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CHAPTER I

INTRODUCTION

Purpose

The goal of this endeavor was to provide a detailed account of the

stratigraphy and areal geology of the Warm Springs Ranch and of the

immediately surrounding area. Within the study area are many locations of

interest for the study of vertebrate and invertebrate paleontology. I hope that the

information presented here will aid in the location of fossil-collection and study

sites, as well as contribute general geologic knowledge of interest to the

Wyoming Dinosaur Center. To accomplish this goal a geologic map (Plate I) was

compiled covering the study area. The map includes units from the Phosphoria

through the Frontier Formation. In conjunction with mapping, portions of the

stratigraphic section were measured at various locations within the study area.

Six measured sections were prepared that cover rock units from the top of the

Phosphoria Formation through the top of the Mowry Formation (Plates n through

VII). The resulting map and stratigraphic columns are included as plates in the

pocket of this thesis.

Location of Study Area

The study area is located along the southern edge of the Big Horn Basin

on the north flank of the Bridger Mountains. It is present in the northeast part of



Hot Springs County, Wyoming, east of Thermopolis, Wyoming (Figure 1). The

area is between longitudes 107° 58'30" and 108° 14' and between latitudes 43°

42' 25" and 43° 34' 30". The study area incorporates parts of townships T43N,

R93W; T43N, R94W; T42N, R93W; T42N, R94W; T42N, R95W; T43N, R9SW.

Boundaries of the study area are defined on the south by Buffalo Creek

Road, on the northwest by the Mowry hogback, and on the west by the Bighorn

River. The remainder of the area boundaries are placed at various section lines,

as is shown in Figure 2.

Methods of Investigation

Preparation

Black-and-White 9 inch x 9 inch aerial photographs were obtained covering

the thesis area. The photography was compiled from three flights, in 1994, 1995,

and 1996. Scales of the photographs are similar enough to cause no problems.

All geologic data collected were recorded on mylar sheets superimposed on the

photographs. Thus, no data were put directly on the photos themselves.

For base maps, U.S. Geological Survey 7.S-minute series topographic

maps and 7.S-minute orthographic quadrangles were obtained from the USGS.

Quadrangle maps used were Thermopolis, Red Hole, Coyote Hill, Wedding of

the Waters, Devil Slide, and Blue Hill. The Thermopolis Orthographic
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Quadrangle was not available from the USGS at the fme the field work was

conducted.

Also available were several geologic maps of the area. Two published by

the USGS cover the areas of Wedding of the Waters and Devil Slide

Topographic maps. Another publication of the USGS is an Oil and Gas

Investigations Map by George H. Hom (1963), which depicts the eastern half of

the study area. Two geologic maps prepared as parts of Master-of-Science

theses at University of Wyoming were available for the eastern portion of the

area (Ary, 1958, and Shlemon,1959).

Field Work

Field work was carried out through June and July, 1999. Stratigraphic

sections were measured and described in order to become acquainted with the

stratigraphic column. This was accomplished using a Brunton Pocket Transit

fixed to a five foot Jacob's Staff. Each rock unit was described based on its

bedding characteristics, thickness, sedimentary structures, and Folk Five-Fold

Siliciclastic Rock Classification for sedimentary rocks.

Mapping was begun before measurement of the stratigraphic section was

complete. Mapping was done by stereoscopic analysis of aerial photographs, in

conjunction with inspection of outcrops. Data were recorded on mylar sheets

that covered the individual photographs. The thesis area is transected by

numerous unimproved dirt roads and by many oilfield-access roads. With the

time frame allowed, much mapping was done from the cab of a pick-up truck.



Questionable areas or inaccessible areas were inspected on foot. Data that

were collected on the mylar sheets were transferred from aerial photographs to

orthographic quadrangle maps, then traced directly onto the topographic maps.

This procedure was carried out for each quadrang'le except the Thermopolis

Quadrangle, where these data were transferred directly from the 9 inch x 9 inch

photograph to the topographic map.

6



CHAPTER II

STRATIGRAPHY

Introduction

Rocks of the study area are restricted to the interval between the upper part

of the Permian Phosphoria Formation and the base of the Cretaceous Frontier

Formation. The discussion of stratigraphy will be limited to strata within this

range as they are expressed within the thesis area. The stratigraphic

nomenclature applied in this thesis is outlined in Figure 3.

Triassic System

Dinwoody Formation

The Dinwoody interval was described first by Darton (1906a). He included

the Dinwoody in the Embar Formation, which was composed of all rocks between

the Pennsylvanian Tensleep Sandstone and Triassic Chugwater unit. The name

Dinwoody was first used by Condit (1916) to describe the non-red bed, Triassic

portion of the Embar. Balckwelder (1918) formally named the Dinwoody

Formation as it is constituted now and this definition has been accepted by

subsequent workers (Paull and Paull, 1990).

Within the study area the Dinwoody Formation crops out primarily in two

specific areas: along the axis of the Red Spring Anticline in Red Hole, and along

the axis of the Thermopolis Anticline, near the western boundary of the study

7
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area. The Dinwoody weathers to form rounded hills showing slightly greater

topographic expression than that seen with the lower part of the overlying Red

Peak Formation. Vegetation supported by soils on the Dinwoody consists mostly

of grasses.

The Dinwoody has a sharp contact with the underlying Phosphoria

Formation (Plate IT, Measured Section 1). The writer found no v'isible evidence

of erosion at the contact. Conodonts collected by Paull and Paull (1986) from the

basal part of the Dinwoody (ed those workers to conclude that deposition of the

Dinwoody started in the earliest Triassic. On the grounds of this interpretation,

missing time at the Permian-Triassic disconformity was assigned to the Permian

(Paull and Paull, 1990).

Deposition of the Dinwoody in the study area began with a thin bed (3

feet) of nonfibrous gypsum containing some light gray mudstone. The proportion

of mudstone increases upward, and the upper part of the bed is gypsiferous

mudstone. The gypsum in these units occurs as fibrous interbeds and stringers.

One thick (27.5 feet) gypsum-dominated unit occurs near the middle of the

formation (Figure 4). It is argillaceous and contains fibrous-to-powdery,

laminated gypsum. Above this is 34 feet of mud shale containing 1/8-in.-thick

gypsum crusts and pyrite crystals that weather to limonite. The upper contact of

the Dinwoody is represented by a sharp color change, where the mud shale

abruptly changes to brick red. Many fibrous gypsum crusts are present in the

Red Peak directly above the contact and these crusts continue into the Red

9
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igure 4. Laminated Gypsum of the Triassi Dinwoo y ormaito .
Canteen at base of outcrop for scale. C nt n is appr ximatl y in hes
tall. This photo raph was taken of outcrop near the ase of M a ure
Section 1, at Red Hole.

10
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Peak. The sharp contact between the Dinwoody and Red Peak is ,interpreted to

be conformable (Paull and Paull, 1990).

The formation of evaporites in the shallow basin that existed here in the

Triassic gives insight to the prevalent climate. Gypsiferous evaporites are

generally accepted as having been deposited in areas with arid climates, where

the rate of evaporation exceeds the rate of freshwater influx (Boggs, 1995). The

Dinwoody in the study area is relatively close to the depositional limit found by

Paull and Paull (1990), which parallels the Bighorn Mountains. Considering the

position of the present study area relative to the depositional limit, as well as the

abundance of mud shal:e in the formation, Dinwoody deposition within the study

area probably was in a shallow marine environment, possibly on mud flats. The

middle laminated unit shows evidence of being deposited in deeper water than

the rest of the formation due to the decrease in silt content and the laminated

structure of the gypsum. The laminated unit is likely to have been deposited in a

deeper basinal setting than the rest of the formation, below wave influence and

below the photic zone (Kendall, 1992). Where recorded for Measured Section 1

the Dinwoody formation is 87 feet thick.

Chugwater Group

The Chugwater was defined first as a formation by Darton (1904). The

type locality is along Chugwater Creek in the Laramie Mountains. The original

definition included all red beds between the Pennsylvanian Tensleep Formation

and the Jurassic Sundance Formation. The first division of the Chugwater

11
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Formation was proposed when Williston (1904) used the name "Popo Agie beds"

to describe an interval of outcrop that yielded vertebrate fossils close to the Popo

Agie River near Lander, Wyoming. Williston did not define the unit beyond giving

the approximate position of the interval within the red beds and the thickness of

the unit. The light-colored limestones and claystones, which were near the base

of the early-defined Chugwater, were redefined by Darton (1906) as the Embar

Formation. These rocks have since been renamed as the Permian Phosphoria

and Triassic Dinwoody Formations. A thin limestone unit near the top of the

Chugwater interval recorded by Knight (1897) and Darton (1906b), was named

by Lee (1927) as the Alcova Limestone Member.

Current names of the Chugwater subdivisions were first proposed by Love

(1939), when he subdivided the formation into the Red Peak, Crow Mountain,

Popo Agie and Gypsum Spring Members. All of these names were proposed for

the first time, except for the Popo Agie, which was formally defined for the first

time. Branson and Branson (1941) proposed several revisions to the Chugwater

nomenclature. They attempted to raise the Chugwater to group status and

redefine the members as formations. Due to apparent discrepancies in their

work, the terminology proposed by Branson and Branson (1941) was never

accepted. The last accepted Chugwater revision was made by High and Picard

(1967). In their publication, the Chugwater was raised to group status. The

group was described as being composed of three formations: Red Peak, Crow

Mountain, and the Popo Agie (Figure 3). They included the Alcova Limestone as

a member of the Crow Mountain Formation. Nomenclature of the Chugwater

L2



used in this work is that proposed by High and Picard (1967). The total thickness

of the Chugwater group was recorded in Measured Section 1 as 883 feet.

Red Peak Formation. High and Picard (1967) presented an informal,

lithologic division of the Red Peak. Based on descriptions of these informal units

by Picard (1978), each one has been identified in the Red Peak. These units are

described in Section 1 (Plate II). The silty claystone facies comprises the bottom

205 feet of the formation. This interval is mainly composed of mud shale, but is

siltstone dominated in the upper one third of the unit (Figure 5). This unit was

broadly interpreted by Picard (1993) to have been deposited in a transitional

paralic setting. Definite interpretation of this unit is difficult because of the

sparsity of diagnostic sedimentary structures. The author of this thesis does

concur with the interpretation of a paralic setting, a conclusion based on

sediment type, vertically adjacent depositional settings, and the few visible

sedimentary structures observed.

Overlying the silty claystone facies is the 159-foot-thick lower platy facies.

This interval of the Red Peak consists of mudstone, coarse siltstone, and silty,

very fine-grained sandstone. The sandstone and siltstones are trough cross­

bedded and show evidence of some ripple lamination as well as distinct ripples

on bedding planes. In the upper part of the lower platy facies the siltstones are

plane-bedded. These strata probably are the record of some degree of sea level

fluctuation. The coarse grained cross-bedded units most likely represent near­

shore sedimentation in 5 to 10 feet of water (DaVis, 1992).

13
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Figure 5. Typical appearance of the Red Peak in area of Measured
Section 1.
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The 225 feet of rock above the lower platy facies is Picard's alternating

facies. This interval changes from a coarse siltstone with ripple marks at the

base of the unit to silty very-fine sandstone near the top. Approximately 95 feet

below the upper formation contact is a micrite limestone interval interbedded with

shale. This set of strata forms a clearly visible light-colored "band" on the slope.

Within the upper few feet of the alternating facies are a few hummocky cross­

beds. They are near the transition to the overlying upper platy facies. Overall

this interval shows characteristics of having been an offshore shelf deposit,

possibly deepening upward. The ripple marks are likely to form near the bottom

of the fair-weather wave base at an approximate depth of 30 feet. The

hummocky cross bedding in the upper few feet would form below the fair-weather

wave base under storm influence (Boggs, 1995). An oil seep was found in N1/2,

NE1/4, NE1/4, of sec. 29, T43N, R 93W, coming from the "alternating facies.

The upper platy facies is the last of the informal units in the Red Peak

proposed by Picard. It occupies the uppermost 24 feet of the formation at the

location of Measured Section 1 (Plate II). The rocks of this interval are silty very

fine sandstones with mudstone and siltstone interbeds. The sand and siltstones

contain hummocky cross-bedding and some convolute bedding. A few sets of

four-toed vertebrate tracks wem found on a slab, displaced from a bed within this

interval. These tracks are probably similar to the tracks described by Boyd and

Loope (1984). Those authors concluded that the tracks were produced by an

amphibious tetrapod. The hummocky cross-bedding, convolute bedding, and

few ripple marks suggest that at least parts of this interval were deposited at the

15
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bottom of the fair-weather wave base. Vertebrate trace fossils may suggest that

this was occasionally within the intertidal zone. The total thickness of the Red

Peak Formaion is 605 feet.

The lower contact of the Red Peak appears to be conformable. The

contact was chosen based on the sharp color change and the decreased amount

of gypsum in the Red Peak compared to the Dinwoody. The upper contact with

the Crow Mountain, also appears to be conformable. Similar sediment type and

sedimentary structures are present in the lower Crow Mountain. Picard (1978)

made mention of the high degree of difficulty of placing formation contacts within

the Chugwater Group. The upper Red Peak contact was designated as being

between the interbedded mudstone and siltstone of the Red Peak and the

massive fine sandstone of the Crow Mountain.

The Red Peak Formation crops out continuously along the southern

margin of the study area above Buffalo Creek Road, and is also present in the

Thermopolis Anticline. However, the best exposure of the formation is on the

north flank of the Red Spring Anticline. The lower part of the Red Peak typically

forms a gentle slope that is covered with grass. At some localities this part of the

formation is expressed topographically as low hills and small buttes. The upper

part of the formation usually displays a steeper gradient leading up to the

overlying Crow Mountain, and is typically sparsely vegetated.

Crow Mountain Formation. The lower unit of the Crow Mountain is silty very fine­

grained sandstone, with abundant hummocky cross bedding. This would

suggest that the unit was deposited in a marine setting below the fair-weather

16



-

wave base. The contact of this lower Crow Mountain unit with the Alcova

Member is generally considered to be irregular and slightly disconformable

(Picard, 1967). The lower contact as it is seen in the study area is abrupt, and

undulating, possibly erosional (Figures 6 and 7). The upper Alcova contact is

also erosional, as is demonstrated clearly by granules and pebbles originating

from the Alcova deposited in the base of the overlying Crow Mountain unit

(Figure 8), and by the laterally discontinuous nature of the Alcova. The algal

laminations in the micritic carbonate unit led the author to infer a shallow marine

depositional environment for the Alcova Limestone Member. The Alcova is

reputed to be the best surface and subsurface marker bed in Wyoming, because

it occurs over an enormous area. How much of the Alcova was lost to the

erosional unconformity at the upper contact is not clear. Due to this erosion the

Alcova, likely does not extend to its original depositional limits. The remainder of

the Crow Mountain is very fine-grained sandstone containing indistinct trough

cross beds. The Crow Mountain above the Alcova was likely deposited in a

near-shore, to upper shoreface setting.

Exposure of the Crow Mountain is extensive along the southern margin of

the study area, where it caps high hills and forms major bluffs. Along the north

flank of the Thermopolis Anticline the Crow Mountain forms much less extreme

bluffs and cliffs, but displays excellent outcrop nevertheless. The Crow Mountain

Formation crops out well in the north flank of the Red Spring Anticline, where it

was examined for Measured Section 1 (Plate IT). The formation weathers to

form nearly vertical bluffs and has an abundance of cedar trees.

17
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Alcova Limestone Member

Figure 6. Uppermost Red Peak Formation and contact with the
Crow Mountain Formation. The Alcova Limestone Member is the thin
light colored band on the cliff pointed out by the arrow. Outcrop located
on the north flank of Red Hole.
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Figure 8. Photograph of Crow Mountain sandstone unit directly
overlying the Alcova Limestone. Clast of Alcova are inclu ed in the
overlying sandstone unit. Pen is appro. inc s long.
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The Alcova Limestone Member is discontinuous within the thesis area. It is seen

thinning toward the west along Buffalo Creek Road. The erosional unconformity

at the top of the member is responsible for its inconsistent occurrence. The

Alcova thins toward the southwest part of the study area. The Crow Mountain

Formation, including the Alcova limestone Member, is 126 feet.

Popo Agie Formation. The Popo Agie is made up of interbedded sandy

siltstone and mudstone. Siltstones in the upper half of the formation are heavily

burrowed. One major clue to interpreting the depositional environment is the

presence of the zeolite mineral analcime reported by High and Picard (1965).

Those authors interpreted the analcime to have originated from volcanic deposits

in a lacustrine environment. Some of the siltstones and sandy siltstones in the

upper part of the Popo Agie within the thesis area display fluvial channel

geometry. Based on observations made by the writer, the Popo Agie Formation

of the Warm Springs Ranch area is interpreted to have been deposited in a

dominantly lacustrine environment with some fluvial influence. This interpretation

is roughly consistent with that made by Picard (1978), and other workers who

made similar interpretations based on the presence analcime. The thickness of

the formation amounts to 152 feet at the location of Measured Section 1. The

Popo Agie typically weathers to form a slope above the Crow Mountain Bluff

(Figure 9). It supports junipers and grasses as vegetative cover.

21
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Jurassic System

Gypsum Spring Formation

The Gypsum Spring was defined by Love (1939) as a member of the

Chugwater Formation. It has since been classified as Middle Jurassic and raised

to formation status by Love et a!. (1945).

In the study area the Gypsum Spring is made up of an upper limestone

member and a lower gypsum and red claystone member (Figure 9). The

formation is bounded by the J 1 unconformity at the base and the J2 unconformity

at the top (Schmude, 2000). The gypsum and red claystone member can be

divided into an interval of mostly massive, white powdery gypsum with a few

mudstone interbeds in the lower part and an interval of medium brick red mud

shale with gypsum nodules and veinlets that decrease in frequency upward. At a

few locations in the area the gypsum interval is brecciated. Schmude (2000)

proposed that this is due to recent groundwater dissolution and collapse. To

support this conclusion he cites the lack of a brecciated facies on subsurface

electric logs. The gypsum interval represents deposition in a sabkha of marine

evaporite facies. Conditions were altered for the upper part of this interval to

allow for dominantly clastic deposition.

The upper limestone member is composed of three separate limestone

units with interbedded calcareous shales (Measured Section 2, Plate ill). These

units have been termed by Schmude (2000) as LS1, LS2, and LS3 from bottom

to top, respectively. LS1 is micritic limestone with wavy bedding and abundant

2'2
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Gypsum pnn

Figure 9. Jurassic Gyp um S ri gout rop. or ation contacts are
representd by the yellow lines. Informal member ound ries r
represented by the red lines. Outcrop located on the hill no h of W.
Warm Springs Oil Field.
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algal lamination. In the southwest part of the study area a 3-inch thick coquina of

intact gastropod shells was found near the top of the unit. LS2 is micrite

containing bivalve impressions on some bedding planes. LS3 is a very light gray

micrite that weathers to near white. It is devoid of macrofossils throughout the

study area. The Limestone member represents shallow marine deposition in an

intermittently silled basin. Carbonate deposition was occasionally slowed by an

increase in clastic influx.

The lower contact of the formation was placed at the first occurrence of

massive bedded gypsum. This surface is the J1 unconformity, illustrated in Plate

III (Measured Section 2). The upper contact is placed at an erosion surface

along which chert pebbles, removed from the limestone member, are found

(Figure 10). This second surface is designated the J2 unconformity surface

(Schmude,2000). Above the second disconformity is the Middle Jurassic

Sundance Formation. The Gypsum Spring where measured for Measured

Section 2 is 144 feet thick.

Gypsum Spring outcrop is usually found on the slopes of hills and

hogbacks capped by Cloverly Formation conglomerates. The best exposures

are present in the southwest part of the study area and on the north flank of the

Red Spring Anticline. Quality of outcrop is usually aided by the lack of vegetative

cover. Vegetation, where present, usually consists of sparse grasses.

24
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Figure 1O. rosional contact between Jurassic S ndance a
Gypsum Spring formation . Black chert pebbles, pical of h
are hi hlighted in the photo.
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Sundance Formation

Darton (1899) first applied the name Sundance to a sequence of

fossiliferous marine shales, sandstones, and red beds overlying the Spearfish

Formation and underlying the Morrison Formation near Sundance Wyoming.

Darton recognized the Sundance in the Bighorn Basin in 1906 as a marine

sequence overlying the Chugwater Forma1ion. Neely (1937) identified two

informal subdivisions of the Sundance that he termed "upper" and "lower"

Sundance Formation. This informal subdivision has become widely used.

A formal type section was not identified until 1947, when Imlay proposed a

section northeast of Spearfish, South Dakota. Pipiringos (1968) and Imlay

(1947) have made further subdivisions of the Sundance. Pipiringos'subdivisions

from south-central Wyoming and Imlay's member names from South Dakota are

difficult to transfer to northern Wyoming, but several are currently accepted,

Imlay's (1980) Sundance subdivisions in the Bighorn Basin include the Oolitic

Limestone, Stockade Beaver Shale, and Hulett Sandstone Members of the

"lower" Sundance and the Red Water Shale Member of the "upper" Sundance.

In the southeast part of the basin, the member names for the "lower"

Sundance are difficult to apply. This difficulty results form lateral facies changes

and formation thinn'ng caused by the presence of the newly proposed Black

Mountain High (Schmude, 2000)(Figure 11), Subdivision of the Sundance for the

purposes of this report will not extend beyond the "upper" and "lower" Sundance

designations.
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Fig re 11. The location of he Black Mountain Hi h nd the heri n
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"Lower" Sundance deposition began as the area that was transgressed

from north to south by the second Jurassic sea. The presence of the Black

Mountain High had significant influence on the depositional environments in the

basin during the Middle Jurassic. Sundance sediment was initially deposited on

the J2 unconformity surface, which was generated after the withdrawal of the

Gypsum Spring sea. The J2 had its most pronounced effects on the crest of the

Black Mt. High, where the upper limestone member is completely removed in

some areas.

As the "lower" Sundance sea began to transgress the flanks of the high,

an interesting interplay of depositional environments developed which is

expressed in the thesis area. The facies accumulated include a laminated, platy

limestone facies, a cross-bedded oolitic limestone faces, a chert conglomeratic

faces, a interbedded sandstone and shale facies, and a large-scale trough cross­

bedded, quartz-arenite sandstone facies. In some cases these facies can be

seen interfingering. Figure 12 shows that the sandstone facies interfingers with

the oolitic limestone facies north of the Warm Springs Oil Fields. The sandstone

facies is present sporadically but is included in Measured Section 2 (Plate ill), as

Js Unit 1. The platy facies was only found to occur on the eastern edge of the

study area on the northeast flank of the Wild Horse Butte Anticline. The chert

conglomeratic facies is made-up of chert pebbles that typically accumulate at the

J2 unconformity. They Originate from chert nodules that occur in the Gypsum

Spring Formation. The interbedded sandstone and shale facies represents

intertidal conditions on the flank of the Black Mountain High. The oolitic facies is
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Figure 12. I terfingering of the ooli ic lime ton and eolian sandst ne
facies of the basal Sundance arm tion. Outcro I cated n h of the W.
Warm Springs Oil ield.
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the most common, outcropping over most of the area (Figure 13). Above the

oolite facies, the "lower" Sundance becomes relatively uniform throughout the

area. The sequence leading up to the J4 unconformity, which separates the

"upper" from the "lower" Sundance, becomes interbedded clay shale, very fine

sandstone and silty shale. The sandstone of this interval contains trough cross

beds and ripple marks. One sandstone body displays ripple marks and vertical

burrows with meniscus structures. At the locaton of Measured Section 2 the

"lower Sundance amounts to 107 feet thick.

The boundary between "lower" and "upper" Sundance has been identified

as the J4 unconformity by previous authors. This surface represents erosion that

occurred after the retreat of the "lower" Sundance sea due to the uplift of the

Sheridan Arch (West, 1980). It is not clear how much of the section was lost to

J4 erosion in the Warm Springs Ranch study area. The transgression of the

"upper" Sundance sea is not well evidenced by the lithology. The best indicators

are the prolific occurrence of belemnite fossils and presence of glauconite in the

clay shale above the contact. The "upper"l"lower" boundary was placed at the

base of the belemnite-bearing interval. Evidence of an unconformity was not

observed by the author at any horizon within the Sundance.

Above the belemnite unit the coarsening upward sequence of the "upper"

Sundance becomes evident. Approximately 120 feet below the upper Sundance

contact with the Morrison Formation, the marine shales become more resistant,

forming near vertical outcrop. Within this interval sandstone and sandy shale

interbeds appear that are burrowed and contain oscillation ripples on bedding

30
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Figure 13. Oolitic limestone facies of the basal Sundance.
bedding is visible. Pocket knife for scale. Outcrop located no
the West Warm prings Oil Field.
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planes. Molluscan shell hash occurs on some of the sandstone bedding planes.

Some coquina flags are developed, made up of both intact and broken bivalve

fossils. The frequency of the shell hash and coquina flags increases upward.

The marine shale of the Sundance ends abruptly at the irregular contact with the

upper glauconitic sandstone (Plate III, Measures Section 2). The irregular nature

of the contact is due to the presence of load casts bUlging into the underlying

shale unit. Upward from the load casts, the sandstone displays abundant

bimodal trough cross bedding. In the upper part of this unit, some herringbone

cross bedding is present along with ripple marks and continued troughs. The

uppermost unit of the Sundance is platy, friable, glauconitic, fine sandstone. This

unit has a sharp,. conformable contact with the Upper Jurassic Morrison

Formation. The Sundance-Morrison boundary is marked by an abrupt

disappearance of glauconite. The "upper" Sundance is 212 feet thick at the

location of Measured Section 2.

The start of Sundance deposition in the study area is represented by four

distinct facies, as mentioned previously. The oolite facies represents the

existence of a shallow marine environment with agitated water conditions and

strong bottom currents (Boggs, 1995). These conditions were probably a result

of wave action as indicated by the presence of cross bedding in this unit at some

locations. This facies interfingers with the cross-bedded sandstone facies. The

presence of large-scale trough cross beds through most of this facies, as well as

the exceptionally good sorting of the sandstone lead the author to interpret that

an upper shoreface or, perhaps, eolian setting is the primary depositional
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environment for this facies (Figure 14). In the area of MS 2 (Plate III) this unit

displays a decrease in size of trough cross beds in the upper part of the unit. This

may indicate that the dune field was transgressed with marine waters, reworking

some of the eolian sand in an upper shoreface setting for a short time. In the MS

2 area, the contact between the sandstone facies and the overlying clay shale is

sharp, which would indicate a sharp sea level rise which ended conditions

producing the shoreface environment.

The laminated platy facies, which occurs on the east edge of the area,

accumulated in a lagoonal type of setting, where deposits were protected from

wave influence (Figure 15). The laminated bedding, platy nature (splits easily

along bedding planes) and lack of sedimentary structures are evidence for this

interpretation. The only fossils found in this facies are rare fish scales. In all

parts of the study area the basal facies is in sharp contact with the overlying clay

shale, silty shale, and sandstone units of the "lower" Sundance.

Interbedding of facies in the "lower" Sundance indicates some sea level

fluctuation. The ripple marked, vertically burrowed Js Unit 3 of MS2 (Plate ill)

may represent a shallowing to tidal conditions followed by a return to deeper

marine silty shale deposition. This continued until the regression of the "lower"

Sundance sea as indicated by the J4 unconformity. Subsequently the surface

was transgressed by the "upper" Sundance sea, thus covering the area in an

open marine depositional setting. Abundant belemnite fossils in clay shale attest

to open marine conditions.
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Eolian facies of the bas I Juras ic undan e
Formation. Large scale wedge set tr ugh cross-beds are vi ible.
This outcrop is located just north of th Ea t Warm S rings il ield.

34



-

BUFFALO CREEK AREA
HEASTERH PMT 0 61\10 AREA

n e.
far eastern art of the study ar a. Pack i a

35



-

The slow retreat of the "upper" Sundance sea is represented by Js Unit 6

of MS2 (Plate ill). Coarsening upward of terrigenous clastic sediment size and

increase upward of tempestite shell hash and coquina indicate steady shallowing

upward through the section. Load structures at the base of the glauconitic

sandstone unit indicate rapid deposition of the basal bed of the unit. This

shallowing upward pattern continues to be displayed throughout the sandstone

unit by the sedimentary structures. Bedding features indicate shallow subtidal

conditons upward until Js Unit 8, where the sandstone becomes completely

intertidal. When the Sundance sea no longer controlled sedimentation in the

area, the Morrison sediments began accumulating conformably in continental,

coastal plain environments, on top of the marine Sundance sediment.

Exposures of the Sundance Formation are numerous along the southern

margin of the thesis area, particularly in the hills north above Buffalo Creek Road.

Outcrop is also good all along the north flank of the Thermopolis Anticline and

the north flank of the Red Spring Anticline. Topographic expression can be

dramatic, where the upper glauconitic sandstone is sufficiently exposed. This

unit typically forms a significant dull green cliff. Below this cliff there are steep

shale slopes or low rounded hills, where the Sundance shale units outcrop over

large area. Grasses are common growth on the more shaly outcrop, whereas

the sandstones support sparse growth of cedars.
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Morrison Formation

Eldrige named the Morrison Formation in 1896, for exposures near

Morrison Colorado. Waldschmidt and LeRoy (1944) redefined the type section to

be the roadcut where the Alameda Parkway passes through the Dakota Hogback

west of Denver. The first description of Morrison rocks done in the Bighorn Basin

was by Darton (1906a). His utilization of the Morrison name was based on the

similarity between the interval he observed in Wyoming and the Morrison he had

studied in Colorado. No formal subdivision has been applied to the Morrison

Formation of the Bighorn Basin. The member names as they are defined in

western Colorado and New Mexico do not extend into northern Wyoming. The

Morrison lithofacies of the study area, like the Morrison elsewhere, are quite

laterally variable. The most significant depositional systems observed within the

thesis area are described below.

Morrison deposition began with the retreat of the "upper" Sundance sea.

Terrestrial, coastal plain depositional environments accumulated on top of the

underlying barrier island and tidal flat facies of the uppermost Sundance

Formation. This produced a conformable contact, marked primarily by the

disappearance of glauconite that is so prevalent in the "upper" Sundance

Formation. Bjoraker and Naus (1996) measured six stratigraphic sections

through the Morrison of the Warm Springs Ranch and divided the formation into

three generalized informal units, based on a similar type of division done by

Ostrom (1970). They identified a lower calcareous mudstone unit, a middle fine­

grained, quartzose sandstone unit, and an upper calcareous mudstone unit with
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sandstone interbeds. This division best applies in the area of the Wyoming

Dinosaur Center (WDC) dig sites and in the southwest corner of the thesis area

where Bjoraker and Naus (1996) did their work. The application of these informal

units becomes more difficult as one moves away from this part of the current

study area. Depositional environments are seen in other parts of the area that

are not present in the southwest part. The Morrison was measured and

described for this work in the same area that Bjoraker and Naus (1996)

conducted their study (Measured Sections 2 and 5, Plates III and VI) and their

units are identifiable on the stratigraphic columns presented here.

The basal Morrison of MS 5 and MS 6 (Plates VI and Vll) displays trough

cross-bedded, very fine sandstone. This part of the Morrison at MS 2 (Plate ill)

is an interval of nonfissile mud shale with a few fine sandstone interbeds. Some

of the interbeds contain trough cross beds. North of the dig sites, most notably

on the north flank of the Thermopolis Anticline, the basal Morrison is expressed

as a white, large-scale trough cross-bedded sandstone. This sand body has

been called the Morrison "eolianite" by some previous workers (Figure 16). It

was mentioned by Kvale (1986, p. 37) in his sutdy of the Morrison-Cloverly

interval along the northeastern margin of the basin. It has also been identified on

subsurface electric logs in regions north and northeast of the study area

(D. Schmude, pers. comm.). Where the lower Morrison is occupied by

sandstone, this lithology is followed by nonfissile mud shales and often with

some sandstone interbeds. This description also applies to the basal Morrison in

areas where the basal sandstones are not present.
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Figure 16. Morrison eolianite uni as een in the no h rn par f t
study ar a. This outcrop i locate n ar t e c nter of
ec. 28, T4 N 94W
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In most observed parts of the area, a trough cross-bedded, middle

sandstone unit is present in the Morrison. This sandstone interval displays

sedimentary structures indicative of fluvial channel deposits (Figure 17).

Included in MS 5 (Plate N) is an individual sandstone unit (Jm unit 7) within the

sandstone interval that has a very similar makeup to the sandstone unit of the

Bone Bed (BB) dig site. It was also found that this sandstone is at the same

interval within the Morrison as the BB dig site. Workers for the woe claim to

have identified this same sandstone unit 0.25 mile to the south, where the

Morrison outcrops on the south slope of the dig site hill above Buffalo Creek

Road. Being of paleontologic significance, reasonably laterally continuous, and

an identifiable unit separate from those directly adjacent to it, this sandstone unit

will be referred to as the BB Sandstone for the remainder of this report.

Overlying the BB Sandstone is the upper calcareous mudstone interval.

This lithofacies is present to some degree throughout most of the area, but are

better observed at the WOC dig sites. For approximately 36 feet above the BB

Sandstone the section contains an interval of mud shale interbedded with

nodular limestones and marls. The carbonate-rich beds range from 5 to 9 inches

thick (Figure 18). It is within this carbonate mudstone interval that the majority of

the woe dig sites have been discovered. Vertebrate fossil material has been

found contained in both the carbonate-rich beds and the carbonate poor beds. In

Jm Unit 8 of MS 5 vertebrate bone materia,1 was preserved in a very well

indurated carbonate mudstone. Found in association with the bones of this

interval are spherical calcite concretions approximately 3/8 inches in diameter,
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Figure 17. Lacustrine carbonate beds and interbe ded mudstones of he
upper orrison Formation. Hammer near center of photo for scale. This
outcrop is located at the Wyoming ino aur Center Digsite.
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Figure 18. BB andstone below the upper c Icare
w ich contains the nodular lacustrine carbonat s.
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that display radial structure. The origin of these spherulitic structures is not

known. Coalified plant debris is also common in this interval. Occasional

siltstone lenses are developed within the carbonate-poor beds. The carbonate­

rich beds disappear vertically, rather abruptly, and overlying them are nonfissile

mudstones with possible caliche nodules and glaebules occurring in the lower

part of this unit.

The upper calcareous mudstone unit changes laterally into at least three

other faces. Closest to the location of MS 5 (Plate N) and visible from the dig

sites is the channel sandstone facies (Figure 19). This facies is described as

Unit 5 of MS 6. Its channel fill is a fine to medium-grained quartz-arenite with few

visible sedimentary structures. It is developed at approximately the same interval

as the upper calcareous mudstone. This, in combination with the close lateral

proximity of the channel sandstone, leads the writer to conclude that the fossils of

the WOC dig sites are located in facies genetically associated with this fluvial

depositional system.

A relatively thick coal deposit occurs at near the same interval as the

channel unit. The coal is seen several miles to the northeast of the channel

outcrops on the north flank of the Thermopolis Antidine. The coal unit was not

examined in detail by the writer but may provide a study topic for additional

research. Further still to the northeast in the area of Wild Horse Butte, red bed

shale and mudstone serve as the lateral equivalent of the coal and channel

facies. The red beds are best demonstrated in sec. 34 of T 43 N, R 93 W.
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undance Forma ion

Figure 19. Morrison interv I where measure f r Section 6 (Plate VII).
This outcrop is located approximately one mil 0 hast of the W
digsite .
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Regarding the geologic history of the Morrison, the first Morrison terrestrial

sediments were deposited on top of tidal flat facies of the Sundance Formation.

In the southern part of the study area, meandering channels were present in a

broad flat alluvial plain and transported water and sediment to the northward

retreating Sundance sea. In the north part of the study area, coastal dune fields

are represented by the basal Morrison eolianite sandstone. As Morrison

deposition continued, soils developed on the flood plains of meandering channel

systems present in the lower coastal plain (Dodson, et aI., 1980). Some

carbonate elements of the calcareous mudstone facies may have been deposited

in lakes on a fluvial floodplain.

The limestones, marls, and mudstones present in the upper part of the

section are likely lacustrine in origin. The thin nodular carbonates interbedded

with thin mudstones may lend weight to the idea of a seasonally alternating

humid climate during Morrison deposition, as proposed by previous authors

(Ostrom 1970, Dodson et aI., 1980). Aquatic plants can cause calcite to

precipitate by removing carbon dioxide from fresh water. If a yearly or seasonal

climatic fluctuation modified the rate or amount of photosynthesis by aquatic

plants, particularly blue-green algae or planktonic algae, this would affect the

amount of carbonate produced in a lacustrine setting (Boggs, 1995). These

lakes formed probably seasonally on a broad, low relief floodplain that also

contained swamps and were dissected by river channels. Plant life was

abundant, as is shown by the development of coal deposits, and the abundance

of coalified plant material in the BB Sandstone and units directly above. As the
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lakes, ponds and swamps dried up during more arid climatic episodes, soils

developed.

Due to the irregularity of the contact, it is uncertain as to how much time

was lost due to the erosional unconformi.ty at the Cloverly-Morrison boundary.

The contact is marked by an abrupt change to the conglomeratic sandstone units

of the basal Cloverly. These conglomerates represent braided stream deosits, a

depositional style not seen in the Morrison of northwestern Wyoming (Figure 20).

The Morrison Formation has widely distributed outcrops throughout the

area, typically occurring on south facing slopes beneath a bluff of lower Cloverly

conglomerate. The best vertical exposure of the interval is where it has been cut

for the extraction of vertebrate fossils by the WOC. Good Morrison Formation

outcrop occurs all along the north flank of the Thermopolis Anticline, and on the

Red Spring Anticline. Where measured in the southwestern part of the study

area the formation shows some variance in thickness. At the 'location of

Measured Section 2 the Morrison was found to be 236 feet thick. At MS 5 the

formation measured 208 feet thick, and at MS 6 186 feet thick. The Morrison in

the area is known for its prolific growth of cedar trees and support of grasses on

the more muddy portions of the interval.
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Figure 20. Tr ugh cra s-bedded, conglomeratic sandstones of the basal
Cloverly. Marker is apprax. 5 inches long.
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Cretaceous System

Cloverly Formation

The Cloverly Formation was first defined by Darton (1904) for an interval of

conglomeratic sandstone and mudstones overlying the Morrison on the east side

of the Bighorn Basin. The interval of sandstone, siltstone, and marine shale

above the presently-constituted Cloverly Formation has, at times, been included

in the Cloverly by some authors. They termed this upper interval the "RUSty

Beds". In this report the upper Cloverly contact is placed at the top of the highest

nonfissile mudstone unit, below the Rusty Beds. The "Rusty Beds" of this report

are separated out as the Sykes Mountain Formation based on stratigraphic

position and nature of the upper and lower contacts.

The Cloverly Formation of the study area typically invloves a lower

conglomeratic sandstone unit. This basal unit varies in thickness form 50 to 90

feet. In the area of Measured Section 3 (Plate IV) it can be separated into a

lower chert pebble conglomeratic sandstone and an upper nonconglomeratic

sandstone. Both intervals display abundant large-scale trough cross bedding.

The local increase in thickness of this unit may be due to greater incision into the

Morrison by the fluvial processes that eventually deposited the conglomerate. In

some locations mud drapes and mud rip up clasts are present in the base of the

conglomeratic sandstone.

In sharp contrast to the basal conglomeratic sandstone is the ovelying

interval of red, nonfissle mudstone (Figure 21). At the location of Measured
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Figure 21. Cloverly nonfissile mudstone interv I. Basal c n lomerat
visible on left, and y e Mountain Formaiton visible on up eight.
This roadcut is located approximately 3 miles north of hermo oli on U.S.
Highway 20.

49



Section 3 (Plate IV) this interval contains at least one interbedded sandstone

body that laterally develops into a fluvial deposit that scoured into the underlying

sandstone unit. Some carbonate debris was found weathering out of the slope.

Its origin is most likely either lacustrine limestone or a well-developed caliche.

Overlying this mudstone unit is a heavily trough cross-bedded sandstone unit.

Above this is another thinner interval of dark red nonfissile mudstone.

The upper contact of the Cloverly occurs at the top of the upper mudstone

unit. It is marked by an abrupt facies and color change to gray, marine siltstone

and shale. It is likely that when the Cloverly was transgressed by the Cretaceous

sea that deposited the Sykes Mountain, some erosion occurred at least as a

revinement surface. The contact does not appear to be irregular and it is

unknown to what degree the contact is unconformable in this area.

The lower sand and conglomeratic sandstone units of the Cloverly

represent deposition in braided streams, possibly on a braid plain or alluvial fan.

Locally, in the area of Measured Section 3 (Plate IV) there was better channel

development and inci'sion. When braided stream deposition ended, soils

developed on the alluvial fan. During this time small stream channels were

present and possibly lakes as well. Larger-scale channel deposition resumed

throughout the area, as seen with the upper sandstone unit. Soils again

developed above these upper channel deposits until they were transgressed by

the oldest element of the Cretaceous interior seaway, which initiated deposition

of the Sykes Mountain Formation. The thickness of the Cloverly Formation was

found to be 384 feet at the location of Measured Section 3. Aside from the basal
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conglomeratic unit, Cloverly outcrop is poor in most of the study area. The lower

unit, however, caps many hogbacks and some of the highest points of the area.

The best Cloverly exposure is in the slope along Carter Ranch Road and in the

north flank of the Red Spring Anticline.

Sykes Mountain Formation

The Sykes Mountain rock units are the first representation of Cretaceous

marine transgression of the area. This formation was first separated from

Darton's (1906a) Colorado Formation by Washburn (1908). Washburn referred

to thinly bedded sandstone and shales of the Lower Colorado Formation as the

"Rusty Beds" due to the abundant limonitic concretions in the unit. They were

interpreted as indicating the basal transgressive unit of the Cretaceous interior

seaway (Minielly, 1998). Washburn also proposed the presence of an

unconformity at the base of the Rusty Beds. When Lupton (1916) defined the

Thermopolis Shale, he included all sedimentary rocks from the top of the Cloverly

to the base of the Mowry Formation. Lupton justified grouping the Rusty Beds

with the Thermopolis due to the gradational nature of the contact between the

two intervals. Moberly (1956, 1960, and 1962) established the current

stratigraphic terminology used in the basin. In his 1960 work he first proposed

the name Sykes Mountain Formation for the Rusty Beds. The first modern,

detailed work completed on the sedimentology of the formation was carried out

by Soliman (1988).
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The lower contact of the Sykes Mountain is marked by an abrupt change

from the nonmarine facies of the Cloverly to various marine facies of the Sykes

Mountain (Figure 22). Ostrom (1970) placed the contact based on a change

from parall'el laminted gray shale to the blocky and variegated mudstones of the

Cloverly. The contact is generally considered to be unconformable.

Previous authors have cited the presence of marine facies in sharp

contact with subjacent nonmarine facies and thus interpreted erosion to have

occurred at the contact. The Sykes Mountain facies directly above the contact

are not the same throughout the area. In the southern part of the study area, at

Measured Section 3 (Plate IV), a sharp change occurs from the blocky dark red

to maroon mudstones of the Cloverly to fissile shales and siltstone of the Sykes

Mountain. In the northwest part of the study area near Measured Section 4

(Plate V), the contact is marked by an abrupt change from the Cloverly

mudstones to a tabular-planar cross-bedded sandstone body in the Sykes

Mountain Formation. With both areas the Sykes Mountain displays one

prominent sandstone body that is cross-bedded, has asymmetric ripple marks on

bedding planes, and sometimes contains hummocky cross bedding. Directly

above this sandstone is clay shale that appears to coarsen upward into burrowed

smstones. Two to four of these relatively short coarsening upward sequenced

are typically present.

The upper Sykes Mountain contact is difficult to determine precisely. It is

generally considered to be gradational and conformable. Moberly (1960) placed

the contact at the top of the uppermost siltstones. This location of the contact is
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Figure 22. Contact between the Cloverly and Sykes Mountain
Formations shown by the yellow line. The contact is placed on top
of the last nonfissile reddish mudstone. Approximately 3 mile nort
of Thermopolis on U.S. Highway 20
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feasible in the area of Measured Section 4 (Plate V), where shortly above the

uppermost siltstone, the shale becomes a much darker gray and consistently a

clay shale. In the area of Measured Section 3 (Plate N) the contact is more

difficult to place. The coarsening upward sequences are less well developed.

The gradation from Sykes Mountain to Thermopolis occurs over a relatively large

interval here. The contact is placed approximately in the location were the shale

changes from dominantly medium to light gray and brown and silty, to dark gray,

clay shale.

As stated earlier, the Sykes Mountain represents the first transgression of

the Cretaceous interior seaway into northwestern Wyoming. This formation

shows evidence of deepening into the Thermopolis Shale. The mud drapes,

burrowing, and cross bedding in the sandstone bodies indicate a tidal origin

(Boggs, 1995). The transition to clay shale above the sandstone body and

individual siltstone beds indicate a rather abrupt deepening at the top of the

sandstone. Above the sandstone a few shallowing upward cycles are evident as

sediment becomes more coarse upward through each cycle. When coarse

sediment (sand and silt) are no longer present, the transition to the Thermopolis

shale is complete. The Sykes Mountain is approximately 90 feet thick.

The best exposures of the Sykes Mountain Formation are in the hills on

the north side of Carter Ranch Road, and in its outcrop area north of the Lucerne

Anticline and north of the Red Spring Anticline (Plate I).
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Thermopolis Shale

Lupton (1916) first applied the term Thermopolis Shale to the strata

between the Cloverly and Mowry Formations. Darton (1904) had previously

assigned these strata to the Benton Formation. Darton (1906a) reassigned them

to the Colorado Formation. Lupton's (1916) subdivision of the Colorado became

the Thermopolis, Mowry, and Frontier Formations. Lupton's (1916) Thermopolis

Shale included the Rusty Beds, which were broken out later by Moberly (1960)

as the Sykes Mountain Formation. Hewett and Lupton (1917) named the Muddy

Sandstone unit, which occurs near the middle of the Thermopolis Shale.

As previously discussed in this chapter, the contact between the

Thermopol'is Shale and the underlying Sykes Mountain Formation is difficult to

place due to its gradational nature. This contact represents a deepening from

the shallow marine conditions responsible for Sykes Mountain deposition, to the

deeper, more open marine environments, where the Thermopolis accumulated.

The Thermopolis Shale is made up of thick, dark gray shale units that are

separated near the middle by the Muddy Sandstone Member. The Muddy

Sandstone is a quartz-arenite with planar cross bedding, some plane bedding

and some asymmetrical ripples. The member is heavily burrowed both

horizontally and vertically.

The majority of the Thermopolis represents open marine to deep marine

deposition. A shallowing occurred during the time of Muddy Sandstone

deposition. Based on the abundant sedimentary structures described earlier the

Muddy is interpreted to have been deposited in a subtidal to intertidal setting
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(Boggs, 1995). The base of the MUddy in parts of the Wind River and Powder

River basins is erosional. Hence it is likely that the base of the Muddy

Sandstone is a disconformity surface everywhere in northern Wyoming.

Following the Muddy there is a return of open to deep marine sedimentation as

was seen below the Muddy. The upper contact of the Thermopolis is gradational

in to the Mowry Shale. The Thermopolis Shale was found to be 495 feet thick at

the location of MS 4. Topographic expression of the Thermopolis is generally

that of a low-lying, flat valley floor. The Muddy Sandstone does generate small

hogbacks in areas where it is sufficiently thick. The Thermopolis is usually wen

grassed with no trees, but abundant sage.

Mowry Shale

Lupton (1916) defined the Mowry Shale Formation at the same time as the

Thermopolis and Frontier Formations. The Mowry is bounded on the bottom by a

gradational contact with the Thermopolis Shale (Figure 23). The upper boundary

between Mowry and Frontier formation is placed at the Clayspur Bentonite

(Figure 24). The Clayspur separates the Mowry from the first of the coarsening

upward sequences of the Frontier Formation. The transition from Thermopolis to

Mowry is marked by coarsening of the sediment from clay to silty clay and silt.

The Mowry is also significantly more indurated than the Thermopolis. The slope

of the Mowry is banded in light and dark stripes. The darker colored intervals

tend to be slightly silty, clay shale with abundant fish scales; these grade into the

lighter interval which tends to be more silty, more resistant, and iron stained with
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Figure 23. Approximate contact betwee th Thermopolis Shale n
awry Shale. The upper par of the Thermopolis Shal forms valley flo rs

and is rimmed by the more resistant Mowry hale. Outcro I cated 0 the
north flank of the Red Spring Anticline.
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Figure 24. Clayspur Bentonite marks the upper contact of the Mowry
Shale Formation. The first coarsening upward sequence of the overlying
Frontier Formation can be seen capping the hill. Outcrop located
approximately 4.5 miles north of Thermopolis on ast River Road.
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rare fish scales. Near the top of the Mowry definite siltstone beds appear that

contain burrows.

The Mowry overall represents a time of mild sea level fluctuation, This is

indicated by the alternating intervals of dominantly clay shale with abundant fish

scales, which grade into more silty intervals. The upper Mowry evidences a

more drastic fluctuation as shown by the better-developed siltstone beds and

fish-scale-rich, clay shales representing shorter intervals. Some of the siltstones

may have been deposited as shallow as in the intertidal zone as evidenced by

the presence of mud drapes. The Mowry thickness at the location of MS 4 is 384

feet.

The Mowry of the study area is not vegetated, probably partially due to the

steep slope where it crops out. The Mowry fonns a significant hogback along the

north edge of the study area, where exposures are the best and most complete.
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CHAPTER II

STRUCTURAL GEOLOGY AND TECTONIC INFLUENCES

Development of the Bighorn Basin

The Bighorn Basin is an asymmetric, intermontane basin of the Rocky

Mountain foreland. The tectonic history of the Bighorn Basin is highly complex

due to various tectonic and sedimentary events that took place during the

Cordilleran and Laramide orogenies.

The Bighorn Basin, like most other Rocky Mountain basins, developed

along faults and zones of weakness in basement rocks, associated with the

many previous mountain-building episodes that had occurred on the western

part of the craton (Haun and Kent, 1965). The basin as we know it today

developed during the Laramide Orogeny of Late Cretaceous and Early Tertiary

time. The basin trends northwestward, is ovate, and is bounded by the Bridger

Range, and Owl Creek Mountains to the south, the Absaroka and Beartooth

Ranges to the west, and the Pryor and Bighorn Mountains to the east and

northeast (Figure 25). The northernmost boundary is formed by the Nye-Bowler

lineament, a folded and faulted zone in southern Montana. The basin is

approximately 120 miles long and 90 miles wide at its broadest point. The

Bighorn Basin can be classified based on Dickinson 1974 basinal classification

as a Foreland Intermontain Basin (Dickinson, 1974). Many of the Rocky

Mountain Laramide basins are defined likewise. The Miall basin classification

would categorize the Bighorn Basin as a Foreland Basin (Miall, 1990).

60



Montana----------------
Wyoming

Sheridan•

Figure 25. Major bounding features of the Bighorn Basin

61



The Laramide Orogeny, the last major mountain building episode to affect

the area, was most intense in northern Wyoming during the Paleocene Epoch.

This is when the peripheral mountain uplifts began rise. Many new anticlines

were developed and older structures underwent additional uplift. It was during

this time that the Nye-Bowler lineament developed (Thomas, 1965). According

to Curry (1983) the mode of mountain formation in the Bighorn Basin did not

involve direct uplift, but instead vertical rotation of large crustal plates. This

caused rotation and tilting of smaller crustal blocks as faulting proceeded. The

upward rotation of these smaller crustal blocks generated the mountain uplifts

and peripheral structures (Curry, 1983).

Uplift and folding continued at least into the Eocene, giving rise to low

angle thrusts or decollment surfaces in the Absaroka and Beartooth Mountains.

Large blocks of Paleozoic rocks were thrust many miles toward the center of the

basin (Thomas, 1965). Blocks containing Ordovician, Devonian, and

Mississippian rocks, such as the Heart Mountain Block northeast of Cody, are

estimated to have moved from 28 up to 48 miles (Pierce, 1941). During the

Eocene, the mountain ranges were 3000-5000 feet above the basin floor.

Volcanic material produced by actiVity in the Absaroka Volcanic Field added

elevation to the rising mountains that lined the western side of the basin as well

as contributing volcanic sediment to the basin interior (Thomas, 1965). Erosion

removed most of the redeposited volcanic sediment and developed the present

topography.
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Structural features of the Warm Springs Ranch area are typical of those

elsewhere along the southern margin of the Bighorn Basin. The area contains all

or parts of four named anticlines and one large-scale named fault (Figure 26).

These structures are the Thermopolis, Lucerne, Red Spring, and Wild Horse

Butte anticlines and the Red Spring Fault. Each anticline has been explored for

hydrocarbons and has produced commercial amounts of oil and gas.

Thermopolis Anticline

Only the east half of the Thermopolis Anticline occurs in the study area

(Figure 26). Trending eastward through the central part of the area, this structure

contains both the East and West Warm Springs Oil Fields. The Thermopolis

Anticline is markedly asymmetric. Like most other structures in this part of the

basin, it has a steeply dipping southern limb. The oldest rocks exposed in the

structure are birdseye limestone in the uppermost Phosphoria Formation. These

crop out along the axis of the anticline, located within the boundaries of the Hot

Springs State Park. Near the axis of the anticline, at Hot Springs State Park

adjacent to the Bighorn River, is the site of the hot springs. Although no faults are

evident at the surface, the anticline is probably faulted, allowing the release of

hot, sulfurous water (Hewett and Lupton 1917). Flat-lying travertine has been

precipitated on several of the Mesozoic rock units.

Beds on the northern limb of the Thermopolis Anticline have a relatively

gentle dip of r to 13°. The southern limb has a significantly steeper dip of

approximately 61 ° (Figure 27). Paylor et al. (1989) described the stratigraphic
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sequence on the southern limb as being about 25% thinner than that on the

northern limb. They also reported finding no thickening of ductile units along the

hingeline of the fold. Seismic data from west of the Bighorn River was

presented by Paylor et al. (1989). These data were interpreted by those authors

to indicate that the hinge of the syncline to the south of the Thermopolis Anticline

is faulted. Based on that interpretation, it is reasonable to believe that faulting

has occurred along the synclinal hinge in areas east of the Bighorn River as well.

Lucerne Anticline

Most of the other anticlines in the study area are smaller than the

Thermopolis Anticline. The Lucerne Anticline (Figure 26) is smaller; only the

eastern end extends into the northwest corner of the thesis area. A sag in the

northwest-plunging fold near the town of Lucerne creates a feature known as the

Gebo Dome to the west of the Bighorn River. Perhaps this sag in the Lucerne

Anticline has influenced the course of the Bighorn River. This structure, like

other anticlines in the area, shows steeper dips on its southern limb (Figure 28).

Dip on the south limb ranges from 31 0 -38°, compared to dip of the northern limb,

wh ich ranges from 15°-240
• The oldest rocks exposed in the anticline within the

study area are of the Morrison Formation. Hydrocarbons are produced from the

anticline.
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Figure 27, View of the Thermopolis Anticline looking eastward. he
more steeply dipping Gypsum Spring and Morrison Formations of the south
flank can be seen on the right. The less stee Iy dippin Chugwa rand
Gypsum Spring Formation of the north flank can be seen on t e left of the
photograph. The hill in the foreground is capped by Qu tern ry Travertine
originating from the hot springs.

6

Figure 28. View looking toward the northwest 0 the Lucer e
Antidine. Cloverly can be seen arching over the green mudstones
of the Morrison in the exposed core of the structure. On the eft of
the photo the sharp change in dip may be seen in the light colored
beds of the Mowry.

Morrison FormationMowry Formation Cloverly Formation



Wild Horse Butte Anticline

Near the eastern edge of the study area is the Wild Horse Butte Anticline

(Figure 26). This feature has been referred to as "a wrinkle" by Hewett and

Lupton (1917). This is a tight fold, expressed as a topographic high, on the

eastern slope of Wild Horse Butte (Figure 29). The fold is wider near the valley

of Buffalo Creek, where the north limb trends southeastward and the south limb

bends westward paralleling Buffalo Creek and the Bridger Mountains. In total,

the anticline is approximately five miles long, asymmetric, with a steep-dipping

south limb. The axis of the Wild Horse Butte is nearly parallel to that of Red

Spring Anticline.

Red Spring Anticline

The Red Spring Anticline is also asymmetric, with the southern limb

dipping more steeply than the northern (Figure 26). The hogbacks formed by the

Red Spring Anticline are highly dissected by streams. As a result of these

conditions, sections 1 and 4 were measured in the hogbacks on the north flank of

the Red Spring Anticline (Plates II and VI). The valleys that breach the anticline

create a topographic low area in the middle of the structure which is rimmed by

hogbacks of the Chugwater Group, prompting the local name given to the feature

of The Red Hole (Figure 30).

Dip measurements taken on the north limb range from 15° to 22°, whereas

on the south limb dips were measured from 28° to 52°. A distinctive

characteristic of this and other synclines in the area, which was also noticed by
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Limestone-Member of the Gypsum Spring Formation

Figure 29. View looking east of the Wild Horse Butte Anticline. The geometry of the structure
can best be seen in the lighter colored limestone units of the Gypsum Spring Formatio...
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Figure 30. View toward t e we t of the bre he Re S ri g
Anticline. Lighter colored Dinwoody be s ar visible in the enter,
surrounded by the Tria ic red be s of t Ch gwate Gr up.
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Shlemon (1959), is that no significant faults are visible on the surface in the

sharply folded rocks of the synclines, reg;ardless of the competency of the rock

type.

Mapping along the southern limb of the anticline was difficult due to the

weathered nature of the outcrop, possibly due to abundant fractures which made

contacts difficult to find. Most of the contacts mapped along the southern limb of

the structure were indistinct; some were inferred. The stratigraphic section on the

southern limb of the Red Spring Anticline probably is thinner, as Paylor et al.

(1989) discovered on the south limb of the Thermopolis Anticline. This inference

is based on the fact that the same formations were folded in both anticlines, with

no significant change in lithology between one and the other; moreover, forces

that generated the two structures seem to have been similar.

Red Spring Fault

The only major fault mapped in the area is the previously mentioned Red

Spring Fault (Figures 31 and 32). This fault is exposed best in the east wall of

Red Hole, where gypsum beds in the Gypsum Spring Formation are juxtaposed

with beds in the lower part of the Sundance Formation. Displacement of bedding

indicates that this is a normal fault. The fault plane dips about 50° to the south

(Shlemon, 1959). The offset along the fault is inconsistent due to the relationship

of the fault plane to the changing attitude of the bedding planes. The fault

extends northeastward from the Red Spring Anticline. This fault or another with

similar trend offsets the Mowry and Thermopolis Formations near the northeast
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Figure 31. Tru cation of the basal sa stone ni of the ron er Forma-
ion by the Red Spring Fault near its we ternmost u Icial expressio hi
outcrop is located south of the East War Springs Oil i I .

Fgure 32. View looking east of t e Red Spring ault as it is expres e
in ed Hole. Here the fau t i seen to j xtapose t e Su da ce For ·on
against the ypsum u its of the Gypsum S ring Formation.
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boundary of the study area. I have mapped this as a single fault and inferred its

location across the area where it cannot be seen on the surface. The inferred

section of the fault is in Thermopolis Shale, where I believe evidence of the fault

has been obscured (Plate I).

The fault leaves Red Hole to the southwest, east of Warm Springs Road,

and continues to the west along the southern limb of the Thermopolis Anticline.

In this area rocks of the Sundance Formation are in fault-contact with rocks of the

Cloverly Formation. A short distance southwest of Red Hole, The Cretaceous

Thermopolis is in fault~ontact with the Frontier Formation. The westernmost

evidence of faulting is in section 1 of T42N, R94W to the east of a ranch road

that crosses the fault. This is shown in Figure 30. There the fault can be seen

to juxtapose basal Frontier sandstone, which dips approximately 5° to the north,

with Mowry Shale, which is very steeply dipping to the south. It is possible that

the fault extends to the west and enters the southern, bounding syncline of the

Thermopolis Anticline. Relative motion along the Red Spring Fault is the same

as what would be expected to be seen in the subsurface faults in the hinge of the

syncline, based on the interpretation of Paylor et al. (1989). This would lend

more weight to the proposition that the hinge of this syncline is faulted. An

alternate interpretation is that the fault is compensated for and dies out in the

thick section of Cretaceous shales to the west of the last western exposure.
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CHAPTER IV

GEOLOGIC MAP AND MEASURED SECTIONS

Geologic Map

The geologic map that is included as Plate I was compiled throughout the

course of the fieldwork in conjunction with other activities. As previously stated,

geologic information was recorded on mylar sheets, combined with the 9 inch x 9

inch black and white air photographs. Due to time constraints placed on the

fieldwork, all of the geologic contacts on the map were not directly observed and

recorded in the field. In areas that were not accessible for various reasons, the

locations of geologic contacts were interpreted by stereographic analysis of the

aerial photography, and by analysis of geologic maps done by previous workers

that cover portions of the area. Figures 33 to 36 illustrate the formation contacts

as they are visible on the black and white aerial photography. The use of sol!id

lines as formation contacts on the map does not convey the degree of certainty

for the placement of the contacts. Only in the most unsure instances of contact

placement are dashed lines used to represent the location interpreted as being

most likely to be the contact. Dashed lines are used to show approximate

locations of formation contacts mostly on the more distorted south limbs of the

anticlines. Formations of the Chugwater Group were especially difficult to trace

in areas of high distortion and compaction due to similar lithologies and colors.

The Red Spring Fault is also represented through most of the area by a

solid line which again does not express the degree of certainty of the placement
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Figure 33. Repro uctio of B&W aerial photo. T e red line sho s
the mapped contact between the Thermopolis and Mowry Formations. The Green
line highlights the mapped contact between the Mowry and the Frontier ormations

igure 34
epro ction of

&W aerial photo The
r d line indicates th
mapped contact
between the
Morrison and Cloverly
Formations.
The Green line
hi hlights
he map ed contact
between
the Cloverly and the
Sy es Mountain
Formations.
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Figure 35. Reproduction of B&W aerial photo. The pink line represents the mapped
contact between the Sundance and the Gypsum Spring Formations. The green line
shows the mapped contact between the Sundance and the Morrison. The yellow line
represents the mapped contact between the Crow Mountain and the Popo Agie. The
blue line indicates the mapped contact between the Red Peak and Crow Mountain.

Figure 36.
Reproduction
of a B&W aerial
photo.
The Yellow lines
represents the
mapped
contact between
the Gypsum Spring
and
the Popo Agie.
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of this fault on the map. Dashed lines are used to represent the fault in areas

where fault evidence was not visible on the surface, but through which the fault is

believed to continue. Alternate interpretations exist regarding the continuation of

the Red Springs Fault after it exits the Red Hole.

Strike and dip measurements recorded on the map were made in the field

on selected outcrops. An attempt was made to show structural trend on each

major structure, thus strike and dip measurements are concentrated on areas of

rapid strike and dip change. These measurements were taken using a Brunton

Pocket Transit by methods of direct outcrop contact, and cross outcrop leveling.

Areas of the map with low concentrations of strike and dip measurements are

typically areas where access difficulty arose. These same areas are typically of

rather uniform strike and dip. Thus, it is the writer's belief that no aspect of the

map was compromised by not having strike and dip data in these areas.

Cross Sections

The cross sections that are included on Plate I were constructed based on

information contained on the 7.5 minute topographic base maps, strike and dip

measurements, geologic data that was transferred to the map, and topographic

data published on the map. The thickness of the Phosphoria Formation was

measured on an electric well log recorded a few miles northeast of the study

area. The true thickness of the Pennsylvanian Tensleep Sandstone is not

known, and is not represented on the cross sections. The base of the Tensleep

was not present on available electric well logs. Lines of cross section were
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chosen based on the location and orientation of major structural features. Cross

section A-A', which runs south to north in the western part of the study area,

shows the structural interpretation, based on surface geology of the Thermopolis

and Lucerne Anticlines. Cross section 8-8', running south to north in the eastern

part of the study area, transects the Red Spring Fault and shows the structural

interpretation of the Red Spring Anticline based on the surface geology (Plate I).

Both cross sections are displayed with no vertical exaggeration. The two cross

sections also include a topographic profile showing outcrop surface expression of

the various formations along the lines of cross section.

Measured Stratigraphic Sections

A total of six measured sections are presented. These sections are

included as plates II-VII in the pocket at the back of the thesis.

Section 1

Measured Section 1 (Plate II) was measured in the west half of section 28,

Township 43 north, Range 93 west. It covers the formations from the top of the

Phosphoria to the base of the Gypsum Spring. This interval includes the

Dinwoody, Red Peak, Crow Mountain, and Popo Agie Formations. Good outcrop

of these formations was found and measured on the north limb of the Red Spring

Anticline, starting near the exposed core of the structure. While measuring this

section, a rock slab was found which contained several sets of vertebrate tracks.

They have not been specifically identified, but are believed to be the tracks of a
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Triassic amphibian species, due to the four toe impressions. The track slab was

not found in place but had obviously moved several feet down slope. Hence, the

exact interval of the track way was not located and no other tracks were found.

The unit of origin was determined in the field, so that future exploration for similar

tracks may be conducted. The unit in which the track way occurs is Unit 16 of

the Red Peak. It is marked on Plate II.

Section 2

Measured Section 2 (Plate III) was recorded along the southern margin of

the study area from the center of section 18 to the southwest quarter of section 7,

Township 42 north, Range 94 west. Covered by this measured section are the

upper Popo Agie, Gypsum Spring, Sundance, and Morrison Formations. The

section was measured in two parts. The upper part, from the top of the Gypsum

Spring Formation to the base of the Cloverly Formation, was measured first in

order to incorporate the Sundance and Morrison. The Gypsum Spring and upper

Popo Agie were added later in order to complete the Jurassic column. The

section was measured on the south slope of the hill north of Buffalo Creek Road

and above the cliffs of the Chugwater Group (Plate J).

Section 3

Measured Section 3 (Plate V) was measured from the northeast quarter of

section 7 to the northeast quarter of section 6, Township 42 north, Range 94

west. This section includes the Cloverly and Sykes Mountain Formations. The
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outcrop measured invloved good exposure in the hillside to the north of Carter

Ranch Road. The basal Cloverly unit here displays greater than usual thickening

due to the presence of a 60 foot thick chert-conglomerate interval that incises up

to 30 feet into the underlying Morrison Formation.

The coarsening upward sequences of the Sykes Mountain are not as well

displayed in this area as they are in the area of Measured Section 4. This made

the contact with the Thermopolis Formation more difficult to locate.

Section 4

Measured Section 4 (Plate V) was measured from the northeast quarter of

section 20 to the southwest quarter of section 16, of Township 43 north, Range

93 west. Like Section 1, this column was also measured in the hogbacks on the

north flank of the Red Spring Anticline. The section extends from the top of the

Cloverly Formation to the base of Frontier Formation and incorporates the Sykes

Mountain, Thermopolis, and Mowry Formations. No significant evidence of a

disconformity surface, such as inclusions of the Cloverly in the Sykes Mountain

or irregularity of the contact, was observed at the contact between the Cloverly

and the Sykes Mountain. This contact has been reported by previous authors to

be an unconformity. The top end of the section was placed at the Clayspur

Bentonite. This same marker is used by petroleum geologists for the formation

boundary between the Mowry and Frontier Formations due to its distinctive

characteristics on mechanical wireline logs. At a few locations in this area the

Clayspur is mined.
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Section 5

Measured Section 5 (Plate IV) was measured in the northeast quarter of

section 7, Township 42 north, Range 94 west. This section was described on the

hill to the south of Carter Ranch Road directly downdip from the Warm Springs

Ranch Dig Site. The section includes the interval from the top of the Sundance

Formation to the top of the Morrison Formation. Vertebrate bone material was

discovered while measuring this section. The sandstone body that contains the

BB dig site was also found to continue into this area.

Section 6

Measured Section 6 (Plate VII) was measured in the center of section 8,

Township 42 north, Range 94 west. This section covers the interval from the top

of the Sundance Formation to the base of the Cloverly Formation. The formation

of interest in this column is the Morrison Formation. The Morrison outcrop

where this section was recorded occurs in the valley of Warm Springs Creek,

past the eastern limit of Carter Ranch Road. The outcrop here is dominated by

Morrison unit 5, which forms a 65 foot completely vertical cliff in the middle of the

outcrop. The thickness of this unit was measured using an internal scale on a

photograph.
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CHAPTER V

CONCLUSIONS

Conclusions

1) The variability of the basal facies in the Jurassic Sundance Formation is due in

large part to the presence of the Black Mountain High.

2) The lower Morrison Formation was deposited in a coastal plain setting,

following the retreat of the Sundance Sea. Environments represented in this

interval include fluvial channels, flood plains, and dunefields. The middle

Morrison Formation was deposited in well developed meandering streams that

blanketed the area. The upper Morrison Formation is the result of deposition in

lacustrine environments that fonned on a broad, flat alluvial plain. Interbedded

mudstones and nodular carbonates of the upper Morrison Formation may

indicate a seasonally variable climate during Morrison time. Bedded micritic

limestone may represent lacustrine accumulation. Nodular discontinuous

limestone lenses indicate caliche developed in soil horizons.

3) Overbank deposits originating from the Morrison meandering stream in sec. 8

of T42N, R94W, strongly influenced the taphonomy of the WOC dig sites.
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4) The most fossil-productive intervals of the Morrison at the WOC dig sties are in

the upper nodular carbonate and mudstone interval. This interval accumulated in

floodplain and lacustrine environments.

5) Plant life was abundant in this area during Morrison time, as shown by the

development of coal deposits, and the abundance of coalified plant material

included in some of the sandstones and mudstones.

6) For the duration of deposition of the Red Peak Formation (Triassic) the study

area was part of a broad, shallow marine shelf or tidal flat, highly subject to storm

and tidal processes.

7) The Gypsum Spring Sea was in a partially silled basin with fluctuating degrees

of salinity, ranging from brackish to hypersaturated water. This is evidenced by

interbedded gypsum and mudstone in the lower part of the formation, and by the

infrequent occurrence of fossil material in the Limestone Member.

8) Parts of the Cretaceous Cloverly Formation were deposited in terrestrial

environments and show evidence of having supported vertebrate life. The basal

sandstone and conglomerate accumulated in braided stream facies of an alluvial

fan complex. Overlying red mudstones were components of a meandering

stream floodplain. This interval shows promise of containing vertebrate fossil

material that has yet to be found in the Warm Springs Ranch area.
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Areas For Further Study

Th is thesis has been presented on a relatively large scale in order to

examine the geology of the Warm Springs Ranch. This was the necessary first

step of a project that is just a part of a much larger scientific endeavor. The close

interplay of between Geology and Paleontology make these two sciences

dependent of the performance of each other. It is for this reason that the

Wyoming Dinosaur Center has interest in the geology of the area in which they

operate. It is the hope of the writer that this work lays the foundation for further

detailed geologic studies in the Warm Springs Ranch area. Based on the stated

goals of this research, areas where further work may be conducted that would

most likely be of interest to the WOC have been identified and will be

summarized here.

There is possibility of further understanding of paleoclimate during Morrison

time by detailed stratigraphic study of the Morrison interval. Other workers have

proposed that the Morrison displays characteristics of having a seasonally

variable climate. Valuable information could be lent to this debate based on the

variability within individual depositional environments in the Morrison Formation.

The Warm Springs Ranch and adjacent areas would be an ideal location to study

such environments due to the varied assortment of depositional facies within the

Morrison across the relatively small area of the ranch. In particular, very detailed

measured sections should be carried out that record the coal unit of the Morrison

which occurs approximately in the SY2, sec. 25, T43N, R94W.
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Another interesting feature of the Morrison in the ranch area is the development

of the "eolianite" unit. This thick sand body, most likely eolian in origin,

terminates laterally and is definitely more prominent in the northern part of the

study area where it, in places, dominates the Morrison section. It has been

suggested that this sandstone unit is a preserved dune field that developed at the

shoreline of the retreating Sundance Sea. It would be possible to develop, from

section measured in outcrop, an isopach map and a related paleogeographic

map to show the geometry of this sand body and more definitely interpret its

origin. Rock thin-section analysis would lend greatly to the conclusions of such a

project.

Using a series of surface measured sections, a paleoenvironment or

paleogeographic map may be constructed of the Morrison at various intervals

showing the interplay and development of contiguous depositional environments

within the formation.

A detailed study of the BB sandstone across the ranch would aid in

defining a specific depositional model for the unit.

Identification of the lateral extent of the upper calcareous mudstone

units/nodular carbonate lacustrine faces, could identify areas in which fossil

exploration should be concentrated.

A stratigraphic study of the Cloverly, in particular the basal conglomeratic

unit, might also be considered. This unit displays properties in some areas of

being an incised valley fill rather than part of a braided stream system.
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Detailed identification of depositional environments and mapping of the

"lower" Sundance could produce clues to the location of new sites for verterbrate

fossils and vertebrate trackways. As stated by Schmude (2000), the area of the

Black Mountain High may produce vertebrate trace fossils in the shallow marine

environments similar to those found at the Red Gulch Track Site near Shell,

Wyoming.
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