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ABSTRACT

In this dissertation, the ensemble Kalman filter (EnKF) is refined for applica-

tions to the problem of history matching. This method assimilates data sequentially

whenever data are acquired. It is a Monte Carlo approach, in which an ensemble

of models is used. The correlations between model variables and theoretical data

are computed directly from the ensemble. Multiple history-matched models will be

obtained after the initial ensemble is conditioned to all production data. The final

models can be used to assess the uncertainty in future reservoir performance. The

computational cost for generating the multiple history-matched models is approxi-

mately the simulation runs for all the ensemble models plus the overhead time for

matrix computations.

The plausibility of the EnKF as an alternative method for history matching to

reservoir applications is shown by two waterflood problems. The effectiveness of

the EnKF is more thoroughly demonstrated with a more realistic reservoir model,

PUNQ-S3.

The EnKF takes both model parameters and state variables as well as calculated

data into its state vectors. When new observations are assimilated, all variables

in the state vectors are adjusted simultaneously. For linear dynamic systems, the

system governing equations are honored by the updated model parameters and state

variables. For non-linear dynamic systems, however, it may be impossible to update

the state variables to be consistent with the updated model parameters without re-

solving the non-linear forward problem.

Wen and Chen suggested adding a “conforming step” at each measurement time

xvii



to compute the state variables with the updated model parameters by re-initializing

the dynamic equations at the previous measurement time. We demonstrate through

both linear and non-linear examples that the results of the conforming method are

incorrect. We propose the ensemble Randomized Maximum Likelihood filter (En-

RMLF) as a modification to the traditional EnKF to handle the non-linearity. When

dealing with strong non-linear systems, the EnRMLF out-performances the EnKF.

As a conclusion of this study, we apply the EnKF to a real case. It provides rea-

sonable data match with quality comparable to previous studies from other methods.

We identify that the uncertainties in the initial conditions have strong impacts on the

history-matching outputs.
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CHAPTER I

INTRODUCTION

History matching is the process of adjusting the variables in a reservoir simulation

model so that the computed values of observables such as rates, or bottom-hole pres-

sures, or gas-oil ratios, or water cuts, at individual wells are in reasonable agreement

with actual measurements of those quantities. Due to the large scale of real petroleum

reservoirs and the complexity of fluid flow and transport in the reservoirs, it is never

an easy task to find a set of reservoir parameters to achieve the match. Fortunately,

great progress has been made towards the automation of the adjustment procedure,

and it is now possible to perform a history match of multi-phase flow data at the cost

of approximately 100 reservoir simulation runs.

Within the context of Bayesian statistics, automatic history matching can be re-

duced to a non-linear minimization problem. The objective function contains the

square of the mismatch of all measurements and the computed values, and the square

of the mismatch of the current model parameters and the prior model parameters.

There are two categories of optimization algorithms used in reservoir applications.

One category is gradient based algorithms, e.g. steepest descent, Gauss-Newton,

Levenberg-Marquardt, conjugate gradient, and etc. The other one is non-gradient

based algorithms, such as simulated annealing, genetic algorithm, and MCMC. Large

computational effort is required for the algorithms in both categories, either in ob-

jective function evaluation (non-gradient based minimization methods, thousands of

simulation runs are needed), or in gradient computation (gradient based minimization

methods). For gradient based algorithms, the adjoint method has been shown as the

most efficient method to compute the gradient of a defined objective function (Zhang
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and Reynolds, 2002). However, there are some drawbacks about the adjoint system

hindering it from wide engineering practices. First, the adjoint equations are very

time-consuming and complicated for deployment. Second, they are highly dependent

on the reservoir simulator, and therefore it is not flexible and hard to transfer from

one simulator to another.

In the traditional history matching, the data throughout the history are collected

and used once. However, the increase in deployment of permanent sensors for moni-

toring pressure, temperature, resistivity, or flow rate has added impetus to the related

problem of continuous model updating. Because the data output frequency in this

case can be very high, to simultaneously use all recorded data to generate a reservoir

flow model is impractical. Instead, it has become important to incorporate the data

as soon as they are obtained so that the reservoir model is always up to date. Both

the heavy computational burden and the high data sampling frequency require a new

kind of history-matching method.

The Kalman filter has historically been the most widely applied method for as-

similating new measurements to continuously update the estimate of state variables.

Kalman filters have occasionally been applied to the problem of estimating values of

petroleum model variables (Eisenmann et al., 1994; Corser et al., 2000), but they are

most appropriate when the problems are characterized by relatively small numbers of

variables and when the variables to be estimated are linearly related to the observa-

tions. Most data assimilation problems in petroleum reservoir engineering are highly

non-linear and are characterized by many variables, often two or more variables per

simulator gridblock.

Application to non-linear problems was at least partially solved by the develop-

ment of the extended Kalman filter. However, it did not solve the critical problem

with non-linear unstable dynamics, where it leads to a linear instability in the error

covariance evolution (Evensen, 1994). The problem of weather forecasting is in many
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respects similar to the problem of predicting future petroleum reservoir performance.

The economic impact of inaccurate predictions is substantial in both cases, as is the

difficulty of assimilating very large data sets and updating very large numerical mod-

els. One method that has been recently developed for assimilating data in weather

forecasting is ensemble Kalman filtering (Evensen, 1994; Evensen and van Leeuwen,

1996; Evensen, 1997, 2003; Houtekamer and Mitchell, 1998, 2001; Anderson and An-

derson, 1999; Hamill et al., 2000). The method is now beginning to be applied for

data assimilation in groundwater hydrology (Reichle et al., 2002; Chen and Zhang,

2006) and in petroleum engineering (Nævdal et al., 2002, 2005; Gu and Oliver, 2006,

2005; Wen and Chen, 2005a,b; Liu and Oliver, 2005; Zafari and Reynolds, 2005; Gao

et al., 2005; Lorentzen et al., 2005; Skjervheim et al., 2005; Dong et al., 2006).

The ensemble Kalman filter (hereafter, EnKF) is a Monte Carlo approach, in

which an ensemble of models, instead of only one model as in traditional history

matching methods and other Kalman filter related methods, is used. The correla-

tion between reservoir response (e.g. rates, bottom-hole pressures, gas-oil ratios, and

water cuts) and reservoir variables (e.g. porosities and permeabilities) is estimated

directly from the ensemble, which is different from the explicit evolution of the co-

variance matrix in the Kalman filter and its non-linear extensions. Researchers have

showed that the EnKF outperforms the extended Kalman filter for severe non-linear

problems (Zang and Malanotte-Rizzoli, 2003; Bertino et al., 2003) because the latter

ignores the higher order statistics, while the information about them are kept in the

EnKF when the system governing equations propagate forward in time for the multi-

ple reservoir models. By estimating the state error covariance function directly from

the ensemble, the EnKF avoids computing the adjoint equations and thus the imple-

mentation becomes significantly simplified and transferable since it does not depend

on the system dynamics used.
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Like other Kalman filter related sequential estimation algorithms, the EnKF di-

vides the history matching process into two major steps at each measurement time:

(1) a forecast step which propagates the state of the system/model, usually, from

previous measurement time to current measurement time, and (2) an update step

which corrects the system/model variables by taking the current measurements into

account. Generally, for petroleum reservoir applications, the system/model evolution

is dictated by equations for multi-phase fluid flow and transport in a reservoir; the

state variables are phase pressures and saturations at each simulation gridblock; the

model parameters are properties intrinsic to the reservoir rock and not time vary-

ing themselves, such as porosity and absolute permeability at each simulation grid,

although the estimates of them change with time when new measurements arrives;

the model variables include both the model parameters and state variables; the fore-

cast step is done by running a reservoir simulator, in this dissertation, Schlumberger’s

commercial simulator, ECLIPSE 100, and Chevron’s in-house simulator, CHEARS

(Chevron Extended Application Reservoir Simulator), are both used; the measure-

ments could be production rates of fluid phases, bottom-hole pressures, gas-oil ratios,

or water cuts for individual wells. The number of measured production data at one

measurement time is usually moderate, of course, it can be large for other kinds of

data, e.g. time-lapse seismic data. The interval between two consecutive measure-

ment times might be as short as a few seconds, such as data from permanent gauges,

or as long as years, such as time-lapse seismic data from two surveys. Cares need to

be taken when the interval is extremely short or long.

The two-step procedure is repeated at each measurement time till the last mea-

surements are assimilated. When the number of measurements available at one mea-

surement time is moderate, as we considered throughout the dissertation, the reservoir

simulation time dominates the computational cost of the EnKF. It is obvious that the
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computing time for generating multiple history-matched reservoir models is approxi-

mately the same as the time to make simulation runs for the same number of models

plus some overhead time spent at the updated steps. The multiple history-matched

reservoir models can be used to assess the uncertainty in future reservoir performance.

When new measurements become available, all the variables, including both the

model parameters, such as porosities and permeabilities, and state variables, such as

pressures and saturations, are updated simultaneously. If the relationship between

the state variables and model parameters is linear, the model parameters and the

state variables can be adjusted simultaneously with consistency, i.e. the system equa-

tions are honored by the updated model parameters and state variables. The result

after data assimilation contains an improved estimate of the (non-varying) model pa-

rameters and also an improved estimate of the current value of the state variables.

However, for a non-linear problem, when both kinds of variables are updated, in

essence a linearized approximation to the simulator is used to make a prediction of

the pressure changes and saturation changes that would result from the porosity and

permeability changes. When the changes to the state variables are small, the lin-

earized approximation to the reservoir simulator is acceptable. However, when the

changes are big, it may be impossible to update the state variables to be consistent

with the updated model parameters without re-solving the non-linear forward equa-

tions. This is one potential problem with updating both the model parameters and

state variables simultaneously in the EnKF. The update equation in the EnKF is

based on Gaussian error statistics. The update of state variables whose density func-

tions are bi-modal with the EnKF has been shown as problematic (Gu and Oliver,

2006). In reservoir applications, such state variables are water saturations at some

circumstances. For a simple water flooding problem, the water saturations take large

values behind the water flood front, and small values ahead of the front. Its distribu-

tion is bi-modal in this case and is not well modeled by the mean and variance. This
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is the second potential problem with the EnKF.

The two problems of the EnKF are interwoven with each other. Wen and Chen

(2005a,b) proposed an intuitive remedy to the implications. They suggested to add

a so-called “conforming step” at each measurement time. So the process at one

measurement time of their proposal is a three-step procedure: (1) a forecast step

which propagates the state of the system from previous measurement time to current

measurement time, which is the same with that in the EnKF (2) an update step

which corrects only the model parameters with the EnKF update equation, and (3)

a conforming step which re-initiates the system governing equations at the previous

measurement time with the newly updated model parameters, conditional to data up

to the current measurement time, and the state variables at the previous measurement

time, then propagates the re-initialized equations to the current measurement time for

the computation of the state variables. It can be easily seen that their scheme doubles

the computing time comparing to that of the EnKF since there are two simulation

runs for each simulation model in the forecast and conforming steps. They also

suggested to iterate Steps 2 and 3 when non-linearity of problems is strong.

In this dissertation, we showed that their scheme may not be correct even though

it seems to provide plausible results. We initiated a new scheme, called Ensemble

Randomized Maximum Likelihood Filter (EnRMLF), with solid theoretical back-

ground. It was proven to be robust at least with the illustration of linear and non-

linear examples demonstrated in this work. Similarly as Wen and Chen’s remedy,

only model parameters are corrected at the update step and one extra step is added

after the correction of the model parameters to compute the state variables at the

current measurement time being. Although the procedure of the newly proposed

method has similarity to that of Wen and Chen’s, there are two major differences be-

tween the two. One is that we adopt the iterative Gauss-Newton formula to update

the model parameters. Secondly, after the new model parameters are obtained, the
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system governing equations are re-initialized at time 0 to compute the state variables

for consistency. The disadvantage of this method is the intensive computational cost.

However, it is not always necessary to apply the extra step. When the changes made

to the variables in the state vectors are small at a measurement time, the general

EnKF can be applied. By carefully setting up criteria for choosing whether to add

the extra step, in the examples showed in the dissertation, we found that it is only

applied when data carrying significant information arrive.

There are 7 chapters in this dissertation. Chapter 2 introduces the basics about the

EnKF methodology in the background of reservoir applications. Chapter 3 addresses

two primary concerns about using the EnKF to reservoir applications. Both one-

dimensional and two-dimensional waterflood problems are selected to investigate the

two issues. Chapter 4 applies the EnKF to a more realistic reservoir model, PUNQ-

S3. Through the studies in Chapters 3 and 4, we found that the EnKF is most

appropriate when the changes to the state variables are small. But when the changes

made at some measurement times are big, possible problems arise with the EnKF.

Aiming to eliminate the possible problems, we purposed a iterative scheme, called

EnRMLF, in Chapter 5. Both linear and non-linear examples are used to demonstrate

the performance of the newly purposed iterative scheme in comparison to that from

the EnKF and Conforming EnKF (Wen and Chen, 2005a,b). Chapter 6 shows the

application of the EnKF and Conforming EnKF to a data set from a real field. Finally,

Chapter 7 concludes the study.
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CHAPTER II

THE ENSEMBLE KALMAN FILTER

The chapter explains the basics about the EnKF methodology in the background of

reservoir applications. In Section 2.1, the fluid flow and transport governing equations

in porous media are reviewed and terminology commonly used in history matching

is listed. Section 2.2 provides an outline of the Kalman filter algorithm. Sections 2.3

– 2.5 introduce the methodology of the EnKF and implementation procedures of the

method on both PC and multiple computing clusters. The last Section gives some

heuristics measures used throughout this work for evaluating the EnKF performance.

2.1 Background and Terminology

2.1.1 Reservoir flow and transport equations

In reservoir applications, the dynamic model evolution equations governing the multi-

phase flow and transport in porous media are derived from the basic laws of mass

balance and momentum balance. Suppose that the reservoir under study can be

modeled by the flow of three fluid phases (oil, water, and gas) as described by the

following three partial differential equations (PDEs) for black oil models. The black

oil model implies that (1) gas component can be in both gas phase and oil phase, but

oil component can only be in oil phase, i.e., no oil vaporization; (2) water component

appears only in water phase; (3) neither oil nor gas component is in water phase,

i.e., water is immiscible with both gas and oil. As reservoir temperature is assumed

to be constant in this application and we are not considering thermal or chemical

process, energy balance is automatically honored and thus not explicitly shown in the
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following equations.

C1∇·
[
kro

µoBo

−→
k (∇po(x, y, z, t)− γo∇D(x, y, z))

]
=

φ

C2

∂

∂t

(
So

Bo

)
+qo(x, y, z, t) , (2.1)

C1∇ ·
[
krw

µwBw

−→
k (∇pw(x, y, z, t)− γw∇D(x, y, z))

]
=

φ

C2

∂

∂t

(
Sw

Bw

)
+ qw(x, y, z, t) ,

(2.2)

C1∇ ·
[
krg

µgBg

−→
k (∇pg(x, y, z, t)− γg∇D(x, y, z)) +

Rsokro

µoBo

−→
k (∇po(x, y, z, t)− γo∇D(x, y, z))

]
=

φ

C2

∂

∂t

(
Sg

Bg

+
RsoSo

Bo

)
+ qg(x, y, z, t) . (2.3)

With an auxiliary equation

So + Sw + Sg = 1 . (2.4)

Throughout, the subscripts o, w, and g stand for oil phase, water phase, and gas

phase, respectively; C1 = 1.127× 10−3 and C2 = 5.615 when oil field units are used;

the oil and water formation volume factor (Bo and Bw) are in units RB/STB, the

gas formation volume factor is in RB/scf ; Rso is the dissolved gas-oil ratio in units of

scf/STB ; the viscosity (µm) is in units of cp; γm = ρmg
144gc

is the specific density; D is the

vertical distance from a datum level and in units of ft ; qm is the source/sink term, qo

and qw are in units of STB/(ft3·Day), qg is in units of scf/(ft3·Day), for production,

qm > 0, for injection qm < 0; the pressure (pm) is in units of psia, the pressure of

phases are related to each other through capillary pressures, i.e. pcow = po − pw and

pcgo = pg−po assuming water being the wetting phase in the presence of oil and water,

and oil being the wetting phase in the presence of oil and gas; in the dissertation, the

capillary pressure is assumed to be negligible so that po = pw = pg = p; the saturation

(Sm) is dimensionless and varies between 0 and 1; porosity φ ∈ [0, 1] is the fraction

of pore space in the reservoir rock and dimensionless;
−→
k is the diagonal permeability
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tensor
−→
k =


kx 0 0

0 ky 0

0 0 kz

, the non-zero entries are the absolute permeability of the

reservoir rock along x, y, and z directions; the permeabilities has the dimension of

[L2] and for oil field units it is in md ; krm is the relative permeability and a function

of saturation; ∇ is divergence operator, for Cartesian coordinate system, ∇ =


∂
∂x

∂
∂y

∂
∂z

.

With well determined initial and boundary conditions, the PDEs become into a

well-defined Initial Boundary Value Problem (IBVP). Although solving the equations

is theoretically appealing, it is formidably difficult even if a mild heterogeneous reser-

voir is considered. Therefore, leaning toward numerical solution is a natural choice.

Usually, the reservoir is discretized into millions of gridblocks. In each gridblock, the

three governing equations are still valid, but much simplified because the porosity,

permeability, viscosity, and Bm are assumed to be constant within the grid at a sin-

gle iterative step. Thus, the flow equations are linearized and equations from every

gridblock are solved together to obtain pressure and phase saturations, which provide

an insight of porous fluid distribution in subsurface. The program conducting this

computation process is called reservoir simulator.

There are several different discretion methods to split the reservoir. In this dis-

sertation, what we used is based on finite difference methods. As this study does not

focus on reservoir simulation, more detailed discussion of the simulation equations

are not involved. Some classical references can be found from extensive literature on

this topic, for example, Aziz and Settari (1979).

2.1.2 History matching terminology

Before we introduce the methodology of the EnKF, let’s first clarify some terminology

that is commonly used in history matching for reservoir applications.
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Model parameters: these are variables that are uncertain but not time vary-

ing. These variables are also called static model variables. They include

rock properties such as porosity and absolute permeability. For sequential data

assimilation methods, the estimate of these properties changes as data are in-

corporated, but the parameters themselves should not be interpreted to be

changing with time.

State variables: these are uncertain, time-dependent variables that define the state

of the system. Because of the time-dependence, they are also called dynamic

model variables. The uncertainty in these variables is resulted from the un-

certainty in the model parameters and some other uncertain factors, e.g. initial

conditions. For petroleum reservoirs, state variables could include phase pres-

sures, saturations of each fluid phase, or mass fraction. These variables are

frequently solutions of systems of differential (or difference) equations. If the

physical model is valid, and the model parameters are known, then it is possible

to compute the state variables with given initial conditions.

Data: these are observable quantities related directly to the state variables and

indirectly to the model parameters. For petroleum reservoirs, data might in-

clude surface flow rates, bottom-hole pressure (possibly at several locations in

the well-bore), amplitude of seismic reflection, and etc. In reality, the observed

data always have some unknown level of error or noise associated with them.

In reservoir history matching applications, m is used to denote the model param-

eters, f(m) is used to denote the state variables, and g(m) is used to denote the

predictions of observations. Fm and Gm are used instead when the state variables

and data are related to the model parameters through linear relationships.

11



We frequently write the relationship between the true model parameters and ob-

served data as

dobs = g(mtrue) + ε , (2.5)

where ε is the unknown measurement noise. It is assumed to be unbiased and Gaus-

sian, ε ∼ N(0, CD), i.e. E[ε] = 0 and E[εεT ] = CD. CD is measurement error co-

variance matrix. It is a diagonal matrix if the measurement errors are uncorrelated,

which is what we used throughout the applications in this work.

In the Kalman filter related literature, the state vector for a dynamic system is

composed of any set of quantities sufficient to completely describe the unforced motion

of that system. Given the state vector at a particular point in time and a description

of the system forcing and control functions from that points in time forward, the state

at any other time can be computed (Gelb, 1979, page 52).

We might define a state vector of the form

y =


m

f(m)

g(m)

 or


m

Fm

Gm

 , (2.6)

where y denotes the state vector. It consists of model parameters, state variables,

and data. Using the state vector, the relationship between the observed data and the

true state vector can be written as

dobs = Hytrue + ε , (2.7)

where H is an operator matrix or row vector, depending on the number of observa-

tions, which relates the state vector to theoretical data. Because the data are part of

the state vector as shown in Eq. 2.6, H is a trivial matrix whose elements are only

ones or zeroes. We can always arrange it as

H = [ 0 | I ] , (2.8)
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In practice, the construction of H is not essential. Pre-multiplied by H merely se-

lects corresponding rows of a matrix. Similarly, post-multiplied by HT selects the

corresponding columns.

Note all of the above equations (Eq. 2.5 to Eq. 2.8) are written in a general form

and the time-dependence of the variables is not shown. Later in the following sections,

time indices will be added to the variables for dynamic systems.

2.2 Outline of the Kalman Filter Algorithm

The Kalman filter was first developed for problems of estimation for linear dynamic

systems in the 60’s by Kalman and Bucy (Kalman, 1960; Kalman and Bucy, 1961).

Historically, it has been the most widely applied method for assimilating new mea-

surements to continuously update the estimates for both the model parameters and

state variables. Extensive applications can be found in the fields of submarine and

aircraft navigation, radar tracking, and satellite orbit determination, to name a few.

When filter is mentioned, one may think of electrical circuites or network. How-

ever, in this dissertation, we use filter to simply mean a data processing algorithm.

Because of the wide availability of the Kalman filter derivations from many resources

(see, for example, Gelb (1979), Maybeck (1979), and Anderson (1979)), only an out-

line of the algorithm is provided here.

The Kalman filter is an optimal recursive data processing algorithm. At each of

the recursive process, i.e. at one measurement time, there are two steps: a forecast

step and an update step. We will elaborate on both steps at a general measurement

time tk as follows.

Forecast step is to evolve the state vector forward in time between two con-

secutive measurement times. Writing the dynamic system model in a mathematical

form

yk = Ψk−1yk−1 + ωk−1 , (2.9)
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the evolution of the state vector is

yp
k = Ψk−1y

u
k−1 , (2.10)

where the subscripts k and k − 1 are integer time indices for measurement time tk

and tk−1, respectively, where measured data are available; the superscript p repre-

sents prior, meaning that the values are direct output of the dynamic system before

updating (Eq. 2.10); u represents updated, meaning that the values are after data as-

similation; Ψk−1 is a transition matrix that transits the state vector from time tk−1 to

time tk; ωk−1 is unbiased Gaussian model error with covariance Qk−1, i.e. E[ωk−1] = 0

and E[ωk−1ω
T
k−1] = Qk−1.

yu
k−1 is the estimate of the state vector conditioned to measurements up to time

tk−1. Thus yp
k is also regarded as conditional to observed data up to time tk−1. Denote

the collection of measurements up to time tk−1 by Dobs,k−1

Dobs,k−1 = {dobs,i|1 ≤ i ≤ k − 1} . (2.11)

Assume that the probability density function (PDF) of yp
k, called prior PDF, is Gaus-

sian

p(yp
k|Dobs,k−1) ∼ N(yp

k, C
p
Y,k) , (2.12)

where yp
k is calculated from Eq. 2.10; Cp

Y,k is the prior covariance matrix associated

with the prior estimate. It is explicitly computed by propagating an assumed initial

covariance matrix of the state vector at time 0, Cu
Y,0, through time

Cp
Y,k = Ψk−1C

u
Y,k−1Ψ

T
k−1 +Qk−1 , (2.13)

where Cu
Y,k−1 is the posterior covariance matrix after data are assimilation at time

tk−1.

At the update step, with the arrival of the new data, dobs,k, the state vector is

adjusted with

yu
k = yp

k +Kk(dobs,k −Hky
p
k) , (2.14)
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where Kk is the Kalman gain matrix

Kk = Cp
Y,kH

T
k (HkC

p
Y,kH

T
k + CD,k)

−1 , (2.15)

where CD,k is the data error covariance matrix at time tk, CD,k = E[εkε
T
k ] and εk is

the noise contained in the measurement dobs,k. After the data assimilation, the PDF

of yu
k , called posterior PDF, now becomes

p(yu
k |Dobs,k) ∼ N(yu

k , C
u
Y,k) , (2.16)

where Cu
Y,k is the posterior covariance matrix associated with the updated state vector

Cu
Y,k = (I −KkHk)C

p
Y,k . (2.17)

The above is an illustration of the two-step procedure at one measurement time.

For convenience, the procedure is summarized in Table 2.1. Some of the equations

are repeated in the table and are referred by their numbers appeared in the text.

With the generation of the state vector at the initial time 0 (the initial state vector

is generated by sampling from a multi-variate Gaussian distribution with the prior

information about its mean and covariance matrix, Cu
Y,0), the recursive process of the

Kalman filter can be initiated. The two-step procedure is repeated until the last data

are assimilated.

1. Propagate the state vector and its Eq. 2.10: yp
k = Ψk−1y

u
k−1

covariance matrix forward in time Eq. 2.13: Cp
Y,k = Ψk−1C

u
Y,k−1Ψ

T
k−1 +Qk−1

2. Update the state vector and its Eq. 2.14: yu
k = yp

k +Kk(dobs,k −Hky
p
k)

covariance matrix using the new data Eq. 2.17: Cu
Y,k = (I −KkHk)C

p
Y,k

Table 2.1: Summary of the two-step procedure of the Kalman filter at measurement
time tk.

The solution that the Kalman filter offers is based on maximizing the posterior

PDF of the state vector within the context of Bayesian statistics. It is equivalent
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to minimizing the variances of the posterior covariance matrix in Eq. 2.17 with the

assumption that the following variables are Gaussian (see Maybeck (1979, page 4),

Anderson (1979, page 21)).

• model errors, ωk−1,

• measurement errors, εk, and

• the estimate of state vector at the initial time 0.

In addition to the Gaussian assumptions, the model and measurement errors are

also assumed to be unbiased and white. Whiteness implies that the noises are not

correlated in time. Note that if the dynamic model (Eq. 2.9) is linear and the estimate

of the initial state vector is Gaussian, both the prior and posterior PDFs (Eqs. 2.12

and 2.16) would be Gaussian because the linear combination of Gaussian variables

is still Gaussian. Both the non-linear dynamics and violation of the Gaussianity of

the state variables themselves can cause the prior and posterior PDFs to lose the

Gaussian statistics.

What if the Gaussian assumptions are dropped? We know that for Gaussian

variables, mean and covariance are sufficient to describe a PDF. But for distributions

that are not Gaussian, the mean and covariance provide incomplete knowledge to

deduce a PDF. In such cases, although all the calculations of the Kalman filter can

still be carried through, the resulted estimate would be no more optimal.

2.3 The Ensemble Kalman Filter

The Kalman filter has occasionally been applied to the problem of estimating values of

petroleum model variables (Eisenmann et al., 1994; Corser et al., 2000), but they are

most appropriate when the problems are characterized by relatively small numbers of

variables (because the explicit computation of time evolution of the covariance matrix

and the storage of the matrix) and when the variables to be estimated are linearly
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related to the observations. However, most data assimilation problems in petroleum

reservoir engineering are highly non-linear and are characterized by many variables,

often two or more variables per simulator gridblock.

The Kalman filter algorithm has been extended for applications to non-linear

dynamic models. The typical engineering approach is to linearize the dynamic model

at some nominal point or trajectory, achieving a perturbation model or error model

(Maybeck, 1979, page 7). Extended Kalman filter (ExKF) is one of these examples.

Evensen (1994) showed that the ExKF failed in an application of a severe non-linear

system and proposed the ensemble Kalman filter as a solution to resolve some of the

problems that the ExKF has. There are at least two points about the ExKF that

make it not preferable and inferior to the EnKF: (1) linearization of the dynamic

model requires gradient of the non-linear dynamic model to the state vector. For

efficient computation, adjoint equations may be needed. Derivation of the adjoint

equations are complex and the deployment is time-consuming. The adjoint equations

are also dependent on the dynamic model used thus not easily transferable from one

dynamic model to another, and (2) the time evolution of covariance matrix neglects

the higher order statistical moments, which may lead to unbounded error growth.

Researchers have showed that the EnKF performs better than the ExKF for strong

non-linear dynamic problems (Zang and Malanotte-Rizzoli, 2003; Bertino et al., 2003).

Since its introduction in 1994 (Evensen, 1994), the EnKF has gained tremendous

popularity with intensive applications to meteorology and oceanography (Evensen

and van Leeuwen, 1996; Evensen, 1997, 2003; Houtekamer and Mitchell, 1998, 2001;

Anderson and Anderson, 1999; Hamill et al., 2000). It is now beginning to be applied

for data assimilation in groundwater hydrology (Reichle et al., 2002; Chen and Zhang,

2006) and in petroleum engineering (Nævdal et al., 2002, 2005; Gu and Oliver, 2006,

2005; Wen and Chen, 2005a,b; Liu and Oliver, 2005; Zafari and Reynolds, 2005; Gao

et al., 2005; Lorentzen et al., 2005; Skjervheim et al., 2005; Dong et al., 2006).

17



The EnKF is a Monte Carlo approach, in which an ensemble of models is used.

Different from the explicit evolution of the covariance matrix in the Kalman filter and

ExKF, the covariance matrix of the state vector in the EnKF is estimated directly

from the ensemble. By so doing, the higher order statistical moments are kept when

the non-linear dynamics is propagated forward in time for the multiple models.

The framework of the EnKF is the same as that of the Kalman filter. It is also

a recursive process and each of the recursive process contains two steps: a forecast

step and an update step. The followings introduce the building blocks of the EnKF

in the background of reservoir engineering.

2.3.1 State vectors for reservoir models

In our applications, the state vector for a reservoir model consists of all the variables

that are uncertain, and that need to be specified in order to run a reservoir simulator.

In a typical two-phase reservoir fluid flow and transport problem, we might have a

state vector of the form,

yj,k =



φ

lnK

P

Sw

WCT

...


j,k

, (2.18)

where the first subscript j is the ensemble member index; it counts from 1 to the

size of the ensemble, Ne; the second subscript k is still the integer time index for

measurement time tk; φ is the porosity vector which is composed of the porosity

values at each gridblock for a heterogenous reservoir; lnK is the natural logarithm of

the absolute permeability vector; P is the pressure vector; Sw is the water saturation

vector; WCT is computed water cut. The state vector can be partitioned into model

parameters, m, (φ and lnK) that do not change with time, state variables, f(m), (P
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and Sw) that change substantially with time, and predictions of observations, g(m),

(WCT and etc), and written in its compact form as Eq. 2.6. The variables in the

state vectors can be easily extended for more complex reservoir flow problems.

When k = 0, the initial pressure vector, P0, and saturation vector, Sw,0, are given

as reservoir initial conditions. In current EnKF applications, the initial conditions

are not considered as uncertain, though there might be big uncertainties associated

with them in reality. All the ensemble models use the same initial conditions. So at

the initial time t = 0, only an ensemble of model parameters, mj (j = 1, 2, ..., Ne), is

generated by honoring the prior knowledge of these variables.

2.3.2 Observations for ensemble models

Burgers et al. (1998) showed that observations must be treated as random variables

for the analysis scheme to be consistent and to avoid a too low variance after data

assimilation. Random perturbations are needed to add into the measured data and

create a suite of observation sets for the ensemble models. Denote the observation at

time tk of the jth ensemble model dobs,j,k. The relationship between the perturbed

observation and the true state vector can be written as

dobs,j,k = Hky
true + εk + νj,k = dobs,k + νj,k , (2.19)

where εk is the unknown measurement error; νj,k is the perturbation added to the noisy

measured data, dobs,k, to form the observations for the jth ensemble member; both εk

and νj,k are Gaussian distributions with mean 0 and covariance CD,k, i.e. E[εkε
T
k ] =

E[νj,kν
T
j,k] = CD,k; the noise and perturbation are uncorrelated, i.e. E[εkν

T
j,k] = 0 for

all j and k.

2.3.3 Forecast step for reservoir models

Section 2.1.1 describes the dynamic equations governing the three-phase hydrocarbon

fluid flow and transport in porous media for black oil models. Reservoir simulators
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are used to simulate the flow and transport processes. In this dissertation, both

Schlumberger’s commercial reservoir simulator ECLIPSE and Chevron’s in-house

reservoir simulator CHEARS (Chevron Extended Application Reservoir Simulator)

are used.

As introduced in the Kalman filter section, the forecast step for the EnKF prop-

agates the state vectors forward in time from a previous measurement time, using

the estimates of the variables conditional to all the observed data up that time, to

current measurement time

yp
j,k = ψ(yu

j,k−1) (j = 1, 2, . . . , Ne) , (2.20)

where ψ represents solving the reservoir flow and transport equations. Note that in the

forecast step, only the state variables (pressures and saturations) and the predictions

of data vary with time, and the model parameters (porosities and permeabilities) do

not change from the propagation, i.e. mp
j,k = mu

j,k−1.

In the EnKF, the propagation is for all ensemble models, which may take consider-

able time especially when the size of the reservoir is big and the fluid flow is complex.

However, because of the independence of the ensemble models at the forecast step,

the propagation of multiple models can be proceeded simultaneously using parallel

computing techniques. The techniques implemented for the examples in this work

will be explained in Section 2.5.

For non-linear dynamics, when the governing equations are solved from previous

measurement time tk−1 to current measurement time tk, it usually take a few sub-

timesteps for the equations to be advance to time tk. However, we do not need to

store the states of the system at these intermediate steps. Only the state at the exact

time tk needs to be stored.
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2.3.4 Update step

With the newly acquired data, the state vectors are updated using their prior quan-

tities from the forecast step and a weighted innovation term. The innovation term is

the difference between the observed and predicted data. The weighting matrix is the

Kalman gain matrix and denoted by Ke,k.

yu
j,k = yp

j,k +Ke,k(dobs,j,k −Hky
p
j,k) (j = 1, 2, . . . , Ne) , (2.21)

where the subscript e on the Kalman gain matrix represent quantities that are com-

puted from the ensemble. The Kalman gain matrix has exactly the same form as that

in the Kalman filter (Eq. 2.15)

Ke,k = Cp
Y,e,kH

T
k (HkC

p
Y,e,kH

T
k + CD,k)

−1 . (2.22)

In the Kalman filter, the prior covariance matrix, Cp
Y,k, is explicitly computed with

the time evolution equation (Eq. 2.13). While in the EnKF, the covariance matrix,

Cp
Y,e,k, is estimated from the ensemble at any time using the standard statistical

formula:

Cp
Y,e,k =

1

Ne − 1

Ne∑
j=1

(yp
j,k − ȳp

k)(y
p
j,k − ȳp

k)
T , (2.23)

where ȳp
k is the mean vector of the variables in the state vectors and computed from

the ensemble, ȳp
k = 1

Ne

∑Ne

j=1 yj,k.

In more detail, any element cm,l in the covariance matrix Cp
Y,e,k can be computed

as following

cm,l =
1

Ne − 1

Ne∑
j=1

(xm,j − x̄m)(xl,j − x̄l) (m, l = 1, 2, 3, . . . , Ny) , (2.24)

where xm,j and xl,j are themth and lth variables, respectively, in the jth state vectors;

x̄m and x̄l are the means of the mth and lth variables; cm,l is the computed covariance

between the mth and lth variables in state vectors.
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In practice, it is not necessary to compute an approximation of the covariance

matrix, because only the product of Cp
Y,e,kH

T
k is required to compute the Kalman gain

matrix (Eq. 2.22). The covariance matrix can have fairly large dimensions, Ny,k×Ny,k,

for field-scale problems, while Cp
Y,e,kH

T
k has reduced dimensions, Ny,k ×Nd,k. Ny,k is

the length of a state vector and Nd,k is the number of observed data, both at time tk.

2.4 Implementation of the EnKF

The procedure in the following is intended to provide a general idea of the basic

computations and the reasons for computational efficiency of the EnKF algorithm.

1. Propagate the state vectors forward in time using a numerical reservoir simula-

tor (Eq. 2.20).

2. Assemble the state vectors into matrix Y

Y = [y1 y2 . . . yj . . . yNe ] . (2.25)

3. Compute the vector of mean values for variables in the state vectors.

ȳ =
1

Ne

Ne∑
j=1

yj . (2.26)

4. Compute the matrix of deviations, ∆Y , of the variables in the state vectors

from the mean

∆Y = [∆y1 ∆y2 . . . ∆yj . . . ∆yNe ] . (2.27)

The jth column of ∆Y is

∆yj = yj − ȳ . (2.28)

5. Compute the product of the transpose of the deviation matrix, ∆Y T , with the

transpose of the operator matrix, HT . As mentioned in Section 2.1.2, this

requires only the selection of a few columns of ∆Y T .

A = ∆Y THT . (2.29)
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6. Compute the Kalman gain matrix

Ke =
1

Ne − 1
∆Y A(

1

Ne − 1
ATA+ CD)−1 . (2.30)

7. Perturb the observed data (Eq. 2.19).

8. Update the state vectors (Eq. 2.21).

9. If there are additional data, return to Step 1.

The procedure provided above is simplified as the calculations of matrices are not

given. Below explains the details of some of the important terms involved in the

computation of the Kalman gain matrix. Adopting the general form of a state vector

in Eq. 2.6 for non-linear systems, we write yj as

yj =


mj

f(mj)

g(mj)

 (j = 1, 2, . . . , Ne) . (2.31)

For discretized gridblocks, each term itself in the state vector yj is a vector. Define

each of them as

mj =



(mj)1

(mj)2

...

(mj)i

...

(mj)Nm


(j = 1, 2, . . . , Ne) , (2.32)

f(mj) =



(
f(mj)

)
1(

f(mj)
)
2

...(
f(mj)

)
i

...(
f(mj)

)
Nf


(j = 1, 2, . . . , Ne) , (2.33)
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g(mj) =



(
g(mj)

)
1(

g(mj)
)
2

...(
g(mj)

)
i

...(
g(mj)

)
Nd


(j = 1, 2, . . . , Ne) , (2.34)

where the subscript i outside the parentheses represents that the value is the ith

component of the vector; Nm is the number of model parameters; Nf is the number

of state variables; Nd is the number of data. The length of a state vector then is

Ny = Nm +Nf +Nd.

The mean vector of variables in the state vectors is

ȳ =
1

Ne

Ne∑
j=1

yj =


m̄

f(·)

g(·)

 , (2.35)

where m̄ = 1
Ne

∑Ne

j=1mj, f(·) = 1
Ne

∑Ne

j=1 f(mj), and g(·) = 1
Ne

∑Ne

j=1 g(mj).

The deviation matrix ∆Y is a matrix with dimensions of Ny ×Ne

∆Y =


m1 − m̄ . . . mNe − m̄

f(m1)− f(·) . . . f(mNe)− f(·)

g(m1)− g(·) . . . g(mNe)− g(·)

 . (2.36)

The matrix A = ∆Y THT has dimensions of Ne ×Nd

A = ∆Y THT

=


(
g(m1)− g(·)

)T
...(

g(mNe)− g(·)
)T

 . (2.37)
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The product of 1
Ne−1

∆Y A has dimensions of Ny ×Nd

1

Ne − 1
∆Y A =

1

Ne − 1
∆Y∆Y THT = CYH

T

=
1

Ne − 1


m1 − m̄ . . . mNe − m̄

f(m1)− f(·) . . . f(mNe)− f(·)

g(m1)− g(·) . . . g(mNe)− g(·)



(
g(m1)− g(·)

)T
...(

g(mNe)− g(·)
)T



=
1

Ne − 1


∑Ne

j=1

(
mj − m̄

)(
g(mj)− g(·)

)T∑Ne

j=1

(
f(mj)− f(·)

)(
g(mj)− g(·)

)T∑Ne

j=1

(
g(mj)− g(·)

)(
g(mj)− g(·)

)T

 . (2.38)

The product of 1
Ne−1

ATA has dimensions of Nd ×Nd

1

Ne − 1
ATA =

1

Ne − 1
H∆Y∆Y THT = HCYH

T

=
1

Ne − 1

[∑Ne

j=1

(
g(mj)− g(·)

)(
g(mj)− g(·)

)T] . (2.39)

With Eqs. 2.38 and 2.39, the Kalman gain matrix can be written as

Ke = 1
Ne−1


∑Ne

j=1

(
mj − m̄

)(
g(mj)− g(·)

)T∑Ne

j=1

(
f(mj)− f(·)

)(
g(mj)− g(·)

)T∑Ne

j=1

(
g(mj)− g(·)

)(
g(mj)− g(·)

)T


·
[

1
Ne−1

∑Ne

j=1

(
g(mj)− g(·)

)(
g(mj)− g(·)

)T
+ CD

]−1

. (2.40)

The dimensions of the Kalman gain matrix are Ny ×Nd.

There are three numbers related to the dimensions of matrices: Ny, Nd, and Ne.

For petroleum reservoirs, Ny can be easily gone over 106 for a field-scale problem;

Nd is the number of observed data available at one measurement time; usually the

number of production data measured from wells at one time is moderate, a few tens,

for example; considering the plausibility of computational time to perform history

matching using the EnKF, Ne has to be kept as an affordable number, around the

order of 100. Generally for our applications, Ny � Ne, Ny � Nd, and Ne > Nd. For
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this case, the propagation of the state vectors dominates the computational cost in

the EnKF. The total computation time equals to the simulation run time for all of

the ensemble models plus some overhead time involved in matrix calculation at the

update steps.

However if the number of data exceeds the size of ensemble, i.e. Nd > Ne, special

techniques must be employed to handle the assimilation of large amount of data

(Evensen, 2004; Kepert, 2004; Skjervheim et al., 2005).

2.5 Parallel Implementation of the EnKF

The independence of the ensemble members (Eqs. 2.20 and 2.21) allows the ben-

efit of parallelism for the EnKF implementation so that the computational cost is

significantly reduced.

In this dissertation, depending on the infrastructure of computing network avail-

able at hand, the parallelism was implemented on both distributed and shared mem-

ory networks. The distributed memory network used is the PENTIUM4 XEON

LINUX cluster at Oklahoma University Supercomputing Center for Education and

Research (http://oscer.ou.edu). The shared memory network used is the 64-node

IBM REGATTA workstation in Chevron’s Energy Technology Company.

When multiple processors are used to perform a task, loading balance on each of

the multiple processors is an important factor that affects the computation efficiency.

However, for the EnKF, it is straightforward to divide the task for all ensemble

members into subtasks. With the assumption that every member of the ensemble

takes more or less equal time for computations involved, we assigned each processor

the same amount of local ensemble members for balancing the overall workload.

Firstly the implementation on the distributed memory network will be introduced.

Both the propagation (Eq. 2.20) and the update (Eq. 2.21) of multiple state vectors

are done simultaneously with multiple processors. However, the computation of the
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Kalman gain matrix (Eq. 2.22) needs collective information of the whole ensemble.

Thus communications of different processors are needed for the calculation.

The communications are achieved through Message-Passing Interface (MPI).

Currently, it is the most widely used method of programming many types of paral-

lel computers. It contains a library of functions that explicitly transmit data from

one processor to another. The principal drawback of using MPI is that it requires

programmers to design and develop their programs with great care (Pacheco, 1997).

For explanation purposes, let’s call one of the assemble processors master pro-

cessor, and the rest of them slave processors. The application starts by distribut-

ing equal amount of state vectors to every processor of the assemble processors

(MPI Scatterv). The following is a procedure for the parallel implementation at one

measurement time and MPI functions used to achieve the desired communications.

1. Each processor propagates the state vectors assigned to it forward in time. The

multiple processors perform the tasks simultaneously.

2. Wait until all processors finish the tasks of the propagation for all their local

members. Bring the new state vectors at all processors together to the master

processor (MPI Gatherv).

3. Compute the Kalman gain matrix on the master processor (Eq. 2.22).

4. Send the Kalman gain matrix from the master processor to all of the slave

processors (MPI Bcast).

5. Each processor updates its associated local state vectors (Eq. 2.21). The tasks

are also done simultaneously.

The procedure above needs to be repeated until the last data are assimilated.

For the implementation on the shared memory network, only the forecast steps

are paralleled. Multiple tasks for propagating the state vectors are submitted to the
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IBM REGATTA workstation at the same time. In Chevron, the network was set up

in a way that when a simulation run on a computing node is finished, the output files

of the simulation are copied to public storage devices accessible by any computer in

the network. Therefore, communication is not concerned by users.

It is worth noting that due to the requirement of the EnKF algorithm, the sim-

ulation time is broken into a number of time intervals between measurement times.

To finish the run for the total simulation time for a single ensemble member, mul-

tiple submissions are needed. The number of submissions needed for one ensemble

member to finish an entire simulation run is equal to the number of the measurement

times. Different from using a PC, a submitted job to a multiple-processor cluster

forms a queue before executing. Depending on the load at the cluster, sometimes, the

submitted job can be delayed in the queue. When estimating the total computation

expense of performing history matching using EnKF, the queue time should be taken

into consideration.

2.6 Heuristics Measures of the EnKF Performance

At each measurement time and after the update step, the EnKF produces multiple

numbers of models conditional to observed data up to that time. These ensemble

models composed by a relatively small sample size is only a tiny fraction of a wide

space of possible solutions. For the EnKF to perform well, the samples need to be

representative of the probability space throughout all measurement times. There are

some heuristics measures used in the EnKF literature to evaluate the performance of

the method.

With the ensemble models, we can compute the spread of the samples at each

gridblock

σi =

√√√√ 1

Ne

Ne∑
j=1

(xi,j − x̄i)2 (i = 1, 2, . . . , N) , (2.41)

where i is the index for gridblock and N is the number of gridblocks; x can be porosity,

28



permeability, and any other variables of interest; x̄ is the ensemble mean. A scalar

measure of the spread would be

σ =

√√√√ 1

N

N∑
i=1

σ2
i

=

√√√√ 1

N

N∑
i=1

1

Ne

Ne∑
j=1

(xi,j − x̄i)2

=

√√√√ 1

N

1

Ne

N∑
i=1

Ne∑
j=1

(xi,j − x̄i)2

. (2.42)

For synthetic cases, with known true model variables, we can compute the grid-

block root mean square error (RMSE) of the estimates

RMSEi =

√√√√ 1

Ne

Ne∑
j=1

(xi,j − xtrue
i )2 (i = 1, 2, . . . , N) , (2.43)

where xtrue is the true values of variables of interest. A scalar measure of the error

would be

RMSE =

√√√√ 1

N

N∑
i=1

RMSE2
i

=

√√√√ 1

N

N∑
i=1

1

Ne

Ne∑
j=1

(xi,j − xtrue
i )2

=

√√√√ 1

N

1

Ne

N∑
i=1

Ne∑
j=1

(xi,j − xtrue
i )2

(2.44)

With data assimilation, we would expect that both the spread and error of the

ensemble estimates decrease. An decreasing error reflects the improvement of the

estimates. The spread is regarded as the uncertainty associated with the estimates.

However, we found through some examples in this work, the spread in the estimates

generally become smaller with time, but at some measurement time, the error in the

estimates can jump up again even it has been decreasing at all previous times, which

is referred as “divergence” in the traditional Kalman filter. When the variance of
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the ensemble become too small, the uncertainty estimated from them is no longer

representative of the true uncertainty.
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CHAPTER III

INVESTIGATION OF THE ENSEMBLE

KALMAN FILTER TO APPLICATIONS OF

CONTINUOUS RESERVOIR SIMULATION

MODELS UPDATING

3.1 Introduction

There are at least two primary concerns with the application of the EnKF to the

problem of updating reservoir flow models. One is that whether it is possible to

use a Kalman filter to make corrections to state variables in a problem for which

the covariance almost certainly provides a poor representation of the distribution of

variables. The second concern should be the representation of the covariance via a

relatively small ensemble of state vectors may be inadequate.

Two synthetic problems are chosen to investigate the potential difficulties. The

first one is a one-dimensional, two-phase waterflood problem with the first data as-

similation occurring at a fairly late time. The water saturations take large values

behind the water flood front, and small values ahead of the front. Its distribution is

bi-modal in this case and is not well modeled by the mean and variance. The key

issue in this case is the ability to update the water saturations realistically. In the

second problem, the reservoir model is two-dimensional so that the number of state

variables is increased substantially. The number of ensemble members is kept the

same as for the one-dimensional problem, and the main concern is that the number

of ensemble members used to create the covariance matrix is far less than the number
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of state variables.

Besides the two primary concerns described above, we also checked two other

issues related to the methodology of the EnKF which are different from traditional

history matching methods: (1) EnKF updates model parameters (porosity and perme-

ability) and state variables (pressure and saturation) simultaneously at update steps.

In essence a linearized approximation to the reservoir simulator is used to make a

prediction of the saturation changes and pressure changes that would result from the

porosity and permeability changes. In this process, it is not clear if the constraints

imposed by the dynamical equations are honored during the Kalman correction, and

(2) EnKF updates model parameters continuously with data assimilation along the

time line, it seems quite possible that the estimation of the model parameters at later

times might no longer honor the observed data from earlier times. Both issues are

tested on the two-dimensional problem.

In both test problems, the wells are constrained by bottom-hole pressures. The

producers are produced at a constant pressure of 1900 psig (1 psi = 6, 894.76 pascal)

and injectors are injected at a constant pressure of 4500 psig. The reservoir gridblocks

are uniform. The dimension of one gridblock is 60×60×40 ft3. We are to utilize the

observed data to estimate φ and K at each gridblock. Since both cases are two-phase

(oil and water) flow problems, the state vectors are in the same form

y = [φ1, . . . , φN , lnK1, . . . , lnKN ,

P1, . . . , PN , Sw,1, . . . , Sw,N , d1, . . . , dNd
]T . (3.1)

where N is number of gridblock. The ensemble size used for both cases is 40.

3.2 Example 1: One-dimensional Waterflood Prob-

lem

The reservoir in this test case is 32 gridblocks in length (N = 32). Water is injected

in gridblock 1 and fluids are produced from gridblock 32. Fig. 3.1 sketches the setup
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for the problem. The data to be assimilated are water injection rate at the injector,

water and oil production rates at the producer, and water saturation in gridblock

21. They are obtained every 10 days starting at day 110. Measurement errors are

assumed to be Gaussian with mean 0 and standard deviation of 3% of the magnitude

of the observed data in the rates, 0.01 in the water saturations.

1 ... ... ... ... 21 ... ... ... 32
Injector Obsv. well Producer
constant BHP constant BHP
measure WIR measure Sw measure OPR

& WPR

Figure 3.1: Schematic setup for the one-dimensional waterflood problem. Note: BHP
means bottom-hole pressure, WIR means water injection rate, OPR/WPR means
oil/water production rate.

3.2.1 Generation of initial reservoir models

Table 3.1 summarizes the parameters used to generate the initial reservoir models.

Porosity LnK (K in md)
Prior mean 0.2 5.5
STD 0.04 0.5
Covariance Exponential Exponential
Range (grid) 18 18
Cross-correlation coefficient 0.5 0.5

Table 3.1: Parameters used for generating initial reservoir models for the one-
dimensional waterflood problem.

The exponential covariance function for three-dimensional random fields (Kitani-

dis, 1997) is

C(h1, h2, h3) = σ2 exp

(
−3

√(h1

a1

)2

+
(h2

a2

)2

+
(h3

a3

)2
)
. (3.2)

where σ is the standard deviation of a random field; h1, h2, and h3 are the projections

of lag distance between any two points at the field on the x-, y-, and z-direction,

respectively; h1 = x2−x1, h2 = y2− y1, h3 = z2− z1; with (x1, y1, z1) being one point
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on the three-dimensional field, and (x2, y2, z2) being another point; a1, a2, and a3 are

the ranges of the random field on the three directions.

We can easily write the exponential covariance function for one-dimensional ran-

dom fields,

C(h1) = σ2 exp
(
−3|h1|

a1

)
. (3.3)

The initial covariance function for porosity in the one-dimensional discretized grid

system is

CPhi(i1, i2) = σ2
Phi exp

(
−3|i2 − i1|

a1

)
= σ2

PhiC

i1, i2 = 1, 2, . . . , 32 ; (3.4)

similarly, the initial covariance function for lnK is

CLnK(i1, i2) = σ2
LnK exp

(
−3|i2 − i1|

a1

)
= σ2

LnKC

i1, i2 = 1, 2, . . . , 32 ; (3.5)

the initial cross-covariance function for porosity and lnK is

CΦ,LnK(i1, i2) = ρσΦσLnK exp
(
−3|i2 − i1|

a1

)
= ρσΦσLnKC

i1, i2 = 1, 2, . . . , 32 , (3.6)

where a1 is the range (correlation length), in units of grid, of the covariance func-

tion for both porosity and lnK; σΦ and σLnK are the STDs of porosity and lnK,

respectively; ρ is the cross-correlation coefficient; C is covariance function for the

one-dimensional random field with σ = 1

C(i1, i2) = exp
(
−3|i2 − i1|

a1

)
i1, i2 = 1, 2, . . . , 32 . (3.7)

For this small-scale problem, without concerning about the computational ex-

pense, Cholesky decomposition is applied to generate the initial reservoir models.

The procedure for the generation is as followings:

1. Form the covariance matrix C of 32× 32 shown in Eq. 3.7.
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2. Decompose it by Cholesky decomposition

C = LLT . (3.8)

where L is the unique “square root” of the covariance matrix C with Cholesky

decomposition and an upper triangular matrix.

3. Generate the porosity fields

Φ = µΦ + σΦLZ1 (3.9)

where µΦ is the prior mean of porosity; Z1 is a vector of uncorrelated random

normal deviates, Z1 ∈ N(0, I).

4. Generate the lnK fields

LnK = µLnK + σLnKL(ρZ1 +
√

1− ρ2Z2) (3.10)

where µLnK is the prior mean of lnK; Z2 is is a vector of uncorrelated random

normal deviates, Z2 ∈ N(0, I); Z1 and Z2 are uncorrelated.

It can be easily shown that the generated porosity and lnK fields in Eqs. 3.9 and

3.10 honor the covariance and cross-covariance functions in Eqs. 3.4 – 3.6.

3.2.2 Solving problems with updated saturations

From Fig. 3.2(a), we can see that prior to the first application of Kalman correction,

there is considerable variation in the location of the saturation fronts from the ensem-

ble. The fastest model has the water moved to grid 20, while the slowest model only

moves the water to grid 9. Fig. 3.2(b) shows the bi-modal distribution of the water

saturation constructed based on the saturations in Fig. 3.2(a). After the correction

(Fig. 3.3(a)), two obvious problems with the methodology are apparent. One is that

some water saturations obtain nonphysical values, for example, water saturations at

some gridblocks after water fronts are smaller than the connate water saturation,
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Swc = 0.3, and some of them even go below 0. The other is that the water satura-

tion profiles do not always decrease monotonically from high value at the injector to

low value at the producer. The distribution of water saturation after the correction

around Swc is more like Gaussian than the original distribution before the correction,

compare Fig. 3.3(b) to Fig. 3.2(b).
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(a) Water saturation profiles
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(b) Water saturation histogram

Figure 3.2: Water saturation profiles and histogram before the first application of
the Kalman correction at 110 days.
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(b) Water saturation histogram

Figure 3.3: Water saturation profiles and histogram after the first application of the
Kalman correction at 110 days.

Three methods for resolving the problems with the water saturations are consid-

ered: (1) transformation of the saturation to a variable whose univariate distribution

is normal, (2) use of the location of saturation front, instead of saturation values as

a state variable, and (3) iterating the update.
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3.2.2.1 Normal score transform

One obvious way to avoid the problem with nonphysical values of saturation is to

use the normal score transform values (Goovaerts, 1997) of the saturations instead of

the saturations themselves as state variables. The non-parametric transformation is

constructed from the empirical cumulative density function (CDF) of gridblock satu-

rations from the reservoir simulator. The variables after transformation are normally

distributed. Figure 3.4 shows the results of before and after applying the EnKF to the

profiles of the transformed variables at day 110. Fig. 3.5 plots the water saturation

profiles after transforming back the updated normal score values and the histogram

of these saturations. After applying the normal score transform, saturations do not

go outside of the reasonable bounds any more. The distribution of the updated sat-

urations is still bi-modal. Unfortunately, the saturations oscillate spatially between

high and low values. The oscillations are not very obvious in Fig. 3.5(a), but become

more pronounced at later times.

5 10 15 20 25 30

-3

-2

-1

0

1

2

3

4

N
o
r
m
a
l
S
c
o
r
e

(a) Before Kalman correction
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(b) After Kalman correction

Figure 3.4: Normal score transformed profiles before and after the first application
of the Kalman correction at 110 days.

3.2.2.2 Saturation front location as a state variable

Instead of applying an explicit transformation to the water saturations, we replaced

the saturations in the state vector (Eq. 3.1) with a single variable which locates the
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(b) Water saturation histogram

Figure 3.5: Water saturation profiles and histogram after transforming back the
updated normal scores in Fig. 3.4(b) at 110 days.

water saturation front. The idea is to improve the linearity of the relationship between

variables. Denotes the saturation front by Xwf , the state vector now becomes

y = [φ1, . . . , φN , lnK1, . . . , lnKN ,

P1, . . . , PN , Xwf , d1 . . . , dNd
]T . (3.11)

The Kalman update formula is then used to adjust the water front locations. Satura-

tion values at gridblock locations are computed by interpolation based on a table of

saturation versus distance, calculated for each reservoir model of the ensemble. The

following explains the interpolation in detail.

Adopting the same superscripts used in Chapter 2, p is used to represent prior

values that are directly from the reservoir simulator and u is used to represent the

updated values. In this notation, Xp
wf is the saturation front location calculated

from prior saturations. Xu
wf is updated location after Kalman correction. Define

r = Xu
wf/X

p
sf . Table 3.2 lists the prior saturation values versus distance. When the

saturation front locations are updated, a new table is formed and shown in Table 3.3.

It still has the same saturation values as Table 3.2, but the distance is updated.

Based on the new table, the saturation at the regular grids can be interpolated, see

Table 3.4.
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Grid Sw

0 1− Sor

1 Sp
w,1

2 Sp
w,2

3 Sp
w,3

...
...

N Sp
w,N

N + 1 Swc

Table 3.2: Prior water saturation versus distance.

Grid Sw

0 1− Sor

1× r Sp
w,1

2× r Sp
w,2

3× r Sp
w,3

...
...

N× r Sp
w,N

(N + 1)× r Swc

Table 3.3: Prior water saturation versus updated distance.

Grid Sw

1 Su
w,1

2 Su
w,2

3 Su
w,3

...
...

N Su
w,N

Table 3.4: Interpolated water saturation versus distance. The interpolation is based
on Table 3.3.

39



Fig. 3.6 shows the updated water saturation profiles and histogram after the first

Kalman correction at day 110. The saturation values are within reasonable bounds

and change monotonically from high at the injector to low at the producer. Compar-

ing to the saturation profiles before Kalman correction in Fig. 3.2(a), the variation

of water front locations from the ensemble is smaller now, while the bi-modal char-

acteristic is still kept, see Fig. 3.6(b).
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(a) Saturation profiles after back transform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

Fr
eq

en
cy

Sw

(b) Water saturation histogram

Figure 3.6: Water saturation profiles and histogram after the first application of the
Kalman correction at 110 days, with saturation front location as a state variable.

3.2.2.3 Iterating the update

The front location method has been easily applied to the one-dimensional problem

as illustrated above. However, for two- and three-dimensional problems, it is not

straightforward to describe the saturation front locations. We attempted to use a

more general approach. Wen and Chen (2005a) used a “conforming” check in their

application to assure the consistency between the updated model parameters and

state variables. Using a similar idea, whenever the updated saturations are detected

out of their physical bound (Swc < Sw < 1.0 − Sor, Sor is residual oil saturation),

we rerun the simulator from previous measurement time to re-compute the state

variables (pressure and saturation) using the updated model parameters (porosity

and permeability) obtained at current measurement time. The difference of the new
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computational data and the observations is then used to update the model variables

again. Iterations continue to be applied until the updated saturation profiles satisfy

the physical bound, or the number of iterations exceeds a pre-set maximum number

(three is used here). We noticed that, in this problem, the extra iterations are required

only when the first data are assimilated (at 110 days), when the water front reaches

the observation well in gridblock 21 (at 340 days), and some times following the water

break-through at the observation well.

Fig. 3.7 displays the water saturation profiles at 110 days after correction with

one extra iteration. Comparing with Fig. 3.3(a), the saturation profiles are improved

but still problematic.
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Figure 3.7: Saturation profiles after one extra iteration of Kalman correction at 110
days.

Figs. 3.8 and 3.9 compare the computed water and oil production rates (black

color) with the corresponding observed values (red color), without and with iteration,

respectively. From Figure 3.8, we can see that the timing of water break-through is

not captured without iteration. However, with iteration, shown in Figure 3.9, not

only do the saturation profiles get more realistic (see Fig. 3.7), but also the data are

better honored.
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Figure 3.8: The observed and computed water and oil production rates from the
ensemble after Kalman correction, without iteration.
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Figure 3.9: The observed and computed water and oil production rates from the
ensemble after Kalman correction, with one extra iteration.
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3.2.3 Goodness of the model parameter estimates

Fig. 3.10 plots the RMSEs and spreads of both estimates of porosity and natural

logarithm permeability. Because of the boundary conditions on flow (fixed pressure),

and the type of data (rates), the observations do not inform about porosity until the

rate of water advance can be observed. As permeability is adjusted to honor the rate

measurements, the estimates of the permeability improve steadily and the porosity

changes slightly because of its correlation with the permeability. Unfortunately, with

the data assimilation at day 340 where the movement of water was first felt in the

observation well, the porosity starts to move away from the truth in the example.

The RMSEs of both estimates of the porosity and permeability jump up around the

water break-through time at the producer (day 700) when no iteration is applied,

which demonstrates the failure of assimilation at that time. However, with iteration,

the large errors in both estimates are quenched.
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Figure 3.10: RMSEs and spreads of both the porosity (left) and natural logarithm
permeability (right) estimates with and without iteration.

3.3 Example 2: Two-dimensional Waterflood Prob-

lem

A larger test is created to investigate the performance of the ensemble Kalman filter

on a problem for which the number of state variables is far greater than the number
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of the ensemble members. The grid for this test problem is 16 × 16, so the number

of elements in each state vector is 4 × 256 plus the number of data. We again used

40 ensemble members to represent the covariance between variables.

An injector is located approximately in the center of the reservoir, and four pro-

ducers are located at the corners (Fig. 3.11). Oil and water rates at the producers and

water injection rates at the injector are acquired every 10 days beginning at day 10.

The standard deviations of the unbiased Gaussian measurement errors in the rates

are assumed to be 10% of the magnitude of the observed data.

Figure 3.11: The locations of the injector and four producers for the two-dimensional
waterflood problem.

3.3.1 History matching results

Fig. 3.12 shows the comparisons of the oil rates at the four production wells used for

assimilation (red color), and the computed rates from all the ensemble members (black

color) after Kalman correction. The oil rate at producer 1 drops fairly rapidly after

170 days because water breaks through the well at that time. The agreement between

observations and predictions appear to be good, and the spread of the realizations is

reasonable.
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(a) Producer 1
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(b) Producer 2
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(c) Producer 3
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(d) Producer 4

Figure 3.12: Oil production rates at the four producers after Kalman correction.

In the two-dimensional test, the water saturations are included in state vectors,

even though they caused problems in the one-dimensional test example. Fig. 3.13

shows the saturation profiles on a cross-section through the injector at 10 days. The

saturations after the update are mostly reasonable – we do not see profiles that are

not decreasing away from the injector. The only indication of potential problem is

one saturation profile is slightly below the connate water saturation. In this case, it

do not appear to be necessary to change variables or iterate. We believe that this

will generally be the case when changes to the state variables at the update steps are

relatively small.

3.3.2 Model parameters estimates

The true permeability and porosity fields can be seen in Fig. 3.14. Both fields are

generated using an exponential variogram model with a range of 10 gridblocks in
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Figure 3.13: Water saturation profiles at the middle column before and after the
first application of the Kalman correction at 10 days.

x -direction and 5 gridblocks in y-direction. The mean values of the natural logarithm

of permeability (md) and porosity are 5.5 and 0.2 respectively, and the standard

deviations are 0.5 and 0.02 respectively. The correlation coefficient between log-

permeability and porosity is 0.5.

In the EnKF application, the permeability and porosity fields are continuously

updated as data are assimilated. It is important that the corrections to the perme-

ability and porosity fields be done in such a way that the plausibility of the fields,

as indicated by the spatial auto-correlation, is maintained. Fig. 3.15 shows both the

initial permeability field for model 1 (the first of the 40 ensemble members), and the

permeability field after the first data assimilation at 10 days. Fig. 3.16 shows the

porosity and permeability fields for model 1 after assimilation of 200 days of produc-

tion data. These fields should be compared with the true fields in Fig. 3.14. Note in

particular, the general reduction for permeability in model 1 occurs in the upper left

quadrant. While the fields are not identical, it appears that the final property fields

are not unrealistic, and that the changes are largely reasonable.

Fig. 3.17 shows the ensemble mean of permeability estimates at day 10 and day

200. Comparing to its counterparts of the individual model (model 1), the mean esti-

mates are fairly smooth. However the characteristics of the mean and the individual

model are similar.
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Fig. 3.18 plots the RMSEs and spreads of both estimates of porosity and natural

logarithm permeability. Similarly as what has been seen in Fig. 3.10 for the one-

dimensional example, both the errors in the estimates of porosity and permeability

drops steadily with data assimilation. But the error in the porosity estimates starts

to increase again after assimilating the data at day 170 when water breakthrough at

Producer 1.

Figure 3.14: The true porosity (left) and permeability (right) fields.

Figure 3.15: The permeability field for model 1 before (left) and after (right) the
first application of Kalman correction at day 10.
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Figure 3.16: The final porosity (left) and permeability (right) fields for model 1 after
200 days of Kalman correction.

Figure 3.17: The mean of the ensemble permeability estimates at day 10 (left) and
day 200 (right) after Kalman correction.
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Figure 3.18: RMSEs and spreads of both the porosity (left) and natural logarithm
permeability (right) estimates.
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3.3.3 Consistency check

In traditional history matching, only the permeability and porosity fields would be

updated using an optimizer, then the pressure and saturation fields that are consistent

with the permeability and porosity fields would be computed by running the reservoir

simulator. In the EnKF method, the permeability, porosity, pressure, and saturation

are all updated simultaneously at update steps. In essence a linearized approximation

to the simulator is used to make a prediction of the saturation changes and pressure

changes that would result from the porosity and permeability changes.

It is not at all clear, however, that material balance is honored during the Kalman

correction steps. In order to check the global material balance error, we computed

the total water-in-place (
∑N

i=1 ViφiSw,i) for all of the final updated ensemble reservoir

models at day 200 for two conditions: (1) using saturations after the Kalman correc-

tion at day 200, and (2) taking the final models to time 0 and rerun the reservoir

simulation and using the re-computed saturations at day 200. If the difference in

the computed water-in-place values, for each ensemble member, at these two condi-

tions is small, it implies that the Kalman corrections are valid and material balance

is generally honored. Fig. 3.19(a) plots the distribution of water-in-place in million

barrel (1 MB = 158, 987.3 m3) for all the final ensemble models computed at condi-

tion 2. Fig. 3.19(b) plots the distribution of the relative errors from both conditions.

Most errors are less than 0.8% and regarded small enough. Of course the errors in

individual gridblocks can be fairly large.

Another feature of the EnKF that can be disconcerting when used for reservoir

models updating, is that the permeability and porosity fields are changing with time

as additional data are assimilated. It seems quite possible that the final permeability

and porosity fields that resulted from 200 days of data assimilation, might no longer

honor the observed data at previous times. We have already seen that the rock

property fields are much different after 200 days than they are after 10 days (compare
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Figure 3.19: Material balance checking after 200 days of data assimilation.

Fig. 3.16 to Fig. 3.15). In Fig. 3.20, we see a comparison of the actual data (red line)

that are used in the data assimilation, with the computed values of the measurements

(black lines) from each of the ensemble permeability and porosity fields at 200 days

by taking them to time 0 and rerunning the reservoir simulator. In this case, the final

updated models seem to produce data that honors the observations at all times.

Figure 3.20: Comparison of the observed water injection rates (red line) to its com-
puted counterparts (black lines) from the final updated ensemble models at day 200
by rerunning the reservoir simulator from time 0.
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3.4 Discussion

When the distribution of one of the state variables (saturation) is very far from

normal, we find that it is possible to generate non-physical values after Kalman

correction. If necessary, it could be resolved by a change of variables, or iteration.

It is not necessary to make a change of variables for the two-dimensional problem,

presumably because the changes in the state variables at any measurement time are

relatively small.

The final models, at the end of data assimilation, while much different from the

earlier models, are still consistent with the early data. The material balance errors

is relatively small, at least compared to the uncertainty in the actual values. This

is encouraging for the use of the method in reservoir history matching because we

would want models that honored all data.

Because of the apparent need for small corrections at any measurement time, it

seems that there will be some reservoir data assimilation problems that the EnKF will

not be suitable for. It does, however, seem to be ideally suited for the assimilation of

data from time series, for example, data from permanent sensors.

The results with a relatively small number of ensemble models are remarkably

good. It seems that larger ensemble will be required for problems with larger amounts

of data to be assimilated. At this time, we do not know if the results might begin to

deteriorate if the assimilation period is much longer or if the models are much larger.

We also find from both examples that with the arrival of significant data at some

measurement times, the error in the estimates of variables may grow after assimilating

the data. This might be caused by the big changes in the state variables where the

linearization used in the EnKF update formula is not acceptable.

The iterative scheme suggested by Wen and Chen (2005a) are used on the one-

dimensional test problem and seems to produce improved history-matching results.

However, it still needs further investigation. Chapter 5 will address the issue in detail.
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CHAPTER IV

HISTORY MATCHING OF THE PUNQ-S3

RESERVOIR SIMULATION MODEL USING

THE ENSEMBLE KALMAN FILTER

In Chapter 3, we have shown through two small-scale simple synthetic waterflood

examples the plausibility of using the EnKF to history matching problems of reservoir

applications. In this chapter, we will demonstrate the usage of this technique to a

much bigger and more realistic reservoir model, PUNQ-S3.

4.1 Problem Description

PUNQ-S3 is a synthetic reservoir engineering model constructed on the basis of a

real field operated by Elf Exploration & Production. The PUNQ project is a joint

effort of European companies, universities, and research centers supported by Eu-

ropean Union to compare methods for quantifying uncertainty assessment in his-

tory matching. PUNQ is an acronym for Production forecasting with UNcertainty

Quantification. Because the PUNQ-S3 model has been used as a test case for many

inverse methods (Floris et al., 2001; Barker et al., 2001), it was chosen to evaluate

the EnKF.

The detailed description of the PUNQ-S3 reservoir simulation model can be found

in many resources (Floris et al., 2001; Barker et al., 2001). Here, only brief information

related to the application in this dissertation is given. The reservoir simulation model

contains 19×28×5 gridblocks, 1, 761 of which are active. The gridblocks are uniform

in areal sense, 180×180 m2. The reservoir is bounded by a fault to the east and south,
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and is in communication with a fairly strong aquifer on the west and north. Because

of the strength of the aquifer, no injection wells are drilled. The top structural map

of the reservoir is shown in Fig. 4.1. At the center of the map, there is a small gas

cap in red color. The red closed line drawn near to the gas cap is the initial gas-oil

contact. Six producing wells denoted by solid black dots are located close to the

contact. Table 4.1 shows the well locations of the six producers and perforated layers

of each well.

The PUNQ web page (http://www.nitg.tno.nl/punq/cases/punqs3/index.htm) re-

veals additional information to the public about the project, e.g. the true reservoir

rock properties, the input deck file containing 16.5-year production schedule for a

commercial reservoir simulator, ECLIPSE, and etc.

Figure 4.1: Top structural map of the PUNQ-S3 reservoir, from the PUNQ web
page: http://www.nitg.tno.nl/punq/cases/punqs3/index.htm.
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Well name Location: (x,y) Perforated layers
PRO-1 (10,22) 4, 5
PRO-4 (9,17) 4, 5
PRO-5 (17,11) 3, 4
PRO-11 (11,24) 3, 4
PRO-12 (15,12) 4, 5
PRO-15 (17,22) 4

Table 4.1: Well locations of the six producers and perforated layers of each well.

4.2 Generation of Initial Realizations

The realizations for the five layers of the reservoir are generated independently using

different spherical variogram models. Table 4.2 lists the parameters of the spherical

variogram models used for different layers.

At the PUNQ web page, normalized porosity values at all the six well locations

are provided. The normalized values are the normal scores when transforming non-

Gaussian distributed values to a Gaussian distribution. Sequential Gaussian Simula-

tion (Deutsch and Journel, 1998) is used to generate Gaussian random fields (GRFs)

of the normalized porosity. The actual porosity fields are obtained by back trans-

formation. Horizontal permeablilities are co-simulated assuming that the correlation

coefficient between porosity and horizontal permeability is 0.8. The same correlation

coefficient value is used between vertical and horizontal permeability. Table 4.3 sum-

marizes the mean and standard deviation values of the generated realizations. The

size of the realizations is 40. All the 40 realizations are conditional to hard data at

the well locations.

From both Tables. 4.2 and 4.3, it can be seen that layers 1, 3, and 5 have sim-

ilar pattern though the precise parameters vary, layer 2 has a much lower poros-

ity/permeability values, and layer 4 has intermediate values.
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Layer Principle Longest range Shortest range
angle (Grid) (Grid)

1 -60 19.45 5.56
2 -60 4.17 4.17
3 -45 33.33 8.33
4 60 8.33 4.17
5 -30 20.8 6.94

Table 4.2: Parameters of spherical variogram models used to generate initial real-
izations for the five layers of the reservoir.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
φ 0.15/0.08 0.08/0.04 0.15/0.08 0.11/0.05 0.17/0.08
lnKh 4.04/2.56 2.64/2.03 4.04/2.51 2.65/2.67 3.95/2.67
lnKv 3.28/2.32 1.56/1.70 3.32/2.38 1.73/2.21 3.20/2.48

Table 4.3: Mean and standard deviation values of the initial realizations for different
layers (all cells have same format: mean/std)

4.3 Production Data

The revealed true reservoir simulation model at the PUNQ web page was taken and

run on the ECLIPSE black oil reservoir simulator to provide the true production

data of 16.5 years. In order to check the validity of the Kalman corrections, only the

production data of the first 8 years are used to correct the initial models and the final

corrected models are used to predict the reservoir performance for the next 8.5 years.

The prediction of the total oil production at the end of 16.5 years is compared to the

results obtained by Floris et al. (2001).

Before the data for assimilation are introduced, let’s first provide the information

about how the wells are produced. All the six production wells are produced according

to the same schedule: (1) an extended well testing period during the first year, and

(2) a shut-in period for the next following 3 years, then (3) a 12-year production

period. The one-year well-testing period consists of 4 time windows with 4 variable

flow rates, each of which lasts 3 months long. Within the 12-year production period,
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the oil production rate is fixed at 150 sm3/day, and wells are shut-in for two weeks at

the end of each year. All of the wells are primarily controlled by oil production rate;

if the bottom-hole pressure falls below 120 bar (1 bar = 100, 000 pascal ≈ 14.5 psi),

the bottom-hole pressure limit will be applied as constraint; also, if the gas-oil ratio

is greater than 200 sm3/sm3, the oil production rate will be cut back by a factor of

0.75. Fig. 4.2 shows the oil production rate of the true reservoir simulation model

versus time for one of the wells. This well maintains the specified rates until late in

the prediction times.

Figure 4.2: Oil production rate of the true reservoir simulation model versus time
for one of the production wells.

Four kinds of data are used for data assimilation: well bottom-hole pressure

(WBHP), well gas-oil ratio (WGOR), well water cut (WWCT) and well oil pro-

duction rate (WOPR). Although the target oil production rate is identical for all

the reservoir models, the actual oil rate values vary because wells in some simulation

models are unable to meet the target. By using the oil production rate as additional

data together with other measured data, we can adjust the simulation models under

different production constraints and bring the failed models back up to the target oil

production rate through the adjustment.

The kinds and numbers of data available at different times vary and are listed

in Table 4.4. Shut-in pressures are marked in parentheses. Unmarked pressures are

flowing pressures. There are totally 20 times in the first 8 years where data are
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measured. The total amount of data for different kinds is: 84 for WBHP (36 shut-in

and 48 flowing), 54 for WGOR, 7 for WWCT, and 120 WOPR. Fig. 4.3 is a summary

plot of how often data are assimilated and what and how many data are available

at the well testing, shut-in, and production periods of the 8 years. The x -axis is

measurement time index and it is the same with the first column in Table 4.4. The

y-axis is the real time for each measurement time index and corresponds to the second

column in Table 4.4. From the vertical distance of two consecutive points, we can

see that how often data are assimilated. Fig. 4.4 plots the time interval between two

consecutive measurement times. The shortest measurement time interval is one day

at the 10th (day 1841) and 17th (day 2572) measurement times. The longest interval

is three years at the 6th (day 1461) measurement time. The rest of the intervals are

around 2 weeks, three months, 5.5 months, and 6 months.

Figure 4.3: Summary plot of how often data are assimilated and what and how many
data are available at the well testing, shut-in, and production periods of the first 8
years.

All the data used are corrupted with noise. The noise is assumed to be Gaussian

distributed with mean 0. The standard deviations are (Floris et al., 2001) shown in

Table 4.5.
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Measurement Time No. of No. of No. of No. of
time index (Days) WBHP WGOR WWCT WOPR

1 1.01 6 - - 6
2 91 6 - - 6
3 182 6 - - 6
4 274 6 - - 6
5 366 6 (shut-in) - - 6
6 1461 6 (shut-in) - - 6
7 1642 - 6 - 6
8 1826 6 6 - 6
9 1840 6 (shut-in) - - 6
10 1841 - 6 - 6
11 2008 - 6 - 6
12 2192 6 6 - 6
13 2206 6 (shut-in) - - 6
14 2373 - 6 - 6
15 2557 6 6 - 6
16 2571 6 (shut-in) - - 6
17 2572 - - 1 6
18 2738 - 6 - 6
19 2922 6 6 6 6
20 2936 6 (shut-in) - - 6

Total - 84 54 7 120

Table 4.4: The kinds and numbers of data available at different measurement times.

58



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

90
180
270
360
450
540
630
720
810
900
990

1080
1170

M
ea

su
re

m
en

t t
im

e 
int

er
va

l

Measurement time index

Figure 4.4: Measurement time intervals of the 20 measurement times.

During the history matching period of the first 8 years (0 ∼ 2, 936 days), PRO-1

and PRO-4 have gas breakthrough at day 1826; PRO-11 has water breakthrough at

day 2572; none of the other wells have neither gas nor water breakthrough.

Data kind STD of noise
Shut-in pressure 1 bar
Flowing pressure 3 bar
Gas-oil ratio before gas b.t. 10%
Gas-oil ratio after gas b.t. 25%
Water cut 1%
Oil production rate 10−4 sm3/day

Table 4.5: Standard deviations of the noises added to the synthetic data computed
from the true reservoir simulation model.

The state vectors are in the form of

y = [φ1 . . . φN lnKh,1 . . . lnKh,N lnKv,1 . . . lnKv,N

P1 . . . PN Sw,1 . . . Sw,N Sg,1 . . . Sg,N d1 . . . dNd
qo]

T . (4.1)
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where N is the number of active cells, N = 1, 761; qo is the oil production rate.

In regions for which the oil is under-saturated, Sg is not a valid state variable and

it would be preferable to use Rs in the state vector as described by Nævdal et al.

(2005). However, for the PUNQ-S3 model, the magnitude of under-saturation is

small and the use of Sg as a state variable did not result in significant problems.

In this application, the initial pressure and phase saturation distributions are

not treated as random variables. All the ensemble models use the same prescribed

distributions of initial pressure and saturations.

4.4 Production Data Matched

The comparison of well performance from the initial models and during history-

matching (HM) process and prediction for all the six wells are shown from Fig. 4.5 to

Fig. 4.10. On each plot, the black vertical line divides the time axis into two phases:

the HM phase (0 to 2, 936 days) and prediction phase (2, 937 to 6, 025 days); the red

line is the simulated data from the true reservoir simulation model; the multiple black

lines are the results from the ensemble models; the blue crosses represent the data

used for assimilation.

Comparing the production data of all kinds at each of the six well from the initial

models to their counterparts from the HM process and prediction, we can see that the

former demonstrates greater variation in performance than the latter. Let us examine

the comparisons by data kind in the following:

WOPR: Fig. 4.5(a) shows that some of the initial models fail to produce at

the specified well production target rate while still in the well-testing period. After

the correction, however, most of the models meet the target (Fig. 4.5(b)). Even in

the prediction phase, most of the corrected models can produce at the desired rate

and only a few uses the 120 bar bottom-hole pressure constraint (Fig. 4.5(d)). For

all others wells, the models that have lower oil production than the true simulation
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model are adjusted and are able to produce at the desired rate after the adjustment

(compare Fig. 4.8(a) to 4.8(b), Fig. 4.9(a) to 4.9(b), and Fig. 4.10(a) to 4.10(b)).

WBHP: Fig. 4.5(d) shows that the true bottom-hole pressures are honored well

by the corrected models in the HM phase, and the uncertainty in the prediction phase

is reduced significantly comparing to that from the initial models. The same holds

true for all the other wells except for PRO-12 where the prediction go astray during

the later prediction phase, see Fig. 4.9(d).

WGOR: The comparison of Figs. 4.5(e) and 4.5(f) shows substantial improve-

ments of the gas-oil ratio match. Some of the initial models produce much more free

gas than the true model does, while the corrected models have their gas oil ratio

distributed closely to the truth. Note during the first year of well testing period,

some of the initial models have gas-oil ratio as high as 400 sm3/sm3, even without

any gas-oil ratio data assimilated during that time, the adjustment is able to bring

the high values down to 150 sm3/sm3. At well PRO-11, the free gas production is

corrected during the history matching phase, however, shortly after the data assimi-

lation is ended, the gas-oil ratio goes up again in the prediction phase, see Fig. 4.8(f).

This might be because the solution gas-oil ratio data at this well do not provide much

information.

WWCT: Well PRO-1 does not see water breakthrough for all the 16.5 years,

while some of the initial and corrected models predict water breakthrough within the

prediction period. However, the water breakthrough time predicted by the corrected

models is further delayed than that by the initial models, compare Fig. 4.5(h) to

Fig. 4.5(g). Let us look at the water cut at well PRO-11 where water breakthrough

during the HM time period. The initial models do not give correct timing for the

water breakthrough (Fig. 4.8(g)). After data assimilation, the timing is captured

(Fig. 4.8(h)). However, the corrected model does not provide a good prediction for

water cut at well PRO-12, see Fig. 4.9(h).
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Data at all six wells are matched fairly well. The predictions based on the corrected

models are generally better than those from the initial models. Only at well PRO-12,

the predictions in both the bottom-hole pressure and water cut from the corrected

models are not better than these from the initial models, see Figs. 4.9(d) and 4.9(h).

4.5 Prediction of Total Oil Production

We have seen the variation of the predicted reservoir performance in the corrected

models. It can be used to assess uncertainty in the quantities of interest.

For this case, we are interested in comparing the variability of the cumulative

oil production after 16.5 years from the ensemble of final corrected models using

the EnKF to the results from other methods summarized by Floris et al. (2001).

Fig. 4.11 shows such a comparison. In the plot, the x -axis is for different methods

and the EnKF is shown on the right-most. The y-axis is the total oil production at

the end of year 16.5. The horizontal white line crossing the entire plot is the values

computed from the true reservoir simulation model. The bar plot for each method

specifies values of q90 (upper bar), q50 (central dot), and q10 (lower bar). It can be

seen that the q50 from the EnKF is very close to the truth, and the range between

the q10 and q90 reflects an reasonable distribution of the ensemble of predictions in

the oil production.

Fig. 4.12 plots the CDF of the cumulative oil production after 16.5 years from

the corrected models along with the Gaussian CDF with mean equal to the true

production value and STD of 71, 845 sm3. It shows the closeness of the empirical

CDF to the Gaussian CDF.

4.6 Porosity and Permeability Estimates

Figs. 4.13 – 4.17 plot the true porosity field, ensemble mean, gridblock RMSE and

STD of the porosity estimates of the five layers at the initial time 0, the 4th (274
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days), 11th (2008 days), and 20th (2936 days) measurement times. The solid black

dots denote the well locations. From these figures, we have some general observations:

(1) the initial mean porosity fields are quite smooth. With data assimilation, the

features of the true porosity field are able to be recovered gradually, for example,

the alternating low and high porosity streaks in layers 1, 3, and 5, (2) because the

hard data are used when generating initial realizations, we can see throughout the

time, the gridblock RMSE and STD at wells have the smallest value, (3) even though

the mean porosity estimates seem to capture the major characteristics of the true

fields, the RMSEs show that the error in the porosity estimates grows larger after

some time, especially at the regions lacking of constraints, e.g. regions far from wells,

and (4) the gridblock STDs decrease firstly around the well, then with more data are

assimilated, the STD of the entire field decreases steadily.

Fig. 4.18 plots the scalar RMSEs and STDs of the porosity, lnKh, and lnKv

estimates. The RMSEs and STDs for all the three estimates behave quite similarly.

As what has been observed from the gridblock RMSE in Figs. 4.13 – 4.17, the RMSEs

of all the estimates decrease firstly with time, but jump suddenly after the data

assimilation at the 18th measurement time, day 2738, while the STDs of the three

estimates always decrease along the time. Fortunately, for this case, the error is

reduced with the two more data assimilation. However, the level of the reduction is

less than the level of the sudden rise.

Potential problems of the EnKF are indicated when the error in the estimates

begins to grow dramatically while the spread of estimates goes down. The spread of

the ensemble is not able to capture the variability which makes it harder to lower the

error in the estimates to a reasonable level even with more data assimilation.
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4.7 Discussion

We have successfully demonstrated the application of the EnKF to a more realistic

history matching problem, also as a method to quantify uncertainty in predicted

reservoir performance. The following summarizes the study:

A fairly small ensemble (40) provides a quite good match of production history at

all the six wells. The computational cost for generating 40 “history-matched” models

is approximately 40 simulation runs plus the matrix computations in the update steps.

It is clearly very efficient compared to other history-matching methods. Certainly,

parallelism can further reduce the computation time.

The prediction of the total oil production at the end of 16.5 years from the en-

semble of corrected models is in reasonable agreement with the truth and comparable

to the results obtained by other methods. The variability provides a way to estimate

the uncertainty.

Problems with increasing error from the truth in estimates of porosity and perme-

ability fields are apparent, which are indications of the potential problems with the

EnKF.
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(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.5: The production data at PRO-1 from the initial models and during the
HM process & prediction. The vertical black line divides the time axis into history
matching phase and prediction phase. The red line denotes the simulated data from
the true simulation model. The black lines denote the results from different ensemble
members. The blue crosses represent the data used.
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(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.6: The production data at PRO-4 from the initial models and during the
the HM process & prediction. The legends used are the same with Fig. 4.5.
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(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.7: The production data at PRO-5 from the initial models and during the
the HM process & prediction. The legends used are the same with Fig. 4.5.
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(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.8: The production data at PRO-11 from the initial models and during the
the HM process & prediction. The legends used are the same with Fig. 4.5.

68



(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.9: The production data at PRO-12 from the initial models and during the
the HM process & prediction. The legends used are the same with Fig. 4.5.
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(a) WOPR from initial models (b) WOPR during HM process and prediction

(c) WBHP from initial models (d) WBHP during HM process and prediction

(e) WGOR from initial models (f) WGOR during HM process and prediction

(g) WWCT from initial models (h) WWCT during HM process and prediction

Figure 4.10: The production data at PRO-15 from the initial models and during the
the HM process & prediction. The legends used are the same with Fig. 4.5.
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Figure 4.11: Quantiles of 10, 50, and 90, of the cumulative oil production after 16.5
years from the EnKF, and results summarized by Floris et al. (2001). The horizontal
line crossing the entire plot denotes the computed total oil production value from the
true reservoir simulation model.

Figure 4.12: Cumulative distribution function (CDF) of the cumulative oil produc-
tion after 16.5 years from the EnKF. The vertical black line stands for the true total
oil production value. The smooth red curve is the referenced Gaussian CDF with
mean equal to the true production value and STD of 71, 845 sm3.
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(a) Truth.

(b) Initial. (c) Estimate at day 274. (d) Estimate at day 2008. (e) Estimate at day 2936.

(f) Initial RMSE. (g) RMSE at day 274. (h) RMSE at day 2008. (i) RMSE at day 2936.

(j) initial STD. (k) STD at day 274. (l) STD at day 2008. (m) STD at day 2936.

Figure 4.13: True porosity, evolution of the mean, gridblock RMSE, and STD of
porosity estimates in layer 1.
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(a) Truth.

(b) Initial. (c) Estimate at day 274. (d) Estimate at day 2008. (e) Estimate at day 2936.

(f) Initial RMSE. (g) RMSE at day 274. (h) RMSE at day 2008. (i) RMSE at day 2936.

(j) initial STD. (k) STD at day 274. (l) STD at day 2008. (m) STD at day 2936.

Figure 4.14: True porosity, evolution of the mean, gridblock RMSE, and STD of
porosity estimates in layer 2.
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(a) Truth.

(b) Initial. (c) Estimate at day 274. (d) Estimate at day 2008. (e) Estimate at day 2936.

(f) Initial RMSE. (g) RMSE at day 274. (h) RMSE at day 2008. (i) RMSE at day 2936.

(j) initial STD. (k) STD at day 274. (l) STD at day 2008. (m) STD at day 2936.

Figure 4.15: True porosity, evolution of the mean, gridblock RMSE, and STD of
porosity estimates in layer 3.
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(a) Truth.

(b) Initial. (c) Estimate at day 274. (d) Estimate at day 2008. (e) Estimate at day 2936.

(f) Initial RMSE. (g) RMSE at day 274. (h) RMSE at day 2008. (i) RMSE at day 2936.

(j) initial STD. (k) STD at day 274. (l) STD at day 2008. (m) STD at day 2936.

Figure 4.16: True porosity, evolution of the mean, gridblock RMSE, and STD of
porosity estimates in layer 4.
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(a) Truth.

(b) Initial. (c) Estimate at day 274. (d) Estimate at day 2008. (e) Estimate at day 2936.

(f) Initial RMSE. (g) RMSE at day 274. (h) RMSE at day 2008. (i) RMSE at day 2936.

(j) initial STD. (k) STD at day 274. (l) STD at day 2008. (m) STD at day 2936.

Figure 4.17: True porosity, evolution of the mean, gridblock RMSE, and STD of
porosity estimates in layer 5.
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(b) For lnKh
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Figure 4.18: RMSEs and STDs of for the porosity, lnKh, and lnKv estimates.
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CHAPTER V

INVESTIGATION OF ITERATIVE SCHEMES

HANDLING NON-LINEARITY BASED ON

THE ENSEMBLE KALMAN FILTER

5.1 Possible Problems of the EnKF

In traditional history-matching approaches, the collection of variables to be estimated

consists only of the model parameters (e.g. porosities and permeabilities). The state

variables (e.g. pressures and saturations) are usually determined from the knowledge

of the model parameters by solving the system governing equations. However, in the

EnKF, model parameters and state variables are both updated at the update steps

whenever measurements are available. In essence a linearized approximation to the

reservoir fluid flow equations is used to make a prediction of the changes in the state

variables that would result from the changes in the model parameters. When the

changes in the state variables are small, the linearized approximation to the non-

linear equations is acceptably reliable. However, if the changes are big, it may be

impossible to update the state variables to be consistent with the updated model

parameters without re-solving the non-linear forward equations. This is one potential

problem with updating both the model parameters and state variables simultaneously

in the EnKF. The update equation in the EnKF is based on Gaussian error statistics.

The update of state variables whose density functions are bi-modal with the EnKF

has been shown as problematic (Gu and Oliver, 2006). In reservoir applications,

such state variables are water saturations at some circumstances. For a simple water

flooding problem, the water saturations take large values behind the water flood front,
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and small values ahead of the front. Its distribution is bi-modal in this case and is not

well modeled by the mean and variance, see the one-dimensional waterflood problem

in Chapter 3. This is the second potential problem with the EnKF.

5.1.1 Wen and Chen’s remedy

The two problems of the EnKF are interwoven with each other and both are resulted

from the inclusion of the state variables in the state vectors. Intuitively, to impose

proper constraints on the state variables, one can update the model parameters only

with the EnKF update equation. Once the model parameters are corrected, the state

variables can be computed by solving the reservoir flow governing equations. Wen

and Chen (2005a) suggested to add a so-called “conforming step” to enforce physical

constraints on the state variables at each measurement time. So the process at one

measurement time of their proposal is a three-step procedure: (1) a forecast step

which propagates the state of the system from previous measurement time to current

measurement time, which is the same with that in the EnKF (2) an update step

which corrects only the model parameters with the EnKF update equation, and (3)

a conforming step which re-initiates the system governing equations at the previous

measurement time with the newly updated model parameters, conditional to data up

to the current measurement time, and the state variables at the previous measurement

time, then propagates the re-initialized equations to the current measurement time.

It can be easily seen that their scheme doubles the computing time comparing to

that of the EnKF since there are two simulation runs for each simulation model in

the forecast and conforming steps. They also suggested to iterate Steps 2 and 3

when non-linearity of problems is strong (Wen and Chen, 2005b). Throughout the

dissertation, Wen and Chen’s method is referred as Conforming EnKF.

Writing the update and conforming steps in equations at the kth measurement
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time for the jth member (j = 1, 2, . . . , Ne)

m`+1
j,k = m`

j,k + α`Ke,k,`

(
dobs,j,k − g(m`

j,k)
)
, (5.1)f(m`+1

j,k )

g(m`+1
j,k )

 = ψ
(
m`+1

j,k , f(mf
j,k−1), t : tk−1 → tk

)
, (5.2)

where ` denotes the iteration number; for the first iteration, i.e. ` = 1, m`
j,k =

mp
j,k = mf

j,k−1; the superscript f means that the values are the final solution with

data assimilation at a particular time; α` ∈ [0, 1] is a damping factor at the `th

iteration; ψ(·) denotes the reservoir simulator, the first two arguments specified in

the parentheses are model parameters and state variables used to re-initialize the

flow equations, and the time argument on the left of the arrow is the time of the

re-initialization and on the right is the current measurement time.

From Eqs. 5.1 and 5.2, we have the following observations: (1) the conforming

step has mismatched re-initialization variables: the model parameters are conditional

to data up to the current measurement time, while the state variables are conditioned

to data up to the previous measurement time (2) the iterative updating equation is

almost equivalent to applying Kalman corrections iteratively over one measurement

time.

5.2 Ensemble Randomized Maximum Likelihood

Filter

A new form of the iterative scheme, called Ensemble Randomized Maximum Like-

lihood Filter (EnRMLF), aiming to solve the possible problems with the EnKF is

proposed. There are two major differences between the newly proposed scheme and

the Conforming EnKF: (1) the update equation of model parameters is the iterative

Gauss-Newton formula derived from computing the maximum a posteriori model (2)

the state variables are computed by re-initiating the system governing equations at

time 0 with the updated model parameters. For linear dynamic systems, this method
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would give equivalent solutions as the EnKF does. For non-linear dynamic systems,

this method would outperform the EnKF.

5.2.1 Linear dynamic system

If the state variables and theoretical data are linearly related to the model parameters,

the state vector has the general form as written in Eq. 2.6,

y =


m

Fm

Gm

 .

Suppose that the auto-covariance of the model parameters m is represented by

the matrix CM , then the auto-covariance of the state vector y is

CY =


CM CMF

T CMG
T

FCM FCMF
T FCMG

T

GCM GCMF
T GCMG

T

 . (5.3)

The “best” estimate of the state vector y is obtained by minimizing the objective

function composed of two terms: a data mismatch term and a model mismatch term

S(y) =
1

2
(Hy − dobs)

TC−1
D (Hy − dobs) +

1

2
(y − yp)TC−1

Y (y − yp) . (5.4)

If CY were nonsingular, the minimum of the objective function would be achieved at

〈y〉 = yp + CYH
T (HCYH

T + CD)−1(dobs −Hyp) , (5.5)

where 〈 〉 is used to denote the best estimate; yp is the prior estimate of the state

vector, it is the same with that used in Eq. 2.10; all the other terms are the same

with these introduced before.

Expanding Eq. 5.5 in terms of CM , F and G, it would become
〈m〉

F 〈m〉

G〈m〉

 =


mp

Fmp

Gmp

+


CMG

T

FCMG
T

GCMG
T

 (GCMG
T + CD)−1(dobs −Hyp) , (5.6)
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because

CYH
T =


CMG

T

FCMG
T

GCMG
T


and HCYH

T = GCMG
T . From Eq. 5.6, it can be seen that when the state vector is

updated, the adjustment of model parameters, state variables, and data are consis-

tent. Eq. 5.6 can be simplified, since the three sets of equations are redundant and

only the first set is needed.

〈m〉 = mp + CMG
T (GCMG

T + CD)−1(dobs −Hyp) . (5.7)

In this form it is identical to the result in Tarantola (1987, Eq. 1.93 on page 70).

5.2.2 Non-linear dynamic system

The general form of the state vector is also written in Eq. 2.6 for non-linear dynamic

systems,

y =


m

f(m)

g(m)

 .

We can consider a series of linear approximations to the non-linear functions, f(m)

and g(m), by linearizing them at point m`. Suppose that

f(m) ≈ f(m`) + F`(m−m`)

and

g(m) ≈ g(m`) +G`(m−m`) ,

so the approximation to the auto-covariance of the state vector y based on the lin-

earization at m` is

CY =


CM CMF

T
` CMG

T
`

F`CM F`CMF
T
` F`CMG

T
`

G`CM G`CMF
T
` G`CMG

T
`

 . (5.8)
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In this case, it is necessary to explicitly note that the objective function to be

minimized is (different from that in linear dynamic system (Eq. 5.4)

S(m) =
1

2

(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)
+

1

2

(
m−mp

)T
C−1

M

(
m−mp

)
. (5.9)

The `th iteration of the Gauss-Newton method for finding the model parameters

m that minimizes the objective function is

m`+1 = mp

− CMG
T
` (CD +G`CMG

T
` )−1

[
g(m`)− dobs −G`(m

` −mp)
]
. (5.10)

The Gauss-Newton formula for iteration with a shorter step-length is

m`+1 = β`m
p + (1− β`)m

`

− β`CMG
T
` (CD +G`CMG

T
` )−1

[
g(m`)− dobs −G`(m

` −mp)
]
, (5.11)

where β` is an adjustment to the step length and takes a value between 0 and 1; in the

EnKF framework, mp is the estimate for the model parameters after assimilation of

all data before the current measurement time, and prior to assimilation of the current

data; for the first iteration, i.e. ` = 1, m` = mp, and with full step length, β = 1,

Eq. 5.10 is the same with the EnKF update equation.

Note that CM is the covariance matrix for the prior model parameters mp. It

should not change during the Gauss-Newton iteration. However, the estimate of G`

changes with iteration.

For linear dynamic systems, when new data are obtained, both the model param-

eters and the state variables can be adjusted simultaneously with consistency, i.e. the

system equations are honored by the updated model parameters and state variables.

The result after data assimilation contains an improved estimate of the (non-varying)

model parameters and also an improved estimate of the current value of the state

variables.
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However, for non-linear systems, it may be impossible to update the state variables

to be consistent with the updated model parameters without re-solving the non-linear

forward problem.

5.2.3 Implementation and computational cost of the EnRMLF

Like the EnKF, the EnRMLF is also a recursive process. We use the first step of the

recursive process to illustrate the EnRMLF procedure in the following.

1. Compute the reservoir states variables using the updated model parameters,

m`
j,0, from the initial time 0 to the first measurement time t1

ψ(m`
j,0, t : 0 → t1) j = 1, 2, . . . , Ne . (5.12)

where ψ(·) denotes the reservoir simulator, the first argument specified in the

parentheses are model parameters used to re-initialize the flow equations at

initial time 0. The state variables for the re-initialization are determined by the

initial conditions.

2. Update the model parameters using Eq. 5.11 to get m`+1
j,0 (j = 1, 2, . . . , Ne).

3. Evaluate the data mismatch term for both m`
j,0 and m`+1

j,0

S(M `
0) =

Ne∑
j=1

(
g(m`

j,0)− dobs,j,1

)T
C−1

D

(
g(m`

j,0)− dobs,j,1

)
. (5.13)

S(M `+1
0 ) =

Ne∑
j=1

(
g(m`+1

j,0 )− dobs,j,1

)T
C−1

D

(
g(m`+1

j,0 )− dobs,j,1

)
. (5.14)

Note the computation of g(m`+1
j,0 ) involves solving the forward flow equations

again from initial time 0 with m`+1
j,0

ψ(m`+1
j,0 , t : 0 → t1) j = 1, 2, . . . , Ne . (5.15)

4. If S(M `+1
0 ) < S(M `

0), overwrite m` with m`+1 and increase β`; otherwise, keep

m` and decrease β`.
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5. Check if the pre-set converging criteria are satisfied. If not, go to Step 1 and

iterate the procedure; otherwise, finish the first update step and go to the next.

Denote the final model parameters at the end of the first measurement time by

mf
j (j = 1, 2, . . . , Ne). Note that at Step 3, the forward equations have been advanced

from time 0 to t1 (Eq. 5.15) using the final model parameters, therefore for the first

time at the second measurement time, we only need to continue advancing the forward

equations from the first measurement time t1, instead of 0, to t2.

With the above illustration, it is obvious to see that the cost of solving the forward

non-linear equations for the whole EnRMLF process is

T = Ne

(
C0→t1 + Ct1→t2 + . . .+ CtNt−1→tNt

)
+Ne

Nt∑
k=1

(2Ik − 1)C0→tk

= NeC0→tk

(
1 +

Nt∑
k=1

(2Ik − 1)

) , (5.16)

where Ik ≥ 1 is the number of Gauss-Newton iterations at measurement time tk; Nt is

the total number of measurement times; C represents the cost for solving the forward

equations for a particular time interval shown in its subscript; C0→t1 +Ct1→t2 + . . .+

CtNt−1→tNt
= C0→tNt

, which equals to one forward run from time 0 to the end of

measurement time tNt for one simulation model.

In Eq. 5.16, the first term is equivalent to the computation cost of the forecast

steps in the traditional EnKF; the second term is the cost incurred by re-solving

the reservoir flow equations from the initial time 0 and iterations for the solution to

converge. Even with only minimum iterations, one iteration at each measurement

time, the extra cost is substantial. The computation cost is the major disadvantage

of this method.

There are at least two steps, Step 2 and Step 5, in the EnRMLF procedure

worthy of further explanation for clarification. For Step 2, we need to answer how to

compute the sensitivity coefficient matrix G` and how to choose β`. For Step 5, we

need to explain what the converging criteria are.
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There is no standard guidelines yet for choosing β. However, we have some rules

of thumb other than trial and error.

• To start at every measurement time, if the simulated data are close to the

observed data, choosing a bigger β; otherwise, a smaller β.

• During the Gauss-Newton iteration, if S(M `+1) < S(M `), increase β by 2;

otherwise decrease by 2.

To answer how to determine the solution is converged or exit the Gauss-Newton

iteration, we follow the criteria below.

• MAX1≤i≤Nm;1≤j≤Ne | m`+1
i,j −m`

i,j |< ε1 or

• S(M `+1)− S(M `) < ε2S(M `) or

• S(M `+1) ≤ nD or

• Iteration exceeds the pre-set maximum number of iterations, IMAX.

We used ε1 = 10−5, ε2 = 10−4, and IMAX = 6 for the non-linear example showed in

Section 5.4.

5.2.4 Computation of sensitivity coefficient matrix

One feature that makes the implementation of the traditional EnKF so efficient is that

it is never necessary to compute CM , only the products of CMG
T and GCMG

T are

needed. It is not as straightforward in the iterative method, because it is important to

maintain the distinction between the model parameters covariance matrix estimate,

which should be based on the prior models, and the sensitivity matrix, which should

be based on the current values of model parameters. Let Mp be the ensemble of model

parameters after assimilation of all previous data. Denote the mean of the prior model

parameters by m̄p and the deviation from the mean by ∆Mp. The ensemble estimate
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of the prior model parameters covariance (after assimilation of all previous data) is

CM = ∆Mp(∆Mp)T

(Ne−1)
. At the `th iteration, let ∆D` represent the deviation of each vector

of computed data from the mean vector of computed data. The sensitivity coefficient

matrix, G`, relates the changes in model parameters to the changes in computed data.

∆D` = G`∆M
` (5.17)

The dimensions for matrix ∆D` are Nd × Ne; for ∆M ` are Nm × Ne; for G` are

Nd ×Nm. The sensitivity matrix can be computed by

G` = ∆D`(∆M `)# , (5.18)

where (∆M `)# is the pseudo-inverse of ∆M ` since it is not necessarily a square matrix.

The pseudo-inverse matrix has a dimension of Ne ×Nm.

The following lists the step-by-step procedure for computing G`.

1. Assemble model parameters for each ensemble member, mj,k (j = 1, . . . , Ne);

Compute the vector of mean values of the model parameters, m̄k; Compute the

matrix of deviations of the model parameters from the mean, ∆Mk.

mj,k =



φ1

...

φN

lnK1

...

lnKN


j,k

, (5.19)

m̄k =
1

Ne

Ne∑
j=1

mj,k . (5.20)

The jth column of ∆Mk is

∆mj,k = mj,k − m̄k , (5.21)

where N is number of total roadblocks of the reservoir.
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2. Assemble the simulated data for each ensemble member, dj,k (j = 1, . . . , Ne);

Compute the vector of mean values of the simulated data, d̄k; Compute the

matrix of deviations of the simulated data from the mean, ∆Dk.

dj,k =


dk,j,1

...

dk,j,Nd

 , (5.22)

d̄k =
1

Ne

Ne∑
j=1

dj,k . (5.23)

The jth column of ∆Dk is

∆dj,k = dj,k − d̄k . (5.24)

3. Compute Gl

Gl = ∆D.(∆M)# . (5.25)

where the pseudo-inverse ∆M# is computed by Singular Value Decomposition

(Press et al., 1992).

5.2.5 EnRMLF with iteration when needed

When iterating at every measurement time, we have shown in Eq. 5.16 that the

EnRMLF is fairly expensive and thus prohibitive for large scale problems. On the

other hand, the traditional EnKF has been shown through some synthetic case studies

that it handles non-linearity well when the non-linear relationship is not so severe.

Combining these information, we suggest to only iterate using the Gauss-Newton

formula when the traditional EnKF does not work well.

In this dissertation, we used the maximum change in saturation vectors to decide

whether or not to apply iteration. If the maximum change of saturation exceeds 0.2,

then iterate; otherwise, trust the EnKF solution. By so doing, extra computation is

imposed only when informative data are assimilated and the total cost is significantly

reduced without compromising the results, see Section 5.4.

88



5.3 A Linear Example

As shown in Section 5.2.1, the EnKF will work well for linear dynamic systems if the

ensemble is large enough. Results from the EnRMLF and Conforming EnKF will be

identical to results from the EnKF if the proposed iterative schemes are correct. In

this section, a simple linear dynamic example is used to analyze performance of the

two iterative schemes: Conforming EnKF and the newly proposed EnRMLF. The

purposes of this test example are two-fold. First is to see if results from the two

iterative methods are identical to results from the EnKF. Second, to compare the

exact sensitivity matrix, G, with the approximation computed by Eq. 5.18 when the

EnRMLF is applied.

5.3.1 Problem description

Assume that a passive tracer is injected at one end of a core and that the times for

transport of the tracer to different locations of the core are measured. The flow is

single phase and the fluid is incompressible; the length of the core is L; the cross-

sectional area is A; the permeability is k(x); the porosity is φ(x); and the viscosity

of the fluid is µ. For simplicity, assume a consistent set of units, so Darcy’s Law is

q = uA = kA
µ
4p(x)

x
, where q is the flow rate, u is the superficial velocity, and 4p(x) is

the pressure drop from the inlet to location x. Incidentally, the velocity of the tracer

front is v = u
φ

= q
Aφ

.

Because the volumetric flow rate q throughout the core is constant, for a given

location x, the arrival time of an ideal tracer that is injected at time 0 is

tx =
x

v
=
A

q

∫ x

0

φ(x′)dx′ . (5.26)
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For discretized grids, the integration in Eq. 5.26 becomes summation

tx =
A

q

ix∑
i=1

φi4xi

=
A4x
q

ix∑
i=1

φi assuming4xi = 4x, i = 1, . . . , N. ,

(5.27)

where ix is the discretized grid index corresponding to the location x; N is the total

number of the uniformly discretized grids. We can see from Eq. 5.27 that the travel

time of the tracer to the grid ix depends on the average porosity of the core from the

inlet up to that grid. It does not depend on the porosity elsewhere, neither on the

permeability distribution of the core, nor on the fluid viscosity.

The measured tracer arrival times to different locations are used to infer the

porosity distribution of the core. The core is divided into 20 uniform grids. There are

four locations where the arrival time is measured. Fig. 5.1 shows the four locations.

Table 5.1 lists the parameters that are constant and related to the calculation of the

tracer’s travel time.

Figure 5.1: Locations where the tracer arrival times are measured for the linear
example.

Parameter Value
L (cm) 10
∆x (cm) 0.5
A (cm2) 1.0
q (cm3/s) 0.02

Table 5.1: Constant parameters related to the calculation of the tracer arrival time
for the linear example.

In this example, the data are assimilated sequentially beginning with the arrival

time at x = 2, then arrival time at x = 3.5, then x = 6, and finally at x = 10. To
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propagate the system from the previous measurement time (i.e. previous measured

location) to the new measurement time, the computation only requires porosities from

the previous location to the new location:

txk
= txk−1

+
A4x
q

ixk∑
i=1+ixk−1

φi , (5.28)

and to propagate the system from time 0 (i.e. location 0) is

txk
=
A4x
q

ixk∑
i=1

φi , (5.29)

where ixk−1
and ixk

are the integer grid indices corresponding to measurement location

xk−1 and xk, respectively.

The state vectors for this problem consist of the following variables

yj = [φ1, . . . , φN , tx]
T
j j = 1, . . . , Ne. , (5.30)

where tx is the state variable in this case that would be re-computed with Eq. 5.28

and Eq. 5.29, respectively, when the Conforming EnKF and EnRMLF are used.

5.3.2 Observations

Table 5.2 lists the parameters used to generate the initial realizations of the poros-

ity distribution for this linear example. The procedure to generate these porosity

realizations is the same with that described in Section 3.2.1.

Prior mean 0.25
STD 0.05
Covariance Exponential
Range (grid) 4

Table 5.2: Parameters used to generate the initial realizations of the porosity distri-
bution for the linear example.

The synthetic true porosity distribution is generated using the same parameters

as those for the initial realizations. The four observations are computed with the
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generated true porosity values using a similar equation as Eq. 5.27

tobs,k = ttrue,k + εk

=
A4x
q

ik∑
i=1

φtrue,i + εk

= 25

ik∑
i=1

φtrue,i + εk k = 1, 2, 3, 4. , (5.31)

where the subscript k is the measurement index; ik represents the grid at which the

kth measurement is made; εk is the measurement error drawn from uni-variate un-

biased Gaussian distributions independently for each location. Table 5.3 shows the

uncontaminated synthetic observations, ttrue,k, and the standard deviations of the

Gaussian measurement errors, εk, added to the synthetic data, at the four measure-

ment times/locations.

Measurement time Measurement time Arrival time: STD of measurement
index /location: ik (grid) ttrue,k (s) error: σ(εk) (s)

1 4 24.0553 100.00
2 7 43.9585 0.25
3 12 70.8425 0.25
4 20 119.9635 0.25

Table 5.3: The uncontaminated synthetic observations, computed using the true
porosity values, and the standard deviations of the unbiased Gaussian measurement
errors, at the four measurement times/locations.

It should be noted that the measurement error at the first measurement time is

intentionally given as a fairly large value. By assuming very inaccurate data at the

first measurement time, the updated estimate of porosity is essentially unchanged

from the initial porosity, as is the updated estimate of the state variable, tracer

travel time. Setting a smaller step length, both iterative methods apply their update

equations several times at a single measurement time. We can see the differences that

would be resulted from the two iterative formulae.

At the second measurement time with accurate data, results from the Conforming
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EnKF and EnRMLF will differ greatly because in one method the state variables

are computed from previous measurement time/location, and in the second method,

the state variables are re-computed from measurement time/location 0. With the

Conforming EnKF, the estimate of porosity is updated using the EnKF. It will get

the average porosity correct between the origin and the location of the measurement.

However, the tracer travel times will be obtained by rerunning the computation of

total porosity-length from the location of the first measurement to the location of the

second measurement. The travel time to the first measurement location simply uses

the old state variable (travel time from the original ensemble of porosities). With

the EnRMLF, the estimate of porosity is updated using the Gauss-Newton formula.

The tracer travel time will be obtained by computing the total porosity-length from

the origin to the second measurement location. The result will be different from that

obtained using the conforming step.

At the third and fourth measurement times, with the cumulative errors from the

first two times, the distinction between the Conforming EnKF and EnRMLF will be

more pronounced.

5.3.3 Criteria used to stop iterations

For the two iterative methods, both the full step length, i.e. α = 1.0, β = 1.0, and

half step length, i.e. α = 0.5, β = 0.5, are used. At each measurement time, the

following criteria are used to stop the iterations. If any of the criteria is satisfied, the

iteration is terminated.

1. MAX1≤i≤N ;1≤j≤Ne | φ`+1
ij − φ`

ij |< 1.0× 10−5, or

2. S(M `+1)− S(M `) < 1.0× 10−6S(M `), or

3. S(M `+1) ≤ 1, or

4. Iteration exceeds 20.
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5.3.4 Comparison of the two iterative methods

Table 5.4 lists the final data mismatch (S(M) =
∑Ne

j=1(dobs,j−Hyj)
TC−1

D (dobs,j−Hyj)),

the number of iterations applied, and the criteria satisfied when iterations were ter-

minated, for different methods at all measurement times with 30 ensemble members.

First, compare the results from the EnRMLF with full and half step lengths to the

results from the EnKF. Both formulations of EnRMLF obtain similar data mismatch

with the EnKF at all measurement times. At the first measurement time, the En-

RMLFs terminated their iterations when both the data mismatch and model parame-

ters stopped changing. At all other measurement times with accurate data, iterations

terminated because the data mismatch was sufficiently small. The EnRMLF with half

step length has a slightly larger data mismatch, but we believe with more iterations,

it would obtain the same value as the EnKF and the EnRMLF with full step length.

The differences in the data mismatch and iteration criteria satisfied between the Con-

forming EnKF and the EnRMLF are apparent at all four measurement times. At the

first measurement time, the Conforming EnKF methods used 20 iterations with the

inaccurate data, while the EnRMLF used a smaller number. Recall that at the first

assimilation time, both the Conforming EnKF and the EnRMLF go back to location

0 to re-compute the tracer travel time when the porosity is updated during iterations.

They use different formulae, however, for the porosity correction, e.g. the Conforming

EnKF changes the model covariance matrix, CM , for different iterations, while the

EnRMLF keeps the same CM computed from prior estimates. Also, the EnRMLF

keeps the prior term, mp in the update formula, while the Conforming EnKF does

not. At the second measurement time, as stated in Section 5.3.2, the large data mis-

match results from the conforming step. At the two other measurement times, the

Conforming EnKF still has large data mismatch even though it decreases with data

assimilation.

Fig. 5.2 plots the histogram of the computed data from the 30 initial ensemble
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Methods Time S(M)/No. of iterations Criteria satisfied
EnKF 1 17.97/0 /

2 0.12/0 /
3 0.34/0 /
4 0.11/0 /

EnRMLF 1 17.97/2 1 & 2
β = 1.0 2 0.11/1 3

3 0.34/1 3
4 0.11/1 3

EnRMLF 1 17.97/9 1 & 2
β = 0.5 2 0.49/8 3

3 0.71/9 3
4 0.47/8 3

Conforming EnKF 1 17.07/20 4
α = 1.0 2 5197.24/4 1

3 4549.85/4 1
4 573.44/5 1

Conforming EnKF 1 17.57/20 4
α = 0.5 2 4051.56/13 1

3 3166.03/16 1
4 228.47/20 1 & 4

Table 5.4: Final data mismatch, number of iterations applied, and criteria satisfied
when iterations are terminated, for different methods at all measurement times with
30 ensemble members for the linear example.
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porosities at the first measurement time prior to data assimilation. Fig. 5.3 compares

the histograms of the computed data from the Conforming EnKF and EnRMLF both

with half step length at the end of their iterations for all measurement times. The

green vertical line on each plot represents the value of the synthetic data. At the first

measurement time with the inaccurate datum, the EnRMLF keeps the characteristic

of the distribution of the computed data from the initial ensemble with a slightly lower

ensemble data standard deviation, while the distribution from the Conforming EnKF

is different and the data standard deviation is increased comparing to the results

from the initial realizations. At all other measurement times, the computed data are

centered around the observed data and the distribution of these data are Gaussian-

like with the EnRMLF. With the Conforming EnKF, at the second measurement

time, the mean of the computed data is about right, but at the third measurement

time, the distribution of the computed data is biased, then at the last measurement

time, the mean is nearly right again. Note at all times, the ensemble data standard

deviation is higher from the Conforming EnKF than that from the EnRMLF.

Figs. 5.4 and 5.5 compare the mean and gridblock STD of the ensemble porosity

estimates with 30 members from the EnKF, Conforming EnKF and EnRMLF both

with half step length at the end of their iterations for all measurement times. The

vertical green line on each plot indicates the measurement location. The results from

the EnKF and EnRMLF are overlapped with each other. At the first two measure-

ment times, the results from both iterative methods differ slightly, see Figs. 5.4(a),

5.4(b), 5.5(a), and 5.5(b). However, at the third and fourth measurement times, the

differences become pronounced and the gridblock STD values are lower from the En-

RMLF than those from the Conforming EnKF, see Figs. 5.4(c), 5.4(d), 5.5(c), and

5.5(d).

Fig. 5.6 shows the changes of the RMSE and STD of the ensemble porosity es-

timates with 30 ensemble members from the Conforming EnKF and EnRMLF both
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with half step length during iterations at all measurement times. Note at the first

measurement time, the STD from the Conforming EnKF is obviously increasing with

iteration and the RMSE is also increasing with iteration at the third measurement

time, which are indications of mistakes in the method.
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Figure 5.2: Histogram of the computed tracer travel times with 30 ensemble members
at the first measurement times prior to data assimilation.

5.3.5 Computed sensitivity coefficients

The sensitivity coefficients are obvious for this linear case by examining Eq. 5.27.

They form a step function

Gtx,φ(i) =
{ A4x

q
if i ≤ ix

0 if ix < i ≤ N
. (5.32)

The sensitivity coefficients computed with different ensemble size at the third mea-

surement time (location=12) are plotted in Fig. 5.7. It can be seen that when the size

of the ensemble is larger than 21 (i.e. N + 1), the computed sensitivities align with

the analytical result (Eq. 5.32); when small-sized ensemble is used, the computed

coefficients only provides an approximation to the real sensitivity values. With less

members, the approximation becomes rougher.

Fig. 5.8 plots the mean and gridblock STD of the ensemble porosity estimates
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Figure 5.3: Histograms of the computed tracer travel times with 30 ensemble mem-
bers from the Conforming EnKF and EnRMLF both with half step length at the end
of their iterations for all measurement times.
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Figure 5.4: Ensemble mean porosity with 30 ensemble members from the EnKF,
Conforming EnKF and EnRMLF both with half step length at the end of their iter-
ations for all measurement times.
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Figure 5.5: Gridblock STD of the porosity estimates with 30 ensemble members from
the EnKF, Conforming EnKF and EnRMLF both with half step length at the end of
their iterations for all measurement times.
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Figure 5.6: RMSE and STD of the ensemble porosity estimates with 30 ensemble
members from the Conforming EnKF and EnRMLF both with half step length during
iterations at all measurement times.
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at the fourth measurement time (location=20) from the EnRMLF with different en-

semble size. When more ensemble members are used, the mean estimate become

smoother and the gridblock STDs are bigger. Fig. 5.9 compares the RMSE and STD

of the ensemble porosity estimates with different ensemble size. Generally, with less

ensemble members, the STD of the ensemble estimates is smaller. When only 5

members are used, the STD of the estimates drops dramatically and the error of the

estimates changes little with data assimilation. When 10 members are used, the error

increases after assimilating the 4th data.
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Figure 5.7: Sensitivity coefficients computed by singular value decomposition (SVD)
with different ensemble size at the third measurement time (location= 12).
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Figure 5.8: Ensemble mean porosity and gridblock STD of the ensemble porosity
estimates at the fourth measurement time (location=20) from the EnRMLF with
different ensemble size
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5.4 A Non-linear Example

Various methods are tried on the non-linear example: (1) Conforming EnKF, (2)

EnRMLF with iteration at every measurement time (EnRMLF1 is used to represent

this method), (3) EnRMLF with iteration when needed (EnRMLF2 is used to repre-

sent this method), (4) traditional EnKF, and (5) traditional EnKF with truncation

of Sw after Kalman correction. For the iterative methods, the criteria used to stop

iterations has been described in Section 5.2.3. In the third method (EnRMLF2), the

change in water saturations is used to decide whether or not it is needed to re-solve

the flow equations. If the maximum change is smaller than 0.2, the re-computation

of the state variables is not necessary and the updated state variables from the EnKF

update equation are kept. Otherwise, the flow equations are re-solved from the initial

time 0 for consistent state variables. The maximum saturation change criterion is

also applied to the Conforming EnKF for the decision of whether or not to add the

conforming step after the Kalman correction.

5.4.1 Problem description

The example is a water and oil two-phase flow problem in a one-dimensional dis-

cretized grid system of a core. There are 32 uniform grids. The physical dimension of

each grid is 60× 60× 40 ft3. The reservoir is initially saturated with oil and connate

water. The initial reservoir pressure is 4000 psia. The mobility ratio of water and oil

is 5. An injector is located at the left end, and a producer is located at the right end.

An observation well is located at grid 16. The injector injects water at a constant

rate of 150 STB/Day and the producer produces at a constant pressure of 1200 psia.

Fig. 5.10 shows a schematic setup for the problem.

The procedure to generate the initial rock properties is the same with that shown

in Section 3.2.1 and not repeated here. Table 5.5 lists the parameters used to generate

the initial realizations. 65 initial members are used for data assimilation.
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Figure 5.10: Schematic setup for the non-linear example problem.

Porosity LnK (K in md)
prior mean 0.2 5.5
covariance exponential exponential
STD 0.04 0.7
range (grid) 15 15
cross-correlation 0.6 0.6

Table 5.5: Parameters used to generate initial realizations for the non-linear example.

5.4.2 Observations

We assume that the only observed data available are water saturations measured at

the observation well. The constant rate boundary condition at the left end resembles

the setup in the linear case (Section 5.3). We have shown in the linear example that

porosity distribution determines the speed of water movement for the single-phase

fluid flow problem. Similarly for this two-phase problem, water saturation is related

to the speed at which water moves, thus to porosity and relative permeabilities of

both water and oil. Since the latter is treated without uncertainty in this example,

the measured water saturation is sensitive to porosity up to the observation well

after the movement of the water is felt on the observation well. It has no sensitivity

before water breakthrough at the observation well or after water saturation reaches

its highest value.

The true reservoir model is intentionally selected among all the generated models

as the one that has the earliest water breakthrough at the observation well. Fig. 5.11

shows the continuous synthetic data profile before adding measurement noise at dif-

ferent times computed directly from the true reservoir model. Water does not break
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through to the observation well until some time around day 160. Before the break-

through time, most of the measured saturations are equal to the connate water sat-

uration and carry no information to infer the rock properties of the core. Only mea-

surements taken after day 160 contain useful knowledge for deducing the properties

of the core. The measurement errors used in the water saturations are assumed to be

Gaussian with mean 0 and STD 0.007.

0 40 80 120 160 200 240 280

0.3

0.4

0.5

0.6

0.7

0.8

co
m

pu
te

d 
S w a

t g
rid

 1
6 

wi
th

 th
e 

tru
e 

m
od

el

Time (Days)

Figure 5.11: Synthetic data before adding measurement noise at different times
computed from the selected true reservoir model.

Two cases are created based on the example described above. In Case I, the first

data assimilation is before water breakthrough at the observation well. In Case II, the

first data is assimilated after water breakthrough. The results from various methods

are shown as follow in different sections.

5.4.3 Case I: first data assimilated before water breaks through the ob-
servation well

In this case, the measured water saturations are taken at 8 times: days 40, 90, 140,

190, 210, 230, 250, and 270. The synthetic values for the measurements are listed

in Table 5.6. As explained in Section 5.4.2, the first three measurements are not

informative to deduce the rock properties of the core. The rock properties can only
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be corrected with the data at day 190 and afterwards.

Time Synthetic Sw data
(Days) w/o measurement noise added

40 0.3048
90 0.3049

140 0.3056
190 0.7027
210 0.7224
230 0.7326
250 0.7386
270 0.7425

Table 5.6: Synthetic data computed from the selected true reservoir model before
adding measurement noise at 8 measurement times.

Table 5.7 summarizes the computational cost at the 8 different measurement times

for the three iterative methods. One Kalman correction means the calculation of

the Kalman gain matrix and updating the state vectors for each of the ensemble

models. The cost associated with one Kalman correction is fairly low especially

when the number of data at an individual measurement time is small, here only one

datum at each measurement time. One “conforming run” means re-computing the

state variables for each of the ensemble models at current measurement time by re-

initiating the reservoir flow and transport equations at previous measurement time

with the most up-to-date model parameters, corrected with the most recent data, and

the state variables at the previous measurement time. The computational effort for

one “conforming run” equals to running a reservoir simulator for all of the ensemble

reservoir model from previous to current measurement time. One Gauss-Newton

iteration means updating each of the ensemble state vectors using the Gauss-Newton

formula and re-computing the state variables by re-initiating the reservoir flow and

transport equation from the initial time 0 with the most up-to-date model parameters.

The computation time for one Gauss-Newton iteration is the greatest among the three.

107



Time Conforming EnKF EnRMLF1 EnRMLF2
40 1 Kalman correction 1 G-N iteration 1 Kalman correction
90 1 Kalman correction 1 G-N iteration 1 Kalman correction

140 1 Kalman correction 1 G-N iteration 1 Kalman correction
190 6 Kalman correction 6 G-N iterations 1 Kalman correction

+ 6 Conforming runs + 3 G-N iterations
210 6 Kalman correction 1 G-N iteration 1 Kalman correction

+ 6 Conforming runs
230 6 Kalman correction 1 G-N iteration 1 Kalman correction

+ 6 Conforming runs
250 3 Kalman correction 1 G-N iteration 1 Kalman correction

+ 2 Conforming runs
270 1 Kalman correction 1 G-N iteration 1 Kalman correction

Table 5.7: Computational cost for the three iterative methods at different measure-
ment times for Case I.

5.4.3.1 Results from the Conforming EnKF

Fig. 5.12 plots the water saturation profiles at day 140 before and after Kalman

correction. For all of the profiles shown in this figure and subsequent figures, the red

line is the result from the selected true reservoir model, the multiple black lines are

the results from the 65 ensemble models, and the vertical straight line denotes the

location of the observation well at grid 16. The theoretical data computed from the

ensemble models can be seen at the intersection points of the vertical straight line to

the saturation profiles. As mentioned above, the data measured before water breaks

through the observation well tell no information about the core. Thus the two water

saturation profiles are essentially the same before and after the data assimilation.

Fig. 5.13 shows the water saturation profiles at 190 days from the first and sixth

iterations. Because the saturation profiles are problematic after the first Kalman cor-

rection, see Fig. 5.13(a), a “conforming run” is applied to enforce proper constraints

on the state variables. After the porosities and permeabilities are updated using the

data at day 190, the state variables at day 190 are re-computed by re-initiating the

reservoir flow and transport equations at day 140 with the combination of the newly
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updated model parameters and the state variables at day 140. Fig. 5.13(b) is the

result from such a “conforming run”. Because of the biased characteristics of the

profiles at day 140 (Fig. 5.12(b)), though the model parameters have been corrected

with the data and are fairly different from their estimates at day 140, the conformed

profiles at day 190 still have similar biased characteristics as that at day 140. Six

iterations are applied at this single measurement time in an attempt to match the ob-

served water saturation. Even after this many computational efforts, the observation

is not yet honored and the saturation profiles are still severely biased, see Fig. 5.13(d).

Let us also look at how the saturation profiles affect the estimation of the porosity

distribution. Fig. 5.14 plots the mean and STD of the ensemble porosity estimates at

each gridblock from the 6 different iterations at day 190. After one iteration, there

are the substantial improvements in the porosity estimate, see Fig. 5.14(a). The mean

porosity values are lowered comparing to the initial mean values in order to match the

observed fast speed of the water advancement. The associated STDs of porosity up

to the measurement location are also decreased greatly from the initial STDs, while

the rest of the STDs do not change much and stay close to their initial STD values

due to the data sensitivity. Because of the biased saturation profiles resulted from the

bias at day 140, the mean porosity values are further reduced with more iterations

trying to move the water faster and catch up with the observed water movement, but

the STD changes little after the second iteration.

Fig. 5.15 plots the measures of accuracy for both the estimates of porosity and

saturation at day 190 from different iterations. In the x -axis, 0 iteration means

before data assimilation at day 190. The porosity estimates are improved after the

first iteration but move further away from the truth with more iterations (black line

in Fig. 5.15(a)). The spread in the ensemble porosity estimates changes slightly after

the second iteration (red line in Fig. 5.15(a)). Both the RMSE and spread in the

saturation estimate oscillate. After a Kalman correction, the error and spread in the
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saturation are both reduced. But after a conforming run, they bounce back to a higher

values because of the biased saturation profiles. Overall, with more iterations, both

the error and spread in the ensemble saturation estimates are slowly decreasing. All

the observations made based on this plot are consistent with what has been observed

from Fig. 5.13.

In the conforming EnKF, from the fourth measurement time, day 190, to the

sixth measurement time, day 230, the number of iterations used at each time equals

to the pre-set maximum number of iteration, 6, see column 2 at Table 5.7. All other

criteria for solution convergence are not satisfied at these three times. Fig. 5.16 plots

the final saturation profiles at different measurement times after day 190. At day

210, the biased characteristics of the conformed profiles still remains as that at days

140 and 190. The bias becomes less severe at day 230. At day 250, after the third

Kalman correction, no conforming run is enforced because of the small changes in

the saturation profiles and the saturations after Kalman correction are saved for the

calculation of state variables at day 270. The saturation profiles after the Kalman

correction look fairly decent at day 270, see Fig. 5.16(d). As a whole, the bias seems

to diminish with time in this case.

Base on the above explanation, it is not surprising to see that the error in the

porosity estimates does not drop until day 190 and becomes larger with time again

after day 190 until the last measurement time, day 270, see Fig. 5.17(a). This method

also gives the largest error and spread in saturation estimates comparing to the two

other iterative methods until day 270, see Fig. 5.17(b).

5.4.3.2 Results from the EnRMLF with iteration at every measurement time

Fig. 5.18 shows the saturation profiles at day 140 before and after one Gauss-Newton

iteration. The two profiles are essentially the same. Therefore there is no need to

re-compute the state variables from the initial time 0 when the model parameters
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change little, but rather to use the updated results from the Kalman correction. By

so doing, the computational cost can be significantly cut down. Section 5.4.3.3 will

show the results from applying Gauss-Newton iterations only when needed at some

measurement times. However, in this section, Gauss-Newton iterations are used at

every measurement time regardless of how small the changes in the model parameters

and state variables.

Fig. 5.19 plots the saturation profiles at day 190 from the first and sixth Gauss-

Newton iterations. Unlike the Conforming EnKF, after the model parameters are

updated at day 190, they are taken to the initial time 0 to compute the state variables.

It can be seen from the intersection points of the vertical straight line to the saturation

profiles in Fig. 5.19(b) that the datum is honored well after the sixth iteration.

The mean and STD of the ensemble porosity estimates at each gridblock from

the six Gauss-Newton iterations at day 190 are plotted in Fig. 5.20. The measures of

accuracy in both the estimates of porosity and saturation at day 190 from different

iterations are compared in Fig. 5.21. As expected, the errors in both estimates keep

decreasing with more iterations.

The third column in Table 5.7 lists the Gauss-Newton iterations applied for this

method at the 8 different measurement times. Only at day 190, 6 iterations are used.

At all other measurement times, only one iteration is used for the convergence of the

solution. Fig. 5.22 plots the final saturation profiles after one Gauss-Newton iteration

at each of the four measurement times after day 190. Data are honored fairly well at

each time with only one Gauss-Newton iteration.

The error in the estimate of porosity from this method is the smallest among all

other methods, see Figs. 5.17(a) and 5.29(a).
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5.4.3.3 Results from the EnRMLF with iteration only when needed

As explained with Fig. 5.18 in Section 5.4.3.2, when the changes in the model parame-

ters are small, there is no need to waste the effort to compute the state variables from

the initial time 0, but rather to keep the traditional Kalman corrected results. Thus,

for this method, at each measurement time, a general Kalman correction to the state

vectors is applied first (equivalent to the first Gauss-Newton iteration formula with

β = 1.0). If the maximum water saturation change exceed a pre-set threshold value

(0.2 for this case), it is decided that the state variables computed from the Kalman

correction is not reliable and they have to be re-computed with the updated model

parameters from the initial time 0. Otherwise, trust the results from the Kalman

correction for the state variables. The fourth column in Table 5.7 shows that Gauss-

Newton iterations is needed only at day 190, and at all other measurement times,

only Kalman correction is applied. Comparing to the method with iteration at every

measurement time, this method greatly brings down the computational cost. We

need to see in the following if it compromises the results.

Figs. 5.23 and 5.24 plot the saturation profiles at day 190 and afterwards. Compar-

ing to their counterparts produced by EnRMLF with iteration at every measurement

time in Figs. 5.19 and 5.22, respectively, in terms of the closeness to the true satura-

tion profile, this method gives better estimates of saturation, which are also reflected

by the RMSE curve in Fig. 5.17(b). The difference in the porosity estimates from

both methods is small, see Fig. 5.17(a). It is clear that the results produced by this

method do not compromise at all comparing to these in Section 5.4.3.2 for this case.

5.4.3.4 Results for traditional EnKF with/without sw truncation

For engineering practices, the easiest way to impose constraints on Sw is to truncate

the values that are out of physical bounds after applying Kalman corrections. It

hardly adds additional cost for the whole history matching procedure and works
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quite well for this example.

Figs. 5.25 and 5.26 plot the saturation profiles after Kalman correction at days

190, 210, and 270 for the traditional EnKF with and without truncation of Sw, respec-

tively. If the non-physical values of Sw are not truncated, they are inheritable when

propagating forward in time. However, if they are simply truncated to reasonable

values, the problematic saturations seem to go away with time.

The error and spread in both of the estimates of porosity and saturation are

shown in Fig. 5.27. For the porosity estimate, the error and spread with and without

truncation differ slightly. The difference may be caused by the truncation scheme.

However, the truncation results in distinction on saturation estimates. Both the

error and spread in the saturation estimates are much lower with truncation than

without truncation, which can be easily understood by examining the saturation

profiles produced by the two methods in Figs. 5.25 and 5.26.

5.4.4 Summary for Case I

Fig. 5.28 summarizes the data match at the 8 different measurement times for the

three iterative methods. The solid red dots on each of the plot are the synthetic data

computed directly from the selected true reservoir model; the multiple hollow black

dots at each measurement time are the final data from the ensemble models. The

Conforming EnKF does not match the data at days 190, 210, and 230, although great

computing effort are made at those times (6 “conforming runs” at each of the three

measurement times). Both EnRMLF methods match all data fairly well.

Fig. 5.29 compares the RMSEs and ensemble STDs of both porosity and saturation

estimates from the above five methods. It can be obviously seen from the plot that:

• Conforming EnKF fails to provide valid estimates for porosity. The error in the

saturation estimates is the largest until the last measurement time, day 270,

among all methods.
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• At day 190, the two EnRMLF methods give equivalent estimates of porosity;

for the estimates of saturation, iterating when needed obtained better solution

than iterating at every measurement time.

• At times after day 190, EnRMLF with iteration at every measurement time

achieves slightly better solution for porosity than all other methods but in a

somewhat expansive way.

• In terms of the accuracy in the saturation estimate, EnRMLF with iteration

when needed outperforms all other methods at all the 8 measurement times.

• The traditional EnKF with and without truncation of Sw obtain similar answers

for porosity estimates, but truncation provides much better saturation profiles.

5.4.5 Case II: first data assimilated after water breaks through the ob-
servation well

For this case, it is assumed that the observed data are taken at 5 times: days 190, 210,

230, 250, and 270. Other setups are exactly the same with those in Case I. Table 5.8

summarizes the computational cost at each of the five measurement times for the

three iterative methods. Both EnRMLF methods have the same expense spent at the

five times as that in Case I (compare Table 5.8 to Table 5.7). But for the Conforming

EnKF, the cost spend on the two cases is quite different. For Case I, 6 conforming

runs are applied at each of the three measurement times, days 190, 210, and 230; for

case II, only at day 190, two conforming runs are used and no conformation is needed

at all other times.

EnRMLF with iteration at every measurement time would perform similarly as

in the first case because it always re-solves the reservoir flow and transport equations

from the initial time 0. EnRMLF with iteration when needed would change slightly

as in the first case. But the Conforming EnKF would perform rather differently than
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Time Conforming EnKF EnRMLF1 EnRMLF2
190 3 Kalman correction 6 G-N iterations 1 Kalman correction

+ 2 Conforming + 3 G-N iterations
210 1 Kalman correction 1 G-N iteration 1 Kalman correction
230 1 Kalman correction 1 G-N iteration 1 Kalman correction
250 1 Kalman correction 1 G-N iteration 1 Kalman correction
270 1 Kalman correction 1 G-N iteration 1 Kalman correction

Table 5.8: Computational cost for the three iterative methods at different measure-
ment times for Case II.

the first case. Thus we will only examine some of the results from the Conforming

EnKF.

Fig. 5.30 plots the saturation profiles at day 190 from the Conforming EnKF. The

saturation profile after first Kalman correction would be the same as that in Case I

(Fig. 5.13(a)), but the profiles change greatly after the first conforming run, comparing

Fig. 5.13(b) to Fig 5.30(a). Because in Case II, the updated model parameters are

taken to time 0 since day 190 is the first measurement time, instead of day 140 as in

Case I, to re-initiate the state of the reservoir and re-compute the state variables at

day 190. This also results in the difference at the subsequent two Kalman corrections

at day 190.

Fig. 5.31 plots the error and spread in both estimates of porosity and saturation at

day 190. We can see from the black line in Fig. 5.31(a) that the error in the porosity

estimates decreases with iteration, unlike that in Case I, see Fig. 5.15(a). The spread

in the estimate is also decreasing with iteration. For the saturation estimate, both

the error and spread decreases with iteration. At the first iteration, the two points at

each of the two curves are from Kalman correction and conforming run. Opposite to

what has been observed in Case I, the higher-value point is from Kalman correction

and the lower-value one is from conforming. At the second iteration, the distinction

between Kalman correction and conforming is hardly seen. Overall, the error and

spread in saturation estimate decreases rapidly with iteration.
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We would expect that the estimates for the model parameters from the two cases

are different at day 190. Fig. 5.32 shows a comparison of the mean porosity esti-

mates from both cases. The mean estimate from Case I has lower values than Case

II. It is understandable because the further reduction in porosity is attempting to

push the water move faster toward the observation well in Case I due to the biased

characteristics.

Fig. 5.33 shows the final saturation profiles at times after day 190. They all are

different from their counterparts in Case I, see Fig. 5.16.

5.4.6 Summary for Case II

From the final saturation profiles in Figs. 5.30(d) and 5.33, we can see that the data

are honored quite well. Fig. 5.34 confirms the good data match for Case II with the

Conforming EnKF.

Fig. 5.35 compares the RMSE and STD in both estimates of porosity and satura-

tion of the 5 methods for Case II. The Conforming EnKF seems to work well for this

case. In terms of porosity estimate, it provide reasonable solution as other methods.

But the error in the saturation estimates is increasing rapidly with measurement time.

EnRMLF with iteration when needed still gives the best saturation estimate.

5.5 Discussion

In this chapter, we applied the traditional EnKF and the two iterative methods,

Conforming EnKF and EnRMLF, to both linear and non-linear examples.

In the linear example, the EnRMLF achieves equivalent solution as the traditional

EnKF, where the validity of the solution is guaranteed when the ensemble is large

enough, and matches the observed data well. However the Conforming EnKF could

not match the data.

For Case I in the non-linear example, the conforming EnKF failed to provide

valid solution for both porosity and saturation estimates because of the apparent
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mismatched between model parameters and state variable used to re-initialize the

reservoir flow equation at day 190.

The EnRMLF with iteration at every measurement time is robust and provides

best estimates for porosity for both cases in the non-linear example but in a somewhat

expensive way. The EnRMLF with iteration only when needed dramatically cuts

down the computational cost while not compromising the results.
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Figure 5.12: Conforming EnKF: Sw profiles at day 140 for Case I.
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(d) The sixth conforming run

Figure 5.13: Conforming EnKF: Sw profiles at day 190 for Case I.
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(b) Porosity STD during iterations

Figure 5.14: Conforming EnKF: gridblock mean and STD of the ensemble porosity
estimates at day 190 from different iterations for Case I.
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Figure 5.15: Conforming EnKF: RMSE and spread of porosity and Sw estimates at
day 190 from different iterations for Case I.
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(b) The sixth conforming run at day 230
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Figure 5.16: Conforming EnKF: the final Sw profiles at days 210, 230, 250, and 270
for Case I.
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Figure 5.17: RMSE and spread of porosity and Sw estimates from the three iterative
methods for Case I.

S
w

 : 
F

or
ec

as
t

Grid

sw

0.0 10.0 20.0 30.0

0.00

0.20

0.40

0.60

0.80

(a) Before G-N iteration

S
w

 : 
Ite

ra
tio

n 
 1

Grid

sw

0.0 10.0 20.0 30.0

0.00

0.20

0.40

0.60

0.80

(b) After one G-N iteration with β = 1.0

Figure 5.18: EnRMLF with iteration at every measurement time: Sw profiles at day
140 before and after G-N iteration.
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Figure 5.19: EnRMLF with iteration at every measurement time: Sw profile at day
190.
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(b) Porosity STD during iterations

Figure 5.20: EnRMLF with iteration at every measurement time: mean and STD
of porosity at day 190 from different iterations for Case I.
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Figure 5.21: EnRMLF with iteration at every measurement time: RMSE and spread
of porosity and Sw estimates at day 190 from different iterations for Case I.
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(a) After one G-N iteration at day 210
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(b) After one G-N iteration at day 230
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(c) After one G-N iteration at day 250
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(d) After one G-N iteration at day 270

Figure 5.22: EnRMLF with iteration at every measurement time: the final Sw

profiles at days 210, 230, 250, and 270 for Case I.
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(b) After the third G-N iteration

Figure 5.23: EnRMLF iterate when needed: Sw profiles at day 190 for Case I.
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(a) After Kalman correction at day 210
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(b) After Kalman correction at day 230
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(c) After Kalman correction at day 250
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(d) After Kalman correction at day 270

Figure 5.24: EnRMLF iterate when needed: the final Sw profiles at days 210, 230,
250, and 270 for Case I.
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(b) Day 210
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Figure 5.25: Traditional EnKF: Sw profiles at days 190, 210 and 270 for Case I.
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Figure 5.26: Traditional EnKF with truncation of Sw after Kalman correction: Sw

profiles at day 190, 210 and 270 for Case I.

0 50 100 150 200 250 300

0.032

0.036

0.040

0.044

0.048

0.052

0.056

0.060

0.064

RM
SE

 &
 S

TD
 o

f P
or

os
ity

Time (Days)

 rmse_enkf
 std_enkf
 rmse_enkf_sw_truncated
 std_enkf_sw_truncated

(a) For porosity

0 50 100 150 200 250 300
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

RM
SE

 &
 S

TD
 o

f S
w

Time (Days)

 rmse_enkf
 std_enkf
 rmse_enkf_sw_truncated
 std_enkf_sw_truncated

(b) For Sw

Figure 5.27: RMSE and spread for estimates of porosity and Sw for the traditional
EnKF with and without truncation of Sw after Kalman corrections for Case I.
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(b) EnRMLF with iteration at every measure-
ment time
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Figure 5.28: Data match at the 8 different measurement times from the three itera-
tive methods for Case I. The solid red dots on each of the plot are the synthetic data
computed directly from the selected true reservoir model. The multiple hollow black
dots at each measurement time are the final data from the ensemble models.
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Figure 5.29: RMSE and spread of both estimates of porosity and Sw from various
methods for Case I.
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1.0

Figure 5.30: Conforming EnKF: Sw profiles at days 190 for Case II.
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Figure 5.31: Conforming EnKF: RMSE and spread of porosity and Sw estimates at
day 190 from different iterations for Case II.
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Figure 5.32: The comparison of the porosity estimates at day 190 of Case I and II.
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(b) After the Kalman correction at day 230
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(c) After the Kalman correction at day 250
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(d) After the Kalman correction at day 270

Figure 5.33: Conforming EnKF: the final Sw profiles at days 210, 230, 250, and 270
for Case II.
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Figure 5.34: Conforming EnKF: data match at different measurement times for
Case II. The solid red dots on each of the plot are the synthetic data computed
directly from the selected true reservoir model. The multiple hollow black dots at
each measurement time are the final data from the ensemble models.
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Figure 5.35: RMSE and spread of porosity and Sw estimates from various methods
for Case II.
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CHAPTER VI

A FIELD CASE STUDY WITH THE

ENSEMBLE KALMAN FILTER

6.1 Field Description

The reservoir simulation model under study is a section extracted from a large sand-

stone reservoir field containing over 1.5 MMMSTB of oil. The sector model, called

BBCK, has an average porosity of 0.2 (Fig. 6.1). The simulation model has 30×46×39,

totally 53,820 gridblocks. It has two faults, a bottom aquifer, and four different rel-

ative permeability zones. The field has been produced for approximately 50 years

by primary depletion and phased water-flooding. Recovery to date is about 35% of

OOIP (original oil in place) from 150 wells with a field-wide water cut of 93%. How-

ever, the sector model used in this study starts at Year 1965 (about 20 years after the

first oil) and ends at Year 2001 with only 129 wells. This field was previously used

for assisted (Milliken et al., 2000) and generalized travel-time (Cheng et al., 2004)

history match studies.

Figure 6.1: Porosity distribution for the BBCK sector model.
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The sector model has no water injection until Year 1993. So the bottom aquifer

is the only water resource until then. Fig. 6.2 plots the initial water saturation at

the bottom layer. The blue-colored areas are the aquifer. Most part of the aquifer is

originally located at left side of the fault block. The distribution of the initial water

will be illustrated later that it plays an important role in achieving successful history

matching for most of the wells.

Figure 6.2: Initial water saturation at the bottom layer (layer 39) of the BBCK
sector model (the blue-colored areas represent the aquifer).

There are two issues need to be mentioned regarding the simulation model.

• Boundary conditions. The sector model is a part of a complete field model

and should have communications with the other parts of the whole model

through its boundaries. However no-flow boundary conditions were assigned

to the sector model. This assignment limits the peripheral water influx for

wells close to the boundaries. As the only water resource available in the sector

model is the bottom aquifer till the open of the injection wells at Year 1993,

these wells have much lower computed water cut from the initial models than

the recorded history (6D 89, 7D 11, 7D 12, 7E 41 and etc.), especially at early

times.
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• Initial conditions. The sector model starts simulation 20 years after the first

oil. Although the reservoir fluid distribution at that time is probably different

from the hydraulic equilibrium, the initial conditions in the sector model were

set up assuming a uniform water/oil contact (WOC) depth.

Both the boundary and initial conditions in the sector model may greatly deviate

from the unknown reality, thus complicating the history matching study for this case.

6.2 Production Data

6.2.1 Data pre-processing

The historical data available are oil and water cumulative production taken monthly.

Based on them, the oil and water production rates within any time duration ∆t can

be calculated using

dr,obs(t) =
dc,obs(t)− dc,obs(t−∆t)

∆t

t = 1965 + ∆t, 1965 + 2∆t, 1965 + 3∆t ... , (6.1)

where dr,obs denotes the computed rate data and dc,obs is the measured cumulative

data. It can be seen from Eq. (6.1) that using different ∆t gives different averaged

rate data and results in different overall smoothness.

In this study, ∆t = 1 month and 6 months were used. 1-month data are rougher

(Fig. 6.3). Some of the roughness in the data may be due to measurement noise

and error and doesn’t necessarily carry real information. 6-month data are much

smoother than the 1-month data. They capture the major characteristics of the data

variation. Using a even bigger ∆t can give more smoothness, but may mask some

useful information in the data.
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For field data with unknown noise, smoothing the data may be necessary to mit-

igate the noise level. Eq. 6.2 is used to smooth the 1-month data.

dr,obs(t) =
dc,obs(t+ ∆t)− dc,obs(t−∆t)

2∆t

ti = 1965 + i/12, for i = 1, 2, . . . , (6.2)

where ∆t is the half time window used to smooth the 1-month data, here ∆t = 3

months.

Figure 6.3: Water cut for well 7D 27 computed with different data processing
schemes.

Table 6.1 summarizes the above data processing schemes and their advantages

and disadvantages.

6.2.2 Well constraint and computed data sensitivity from ensemble

In the simulation model, the wells are produced with total liquid voidage constraint.

The historical data used are the oil and water production rates (other than the water

cut data used in the previous studies. But it is essentially the same with matching the

water cut data). The constraint, sometimes, results in small differences of computed

rates from the ensemble models, especially at the early production time when not
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Processing scheme Advantages Disadvantages
1-month interval capture detailed data changes susceptible to measurement

noise & error
1-month interval mitigate the level of data
smoothed w/ 3-month noise & error
half time window
6-month interval capture major characteristics may mask useful information

of data variation

Table 6.1: Data processing schemes used and their advantages and disadvantages.

much water comes out from the sector model. The models have to produce more

oil to substitute the water production to satisfy the well constraint. Fig. 6.4 shows

the perturbed measurements and computed oil production rates, from 100 models,

for well 6D 89 at Year 1965.5. It can be seen that the computed oil rates from the

ensemble models differ slightly and are much more than the observed oil rate because

the limited water resource specified in the simulation models can not sustain much

water producing out of them at this time. The small difference in the computed data

from the ensemble will result in small sensitivity of data to model parameters (the

extreme scenario will be that all the ensemble models predict the same data, then no

sensitivity can be computed from this). Presumably, bottom-hole pressure data can

provide more information for this kind of well constraint. Unfortunately, they are not

available.

6.2.3 Data selection criterion

As seen in Fig. 6.4, the computed data from the ensemble have small differences

and yet are far from the perturbed observations. If we still try to match this piece

of datum, we may end up with unrealistic reservoir models and introduce problems

to subsequent assimilation times. As sequential data assimilation methods require

reasonable adjustment at each measurement time, we need to select carefully what

data to match prior to data assimilation at each time. In this application, datum
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Figure 6.4: perturbed measurements and computed oil production rates, from 100
models, for well 6D 89 at Year 1965.5.

that is far from its computed values is discarded according to the following criterion

h > n(σsim + σobs) , (6.3)

where h is the distance between a single observed and simulated data; σsim is the

standard deviation of the simulated data; σobs is the standard deviation of the per-

turbed measurements; and n is an input threshold parameter, n = 4.0 is used in this

application.

By so doing, only datum whose observed and computed values are within reason-

able range is used for data assimilation at measurement times. It is possible that

data that are abandoned contain useful information and may improve the estimation

if used, but screening out data prior to assimilation is a compromise that was neces-

sary in this real case study because of the characteristics of the computed data from

the ensemble models illustrated by Fig. 6.4.

6.3 Model Parameters

The permeability in the x direction of each gridblock is altered in the history-matching

process to match the historical data. The permeabilities in the y and z directions

are computed using deterministic ratios to the permeability in the x direction. The
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porosity field is not changed because its spatial variation is relatively minor compared

to that of the permeability’s.

There is one model originally constructed based on a single upscaled model from

the static fine-scale geostatistical model using flow-based upscaling method. This

model has been roughly history matched using the assisted history matching method

(Milliken et al., 2000). Based on this model, the variogram of the x permeability is

computed. Spatially correlated Gaussian random errors with zero mean, and calcu-

lated covariance function are added to the single initial model to generate the initial

ensemble reservoir simulation models for the EnKF.

6.4 Result Analysis

This study is composed of two stages: history matching phase and prediction phase.

The first 13-year history, Year 1965 to 1978, was used to adjust the model parame-

ters. The update models at the final time were used to predict the following 23-year

reservoir performances. There are totally 25 wells whose data were used.

Besides the traditional EnKF method, The Conforming EnKF was also imple-

mented and used with the data processed using 6-month interval. Originally for all

the investigations, the size of the ensemble is 100. We also tried double-sized ensem-

ble, 200, on the 6-month interval data to see if the bigger ensemble is able to provide

better results.

6.4.1 History matching results

Among all the 25 wells, 17 wells achieve satisfactory history matching results, 4 wells

demonstrate the effects by reservoir boundary and fault, and other 4 wells do not

have substantial improvement. Figs. 6.5(a) – 6.5(c) show the well locations of the

three categories. For illustration purposes, a few typical wells are picked from each

category and shown from Fig. 6.6 to Fig. 6.10. In these figures, the red lines on

different plots are the observation calculated with different data processing scheme;
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the multiple black lines are results from the ensemble models; the green lines are the

mean of the ensemble.

Fig. 6.6 compares the computed water cut from initial models to the history-

matched counterparts with different production data processing schemes at well 7D 27.

This well is located close to one of the reservoir boundaries (see Fig. 6.5(a)). At the

very beginning of the simulation time, about 18% water cut was immediately ob-

served. As mentioned in Section 6.1, most of the water flux at that time may come

from outside of the sector model. The initial models could not produce as much as

the measured water cut until 4 years later (Fig. 6.6(a)). However, after data assim-

ilation, it only takes about 2.5 years for the updated models to catch up with the

measured water production (See Figs. 6.6(b) - 6.6(f)). Among all the data processing

schemes, 6-month data averaging scheme achieves the best match (Figs. 6.6(d) and

6.6(f)). The 100 models are adequate and Conforming does not help at this well.

The smoothed 1-month scheme performs fairly differently from that of the 1-month’s,

but is better in whole (compare Fig. 6.6(c) to 6.6(b)). Marked by the two rectangles

on Fig. 6.6(a), the significant draw-downs on the observed water cut (red line) are

not reflected by the simulated data from the initial models (black lines). This may

indicate that (1) the observations at the two time spots were mistaken, or (2) the

re-completion (shut down of the water layers) was not recorded in the simulation

deck, or (3) the water layers in the simulation models do not agree with these layers

in the reality due to the difference between the simulated and real water movement,

so when the water layers are shut down in the real world, there is no reduction on the

computed water cut. While 1-month data keep the detailed information, most likely,

it is not easy to match them by adjusting the permeability field only. However, for

the 6-month and smoothed 1-month data (red lines on Figs. 6.6(d) and 6.6(c)), the

two draw-downs are mitigated.

At well 8D 21, Fig. 6.7, the initial models have the opposite behavior than well
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7D 27: more water is produced from the ensemble models than the recorded history.

Similarly as above, 6-month data are matched the best and the Conforming EnKF

with iterations does not help at this well either. Smoothed 1-month scheme captures

the major trend of the historical data and is better than the non-smoothed 1-month

scheme. Similarly with what has been seen at well 7D 27, the rectangle on Fig. 6.7(a)

marks the inconsistency between the substantial water cut draw-down on the observed

water cut (red line) and the small drop on the computed water cuts from the initial

models. This is also where the 1-month scheme begins to go astray from the historical

data.

The observations from the above two wells (7D 27 and 8D 21) are applicable to the

other wells. From here forward, we will show only the history matched results based

on the data processed with the 6-month averaging scheme along with the computed

data from the initial models.

Both wells 7D 11 and 7D 44 are located on the right side of the longer fault,

where initially there is no direct water support from the bottom aquifer at this fault

block (see Fig. 6.5(b)). Water on the left side of the fault block has to travel across

the fault to get into these wells. Hence fault transmissibility plays an essential role

in the water cut at these wells. The observed water cut is much higher than the

simulated values from the initial models (Figs. 6.8(a) and 6.9(a)). However, with

fixed fault transmissibility in this study, changing x permeability is not able to bring

more water at these two wells (Fig. 6.8(b) and 6.9(b)).

7D 74 is among one of the 4 wells where history matching does not achieve sig-

nificant improvement. The initial models produce almost 100% water cut from the

very time the well is operated and much more than the historical data (Fig. 6.10(a)).

After adjustment, the updated models produce a little less than the initial models

but are still much higher than the history (Fig. 6.10(b)).
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6.4.2 Prediction results

At the end of the history matching at Year 1978, the 100 updated models based on the

6-month interval data predicted the water cut till Year 2001. Figs. 6.11 – 6.14 compare

the water cut from the initial models to the predictions from the updated models and

the history-matching results from the generalized travel time (Cheng et al., 2004).

The legends used here are the same with the above figures. The blue-colored lines

are the generalized travel-time (GTT) results.

Only by visual inspection of the results from the 25 wells (whose data are used

in the EnKF), there are 8 wells where the GTT matched better than the EnKF

predicted, 4 wells EnKF better than GTT, and 13 others comparable from both

methods. Fig. 6.12 shows one of the example wells, 7D 44, where GTT matched

better than EnKF predicted. Remember, this well is located close to the longer fault

at the right fault block where aquifer is not initially available. Most of the models

in the EnKF could not produce enough water, but GTT gave a pretty good match.

Interestingly, GTT also matched the two wells located at the boundary of the right

fault block (7D 11 and 7D 12), while shown in Section 6.4.1, EnKF could not move

water across the fault and to the right block (Fig. 6.9(b)).

On the other hand, 7E 41 (Fig. 6.11), is among one of the wells where EnKF

obtained better results. The observed water cut lies in the envelope covered by the

predictions from the updated models, while the GTT’s match is still further from the

observation. Figs. 6.13 and 6.14 show two wells where both had good results and no

substantial improvement, respectively.

It is worth noting that the EnKF only matched the first 13-year production history

with 25 wells and predicted the following 23-year reservoir performances, while the

GTT matched the entire 36-year historical data of 130 wells. Some of the wells used

in the EnKF opened late and only a few data at each of these wells were used. In

the history matching phase, we observed that some of the data are not matched at
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early times but catched up later by the computed data (Fig. 6.6). So it is tempting to

assume that when more data are used, some of the wells which do not have substantial

improvement in the first 13 years, may be able to behave better.

Fig. 6.15 compares the field wide water cut performances from the initial models to

the updated models. After data assimilation, the updated models predict satisfactory

reservoir behavior with smaller variation in the predicted values.

6.4.3 Evolution of estimated permeability field

Fig. 6.16 shows the evolution of the mean log kx estimate at layer 34. Some parts of the

fault block on the left side at this layer is below the WOC depth. From Year 1968 to

1978, the permeability on both sides of the longer fault and the two lower boundaries

is increased, this adjustment is consistent with what has been observed from the well

history-match. For example, wells 7D 27, 7D 11 and 7D 44, see Figs. 6.6, 6.8, and

6.9 respectively, need to increase the water cut. By increasing the permeability in

these areas, the water from the bottom aquifer flows faster to these wells. The rest of

the areas have their permeability decreased, which is also consistent with the changes

of the water cut at the wells located in the same region, see Fig. 6.7. The general

heterogeneity in the initial model at this layer is still preserved after the adjustment

at different times.

Comparatively, layers 8 and 3 (see Figs. 6.17 and 6.18) do not share the same

permeability changing pattern with layer 34. The main reason is layer 34 has direct

contact with the bottom aquifer, so the permeability adjustment at that layer is more

sensitivity to the data than that of shallow layers.

Fig. 6.19 shows the gridblock STD maps of the ensemble log kx estimates at three

different times at layer 34. For all the three times, the lower two boundaries had

smaller STD. At both the two upper corners, the STD is relatively higher due to the

lack of information at these regions.
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6.5 Discussion

The EnKF was applied to a real case history matching study. Some conclusions drawn

from the study are:

• The history-matching results based on the 6-month interval data outperforms

the results based on all other data processing schemes. 100 initial models are

sufficient for this study after being compared with the results from 200 models.

• The Conforming EnKF in this case does not improve the history-matching qual-

ity.

• Non-smoothed 1-month data are susceptible to measurement noise and error.

Thus, most of the wells do not achieve good the history-matching results based

on these data. However, the results based on the smoothed data with 1-month

interval are much better. This is partly because smoothing mitigates the noise

level in the measured data.

• The wells located at the left side of the fault block are generally matched better

than the wells at the other side of the block, because they are more easily

accessible to water from the bottom aquifer.

• Most of the wells located at the reservoir boundaries observe high water cut

immediately after they are opened. Some of the water at that time may come

from outside the sector model, thus the water cut data at the earlier times are

not matched but the later data are caught up by the match.

• The permeability changes at deep layers are more sensitive to the data than

that of the shallow layers, because they are closer to the bottom aquifer. The

adjustment for permeability at the deep layers is consistent with what water

cut dictates.
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(a) Wells achieve good match

(b) Wells affected by reservoir boundary and fault (c) Wells do not have improvement

Figure 6.5: Wells achieving different history matching results projected on the bot-
tom layer with initial water saturation shown. The blue color represents the aquifer.
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(f) 6-month with 200 models

Figure 6.6: Water cut at well 7D 27. Similar behavior wells include: 6D 89, 7C 58,
7E 41, 8D 24, and 8D 33. They are all located close to reservoir boundaries and
directly above the bottom aquifer which provides resource for water production (see
Fig. 6.5(a)).
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(f) 6-month with 200 models

Figure 6.7: Water cut at well 8D 21. Similar behavior wells include: 7D 47, 7D 55,
7D 58, 7D 83, 7D 88, 8D 12, and 8D 15. They are all located directly above the
bottom aquifer and water resource is guaranteed (see Fig. 6.5(a)).
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(b) 6-month

Figure 6.8: Water cut at well 7D 11. Similar behavior well include: 7D 12. They
are all located close to one of the reservoir boundaries and not much direct aquifer
support for this fault block at early times (see Fig. 6.5(b)).
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(b) 6-month

Figure 6.9: Water cut at well 7D 44. Similar behavior well include: 7D 24. They
are all located close to right side the longer fault and not much direct aquifer support
for this fault block at early times (see Fig. 6.5(b)).
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(b) 6-month

Figure 6.10: Water cut at well 7D 74. Similar behavior wells include: 7D 71, 7D 77,
and 8C 18 (see Fig. 6.5(c)).
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(b) Prediction

Figure 6.11: Initial and predicted water cut at well 7E 41. The blue-colored line on
the second plot is the history-matching result obtained by generalized travel-time.
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(b) Prediction

Figure 6.12: Initial and predicted water cut at well 7D 44. Same legends are used
as Fig. 6.11.
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(b) Prediction

Figure 6.13: Initial and predicted water cut at well 7D 27. Same legends are used
as Fig. 6.11.
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(b) Prediction

Figure 6.14: Initial and predicted water cut at well 7D 55. Same legends are used
as Fig. 6.11.
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(b) Prediction

Figure 6.15: Initial and predicted field wide water cut.
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(a) Initial (b) Year 1968

(c) Year 1972 (d) Year 1975

(e) 6-month 1978

Figure 6.16: Evolution of the mean log kx estimate at layer 34 based on the 6-month
interval data.
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(a) Initial (b) Year 1968

(c) Year 1972 (d) Year 1975

(e) Year 1978

Figure 6.17: Evolution of the mean log kx estimate at layer 8 based on the 6-month
interval data.
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(a) Initial (b) Year 1968

(c) Year 1972 (d) Year 1975

(e) Year 1978

Figure 6.18: Evolution of the mean log kx estimate at layer 3 based on the 6-month
interval data.
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(a) Year 1972 (b) Year 1975

(c) Year 1978

Figure 6.19: Gridlock STD for the log kx estimates at layer 34.
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CHAPTER VII

CONCLUSIONS

In this dissertation, the ensemble Kalman filter (EnKF) was introduced as an al-

ternative method to traditional history matching approaches and applied to several

reservoir applications. The EnKF takes in data sequentially whenever they become

available and its framework is compatible with real-time reservoir monitoring with

data from permeant down-hole gauges. As a Monte Carlo type of method, the cor-

relations between model variables and theoretical data can be estimated from the

ensemble models directly. By so doing, the EnKF avoids the complex calculation

of the adjoint system for the forward problem, which may be required by efficient

gradient based optimization methods. Moreover, the EnKF itself can be coded as a

generic library, which enables transfer among different simulators in a very efficient

way. After the observation history being matched, the EnKF outputs a collection of

updated simulation models and they can be used for uncertainty analysis.

Through a few synthetic case studies, we found that the EnKF is suitable for

data from time series when the changes made to the model parameters and state

variables are both small at every measurement time. However, when the changes in

the variables are large, the EnKF may provide invalid solutions.

Wen and Chen (2005a,b) suggested an intuitive remedy for the EnKF by adding a

“conforming step” after the update step at each measurement time. The conforming

step applies constraints on the state variables by re-initializing the system governing

equations at the previous measurement time with the newly updated model parame-

ters, conditional to data up to the current measurement time, and the state variables,

conditional to data up to the previous measurement time. We showed through both
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linear and non-linear examples that the results from the conforming method are in-

correct. We proposed a new iterative scheme, called ensemble randomized maximum

likelihood filter (EnRMLF) to handle the strong non-linearity at some measurement

times. The new method was proven to be robust and work better than the EnKF.

The EnKF and Conforming EnKF of Wen and Chen was applied to a real data

set from an oil field in east Asia. The first data available for assimilation is 20 years

after the field was first produced. Due to the limited assessment of the reservoir

conditions in the middle of production, there is a large uncertainty associated with

the assumed reservoir initial conditions. However, without taking the uncertainty

into consideration, we found that the history-matching results were affected by the

simplified initial conditions.
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