with follicle diameter

(p>0.10). IGFBP-2, -3, -4 and -5 appeared in mare follicular fluid, as well as

several high molecular weight IGFBPs. Levels of IGFBP-3 tended to differ

(p<0.08) with estrous cycle stage and increased with follicle diameter during the

follicular, but not luteal, phase. The remaining IGFBPs did not differ (p>0.1 0)

between phases, but IGFBP-2, -4, and -5 decreased with an increase in follicle

diameter (p<O.05), while a 125-135 kDa IGFBP tended to decrease with follicle

diameter (p<0.08). Levels of a 90-96 kDa IGFBP did not change (p>0.1 0) with an

increase in follicle diameter. In Experiment 2A, large follicles produced less

progesterone than did medium or small follicles (p<O.05). Progesterone

production was inhibited (p<O.05) by FSH and insulin in small and medium but

not large follicles; estradiol was without effect. Insulin increased (p<0.05)

estradiol production in small and medium follicle granulosa cells but had no effect

in large follicle granulosa cells. In Experiment 2B, IGF-I production was inhibited

(p<O.05) by insulin across all follicle sizes, but was not affected by estradiol or

FSH. Granulosa cells of medium and large follicles produced more IGF-II than

did granulosa cells of small follicles (p<O.05). Insulin and FSH inhibited (p<O.05)

IGF-II production by granulosa cells of large and medium but not small follicles;

estradiol was without effect. Of the four IGFBPs present in follicular fluid of

mares, IGFBP-2 and -5 were the only ones produced by equine granulosa cells.
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IGFBP-2 production was less (p<O.10) in granulosa cells of large vs small and

medium foHicles. Averaged across follicle sizes, estradiol increased (p<O.1 0)

IGFBP-2 production, whereas FSH increased (p<0.10) IGFBP-2 and -5

production; insulin was without effect. These results indicate that IGF-I,IGF-II,

IGFBP-2, -4 and -5 are present in equine follicle fluid and that estrous cycle

stage and follicle diameter influence concentrations of steroids and components

of the IGF system. Furthermore, these results indicate that IGF-I, IGF-II, IGFBP­

2 and -5 are produced by equine granulosa cells and that insulin, FSH and

estradiol playa role in the regulation of steroidogenesis and the IGF system of

equine granulosa cells.

Introduction

The insulin-like growth factor (IGF) system, composed of IGF-I, IGF-II, IGF

receptors and IGF-binding proteins (IGFBPs), plays an essential role in ovarian

function (for reviews see Sara and Hall, 1990; Hammond et aI., 1991; Giudice,

1992; Monget and Monniaux, 1995; Spicer and Echternkamp, 1995). In most

species, IGF-I stimulates granulosa and thecal cell proliferation and mitogenesis,

and synergizes with gonadotropins to stimulate granulosa and thecal cell

steroidogenesis (for reviews see Hammond et aI., 1991; Giudice, 1992;

Monniaux and Pisselet, 1992).

The IGFs are found in the systemic circulation bound to high affinity,

soluble, carrier proteins (for reviews see Baxter, 1988; Clemmons, 1993;

Rechler, 1993; Spicer and Echternkamp, 1995). These binding proteins have a
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greater affinity for the IGFs compared to IGF receptors and, therefore, are

thought to act as regulators of IGF availability for target cells (Baxter, 1988;

Clemmons, 1993). The presence of IGFBP mRNA in ovarian tissue was first

reported in 1989 (Margot et ai, 1989; Shimasaki et ai, 1989; Ui et ai, 1989) and

since that time additionallGFBPs (i.e., IGFBP-1 through - 8) have been identified

in the ovary of several species (for reviews see Rechler, 1993; Spicer and

Echternkamp, 1995). Within the follicle, IGFBP-3 levels do not change during

development, yet it is the most predominant IGFBP found in ovarian follicular

fluid of pigs (Mondschein et al., 1991; Echternkamp et aI., 1994b), cattle

(Echternkamp et aI., 1994a; Stewart et aI., 1996), sheep (Spicer et aI., 1995) and

horses (Gerard and Monget, 1998). In contrast, follicular fluid IGFBP-2, -4 and -5

activity is lower in growing (estrogen active) dominant vs. subordinate (estrogen

inactive) follicles in cattle (Echternkamp et aI., 1994a; Stewart et aI., 1996), pigs

(Grimes et ai, 1994b), sheep (Monget et aI., 1993) and horses (Gerard and

Monget, 1998). These studies suggest that follicular fluid IGFBP-2, -4 and -5

levels are closely related to the physiological status of follicles in several species.

Some of these IGFBPs are produced within the follicle by granulosa cells of pigs

and rats (for review see Spicer and Echternkamp, 1995). However, which

IGFBPs are produced by granulosa cells of the mare is unknown.

In the mare, one follicle is selected from a cohort of follicles to become

dominant. After selection the dominant follicle continues to grow until ovulation,

while the remaining cohort, or subordinate, follicles become atretic and regress

(for review see Ginther, 1992). Limited information is available regarding the
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physiological mechanism of follicle selection and maturation in the mare. During,

preovulatory development in the mare, follicular fluid IGF-I levels increase

(Spicer et aI., 1991) whereas IGFBP levels decrease (Gerard and Monget, 1998).

In cattle, it has been hypothesized that estradiol and the gonadotropins induce

changes in the amount of IGF-I and IGFBPs produced by granulosa and thecal

cells during follicular development (Spicer et aI., 1988; Spicer and Enright, 1991;

Stewart et aI., 1996). We hypothesize that, in the mare, follicular development

may involve steroid or gonadotropin induced changes in the intrafollicular IGF

system.

Therefore, the specific objectives of these experiments were to 1)

determine whether stage of the estrous cycle or follicle diameter influences

concentrations of steroids, as well as components of the IGF system, present in

follicular fluid of mares, 2) determine whether estradiol, insulin and/or FSH affect

steroid production by equine granulosa cells, and 3) determine what components

of the IGF system are produced by equine granulosa cells in culture, as well as

to determine whether estradiol, insulin and/or FSH affect IGF and/or IGFBP

production by equine granulosa cells.

Materials and Methods

Reagents and Hormones

The reagents used were as follows: Dulbecco's modified Eagle medium

(DMEM), Ham's F-12, sodium bicarbonate, gentamicin, insulin (bovine; 28.5

U/mg), trypan blue, fetal calf serum (FCS), estradiol and acrylamide, all obtained
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from Sigma Chemical Company (St, Louis, MO.); ovine FSH (F1913; FSH activity

15 x NIH-lH-S1 U/mg) obtained from Scripps Laboratories (San Diego, CA);

nitrocellulose transfer membrane (.45 j.1m pore size) obtained from Midwest

Scientific (S1. Louis, MO); protease-free bovine serum albumin (BSA) obtained

from Integrin (Purchase, NY); 20% (w/v) sodium dodecyl sulfate solution (SDS)

obtained from Amresco (Solon, OH); recombinant bovine IGF-II obtained from

Monsanto (S1. louis, MO).

Cell Culture

In late May, 1988, a total of 28 ovaries were obtained at a commercial

abattoir from 14 mares of various breeds, ages and sexual maturity. The mares

were classified as either in the luteal (n =6) or follicular (n =8) phase based on

gross ovarian morphology; ovaries with a viable (vasculature visible) corpus

luteum (CL) were classified as being in the luteal phase, and ovaries with large

follicles and a corpus albicans or regressing CL (as indicated by pale color and

little or no vascularity with a diameter < 20 mm) were classified as being in the

follicular phase (Ireland et aI., 1980). The ovaries were processed at the abattoir

(and in transit from the abattoir) as previously described for bovine follicles

(langhout et aI., 1991; Stewart et aI., 1995). Follicular fluid from individual

follicles were collected separately using needles and syringes. Specifically,

follicular fluid was aspirated from the follicle. Without removing the needle from

the follicle, follicular fluid was injected back into the follicle and aspirated out

again while the follicle was hand massag.ed to loosen granulosa cells. This was



68

repeated two times per follicle. After granulosa cells were separated from

follicular fluid by centrifugation (220 X g for 5 to 7 min), individual follicular fluid

samples were frozen at -80 ac. Follicles were separated into three groups based

on surface diameter: small (6-15 mm), medium (16-25 mm) and large (25-48

mm) (Driancourt and Palmer, 1984). Granulosa cells from individual follicles were

combined into three pools within each of the three size categories without regard

to phase of cycle, washed twice in serum-free medium by centrifugation at 200 X

g (for 5 to 7 min) and resuspended in medium containing 1 mg/mL collagenase

and 0.01 mg/mL DNase to disperse and prevent clumping of the cells. The

number and viability granulosa cells was determined using a hemocytometer and

the trypan blue exclusion method, and averaged 74.9 ± 8.9%,79.2 ± 5.5% and

79.9 ± 10.98% of total granulosa cells, respectively from small, medium and large

follicles.

Medium consisted of a 1:1 (vol/vol) mixture of DMEM and Ham's F-12

containing 0.12 mM gentamicin, 20 mM glutamine and 38.5 mM sodium

bicarbonate. Approximately 4 X 105 viable cells in 100 ilL of medium were added

to Falcon 24-well plates (No. 3047; Becton Dickinson and Co., Lincoln Park, NJ)

containing 1 mL of medium with 10% FCS. Cultures were kept at 38.5°C in a

95% air-5% C02 atmosphere (Langhout et al. , 1991). Cell proliferation was

monitored daily using phase contrast microscopy. To obtain optimal attachment,

cells were maintained in 10% FCS without added hormones for the first 2 days of

culture. After 48 h, cells were washed twice with 0.5 mL of serum-free medium to

remove FCS and non-adherent cells, and incubations continued in serum-free
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medium (0.5 mL) containing 500 ng/mL of testosterone (as an estradiol

precursor) and 2.5 mg/mL of BSA (to minimize loss of the IGFBPs) with or

without added hormones for an add'tional 48 h. Throughout the 4-day culture,

medium was changed every 24 h.

Experiment 1 was designed to determine whether stage of the estrous

cycle or follicle diameter influenced concentrations of steroids and components of

the IGF system in mare follicular fluid. Follicular fluid was aspirated from follicles

as described earlier and assayed for concentrations of estradiol, progesterone,

androstenedione, IGF-I and IGF-II (see section on radioimmunoassays). Also,

follicular fluid was assessed for IGFBP activity based on molecular weight using

one dimensional, reducing sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) (see later section on gel electrophoresis).

Experiment 2A was designed to determine whether estradiol, insulin

and/or FSH affected steroid production by equine granulosa cells. Granulosa

cells from small (6-15 mm), medium (16-25 mm) and large (25-48 mm) follicles

were cultured in medium containing 10% FeS for 48 h as described earlier. After

48 h, the media was replaced with serum-free medium containing testosterone

and either no hormone addition (control), estradiol (500 ng/mL), insulin (100

ng/mL). FSH (50 ng/mL), insulin (100 ng/mL) plus estradiol (500 ng/mL), or

insulin (100 ng/mL) plus FSH (50 ng/mL) and incubated for an additional 48 h. At

the end of the first 24 h incubation with treatments (Le., during day 2 to 3 of

culture) medium was collected for estradiol and progesterone measurement and

fresh medium was added.
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Experiment 2B was designed to determine what components of the IGF

system are produced by equine granulosa cells in culture, as well as to

determine whether estradiol, insulin and/or FSH affected IGF and/or IGFBP

production by granulosa cells. Granulosa cells from small (6-15 mm), medium

(16-25 mm) and large (25-48 mm) follicles were cultured as described in

Experiment 2A. Treatments were no additions (control), estradiol (500 ng/mL),

insulin (100 ng/mL), FSH (50 ng/mL), insulin (100 ng/mL) plus estradiol (500

ng/mL), or insulin (100 ng/mL) pi'us FSH (50 ng/mL). At the end of the second 24

hour incubation with treatments (Le., during day 3 to 4 of 'Culture) medium was

collected for IGF and IGFBP assessment.

Determination of Cell Numbers

After the treatment period had elapsed, medium from each well was

collected individually and frozen at (- 20°C) for later use. Numbers of granulosa

cells were determined at the termination of experiments (i.e., day 4 of culture)

using a Coulter counter (Model 2m; Coulter Electronics, Hialeah, FL) as

previously described (Saranao and Hammond, 1985; Langhout et aI., 1991).

Briefly, cells were exposed to 0.5 mL of trypsin (0.25%[wUvol] in 0.15 M NaCI) for

20 min at 25°C, then scraped from each well with a teflon policeman, diluted in

0.15 M NaCI and enumerated.

Concentration of Spent Medium
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Media samples collected for IGF and IGFBP assessment were

ultrafiltrated using Centricon concentrators with a molecular weight (MW) limit of

I
3,000 (Amicon, Inc., Beverly, MA). The spent medium was concentrated 5- to 18-

fold. Briefly, 400 J..lL of the spent media was placed inside the sample reservoir of

the concentrator and centrifuged at 5322 X g for approximately 80 min. After

centrifugation, the filtrate vial was discarded, the sample reservoir was inverted

and re-centrifuged for 5 min at 591 Xg to transfer the retentate into the retentate

vial. Final volumes ranging from 22 to 77J..lL were measured to record the

concentration factor of the sample; this value was used to correct IGF and IGFBP

data.

Protein Determination

Amount of protein in follicular fluid was quantified as previously described

(Lowry et aI., 1951). Assay sensitivity (i.e., the lowest value at 95% confidence

interval of the lowest point on the standard curve) was 1.79 J..l9/tube and the intra-

assay coefficient of variation was 15.0%.

Radioimmunoassays (RIA)

Progesterone RIA. Concentrations of progesterone in follicular fluid and in

culture medium collected 24 h after hormone treatments were determined with a

double-antibody RIA as previously described (Saranao and Hammond, 1985;

Langhout et aI., 1991). Assay sensitivity (i.e., 95% of total binding) was 0.016



72

±0.007 ng/tube and intra- and interassay coefficients of variation were 12.9 and

17.5%, respectively.

Estradiol RIA. Concentrations of estradiol-17~ in follicular fluid and in

culture medium collected 24 h after hormone treatments were determined with a

double-antibody RIA as previously described (Spicer and Enright, 1991; Spicer

and Stewart, 1996). Assay sensitivity (Le., 90% of total binding) was 0.29 ± 0.05

pg/tube, and the intra- and interassay coefficients of variation were 12.5 and

10.4%, respectively.

Androstenedione RIA. Concentratiions of androstenedione in follicular

fluid were determined using solid-phase RIA kits (ICN Biomedicals, Costa Mesa,

CA) as previously described (Stewart et aI., 1995). Assay sensitivity (Le., 95% of

total binding) was 1.45 ± 0.36 pg/tube and the intra- and interassay coefficients

of variation were 15.0 and 17.0%, respectively.

IGF-I RIA. Concentrati:ons of IGF-I in follicular fluid and in concentrated

culture medium collected 48 h after hormone treatments were determined with a

double-antibody RIA aft.er acid-ethanol extraction (16 h at 4°C) as previously

described (Echternkamp et aI., 1990; Spicer et aI., 1991). Assay sensitivity (i.e.,

95% of total binding) was 4.89 ±0.72 ng/tube and the intra- and interassay

coefficient of variation was 14.5 and 18.8%, respectively.

IGF-II RIA. Concentrations of IGF-II in follicular fluid and in concentrated

culture medium collected 48 h after hormone treatments were determined with a

double-antibody RIA as previously described for bovine and ovine follicular fluid

(Spicer et aI., 1995; Stewart et aI., 1996) and validated for equine follicular fluid.
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Increasing volumes of extracted equine follicular fluid as well as concentrated

spent culture medium from equine granulosa ceU cultures created displacement

curves parallel to the standard curve. Assay sensitivity (i.e., 95% of total binding)

was 22.98 ± 9.40 pg/tube, and intraassay coefficient of variation was 9.17%.

Gel Electrophoresis of IGFBPs

IGFBPs in follicular fluid and concentrated culture medium collected 48 h

after hormone treatment were analyzed by one-dimensional, reducing, SDS-

PAGE based on molecular weight as previously described (Echternkamp et aI.,

1994a; Simpson et aI., 1997). Briefly, for culture medium, 12.5 I!L of

concentrated sample was mixed with 12.5 I!L of Laemmli sample buffer

(BIORAD, Hercules, CA). For follicular fluid, 4 I!L of sample was mixed with 21

I!L of Laemmli sample buffer (BIORAO, Hercules, CA). The samples were heat

denatured (3 min at 100°C), centrifuged at 4657 X g for 3 min and then

electrophoresed on a 12% polyacrylamide gel overnight (approximately 18 to 20

h) at a constant current (25 to 35 amps) and varying voltage. After separation,

proteins in gels were electrophoretically transferred to nitrocellulose paper

(Midwest Scientific, St. Louis, MO) for 2.5 to 3.0 h. Each nitrocellulose paper was

incubated with 6 mL of 1251_IGF_1I (15,000 cpm/100 I!L) and placed on a rocking

platform at 4°C overnight. The next day, the blots were washed in a Tris-buffered

saline (TBS) with 0.1 % Tween followed with additional washings with only the

TBS. The nitrocellulose blots were then dried and exposed to X-ray film at (-80

°C) for 12 days for follicular fluid and 4 days for culture medium. Individual band

"
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intensity on autoradiographs was densitometrically analyzed using a Molecular

Analyst (BIORAD, Hercules, CA).

Statistical Analysis

Data were analyzed using PROC MIXED of SAS. For Experiment 1, linear

regressions were performed for each response variable (E2, P4, ~, protein, IGF-

I, IGF-II and IGFBPs) using the variable "SIZE" as the independent variable.

Separate regressions were performed for each stage (Luteal or Follicular).

Dummy variables for each response were used to assess whether the slopes

associated with each stage were significantly different. If the slopes associated

with the two stages were not statistically significant, then a model to assess the

difference in the intercepts f0r the two stages was performed. For Experiment 2A

and 2B interaction of size by treatment was assessed. In the absence of

interaction, orthogonal contrasts to assess the main effects of estradiol, FSH and

insulin were utilized. In the presence of interaction, contrasts were formed to

evaluate the simple effects of estradiol, FSH and insulin on each follicle size.

Multiple mean comparisons (LSD) were performed only if a main effect was

significant. For Experiment 28, correction factors were utilized to standardize

volume of concentrated media.

Results

Experiment 1: Effect of stage of estrous cycle and follicle diameter on

steroid concentrations and the IGF system in equine follicular fluid.
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Estradiol production differed during the follicular phase as. compared to the

luteal phase (p<0.05). Fitted ines for both the follicular and luteal phases are

shown in Figure 1. During the follicular phase, estradiol concentration increased

with an increase in follicle diameter (p<0.05). In contrast, diameter appeared to

play little or no role in increasing estradi.ol concentration during the luteal phase

(p>0.10). In contrast to estradiol, progesterone concentration in follicular fluid

averaged 28.9 ± 3.8 ng/mL and did not differ (p>O.10) between the follicular and

luteal phase, nor was it affect.ed (p>0.1 0) by follicle diameter (data not shown).

Androstenedione concentration in follicular fluid averaged 80.09 ± 28.43

ng/mL and did not differ (p>0.1 0) between the follicular and luteal phase.

However, androstenedione concentration increased as follicle diameter

increased (p<0.05). The fitted line for the combined follicular and luteal phases of

androstenedione are shown in Figure 2.

The concentration of protein found in follicles of the follicular phase was

different (p<0.05) than that seen in luteal phase follicles. During both phases of

the estrous cycle, protein concentrations increased with an increase in follicle

diameter (p<O.05; data not shown).

Concentrations of IGF-I in follicular fluid during the follicular phase (45.9 ±

4.7 ng/mL) did not differ (p>O.1 0) from those during the luteal phase (34.1 ± 5.6

""

ng/mL). However, IGF-I concentration increased as follicle diameter increased

(p<0.05). The fitted line for the combined follicular and luteal phases of IGF-I are

shown in Figure 3. Unlike IGF-I, IGF-II concentrations were different (p<O.05)

between the follicular (61.4 ± 3.6 ng/mL) and lutea.1 (51.3 ± 4.3 ng/mL) phase, but
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IGF-II concentrations remained similar (p>O.10) as follicle diameter increased

(data not shown).

Of the known IGFBPs, IGFBP-2, -3, -4 and -5 were present in mare

follicular fluid (Figure 4). We also detected severallGFBPs with estimated

molecular weights ranging between 90 and 135 kDa. Levels of IGFBP-3 tended

to differ (p<0.08) between the follicular and luteal phases and increased (p<0.05)

with an increase in follicle diameter during the follicular stage but not the luteal

phase. The fitted lines for IGFBP-3 of both follicular and luteal phases are shown

in Figure 5. In contrast, the other IGFBPs did not differ (p>O.10) between phases

(data not shown). IGFBP-2, -4 and -5 decreased (p<O.05) with an increase in

follicle diameter (Figure 6). The 125-135 kDa IGFBP and the 115 kDa IGFBP

tended to decrease (p<O.08) with an increase in follicle diameter (data not

shown). Concentrations of the 90-96 kDa IGFBP did not change (p>0.1 0) with

follicle diameter (data not shown).

Experiment 2A: Effect of insulin, FSH and estradiol on granulosa cell

steroid production

Basal levels of progesterone production were lower (p<0.05) in large­

versus small- and medium-follicle granulosa cells (Figure 7). Progesterone

production was inhibited (p<0.05) by insulin, FSH, and a combination of insulin

plus FSH in cultures of small- and medium- but not large-follicle granulosa cells.

Estradiol alone had no effect (p>0.10) on progesterone production in medium­

and large-follicle granulosa cells, but inhibited (p<O.05) progesterone production
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in small-follicle granulosa ceHs. When estradiol was combined with insulin,

progesterone production was inhibited (p<0.05) in cultures of small- and medium­

but not large-follicle granulosa cells; this inhibition was similar to that seen with

insulin alone (Figure 7).

Basal levels of estradiol production did not differ (p>0.05) in cultures of

small-, medium- or larg,e-follicle granulosa cells (Figure 8). Insulin stimulated

(p<0.05) estradiol production by small- and medium-follicle granulosa cells, but

was without effect (p>0.1 0) in large follicles. FSH treatment alone had no effect

(p>0.10) on estradiol production by smal:l- and large-follicle granulosa cells, but

inhibited (p<0.05) estradiol: production by 90% in medium follicles. FSH also

inhibited (p<0.05) the insulin-induced increase in estradiol production by medium

follicles. In small follicles, the combined treatment of insulin and FSH stimulated

(p<0.05) estradiol production 5-f()ld compared to controls and 8-fold compared to

FSH treated cultures; granulosa cells of large follicles were not affected (p>0.10)

by the insulin and FSH combination (Figure 8).

Experiment 28: Effect of insulin, FSH and estradiol on granulosa cell IGF

and IGFBP production

Equine granulosa cells produced 10- to 50-fold more IGF-II (Figure 9) than

IGF-I (Table 1) in culture. When averaged across follicle size, insulin inhibited

(p<0.05) IGF-I production 24% to 36%, but was not affected by estradiol or FSH

(Table 1). In comparison, singular treatments of insulin or FSH inhibited (p<0.05)

IGF-II production by medium- and large- but not small-follicle granulosa cells
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(Figure 9). Combined treatments of insulin plus FSH also inhibited (p<0.05) IGF­

II production by medium- and large- but not small-follicle granulosa cells; this

inhibition by combined treatments did not differ (p>0.1 0) from either singular

treatment. Estradiol alone inhibited (p<0.05) IGF-II production by large-follicle

granulosa cells but had no effect in small or medium follicles. Medium- and

large-follicle granulosa cells produced more (p<0.05) basallGF-1I than did small­

follicle granulosa cells (Figure 9).

Equine granulosa cells produced two forms of IGFBP: a 29-40 kDa IGFBP

(IGFBP-2) and a 29-31 kDa IGFBP (IGFBP-5; Figures 10, 11 and 12). Size of

follicle did not influence (p>O.1 0) production of IGFBP-5; however IGFBP-2

production by granulosa cells of large follicles tended (p<0.10) to be 35% to 59%

less than small and medium follicles. Treatment tended (p<0.10) to affect both

IGFBP-2 and IGFBP-5 production (Table 1). When averaged across follicle size,

estradiol increased (p<0.10) only IGFBP-2 production, whereas FSH increased

(p<0.10) both IGFBP-2 and IGFBP-5 production. Insulin alone was without effect

(p>0.10) on IGFBP-5 production, but tended (p<0.06) to increase IGFBP-2

production in large follicles and decrease IGFBP-2 production in medium and

small follicles (data not shown). Insul'in combined with either estradiol or FSH

blocked (p<O.10) the stimulatory effect of estradiol on production of IGFBP-2 and

the stimulatory effect of FSH on production of IGFBP-5 (Table 1).

Representative examples of cultured equine granulosa cells from small,

medium and large follicles are depicted in Figures 10, 11 and 12. Insulin

stimulated (p<0.05) granulosa cell numbers in cultures from small and medium
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follicles, but was without effect in cultures from large follicJes (Figure 13).

Estradiol and FSH treatments alone had no effect (p>O.10) on granulosa cell

numbers in cultures from small, medium or large follicles. When estradiol or FSH

was combined with insulin, granulosa cell numbers increased (p<O.05); these

increases were similar to those seen with insulin alone (Figure 13).

Discussion

Results of the present study revealed that 1) follicular fluid levels of

IGFBP-2, -4 and -5 decreased with follicular size whereas levels of estradiol and

IGFBP-3 increased with follicular size, 2) of the IGFBPs found in follicular fluid

only IGFBP-2 and -5 are produced by equine granulosa cells, 3) FSH and

estradiol increased IGFBP-2 and -5 production, had no effect on IGF-I

production, and decreased IGF-II production by equine granulosa cells, and 4)

estradiol and progesterone production by equine granulosa cells were

differentially regulated by insulin and FSH and these effects were dependent on

follicle size.

In the present study, intrafollicular levels of the low molecular weight

IGFBPs (IGFBP-2, -4 and -5) decreased as follicle diameter increased

regardless of estrous cycle stage in the mare. This result is consistent with those

obtained from cyclic pony mares in which IGFBP-2 binding activity decreased

during growth of the dominant follicle but was substantially increased in

subordinate cohort follicles (Gerard and Monget, 1998). Similarly, intrafollicular

levels of IGFBP-2 and -4 in pigs (Yuan et aI., 1996) and IGFBP-2, -4 and -5 in
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sheep (Monget et aI., 1993; Spicer et aI., 1995) and cattle (Echternkamp et aI.,

1994a; Stewart et aI., 1996) significantly decrease as follicle diameter increases

probably due to a decrease in gene expression (Samaras et al., 199:2; Besnard

et aI., 1996a,b; Armstrong et aI., 1998), an increase in proteolytic degradation of

the binding proteins (Besnard et aI., 1'996b; Besnard et aI., 1997) or both. Unlike

the low molecular weight IGFBPs, we found that IGFBP-3 levels were unchanged

as follicle size increased during the follicular phase but increased with an

increase in follicle size during the luteal phase. Increases in follicular fluid IGFBP­

3 with increased follicle size have been observed in some studies with sheep

(Monget et aI., 1993) and pigs (Grimes et aI., 1994b). However, other studies

report that IGFBP-3 does not change with follicle size in pigs (Howard and Ford,

1992; Echternkamp et aI., 1994b), humans (Cataldo and Giudice, 1992), sheep

(Monget et aI., 1993; Spicer et aI., 1995) and cattle (Echternkamp et aI., 1994a;

Funston et aI., 1996; Stewart et al., 1996). Gerard and Monget (1998) found that

follicular fluid IGFBP-3 content does not change in equine follicles ranging from

22 mm in diameter to preovulatory size (> 35 mm). This latter ob.servation is not

inconsistent with the present study because the lowest levels of IGFBP-3 were

found in follicles < 10 mm (Figure 3).

Previous findings are consistent with our observations that intrafollicular

estradiol increases during follicular growth (Meinecke et al., 1987; King and

Evans, 1988; Sirois et aL, 1990; Gerard et aI., 1998; Gerard and Monget, 1998;

Goudet et aI., 1999). Van Rensburg and Van Niererk (1968), using 16 follicles,

noted increases in follicular fluid estradiol concentrations with increases in
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diameter of follicles> 20 mm. Similarly, our results indicate that concentrations

of estradiol do not dramatically increase until follicles reach> 25 mm in diameter.

Gerard and Monget (1998) indicated that an increase in estradiol levels occur

from early dominant (22-25 mm) follicles to late dominant (33-35 mm) follicles.

Similarly, Belin and coworkers (2000) found that estradiol levels were lower in

dominant follicles at emergence (approximately 20 mm in diameter) than at the

end of follicular growth (~ 30 mm in diameter) or in preovulatory follicles.

Aromatase activity dramatically increases from 20-24 mm follicles to 25-29 mm

follicles at the end of the follicular phase (Goudet et aI., 1999). Collectively, the

past and present research suggests that as follicles develop and become

estrogen active, IGFBP-2, -4, and -5 decrease whereas IGFBP-3 remains

constant or increases creating a total net decrease in IGFBP activity. In the mare,

this decrease in net IGFBP activity concomitant with an increase in total IGF-I

levels may act to increase the amount of free IGF-I within the follicle and

subsequently increase the sensitivity of the follicle to gonadotropins, stimulating

granulosa cell differentiation and follicular development. Those follicles showing

increased levels of the low molecular weight IGFBPs and decreased estradiol

may be destined for atresia (Giudice, 1992; Monget and Monniaux, 1995;

Armstrong et aI., 1996; Monget et aI., 1996).

For the first time, IGFBP production by equine granulosa cells has been

evaluated. Of the IGFBPs detected in equine follicular fluid (IGFBP-2,

-3, -4 and -5), only IGFBP-2 and -5 were produced by equine granulosa cells,

and both were responsive to hormone treatment. Previous research suggests
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that granulosa cell production of IGFBPs is highly species specific. For example,

a 29 kDa (presumably IGFBP-1) is produced by ovine granulosa ceUs, as well as

IGFBP-2 and -5 (Armstrong et aI., 1996). Granulosa cells from mice (Adashi et

aI., 1997) and cattle (Chamberlain and Spicer, 1998) produce IGFBP-2, -4 and­

5 and porcine granulosa cells produce IGFBP-2, -4 and -5, as well as IGFBP-3

(Grimes et a\., 1994a). In the present study, we determined that follicle size had

no influence on IGFBP-5 production, but IGFBP-2 production tended to be 35%

to 59% less in large- vs. small- and medium-follicle granu,losa cells. The present

study also revealed that FSH and estradiol treatments increased IGFBP-2 and-5

production by equine granulosa cells. These results are in contrast with studies in

pigs (Mondschein et aI., 1990; Grimes et aI., 1992) that found FSH to be one of

the most potent inhibitors of IGFBP-2. Simarlily, FSH has been observed to

inhibit granulosa cell IGFBP-2 production in rats (Bicsak et aI., 1990) and IGFBP­

2 mRNA in cattle (Armstrong et aI., 1998; Schams et aI., 1999) but did not effect

IGFBP-2 production in human luteinizing granulosa cells (Cataldo et aI., 1993) or

ovine granulosa cells (Monget et aI., 1998). In comparison, estradiol inhibits

granulosa ceIlIGFBP-2 production in rats (Ricciarelli et aI., 1991) and pigs

(Mondschein et aI., 1990), but increases plasma IGFBP-5 levels in cattle

(Simpson et aI., 1997). In the mare, granulosa cell production of IGFBP-2 and -5

may play an inhibitory role on IGF-I action in follicular cells as reported in other

species (Liu et aI., 1993; Spi.cer et aI., 1997; Spicer and Chamberlain, 1999).

High expression of these binding proteins within a follicle may limit free IGF-I,

thus slowing follicular growth and allowing emergence of a dominant follicle
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(Stewart et ai., 1996; Adashi, 1998). Therefore, inhibition of intrafollicular

production of IGFBP-2 and -5 may be necessary, at least in part, for selection of

the dominant follicle in the mare.

Similar to what was observed in the present study, follicular fluid levels of

IGFBP-2 decrease with increases in estradiol concentrations in humans (San

Roman and Magoffin, 1993), cattle (Echternkamp et aI., 1994a; Funston et al.,

1996; Stewart et ai., 1996), pigs (Howard and Ford, 1992), and sheep (Spicer et

ai., 1995). Therefore, it is likely that follicular fluid levels of IGFBP-2, -4 and -5

are initially high at follicular emergence due to increases granulosa cell

production in response to high levels of FSH in circulation. When follicles reach

approximately 20 mm in diameter, just prior to selection of the dominant follicle in

the mare (for review see Ginther, 2000), follicular fluid levels of IGFBP-4 and -5

begin to decrease most probably due to actions of specific IGFBP proteases

concomitant with the increase in intrafollicular estradiol and the decline in FSH. In

response to declining FSH levels, granulosa cell production of IGFBP-2 and-5

slows. Once the dominant follicle has been selected, estradiol levels increase,

further stimulating granulosa cell IGFBP-2 and -5 production in atretic, cohort

follicles.

For the first time, hormonal regulation of equine granulosa cell derived

IGFs was observed. The present study revealed that FSH and estradiol

treatment had no effect on IGF-I production but decreased IGF-II production by

equine granulosa cells. Also, insulin and FSH inhibited IGF-II production by

medium- and large- but not small-follicle granulosa cells, suggesting that IGF-II

j

f

1
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production by small-fol!licle granulosa cells is unresponsive to trophic factors in

the mare. In comparison to our findings, FSH tfieatment has no effect on IGF-I

production by bovine granulosa cells (Spicer et aI., 1993; Spicer and

Chamberlain, 2000a), but stimulates IGF-I production by porcine granulosa cells

(Hsu and Hammond, 1987a,b; Mondschein et aI., 1988). In humans, FSH

stimulates IGF-II, but not IGF-I, production and mRNA by granulosa cells

(Ramasharma and Li, 1987). In bovine granulosa cells, estradiol enhances the

insulin-induced decreases in IGF-I and IGF-II production but has no effect on

basallGF-1 and IGF-II production (Spicer and Chamberlain, 2000a,b). However,

in cultured ovine (Wathes et aI., 1995) and porcine (Hsu and Hammond, 1987b)

granulosa cells, estradiol increases IGF-I production and in vivo treatment of

immature hypophesctomized rats with DES increases IGF-II mRNA, but

decreases IGF-II mRNA within the ovary (Hernandez et aI., 1990). Thus, species

differences may exist in regard to hormonal control of ovarian IGF production.

The present study also revealed that estradiol and progesterone

production by equine granulosa cells were differentially regulated by insulin and

FSH. We found that insulin decreased progesterone production but increased

estradiol production in small- and medium-, but not large-follicle granulosa cells.

Similarly, insulin stimulates estradiol production by small-follicle bovine granulosa

cells (Spicer et aI., 1993; Spicer et aI., 1994; Spicer and Chamberlain, 1998), but

has no effect or decreases estradiol production in pigs (small vs large follicles;

Veldhuis et aI., 1983; Maruo et aI., 1988), and humans (Erickson et aI., 1990).

However, insulin and FSH stimulates progesterone production by granulosa cells
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of cattle (Schams et aI., 1988; Spicer et aI., 1993), swine (Saranao and

Hammond, 1984), and rats (Davoren et aI., 1986). We also observed that FSH

alone decreased progesterone production by small- and medium-, but had no

effect on large-follicle granulosa cells. Why insulin and FSH are inhibitory to

progesterone production in mares but stimulatory in other species remains to be

elucidated, but may involve some species specific mechanism unique to the

mare. FSH alone did not affect estradiol production by small- and large-follicle

granulosa cells, but decreased estradiol production by 90% in medium-fol·licle

granulosa cells. However, in the presence of insulin, FSH enhanced the

stimulatory effect of insulin on estradiol production by small follicle granulosa

cells, and inhibited the stimulatory effect of insulin on estradiol production by

medium-follicle granulosa cells. Sirois et al. (1991) reported that in the presence

of insulin, FSH was unable to stimulate estradiol production in large equine

follicles during the early estrous phase but was able to significantly stimulate

progesterone production by granulosa cells from large (early and late estrus

stage) follicles. Also, equine granulosa cell responsiveness to FSH in terms of

estradiol and progesterone production decreased as follicle diameter increased

in early to late estrus follicles (39 to 47 mm; Sirois et aI., 1990), which is constant

with results of the present study. Therefore, high circulating levels of FSH, as

seen during early follicular growth, may act to inhibit premature granulosa cell

differentiation and/or luteinization in small and medium follicles as indicated by

the decreased levels of prog;esterone and estradiol in the present study. Once

follicles reach a large diameter (> 25 mm) FSH receptors may be downregulated
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making these follicles unresponsive to FSH. Further research is needed to

under~tand hormonal regulation of granulosa cell steroidogenesis in the mare.

The present study indicates that IGF-I, IGF-II, IGFBP-2, -4 and -5 are

present in equine folncle fluid and that estrous cycle stage and follicle diameter

influence concentrations of steroids and components of the IGF system.

Furthermore, these results indicate that IGF-I, lGF-II, IGFBP-2 and -5 are

produced by equine granulosa cells and that insulin, FSH and estradiol playa

role in the regulation of steroidogenesis and the IGF system of equine granulosa

cells. The present study suggests that decreased levels of low molecular weight

IGFBPs in large estrogen-active follicles may allow an increase in free IGF-I and

thus increase gonadotropin responsiveness and growth of the future dominant

follicle. In contrast, increased levels of the low molecular weight IGFBPs in small

cohort follicles may act to sequester IGF-I causing a low responsiveness to IGF-I

and FSH, thus slowing growth rate of future subordinate follicles.
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Figure 1. Linear regression analysis of estradiol concentration in follicular fluid.
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represented by the line y = 59.62x - 740.71. Estradiol concentration
in follicles during the luteal phase ( - - - ) is represented by the

line y = 16.40x - 163.21.
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Figure 2. Linear regression analysis of androstenedione concentration in
follicular fluid. Androstenedione concentration did not differ between

follicular and luteal phases and is represented by the
line y = 11.74x - 107.03.
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follicles of mares. Pooled SEM = 5.0 ng/105 cells/24 h.

a, b, C Within a follicle size, means without a common superscript differ (p<O.05),
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Figure 9. Effects of insulin (100 ng/mL), estradiol (500 ng/mL), and/or FSH
(50 ng/mL) on IGF-JI production by granulosa cells collected from

small (6 to15 mm), medium (16 to 25 mm). and large (25 to 48 mm)
follicles of mares. Pooled SEM = 1.2 ngl1 05 cells/24 h.

a, b Within a follicle size, means without a common superscript differ (p<0.05).
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Figure 10. Panel A: representative ligand blot of IGFBP production by
equine granulosa cells from small follicles. Treatments were as follows:

lanes 1 and 2 =control, lanes 3 and 4 =estradiol, lanes 5 and 6 =
insulin, lane 7 =estradiol+insulin, lane 8 =FSH, lane 9 =FSH+insulin.

Panel 8: representative example of control cultures of equine granulosa
cells from small follicles under phase contrast microscopy (200x). Panel
C: representative example of insulin treated cultures of equine granulosa

cells from small follicles under phase contrast microscopy (200x).
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Figure 11. Panel A: representative ligand blot of IGFBP production by
equine granulosa cells from medium follicles. Treatments were as

follows: lane 1 =control, lane 2 =estradiol, lane 3 =insulin, lanes 4 and
5 =estradiol+insulin, lanes 6 and 7 =FSH, lanes 8 and 9 =FSH +

insulin, lane 10 = equine follicular fluid, lane 11 = no sample, lane 12 =
bovine follicular fluid. Panel B: representative example of control cultures

of equine granulosa cells from medium follicles under phase contrast
microscopy (200x). Panel C: representative example of insulin treated
cultures of equine granulosa cells from medium follicles under phase

contrast microscopy (200x).
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Figure 11. Panel A: representative ligand blot of IGFBP production by
equine granulosa cells from large follicles. Treatments were as follows:

lane 1 = control, lane 2 = estradiol, lane 3 = insulin, lanes 4 and 5 =
estradiol+insulin, lanes 6 and 7 = FSH, lanes 8 and 9 = FSH+insulin.

Panel B: representative example of control cultures of equine granulosa
cells from large follicles under phase contrast microscopy (200x). Panel

C: representative example of insulin treated cultures of equine granulosa
cells from large follicles under phase contrast microscopy (200x).
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Figure 9. Effects of insulin (100 ng/mL), estradiol (500 ng/mL), and/or FSH
(50 ng/mL) on granulosa cell numbers from small (6 to15 mm).

medium (16-25 mm), and large (25 to 48 mm) follicles of mares.
Pooled SEM = 1.2 ng/1 05 cells/24 h.

a, b Within a follicle size, means without a common superscript differ (p<O.05).



Table 1
Effect of estradiol, insulin and FSH on granulosa cell production of IGF-I,

IGFBP-2 and IGFBP-5

Treatments1

\OJ

IGFBP-2

IGFBP-54

Control

2.50C

Estradiol Insulin FSH

3.40d

INS+FSH

1 Because follicle size was not significant, data were pooled across follicle sizes
2 units = ng/1 05 cells/24 h; pooled SEM = 0.05.
3 units =ADU/1 05 cells/24 h; pooled SEM =0.43; ADU =arbitrary densitometric

units.
4 units =ADU/1 05 cells/24 h; pooled SEM =0.10.
a, b Within a row, means without a common superscript differ (p<O.05).
c, d Within a row, means without a common superscript differ (p<O.10).



Literature Cited

Adashi EY. The IGF family and folliculogenesis. J Reprod Immun 1998; 39:13­
19.

Adashi EY, Resnick CE, Payne DW, Rosenfeld RG, Matsumoto T, Hunter MK,
Gargosky SE, Zhou J, Bondy CA. The mouse intraovarian insulin-like
growth factor I system: departures from the rat paradigm. Endocrinology
1997; 138:3881-3890.

Armstrong DG, Baxter G, Gutierrez CG, Hogg CO, Glazyrin AL, Campbell BK,
Bramley TA, Webb R. Insulin-like growth factor binding protein -2 and -4
messenger ribonucleic acid expression in bovine ovarian follicles: effect of
gonadotropins and developmental status. Endocrinology 199'8; 139:2146­
2154.

Armstrong DG, Hogg CO, Campbell BK, Webb R. Insulin-like growth factor
(lGF)-binding protein production by primary cultures of ovine granulosa
and theca cells. The effects of IGF-I, gonadotropin, and follicle size. Bioi
Reprod 1996; 55:1163-1171.

Baranao JLS, Hammond JM. Comparative effects of insulin and insulin-like
growth factors on DNA synthesis and differentiation of porcine granulosa
cells. Biochem Biophys Res Commun 1984; 124:484-490.

Baranao JLS, Hammond JM. Serum-free medium enhances growth and
differentiation of cultured pig granulosa cells. Endocrinology 1985; 116:51­
58.

Baxter RC. The insulin-like growth factors and their binding proteins. Comp
Biochem Physiol 1988; 918(2):229-235.

Belin F, Goudet G, Duchamp G, Gerard N. Intrafollicular concentrations of
steroids and steroidogenic enzymes in relation to follicular development in
the mare. Bioi Reprod 2000; 62:1335-1343.

Besnard N, Pisselet C, Monniaux 0, Locatelli A, Benne F, Gasser F, Hatey F,
Monget P. Expression of messenger ribonucleic acids of insulin-like
growth factor binding proteins-2, -4, and -5 in the ovine ovary: localization

102



103

and changes during growth and atresia of antral follicles. Bioi Reprod
1996a; 55:1356-1367.

Besnard N, Pisselet C, Monniaux 0, Monget P. Proteolytic activity degrading
insulin-like growth factor binding protein-2, -3, -4, and -5 in healthy
growing and atretic follicles in the pig ovary. Bioi Reprod 1997; 56: 1050­
1058.

Besnard N, Pisselet C, Zapf J, Hornebeck W, Monniaux D, Monget P. Proteolytic
activity is involved in changes in intrafollicular insulin-like growth factor­
binding protein levels during growth and atresia of ovine ovarian follicles.
Endocrinology l' 996b; 137:1599-1607.

Bicsak TA, Shimonaka M, Malkowski M, Ling N. Insulin-like growth factor-binding
protein (IGF-BP) inhibition of granulosa cell function: effect on cyclic
adenosine 3',5'-monophosphate, deoxyribonucleic acid synthesis and
comparison with the effect of an IGF-I antibody. Endocrinology 1990;
126:2184-2189.

Cataldo NA, Giudice LC. Insulin-like growth factor binding protein profiles in
human ovarian follicular fluid correlate with follicular functional status. J
Clin Endocrinol Metab 1992; 74:821-829.

Cataldo NA, Woodruff TK, Giudice LC. Regulation of insulin-like growth factor
binding protein production by human luteinizing granulosa cells cultured in
defined medium. J Clin Endocrinol Metab 1993; 76:207-215.

Chamberlain CS, Spicer LJ. Hormonal regulation of the production of insulin-like
growth factor binding proteins (IGFBP) by bovine granulosa cells. Bioi
Reprod 1998; 58 (SuppI1): 166.

Clemmons DR. IGF binding proteins and their functions. Mol Reprod Develop
1993; 35:368-375.

Davoren JB, Kasson BJ, Li CH, Hsueh AJW. Specific insulin-like growth factor
(IGF) 1- and II-binding sites on rat granulosa cells: Relation to IGF action.
Endocrinology 1986; 119:2155-2162.

Driancourt MA, Palmer E. Time of ovarian follicular recruitment in cyclic pony
mares. Theriogenology 1984; 21 :591-600.

Echternkamp SE, Howard HJ, Roberts AJ, Grizzle J, Wise T. Relationships
among concentrations of steroids, insulin-like growth factor-I, and insulin­
like growth factor binding proteins in ovarian follicular fluid of beef cattle.
Bioi Reprod 1994a; 51 :971-981.



104

Echternkamp SE, Spicer LJ, Gregory KE, Canning SF, Hammond JM.
Concentrations of insulin-like growth factor-I in blood and ovarian follicular
fluid of cattle selected for twins. Bioi Reprod 1990; 43:8-14.

Echternkamp SE, Spicer LJ, Klindt J, Vernon RK, Yen JT, Buonomo FC.
Administration of porcine somatotropin by a sustained release implant:
effects on follicular growth, concentrations of steroids and insulin-like
growth factor-I, and insulin-like growth factor binding protein activity in
follicular fluid of control, lean, and obese gilts. J Anim Sci 1994b; 72:2431­
2440.

Erickson GF, Magoffin OA, Gragun JR, Chang RJ. The effects of insulin and
insulin-like growth factors-I and -II on estradiol production by granulosa
cells of polycystic ovaries. J Clin Endorcinol Metab 1990; 70:894-902.

Funston RN, Seidel GE, Klindt J, Roberts AJ. Insulin-like growth factor I and
insulin-like growth factor-binding proteins in bovine serum and follicular
fluid before and after the preovulatory surge of luteinizing hormone. Bioi
Reprod 1996; 55:1390-1396.

Gerard N, Ouchamp G, Goudet G, Bezard J, Magistrini M, Palmer E. A high
molecular weight preovulatory stage-related protein in equine follicular
fluid and granulosa cells. Bioi Reprod 1998; 58:551-557.

Gerard N, Monget P. Intrafollicular insulin-like growth factor-binding protein levels
in equine ovarian follicles during preovulatory maturation and regression.
Bioi Reprod 1998; 58:1508-1514.

Ginther OJ. Reproductive Biology of the Mare: Basic and Applied Aspects, 2nd

ed. Equiservices Incorporated 1992, Cross Plains, WI, 642 pp.

Ginther OJ. Selection of the dominant follicle in cattle and horses. Anim Reprod
Sci 2000; 60-61 :61-79.

Giudice LC. Insulin-like growth factors and ovarian follicular development.
Endocrine Rev 1992; 13:641-669.

Grimes RW, Barber JA, Shimasaki S, Ling N, Hammond JM. Porcine ovarian
granulosa cells secrete insulin-like growth factor-binding proteins-4 and -5
and express their messenger ribonucleic acids: regulation by follicle
stimulating hormone and insulin-like growth factor-I. Bioi Reprod 1994a;
50:695-701.

Grimes RW, Guthrie HO, Hammond JM. Insulin-like growth factor-binding
protein-2 and -3 are correlated with atresia and preovulatory maturation in
the porcine ovary. Endocrinology 1994b; 135:1996-2000.



lOS

Grimes RW, Samaras SE, Barber JA, Shimasaki S, Ling N, Hammond JM.
Gonadotropin and cAMP modulation of IGF binding protein production in
ovarian granulosa cells. Am J Physiol1992; 262:E495-E503.

Goudet G, Belin F, Bezard J, Gerard N. Intrafollicular content of luteinizing
hormone receptor, a-inhibin, and aromatase in relation to follicular growth,
estrous cycle stage, and oocyte competence for in vitro maturation in the
mare. Bioi Reprod 1999; 60:1120-1127.

Hammond JM, Mondschein JS, Samaras SE, Canning SF. The ovarian insulin­
like growth factors, a local amplification mechanism for steroidogenesis
and hormone action. J Steroid Biochem Mol Bioi 1991; 40:411-418.

Hernandez ER, Roberts Jr CT, Hurwitz A, Le Roith 0, Adashi EY. Rat ovarian
insulin-like growth factor II gene expression is theca-interstitial cell­
exclusive: hormonali regulation and receptor distribution. Endocrinology
1990; 127:3249-3251.

Howard HJ, Ford JJ. Relationships among concentrations of steroids, inhibin,
insulin-like growth factor-binding proteins of porcine ovarian follicular fluid.
Bioi Reprod 1992; 44:315-320.

Hsu C-J, Hammond JM. Concomittant effects of growth hormone on secretion of
insulin-like growth factor I and progesterone by cultured porcine granulosa
cells. Endocrinology 1987a; 121:1343-1348.

Hsu C-J, Hammond JM. Gonadotropins and estradiol stimulate immunoreactive
insulin-like growth factor-I production by porcine granulosa cells in vitro.
Endocrinology 1987b; 120:198-207.

Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine
estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 1980;
63: 155-160.

King SS, Evans JW. Follicular gmwth and estradiol influence on luteal function
in mares. J Anim Sci 1988; 66:98-103.

Langhout DJ, Spicer LJ, Geisert RD. Development of a culture system for bovine
granulosa cells: effects of growth hormone, estradiol, and gonadotropins
on cell proliferation, steroidogenesis, and protein synthesis. J Anim Sci
1991; 69:3321-3334.

Liu X-J, Malkowski M, Guo Y, Erickson GF, Shimasaki S, Ling N. Development of
specific antibodies to rat insulin-like growth factor-binding proteins
(IGFBP-2 to -6): analysis of IGFBP production by rat granulosa cells.
Endocrinology 1993; 132:1176-1183.



l06

Lowry OH, Rosebrough NJ, Farr AL, Randall, RJ. Protein measurement with the
folin phenol reagent. J BioI Chem 1951; 193:265-275.

Margot JB, Binkert C, Mary JL, Landwehr J, Heinrich G, Schwander J. A low
molecular weight insulin-like growth factor binding protein from the rat:
cDNA cloning and tissue distribution of its messenger RNA. Mol
Endocrinol1989; 3:1053-1060.

Maruo T, Hayashi M, Matsuo H, Ueda Y, Morikawa H, Mochizuki M. Comparison
of the facilitative roles of insulin and insulin-like growth factor-I in the
functional differentiation of granulosa cells: in vitro studies with the porcine
model. Acta Endocrinol (Kopenh) 1988; 117:230-240.

Meinecke B, Gips H, Meinecke-Tillmann S. Progestagen, androgen and
oestrogen levels in plasma and ovarian follicular fluid during the oestrous
cycle of the mare. Anim Reprod Sci 1987; 12:255-265.

Mondschein JS, Canning SF, Hammond JM. Effects of transforming growth
factor-~ on the production of immunoreactive insulin-like growth factor I
and progesterone and on [3H]thymidine incorporation in porcine granulosa
cell cultures. Endocrinology 1988; 123:1970-1976.

Mondschein JS, Etherton TO, Hammond JM. Characterization of insulin-like
growth factor-binding proteins of porcine ovarian follicular fluid. Bioi
Reprod 1991; 44: 315-320.

Mondschein JS, Smith SA, Hammond JM. Production of insulin-like growth factor
binding proteins (IGFBPs) by porcine granulosa cells: Identification of
IGFBP-2 and -3 and regulation by hormones and growth factors.
Endocrinology 1990; 127:2298-2306.

Monget P, Besnard N, Huet C, Pisselet C, Monniaux D. Insulin-like growth factor­
binding proteins and ovarian folliculogenesis. Horm Res 1996; 45:211­
217.

Monget P, Monniaux D. Growth factors and the control of folliculogenesis. J
Reprod Fertil Suppl 1995; 49:321-333.

Monget P, Monniaux 0, Pisselet C, Durand P. Changes in insulin-like growth
factor-I (IGF-I), IGF-II, and their binding proteins during growth and atresia
of ovine ovarian follicles. Endocrinology 1993; 132:1438-1446.

Monniaux 0, Pisselet C. Control of proliferation and differentiation of ovine
granulosa cells by insulin-like growth factor-I and follicle-stimulating
hormone in vitro. Bioi Reprod 1992; 46: 109-119.



107

Monget 0, Pisselet C, Monniaux D. Expression of insulin-like growth factor
binding protein-5 by ovine granulosa cells is regulated by cell density and
programmed cell death in vitro. J Cell Physiol1998; 177:13-25.

Ramasharma K, Li CH. Human pituitary and placental hormones control human
insulin-like growth factor II secretion in human granulosa cells. Proc Natl
Acad Sci USA 1987; 84:2643-2647.

Rechler MM. Insulin-like growth factor binding proteins. Vitam Horm 1993; 47:1­
114.

Ricciarelli E, Hernandez ER, Hurwitz Z, Kokia E, Rosenfeld RG, Schwander J,
Adashi EY. The ovarian expression of the antigonadotropic insulin-like
growth factor binding protein-2 is theca-interstitial cell-selective: evidence
for hormonal regulation. Endocrinology 1991; 129:2266-2268.

Samaras SE, Hagen DR, Shinasaki S, Ling N, Hammond JM. Expression of
insulin-like growth factor-binding protein-2 and -3 messenger ribonucleic
acid in the porcine ovary: localization and physiological changes.
Endocrinology 1992; 130:2739-2744.

San Roman GA, Magoffin DA. Insulin-like growth factor-binding proteins in
healthy and atretic follicles during natural menstrual cycles. J Clin
Endocrinol Metab 1993; 76:625-632.

Sara VR, Hall K. Insulin-like growth factors and their binding proteins. Physiol
Rev 1990; 70:591-614.

Schams D, Berisha B, Kosmann M, Einspanier R, Amselgruber WM. Possible
role of growth hormone, IGFs. and IGF-binding proteins in the regulation
of ovarian function in large farm animals. Dom Anim Endocrinol1999;
17:279-285.

Schams 0, Koll R, Li CH. Insulin-like growth factor-I stimulates oxytocin and
progesterone by bovine granulosa cells. J Endocrinol1988; 116:97-100.

Shimasaki S, Koba A, Mercado M, Shimonaka M, Ling N. Complementary DNA
structure of a high molecular weight rat insulin-like growth factor binding
protein (IGF-BP-3) and tissue distribution of its mRNA. Biochem Biophys
Res Commun 1989; 165:907-912.

Simpson RB, Chase, Jr CC, Spicer LJ, Carroll JA, Hammond AC, Welsh, Jr TH.
Effect of exogenous estradiol on plasma concentrations of somatotropin,
insulin-like growth factor-I, insulin-like growth factor binding protein
activity, and metabolites in ovariectomized angus and brahman cows.
Dom Anim Endocrinol1997; 14:367-380.



108

Sirois J, Kimmich TL, Fortune JE. Developmental changes in steroidogenesis by
equine preovualtory follicles: effects of equine LH, FSH and CG.
Endocrinology 1990; 127:2423-2430.

Sirois J, Kimmich TL, Fortune JE. Steroidogenesis by equine preovulatory
follicles: relative roles of theca interna and granulosa cells. Endocrinology
1991; 128:1159-1166.

Spicer LJ, Alpizar E, Echternkamp SE. Effects of insulin, insulin-like growth
factor I, and gonadotropins on bovine granulosa cell proliferation,
progesterone production, estradiol production, and(or) insulin-like growth
factor I production in vitro. J Anim Sci 1993; 71:1232-1241.

Spicer LJ, Alpizar E, Stewart RE. Evidence for an inhibitory effect of insulin-like
growth factor-I and -II on insulin-stimulated steroidogenesis by
nontransformed ovarian granulosa cells. Endocrine 1994; 2:735-739.

Spicer LJ, Chamberlain CS. Insulin-like growth factor binding protein-3: Its
biological effect on bovine granulosa cells. Dom Anim Endocrinol 1999;
16:19-29.

Spicer LJ, Chamberlain CS. Production of insulin-like growth factor-I by
granulosa cells but not thecal cells is hormonally responsive in cattle. J
Anim Sci 2000a; 78:2919-2926.

Spicer LJ, Chamberlain CS. Effects of hormones on insulin-like growth factor-II
production by bovine ovarian granulosa cells. Okla Agr Exp Sta Res Rep
2000b; in press.

Spicer LJ, Chamberlain CS. Influence of cortisol on insulin- and insulin-like
growth factor I (IGF-IHnduced steroid production and on IGF-I receptors
in cultured bovine granulosa cells and thecal cells. Endocrine 1998; 9: 153­
161.

Spicer LJ, Echternkamp SE. The ovarian insulin-like growth factor system with an
emphasis on domestic animals. Dom Anim Endocrinol1995; 12:223-245.

Spicer LJ, Echternkamp SE, Canning SF, Hammond JM. Relationship between
concentrations of immunoreactive insulin-like growth factor-I in follicular
fluid and various biochemical markers on differentiation in bovine antral
follicles. Bioi Reprod 1988; 39:573-580.

Spicer LJ, Echternkamp SE, Wong EA, Hamilton TO, Vernon RK. Serum
hormones, follicular fluid steroids, insulin-like growth factors and their
binding proteins, and ovarian IGF mRNA in sheep with different ovulation
rates. J Anim Sci 1995; 73:1152-1163.



109

Spicer LJ, Enright WJ. Concentrations of insulin-like growth factor I and steroids
in follicular fluid of preovulatory bovine ovarian follicles: effect of daily
injections of a growth hormone-releasing factor analog and(or) thyrotropin­
releasing hormone. J Anim Sci 1991: 69:1133-1139.

Spicer LJ, Stewart RE. Interaction among bovine somatotropin, insulin, and
gonadotropins on steroid production by bovine granulosa and thecal cells.
J Dairy Sci 1996; 79:813-821.

Spicer LJ, Stewart RE, AI,varez P, Francisco CC, Keefer BE. Insulin-like growth
factor-binding, protein-2 and -3: their biological effects in bovine thecal
cells. Bioi Reprod 1997; 56: 1458-65.

Spicer LJ, Tucker KE, Henderson KA, Duby RT. Concentrations of insulin-like
growth factor-I in follicular fluid and blood plasma of mares during early
and late oestrus. Anim Reprod Sci 1991; 25:57-65.

Stewart RE, Spicer LJ, Hamilton TD, Keefer BE. Effects of insulin-like growth
factor-I and insulin on proliferation, and on basal and luteinizing hormone­
induced steroidogenesis of bovine thecal cells: involvement of glucose
and receptors for insulin-like growth factor-1 and luteinizing hormone. J
Anim Sci 1995; 73:3719-3731.

Stewart RE, Spicer LJ, Hamilton TO, Keefer BE, Dawson LJ, Morgan GL,
Echternkamp SE. Levels of insulin-like growth factor (IGF) binding
proteins, luteinizing hormone and IGF-I receptors, and steroids in
dominant follicles during the first follicular wave in cattle exhibiting regular
estrous cycles. Endocrinology 1996; 137:2842-2850.

Ui M, Shimonaka M, Shimasaki S, Ling N. An insulin-like growth factor-binding
protein in ovarian follicular fluid blocks follicle-stimulating hormone­
stimulated steroid production by ovarian granulosa cells. Endocrinology
1989; 125:912-916.

Van Rensburg SJ, Van Niekerk CH. Ovarian function, follicular oestradiol-17~,

and luteal progesterone and 20a-hydroxy-pregn-4-en-3-one in cycling and
pregnant equines. Onderstepoort J Vet Res 1968; 35:301-318.

Veldhuis JD, Kolp JA, Toaff ME, Strauss JF III, Demers LM. Mechanisms
subserving the trophic actions of insulin on ovarian cells. J Clin Invest
1983; 72:1046-1057.

Wathes DC, Perks CM, Davis AJ, Denning-Kendall PA. Regulation of insulin-like
growth factor-I and progesterone synthesis by insulin and growth hormone
in the ovine ovary. Bioi Reprod 1995; 53:882-889.



110

Yuan W, Lucy Me, Smith MF. Messenger ribonucleic acid for insulin-like growth
factors-I and -II, insulin-like growth factor binding-protein-2, gonadotropin
receptors, and steroidogenic enzymes in porcine follicles. Bioi Reprod
1996; 55: 1045-1 054.



CHAPTER IV

SUMMARY AND CONCLUSIONS

Folliculogenesis is a complex process involving the interaction of a

multitude of factors. During the estrous cycle of the mare, one follicle is selected

from a cohort of follicles to become dominant, while the remaining cohort, or

subordinate, follicles become atretic and regress. During preovulatory

development in the mare, follicular fluid IGF-Ilevels increase whereas IGFBP

levels decrease. In cattle, it has been hypothesized that estradiol and the

gonadotropins induce changes in the amount of IGF-I and IGFBPs produced by

granulosa and thecal cells during follicular devlopment. However, one question

remains: what factors determine selection of the follicle?

The present study evaluated cultured equine granulosa cells to determine

intrafollicular production and hormonal regulation of the insulin-like growth factor

system and steroidogenesis in equine follicles in relation to follicle size and

estrous cycle stage. IGF-I, IGF-II, IGFBP-2, -4 and -5 were present in equine

follicle fluid and both stage of the estrous cycle and follicle diameter influenced

concentrations of steroids and components of the IGF system. Furthermore,

IGF-I, IGF-II, IGFBP-2 and -5 were produced by equine granulosa cells and

steroidogenesis and(or) thelGF system of equine granulosa cells were
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differentially regulated by FSH and estradiol. The conclusion to obtain from this

work is that the insulin-like growth factor system and steroidogenesis are

hormonally regulated in equine follicles. Decreased levels of low molecular

weight IGFBPs in large estrogen-active follicles may allow an increase in free

IGF-I and thus increase gonadotropin responsiveness and growth of the future

dominant follicle. In contrast, increased levels of the low molecular weight

IGFBPs in small cohort follicles may act to sequester IGF-I causing a low

responsiveness to IGF-I and FSH, thus slowing growth rate of future subordinate

follicles.
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