
A SURVEY OF ALGORITHMS FOR SCHEDULING

NON-INTERRUPTffiLE TASKS

By

SHENGLICAO

Bachelor of Civil Engineering

Taiyuan Institute of Technology

Shanxi, China

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State Uni versity
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
July, 2000

A SURVEY OF ALGORITHMS FOR SCHEDULING

NON-INTERRUPTffiLE TASKS

Thesis Approved:

II

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. John P.

Chandler, for his continuous guidance, concern, patience, and support throughout my

graduate program. I shall always be thankful for his inspiration and advice on my study

of computer science, his encouragement and help for me to apply computer science

theory to real industrial practice.

I would also like to express my gratitude to my thesis committee members, Dr.

Blayne Mayfield, Dr. Jacques LaFrance and Dr. H.K. Dai for their helpful suggestions

and assisting with my research.

I wish to thank all the faculties and taff member of Computer Science

Depal1ment who are always kind and helpful to me. I extend my thank to Oklahoma

State University for giving me the opportunity to accomplish my graduate program.

Finally, I would express my thanks to my parents for their lifelong love and

support. I also express my deepest gratitude to my daughter, Lu Cao, always gave me

encouragement throughout my study.

III

Chapter

TABLE OF CONTENT

Page

1 INTRODUCTION 1

2 SURVEY OF PROBLEMS AND ALGORITHMS 3

2.1 Problem Classification And Notation 4
2.1.1 Three-Field Classification 4
2.1.2 Four-Field Classification 7

2.2 Algorithms For Single Machine Scheduling 8
2.2.1 Permutation Schedules 8
2.2.2 Shortest Processing Time Scheduling 9
2.2.3 Earliest Due Date Scheduling 11
2.2.4 Moore's Algorithm 12
2.2.5 Lawler's Algorithm 14
2.2.6 Smith's Algorithm 17
2.2.7 Van Wassenhov And Gelders' Algorithm 20

2.3 Algorithms For Flow-Shop, Job-Shop And Open-Shop Problems 22
2.3.1 Algorithms For Flow-Shop Problems 23

2.3.1. 1 Johnson's Algorithm For The Nl2fFlFmax Problem 24
2.3.1.2 Johnson's Algorithm For The N/3/FfFrnax Problem 26
2.3.1.3 Akers' Graphical Solution To The 2/MlFlFmax Problem .. 28

2.3.2 Algorithm For Job-Shop Problems 31
2.3.3 Algorithm For Open-Shop Problems 34

2.4 Algorithms For Parallel Machin~ Problems 36
2.4.1 List Processing 37
2.4.2 Longest Processing Time Heuristic 38
2.4.3 MULTIFIT Heuristic 39

2.4.3.1 First-Fit, Decreasing Weight Heuristic 40
2.4.3.2 MULTFIT Heuristic 41

2.4.4 Hu's Algorithm 43
2.5 Some Problems In Combinatorial Optimization 45

2.5.1 Christofides' Heuristic Algorithm For Traveling Salesman
Problems 45
2.5.2 Genetic Algorithms 48

3 INDUSTRIAL APPLICATIONS 51
3.1 Background 51

LV

Chapter

3.2

3.3

Page

Initiation Of Project 53
3.2.1 Preliminary Assumptions 53
3.2.2 Design Of Scheduling Logic 54

3.2.2.1 Job Storage And Management 55
3.2.2.2 Location Checking Method 55
3.2.2.3 Procedures Of Assigning Jobs To Technicians 56
3.2.2.4 Optimality And Evaluation 56
3.2.2.5 Program Flowchart 57

Empirical Application Of The Combinatorial Optimal Solution 59
3.3.1 The Simulation Program 59
3.3.2 Empirical Application 60

3.3.2.1 An Eight Hour Day At Normal Jobs 60
3.3.2.2 An Eight Hour Day At Normal Jobs Of Long Duration 66
3.3.2.3 An Eight Hours Day At Normal And Urgent Jobs In
Different Areas 68

3.3.2.4 An Eight Hour Day At Normal And Urgent Jobs In
Area 400 71

3.3.3 Observation To The Empirical Application 73

-

4 SUMMARY AND CONCLUSION 75

BLBLIOGRAPHY 77

APPENDIX A C PROGRAMMING CODE FOR COMBINATORIL
OPTIMAL SCHEDULING NON-INTERRUPTIBLE TASKS 83

v

LIST OF TABLES

ThWe p.

I Initial Genetic Productions 49

2 Result of Genetic Cross Over 50

3 Eight-hour Schedules for Mill in Area 100 61

4 Eight-hour Schedules for M222 in Area 200 67

5 Eight-hour Schedules for MIll in Area 300 69

6 Eight-hour Schedules for M444 in Area 400 71

VI

-

UST OF FIGURES

Figure Page

Gantt Diagram of Pennutation Scheduling 9

2 Gantt Diagram of Schedules SPT 10

3 Gantt Diagram of Schedules EDD " 12

4 Precedence Constraints 16

5 Gantt Chart for the 6/3/F/Flllax Problem 28

6 Graph Of Schedule In 2/7fFfFrnax. 31

7 Gantt Chart For The 9/2/G/Fmax Problem 34

8 Final Schedule for 4/2/0/Clllax · 36

9 List Processing Schedule 38

10 Example for Longest Processing Time Heuristic 39

11 First-Fit, Decreasing Weight Heuristic 40

L2 Schedule of MULTIFIT Heuristic 43

13 Precedence Constraint Diagram 44

14 Schedule of Hu's Algorithm 44

L5 Fig. 15 Example Of Heuristic For TSP 47

16 etwork Configuration 52

17 Program Flow Chart 58

18 Location of Technicians and Area umbers oj

VII

R~re hF

19 Possible Travel Route for Man III By SDF 62

20 Possible Travel Route for Man III By SPf 62

21 Possible Travel Route for Man 111 By LPT 63

22 Possible Travel Route for Man 111 By GSDF 63

23 Possible Travel Route for Man 111 By GSPf 64

24 Possible Travel Route for Man III By GLPT 64

25 Final Applied Travel Route for Man 111 65

26 Bar Chart of Total Work Time and Travel Time for Man 111 66

27 Comparison of Work Time and Travel Time of Schedules for Man 222 68

28 Comparison of Work Time for Man III in Area 300 70

29 Travel Route of Man III From Area 100 To Area 300 70

30 Comparison of Work Time for Man 444 in Area 400 72

31 Travel Route of Man 444 in Area 400 7?-

\Til

CHAPTER 1

INTRODUCTION

Scheduling is an effective allocation of a set of machines over time to a set of jobs

ISilberschatz and Galvin 1998].

Suppose that we have to perfonn a number of jobs, each of which consists of a

glvcn sequence of operations, by using a number of machines. We want to find a

processing order on each machine so that the corresponding cost is minimized. This is

scheduli ng.

It is true that scheduling originally arose in an industrial production cont xl.

However, various other interpretations are possible: jobs and machines can stand for

patients and hospital equipment, classes and teachers, ships and dockyards, dinner and

cooks, programs and computers, or cities and salesmen, and 0 on. Each of these

situations fits into the framework sketched above and thus falls within the scope of

machine scheduling theory and algorithms.

In job processing, some problems allow jobs to be interrupted or preempted,

others do not. If interruption or preemption is not aJlowed, then the machine must process

the job continuously until it is finished, once a job has begun on a given machine. We call

such problem "Non-interruptible Scheduling." This thesis focuses on algorithms for non­

interruptible scheduling problems. A survey of the algorithms for non-interruptible

1

scheduling problems is presented in this thesis. Some simple examples of the execution

of these algorithms are also provided to illustrate the algorithms. To show a

comprehensive application of these algorithms, I also present an implementation of a real

work force dispatching project developed for the customer service and maintenance

division of an energy company. Comparisons have been made of the implementation of

different algorithms to see the perfonnance of these algorithms and real world

requirements for an approximately optimal result.

2

CHAPTER 2

SURVEY OF PROBLEMS AND ALGORITHMS

The study of scheduling is motivated by problems that anse In production

planning, in project management, in military movement, in computer control, and so on.

In general, these problems are from a situation in which scarce resources have to be

allocated to jobs over time. Due to the demand for optimal scheduling by fast developing

industries, scheduling theory and applications have become the subject of extensive study

and research since early the 1950's. Much of the literature has been focused on

alg01ithms for solving all kinds of problems since then. This paper, as mentioned in the

preceding section, will concentrate on the basic problems and algorithms in the area of

deterministic non-interruptible machine scheduling. Attention will also be given to

combinatorial optimization by using genetic alg'xithms and special methods for traveling

salesman problems.

The survey is organized into five sections. Section 1 classifies scheduling

problems and notations. Section 2 presents the algorithms for single machine scheduling.

Section 3 contains algorithms for open shop, flow-shop and job-shop problems. Section 4

provides algorithms for parallel machine problems. Section 5 discusses some problems in

combinatorial optimization.

3

2.1 Problem Classification And Notation

Scheduling is an effective allocation of a set of machines over time to a set of

jobs. Suppose that m machines M; (i = I, 2, ... , m) have to process n jobs Jj U= 1, 2, ... ,

n). A non-interruptible scheduling is, therefore, an allocation of a time interval on one

machine for each job. Non-interruptible scheduling is feasible if no two time intervals on

the same machine overlap, and if the schedule meets a number of specific requirements

concerning machine environments and the job characteristics. A non-intelTuptible

scheduling is optimal if it minimizes a given optimality criterion. So, the machine

environments, the job characteristics and the optimality criteria together define a problem

type. Some literature specifies scheduling problems in terms of a three-field

classification, while others use four or more fields that provide extra sections to define

the machine and processing environments.

2.1.1 Three-Field Classification

The three-field classification is denoted by a/fJ /y. [Conway, Maxwell, and

Miller 1967], [Lawler, Lenstra, and Rinnooy Kan 1982], [Herrmann, Lee and Snowdon

1993]. The a field describes the machine environment and contains a single entry, the ~

field provides details of processing characteristics and constraints and may contain no

entry, a single entry, or multiple entries, and the y field specifies the optimality criterion

of interest and usually contains a single entry. This classification is introduced as:

4

a) Job Data

A job is generally specified by the following data:

The number of jobs denoted by n (n is assumed to be finite).

Processing time (Pu) ---- the processing time of job j on machine i. i is omitted if

job j does not depend on the machine or if job j is only to be processed on one

given machine. The process time is usually assumed to be known fairly precisely.

But this is not always true. For example, transmitting files over modems, the

transmission rate depends on the degree of congestion in the network and

processing time can vary considerably. Similarly convalescence time for hospital

patients can be unpredictable, etc.

Release date (r) ---- the time on which a job becomes available for processing,

also referred as the ready date.

Due date (d) ---- the date a job is promised to the customer.

b) Machine Environment

The machine environment indicates the number of machines and de cribes the

configuration of the processing environment relati ve to the machines. The

following specifications are generally used:

Single machine (1) ---- a single machine environment; P/j =p);

Identical machine in parallel (Pm) ---- m identical machines in parallel,

Pu = p) for all M1;

Machines in parallel with different speeds (Qm) ---- m machines in parallel with

different speeds. Machine speeds are independent of jobs.

Unrelated machines in parallel (Rm) ---- m different machines in parallel.

5

-

Machine speeds depend on the jobs processed.

Flow shop (F) ---- m machines in series, jobs possess multiple operations. The

ordering is the same for each job. For example, in an assembly shop, a number of

operations have to be done on every job. Often, these operations have to be done

on all jobs in the same order, which implies that the jobs have to follow the same

route. The machines are assumed to be set up in series and the environment is

referred as a flow-shop.

Job shop (1) ---- m machines in series, jobs possess multiple operations.

The ordering is not required for each job.

Open shop (0) ---- m machines, each job may be processed more than once on

each of the m machines but no ordering on the machines is imposed.

c) Job Characteristics

Generally, the job characteristi.cs specify whether or not a job can be interrupted

during processing, whether or not precedence ordering is imposed on jobs,

whether or not job-dependent release times are given, and finaIly, specifications

regarding job duration times, e.g. all jobs possess unit duration times.

Preemption (pmtn) ---- Jobs are interruptible during processing. All jobs in this

thesis are non-inten:uptible (i.e. there is no preemption).

Precedence constraints (prec) ---- Precedence requires that one or more jobs may

have to be completed before another job is allowed to start its processing. If each

job has at most one predecessor and one successor, the constraints are referred to

as chains. If each job has at most one successor, the constraints are referred to as

intree. If each job at most has one predecessor, the constraints are referred to as

6

-

outtree. If no precedence constraints appear In the 13 field, the jobs are not

suhjected to precedence constraints.

Job-dependent release time (rj) ---- release dates that may differ per job.

Unit duration time (ti)---- all jobs possess unit duration times ti =1.

d) Optimality Criteria

The field y is used for specifying measures of performance and, as a consequence,

is generally self-evident.

For example, Let Ci denote completion time, dj due date, Lj lateness, and Tj

tardiness

Lj =Cj - dj

'0 =max {O, Cj - dj }

(Tj is kind of lateness, but it is always a positive number, Lj can either be positive

or a negative number which represents the job completed ahead of due day).

The optimality criteria commonly chosen involve the minimization of maximum

completion time Cmax (sometimes called the schedule length or makespan) and the

minimization of Lmax and Tmax .

2.1.2 Four-Field Classification

The four-field classification is denoted by n1m IA lB. [Conway, Maxwell, and

Miller 1967], [Lenstra 1977], [Rinnooy Kan 1976], [Graham et al. 1979] and [French

1982].

7

Where

n is the number of jobs.

m the number of machines.

A describes the flow pattern or discipline within the machine shop.

When m =1, A is left blank. A may be

F ---- the flow-shop case

P ---- the permutation flow-shop case

G ---- the general job-shop case

B provides optimality criteria, the same as above.

This paper will use three-field classification and four-field classification

alternatively. Notation will be given if a specific classification i used in the

section.

2.2 Algorithms For Single Machine Scheduling

(In this section, problems are described by a three-field classification (XIj3 Iy.)

Single machine models often display properties that do not hold for either

machines in parallel or machines in series. A single machine environment provides a

basis for heuIistics for more complicated machine environments. In practice, scheduling

problems in more complicated machine environments are often decomposed into sub­

problems that deal with single machines.

2.2.1 Permutation Schedules

-

Assume we have a job list { h. h ... ,In } and a machine M. If jobs are scheduled

without designated idle time, the schedule is penect. Otherwise we must have jobs

permuted with minimum designated idle time. That is, the machine starts processing at

time equals zero and continues without or with minimum rest until the time equals total

processing time or with a minimum amount of extra time.

In scheduling, we write Jj(k! for job J j that is scheduled at the kth position in the

processing sequence. Thus Jj is simply a generic job drawn from the job list {h h I n }

and Jj(k) is the job that the processing sequence selects as the kth to be processed, k = 1.

2, ... , n. Permutation usually follows the FIFO discipline. Calculation of the total cost is

straightforward, so no detailed description is necessary here. See Fig. 1.

IJ I (I) [h(2) 1_'._._.J_j(_k)_"._. -'I'-J_(_"-_Il_(k_-I_)-,-'_J_n_(k_
l I

Fig. I Gantt Diagram Of Permutation Scheduling

2.2.2 Shortest Processing Time Scheduling (SPT)

For a particular job. the average job flow time F is calculated as follow:

- 1 n 1 n

F = - L F j = - L (W
J

+ Pj)

n j=1 n j=l

1 n 1 II

=- L Wj(k) + - L. PJ(k)

n j=1 n J=J

where F ---- job flow time

9

w---- job waiting time

P ---- job processing time

n n

Hence L Pj(k} =L P j is a constant for all sequences. Hence to minimize F we
k:1 j:\

n

must minimize LWj(k) .

k:1

Therefore, for one machine and n jobs, minimizing the average flow time denoted

hy (l/ n/ F), the mean flow time IS minimized by sequencing

Hence Pj(kl is the processing time of the job that is processed kth.

Thus, a queue scheduled with the shortest processing time first will solve (one

machine and n job) problems in minimizing the mean flow time, mean completion time,

mean waiting time, mean lateness, mean number of unfinished jobs, and mean number of

jobs waiting between machines, [Conway, Maxwell and Mi lIer, 1967], [Rinnooy Kan

1976].

I P
j
(/) I P

j(2
) I I Pjlko/) I_P_j_1k_J_---'

Fig.2 Gantt Diagram Of Schedules SPT

Example: One machine, six jobs, minimum mean flow time problem (1/ 6 / F)

-

Job

Processing Time 6

2

5

3

4

10

4

3

5 6

-

The optimal SPT schedule for jobs is (6, 5, 4, 3, 2, 1). That is, the shortest job IS

scheduled first.

The flow time of each job is:

Fj(2) = 1+2

Fj(4) = 1 + 2 + 3 + 4

Fj(5) = 1 + 2 + 3 + 4 + 5

Fj (6) =1 + 2 + 1 + 4 + 5 + 6

Mean flow time of the schedule is:

1 6 1- L. Fj(kl =-(6x 1 + 5x2 + 4x3 + 3x4 + 2x5 + 6) = 9.3333
6 k=1 6

Clearly the schedule is optimal.

2.2.3 Earliest Due Date Scheduling (EDD) [Jackson 1955]

An initial approach to scheduling is, pelilaps, to sequence jobs in the order in

which they are required. In other words, sequence the jobs such that the first processed

has the earliest due date, the second processed has the next earliest due date, and so on.

For one machine, schedulmg jobs hy the earliest completion time and never delaying jobs

results in processing the maximum number of jobs [Pinedo 1995], but skipping any jobs

is usually not an option in real life.

Thus, for one machine and n johs, minimizing maXlffium lateness denoted by

(I/n/Lmax), sequencing minimizes the maximum lateness

11

d j(l) $ d j(2) $ d j(3) $... $ d j(n)

where tlj(k) is the due date of the job j that is processed kth.

I dj(2) I .. ·· I dj(k.1) Idj(k)

Fig.3 Gantt Diagram Of Schedules EDD

Example: One machine, six jobs, minimizing the maximum tardiness problem (l/6/Tmax)

Job

Due Date

Processing Time

1

7

1

2

3

1

3

8

2

4

12

5

9

6

3

3

The optimal EDD schedule for jobs is (6,2, 1,3,5,4). From the table below, we find the

optimal Tmax = 1.

Job Completion Time

k

lj(k) Cj(k) =LPj(l)

1=1

6 3

2 4

1 5

3 7

5 R

4 12

Lateness

o

-2

-1

-J

o

Tardine s

TjCk) =max.(O, Cj(k) - dj(k))

o

o

o

o

u

-

2.2.4 Moore's Algorithm [Moore 1968], [Stunn 1970], [Kise et aJ. 1978]

12

Due Date

Processing Time

-

In the real world, if a job is behind its due date by a few seconds or a few minutes,

the entire production might be upset. Thus, we need to minimize the number of tardy

jobs. An algorithm for solving this problem is due to Moore, but in a form suggested by

Hodgson [Moore 1968].

Algorithm (Moore and Hodgson)

Step 1: Sequence the jobs according to the EDD rule to find the current sequence

(Jj(J),lj(2) Jj (lI» such that

For k=1,2, ,n-l.

d j(k) ~ d j(k+l)

Step 2: Find the first tardy job, say Jj(I). in the current sequence. If no sLich job 1S

found, go to step 4.

Step 3: Find the job in the sequence (Jj(/J. Jj (2). ... Jj (/)) with the largest processing

time and reject this from the current sequence. Return to step 2 with a

current sequence one shorter than before.

Step 4: Form an optimal schedule by taking the current sequence and appending

to it the rejected jobs, which may be sequenced in any order.

Note: The rejected jobs will be tardy and these will be the only tardy jobs.

Example: One machine six jobs, minimizing the maximum number of tardy jobs.

Joh'--- ----'I'---_-=2__.:::...3__4-'--_-=5__-=-6

15 6 9 23 20 30

10 3 4 8 10 6

1) Use the EDD sequence to compute the completion times until a tardy job

is found (Steps 1 and 2):

13

-

New Sequence 2 3 1 5 4 6

Due Date 6 9 15 20 23 30

Processing Time 3 4 10 10 8 6

Completion Time 3 7 17

2) We find job 1 to be the first tardy job in the sequence and of the sub-

sequence (2, 3, 1) it has the largest processing time. So reject it (Step 3).

Return to Step 2 with the new sequence:

New Sequence 2 3 5 4 6 Rejected jobs

Due Date 6 9 20 23 30 1

Processing Time 3 4- 10 8 6

Completion Time 3 7 17 25

3) We find job 4 to be the first tardy job in the sequence and of the sub­

sequence (2, 3, 5, 4), job 5 has the largest processing time. So reject it

(Step 3). Return to Step 2 with the new sequence. No tardy jobs are now

found:

New Sequence 2 3 4 6 Rejected jobs

Due Date (j 9 23 30 1,5

Processing Time 3 4 R 6

Completion Time 3 7 15 21

4) Hence, we move on to Step 4 and form the optimal sequence (2,3,4,6,1,5).

2.2.5 Lawler's Algorithm [Lawler 1973]

14

-

This algorithm deals with general precedence constraints. Here we shall simply be

constrained to process certain jobs before, but not necessarily immediately before, certain

others. Lawler's algorithm minimizes the maximum cost of processing a job, where this

cost has a general form YJ-(Cj) for Jj and is taken to non-decreasing in the completion time

Cj .Thus, the algorithm minimizes

Consider one-machine and n jobs with precedence constraints, minimizing the

maximum cost problem denoted by (l/Il/m'~{yj(cJh. Let V denote the subset of jobs,
]=1

which may be performed last (i.e. those jobs which are not required to precede any other

n

jobs). Note that the final job in the schedule must be completed at '[=L p] . Let h be a
}=\

job in V such that

(i.e. of all the jobs that may be performed last, h incurs the least cost). Then there is an

optimal schedule in which lk is scheduled last.

Example: One-machine and six jobs, minimizing maximum lateness problem with the

precedence constraints in Fig. 4.

15

Fig. 4 Precedence Constraints

Job

Processing Time

Due Date

2

3

..,

It 7

-

I) Fi nd the job to be processed si xth: T = 2 + 3 + 4 + 3 + 2 + 1 = 15.

Jobs hIs. h can be processed last, i.e. V={l), 15. h}. So the minimum

lateness over V = min {(15-9), (15-11), (l5-7)}, which occurs for J5. Hence Js is

scheduled sixth.

2) Find the job to be processed fifth:

Delete 15 from our list and note that the completion time of the first five

jobs T = 15 - 2 = 13. h or h can be processed last now; i.e. V={h 16 J. SO the

If)

-

minimum lateness over V = min {(13-9), (13-7)}, occurs for J3. So J3is scheduled

fifth.

3) Find the job to be processed fourth:

J3 and J5 have been deleted from our fist. 12 becomes available for

processing last. Now L = 13 - 4 = 9 and V={h J6 }. Minimum lateness over V =

min {(9-6), (9-7)}, occurs for 16. So J6 is scheduled fourth.

4) Find the job to be processed third:

J3, J5 and 16 have been deleted from our list. J2 becomes available for

processing last. Now L = 9 - 1 = 8 and V= Ih J4 }. Minimum lateness over V =

min {(8-6), (8-7)}, which occurs for h So J4 is scheduled thi rd.

5) The jobs scheduled first and second are now clearly 1I and h respectively,

for the precedence constraints.

The final schedule is:

J I -7 h -7 J4 -7 J6 -7 h -7 J5

2.2.6 Smith's Algorithm [Smith 1956]

We know that EDD rules can solve the one-machine and n jobs, minimizing the

maximum tardiness problem denoted by (l/nfTmax). But when we construct such a

schedule we find T,1UlX = 0, (l.e. all due dates can be met). Then we might think to

optimize the schedule the other way. Indeed Smith's algorithm gives us a way of finding

a schedule to minimize F subject to the condition that Tmax =O.

17

Thus for the n jobs, one machine problem when all the due dates can be met, there

exists a schedule which minimizes F subject to T,ruJ.X = aand in which job Jt is last if and

only if

n

(a) d k ~ L, Pj ,

j=1

n

(b) Pk ~ PI for all jobs JI such that d, ~ L, Pj.
•=\

Smith's Algorithm

Il

Step 1: Set k=n, L = L,Pj ; U = { h h, ... , 11/}
j=l

Step 2: Find Jj(k) in U such that (a) d j(k) ~ Land (b) Pj(k) ~ PI for all It in U such that

Step 3: Decrease k by 1; decrease T by Pj(k) ; delete Jj(k) from U.

Step 4: If there are more jobs to schedule, i.e. if k ;;t I, go to Step 2. Otherwise stop with

the optimal processing sequence (Jj(1). Jj (2)• ... , Jj (f1))'

In stating the algorithm we have used the following notation:

k the position in the processing sequence currently being filled (k cycles

down TI, (n-1), ... , 1)

the time at which the job kth in the sequence must complete

-

U

Example:

the set of unscheduled jobs

One machine, 4 jobs, minimizing average flow time problem denoted by

(l/4/ F) subject to T max = O.

18

~10=...;:b~ ----=-11_---=1..".2_~1~

Processing Time

Due Date

2

5

3

6

1

7

2

8

-

Step 1: k=4, 't = 2 + 3 + 1 + 2 = 8, U = {h h. h J4}.

Step 2: Only 14 satisfies condition (a) so we choose Jj (4) = 14

Step 3: k=3, 't = 6, U = {h h. h.l.

Step 4: k;:::: 1. (return to Step 2)

Step 2: J2 and 13 satisfy condition (a); 12 has the larger processing time, so .!j(3) = 12

Step 3: k=2, 't = 3, U = {h. h}·

Step 4: k ~ 1. (return to Step 2)

Step 2: J I and h satisfy condition (a); J I has the larger processing time, so Jjm = J1

Step3:k=I,'t= 1, U= {h}.

Step 4: k ;:::: 1. (return to Step 2)

Step 2: 1] satisfies condition (a), so Jj (/) =1]

Step 3: k=O, T = 0, U is empty.

Step 4: Optimal sequence is (h h h h).

The following examination shows that EDD does not minimize F subject to

Tmax=O, but Smith's algorithm does. For the preceding example, the scheduling result of

Smith's Algorithm is (hh h J4), and the scheduling result ofEDD is (J/.h h. J4):

19

-

Where:

n

LW, total waiting time.
j=1

n

L P, total processing time.
j=J

4

L Pj = 8 for both schedu les
j=l

4

LWj =W3 + Wj + W2 + W4 =0 + 1 + 3 + 6 =10 (Scheduling by Smith's algorithm)
j=1

4

LW, =WI + W2 + W3 + W4 =0 + 2 + 5 + 6 =13 (Scheduling by EDD)
j~l

F= -.!. (10 + 8) (Average flow time by Smith's algorithm)
4

- 1
F = - (13 + 8) (Average flow time by EDD)

4

2.2.7 Van Wassenhov And Gelders' Algorithm [Van Wassenhov and Gelders 1980]

(Finding Schedules efficient with respect to Tmax and that F)

According to Smith's theory, we are only willing to consider reducing F (mean

flow time) once we have ensured that l~rlax = O. In other words, penalty costs have

overriding importance. Yet, if we are prepared to allow Tmax to rise, we might be able to

reduce F more than sufficiently to compensate for an increase in Tmax. Thus, the focus

now is to min:imize F subject to r:ruJ~ ~ !Y.. , (i.e. subject to no job being finished more than

20

11 after its due date). The algorithm can also be described as solving the one machine, n

jobs, minimizing the average flow time problem denoted by (l/nlF) subject to Tifill' :5 Ii .

By adding 11 to all the due dates and apply Smith's algorithm we find:

Step 2 of Smith's algorithm can be modified and replaced by:

Step 2: Find lj(k) in U such that (a) d j(k) ~ 't and (b) Pj(k) ~ PI for all It in U such

that d[~ 'to If there is a choice for lj(k) , choose lj(k) to have the latest possible due date.

When this modification is made, the algorithm always finds an efficient schedule.

Based on this principle, Van Wassenhov and Gelders developed their algorithm as

follows:

"
Step 1: Set 11 =LPj .

j;1

Step 2: Solve the lIn/ F problem subject to Tm". :5 11 using the modified version

of Smith's algorithm. If Step 2 of that algorithm involves an arbitrary

choice, repeat the solution until all possible choices have been made. If

there is no schedule with Trna. :5 Ii , go to Step 5.

Step 3: Let the schedule(s) found in Step 2 have Trna. :5 11 0 , Set 11 =liD -1 .

Step 4: If 11 ~ 0, go to Step 2. Otherwise, continue to Step 5.

Step 5: Stop.

Example: A 1/4/ F prohlem subject to TJruJ. :5 11

-

Processing Time

Due Date

2 4

2

3

4

21

6

-

Step 1: 11 =10

Step 2: Find an efficient sequence (14, h h h) with F =20 and Tmax =8.

Step 3: 11 = 7

Step 4: 11 ~ O.

Step 2: Find an efficient sequence (14, h h. 1]) with F =21 and Tmax =6.

Step 3: 11 =::;

Step 4: 11 ~ O.

Step 2: Find an efficient sequence (1/, h. h J4) with F =27 and Tillar =5.

Step 3: 11 =4

Step 4: 11 ~ O.

Step 2: No sequence with TIIla.r~ 4.

Step 5: Stop.

Suppose the total cost in this example is linear with positive coefficients, say:

C(Tmax ' F) =4Tmax + 7 F

The total cost of the three schedules are:

(i{ h h Jz): Tmax =8, F =20. Total cost =4x8 + 7x20 =172.

(14, h h. h): Tmax = 6, F =21. Total cost = 4x6 + 7x21 = 171.

(h h. h 14): Trnax =5, F = 27. Total cost =4x6 + 7x27 = 209.

Hence, the minimal cost schedule is (i{ h lz, 1])

2.3 Algorithms For Flow-Shop, Job-Shop And Open Shops Problems.

22

-

In this section, the scheduling problem is described by a four-field classification

n1m IA lB. [Conway, Maxwell, and Miller, 1967], [Lenstra 1977], [Rinnooy Kan, 1976]

and Graham et at. 1979].

We shall now discuss problems in which each job requires execution on more

than one machine. From section 2.1, we know that in an open shop the order in which a

job passes through the machine is immaterial, whereas in a flow shop each job has the

same machine ordering (M I , M2, ... ,Mm) and in a job shop the jobs may have different

machine orderings.

Very few multi-operation scheduling problems can be solved in polynomial time.

The most famous cases are the n/2/F/F,nax [Johnson 1954], n/2/0/Clllax [Gonzalez and

Sahni, 1976]. We will limit our survey to these algorithms and their extended

applications.

2.3.1 Algorithms For Flow-Shop Problems

In many manufacturing and assembly facilities a number of operations have to be

done on every job. Often, these operations have to be done on all jobs in the same order,

which implies that the jobs have to follow the same route. The machines are assumed to

be set up in series and the environment is referred as a flow-shop. Johnson [1954] gi ves

an O(n log n) algorithm to solve the n/2/F/Fmax problem. The logic turns out to be simple.

Johnson [1954] also provide a particular case to solve the n/3/F/Fmm: problem in

polynomial time, though n/3/F/F"rax is strongly NP-hard [Garey, Johnson and Sethi 1976].

Enumerative methods are also commonly used in real life because of their

23

-

straightforwardness and simplicity. These three algorithms are shown in this section and

simple examples are also provided in the following section.

2.3 .1.1 Johnson's Algorithm For The N/2IFIFmax Problem [Johnson 1954]

(n job, 2 machines (each job in order Ml, M2), flow-shop, to minimize maximum

flow time)

• The basic logic of Johnson's algorithm for the n/2IFIFlllax problem with

fjl =aj and Pj2 =bj,)=1, 2, ... , n:

(1) if ak = min{al, a2.. ··, aTI> b l , b2.... , b,,}, there is an optimal schedule

with h first in the processing sequence;

(2) if bk = min {ai, a2, ... , an, bl • b2
o
... , b,,}, there is an optimal schedule

with Jk last in the processing sequence;

• Johnson's Algorithm

Step 1: Set k=1, L=n.

Step 2: Set the current list of unscheduled jobs = { iT. h. ... ,in}.

Step 3: Find the smallest of all the aj dnd bi times for the jobs currently

unscheduled.

Step 4: [f the smallest time is for Jj on first machine, i.e. aj is smallest, then:

(l) Schedule Jj in kth position of the processing sequence.

(2) Delete Jj from the current list of unscheduled jobs.

(3) Increment k to k +1.

(4) Go to Step 6.

24

Step 5: If the smallest time is for lj on the second machine, i.e. hj is smallest, then:

(1) Schedule Jj in the lth position of the processing sequence.

(2) Delete Jj from the current list of unscheduled jobs.

(5) Reduce 1to l -1.

(6) Go to Step 6.

Step 6: If there are any jobs still unscheduled, go to Step 3. Otherwise stop.

Note: If the smallest time occurs for more than one job in Step 3, then pick lj

arbitrarily.

Example: A 7/2/F/Fmeu scheduling problem. The processing time on machines is

as follows:

(The problem contains 7 jobs, 2 machines, flow shop, which minimize maximum

flow time).

5

6

6

2

4

1

7

4

7

2

3

4

5

6

7

--=-J-=.o=.b ---=M=I ---=M=2

3

9

3

8

Applying the algorithm, the schedule is as follows:

Job 4 scheduled: 4 -

Job 5 scheduled: 4 * * * * * *

-
25

-

Job 2 scheduled: 4 * * * * * 5

Job 3 scheduled: 4 2 * * * * 5

Job 1 scheduled: 4 2 * * * 3 5

Job 6 scheduled: 4 2 6 * 1 3 5

Job 7 scheduled: 4 2 6 7 1 3 5

Hence, the optimal order is (4, 2, 6, 7, 1,3,5)

In the preceding schedule, there are two arbitrary choices. We could have put Job

5 into the last position of the sequence before scheduling Job 4, and the resulting

sequence would have been the same. Also we could have scheduled Job 1 in the sixth

position instead of Job 3. This would have led to a different, but equivalent, processing

sequence (4, 2, 6,7,3, 1,5).

2.3.1.2 Johnson's Algorithm For The NI31FIFIIlax Problem [Johnson 1954][Szwarcl977]

Johnson's algorithm for the n/3lFIFmax problem is a special case of his algorithm

for nl21FIFmax problem. Here are the pre-conditions for this problem:

either

~in {p]J } ~ m~x {Pj2 }

]=1 i=1

or

min {PjJ}~ m'~x {Pi2 }
i=1 i=1

26

=

i.e. the maximum processing time on the second machine is no greater than the minimum

time on either the first or the third. In such a case, an optimal schedule for the problem

may be found by letting

a I = Pit + Pj2

and processing the jobs as if they are processed on two machines only, but with the

processing time of each job being aj and bj on the first and second machine respectively.

Example: A 6/3/F/Fma.x problem with processing time and order is as follows:

Actual Processing Time

Job

6 4

Constructed Processing Time

1st Machine 2nd Machine

5 4-

8 11

4 3

8 10

10 8

5 2

2

7

9

6

M3 -"---"-'-"'::.::..:..:..:..:..:..:=---=-----".:..=.=.::..:..:..:..:..:..:::

2

3

28

6

4

3

5

2

5

4

:3

(a) Check the processing time on machines 1,2, and 3.

6

min{~j}=3;
j=1

6

max {P2j }=3;
j=l

6

min {?jJ= l.
j=1

6 6

Thus we have min {~J= max {P2J=3. (pre-condition is satisfied)
j=1 j=l

(b) Construct ai and bi times. a j =P jl + P j2 and bj =Pj2 + P j3' For the results

of the equation see the preceding table.

..
27

(c) If we apply Johnson's algorithm for n/2/F/Fmax we have the following processing

sequence (2, 4,5, 1,3,6).

For the results of sequencing see Fig. 5 Gantt Chart for 613/F/Fmax Problem.

6 J J 19 23 26 30

6 8 14 21 24 27 31

o 8 17

1.1

24 30 33 35

-

Fig. 5 Gantt Chart for the 6/3/F/Fmax Problem

2.3.1.3 Akers' Graphical Solution To The 2/M/F/Fmax Problem [Akers 1956]

(two jobs n machines flow-shop case, graphically minimizing maximum flow
time)

The method generates schedules one by one, searching for an optimal solution. It

uses procedures of elimination to see if the non-optimality of one schedule implies the

28

non-optimality of many others not yet generated. It may not search all of the sets of

feasible solutions.

Use a horizontal line to represent work on one job, a vertical line on the other, and

a 45° line on both. The optimal schedule can be drawn with the following steps.

-

Step 1.

Step 2.

Step 3

Step 4

Step 5

On a piece of graph paper, layout the processing times of job I, in

order of processing on the (X) horizontal axis. Layout the

processing times of job 2 in order of processing on the (Y) axis.

(total time on job 1 ~ total time on job 2).

Find the oblong area where the processing time on the first

machine required by job 1 crosses the processing time required by

that same machine on job 2. Crosshatch this area. This area is the

time when both johs require the same machine.

Complete step 2 for all remaining machines.

Start from the origin, (0,0), draw (if possible) a 45° line until you

hit an oblong area. Follow the edge of the oblong area until you

can again go at a 45°[1]. Continue until you have completed all

processing. (Justification: if we started at the origin and went to the

light, job 1 would be done, letting job 2 wait. If we went straight

up, job 2 would be done, letting job 1 wait. Therefore, a 45° line

through a square indicates progress on both jobs).

Starting from the origin (0,0), count each square through which the

line passes. This is the time for the optimal schedule. Check to see

29

which job has to wait by looking for horizontal Gob 2 waits) or

vertical Gob 1 waits) lines.

[1] If you hit the comer of an oblong area, follow both edges,

generating alternative solutions. Pick the line that gives the least

processing time.

The maximum flow time of the schedule can also be counted by either:

m

Frrm =L ~j + sum of length of vertical segments of the schedule line
j=J

or

m

Fm", =L P2j + sum of length of horizontal segments of schedule line
)=\

where m ---- number of machines,

P lj ---- processing time of job 1 at machine j

P2j ---- processing time of job 2 at machine j

Example. Graph Schedule for a 2-job, 7-machine process with data as follows:

Job 1 Order of machines

Processing times

Job 2 Order of machines C

c

2

F

E

2

A

F

4

E

8

3

G

D

1

D

G

8

-

Processing times 3 3 2

30

2

y

14
13

B 12
D 11
G 10

9
E X
A 7

6
F 5

4
3

C 2
1

..
/~

,
I V

I..
~

/ rr
V /

1;/ /
I/' /

/

~~/
./ j(/

~

~~
J12345 6 7 8 9 10 II 12 13 14 x

Fig. () Graph Of Schedule In 2/7fFfFmax-

2.3.2 Algorithm For Job-Shop Problems

Relaxing the flow-structure can create an immediate generalization of the f1ow-

shop problems. Rather than requiring each job to progress through the processing stage in

an identical fashion, we now allow jobs to have di fferent ordering requirements. In this

context, we also allow job operations to involve repetitious processing. By a modification

of Johnson's algorithm for n/2IFIFmcu, the n/2IGIFmcu (n job, 2 machine general job-shop,

minimizing maximum flow time) the problem can be solved in polynomial time.

Johnson's algorithm for the n/2lGIFmcu problem [Johnson 1954] is as follows:

Suppose that the set of n jobs { h h, ... , I n } may be partitioned into four types of

jobs as follows:

Type A: those to be processed on machine M 1 only.

31

Type B: those to be processed on machine M2 only.

Type C: those to be processed on both machines in the order M1 then M2.

Type D: those to be processed on both machines in the order M2 then M1

The construction of an optimal schedule is straightforward.

(1) Schedule the jobs of type A in any order to give the sequence SA.

(2) Schedule the jobs of type B in any order to give the sequence Sa.

(3) Schedule the job of type C according to Johnson's algorithm for

nJ2/F/FmQx problems to give the sequence Sc.

(4) Schedule the job of type D according to Johnson's algorithm for

nJ2/F/Fl1Iax problems to give the sequence So (here M2 is the first machine

and M 1 is the second machine).

An optimal schedule is then:

Machine Processing Order

(Sc. SA. So)

(So. Sa, Sc)

This schedule clearly minimizes the idle time when M2 is kept waiting for jobs of

Type C to complete on M 1 or when M 1 is kept waiti,.lg for jobs of Type D to complete on

M2. Therefore it is an optimal schedule.

Example: A 9/2/G/Fmax problem with times and processing order as follows:

Job First Machine Second Machine

2

3

8

7

9

32

2

5

8

4 M, 4 M2 7

5 M2 6 M, 4

6 M2 5 M, 3

7 M, 9 :j<

8 M2 1 *

9 M2 5 *

Find the optimal schedule.

Type A jobs: Only job 7 is to be processed on M 1 alone.

Type B jobs: Jobs 8 and 9 require M 2 alone. Select arbitrary order (8, 9).

Type C jobs: Jobs 1, 2, 3, and 4 require M 1 first and then M2 Johnson's algorithm for

this 4/2/F/Fmax problem gives the sequence (4, 3, 2, 1).

Type D jobs: Jobs 5, 6 require M 2 first and then MI. Johnson's algorithm for this

2/2/F/Fmax problem gives the sequence (5, 6)(M l is the second machine).

Hence, an optimal sequence for the overall problem is:

Job Processing Seguence

..

Machine M 1

Machine M 1

(4, 3, 2, 1, 7, 5, 6)

(5, 6, 8, 9, 4, 3, 2, 1)

33

4 l3 20 28 37 41 44

...

Fig. 7 Gantt Chart For The 912/G/Fmux Problem

2.3.3 Algorithm For Open Shop Problems

Though open shop problems have been proved to be NP-Complete [Parker 1995],

minimIzing makespan in the open shop with two machines (n/2/0/Cmux) problem turns

out to be solvable in polynomial time due to Gonzalez and Sahni's [1976] contribution.

Algorithm for n jobs, two machines open shop problem (n/2/0/Cllrax).

Step 1: Initialize by setting ..1/ =Lh= k =r =Po/ =P02 =0; ll:= 0; i =0;

Step 2: Compute ..1/ f- ..1 1 + Pi! . ..12 f- .12 + Pi2:

If Pi! ;::Pi2 . go to step 3, else go to Step 4;

Step 3: If Pi/ ;::Pi2. then extend nby concatenating as m- and set r f- i; else, concatenate

as lli. If i =11, go to Step 5; else set i f- i+ 1 and return 2.

Step 4: If Pi2 ;::Pkl . then extend nby concatenating as knand set k f- i; else, concatenate

as in. If i =n, go to Step 5; else set i f- i+1 and return 2.

Step 5: If Ll/ - Pk/ < Ll2 - Pk2. set n/ f-m-k and n2 f- km-; else set n/ f- km- and

34

n2 f- rkn. Remove aU O's from the pennutations nj and n2 and schedule in these

orders on respective processors.

Example: Four jobs, two mac'hines, open-shop, m.inimizing makespan problem

(412/0/Cmax). The four jobs and operation times are shown bellow:

Job M, M2

7 3

2 2 4

I
3 5 8

4 2 6

•..
The computation can be easily summarized in the following table: J

t
After iteration 11:

2

3

4

o

00

200

3200

r k

0

2

3

4

By applying Step 5, we [onn 11:1 f- rrrk ={320014} and 11:2 f- krrr = {432001}. Or upon

eliminating dummy Os, we obtain 11:1 = {3214} and 11:2 = {432J}. The corresponding

schedule is shown in Fig. 8.

35

3 '}

5 7

4

6

1 4

14 16

3

14

2

18 21

Fig. 8 Final Schedule for 4/210lCmuxo

2.4 Algorithms For Parallel Machine Problems

In this section, prohlems are described by a three-field classification aif3/y.

[Conway, Maxwell, and Miller, 1967], [Lawler, Lenstra, and Rinnooy Kan, 1982],

[Hemnann, Lee and Snowdon, 1993].

For parallel machine problems, we assume an environment characterized by two

or more machines where these machines have similar capabilities (but perhaps different

performance qualities, such as speed and so on). That is, any of M ~ 2 machines are

available for processing a given job. The aim is to find an assignment of all jobs to

existing machines that makes optimal some predetermined measure. Here we focus on

algorithms for the makespan case.

This problem can be described as a given finite set of jobs J, a non-negative

duration t; for each i E J, a number m ~ 2 of machines, and a completion time threshold

D>O, find a partition (iI, h, ,""., Jm) of J such that

36

max{L,l;;l ~ k ~ m} ~ D
iEJ,

It is clear that for any fixed number of m machines, the problem can be solved in

polynomial time. But when m is free, it is a NP-complete problem. Facing this difficulty,

it comes as no surprise that the problem has been studied in the context of approximation

approaches.

2.4. L List Processing [Parker, R. G. 1995]

The method can be summarized in the following manner:

Create a list of jobs L and from this List, fonn a schedule as follow. Whenever a

processor becomes available, schedule the first available job from the list.

The building of the List L might be guided by some sense of priority among jobs

with the latter based on attributes such as job duration, due dates, and a on. The schedule

building is simple and the results of the schedule satisfy the user's required priority, but

the schedule is not necessarily optimal.

Example: A three-machine problem with duration time and ordered list as follows:

Job Processing Time and Order List

j
l••

Processing time: 7

Ordered Li st: 1

3

2 3

5

4

4

5 6

6

7

3

8

5

9

4

10

Following the preceding rules, the lists generated are (1,6,), (2,5,7,10), (3,4,8,9).

See Fig. 9.

37

3
2 I

7
I

7
5 I 7

15
6 I

13 17
I 10 I

2
3 I

7 10
I 8 I 9

15

I

Fig. 9 List Processing Schedule

2.4.2 Longest Processing Time Heuristic [Graham 1969J

The method can be summarized as follows:

Create L with jobs arranged in non-increasing t-order (longest processing time or

LPT order). Form a schedule as follows: whenever a processor becomes available,

schedule the first available job from the list.

Example: A four-machine problem with duration time and ordered list as follows:

Job Processing Time and Order List

Processing time:

Job Order List:

7 7

2

6

3

6

4

.5

5

5

6

4

7

4

8 9

Following the preceding rule, the list processing generated is (1, 7, 9), (2, 8), (3,

5), (4, 6). The result is shown in Fig. 10.

38

=

5

II I 11 I 19 I
7 11 1

12 I 18 I
7 11

13 I 15 I
6 11

14 I h I
6 II

Fig.IO Example for Longest Processing Time Heuristic ···I
"

2.4.3 MULTIFIT Heuristic [Coffman et al. 1978]

For some time the Longest Processing Time Heuristic was the best known ill

terms of a performance guarantee. However, this position of prominence was

relinquished when Coffman et al. (1978) offered the MULTIFIT Heuristic which cleverly

employs a natural dual-like relationship between the problem PllCrrulX and the well-known

BIN-PACKING problem.

BIN-PACKING seeks an admissible assignment or packing of a finite set of

"chips," each with some positive weight, into the fewest number of finite capacity "bins."

This dualistic relationship should be evident as illustrated by the following:

--
39

BIN-PACKING PllCmax

Bins Machines

Capacity Cmax threshold

Chips Jobs

Moreover, if packing into no more than m bins each with capacity of C, then there

exists a suitable schedule with makespan no greater than C.

BIN-PACKING logic is considered for the following heuristics:

2.4.3.1 First-Fit, Decreasing Weight Heuristic (FFD)

Create a list L of chips arranged in non-increasing weight-order. Select chips from

L in this order, placing a given selection in the first available bin into which it will fit.

Example: Let C =61 and consider the list of chips given as L =(44, 24, 24, 22, ··,,
"

21, 17,8, 8, 6, 6). Applying the First-Fit, Decreasing Weight Heuristic produces the four-

bin packing in Fig.ll.

·I,,
I
I

2 4

43 51 60

61

I

4856

44

24

22

I

3

2

6

Fig. II First-Fit, Decreasing Weight Heuristic

--
40

2.4.3.2 MULTIFIT Heuristic

Step 1:

Step 2:

Step 3:

Step 4:

where

Example.

Initialization. Let T be the set of jobs and fix upper and lower

bounds relative to T and m, as ,8u [T,m] and ,8JT,m]

respectively. Let ,8)(0) f-,8u and ,82(0) f-,8L' Choose a number

of iterations t and an iteration counter if-I.

Capacity change. If i > t, stop. Otherwise, set

Upper bound. If the number of bins required by the First-Fit,

Decreasing Weight Heuristic operating on T with capacity C, given

as FFD[T,C], IS no greater than m, et fJ, (i) f- C,

fJ2 (i) f- ,82 (i -1), update if- i +1 and go to Step 2.

Lower bound. If FFD[T,C]> m, set ,82 (i) f- C, ,81 (i) r,81 (i -1),

update i f- i +1 and go to Step 2

A three-machine, seven-job problem with data as follows:

.
I

"

;;,
I,

--

Job Number: 2 3

41

4 5 6 7

Processing time:

Choose iteration t = 6.

59 47 38 22 13 12 II

--

The fixed Lower bound is:

/3L =(59 + 47 + 38 + 22 + 13 + 12 +11) /7 = 67.3

The fixed upper bound is:

fit, = 2 x 67.3 = 134.6

The computation is summarized as:

When i = 1:

C = 100.9, FFD[T, C] ~ 3, /3, (1) = 100.9, f3l (1) = 67.3

When j = 2:

C = 84.1, FFD[T, C] ~ 3, /3, (2) = 84.1, fh (2) = 67.3

When i = 3:

C = 75.7, FFD[T, C] ~ 3, /3, (3) = 75.7, fh (3) = 67.3

When i = 4: I,
•
I

C=71.5, FFD[T, C] ~ 3, /3, (4) = 71.5, fh (4) = 67.3

When i = 5:

C = 69.4, FFD[T, C] > 3, /3d5) = 71.5, fh (5) = 69.4

When i = G:

C = 70.5, FFD[T, C] ~ 3, /3, (6) = 70.5, fh (6) = 69.4

When i = 7: Stop.

Final packing yields the schedule shown in Fig. 12.

42

I
59 70

I
47 69

Fig. 12

38 51 63

Schedule of MULTIFIT Heuristic

--

Scheduling of jobs on parallel machines is very hard to solve. The scheduling of

jobs with precedence constraints on parallel machines is harder, but there are some

interesting solvable unit duration time cases. One is given by Hu [1961].

2.4.4 Hu's Algorithm

Step 1: Compute the length of a longest path from each vertex. Call these values ii

Step 2: Create a list L of jobs arranged in non-mcreasing I-order. Perform List

Processing on L.

Hu's Algorithm solves P\Jree, ti =llCmax

Example: Three machines, 17 jobs are constrained as shown in Fig. 13. Each job

is of one unit processing time. The final schedule can be seen in Fig. 14.

43

6

6

6 5

5

Fig. 13 Precedence Constraint Diagram

List L is built as (1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, IS, 16, 17)

____ 1

2

Fig. 14 Schedule of Hu's Algorithm

44

2.5 Some Problems In Combinatorial Optimization

Some scheduling problems can be solved efficiently by algorithms presented in the

previous sections. Others require methods in combinatorial optimization. In this section,

we will review the widely used methods for scheduling, such as traveling salesman and

genetic algorithms.

2.5.1 Christofides Heuristic Algorithm For Traveling Salesman Problems

The traveling salesman problem (TSP) is one of the most popular problems in

combinatorial optimization. Since the problem is so widely studied with most major

results readily accessible in the literature, we will briefly revIew the Chri tofides'

heuristic for the TSP and explicitly show this algorithm with an example.

The classic TSP asks for a tour through n "cities" that cover least total travel

distance. The tour must begin and end at the same city with no city visited more than

once. In graph-theoretic language, the problem is usually defined on a complete graph

where edges are weighted as w: E ----7 Z and the aim is to find a spanning cycle of the least

amount of total weight. Christofides' heuristic is described by the following steps:

Step 1: Find a minimum weight spanning tree in G. Let this tree be given by T c; E.

Step 2: Let the odd-degree vertices in the tree of Step 1 be denoted by Vo and find a

minimum weight perfectly matching in the subgraph induced by Vo. Let this

matching be denoted by M ~ E.

45

Step 3: The graph fanned as M u T is called Eulerian[1J. Produce the corresponding

(Eulerian) cycle and, interpret it as a vertex sequence, fonn a TSP tour by

beginning as the initial vertex, and proceed in order, "shortcut" past duplicated

vertices unti I the starting vertex is reached again.

Note: [IJ ---- Given that the Eulerian graph is G = (V, E), does G posess a walk that

begins and ends at the same vertex and includes each edge exactly once? Such a walk is

called an Eulerian traversal and a graph that admits it is called Eulerian [Euler 1736).

For example, consider the graph in Figure 15. The problem is shown in part G. In part a,

the tree is given. The matching of Step 2 is shown in part b, and in parts c and d, the

Eulerian cycle and generated tour are shown respectively.

46

2

3

46

(1,3,6,5,4,3,2,1) 5

(c)

4

(a)

5

------~3

6

1 3 IC><J 2

6 4 4 3

5

(G) (b)

2 2

2

6

5

(d) Fig. IS Example Of Heuristic For TSP

--
47

2.5.2 Genetic Algorithms

Genetic algorithms are search algorithms based on the mechanics of natural

selection and natural genetics. They combine survival of the fittest among string

structures with a structured yet randomized information exchange to fonn a search

algorithm [Goldberg 1989J. Genetic algorithms have been widely used in search and

optimization in the areas of biology, computer science, engineering and operations

research, job scheduling, and so on [Goldherg 1989J, [Brown and Scherer 1995J, [Kerr

and Szelke 1995J.

The mechanics of a genetic algorithm are surprisingly simple. It involves nothing

more complex than copying strings and swapping partial strings. Its operation is

composed of three operators, Reproduction, Crossover and Mutation. Reproduction is a

process in which indi vidual strings are copied according to their objecti ve function

values. After the newly reproduced strings in the mating pool are mated at random, an

integer position k along the string is selected uniformly at random between I and the

string length less than one (1, L-1). Swapping all characters between position k+1 and L

inclusive creates two new strings. Mutation is a random walk through the string space for

an occasional alteration of the value of a string position. Genetic algorithms are powerful

in solving all kinds of problems in real life with the suitable implementation of these

three operations.

Example: Maximize the function!(x)=x2
, where x is permitted to vary from 0 to 31.

48

Step 1: Choose an initial population by four repetitions of five coin tosses where head =

1, tail =O. See table 1.

Step 2: Reproduce a new population of four strings hy using random selection.

Step 3: Use coin tosses to pair off the happy couples. First couple 01101 and 11000,

second couple 01000 and 10011.

Step 4: Use coin tosses to select the crossing site to cross over the mated string couples.

First couple at position 4, second couple at position 2.

Step 5: Randomly select a mutation position, pelform bit-by-bit mutation according to

probability of mutation, (in this case no bits undergo mutation during a given

generation for the rate is too small).

Step 6: If not satisfied with the result, go to Step 2, else go to Step 7.

Step 7: Stop.

The operation stops after 2 iterations. The maximum value of j(x)=x2 increa ed

from 576 to 729. See Table 1 and Table 2 for the results.

Table 1 Initial Genetic Productions.

String Initial f(x) Fitness
~o. Population x value x2 slot size Count
] o 1 1 0 1]3 169 O. L4 1

2 1 1000 24 576 0.49 2

3 01000 8 64 0.06 0

L_.__ 1 00 1 1 19 361 0.31

49

Table 2 Result of Genetic Cross Over.

Mating Pool Crossover New j(x)
After Prod. Mate Site Population x value 2Io11 Q1 2 -4 01100 12 144I

I
I

1 10 d 0 1 4 1 1 00 1 25 625t
I

I
I

1 1 0 1 1 729OlPOO 4 2 11I
I
I

100 1 1 3 2 10000 16 256

50

CHAPTER 3

INDUSTRIAL APPLICATIONS

Although scheduling algorithms originated from industry and have been

developed to solve all kinds of problems, these algorithms can't cover all real world

problems. In industrial practice we must analyze our problems, find the proper algorithm

or combine a few algorithms together, or simply borrow some ideas from the available

algorithms to find a good solution to our problems. Let's examine a mobile workforce

dispatching problem and find a combinatorial solution to the problem.

3.1 Background

A company called CGV has hundreds of service stations scattered all over a state

on the eastern coast of the United States. These services have been providing repair and

maintenance services for customers in their service areas. CGV plans to merge all the

small services into a few service centers. Since the maintenance technicians are scattered

around the state, it is impossible to have all the technicians gather at one service center,

pick up their maintenance orders, and drive back to work each morning. Therefore, CGV

plans to build a computer-aided dispatching station (CDS) and furnish a laptop computer

for each technician's maintenance vehicle. The CDS station will communicate with each

51

technician through a wireless network (see Fig. 16). Thus, the technician will receive his

maintenance orders for a day as soon as he gets in the van and starts his computer. The

technician is required to send back his maintenance report aml time sheet when a job is

done or when he completes his assignment for a day. Not only the company benefits from

doing this, but also customers and the technicians.

Mobile Data Terminal

jzz;JII

t
Main Frame Station

Computer Aided Dispatching (CDS) Station

\ \

Mobile Data Terminal

Fig.16.Network Configuration

52

Based on this specific condition, the company provided a short Jist of

requirements for the design of the CDS system:

1) Every individual is assigned a responsible area.

2) Don't let technicians work overtime, if possible.

3) Customers don't like a technician to leave a job half done once it gets

started.

4) Urgent jobs shall be scheduled and processed on the required date.

5) Normal maintenance jobs may be planned in the service center a few

weeks or even a few months ahead of actual scheduled time.

6) Generally, the processing time ranges about 15 minutes to four hour

(mostly less than one hour).

.~

I"'
I
I

3.2 Initiation Of Project .~

3.2.1 Preliminary Assumptions

According to the above-mentioned requirements, the following assumptions are

made to simplify the selection of scheduling algorithms:

1) All technicians are equally good at all assigned jobs.

2) If a technician doesn't have enough jobs to do in his respecti ve region, he

can request to work in nearby areas.

3) Before dispatching jobs to a technician, the service center is supposed to

have received a work request that includes the technician's name, work

53

location, starting time and working hours of the day (a technician can

make more than one request for a day).

4) The dispatching algorithm will only dispatch jobs available at dispatching

time.

5) A technician can't be interrupted once he is working on ajob (i.e., this is

non-interruptible scheduling).

6) The sum of a technician's work time and travel time shall be within eight

hours per day.

7) Special cases not mentioned above will be handled through special

dispatching channels (not to be discussed in this thesis).

3.2.2 Design Of Scheduling Logic

According to the user's requirements and our assumptions, thi problem seems to

be a problem of m machines in paraIJel, n jobs with precedence constraints,

minimizing total cost. Now we divide the state into a few regions. According to

their locations, characterize all jobs by zip codes (i.e. group all jobs into the

divided regions). Each technician is assigned to work in one region. Since these

technicians' daily tasks are not closely related, we can consider one technician

and n jobs as a scheduling unit. The problem thus becomes a single machine, n

job problem. The parallel operation of the m technicians is separated from the

scheduling of n jobs to a single technician. This parallel operation is easily

managed by the CDS by checking whether or not each region has a technician

54

logged in and jobs are evenly distributed among these regions. We only have the

problem of scheduling n jobs with precedent constraints to a technician.

3.2.2.1 Job Storage And Management

1) Jobs are arbitrarily stored in the CDS database characterized by job

identification number, job type (urgent or normal), estimated working time,

due date, relative coordinates, address, and so on.

2) Jobs shall be dispatched from central lists to each technician's urgent job

queue and normal job queue according to their due dates.

3) Priority rules for job dispatching:

• Urgent jobs have priority to be dispatched first, and Ol)rmal jobs wiJl not

be dispatched unless the urgent jobs have been properly dispatched.

• On the due date of a normal job, it is automatically changed to an urgent

job and transferred to the urgent list.

• If urgent jobs are in regions where there are no technicians on duty, these

jobs shall be dispatched through a special channel.

3.2.2.2 Location Checking Method

The relative coordinates of each job specify all job locations. The coordinates of

his registered horne address also specify a technician's start point.

55

»
.~.
I •

3.2.2.3 Procedures of Assigning Jobs To Technicians

When a technician logs in and requests some hours of work (the ready time of

each technician may be different), the CDS shall send jobs to a technician according to

his expected work area, available hours, and taking the technician's registered address as

the start point. Following the optimality and evaluation rules, the system will dispatch

jobs from his job pool, report to CDS when jobs are done. The CDS will automatic

update its database with information received from each technician.

3.2.2.4 Optimality And Evaluation

The optimality of this non-interruphble scheduling is to have the technician's

work time in a day as near to eight hours (may change according to his reque ted work

hours) as possible with as little travel time as possible. Since the scheduling logic is

leading to a one-machine n jobs with precedence constraints, maximizing working hours

problem, this problem can be solved hy applying the following algorithms repeatedly in

two cases:

• Shortest travel distance first scheduling (SDF).

• Shortest process time first scheduling (SPT).

• Longest processing time first scheduling (LPT).

• Genetic SDF scheduling (GSDF).

• Genetic SPT scheduling (GSPT).

• Genetic LPT scheduling (GLPT).

56

,',

• Dispatch one job from one of the above six queues that schedules the

longest working hour and least traveling time in the following sense.

Case 1: Requested work time is longer than the total work time of jobs available.

The technician's work time bin is larger than all available jobs could fill. All the

algorithms listed above will pack the time bin with the same amount of work time and

different drive time. Since the SDP algorithm will build schedules with the shortest travel

time, the system will only invoke SDP scheduling. The best solution is guaranteed.

can be packed with the six algorithms for each job request. The system will choose one

queue that has been filled with the longest work time and dispatch the first job from the

Plenty of jobs waiting to be processed.

Since there are plenty of jobs waiting to be processed, the technician's time bins

Case 2:

queue. When the job is done, the system will mark the job status "done" and transfer it to

CDS' finished job database. If the technician requests another job, the system will fill the

new time bin provided by the technician with remaining jobs in the job pool. The above

steps will be repeated for each job request until the technician wants to stop. Since the

time bin size is relatively fixed for each job request, more work time means less drive

time. Each time a technician requests a job, the system will build six queues for selection.

Choosing one job every time from the queue identified by maximum work time

optimality is surely enough to guarantee a very good schedule.

3.2.2.5 Program Flowchart

According to the design of the scheduling logic, the following program flowchart

provides us with the solution. See Fig. 17.

57

Read input data

I)
."'l).

·k

3)

4)
5)

6)

Sort jobs by due date

Schedule job by SDP
Schedule jobs by SPT
Schedule jobs by LPT
Schedule jobs by Genetic SDF
Schedule jobs by Genetic SPT
Schedule jobs by Genetic LPT

....

• Dispatch one job from the be t schedule of these six

Arrive on site, get job done

Fig. 17 Program Flow Chart

58

3.3 Empirical Application of the Combinatorial Solution

3.3.1 The Simulation Program

To simulate the scheduling, the following requirements have been kept in mind

during programming:

a) Login and logout date and time zone are Eastern Time as provided by the

h)

c)

computer.

Actual work time, travel time, mileage, jobs completed shall be reported to

the CDS as soon as a job is completed.

The final report shall include today's total work time, mileage and jobs

completed.

••
,,

i.
)1
Ii
t

~I·.

·.
•

d) A technician can change his expected work hours when he requests

another job.

e) A technician can login and logout as many times as he needs to in a day.

The program was written in C. See Appendix A.

As illustrated above, the program first employs three algorithms (SDF, SPT, LPT)

to make three schedules. It is known that the three algorithms will not provide an optimal

solution each time a Job is dispatched. There are many uncertain conditions not

considered by the three. Thus, a genetic algorithm is applied to optimize these three

schedules respectively, and the result is exciting. The genetic algorithm reschedules the

three queues about 6! times each (It is estimated that a technician will work out 6 jobs

each day on average. The possible permutation of jobs in the queue is estimated to be 6!).

59

The best schedule is saved for final comparison. The final schedule chooses one job from

one of these six schedules whenever a technician requests a job. Therefore, a

combinatorial schedule is automatically built up, and provides us with a very good job

dispatching sequence.

3.3.2 Empirical Application

In real life, there are many aspects that influence scheduling. The combinatorial

scheduling logic has given cel1ain considerations to the boundary conditions. The

empirical application considers four technicians working in four different areas

respectively (see Fig.I8). All the job locations originated from random numbers and the

technicians' home locations are arbitrarily chosen.

3.3.2.1 An Eight Hour Day at Normal Jobs

Technician Mike Jackson II) #111 requests to work eight hours in his home area with

zip code 100. The system finds that normal jobs #10 to #26 in this area are available.

According to his requested work area, zip code, and work hours, the system first sorts

these jobs by due date and then schedules six queues of jobs each time he requests a job.

The system automatically finds one job from the best of the six schedules and assigns it

to the technician. When he arrives on site, the actual work time starts. When the job is

done, the job is reported to the CDS. The system will ask if he requests another job, if he

wishes to change expected work time, and so on. until the total time is near to eight

hours. Let's examine the scheduling and assignment in detail.

60

..

Locatbn ofTechncims Ani Area Nurrbers

120

Man 333 Man 444
Area 300

Area 400
Qpcode 300 zjpcode400.J::-I-<0z

t 60

·..J:: ·'5 ·0 Man 222
I

t:I) Man III)

Area 100 Area 200 f
Zipcode 100 Zipcode 200

12060

West .-... East

O+---..L----'---.l...----L....-------i_---I.._---I.._---l..._---'--_---'--_---1

o

Fig. 18 Location of Technicians And Area Numbers

1) Man 111 first requests to work for eight hours. The following six queues are created.

Table 3. Eight-Hour Schedules for MIll In Area 100

! Algorithm Schedule Work Travel No. of
Time (hr) Time (hr) Jobs

SDF #10,#11,#12,#15,#13,#14,#16,#17 4.8 2.4 8

SPT #16,#19,#20,#24,#10,#11,#12,#15 3 4.26 8

LPT #26, #25, #13 3.75 3.83 3

GSDF #10,#11,#12,#15,#13,#14,#16,#17 4.8 2.4 8

GSPT #11,#15,#12,#13,#14,#18,#17 4.8 3.13 7

GLPT #10,#11,#14,#17,#18,#26 4.8 2.3 6

61

See Table 3 for detail schedules. These travel routines, see Fig. 19 to Fig. 24..

60

Schedule By Algorithm SDF.

50
Work 4.8 hr; 0 rive 2.4 hr; Idle 0.8 hr.

J20.

40 J26.
J19

JIB • .J21•30 -m ~ 'J16 • J22

20 • JI4

i'
.J23

I •J24
J12 ...

Jl0
10 OJ15 Jl1

J13 ... • J25

0
0 10 ~o 30 .1(, 50 60

l One Day's Work and Travel (8 hr) In Area 100
..-

...,.......•........................•...................•..~

Fig. 19 Possible Travel Route for Man III By SDF .
.......... , :

60

Schedule by Algorithm SPT.
Work 3 hr; Travel4.27 hr; Idle 0.73 hr.

50

I'

II
:I
jl
II
Ii
I

: I..

.'

40

30

20

10

•J17

J13.

~--=-----Jl.J19

-J1B

"" · 1
• J14 Man

:
~ .JIO

J12 ~

J 15 Jll

J21.

• J23

J24

• J22

• J25

o
o -t-..~~~--'-'.....,...,·~·'-'·'-'·'-',~·'-'·'-·'-'·'-It-'-·~.~.~.............~,~.......+-1......~.~.~.~......~......~.+1~.~,~,~.~.~.~.~.~.-+I~'~.~.~.~.~.~.~'-'-1'I

10 20 30 40 50 60

One Day's Work and Travel(8 hr)ln Area 100

Fig. 20 Possible Travel Route for Man III By SPT

62

60
Schedule By Algorithm LPT.

Work 3.75 hr; Travel 3.83 hr; Idle 0.42 hr.
50

40

30

20

10

o

J20 _

J26 _

J19 -
-J16 - J2'_

• - • J22J17 J16

_J14
4~ Man

-J23

-J24

J12 • - ~10

.15 Jl1

J13. 4. J25

10 20 30 40 50

One Day's Work and Travel (8 hr) In Area 100

60

...

Fig. 21 Possible Travel Route for Man III By LPT

60

Schedule By Algorithm GSOF
Work 4.8 hr; Drive 2.4 hr; Idle 0.8 hr.

50

J20 _

40
J26 _

JIg
J16 • _J21-30 _ J22

JIB

20 J14 Man .In

:Jl0

•1~4

J12 -~

10 J11

J13
• J25

0
0 10 20 30 40 50 60

One Day's Work and Travel (8 hr) In Area 100

-------- ----- -_._----

Fig.22 Possible Travel Route for Man 111 By GSDF

63

-

60

50

Schedule By Algorithm GSPT
Work 4.8 hr; DrIve 3.13 hr; Idle 0.07 hr.

40

30

20

10

JIB

'+II J
..-'_17_..... ~::

JIg•
Man

J20.

J26.

• J22

• J23•J24

• J25

o 10 20 30 40 50 60

One Day's Work and Travel (8 hr) In Area 100
L- ~

Fig. 23 Possible Travel Route for Man III By GSPT

60

• J22

J26

cc

J19•

One Day's Work and Travel (8 hr) In Area 100

r- ..J18

J14
.J23.. Man

1.. :J10

•
J12 •

J24

• J15 J1 I

J13.
• J25

10 20 1" 40 5u 60

J17

o

~u

J20.

Schedule by Algorithm GLPT
Work 4.8 hr; Drive 2.8 hr; Idle 0.4 hr.

50

30

20

40

- -~- ----------

Fig. 24 Possible Travel Route For Man III By GLPT

64

2) After eight requests and assignments. the final applied travel routine (see Fig. 25)

is none of the above six routines. The result is the combinatorial schedule automatically

created by the system. The system chooses one job from the best schedule of the six each

time when a technician requested a new job. Thus. the combinatorial schedule is formed.

The final schedule is #10, #11. #12, #14, #16, #18, #21, #26. Among these jobs, #10,

#11, #12, #16, #26 are chosen from the queue created by SDF, #18 from the queue

created hy GSDF, #14, and #21 from the queue created by GLPT. The work time is 5.25

hours, travel time is 2.53 hours, idle time is 0.22 hour. For a comparison bar chart see

Fig. 26
~I

Applied Combinatorial Schedule
Work 5.25 hr; Travel 2.53; Idle 0.22 hr

J20 e
J26

60

e J22

e J25

50

• e J23

J24

40

n

30

J"

"'1--~Jl0

eJ15 Jl1

20

21.------.....------------+'-

>;1)

f;0

4[)

30 •J17

20 J14

10
e J13

0
0 10

One Day's Work and Travel (8 hr) In Area 100

Fig. 25 Final Applied Travel Route for Man III

65

..

Comparison of Schedules For Man 111

..
'. I,

••
~

2.32.43.832.4
2.53

9

8

>- 7
t':I
"0 6
t':I 5
I:

fIJ 4
~

:J 3o
J: 2

1

O+-~....:...L-r-...L-"'""'---L..-,---L._....L...-~","",---......L..--r-...L.-'-"'L.......r--L...-...L-r---I---'--.

OPTM
2

SDF
3

SPT
4

LPT
5

GSDF
6

GSPT
7

GLPT

Fig. 26 Bar Chart of Total Work Time and Travel Time

Note: OPTM ---- Final Combinatorial Schedule.

SDF ---- Shortest Travel Distance First Schedule.

SPT ---- Shortest Process Time First Schedule.

LPT ---- Longest Process Time first Schedule.

GSDF ---- Genetic SDF Schedule.

GSPT ---- Genetic SPT Schedule.

GLPT ---- Genetic LPT Schedule.

Observing the above travel routes and the bar chart of schedule comparison, it is

clear that a genetic algorithm plays a very important rule in optimizing schedules. In most

cases, the final combinatorial schedule intelligently chooses a job from the queue

optimized by a genetic algorithm although pliority has not been given to these queues.

3.3.2.2 An Eight Hour Day At Normal Jobs Of Long Duration

66

The typical day's work at nonnal jobs of long work time tests the perfonnance of

algorithm LPT. As expected, the final combinatorial schedule (OPTM) intelligently

created a very good solution. By chance, the schedule created by OPTM and genetic LPT

(GLPT) are the same. These six schedules are listed in Table 4. Comparison of work time

and travel time see Pig 27.

Table 4. Eight-Hours Schedules for M222 In Area 200

I Algorithm Schedule Work Travel No. of
! Time (hr) Time (hr) Jobs

SDP #32,#35,#34, #36,#37, #38,#39,#40,#41 4.0 3.23 9

SPT #31,#33,#35,#37,#38,#40,#43,#32 2.25 4.83 8

LPT #47,#45,#42 4.75 1.77 3

GSDP #45,#46,#47,#42 5.25 2.57 84

GSPT #32,#35,#34,#41,#42,#45 4.75 3.13 6

GLPT #47,#46,#45,#44,#42 5.75 2.03 ') 1

OPTM #47,#46,#45,#44,#42 5.75 2.03 5

67

: I. '

'1.

'/

Comparison of Schedules For Man 222

2.032.03

9

8

>.7
CO

"C 6
&0 5
s:::::

til 4
~

::::J 3o
J: 2

1

O+--........~--r-'---.&.-,---L--"-'-.-....-.---"-='""""'"--r"""O'O::;=--.&.-,---L;.;::.:::..'"-'-.---=-a.---,

OPTM SDF SPT LPT GSDF GSPT GLPT

2 3 4 5 6 7

Fig. 27 Comparison of Work Time and Travel Time of SchedulesFor Man 222
'I

3.3.2.3 An Eight Hour Day At Normal And Urgent Jobs In Different Areas

In the following schedule, jobs #51, #52 and #57 are urgent jobs. The system

schedules all urgent jobs first. See the Stage I Schedules of Urgent Job table for details.

The OPTM schedule is the same as the SOF schedule. Thus, the total time for urgent jobs

is 5.05 hours. When all urgent jobs are done, the technician still has 2.95 hours to work

for the day. The system automatically turns to normal jobs. See the Stage II Schedule of

Normal Job table. The normal jobs are scheduled in accordance with the remaining time

of the technician. For work time comparison of schedules, see Figure 28, and for the final

combinatorial travel route see Figure 29.

68

Table 5. Eight Hour Work Schedule For Man III In Area 300

I
:~:.,
I'.

J bIShdl fUStage c e u es 0 rgent 0 s
Algorithm Schedule Work Travel No. of

Time (hr) Time (hr) Jobs
SDF #57,#52,#51 1.25 3.8 3

SPT #57,#51,#52 1.25 6.5 3

LPT #51,#52,#57 1.25 4.5 3

aSDF #57,#52,#51 1.25 3.8 3

asPT #57,#51,#52 1.25 6.5 3

GLPT #51,#52,#57 1.25 4.5 3

OPTM #57,#52,#51 1.25 3.8 3

Stage II Schedules of Normal Jobs

SDF #66,#59,#61 0.75 1.4 3

SPT #55 0.25 2.2 I

LPT #63 1.0 1.7 L

GSDF #60.#65 1.5 1.13 2

GSPT #60,#65 1.5 1.13 2

GLPT #60,#65 1.5 1.13 2

OPTM #60,#65 1.5 1.13 2

69

8

7

6
>0-
til 5't:l
til

.5 4
III..
:::l 30
:I:

2

1

a

Comparison of Work Time of Schedules
Man 111 in Area 300 for Urgent and Normal Jobs

2

OPTM SDF

3

SPT

4

LPT

5

GSDF

6 7

GSPT GLPT

Fig. 28 Comparison Of Work Time for Man 111 in Area 300

Combinatorial Schedule (Urgent Jobs J51, J52, J57)
120 work Time 2.75 hr, Travel Time 4.93 hr, Idle time 0.32 hr

110 e J66 .5951 J61 .63
100 e

90
e ./54

80
J66

eJGi'
eJ69

70 e
JSIl J.';3 e J55

e J51;
e60

J62

50

40

30

20 eMan

10

0

0 10 20 30 40 50 60

One Day's Work and Travel (8 hr) From Area 100 to Area 300

._------ -

Fig. 29 Travel Route Of Man 111 From Area 100 To Area 300

70

3.3.2.4 An Eight Hour Day At Nonnal And Urgent Jobs In Area 400

In the following schedule, jobs #71, #72, #81 and #82 are urgent jobs. The

system, as designed, schedules all urgent jobs first. See the Stage I Schedules of Urgent

Job table for detail. The OPTM schedule is the same as the SOP schedule. Thus, the total

time for urgent jobs is 5.05 hours. When all urgent jobs are dOlle, the technician still has

2.95 hours to work for the day. The system automatically turns to normal jobs. See the

Stage II Schedule of Nonnal Job table. The normal jobs are scheduled in accordance with

the remaining time of the technician. For work time comparison of schedules, see Figure

30. For the final combinatorial travel route see Figure 31.

Table 6. Eight-Hour Work Schedule For Man 444 In Area 400

Stage I Schedules of Urgent Jobs

Algorithm Schedule Work Travel No. of
Time (hr) Time (hr) Jobs

SOF #82,#72,#81,#71 1.37 2.1 -\

SPT #81,#82,#72,#71 1.37 2.63 4

LPT #71,#72,#82,#81 1.37 3.37 4

GSOF #82,#72,#81,#71 1.37 2. L 4

GSPT #81,#82,#72,#71 , 1.17 2.63 4,

GLPT #71,#72,#82,#81 1.37 3.37 4

OPTM #82,#72,#81,#71 1.37 2.1 4

71

...

Stage II Schedules of Normal Jobs

Algorithm Schedule Work Travel No. of
Time (hr) Time (hr) Jobs

SDF #88,#87,#80,#77,#75 2.25 2.17 5

SPT I #77, #86, #79 0.8 3.5 3
I

1#85LPT 0.85 2.2 1

GSDF #88,#87,#80,#77,#75 2.25 2.17 5

GSPT #88,#87,#77,#80,#75 2.25 2.t7 5

GLPT #88,#87, #77, #80,#75 2.25 2.t7 5

OPTM #88,#87,#80,#77,#75 2.25 2.17 5

Comparison of Work Time of Possible Schedules
Man 444 in Area 400 on Urgent and Normal Jobs

8

7

ia' 6

~ 5
r:: 4
II)...
5 3 1

::I: 2

1

O-l-L-L....L--r--I..;....&......L..--r--..............L--r--&-...L....l-.r--'........."'---r--''--I-...l-.r--'...........&...-...,

2 3 4

OPTM SDF SPT LPT

567

GSDF GSPT GLPT
L.--__________________ _ _. --'

72

Fig. 30 Comparison Of Work Time for Man 444 in Area 400 .,

Combinatorial Schedule (Urgent Jobs J71, J72,J81 ,J82)
Work 3.65 hr; Travel 4.27 hr; Idle 0.08 hr

120

..I.. ,

..

J73

•J76

•
J79

•
J78

•

110 120

J74.
, , , I ' , , , , , , , , I

•
J85

100

•
J84

90

J8lt.......r----------.
• "', ,-4
Ma~

•

8070

J71

...

r";"" ! "'"
.. • J87

J75

90

60 +-,--'---'---'---'---'-.--'-'T'-'--'•.I-L'J~,U~ I ' , , I , , , ' , I I , , I , , ' , I I ' ,

60

80

70

100

110

One Day's Work and Travel (8 hr) In Area 400
'-------------- --- ------

Fig. 31 Travel Route Of Man 444 In Area 400

3.3.3 Observation On The Empirical Application

From the preceding tables of schedules with four applications, we ean see that the

SDP algorithm only gives consideration to jobs in the nearest distance. Reasonable

application of this algOIithm will guarantee the shortest travel distance of a day's work,

but not the maximum work time of the day. It occasionally schedules a technician with

longer idle time or a considerable travel time. The SPT algorithm increases the number of

73

jobs in each schedule. It often schedules a technician with considerable travel distance

and less actual work time. The LPT algorithm helps a technician to find jobs with the

longest work hours. In tum, this algorithm often results in a situation where jobs with less

work time are ignored in favor of jobs with longer duration; the final total work time

doesn't increase much, but the travel time does ..

The genetic algorithm has provided an unexpected contribution to the success of

this combinatorial solution. It keeps a good schedule and continues to find a better

chromosome to perfect the schedule. We can see the work time of schedules by GSDF,

GSPT and GLPT is longer than that of SDF, SPT, and LPT. The travel time of queues by

GSDF, GSPT, and GLPT is shOlter than that of SDF, SPT, and LPT. In most cases, the

final combinatorial schedule intelligently recognizes GSDF, GSPT, and GLPT. It chooses

a job from these queues to create the final best schedule each time a technician requests a

job, though priority has not been given to these queues.

74

.1
",

..

CHAPTER 4

SUMMARY AND CONCLUSION

The theory of scheduling is characterized by a viltuaJly unlimited number of

problem types. Most research has traditionaJly been concentrated on determjnistic

machine scheduling. This thesis emphasizes algorithms for scheduling non-interruptible

tasks. Academics require algorithms to be theory-based and written in a mathematical

fashion. In the real world the people who need them ask for plain explanation and simple

examples. This thesis bridges the gap in communication. Different from other academic

theses, this paper keeps the academic style of algorithms, explains them in basic

language, and shows simple examples for each algorithm. A total of six types of

problems and nineteen algorithms are covered in Chapter 2 to complete this survey.

As the world is accepting scheduling meth')ds, people gradually find that most

methods only give consideration to the dedicated conditions. The real world is too

complicated. We need to simplify the real applied conditions and combine all possible

algorithms to work out an solution. In Chapter 3, such an application is presented. The

combinatorial solution successfully uses genetic algorithms to optimize approximately a

schedule for the Shortest Process Time First (SPT) algorithm, Longest Process Time First

(LPT) algorithm and Shortest Travel Distance First (SDF), and finally selects a job from

the best queue of these six. The logic of this empirical application can be summarized in

75

.. I....

one sentence: simplify the complicated, and optimize approximately the obtained. The

advantage of this combinatorial method (OPTM) is that it always provides a very good

solution according to the given conditions. The disadvantage is that genetic algorithms

need a few seconds to do the calculation. As the practical job scheduling is carried out by

the mobile laptop of the technician, the calculation has no influence on the CDS. Since

the laptop is on most of the time, it doesn't bother the technician if it needs one extra

second for calculation. So this OPTM is successful and applicable.

However, nothing is perfect in the real world. The OPTM can be further improved

hy building in penalty factors for the work time of each job selected, the number of jobs

in each queue, the travel mileage, and the idle time. This work needs the cooperation of

the user's financial advisors, production managers and experienced technicians.

76

.. I
"

BIBLIOGRAPHY

Akers, S. B. [1956] A graphical approach to production scheduling problems. Operations

Research 4, 244-245.

Burns, R.N. [1976] Scheduling to minimize the weighted sum of completion times with

secondary criteria. Naval Research Logistics Quarterly 23, 125-129.

Baker, K. R. [1974] Introduction to Sequence and Scheduling. John Wiley, New York.

Baker, K. R. and Scudder, G. D.[1990] Sequencing with earliness and tardiness penalties:

a review. Operations Research 38, 22-36.

Bruno, J. L, Coffman, Jr., E. G. and Stehi, R. [1974] Scheduling independent task to

reduce mean finishing time. Communication of the Association a/Computing

Machinery 17,382-387.

Bruno, J. L. and Gonzalez, T. [1976] Scheduling Independent Tasks with Release Dates

and Due Dates on Parallel Machines. Technical report 213, Computer Science

Department, Penn~ylvaniaState University.

Cheng, T. C. E. and Gupta, M. C. [J 989] Survey of scheduling research involving due

date determination decision. European Journal ofOperation Research 38,

156-166.

Conway, R.W., Maxwell, W.L. and Miller, L.W [1967] Theory ofScheduling.

Addison-Wesley, Reading, Mass.

77

..

Coffman, Jr., E.G., Garey, M.R. and Johnson, D.S. [1978] An application of bin packing

to multiprocessor scheduling. SIAM Journal ofComputing 7,1-17.

Davis, E. and Jaffe, J.M. [198] Algorithms for scheduling tasks on unrelated processors.

JournaL ofAssociation of Computing Machinery 28, 721-736.

Brown, D. E. and Scherer. W. T. [1995] Intelligent ScheduLing Systems,

Kluwer Academic.

Du, J. and Leung, J.Y.-T. [1988a] Scheduling tree structure tasks with restricted

execution times. Inform. Process. Lett. 28, 183-18g.

Du, J. and Leung, J. Y. -T. [1988b) Minimizing Mean FLow time with Release Time

and Deadline Constraints. Technical Report, Computer Science Program.

Uni versity of Texas, Dallas.

Elmaghraby, S. E. and Park, S. H. [1974] Scheduling jobs on a number of identical

machines. AIlE Trans. 6, 1-12.

Edmonds, 1. [1965d] The Chinese postman's problem (abstract). Operations Research

13, Supp\. 1, B73.

Euler, L. [1736) Solutio problematis ad geometrian situs pertinentis. Commentarii

Academiae Petropolitanae 8, 128-140.

French, S. [1982] Sequencing and Scheduling, Ellis Horwood

Friesen, D. K. and Langston, M. A. [1986] Evaluation of a MULTIFIT-based scheduling

algorithm. 1. Algorithms 7,35-39.

Friesen, D. K. [1987] Tighter bounds for LPT scheduling on uniform processors. SIAM

JournaL of Computing 16, 554-560.

Friesen, D. K. [1984] Tighter bounds for the multi fit processor scheduling. SIAM

78

"

Journal ofComputing 13, 170-181.

Frederickson, G. N., Hecht, M. S. and Kim, C. E. [1978] Approximation algorithms for

some routing problems. SlAM Journal ofComputing 7,178-193.

Graham, R. L. [1978] Combinatorial Scheduling Theory. L.A. Steen (ed.), Mathematics

Today. Springer-Verlag, New York, 183-211.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. [1979]

Optimization and approximation in deterministic sequencing and scheduling: a

survey. Ann. Discrete. Math. 5,287-326.

Garey, M.R., Johnson, D.S., and Sethi, R. [1976] The complexity of flows hop and

jobshop scheduling. Mathematics of Operations Research 1, 117-129.

Gonzalez, T. and Sahni, S. [1976] Open shop scheduling to minimize finish time.

Journal ofAssociation of Computing Machinery 25, 92-101.

Goldberg, D. E. [1989] Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley.

Herrmann, 1., Lee, c.-Y. and Snowdon, J. [1993] A classification of static scheduling

Problems," in Complexity in Numerical Optimization, P.M. Pardalos (ed.), pp.

203-253, World Scientific.

Hall, L.A.and Shmoys, D.B. [1992] Jackson's rule for single-machine scheduling:

making a good heuristic better. Mathematics ofOperations Research 17, 22-35.

Haupt, R. [1989] A survey of priority rule-based scheduling. OR Specktrum, 11,3-16.

Hu, T. C. [1961] Parallel sequencing and assembly line problems. Operations Research,

9,841-848

Jackson, J.R. [1955] Scheduling a Production Line to Minimize Maximum Tardiness.

79

"

Research Report 43, Management Science Research Project, University of

California, Los Angles.

Johnson, S. M. [1954] Optimal two- and three-stage production schedules with set up

time included. Naval Research Logistics Quarterly 1,61-68.

Kise, H., Ibaraki, T. and Mine, H. [1978] A solvable case of the one machine scheduling

problem with ready and due times. Operations Research 26, 121-126.

Kunde, M. and Steppat, H. [1985] First fit decreasing scheduling on uniform

multiprocessors. Discrete Applied Mathematics 10, 165-177

Lawler, E. L. [1973] Optimal sequencing of a single machine subject to precedence

constraints. Management Science 19, 544-546.

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. [1982] Recent development in

detenninistic sequencing and scheduling: a survey, in Deterministic and

Stochastic Scheduling, Dempster, Lenstra & Rinnooy Kan {1982] 35-73.

Lenstra, J. K. [1977] Sequencing by Enumerative Methods. Mathematical Centre Tracts

69, Centre for Mathematics and Computer Science, Amsterdam.

Moore, J. M. [1968] an n-job, one machine sequencing algorithm for minimizing the

number of late jobs. Management Science 15, L02-109.

Monison, J. F. [1988] A note on LPT scheduling. Operations Research Letters, 7, 77-79.

Pinedo, Michael [1995] Scheduling Theory, Algorithms. and Systems. Prentice Hall.

Nowicki, E. and Smutnicki, C [1987] On lower bound on the minimum maximum

lateness on one machine subject to release date. Opsearch 24, 106-110.

Panwalker, S. S. and Woollam, C. R. [1979] Flow-shop scheduling problem with no

in-processing waiting: a special case. J. Opl. Res. Soc. 30, 661-664.

80

Panwalker, S. S. and Woollam, C. R. [1980] Ordered flow-shop problems with no

in-processing waiting: further results. J. Opl. Res. Soc. 31, 1039-1043.

Panwalker, S. S. and Iskander, W. [1977] A survey of scheduling rules. Operations

Research 25, 45-61.

Parker, R. G. [1995] Detenninistic Scheduling Theory. Chapman & Hall.

Cretienne, P., Coffman Jr., E. G., Lenstra, J. K. and Liu, Zhen [1995]

Scheduling Thenry and Its Applications, John Wiley & Sons.

Brucker, Peter [1998] Scheduling Algorithms, Springer-Verlag Berlin. Heidelberg.

Rinnooy Kan, A.H.G. [1976] Machine Scheduling Problems: Classification, Complexity

and Computations. Mutinus Nijhoff, The Hague, Holland.

Robert E. D. Woolsey and Huntington S. Swanson [1969] Operatiosn Researchfof

Immediate Application: A Quick & Dirty Manual. Harper & Row.

Roger Kerr and Elizabeth Szelke[1995] Artificial Intelligence in Reactive Scheduling,

Chapman & Hall.

Silberschatz, A.and Galvin, P. B. [1998] Operating System Concepts, Addison-We ley.

Stunn, L. B. J. M. [1970] A simple optimality proof of Moore's sequencing algorithm.

Management Science 17, BI16-BI18.

Smith, W.E. [1956] Various optimizers for single state production. Naval Research

Logistics Quarterly 3, :')9-66.

Swarzc, W. [1977] Optimal two machine orderings in the 3 x n now-shop problem.

Operations Research 25. 70-77.

Smith, M. L., Panwalker, S. S. and Dudek, R. A. [1976] flow-shop sequencing problem

with ordered processing time matrices: a general case. Naval Research Logistics

81

Quarterly 22, 481-486.

Sahni, S. [1976] Algorithms for scheduling independent tasks. JournaL ofAssociation for

Computing Machinery 23, 116-127.

Sahni, S. and Cho, Y. [1980] Scheduling independent tasks with due times on a unifonn

processor system. JournaL ofAssociation for Computing Machinery 27,550-563.

Stunn, L. B. J. M. [1970] A simple optimality proof of Moore's sequencing algorithm.

Management Science 17, B116-B118.

Tanacv, V. S., Gordon, V. S. and Shafransky, Y. M. [1994] Scheduling Theory. Single­

State Systems, Kluwer Academic.

Tanaev, V. S., Gordon, V. S. and Shafransky, Y. M. [1994] Scheduling Theory. MuLti­

State Systems, Kluwer Academic.

Thomas M. Cook and Robert A. Russell [1981] Introduction to Management Science,

Prentice-Hall.

Van Wassenhov, L.N. and Gelders, L.F. [1980] Solving a bicriterion-scheduling problem.

European Journal ofOperation Research 4, 42-48.

Van Wassenhov, L.N. and Baker, K. R. [1980] A bicriterion approach to time/cost

trade-offs in sequencing. Paper presented at the 4th European Congress on

Operational Research, Cambridge, England, July 22-25, 1980. Submitted

to A.I. LE. Trans.

White, D. J. [1969] Dynamic Programming, Oliver and Boyd. Edinburgh.

Yueh Ming-I [1976] On the n job, m machines sequencing problem of a flow-shop.

In Operation Research 1975, Haley, K. B. (Ed.), North Holland, Amsterdam.

82

APPENDIX A

C PROGRAMMING CODE FOR COMBINATORIAL
SCHEDULING NON-INTERRUPTffiLE TASKS

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<time.h>

#define TRUE 0
#define FALSE 1
#define EXSIZE 256
#define FULL 81
#define HALF 40
#define QUART 20
#define JOBHD 1
#define MANHD 2
#define SPEED 30
#define REPRODUCTION 40320

typedef struct TheJob(
int JobID;
int ZipCode;
char Type [QUART) ;
char Status(QUART);
float EWkTime;
float AWkTime;
char DueDaY(QUART);
char StTime(QUART);
char FinTime(QUART);
char StDate(QUART);
char FinDate(QUART);
char Address [FULL] ;
int LocX;
int LocY;
float Mileage;
struct TheJob *next;

)TheJob;

typedef struct TheMan{

Ilarray size
Ilarray size
//array size
I/array size
Iia flag for job queue
Iia flag for technician queue
/Idriving speed
Ilreproduction number

Iinode for a job
Iljob identification number
Ilzip code
Iljob type
/Ijob status
Ilestimated work time
Ilactual work time
Iljob due day
Iljob start time
Iljob finish time
Iljob start date
Iljob finish date
Iljob location
Iljob coordinate X
Iljob coordinate Y
Iidriving mileage

Iinode for a technician

83

int ManID;
int ZipCode;
char Narne[QUART) ;
char Address [FULL) ;
char LoginTime[HALF);
char LogoutTime[HALF);
int LocX;
int LocY;
float TwkTime;
float Mileage;
struct TheMan *next;

}TheMan;

TheJob* JobHead=NULL;
TheJob* NewHead=NULL;
TheMan* ManHead=NULL;
TheJob* UrgHead=NULL;
TheJob* NornHead=NULL;

Iitechnician identification number
Ilzip code
Iiname of technician
Iitechnician horne address
Iitechnician log in time
Iitechnician log out time
Iitechnician start coordinate X
Iitechnician start coordinate Y
Ilwork time
Iidriving mileage

/Ihead of job queue
Iitemp pointer
/Ihead of technician queue
/Ihead of urgent job queue
/Ihead of normal job queue

Ilfunctions used in this program

int AbsJulian(char*}; Ilcalculate Julian day numbers
int managelnput(}; Ilfilter out input like empty file, tab, spac
void LinkJobs(TheJob*}; Ilbuild job queue
void InputJob(); Ilput input job data to job node
void PrintJobs(TheJob*) ;llprint input jobs
void LinkMan(TheMan*); Ilbuild technician queue
void InputMan(); Ilput input technician data to technician node
void PrintMan(); Ilprint technician login information
void SortDueDay(int); Iisort jobs by due day
int FindDueDay(); Ilfind the due day of a job
void SetQueue(int*, int); Iiset a temp queue
void LinkMe(TheJob* l; Ilinsert a job node into linked list
void DeleteMe(TheJob*); Iidelete a job node from linked list
int TimeDuration(char*, char*, char*, char*) ;llcalculate work duration
void JobDone(int, char*, char*); Ilmark job done
void ArriveOnSite(int, char*, char*) ;llmark technician arrives on site
void LogoutAccept(int); Ilcheck if log out is accepted
int IsNameinList(int); Ilcheck employee list
int LoginAccept(int}; Ilcheck if log in is accepted
void ScheduleList(float, int); Ilbuild urgent and normal job lists
void FindUrgentJobs(TheJob*. float*, float, intI ;I/pick out urgent jobs
void FindNormalJobs(TheJob*. float*, float, intI ;llpick out normal jobs
void NewJobList(TheJob*); liTo build urgent and normal job queues
int Scheduling(int*, float, int); Ilmanage overall scheduling
int ScheduleJobs(TheJob*, int*, float, int); lido actual scheduling
void SetStartLocation(int, int); /Ireset start location
int SPTqueue(int*, float, int, int, int*) ;llby Shortest time first
int LPTqueue(int*, float, int, int); Ilby longest time first
int SDFqueue(int*, float, int, int) ;llby shortest distance first
int Genqueue(int*, float, int, int) ;llby genetic algorithm
int TraveIDistance(int, int, int); Ilcalculate travel distance
int TraveITime(int, int*, int*); Ilcalculate travel time
void FindJobLocation(int, int*, int*); Ilfind job location
int FindWkTime (int) ; Ilfind work time
void FindManLocation(int, int*, int*); Ilfind technician's location
void LinkNewMe(TheJob*); IIbuilding urgent or normal job queue

84

void SetWkTime(int, int, float);
float getWktime(int);
void printTheJob(int, int * int
void printTheMan(int);
void ChangeStatus(TheJob*, int);
int IsZipCodeValid(int, int);
void printQueue(int*, float,int,

//record work time of a job
//fetch work time

*) ; / /print job information
//print technician's work report

//change job status
//check zip code validation

int, FILE*) ;//print work summary

/**/

/* Read input job data and store it to job node */
/**/

void InputJob ()
{

FILE *fp;
TheJob *JobPtr;
char T[FULL] ;
char* str;
int Jobcount=O;

//FILE pointer

//temp buffer
//character pointer
//job counter

if((fp = fopen("JobX.dat","r")) == NULL) { //check input file
printf("Input file could not be opened\n");

exit(l) ;
}

JobPtr = ((TheJob*)malloc(sizeof (TheJob)));

Ilget zip c de

Ilget job type

I/get job status

I/get job due day

I/read input data
Ilget job location
Ilget job 10

I/get coordinate X

/Iget coordinate Y

Ilget estimated work time

Ilinitialize actual work time
I/initializ mileage

"); Ilinitialize start time
") ;llinitialize finish time

"); I/initialize start date
") ;llinitialize finish date

while(fgets(T, FULL, fp)) !=NULL) {
fgets(JobPtr->Address, FULL, fp);
str = strtok(T, "-\n\O");
JobPtr->JobID = atoi(str);
str = strtok(NULL, "-\n\O");
JobPtr->ZipCode = atoi(str);
str = strtok(NULL, "-\n\O");
strcpy(JobPtr->Type, str);
str = strtok(NULL, "-\n\O");
strcpy(JobPtr->Status, str);
str = strtok(NULL, "-\n\O");
JobPtr->EWkTime = atof(str);
s t r = s t r t 0 k (NULL, " - \ n \ 0 " 1 ;
strcpy(JobPtr->DueDay, strl;
str = strtok (NULL, "-\n\O");
JobPtr->LocX = atoi(str);
str = strtok(NULL, "-\n\O");
JobPtr->LocY = atoi(str);
JobPtr->AWkTime=O;
JobPtr->Mileage=O;
strcpy(JobPtr->StTime,
strcpy(JobPtr->FinTime, "
strcpy(JobPtr->StDate,
strcpy(JobPtr->FinDate,
JobPtr->next=NULL;
LinkJoDs(JobPtr); //insert job to linked list
Jobcount++; /Icount input jobs
JobPtr = «TheJob*)malloc(sizeof (TheJob)));

)

fclose (fp) ;
SortOueOay(Jobcount) ; Iisort input job by due day

85

