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CHAPTER I

1 INTRODUCTION

1.1 Problem Statement

One of the more difficult jobs in designing remotely piloted vehicles (RPV) is the

selection of the propeller for a given propulsion system. This is largely due to the lack of

accurate propeller perfonnance curves. This lack of infonnation leads to a need for the

development of a system to accurately measure all the valuables that govern a propeller's

perfonnance.

The system developed can simultaneously measure and record the propeller's thrust,

torque, and rpm. This is done by use of a custom-built instrumentation and a data

acquisition system. The thrust and toque coefficient as well as overall propeller efficiency

can then be found from the recorded propeller measurements.

The rotational rate of the propeller is found by use of an infrared emitter and

detector. The infrared light is emitted onto the back of the spinner, where a thin

aluminum disk is mounted. The disk is painted black except for a small arced area. This

section is polished so that it will reflect the light, emitted from the emitter, back into the

detector. The signal that is produced from the rotation of the disk is then ent into a

comparator circuit, resulting in a TTL signal.

Thrust is found by use of measuring the strain produced by the deflection of two

thin beams, which support the entire device. The torque is also measured by the strain

produced in the twisting of a two-beam crucifonn that is attached to a shaft. The shaft is

then connected to the rear of the motor mount. The strain that is produced in both cases is



measured by use of strain gages that are attached directly to the beams. The strain gages

are then connected to in a circuit to fonn a full Wheatstone bridge, where the output

voltage corresponds to the thrust and torque placed upon the system. This voltage is then

recorded on the computer by use of a data acquisition card and program. The power that

is provided by the power supply is also monitored and recorded to aid in detennining the

overall system efficiency.

The entire system can be mounted inside the low-speed wind tunnel, located at the

Aerodynamics laboratory at Oklahoma State University. This dynamometer and wind

tunnel test section, will allow tests of propellers in either a 'tractor' or 'pusher'

configuration as well as tests over a large range of propeller diameter, pitch, and

airspeeds.

1.2 Literature Review

As of date of this thesis, there have been few papers that have address the issue of

experimental determining the dynamic performance of small scale propellers in the low

Reynolds number regime. In fact there are few papers that address the issue of testing of

any kind for propellers below a meter in diameter. Asson (1990) developed did develop a

dynamometer that could test small size propellers and determine the propeller

performance to with in ± 5% error, however this system was costly and was limited to

rotational speeds below 1000 RPM. Takasawa and Hashidate (1990) also developed a

low-Reynolds number dynamometer that showed good results, however this system was

designed to test a propeller that had been develop for a microwave-powered airplane that

had a propeller in the range of two and half meters in diameter.
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Hurst, Methven, and Owen (1986) describe a system that can drive a propeller up to

10,000 RPM, and detemrines its performance by use of a Scanivalve system connected to

24 chordwise tapings positioned at 7 spanwise blade locations. This pressure distribution

can then be transferred to thrust and torque coefficients. One of the more interesting

papers was by Harrison (1987) and involves the use of a laser Doppler velocimetry

system that can be used to determine the velocity field around a 12" diameter counter

rotating propeller configuration. Schetz, Mallory and Pelletier (1987) also measured the

velocity and pressure distributions in the wake of a 19.5" diameter propeller using a hot

wire anemometer. Unfortunately each of the system that do not directly measure the

torque and thrust are very hard to adapt to a new arrangement and also can lead to a large

scattering of data.



CHAPTER II

2 Theory

2.1 Propeller Aerodynamics

The propeller is defined as a device for producing thrust at normal forward

velocities of the aircraft. From this definition one can see that the prime output of a

propeller is thrust. The propulsion system engineer must detennine an overall power

system that will produce a maximum thrust under aU expected conditions. The main

problem that one faces is that the combination of airplane, engine, power supply, and

propeller is interconnected so that one must evaluate the entire system as one.

The propeller develops thrust by changing the rotational motion of the motor to

forward motion. One simple mechanical device that can behave in the same manner is a

machine screw. The screw uses threads to push back on the surrounding surface to move

forward, this is one of the reasons that a propeller is also called an airscrew. The airscrew

pushes backward on the surrounding air, which in tum causes it to move forward. A

propeller, like a machine screw also, has a pitch. The only major differenc is that a

propeller has two types of pitch; geometric and effective. Geometric pitch is the

theoretical advance per revolution of a propeller blade as it moves along a helix whose

angle equals the propeller blade angle. Effective pitch is the distance the propeller and

aircraft actually muve in a single revolution. The difference between the two types of

pitch is called slip and this slip will vary with forward speed.

p = 7lX! tan fJ

4
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Most propellers can be placed into three categories: fixed pitch, adjustable pitch,

and controllable pitch. Fixed pitch is a propeller that is constructed as one piece and in

which the pitch, or blade angle, cannot be altered after construction. Adjustable pitch is a

propeller that is constructed in such a manner that one can adjust the blade angle to a

desired setting on the ground, after the adjustment the 'new' blade angle is fixed in flight.

Controllable pitch is a propeller that will allow one to change the blade angle in flight.

The change can be controlled manually or automatically during flight to maintain a given

power load.

The propeller's performance can be broken down into four stages: fan, propeller,

brake, and windmill stages. The fan stage is encountered when the forward velocity of the

propeller is zero, the next stage that a propeller will encounter is the propeller stage. The

propeller stage is simply a region in which the blade produces a positive thrust, after this

'productive' thrust stage a region of negative thrust is encountered. This region of

negative thrust is called the brake stage. During this phase the thrust actually fumishe

additional drag to the aircraft, one important thing is that the torque to the propeller is

still positive. The final phase is the windmill stage, in this stage not only is the thrust

negative but aerodynamic forces acting on the propeller actually produce torque which is

feedback into the motor. The majority of the time a propeller operates in the propeller

stage, however the other stages are also important to understand. Static thrust occurs in

the fan stage and is an important factor in the determination of the aircraft's takeoff

qualities. Braking and wind milling can only be readily encountered in a power dive and

both of these stages need to be avoided as they can lead to damage of the motor. All four

5



of the stages are readily visualized in Figure 2.1 with use of the simple blade element

theory (Nelson 1944).

Inflow
Velocity

dR dT

Fan State

Brake State

Propeller State

Windmill State

v

Figure 2.1 Effect on the four Propeller sta~es on Blade Element

The propeller can be examined as a wing with very large amounts of twist. If one

was to examine a cross section of a propeller blade they would see that it is essentially

the same shape as that of a wing. However, propeller sections usually have a greater

thickness ratio then an airfoil. This increase in thickness can be even more evident in

some brands as the blade sections approach the hub. Although there is a difference in

thickness ratio between a blade and airfoil section, the major differing factor thaL

contri butes to the geometric difference between the two is the orientation of a blade

section profile changes considerably as the sections proceed from the tip inward toward
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the hub. This change in blade angle is to account for the different wind velocity that each

blade section will see. This variance in wind velocity is mainly caused by the rotation of

the blade. For a wing the magnitude and direction of the wind velocity is essentially the

same along the entire span of a wing. Where as, in the case of the propeller, the

magnitude and direction of the wind velocity vary across the span of the blade. This

change in wind velocity is twofold: The propeller is moving with the forward motion of

the wing and it rotates about its own axis, Under most conditions the direction of this axis

of rotation and the forward motion may be considered aligned. Therefore a given blade

section has a velocity component in the direction of flight and a rotational velocity

component which is perpendicular to the axis of rotation, or the propeller axis. The wind

velocity that each blade section sees is then the resultant of both the forward and

rotational components of velocity. In Figure 2.2 the effect of this change can be see at

three blade cross section.

t'\ \
, I

\

I

II
!

-,11
~. Wind

\'r

b. Rulfllional Wind

~v"

!Q>
y. 0,;

.//1Vp

c. I'ropell,'r Wind

Figure 2.2 Cross section effects on wind velocity
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It should be apparent that the forward velocity is a constant for the entire span of

the blade, while the rotational velocity will change along the span of the blade. This

change in rotational velocity is proportional to the distance from the propeller axis. The

rate at which the propeller rotates can be given as either; the number of revolutions per

second or the angular velocity. The angle G> between the rotational velocity component

and the forward velocity can be found with the equation:

v V V
tanrp=-=--=

rm 2nnr nnd
(2.2 )

With this equation, it can be seen that the angle <l> will decrease with an increase

of radial position r. Since the blade angle ~ can be defined as the angle between the blade

chord line and the plane of rotation, the effective angle of attack for a given section will

be:

a=j3-rp (2.3 )

The dimensionless quantity V/nd is called the advance ratio of the propeller. This

ratio allows geometrically similar propellers to be compared to each other as the angle of

attack of each corresponding blade section will be the same value. This will hold if and

only if the corresponding blade sections have the same shape, orientation and the advance

ratio is the same for both propellers. The advance ratio for a given blade angle can be

thought of as analogous to the angle of attack in airfoil tests, and it is therefore customary

to plot the propeller performance curves versus the advance ratio. In order to determine

the thrust and torque produced in geometrically similar propellers it is necessary to

reduce the thrust and torque to some form of coefficient.
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2.1.1 Thrust Coefficients

The propeller thrust produced acts along the axis of rotation and is the primary

product of interest, as this is the force that will propel the aircraft forward. From the

Simple Blade Element Theory (Nelson 1944), which is graphically shown in Figure 2.3,

21Trn

Figure 2.3 Simple Blade Element Geometry

the expression for thrust is:

( 2.4 )

Since both band r vary directly with diameter for geometrically similar propellers, and

the angles «1> and y as well as CL are all dependent on the advance ratio only, the

expression for thrust can then be simplified for a given advance ratio to:

(2.5 )

This can then be rearranged into a thrust coefficient of the fonn:



(2.6 )

Since this form contains forward velocity a coefficient for the windmill stage, or

static condition, can not be determined since the result will be a coefficient approaching

infinity. In order to determine the static thrust, and thus takeoff performance, the equation

must be rearranged in such a manner to remove the velocity. This is done by multiplying

the equation by the advance ratio with the proper power so as to eliminate the velocity.

Once this has been done the thrust coefficient now has the form:

l'
CT = 2 4

pnd
(2.7 )

This form will now allow the static condition to be determined. While the thrust

coefficient will allow one to determine the thrust produced, this is only a part of the

overall picture.

2.1.2 Torque and Power Coefficients

Unfortunately power must be put into the propeller in order for it to rotate, this

power requirement comes from the torque that is required in order to overcome both the

inertia and aerodynamic forces acting on the propeller. As was seen in Figure 2.3 the lift

produced by a blade section not only has a component perpendicular to the plane of

rotation, but it also has a component parallel to the plane of rotation that opposes the

rotation of the propeller. The drag produced by a blade section also has components that

not only oppose the rotation of the propeller, but it also has a component that is

perpendicular to the plane of rotation. Unfortunately this component of drag acts in the

opposite direction as the forward motion of the aircraft and as such opposes the thrust

10



that is being produced. With use of the Simple Blade Element Theory, an expression for

the torque is found to be:

dQ = .!.pV 2brdrC [ sin(¢+ r ]
2 L cosysin 2 ¢J

( 2.8 )

The expression for torque can then be simplified for a given advance ratio by the same

method used for the thrust.

(2.9 )

This can then be rearranged into a torque coefficient of the fonn:

(2.10 )

This fonn is then rearranged in a similar fashion to the thrust coefficient in order to

eliminate the forward velocity. Once this has been done the torque coefficient now takes

on the fonn:

( 2.11 )

Now that a torque coefficient has been found, a power coefficient may be derived

using the relationship that power is directly proportional to the torque and the rotational

rate:

C = 2rrn.Q = P
P pn3d5 pn 3d 5 (2.12 )

With an expression for both thrust and power coefficients having been found, an

expression for the propeller efficiency can now he derived. The propeller efficiency will

11



allow one to find the propeller power out that is produced for a given shaft power. The

power that is transmitted into the propeller shaft is a product of the torque and resulting

angular velocity, where as the propeller power produced is a product of thrust and the

velocity. This results in:

This equation can then be rearranged with use of equations ( 2.7 ) and ( 2.12 ):

(2.13 )

CrfJn2d4V _ Cr ~

17 = Cp fJn 3d 5 Cp nd

2.2 Aircraft and Propeller Combination Aerodynamics

( 2.14)

With expressions for both the power and thrust coefficients now found, one can

look at the amount of power the entire aircraft will require during each phase of flight.

The two most important phases of flight that will be looked at here are the teady level

phase of flight as well as the take-off phase.

2.2.1 Steady-Level Flight

The steady-level phase of flight in general is characterized hy flight in a vertical

plane that at small flight path angles, relatively small changes in the airspeed, and small

changes in altitude. To develop the governing equations for this phase of flight, the

diagram as shown in Figure 2.4 is used to balance the forces.

12
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L

T

v

w x'-------------------------

Figure 2.4 Steady-Level Flight Force Diagram

From this we can develop the following equations;

and

1 2
T =-pSV CD

2

( 2.15 )

( 2.16 )

Equation ( 2.15 ) is the lift equation and indicates the lift that force must be

produced in order for level flight. The next equation ( 2.16 ) is the thrust equation, this

equation indicates how much thrust the propeller must deliver to the air stream in order

that the aircraft be able to move through the air at a steady rate. It is this second equation

that will be used to determine the amount of power that must be provided by the propeller

to the air stream. In order to determine the amount of power that must be provided, both

13



sides equation ( 2.16 ) must be multiplied by the air stream velocity. This results in the

following equation:

(2.17 )

The left-hand side of equation ( 2.17 ) is the amount of power that is provided to

the air stream by the propeller and motor. The right-hand side is the amount of power that

is required to overcome the drag force on the aircraft. Since the thrust provided by the

propeller can be found with use of the thrust coefficient, equation ( 2.7 ), equation ( 2.17 )

can be rewritten in the fonn:

(2.18 )

One can now rearrange equation ( 2.18 ) into a form that sol ves for the thrust coefficient

required to overcome the drag coefficient of the entire aircraft. This results in:

Sv 3C_ D
CT - 2 4

211. d
( 2.19 )

Which can then be simplified with the substitution of the advanced ratio to produce an

equation that for a given aircraft will result in a required thrust coefficient that can be

solved as a function of only the diameter of the propeller over a given advanced ratio

range.

SJ 2C
C = D

T 2d 2

14
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This now allows the designer a tool to detennine the steady-level velocity of the aircraft

for a given propeller. To do this one must plot the thrust coefficients of varying PID

ratios versus a fixed diameter and advance ratio. The point of intersection on trus plot

indicates the velocity at which the aircraft can reach with the given propeller. A sample

of the type of results that are produced are shown in Figure 2.5

010020 030 040 0.50 060 070 080 090 '00

Vlnd (J)

Figure 2.5 Steady-Level Maximum Velocity

While this will aid the designer in determining the top level speed of the aircraft,

it does not really provide the required information as to the power that is required for the

aircraft to actually get in the air. In order to determine the amount of power required for

the aircraft to take-off, one must analyze the forces which must be overcome during this

phase. The phase must be analyzed for the simple fact that if the aircraft can not obtain

the power required for take-off, it will never be able to reach the steady-level phase of

flight.
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2.2.2 Take-off Phase

The take-off phase of flight is characterized as the time from which the aircraft is

stationary on the ground to a point where the aircraft has accelerated to a velocity

significant for flight. It is this acceleration of the aircraft to flight speed that will

determine the amount of power that is used. In order to determine the amount of

acceleration required for the aircraft to take-off with in its given design restrains, we will

look at the equations of motion which apply to the aircraft during this phase.

In order to develop the governing equations for take-off, Figure 2.6 will be used

to aid in the balancing of the forces and accelerations.

L

T

II_~

v

pill

w

Figure 2.6 Take-Off Phase Force Diagram

From this we can develop the following equation:

F = rna = T cos e- D - j.JFn

16

( 2.21 )
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However one must also recall that since the aircraft does produce lift as it rolls down the

run-away, the nonnal force that is produced by the aircraft varies as a function of

velocity. Therefore the nonnal force (Fn) can be expressed as follows:

Fn =W - L - T sin {} ( 2.22 )

This can now be subsisted back into equation ( 2.21 ) and will result in the total net

acceleration of:

( 2.23)

Now with the net acceleration on the aircraft found, we can find the total distance

that will be required for the aircraft to travel until the velocity reaches a level that allows

the lift force to exceed the weight force. As can be seen from this chapter, the designer

needs some way to detennine the thrust and power coefficients of the propeller. In order

to do this a custom dynamometer has been designed and built to accomplish the task of

determining the dynamic performance of a propeller that is required for the design.
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CHAPTER III

3 EXPERIMENTAL APPARATUS

3.1 System Overview

To correctly detennine the dynamic perlonnance of a propeller, one must be able

to actually measure the power in and power out. The power out can be found by

measuring the thrust and the tunnel velocity, and the power in is found by measuring the

torque on the motor as well as the rotational rate of the propeller. To accomplish this task

an effective way had to be found to simultaneously measure the torque, thrust, rotational

rate of the propeller as well as the tunnel velocity. A schematically overview of the final

dynamometer is shown in Figure 3.1.

Rocationlli
Rale

M -OlSur I nt

AstroFN
035

Molor

Motor COJ1lrol
am

Power Supply

Figure 3.1 Schematically Overview of Dynamometer System

The entire dynamometer system is composed of the mechanical and electrical

sensors that are housed in the actual dynamometer, which is mounted in the wind tunnel
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test section, the external signal conditioning and power control units, an ffiM 386 utilized

for data acquisition, and the wind tunnel with related equipment.

3.2 Wind Tunnel Facility

The experiments were conducted in the wind tunnel located in the Aerodynamics

lab at Oklahoma State University. The tunnel is powered by a 125 hp AC motor, which

drives the flow through anti-turbulence screens, the contraction section, the

interchangeable test section, and diffuser. The contraction cone at the inlet has a 15 to 1

contraction ratio. The diffuser section attaches to an interchangeable test section, which

has the three foot cross section installed for this setup of experiments. The test section

then connects to a section which diverges through an angle of 5.60 to a circular radius

where the fan is located. Behind the rectangular-circular transformation section is a

circular straw box consisting of common drinking straws which are aligned with the flow

to reduce any disturbances caused by the fan or atmospheric conditions downstream of

the fan section.

To determine the conditions inside the test section, a pi tot-static tube and an

inclined manometer are used to measure the dynamic pressure and a thermocouple is

used to determine the temperature inside thL: wind tunnel. A barometer is used to resolve

the local barometric pressure. An overview of the wind tunnel facility is illustrated in

Figure 3.2.
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Figure 3.2: Basic Overview of Wind Tunnel Facility

3.3 Dynamometer

3.3.1 Torque

In order to avoid the complexities of a torque sensor with a separate propeller

shaft and bearing system, the propell.er is mounted directly on the motor. The motor itsel f

is then attached directly to a solid steel shaft. This shaft then transfers the torque

produced on the shaft to a two beam cruciform, the strain is then mea ured by strain

gages which are attached to the legs of the cruciform then measure the strain produced by

this load. A diagram of the torque sensor as a system is shown in Figure 3.3
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Figure 3.3 Sketch of Overall Torque Sensor

The motor is mounted directly to a thin aluminum motor mount. This motor

mount is then attached to a steel shaft by means of a small Plexiglas spacer. This spacer

has two 0.25" diameter holes in it. The two hole allow both direct and geared motors to

be tested, as the holes are aligned in such that the line of action is aligned with the center

line of the steel shaft. The steel shaft was a solid 0.375" diameter rod that has been turned

down to 0.3125" along the length of the shaft. The ends of this shaft were then turned and

then a threaded to l.!.l x 20, this allows the attachment of the motor mount as well as a rear

The shaft is supported by two Plexiglas walls, these walls are 2.6" in diameter

fairing.

I ~U\\\\ :

Figure 3.4 Sketch of Motor Mount and Shaft

and 0.25" in thickness. In the center of both of these walls a bearing has been located, this

bearing has an inside radius of 0.3125" and thus is the main reason the shaft had to be

tum to this size. There is also a third Plexiglas wall, this wall is also 2.6" in diameter but
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this wall has a 1.8" diameter hole placed in the center. This allows the motor shaft to

rotate freely with out interfering with the support wall.

All three of these walls are attached to each other by means of a 10-28 all-thread

steel rod. The walls are held in place but nuts which are securely drawn up next to each

wall. This support system allows the shaft to freely rotate. To measure the amount of

twist and thus torque being applied to the shaft, a two beam cruciform is attached to the

top of the shaft.
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Figure 3.5 Sketch of Support System and Walls

This cruciform is rigidly attached to the shaft at the end nearest to the motor, the

opposite end is allowed to float above the shaft. This end of the shaft however is then

rigidly attached to the rear Plexiglas wall. This configuration allows the shaft to twist the

cruciform at one end while the opposite end is held in place relative to the rear support

wall. This twist produces a strain in the legs of the cruciform. This strain is measured by

means of four strain gages that have been attached directly to the legs of the cruciform.

The pattern in which the gages have heen layout out is shown in Figure 3.6.
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Figure 3.6 Torque Sensor Gage Layout

This pattern allows for full temperature compensation and also increases the sensitivity

by a factor of two.

The cruciform itself is constructed from one solid piece of aluminum. This piece

was milled as one piece to insure that the load transmitted from the attachment point was

properly transmitted to the legs. The cruciform was made with several machining

operations. The first operation that was done to mill a 0.3125" radius channel down the

middle of the entire piece. After this was done, the channel was then enlarged by 0.1"

along the piece with the exception of the end where the shaft would be attached to the

cruciform. This enlargement of the channel was done to ensure that the shaft only made

contact with the cruciform at the desired location. After completion of the center channel

was completed the piece was turned over and the operation to create the legs was started,

this operation involved milling the legs down to a thickness of 0.0625". The next step

was to mill the legs to the desired width of 0.200", this process involved the removal of

material from the outside of the legs.

After this was done the attachment holes were drilled. The shaft attachment hole

was drilled to allow number 6 bolt to pass though the cruciform and then aligned with a

thread that was placed in the center of the shaft. This attachment Iigidly secures the

forward end of the cruciform and the shaft. The opposite end then had two holes drilled
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through it and the end support wall. A bolt is then passed through this hole where a

washer and nut is attached to secure this end of the crucifonn to the wall.

3.3.2 Thrust

It was decided to use simple beam deflection to measure the thrust that is

produced by the propeller. This decision was made for two reason; first since the

dynamometer needed to be placed in the center of the test section so this lead to the need

for some type of support. Second, the beam deflection method avoided the complexities

of a spring and LVDT that have been used by others. The torque sensor and support

system are mounted directly to the top of a double beam. An overall diagram of the thrust

sensor can be seen in Figure 3.7
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Figure 3.7 Sketch of the Thrust Sensor

The system is mounted on top of two thin aluminum legs, the legs have been

milled to a thickness of 0.065" and a length of 3.8". The legs are then attached to a solid
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aluminum piece that has been milled to allow the legs to be mounted perpendicular to

each other. In order to allow the top of the sensor to be mounted as near its center of

gravity, the top of the legs have an attachment that allows adjustment of the position of

the interface between the legs and the torque sensor. This arrangement allows only an

active beam length of 3.7". A simple diagram of how the thrust sensor works is shown in

Figure 3.8

..:'_iii_ii1:_i_iii_i L __X ~.~

Figure 3.8 Force Diagram on a Thrust Sensor Leg

To insure that the maximum bending stress is measured, therefore allowing

maximum mechanical sensitivity, the strain gages are located at the base of the legs. In

order to make the most of the maximum sensitivity, four gages are installed at the base of

one leg. The pattern in which the gages have been attached to the leg are shown in Figure

3.9

o
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Figure 3.9 Thrust Sensor Gage Layout

This arrangement of strain gages allows for full temperature effects, as well as

axial and torsional components are all compensated for, as well an increase in the

sensitivity by a factor of four. One other benefit is that this system of strain gages allows

the use of a four-arm bridge. The four-arm bridge is actually the base of a wheatstone

bridge that is used to measure the strain that is measured by the gages. The arrangement

of the sensors in the wheatstone bridge are shown in Figure 3.10

Figure 3.10 Strain Gage Alignment in the Wheatstone Bridge

3.3.3 Rotational Rate (RPS)

The rotational rate of the propeller was found by use of an infrared emitter and

detector. The infrared light was emitted onto the back of the spinner, where a thin

aluminum disk was mounted. The light emitted from the emitter is then reflected back

into the detector. A schematic of this sensor is shown in Figure 3.11
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Figure 3.11 Schematic of Rotational Rate Sensor

The spinner back plate is attached directly to the motor shaft, the plate is held in

place by the propeller and a nut. A thin aluminum ,0.027" thickness, disk was cut to a

radi us of 2.5" to match the size of the spinner plate. It is attached to the rear of the

spinner plate with a thin foam padding to fill the gap between the rear of the spinner plate

and the aluminum disk. The aluminum disk is paint a flat black with the exception of a

small 25° are, which was then polished to be highly reflective. This small reflective arc

has a much higher reflective rate then the flat black zone and thus allows the

measurement when this area passes in front of the sensor array.

The sensor array consists of a high power infrared emitter and an independent

infrared detector. The two are mounted in the forward support wall, with the detector on

the inner radius. To support the sensors two small holes have been drilled into the

forward support wall (Figure 3.12). The sensors are then plugged into a modified 8-pin

socket which allows them to interface with the electric system.
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Figure 3.12 Placement of Rotational Sensor

The signal that is produced by the rotation of this disk is then sent to a comparator

circuit, resulting in a TIL signal instead of the 'spike' produced in the raw signal. This

signal allows an easier detection of the frequency, which corresponds directly to the

rotational rate of the propeller shaft.

3.3.4 Support and Mount

The dynamometer is supported on top of a 1/2" diameter steel rod. This rod solved

two major problems. One alignment of the dynamometer with the center line of the

tunnel, and also it allowed the dynamometer to be supported 1.5 ft while maintaining the

needed stiffness. This rod has been threaded on the top so that the dynamometer can be

attached to the rod and then had been press fitted into a steel plate support. This steel

plate is held in place on the tunnel floor by means of 4 bolts. A super structure is then

attached over the steel rod.
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Figure 3.13 Sketch of Main Support System

This 'super-structure' is constructed from three Plexiglas forms held in place by

two steel all-thread rods (Figure 3.14). The shape of the forms is to aid in the

(Figure 3.15).

middle support is where the interface between the sensors above and the electronic
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this is the point where the mechanical and electric components of the sensor interface

streamlining of the support, but also provides a support of the cable interfaces. The

systems below occurs. On this level three IS-pin D-Subminiature connectors are attached

Top Middle Bottom

Figure 3.14 Support Forms
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Figure 3.15 Quick Connection Points

3.3.5 Shroud

To reduce the effect of the dynamometer and support on the flow of air, a shroud

was placed over the entire structure, it also protected the sensors of the dynamometer

from the disturbance of air that passes around the device. The shroud itself was

constructed from a foam core that was formed into the desired shape and was covered in

fiber-glass and cured. After curing the foam core was removed leaving just the outer

fiber-glass she) I. This shell is then cut into two pieces at the point of the middle SUPPOtt.

The lower section is attached directly to super structure with out any modification. The

upper section, however has a small hatch cut out. This hatch is centered on the upper

section and allows for access to the power connect interface of the motor with out

removal of the shroud.
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3.4 Electronic Components

To measure the force and moments produced by a propeller, it is necessary to

change the strain produced in the legs of the dynamometer into a measurable quantity. To

do this strain gages are used, the strain is found by a change in resistance of the gages.

This change was caused by a change in the length of the gage caused by the load induced

by the force and moment of the propeller. However this change in resistance is very small

and one must find a way to determine this change in resistance. This was done by use of a

Wheatstone bridge.

The Wheatstone bridge is composed of four legs, with one strain gage on each

leg. The gages are of type CEA-13-240UZ-120 and are arranged as such to all full

temperature compensation. In order to set the null point on the bridge two 10 ohm, 20

turn potentiometers are placed in two of the legs. This arrangement is shown Figure 3.16,

I _., 'I: -I. -2·.(11 ;/.-120
, tall\ ia~.

IU Ion 21.Hum u1 ~

Figure 3.16 Circuit Diagram of Wheatstone Bridge
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will produce an output voltage if it is not in balance. The voltage will then have to be

amplified in order to be measurable, the voltage was amplified 100 times, using a two

part circuit. The first part of the circuit is a signal buffer and the second was a simple

non-inverting op-amp circuit. The buffer was used since both the thrust and torque where

recorded on separate sub-circuits but powered by the same power supply. One of the

more difficult items with this circuit setup was that the Wheatstone bridge's power

supply could not be grounded, so the power to the circuit was provide by a high and low

voltage source. The electrical schematic for this sub-circuit can be seen in Figure 3.17.

The only other sub-circuit inside this arrangement was used to condition the

oR1

Figure 3.17 Torqueffhrust Sub-Circuit Diagram
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rotational rate sensor consisted of an infrared emitter and detector pair. This signal if not

signal that was produced by the rotational rate of the system. As stated earlier the

conditioned would be hard to interpret an accurate frequency so to aid in this the signal

was set through a comparator. The comparator works by looking at the signal and then

only allows a fixed voltage to pass through the circuit if the reference voltage has been

exceeded by the incoming voltage signal. The result of this circuit is that it transfonns the

incoming voltage signal into a step voltage of TTL format. This output is then easier to

-
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be analyzed and detennine the frequency of the signal. The electrical schematic for this

sub-circuit can be seen in Figure 3.18
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Figure 3.18 Rotational Rate Sub-Circuit Diagram

This signal is then analyzed on the oscilJoscope to determine the frequency of the

signal. This frequency is directly related to the rotational rate of the propeller in

revolutions per second.

To aid in the 'debugging' of the electrical system, both of the Wheatstone bridge

circuits are built so that they are interchangeable. The interchangeability is included in

the entire design from the cables all the way to the circuit boards. The degree to which

the system is interchangeable can be seen in Figure 3.19. This degree of

interchangeability allows the user to quickly determine the location of any error or

breakage in the system.
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Figure 3.19 Interchangeability of Electric System

The interchangeability of the system was decided on so that it would be much

easier to determine the section of the system that is not operating correctly and thus will

allow the system to be repaired more quickly. The major parts of the system that are

interchangeable are those that involve the thrust and torque ensors. The

interchangeability starts with the cables and then proceeds all the way through the

electrical system to the point at which it interfaces with the computer. Inside the electric

systems box, all major components have been designed with quick change plugs. This

break down of the system into five smaller components for each sub-circuit and allows

one to determine the exact location of most any problem with in the systems box.

3.5 Data Acquisition

The voltage signals from the torque, thrust, pressure sensors are read and

processed by a Metrahyte DAS-16 AID board inside a 386 PC DOS based computer. For
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the studies presented in this thesis, three channels were read by the computer sequentially

with use of a custom written program, the source code can be found in appendix A. The

order of the channels chosen was torque, thrust, and pressure transducer. The AID board

made 3000 conversion per channel. The average of the 3000 conversion is then computed

and a single packet was produced. After this the process was repeated fifty times to

produce an average of the fifty packets, this results was then recorded as a single data

point result. The data point was then recorded into a data file as the raw voltage to be

processed at a later ti me.

In order to determine the rotational rate of the propeller shaft the signal that was

produced by its system was analyzed on an oscilloscope. The oscilloscope was setup so

that it would display the frequency of the incoming signal on the screen. This results was

then entered into the computer program. After this data was entered by the user, the

computer would then start the data acquisition of the three channels. After the data for the

three channels had been processed and recorded the user was prompted for the power that

was placed into the motor. The power that was placed into the motor was found by u e of

an Astra Flight 'Whatt' meter, that has been placed in line between the power supply for

the motor and the speed controller. This meter allows two major things, first it allows the

user to maintain a power level that is below the maximum power rating of the motor.

Secondly, it also can be used in order to aid the designer in determining the 'overall

system efficiency'
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CHAPTER IV

4 EXPERIMENTAL PROCEDURE

4.1 Rational for Experimental Approach

The primary goal of this experimental investigation was to determine the dynamic

performance of a range of propellers, as it was found that there was a severe lack of

information available in propellers below 1 meter in diameter. This experimental

investigation was accomplished by studying the resulting forces produced by the

propeller at a fixed rotational rate while varying the tunnel velocities. Varying the tunnel

speed allows one to determine the dynamic performance of the propeller by changing the

advanced ratio. While one can also vary the rotational rate at a fixed tunnel velocity to

also determine the dynamic range, this would result in a large change in the Reynolds

number during the investigation. Therefore a part of this experimental investigation, was

to determine the sensitivity to Reynolds number on the dynamic performance of the

propeller. This was done by varying the rotational rate over a range of tunnel velocities

and then comparing the results as a function of advance ratio.

In order to determine the dynamic performance result of the propeller during a

run, the following are measured; thrust, torque, rotational rate and tunnel velocity. The

tunnel velocity was determined with the existing equipment available in the wind tunnel

facility, while the remaining three are found hy use of custom built sensors. The sensors

were built so as to maximize the mechanical sensitivity to minimize the need for

amplification of the resulting signal.
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4.2 List of Experiments Conducted

The experiments in the investigation were conducted usmg 10" diameter

propellers inside the low speed wind tunnel facility from static to a tunnel pressure of one

inch of water.

1) Pitch sweep with a fixed 10" diameter (PID = 0.3, 0.5, 0.6, 0.7, 0.8,0.9, 1.0)
2) Reynolds number effect by varying rotational rate ( 3600, 4800, and 7200 RPM)
3) Differing manufactures brand effect
4) Effect on tip clipping

4.3 Calibration

The very first things that must be accomplished prior to any operation of the

dynamometer system is calibration. This calibration involves taking measurements with

known loads and then recording the resulting voltage of each subsystem so as to acquire

the data and then transform the data into useful information.

4.3.1 Torque Sensor

The procedure for the calibration of the torque sensor is as follows. A imple load

beam was mounted on the centerline of the shaft and secured in place. Then by placing

known weights at known locations along the beam, a measurement of the resulting

moment was found. To aid in this calibration, multiple weight and distance combinations

that produced the same moments were recorded during calibration. Both clockwise as

well as counter-clock wise reading where taken and recorded.

Once the measurements of the voltage differences for each load was recorded, it

was possible to determine the calibration curve for the torque sensor. The calibration

curve was found by means of fitting the recorded data to a linear curve fit. The results of

this fit are shown in Figure 4.1 and are later used to transform voltage readings into
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torque measurements. The resulting error from this curve fit was found to be no more

then 2.66% error.
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Figure 4.1 Calibration Curve of Torque Sensor

One of the final parts of calibration is to determine the tare torque.

The tare torque is defined as the torque produced by the motor when no propeller

IS mounted on the motor shaft. The tare torque was recordeu as a function of the

rotational rate of the propeller shaft. The results from this are then used to correct the

torque measurements found during an actual data run.

4.3.2 Thrust Sensor

The procedure for the calibration of the thrust sensor is similar to that of the

torque sensor as it really only differs in the method of the applied load; the method used

to calibrate the thrust sensor is as follows. A dead weight is attached to the propeller shaft

-
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by means of a simple pulley arrangement to calibrate for thrust, and is then attached to

the rear of the system for drag.

This arrangement is used along with varying known weights in order to calibrate

the thrust sensor in both the positive (thrust) and negative (drag) direction. The voltage

measurement for each load was recorded, and it was then possible to detennine a

calibration curve for the thrust sensor. The calibration curve was found by means of

fitting the recorded data to a linear curve fit. The results of this fit are shown in Figure 4.2

and are used to transform voltage readings into thrust measurements. The error from this

curve fit resulted in no more then 2.04% error from the actually result.
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Figure 4.2 Calibration Curve of Thrust Sensor

The next item that had to be detenni ned for the thrust sensor was the tare drag on

the system at differing tunnel velocities, it should be noted that this is the tare drag only

on the dynamometer system and as such no propeller should be mounted. This section of
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the calibration must be done so the actual thrust that is produced by a propeller can be

detennined and the effects of drag caused by the dynamometer can be removed. It is for

this reason that the calibration of the system included both positive and negative loadings.

The results of the tare reading are shown in Figure 4.3. From this data a second order

curve fit was used in order to determine an equation to be used later in the data analysis

and results in an error of 1.00% to the calculated tare drag.
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voltage = 5.4348/\ h' - 37.0926 h -..
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Figure 4.3 Tare Drag of Dynamometer

4.3.3 Rotational Rate

Since the rotational measurement all ready produced a signal that could be

measured as a frequency, the rotational rate of the propeller shaft could be found directly

with out any need for calibration. However to confirm this, a calibrated strobe light was

used to verify that the indicated rotational rate was the correct rate. To determine the

rotational rate of the propeller and thus the propeller shaft, a mark was made on only one
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blade of the propeller. The mark on the blade was then tracked with by use of the strobe

light. It was found that the reading indicated on the calibrated strobe light matched that of

the rotational sensor. Since the two reading appear to match, it can be assumed that the

rotational rate indicated by the system is within the precision of the stroboscope as

published by the manufacture, 0.0 1% of the LSD.

4.4 Data Acquisition and Processing

Once the calibration for the sensors has been found, the data that is recorded can

be mapped into corresponding units. To aid in the recording a small program by the name

of 'SETUP.EXE' was written and is used to determine the current settings of the sensors

provides the needed range for a given propeller being tested. After confirmation of the

range with this program, the main custom written data acquisition program

,'PROPSCAN.EXE', is started.

After the main program 'PROPSCAN.EXE' is started, the u er i prompted for

the upper and lower channels to be scanned. It is important to note at this time that the

sensors are designed to be recorded in the following order; torque, thrust, and tunnel

pressure. The next items that the user is prompted for are the current corrected

atmospheric pressure and the current tunnel temperature. This information is used to

determine the current properties of the air.

The current atmospheric pressure is found by use a barometer that is located in the

wind tunnel facility and the tunnel temperature is found by use of a thermocouple that has

been mounted inside the test section. Next the user is prompted for the name of the data

file to be recorded, it should be noted here that the name of the file is limited to only eight
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characters. After this the user is prompted for the number of packets that they would like

to be recorded.

Each packet of data contains the of average 3000 samples from a single channel.

The packets themselves are then again averaged to produce a single piece of data. The

data recording is started after the user enters the current rotational rate of the propeller

shaft. After the user enters this information the computer then records and stores this data

point, as soon as the computer has processed and stored the data the user is then

prompted to enter the current power setting for the motor.

The program then returns to a standby setting until the user enters a new rotational

rate at which time the program then repeats the process over. In order to end the program

the user needs to enter a negative number for the rotational rate. After the program has

ended the data file that has been created is now ready to be processed. The data is

processed into usefully infonnation hy use of an Excel spreadsheet.

The data is imported into a spreadsheet where it is processed. The spreadsheet

processes the raw voltages that were recorded by the computer into 'engineering units' so

that the coefficients can be found. The data that is imported in to the spreadsheet is as

follows; corrected barometer reading, tunnel air temperature, dynamic viscosity, den ity

of air, velocity conversion and then in tabular format tunnel velocity, rotational rate,

thrust, torque, power input. A sample of the data that is imported is shown below in Table

4.1
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Corrected Barometer 746.5
Heading (mm Hg)

Tunnel Air Temp (c) 31.5
Dynamic Viscosity 1.26E-05

(Ibm/fl-s)

Density of Air 0.07106
(lbm/ft/\3)

Vel Conversion 68.5676
I (ftlsec /sqrt(in H2))

Tunnel Velocity HPS Thrust Torque Power Input
(tVsec) (Rev/Sec) (mV) (mV) (Watts)

0 0 -279 8 0
16.8 120 -23 -43 125

16.37 80.65 -191 -13 52
16.37 60.24 -248 -3 30

Table 4.1 Sample of Imported Raw Data

Once the data has been imported it is processed and the following are calculated;

tunnel pressure, rotational velocity, propellers wind velocity, Reynolds number, tare drag,

actual thrust, thrust/drag in ounces, torque in ounce-inches, advance ratio, and then the

coefficients of thrust, torque, and power. Followed by the propeller efficiency, then

finally the ratio of the thrust and puwer coefficients. After all the given data for an

experimental investigation has been processed it is then sorted first by the rotational rate

and then advance ratio.

4.5 System Repeatability

This dynamometer system would not be very useful if it did not provide both

repeatable and accurate results. In order to determine the repeatability of results from this

system numerous identical runs were performed on differing days. The identical runs

were composed of the following; multiply rotational rates, variable tunnel velocities, and

several propellers of the same pitch, diameter and brand. The results of the repeatability
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test indicated that the coefficients of torque and thrust varied by less then 1.62% and

1.13%, respectively. The results are also shown graphical in Figure 4.4 and Figure 4.5.

While the variation of the propeller efficiency was higher then that of the two

coefficients, as much as 1.92%, this is to be expected since it is composed of both

previous coefficients as well as the advance ratio this would be expected. The results of

the propeller efficiency section of the repeatability are shown in Figure 4.6

Figure 4.4 Repeatability Test of Torque Coefficient
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Figure 4.5 Repeatability Test of Thrust Coefficient
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4.6 Signal Quality

Even with the high repeatability of the system, the quality of the signal must be

analyzed. The main reason that it must be looked at is that while the results are

represented as a steady state processes, this is not the case. The signal actually varies

around this steady DC signal, the amount at which it varies is do to the vibration of the

system at a frequency of the blade rotational rate. The amount at which it varies will be

considered the noise. In order to determine the amount of 'noise' in the system a digital

oscilloscope was used to analyze the time waveform of the signal for varies rotational

rates. An example of the waveforms at rotational rate of 60, 80, and 100 RPS can been

seen in the following six figures (Figure 4.7 - Figure 4.12).

-.

Figure 4.7 Waveform of the Thrust Signal at 3600 RPM

r \ I ~ ,',

• J

I
I

46



• ,,\' '"'\ t. \ ' I, .'~ fA"l ," it ~i; II
. .'," ..A, . ",.l.M>. ......" .. ,~/~' '.}" !.~ ,'" f

'.1 ... r ,r- .. .- \' .. , .~ • ~

Figure 4.8 Waveform of the Torque Signal at 3600 RPM
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Figure 4.10 Waveform of the Torque Signal at 4800 RPM
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Figure 4.11 Waveform of the Thrust Signal at 6000 RPM
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Figure 4.12 Waveform of the Torque Signal at 6000 RPM

With the use of the oscilloscope the peak to peak voltage as well as the voltage

rms was recorded for several runs, the results were then averaged in order to determine

the average 'noise' (peak to peak) and average DC signal (voltage rms). After this a

signal to noise ratio was found with use of:

:~
"
.J
10.

it

5
J.....-

)

( 4.1 ) -)

With use of this equation the signal to noise ratio over the range of 3600 to 7200

RPM in steps 600 RPM. The results of this indicate that one must carefully select the
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rotational rate of the investigation in order to avoid areas which contain low signal to

noise ratios.

Unfortunately as can be seen in Figure 4.13 and Figure 4.14 the worst case for the

signal to noise ratio does not overlap for both channels simultaneously. The signal to

noise ratio on the thrust channel appears to increase with as the rotational rate increases,

however this ratio does appear to peak at 6600 RPM. Where as the torque channels

appears to increase until the rotational rate of 5400 RPM is reached, this appears to be the

lowest ratio. However, the ratio does appear to then rapidly increase after this rotational

rate.
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Figure 4.13 Signal to Noise Ratios for Torque
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Figure 4.14 Signal to Noise Ratios for Thrust

In order to determine the nature of the 'noise' a spectrum analyzer was used in

order to perform an FFf on the signal. The results of this show that the main source of

'noise' in this system comes from several know sources. The main sources of this noise

are as follows; the rotational rate of the blades, the natural frequencies of the thrust and

torque sensors, the rotational rate of the gearbox. Not only did the fundamental frequency

of each of these show up but several multiplies of each as well, the most dominate of

these being the odd multiplies of the rotational rate of the blade. The one other major

item of interest that was discovered with use of the FFf is that the 'noise' is dominated

by only frequencies below 500Hz and that any frequency above this point did not appear

to contribute significantly to the 'noise' level. The results of three rotational rates are

shown in the following figures (Figure 4.15 thru Figure 4.20).

50

,
J...
l:...
)

J

......
)



o.lI2lXI-

111101110-

0.0160-

0.0140-

0.0120-

00100-

O(J)l()-

01XJ3l)_1

o.OO4U-

0.0ll20-

1III I I

I I

II

oo000סס.0 25.00 5000 7500 10000 125.00 150.00 17500 200.00 moo 2'!O00 2l'5.00 moo 125.00 35000 11'l00 ~OOOO 42'300

Figure 4.15 FFT for Thrust at 120 RPS

(\1)100-1

I I II 11I1I II IIO.lXT.JJ-

I I I0(J)l()-

I00070-

I) (O)(t-

I I00050-

0lJ:~-

orroJ-

000:'(1

000'0-

, I I 'ii

~lXOO . "
(,00 '-WJ 00 'iOCIJ 1~, lXl '0000 125 00 150 00 17500 20000 22500 25000 275 00 30000 32500 J'j()0li 17'.l 00 .00 00 .600

Figure 4.16 FFT for Torque at 120 RPS

51

J

l:
~

>
J
::

)

:::..-)
t



00225- J I

oa.w~ I I II
00151- III I
0019)-

0.01010-

Q01211-

0.0100- I
atm)- I III
o.OJ;l)- I
0.0040-

0.0020-

II

Figure 4.17 FFT for Thrust at 90 RPS

J

)

J
::

I ! II II I I II' I

il : I
I i II

WII ! i II II I
Iilill I I II I I I I I I I

,I i II " II I I I
I

Ii III I I
I II

II I I I
I

I

I I: ! I
i i

I I

Ii i

II I IlUI

01]100-

OOC03O-

0005(;-

00010-

0lXr-(j-

OOCAJ()-
000 ~oo ~oo 7500 10000 1:."5 00 I~OO '7500 20000 moo ~oo moo 30000 12500 ~oo moo 40000 4211oo

OOOXl-

OI:w)7('l-

01)(00-

Figure 4.18 FFT for Torque at 90 RPS

52



I I I ill I ! I

II ~
'" .

- I' III II
I I I , II ! I I I I
I III III I j I
II I ,

I I I, I II

111111 1 I I I u.. 1

I I I 1 I I I I
I II III I I I I, I

I I I III 1 II
I , III I I

I ,
I I I I :1 I II

II I
I I I I I I, Ii I! I I IIII I I ! I I I

II II II , I II I
I II I' I I :1 I I

III I II I I I 1m I I I I I
~

(UI125:

oum
002lll

00260

0.0100

IlUllD

00200

00100

00160

00100

00121)

00100

00060

lllJlQ)

OOOlll

o002lJ

ilOOllO-
000 2500 5000 7~00 10000 12'i00 15000 17500 20000 22500 2'i000 27500 D:loo 32'500 )5Q00 J7500 40000 42'£00

Figure 4.19 FFT for Thrust at 60 RPS

Figure 4.20 FFT for Torque at 60 RPS
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With the upper frequency of interest below 500 Hz and that the 'noise' i not

random in nature the selected sampling rate of 10,000 Hz proved to be more then

adequate. This sampling rate along with a 15 second sample time appears to allow an

accurate recording of the DC signal by means of a simple averaging of the points

captured during this record length, there are 15,000 points recorded. To determine the

overall effect of this sampling rate as well as the effect of the 'noise' a simple

investigation was conducted in order to detennine the amount of error that was observed
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between the voltage that was sampled and averaged and that which was found on the

oscilloscope as the rrns voltage. Not surprising, the results closely followed the same

trend as that of the signal to noise ratio for each channel. The torque channel shows the

least effect on error in fact the error never exceeded 0.23% or the range of rotational rates

tested ( Figure 4.21). Where as the thrust channels indicates a large error of over 25% at

3600 RPM, but then rapidly falls to 4% and lower for the remaining rotational rates

(Figure 4.22)
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From the results of the signal quality investigation it can be seen that this system

should not be used at 60 RPS this rotational rate can produce up to 25% error on the

thrust channel results, but care should also be taken at any new rotational rate that was

not covered in the initial investigation it insure that not only is the signal to noise ratio

high, but that the voltage found with use of the computer and AID board closely agrees

with the rrns voltage that is recorded on the oscilloscope.

4.7 Uncertainty

Since one of the main goals of this investigation was to create a dynamometer that

had not only high repeatability but also low uncertainty. It was decided to use the method

of Kline to determine the uncertainties of the primary results of interest. These results

being the coefficients of thrust and torque and the overall propeller efficiency. According

to the approach outlined by Kline (1985) one can determine the overall uncertainty by

finding the square root of the partial derivates of each variable and also determine the

sensitivity that each separate variable has on the overall uncertainty. The equation ( 4.2 )

is the general form that is followed for each.

·•
•

WR _ (alnRWx')2+(alnRWxlI)2
R alnx, Xi alnxi Xi

(4.2 )

With use of this equation the uncertainty of each of the major equations used was found

the results of this are shown in Table 4.2
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Coefficient %Min Error %AvgError %Max Error

J ± 0.179 % ±0.762 % ±3.335 %

CT ±1.107 % ±1.11O % ±1.1l3 %

Cp ---- ±2.040 % ...-

II ±2.328 % ±2.500 % ±4.065 %

Table 4.2 Uncertainty of Major Equations
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CHAPTER V

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Reynolds number effect

The first of investigations that was conducted was to determine the Reynolds

number effect on the dynamic propeller performance. To accomplish this three different

rotational rates where used, while the velocity of the tunnel was swept from static to one

inch of water. By utilizing this method, the Reynolds number at a given rotational rate

did not vary by more than 5%. The three rotational rate selected were 3600, 4800, and

7200 RPM and the corresponding average Reynolds numbers were 50000, 77000, and

114000.

It was observed that during this phase of the investigation that none of the

coefficients or the efficiency appears to vary by more then 2.6%. The results of this can

be seen in Figure 5.1 thru Figure 5.3. In order to help clarify any difference that may

actually occur, a ratio between the thrust and power coefficients was developed. This

ratio, which is show in Figure 5.4, can be used by the designer in a similar fashion as the

lift over drag curve. This graph will allow the designer to quickly see which propeller or

blade set will produce more thrust for a given power. As any set of curves which appear

above another will require less power for a given thrust setting.

It should be noted that while the effect of differing rotational rates did not appear

to affect the overall performance of the propeller, it does have an effect on the static

performance. However, the only coefficient that appears to be significantly affected is

the thrust. The thrust coefficient increases by as much as 7% with a doubling of the



rotational rate from 3600 to 7200 RPM, where as the power coefficient changed by less

than a percent for the same increase in rotational rate.
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5.2 Pitch sweep

Now that the effect of Reynolds number had been found and it appears that it does

not have a major effect on the results outside the static range, an investigation into the

effect of pitch on the overall perfonnance can now be analyzed.

In order to conduct this investigation, it was decided that only the pitch would

change, as such a range of propellers all having the same diameter but varying pitches

were selected. The test was conducted at a fixed rotational rate of 4800 RPM while

varying the tunnel speed from static to one inch of water. The rotational rate was selected

do to the power requirements of the higher pitched propeller, and in order to maintain a

constant rotational rate.

It can be shown from the results that as the pitch increase the thrust coefficient

increases as well (Figure 5.5), unfortunately the corresponding power coefficient increase

as well (Figure 5.6). The other major item that can be seen with the increase in pitch is

the advance ratio at which the propeller starts to enter the braking stage. The braking

stage is encountered as the thrust coefficient approaches zero, and as expected the power

coefficients lags and approached the zero axis at a higher advance ratio. The higher

advance ratio was expected, as this is windmilling stage and closely follows the braking

stage.

It is with use of the propeller efficiency and ratio between the thrust and power

coefficients that the effect of pitch becomes the most clear (Figure 5.7 - Figure 5.8).
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5.3 Brand effect

The brand effect investigation involves analyzing the effect of the different

manufacturing brand names of propellers available. In order to conduct this investigation,

it was decided that only the brand of the propeller would change, while the pitch and

diameter where fixed. The test was conducted at a fixed rotational rate of 7200 RPM

while varying the tunnel speed from static to one inch of water.

It was observed that during this investigation that the largest increase in the

coefficients appear to be between 'Brand A' and 'Brand C' and varied by as much as

30% and as much as 20% between 'Brand A' and 'Brand C'. However, at the same time

the point of the braking state also increased, 'Brand A' having the largest of the three.

The results of this can be seen in Figure 5.9 and Figure 5.10.

While it appears that only 'Brand A' has a dramatic increase in performance it

should be noted that both coefficients increased at about the nearly the same rate,

therefore the overall propeller efficiency does not increase between 'Brand A' and 'Brand

C' but actually decreases. The decrease in the propeller efficiency, Figure 5.11, however

is only 4.2% at most between 'Brand A' and 'Brand C', and 5% between 'Brand A' and

'Brand B'. This smaller effect on the brand can be seen most clearly in Figure 5.12. Here

the results show that while at first it appeared that 'Brand A' out preformed the other two,

it actually has a lower thrust to power ratio then the other two brands, but has a longer

range and smaller slope then the other two brands and as such can be the better of the

three brands at a higher advance ratios.
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5.4 Tip Clipping

The tip clipping investigation involves determining the effect of reducing the

diameter of a given propeller. Not only does this change the diameter of the propeller it

also changes the effective pitch as well. To determine the effect that this 'clipping' has on

the propeller's perfonnance a large diameter propeller was strategically selected so that

after the diameter of this propeller had been reduced, it would now match the ratio of

pitch to diameter of a second 'un-cut' propeller. The test was conducted at a fixed

rotational rate of 7200 RPM while varying the tunnel speed from static to one inch of

water.

The result of this investigation show that the 'clipped' propeller has aJi most

double the thrust and power coefficients of the 'un-clipped' propeller, Figure 5.13 and

Figure 5.14. However, it is the propeller efficiency curves, Figure 5.15, which are very

interesting. While in all the previous investigation when both coefficients increased the

overall efficiency of that given propeller fell by a noticeable amount, in this ca e the

overaJi efficiency was only slightly less then the 'un-cut' propeller. The 'clipped'

propeller had an overall peak efficiency of just over 79% and occurred at a higher

advanced ratio of 0.70, where as the 'un-clipped' propeller had a peak efficiency of just

under 81 % and occurred at an advance ratio of 0.63.

The Figure 5.16 shows the overall effect of 'clipping' on the ratio of the thrust

and power coefficients. Here even the effect on the static end of the curve can readily be

seen. From the results, it can be seen that the 'clipped' propeller produces 18% less static

thrust.
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CHAPTER VI

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

A dynamometer has been developed that can be used to investigate the dynamic

properties for small, 12" diameter, propeller at low Reynolds numbers. The system can be

used to determine the thrust and torque coefficients as well as the overall propeller

efficiency to within ± 2.5%. Thrust is found by measuring the strain produced by the

deflection of two thin beams that support the entire device. The torque is measured by the

strain produced by the twisting of a two-beam cruciform attached to a shaft. The shaft is

then connected to the rear of the motor mount. The strain that is produced in both cases is

measured by four strain gages that are attached directly to the beams. The strain gages are

then connected in a circuit to form a full Wheatstone bridge, in which the output voltage

corresponds to the thrust and torque placed upon the system. This voltage is then

recorded on the computer by use of a data acquisition card and custom written program.

This dynamometer was then used conduct several experiments to determine the

effect of several parameters on propeller performance, while varying the test section

speed from static to one inch of water. All the experiments outlined in this thesis have

shown how several parameters affect the actually dynamic propeller performance.

The first of parameters to be investigated was the effect of rotational rate. Thi

investigated shows that there is little effect on propellers performance curves, even when

the rotational rate is doubled. However, it did indicate that the static phase is effected by

as much as 7% with a doubling of the rotational rate from 3600 to 7200 RPM.
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The next parameter that was investigated was a family of curves produced by

varying the pitch. The results obtained here can be used directly to aid in the design of a

propulsion system for a remotely piloted veh.icle, after one fits a curve to them. For they

show that while you increase pitch the coefficients increase as well, and that there is a

shift in both the peak efficiency and advance ratio.

The last two investigations where done to detennine the effect of the geometry of

the blade on the propeller's perfonnance. This involved examining the effect of both tip

clipping and how manufacturing brand type affected the perfonnance. Both parameters

appear to affect the thrust and torque coefficients, however the over all propeller

efficiency does not appear to be overly effected. The only area where there does appear to

be an effect is the static phase. Tip clipping a propeller produces 18% less static thrust

then the thrust which is produced by an 'un-clipped' propeller of equal diameter.

All experiments conducted were done with the utilization of the low-speed wind

tunnel facilities located in the Aerodynamics laboratory at Oklahoma State University.

The typical time to conduct a single propeller performance investigation is under thirty

minutes. This ability to quickly and accurately measure a single propellers perfonnance

makes it easy and efficient for a propulsion system designer to not only obtain data for

the design process, but then also to verify the design.
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6.2 Recommendations

The following are recommendations that will aid in a decrease in the time required

to analyze a given propeller arrangement or set of arrangements, or are areas that need to

be further exploded.

1. Automation of the tunnel velocity.

2. Include the rotational rate sensor in the automated data acquisition process.

Currently the user must enter this value by hand and then monitor the value

during a run.

3. Investigation of the flow condition around the propeller at differing advance

ratio with use of a high-speed camera and smoke for flow visualization around

the blade. This should include both a change in advance ratio due to rational

rate as well tunnel velocity.

4. Investigate the perfOlmance of the propeller where the system is powered by a

battery supply instead of the DC power supply.

5. Utilize Visual Basic to help 'streamline' the importation and processing of the

raw data inside Excel.

6. Make use of a large dynamometer to investigate the effect of larger diameter

propellers.
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APPENDIX A

A Source Codes

A.I PROPSCAN.CPP

#include "d16.h"

#include "airprops.h"
#define vel slope 5.25

II header file containing custom
II data acquisition routines
II header file for finding air properties
II Calibration Slope for Pressure Transducer

void main ()
{

int counter,sample,quit;
float avgvoltS,volt=0,avgvoltsl,voltl=O,avgvolts2,volt2=O;
float thrust=O,torque=O,vel=O,avgthrust,avgtorque,avgvel;
float power,rps=l,velconv;
FILE *output_file;

clrscr () ;
boardsetup();
set_gain(l);
chan_scant);
velconv = airprops()*velslope; II determines Conversion Factor

II per inch H20
printf ("Torque 0 Thrust 1 Tunnel Vel 2 \n");
printf("Enter number of sample to be taken:");
scanf("%i",&quit) ;
output_file = fopen("prop.dat", "w+");
fprintf(output_file, "Tunnel Velocity\tRPS\tThrust\tTorque\tPower

Input\n") ;
fprintf (output_f ile, "( ftl sec) \ t (Rev ISec) \ t (mV) \ t (mV) \ t (Watts) \n ") ;
clrscr() ;
printf("Enter RPS;");
scanf("%f",&rps) ;

while (rps >= 0)
{

for (sample=l; sample<=quit; sample++)
{

for (counter=l; counter<=lOOO; counter++)
1*
volt += a2din()*(2./4095.)-1.;
voltl += a2din()*(2./4095.)-1.;
volt2 += a2din()*(2./4095.)-1.;

II Torque
II Thrust
II Tunnel Velocity *1

avgvol~s=volt/counter;

avgvoltsl=voltl/counter;
avgvolts2=volt2/counter;

}

gotoxy(7, 10);
printf("%8.0f Torque %17.0f Thrust/Drag

\n",avgvolts*1000,avgvoltsl*1000) ;
printf("%14.3f Tunnel Pressure %8.2f Tunnel Velocity\n"
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,avgvolts2, (f~oor(avgvolts2*1000)/1000)*velconv);

thrust += avgvolts;
torque += avgvolts1;
vel += avgvolts2;
volt=O; volt1=O; volt2=O;
}

avgthrust = thrust/sample; avgtorque torque/sample;
avgvel = vel/sample;

clreol();
printf ("Enter Input Power (Watts): ") ;
scanf("%f",&power) ;
fprintf(output_file, "%5.2f\t%5.2f\t%5.0f\t%5.0f\t%5.0f\n II

,floor(avgvolts2*1000)*(velconv/1000),rps,avgthrust*1000,
avgtorque*1000,power) ;

gotoxy(l, 1);

thrust = 0; torque = 0; vel = 0;
printf("Last RPS:%8.2f",rps);
printf("\nEnter RPS:");
clreol;
scanf("%f",&rps) ;

)

}

A.2 D16.H

#define BASEADR Ox330
#define A2DLSB BASEADR + 0
#define A2DMSB BASEADR + 1
#define CHANREG BASEADR + ?
#define DIO BASEADR + 3
#define D2AOLSB BASEADR + 4
#define D2AOMSB BASEADR + 5
#define D2A1LSB BASEADR + 6
#define D2A1MSB BASEADR + 7
#define STATREG BASEADR + 8
#define CTRLREG BASEADR + 9
#define CNTRENABLE BASEADR +10
#define GAINREG BASEADR + 11
#define CNTRO BASEADR + 12
#define CNTR1 BASEADR + 13
#define CNTR2 BASEADR + 14
#define CNTRCTRL BASEADR + 15
#define VREF 5.0
#define CLOCK 10000000
#define DEBUG 0 // 1 is on 0 is off

#include <conio.h>
#include <dos.h>
#include <math.h>
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#include <stdio.h>
#include <values.h>
#include "bitprint.h" IIDisplays ports as a binary number

void boardsetup();
void set_gain(int);
void sng_chan(int chan);
void timer_values (float freq,unsigned int *nl,unsigned int *n2);
void set_tirner(unsigned int nl,unsigned int n2);
void chan_scan();
int lo(unsigned int);
int hi{unsigned int);
int a2din();
void aoutO(float voltage);
void aoutl(float voltage);

int i;
int total_chan;

void boardsetup{)
{

outportb(CTRLREG,OxO) ;
outportb (CNTRENABLE, OxO) ;
outportb{STATREG,OxO) ;
outportb{CNTRCTRL,Ox30) ;
outportb{D2AOLSB,OxOO) ;
outportb{D2AOMSB,OxOO) ;
outportb(D2A1LSB,OxOO) ;
outportb(D2A1MSB,OxOO) ;

}

II Analog Out Channel 0
II Reset to Zero
II Analog Out Channell
II Reset to Zero

void sng_chan(int chan) II Single Channel Scan
(

int muxscan;
muxscan=(chan «4)+chan;
outportb(CHANREG,muxscan) ;

void chan_scan() II Multi-Channel Scan

int lowerchan,upperchan,muxscan,muxsetting;

printf("\n Is", "Input lower channel to scan (0-7) :");
scanf("%d",&lowerchan);
printf (" \n %s"," Input upper channel to scan (0-7):");
scanf("%d",&upperchan) ;
rnuxscan={upperchan «4}+lowerchan;
printf{"\n") ;
outportb(CHANREG,muxscan) ;

if (upperchan >= lowerchan)
total_chan = {upperchan-lowerchanl+l;

else {
printf (" \a%s",
"Error Lower channel is greater than upper channel");
chan_scant) ;

}
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ceil(voltage*(4095.0/VREF)) ;
datavalue « 4;

}

void set_gain(int gain) II gain setting 0 +10, 1 +1, 2 +0.1,3 +0.02
II Can differ for each channel
{

outportb(GAINREG,gain) ;

int a2din() II Analog to Digital Input

int eoc,lsb,msb;
int datavalue;

outportb(A2DLSB,Ox10l; II Start AID Conversion
do
{

eoc=inportb(STATREG) ;
} while (eoc»7)!= 0);
lsb=inportb(A2DLSB) ;
msb=inportb(A2DMSB) ;
datavalue=(msb*16l+(lsb»4l;

II current_channel=lsb & OxOF;
II next_channel=inportb(STATREGl & OxOF;

return (datavalue) ;

void aoutO(float voltage) II Analog Out Channel 0

unsigned int datavalue;

datavalue
datavalue
if (DEBUG)
{

printf("\nDatavalueO:%u",datavalue) ;
printf("\nVoltageO:%f",voltage) ;

}

outportb(D2AOLSB,lo(datavaluel) ;
outportb(D2AOMSB,hi(datavaluell;

void aout1(float voltage) II Analog Out Channell

unsigned int datavalue;

datavalue = ceil(voltage*(4095.0/VREFll;
datavalue = datavalue « 4;
if( DEBUG)
(

printf("\nDatavaluel:%u",datavalue);
printf("\nVoltagel:%f",voltage) ;

}

outportb{D2AlLSB,lo(datavalue)) ;
outportb(D2AlMSB,hi(datavalue) );

void timer_values(float freq,unsigned *nl,unsigned *n2)
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II Find the two 16 bit numbers for the 8254 Counter
{

unsigned maxint=65535; II 16 bit number is the max
float en1=1.0,en2,ten1,ten2=1.0,flag1=1.0,flag2=1.0,oldflag=1.0,

divisoY";

divisor=CLOCK/freq;
while (flag1 != 0)
{

en1++;
en2 = divisor/en1;
flag1 = en2 - floor(en2);
if (en2 > maxint) flag1 =1;
if (en1 >= maxint) flag1 =1;
if (flag1 <= oldflag)

{

oldflag = en2 - floor(en2);
ten1=en1;
ten2=en2;
flag2=1;
if (floor(en2) <= 2) flag1=0;

}

if (flag2)
{

en2=ten2i
en1=ten1;
}

*n2=en2;
*n1=en1;
if (DEBUG)
{

printf("Timer Values \t%u\t%u\n",*n1,*n2);
printf ( "Frequency %8.5 f \n" , CLOCKI (en1 *en2) ) ;

}

void set_timer(unsigned int nl,unsigned int n2) II Set 8254 Counter

outportb(CNTRCTRL,OxB4) ;
outportb(CNTRCTRL,Ox74) ;
outportb(CNTR2,lo(n2)); II Send LSB to Counter 2
outportb(CNTR2,hi{n2)); II Send MSB to Counter 2
outportb(CNTR1,lo(n1)); II Send LSB to Counter 1
outportb(CNTR2,hi(n2)); II Send MSB to Counter 1
if (DEBUG) printf("Set Timer \t%u\t%u\n",n1,n2);

ir.t lo(unsigned int i) Ilreturn the low bytes of a 16-bit number
(

r~turn(i-hi(i)*256)) ;
}

int hi(unsigned int i) II return the high bytes of a 16-bit number
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{

return ( i»8) ;
}

A.3 AIRPROPS.H

#define gravity
#define rhohg
#define rhoh20
#define R
#define S
#define B

9.80665
13595
998

287
110.4
1.458E-06

float airprops();
float airprops()
{

float bar,atmpress,airternp,rhoair,velcon,dvisci
printf("Enter Corrected Barometer Reading:");

scanf("%f",&bar) ;
printf("\nEnter Tunnel Temperature:");
scanf ("%f", &airtemp) ;
atmpress = gravity * rhohg * bar I 1000;

II Ideal Gas Law to find density of air
rhoair = atmpress I (R * (airtemp + 273.15));

II Conversion between inches of H20 and Velocity
velcon = sqrt (2*gravity*rhoh20*0. 0254/rhoair) ;

II Sutherland Equation for Dynamic Viscosity
dvisc =(8 * sqrt(airternp + 273.15))1

(1 + (S/(airternp + 273.15)));

II Covert to English Units
dvisc = dvisc/1.488164;
rhoair rhoair/16.01846;
velcon = velcon/0.3048;

return (velcon) ;
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AA BITPRINT.H

#include <limits.h>

void bit-print(int};
void bit-print(int value}

int i;
int n = sizeof(int} *CHAR_BIT
int mask = 1 « (n-1);
printf (" \n") ;
for(i=l; i <:n; ++i)
{

putchar ((value & mask) == 0) ? '0'
value «=1;
if (i % CHAR_BIT 0 && i <n)

putchar{' '};
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