A SURVEY OF ALGORITHMS FOR SCHEDULING

NON-INTERRUPTIBLE TASKS

By
SHENGLI CAO
Bachelor of Civil Engineering
Taiyuan Institute of Technology
Shanxi, China

1982

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
July, 2000

A SURVEY OF ALGORITHMS FOR SCHEDULING

NON-INTERRUPTIBLE TASKS

Thesis Approved:

9 Chlo Llons
Thesis Adviser

E N,
ﬁ;{ 10 S

Dei of the Graduate %olicgc

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. John P.
Chandler, for his continuous guidance, concern, patience, and support throughout my
graduate program. I shall always be thankful for his inspiration and advice on my study
of computer science, his encouragement and help for me to apply computer science
theory to real industrial practice.

I would also like to express my gratitude to my thesis committee members, Dr.
Blayne Mayfield, Dr. Jacques LaFrance and Dr. H.K. Dai for their helpful suggestions
and assisting with my research.

I wish to thank all the faculties and staff members of Computer Science
Department who are always kind and helpful to me. I extend my thanks to Oklahoma
State University for giving me the opportunity to accomplish my graduate program.

Finally, I would express my thanks to my parents for their lifelong love and
support. 1 also express my deepest gratitude to my daughter, Lu Cao, always gave me

encouragement throughout my study.

1

Chapter

TABLE OF CONTENT

Page

1 INTRODUCTION 1

2 SURVEY OF PROBLEMS AND ALGORITHMS.......c.ccumsmsmeissnercsssssssusssasossioi 3

2.1 Problem Classification And Notationcccoccevverieeiiniiinennesiiesesnsienenns 4

2.1.1 Three-Field Classificationcccovveruevceirenieeieeesce e, 4

2:1:2 Four-Field CIasSification i mesiisisiimmmaumsssasionmyssmnsmtoess 7

2.2 Algorithms For Single Machine Scheduling........cccocooieiiiieveiniiinineen. 8

2.2.1 Permutation Schedulescooceviiiiiiiiiniiiiicice e 8

2.2.2 Shortest Processing Time Scheduling..........cciiiinnisinsimeiin 9

2.2.3 Earliest Due Date Scheduling ...cusinvismssosssnssussanosmsasmsasnis L1

2.2.4 Moore’s Algorithmcccciiiiiiiiiiiciecc e 12

2:2.5 Lawler’s AlGonthi «oveuanmimvnnsrmmassisaitassamisii 14

226 Smiith’s AlPOHM . coorwmesmmmssmnessmmasssarasssmmxsme 17

2.2.7 Van Wassenhov And Gelders’ Algorithmccccoovvieiiiiiiicennenn. 20

2.3 Algorithms For Flow-Shop, Job-Shop And Open-Shop Problems 22

2.3.1 Algorithms For Flow-Shop Problemscccocccveviciniinviiinnnn, 23

2.3.1.1 Johnson’s Algorithm For The N/2/F/Fg,x Problem 24

2.3.1.2 Johnson’s Algorithm For The N/3/F/Fp,« Problem 26

2.3.1.3 Akers’ Graphical Solution To The 2/M/F/F,,, Problem .. 28

2.3.2 Algorithm For Job-Shop Problemsccccooivininnnicnceinnne 31

2.3.3 Algorithm For Open-Shop Problemsccccccivnniiniiinanaanns 34

24 Algorithms For Parallel Machinz Problems..........cccooceiiiiiiiiiiniiine, 36

281 LISt PTOCESSIOE ovmaasnioniisshdsamstosss voain oo casais 37

242 Longest Processing Time Heunstic ...cumenmsmmvsmsess essmomnsss 38

243 MULTIFIT HEUTISHCooverervrniimeniiicrianiesne e see s sasncsieseeenean, 39

2.4.3.1 First-Fit, Decreasing Weight Heuristicc...oc...... 40

2432 MULTEIT BeUniSE sccomsssmrssrammsmorssspmmmuesmssmn s 41

244 Hu'sAIBOTHBII .. cveesemsecrimanipmisssmsmassiasiiasseamsimasr st issisiss 43

2.5 Some Problems In Combinatorial Optimizationcccccoon. 45
2.5.1 Christofides' Heuristic Algorithm For Traveling Salesman

0, 5] - 111 45

252 Genetic AlPorithins ... ovnaninnimimsnsaisiaiimsssasavo 48

3 INDUSTRIAL APPLICATIONSoosuimsssmamisoiissiansmstiniesiisssomsisi 51

3.1 Back@roliid ouimmunsmmmsiismssios s e RS e S e 51

Chapter . Page

32 Inbabon'OF PIOJECt . cicsainssmssasssimciosisimseassasssiisesssinisasiimassisns I3

3.2.1 Preliminary Assumpuons 53
3:2.2 Design Of Scheduling LOIC ccinvmmmiainssuimnimsinns 9
3.2.2.1 Job Storage And Management ... s RO D
3.2.2.2 Location Checking Method... - ...
3.2.2.3 Procedures Of Assigning Jobs To Techmc1ans 56
3.2.2.4 Optimality And Evaluation .. SRS R s O
3.2.2.5 Program Flowchartcccooviiiiiniiiniiciiinccniiin Y&

3.3 Empirical Application Of The Combinatorial Optimal Solution.............. 59
31 The SimulBon PIOZraMm: emwmessmamsimmmmmammmismsmsmsmimaanisc a3
3.3.2 Empirical Application ccooiiiiiiiice e 60
3.3.2.1 An Eight Hour Day At Normal Jobs...60
3.3.2.2 An Eight Hour Day At Normal Jobs Of Long Dumnon ... 66

3.3.2.3 An Eight Hours Day At Normal And Urgent Jobs In

DIfTETENt ATBAS. ciivisciiiicuissiimssisisiiamissssssinssishmsvissavssise s sociiss 68
3.3.2.4 An Eight Hour Day At Normal And Urgent Jobs In
AOEA AN ciionsncvs micomsn s o mssins 356 s 84 AR 33 ¥ AR S DI A SRR 508 71
3.3.3 Observation To The Empirical Applicationccccocceiiieniene. 73
4 SUMMARY AND CONCLUSION ciimsssmsiasismsiasitonasiis st st 75
BIBLIOGRAPHY .ottt et 77

APPENDIX A C PROGRAMMING CODE FOR COMBINATORIL
OPTIMAL SCHEDULING NON-INTERRUPTIBLE TASKS ... 83

Table

LIST OF TABLES

Tnitial Genelie PIodbChonS .imsuimmmsmsiiimimsmssmaissiimismaias s nanisssnsioi
Resilt of Genelic Crots OVe o cssrsinim it
Eight-hour Schedules for M111 in Area 100cc.cccevveennne.
Eight-hour Schedules for M222 in Area 200cc.ccocvvvinrienne
Eight-hour Schedules for M111 in Area 300 ..o

Eight-hour Schedules for M444 in Area 400ccccccoviennne

vi

Page

LIST OF FIGURES

Figure Page
1 Gainitt Diagram of Permutation Seheduling ..o 3
2 Gantt Diagram of Schediles SPT uiinunmaimanianinnvaisinaidiisiin 10

3 Gantt Diagram of Schedules EDDcccocieeeviciieniiccicccineciinesscssissessasassess 12

4 Precedence CONSITAINTScc.oivieiioeiiiieetie i e eeeeeaeeraasesessssessseesae et seeaseeasasaassaesins 16
5 Gantt Chart Tor the 6/3/F/F ;e PIODIEM ccovivviciiinniiniimseimsssssmssssssisss soss 28
6 Graph ‘OF SChedule T 2/ B P s oo s ooy i e sy sy 31
7 Gantt Chart For The 9/2/G/F pmax PTOBIEM.....cooiviiiiiiiiiiiiieciicie et 34
8 Fitiitl Sehedule TOr@ 200G gy veiivissassmusssssssasnisisaunnvonesisssssomsinisnsasnmssssmmsarssssor 36
9 List Processitig Schedtle....usiimmnanmmnsonasisinameiasmisssmasisdss 38
10 Example for Longest Processing Time Heuristic...........cccooovivvvnniiiiiiininencn 39
11 First-Fit, Decreasing Weight HEuristiCcccoooiiiiiiiiniinicniiniccce e 40
12 Scheédiile of MULTIEIT HEUrSHE. ..o cnsuissssnasimsiimseismmssansmsinimnsesss 43
13 Precedence Constraint DIARIAIN ... sinsiaivaiusivsssiossssinissiisisiissssinmariass 44
14 Schedule of Hu's AIZOMItRMocviiiiiiiiiireiciciccicsie e e 44
15 Fig. 15 Exanmiple Of Heuriste For TSP ismnmsmemivisssmssmsnomsomonssessssssrns 47

16 Network Configiration s s D
¥7 Program FIOW CRart.........c.coeeveececmmmccriasiircsiarmsssssastsssssssssarass s ssssssssssssssssassss IO

18 Location of Technicians and Area NUMDETISovveiiiiiiiieieeeieeeieee e seeemeeerareranas 61

Vil

Figure
19
20

21

30

31

Page
Possible Travel Route for Man 111 By SDF........ccccoccouiiinenminnincienenreeeeessinsnnns 62
Possible Travel Route for Man 111 By SPT ..o 62
Possible Travel Route for Man 111 By LPT......... i 63
Possible Travel Route for Man 111 By GSDF......ccivuniniimasimniassisssasis 63

Possible Travel Route for Man 111 By GSPTccooiviviiviiciiiicccicciveeenenn. 64

Pozsible Travel Rovite for Man 111 BY/GLET ..o rommmmnmasssismusimnoomsimsiens 64
Final Applied Travel Route for Man L1 L.nmmnnnsnaniniiiisiii 65
Bar Chart of Total Work Time and Travel Time for Man 111 ..., 66
Comparison of Work Time and Travel Time of Schedules for Man 222 68
Comparison of Work Time for Man 111 in Area 300...........cocveiieiiiiinninnnenne. 70
Travel Route of Man 111 From Area 100 To Area 300.........c.cccoivivviinninicnniicrnnnes 70
Comparison of Work Time for Man 444 in Area 400...........c..o.ooveeveeiereirreinnn. 72
Travel Route of Man 444 in Area 400cccoiiiiiiiiiiiiiiiiee e 3

Vil

CHAPTER 1

INTRODUCTION

Scheduling is an effective allocation of a set of machines over time to a set of jobs
|Silberschatz and Galvin 1998].

Suppose that we have to perform a number of jobs, each of which consists of a
given sequence of operations, by using a number of machines. We want to find a
processing order on each machine so that the corresponding cost is minimized. This is
scheduling.

It is true that scheduling originally arose in an industrial production context.
However, various other interpretations are possible: jobs and machines can stand for
patients and hospital equipment, classes and teachers, ships and dockyards, dinners and
cooks, programs and computers, or cities and salesmen, and so on. Each of these
situations fits into the framework sketched above and thus falls within the scope of
machine scheduling theory and algorithms.

In job processing, some problems allow jobs to be interrupted or preempted,
others do not. If interruption or preemption is not allowed, then the machine must process
the job continuously until it is finished, once a job has begun on a given machine. We call
such problem “Non-interruptible Scheduling.” This thesis focuses on algorithms for non-

interruptible scheduling problems. A survey of the algonthms for non-interruptible

scheduling problems is presented in this thesis. Some simple examples of the execution
of these algorithms are also provided to illustrate the algorithms. To show a
comprehensive application of these algorithms, I also present an implementation of a real
work force dispatching project developed for the customer service and maintenance
division of an energy company. Comparisons have been made of the implementation of
different algorithms to see the performance of these algorithms and real world

requirements for an approximately optimal result.

(3]

CHAPTER 2

SURVEY OF PROBLEMS AND ALGORITHMS

The study of scheduling is motivated by problems that arise in production
planning, in project management, in military movement, in computer control, and so on.
In general, these problems are from a situation in which scarce resources have to be
allocated to jobs over time. Due to the demand for optimal scheduling by fast developing
industries, scheduling theory and applications have become the subject of extensive study
and research since early the 1950°s. Much of the literature has been focused on
algorithms for solving all kinds of problems since then. This paper, as mentioned in the
preceding section, will concentrate on the basic problems and algorithms in the area of
deterministic non-interruptible machine scheduling. Attention will also be given to
combinatorial optimization by using genetic algorithms and special methods for traveling
salesman problems.

The survey is organized into five sections. Section 1 classifies scheduling
problems and notations. Section 2 presents the algorithms for single machine scheduling.
Section 3 contains algorithms for open shop, flow-shop and job-shop problems. Section 4
provides algorithms for parallel machine problems. Section 5 discusses some problems in

combinatorial optimization.

2.1 Problem Classification And Notation

Scheduling is an effective allocation of a set of machines over time to a set of
jobs. Suppose that m machines M; (i = 1, 2, ..., m) have to process n jobs J; (j = 1, 2, ...,
n). A non-interruptible scheduling is, therefore, an allocation of a time interval on one
machine for each job. Non-interruptible scheduling is feasible if no two time intervals on
the same machine overlap, and if the schedule meets a number of specific requirements
concerning machine environments and the job charactenistics. A non-interruptible
scheduling is optimal if it minimizes a given optimality criterion. So, the machine
environments, the job characteristics and the optimality criteria together define a problem
type. Some literature specifies scheduling problems in terms of a three-field
classification, while others use four or more fields that provide extra sections to define

the machine and processing environments.

2.1.1 Three-Field Classification

The three-field classification is denoted by a/ﬁ/y. [Conway, Maxwell, and
Miller 1967], [Lawler, Lenstra, and Rinnooy Kan [982], [Herrmann, Lee and Snowdon
1993]. The « field describes the machine environment and contains a single entry, the 3
field provides details of processing characteristics and constraints and may contain no
entry, a single entry, or multiple entries, and the ¥y field specifies the optimality criterion

of interest and usually contains a single entry. This classification is introduced as:

a)

b)

Job Data
A job is generally specified by the following data:
The number of jobs denoted by n (n is assumed to be finite).
Processing time (P;) ---- the processing time of job j on machine i. i is omitted if
job j does not depend on the machine or if job j is only to be processed on one
given machine. The process time is usually assumed to be known fairly precisely.
But this is not always true. For example, transmitting files over modems, the
transmission rate depends on the degree of congestion in the network and
processing time can vary considerably. Similarly convalescence time for hospital
patients can be unpredictable, etc.
Release date (7)) ---- the time on which a job becomes available for processing,
also referred as the ready date.
Due date (d;) ---- the date a job is promised to the customer.
Machine Environment
The machine environment indicates the number of machines and describes the
configuration of the processing environment relative to the machines. The
following specifications are generally used:
Single machine (1) ---- a single machine environment; Pj; = P;,
I[dentical machine in parallel (Pm) ---- m identical machines in parallel,
Py = Pjfor all M;;
Machines in parallel with different speeds (Qm) ---- m machines in parallel with
different speeds. Machine speeds are independent of jobs.

Unrelated machines in parallel (Rm) ---- m different machines in parallel.

c)

Machine speeds depend on the jobs processed.
Flow shop (F) ---- m machines in series, jobs possess multiple operations. The
ordering is the same for each job. For example, in an assembly shop, a number of
operations have to be done on every job. Often, these operations have to be done
on all jobs in the same order, which implies that the jobs have to follow the same
route. The machines are assumed to be set up in series and the environment is
referred as a flow-shop.
Job shop (J) ---- m machines in series, jobs possess multiple operations.
The ordering is not required for each job.
Open shop (O) ---- m machines, each job may be processed more than once on
each of the m machines but no ordering on the machines is imposed.
Job Characteristics
Generally, the job characteristics specify whether or not a job can be interrupted
during processing, whether or not precedence ordering is imposed on jobs,
whether or not job-dependent release times are given, and finally, specifications
regarding job duration times, e.g. all jobs possess unit duration times.
Preemption (pmtn) ---- Jobs are interruptible during processing. All jobs in this
thesis are non-interruptible (i.e. there is no preemption).
Precedence constraints (prec) ---- Precedence requires that one or more jobs may
have to be completed before another job is allowed to start its processing. If each
job has at most one predecessor and one successor, the constraints are referred to
as chains. If each job has at most one successor, the constraints are referred to as

intree. If each job at most has one predecessor, the constraints are referred to as

d)

Miller

1982].

outtree. If no precedence constraints appear in the [field, the jobs are not
subjected to precedence constraints.

Job-dependent release time (r;) ---- release dates that may differ per job.

Unit duration time (#;)---- all jobs possess unit duration times f; =1.

Optimality Criteria

The field vy is used for specifying measures of performance and, as a consequence,
is generally self-evident.

For example, Let C; denote completion time, d; due date, L; lateness, and Tj
tardiness

Lj=C;-d

T; = max{0, C; - d;}

(T; is kind of lateness, but it is always a positive number, L, can either be positive
or a negative number which represents the job completed ahead of due day).

The optimality criteria commonly chosen involve the minimization of maximum
completion time C,,,, (sometimes called the schedule length or makespan) and the

mintmization of Lya. and T4,

Four-Field Classification

The four-field classification is denoted by n /m /A [B. [Conway, Maxwell, and

1967], [Lenstra 1977], [Rinnooy Kan 1976], [Graham et al. 1979] and [French

Where

n is the number of jobs.
m the number of machines.
A describes the flow pattern or discipline within the machine shop.

When m = 1, A is left blank. A may be

F ---- the flow-shop case

P ---- the permutation flow-shop case

G ---- the general job-shop case
B provides optimality criteria, the same as above.
This paper will use three-field classification and four-field classification
alternatively. Notation will be given if a specific classification is used in the

section.

(3]
(S

Algorithms For Single Machine Scheduling

(In this section, problems are described by a three-field classification a‘/ﬁ/y.)

Single machine models often display properties that do not hold for either
machines in parallel or machines in series. A single machine environment provides a
basis for heuristics for more complicated machine environments. In practice, scheduling
problems in more complicated machine environments are often decomposed into sub-

problems that deal with single machines.

2.2.1 Permutation Schedules

Assume we have a job list { J; J> J, } and a machine M. If jobs are scheduled
without designated idle time, the schedule is perfect. Otherwise we must have jobs
permuted with minimum designated idle time. That is, the machine starts processing at
time equals zero and continues without or with minimum rest until the time equals total
processing time or with a minimum amount of extra time.

In scheduling, we write Jjy, for job J; that is scheduled at the kth position in the
processing sequence. Thus J; is simply a generic job drawn from the job list {J; J2 J,}
and Jjy) is the job that the processing sequence selects as the kth to be processed, k = /1,
2, ..., n. Permutation usually follows the FIFO discipline. Calculation of the total cost is

straightforward, so no detailed description is necessary here. See Fig. 1.

Jay | 2 cosdim). ... Jankn | Ing

Fig. | Gantt Diagram Of Permutation Scheduling

2.2.2 Shortest Processing Time Scheduling (SPT)

For a particular job, the average job flow time F is calculated as follow:

l n 1 n
=—Yw,_ +-YpP
n ; Jik) n ; 1k

where F ----job flow time

W---- job waiting time

P ---- job processing time

n n -
Hence ZPM} = Z P, is a constant for all sequences. Hence to minimize F we
k=1 1=l

n
must minimize ZW
k=1

jtk) *
Therefore, for one machine and n jobs, minimizing the average flow time denoted

by {Um’P_”), the mean flow time is minimized by sequencing

P

' S Py S Py S S P

2y fth — jtny "

Hence P

'\, 18 the processing time of the job that is processed kth.

Thus, a queue scheduled with the shortest processing time first will solve (one
machine and n job) problems in minimizing the mean flow time, mean completion time,
mean waiting time, mean lateness, mean number of unfinished jobs, and mean number of

jobs waiting between machines, [Conway, Maxwell and Miller, 1967], [Rinnooy Kan

1976].

Piyy Pjo) Piw1y | Pjw

Fig.2 Gantt Diagram Of Schedules SPT

Example: One machine, six jobs, minimum mean flow time problem (1/6/ F')

Job | 2 3 4 5 6

Processing Time 6 5 4 3 2 1

10

The optimal SPT schedule for jobs is (6, 5, 4, 3, 2, 1). That is, the shortest job is
scheduled first.

The flow time of each job is:

Fjrn=l
FerJ: 1+2
Fiy=1+2+3

Figg=1+2+3+4
Fissi=1+2+43+4+5
Figi=1 +2+3+4+5+6

Mean flow time of the schedule is:

6
EF;'MI =
k=l

(6Xx1 +5x2 +4x3 + 3x4 + 2x5+6)=9.3333

|-
| —

Clearly the schedule is optimal.

2.2.3 Earliest Due Date Scheduling (EDD) [Jackson 1955]

An initial approach to scheduling is, peihaps, to sequence jobs in the order in
which they are required. In other words, sequence the jobs such that the first processed
has the earliest due date, the second processed has the next earliest due date, and so on.
For one machine, scheduling jobs by the earliest completion time and never delaying jobs
results in processing the maximum number of jobs [Pinedo 1995], but skipping any jobs
is usually not an option in real life.

Thus, for one machine and n jobs, minimizing maximum lateness denoted by

(1/n/Limax), sequencing minimizes the maximum lateness

Ll

dj, <d, <d

13 S.

<d

Jn}y

where djy) is the due date of the job j that is processed kth.

djy

dj2)

djix.1)

diw)

Fig.3 Gantt Diagram Of Schedules EDD

Example: One machine, six jobs, minimizing the maximum tardiness problem (1/6/7

.lllu:l]

Job 1 2 3 + 5 6
Due Date 7 3 8 12 9 3
Processing Time 1 1 2 + 1 3

The optimal EDD schedule for jobs is (6, 2, 1

optimal Tmax = 1.

., 3,5, 4). From the table below, we find the

Job Completion Time Lateness Tardiness
k

Jiw Ciw =§ Py, Liy =Gy —disy Tjwy = max(0, Gy, — dja))
6 3 0 0

2 4 1 1

1 5 -2 0

3 7 -1 0

5 8 -1 0

4 12 0 0

2.2.4 Moore’s Algorithm [Moore 1968], [Sturm 1970], [Kise et al. 1978]

2

In the real world, if a job is behind its due date by a few seconds or a few minutes,
the entire production might be upset. Thus, we need to minimize the number of tardy
jobs. An algorithm for solving this problem is due to Moore, but in a form suggested by
Hodgson [Moore 1968].

Algorithm (Moore and Hodgson)

Stepl: Sequence the jobs according to the EDD rule to find the current sequence

(Jicny, i), --- Jjny) such that
For k=1,2,...,n-1.

d, <d

Jk+D)

Step 2: Find the first tardy job, say Jjy), in the current sequence. If no such job 1s
found, go to step 4.

Step 3: Find the job in the sequence (Jj;), Jj2), ... Jjuy) with the largest processing
time and reject this from the current sequence. Return to step 2 with a
current sequence one shorter than before.

Step 4: Form an optimal schedule by taking the current sequence and appending
to it the rejected jobs, which may be sequenced in any order.

Note: The rejected jobs will be tardy and these will be the only tardy jobs.

Example: One machine six jobs, minimizing the maximum number of tardy jobs.

Joh | 2 3 4 5 6

Due Date 15 6 9 23 20 30
Processing Time 10 3 E & 10 6
1) Use the EDD sequence to compute the completion times until a tardy job

is found (Steps | and 2):

13

New Sequence 2 3 1 5 4 6
Due Date 6 9 15 20 23 30
Processing Time 3 4 10 10 8 6
Completion Time 3 i 17

2) We find job I to be the first tardy job in the sequence and of the sub-

sequence (2, 3, 1) it has the largest processing time. So reject it (Step 3).

Return to Step 2 with the new sequence:

New Sequence 2 3) 4 6 Rejected jobs
Due Date 6 9 20 23 30 1

Processing Time 3 4 10 8 6

Completion Time 3 7 17 25

3) We find job 4 to be the first tardy job in the sequence and of the sub-

sequence (2, 3, 5, 4), job 5 has the largest processing time. So reject 1t

(Step 3). Return to Step 2 with the new sequence. No tardy jobs are now

found:
New Sequence 2 3 4 6 Rejected jobs
Due Date 6 9 23 30 5
Processing Time 3 4 8 6
Completion Time 3 7 15 21
4) Hence, we move on to Step 4 and form the optimal sequence (2,3,4,6,1,5).
2.2.5 Lawler’s Algorithm [Lawler 1973]
14

This algorithm deals with general precedence constraints. Here we shall simply be
constrained to process certain jobs before, but not necessarily immediately before, certain
others. Lawler’s algorithm minimizes the maximum cost of processing a job, where this
cost has a general form §(C;) for J;and is taken to non-decreasing in the completion time

C; .Thus, the algorithm minimizes

n}éx{},j (C,:')}

Consider one-machine and n jobs with precedence constraints, minimizing the
maximum cost problem denoted by (1/n/ rrﬁlsi{}/j (C‘)}) Let V denote the subset of jobs,
which may be performed last (i.e. those jobs which are not required to precede any other

jobs). Note that the final job in the schedule must be completed at 1= EP, .LetJibe a

)=

job in V such that

7,(z)=miny, (z);

] in¥
(i.e. of all the jobs that may be performed last, J; incurs the least cost). Then there is an
optimal schedule in which J; is scheduled last.
Example: One-machine and six jobs, minimizing maximum lateness problem with the

precedence constraints in Fig. 4.

Fig. 4 Precedence Constraints

Job Ji I J3 Ja Js Jo
Processing Time 2 3 4 3 2 I
Due Date 3 6 9 7 Il 7

1) Find the job to be processed sixth: T=2+3+4+3+2+1=15.

Jobs J3 Js Jg can be processed last, i.e. V={J3 Js Js}. So the minimum
lateness over V = min {(15-9), (15-11), (15-7)}, which occurs for Js. Hence Js is
scheduled sixth.

2) Find the job to be processed fifth:
Delete Js from our list and note that the completion time of the first five

jobs T =15 -2 = 13. J3 or Js can be processed last now; i.e. V={J3 J¢}. So the

minimum lateness over V = min {(13-9), (13-7)}, occurs for J3. So J5 is scheduled
fifth.
3) Find the job to be processed fourth:

J3 and Js have been deleted from our list. Jo becomes available for
processing last. Now T = 13 - 4 = 9 and V={J; Js}. Minimum lateness over V =
min {(9-6), (9-7)}, occurs for Js. So Jg 1s scheduled fourth.

4) Find the job to be processed third:

Ja, Js and Jg have been deleted from our list. J» becomes available for
processing last. Now t=9 - 1 = 8 and V={J, J4}. Minimum lateness over V =
min {(8-6), (8-7)}, which occurs for J4. So J; is scheduled third.

5) The jobs scheduled first and second are now clearly J, and J, respectively,
for the precedence constraints.
The final schedule is:

12 IR D22k

2.2.6 Smith’s Algorithm [Smith 1956]

We know that EDD rules can solve the one-machine and n jobs, minimizing the
maximum tardiness problem denoted by (1/n/Tn,). But when we construct such a
schedule we find T, = 0, (i.e. all due dates can be met). Then we might think to

optimize the schedule the other way. Indeed Smith’s algorithm gives us a way of finding

a schedule to minimize F subject to the condition that 7., = 0.

17

Thus for the n jobs, one machine problem when all the due dates can be met, there

exists a schedule which minimizes F subject to T)ec = 0 and in which job J; is last if and

only if

(b) Py > P forall jobs Jysuch that d, > P,

=1

Smith’s Algorithm

Step 1: Setk=n, 7 =Y P, ; U= { J1, o Ju}

=

Step 2: Find Jjy, in U such that (a) d,,, = T and (b) Pjx, = P, for all J; in U such that

Jiky

i =T

I
Step 3: Decrease k by 1; decrease T by Py, ; delete Jj, from U.
Step 4: If there are more jobs to schedule, i.e. if k > 1, go to Step 2. Otherwise stop with
the optimal processing sequence (Jji), Ji2), - . Jjin)):
In stating the algorithm we have used the following notation:
k the position in the processing sequence currently being filled (k cycles
downn, (n-1), ..., 1)
T the time at which the job kth in the sequence must complete
U the set of unscheduled jobs

Example: One machine, 4 jobs, minimizing average flow time problem denoted by

(1/4/ :':“) subject to Trax = 0.

18

Job J] jz J% J4

Processing Time 2 3 1 2
Due Date 5 6 7 8
Step l:k=4,t=2+3+1+2=8,U={(J; J2 J3 J4).
Step 2: Only J4 satisfies condition (a) so we choose Jjig) = J4
Step 3:k=3,t=6,U={J;), J3}.
Step 4: k 2 1. (return to Step 2)
Step 2: J; and J3 satisfy condition (a); J, has the larger processing time, so J; 3 = J»
Step3: k=2, 1=3, U= {J5 J3 }:
Step 4: k 2 1. (return to Step 2)
Step 2: I, and J5 satisfy condition (a); J| has the larger processing time, so J;2, = J;
Step3:k=1,7=1,U={ J3}.
Step 4: k = 1. (return to Step 2)
Step 2: J5 satisfies condition (a), so Jy;, = J;
Step 3: k=0, T=0, U is empty.

Step 4: Optimal sequence is (J3 J; J2 Jy).

The following examination shows that EDD does not minimize F subject to
Tmax=0, but Smith’s algorithm does. For the preceding example, the scheduling result of

Smith’s Algorithm is (/3 J; J2 Jy), and the scheduling result of EDD is (J; J> J: J4):

P :
F_;(zlw_ﬁ;a)

19

Where:

EW A total waiting time.
j=
n
Z P total processing time.
J=1

4
ZPJ. = 8 for both schedules

i=1

4
YW, =W;+ W+ Wa+ Wy=0+1+3+6= 10 (Scheduling by Smith’s algorithm)

J=l

4
EW: =W+ Wo+ W;+ W,=0+2+5+6 =13 (Scheduling by EDD)

=1
f_? = %(IO + 8) (Average flow time by Smith’s algorithm)

F= &(13 +8) (Average flow time by EDD)

2.2.7 Van Wassenhov And Gelders’ Algorithm [Van Wassenhov and Gelders 1980]
(Finding Schedules efficient with respect to Ty and that F)

According to Smith’s theory, we are only willing to consider reducing F (mean
flow time) once we have ensured that T,,, = 0. In other words, penalty costs have

overriding importance. Yet, if we are prepared to allow T, to rise, we might be able to
reduce ' more than sufficiently to compensate for an increase in Tmay . Thus, the focus

now is to minimize F subjectto 7, <A, (i.e. subject to no job being finished more than

max

A after its due date). The algorithm can also be described as solving the one machine, n

Jobs, minimizing the average flow time problem denoted by (1/n/ F) subjectto T, <A.

By adding A to all the due dates and apply Smith’s algorithm we find:
Step 2 of Smith’s algorithm can be modified and replaced by:

Step 2: Find Jjy) in U such that (a) d,,, 2 T and (b) Pj, > P, for all J; in U such
that d, = 1. If there is a choice for Jjx, , choose Ji, to have the latest possible due date.

When this modification is made, the algorithm always finds an efficient schedule.
Based on this principle, Van Wassenhov and Gelders developed their algorithm as

follows:

Step 1: Set &:2?’}.

f=1

Step 2: Solve the Un/ F problem subject to T <A using the modified version

of Smith’s algorithm. If Step 2 of that algorithm involves an arbitrary
choice, repeat the solution until all possible choices have been made. If

there is no schedule with 7, , <A, go to Step 5.

Step 3: Let the schedule(s) found in Step 2 have T, <A,.Set A=A, —1.

Step 4: If A =0, go to Step 2. Otherwise, continue to Step 5.

Step 5: Stop.

Example: A /4] F problem subjectto T, <A

Job 5 J> I3 Js
Processing Time 2 4 3 1
Due Date 1 2 4 6

21

Step 1: A= 10

Step 2: Find an efficient sequence (J4 J; J3 J>) with F =20and T =18.
Step3:A=7

Step4: A = 0.

Step 2: Find an efficient sequence (J4 J;, J2, J3) with P =21 and Ty = 6.
Step A =5

Step4: A = 0.

Step 2: Find an efficient sequence (J; J5 J; J4) with F =27 and Tipe =5
Step3: A=4

Step4: A = 0.

Step 2: No sequence with T,,ax < 4.

Step 5: Stop.

Suppose the total cost in this example is linear with positive coefficients, say:

F)=4T, +7F

max

C(T,

max *

The total cost of the three schedules are:
Gla J1 J3.-05) Tpax= 8, ﬁ = 20. Total cost = 4x8 + 7x20 = 172.
(s Jo:d9): Thar=0; };" =21. Total cost = 4x6 + 7x21 = 1 71.

Gl 5 d3 5 T =25, 1:" = 27. Total cost = 4x6 + 7x27 = 209.

Hence, the minimal cost schedule is (J4 J; J2 J3)

2.3 Algorithms For Flow-Shop, Job-Shop And Open Shops Problems.

22

In this section, the scheduling problem is described by a four-field classification
n [m |A [B. [Conway, Maxwell, and Miller, 1967], [Lenstra 1977], [Rinnooy Kan, 1976]
and Graham et al. 1979].

We shall now discuss problems in which each job requires execution on more
than one machine. From section 2.1, we know that in an open shop the order in which a
job passes through the machine is immaterial, whereas in a flow shop each job has the
same machine ordering (M, M,...,Mp,) and in a job shop the jobs may have different
machine orderings.

Very few multi-operation scheduling problems can be solved in polynomial time.
The most famous cases are the n/2/F/F . [Johnson 1954], n/2/0/C,..c |Gonzalez and

Sahni, 1976]. We will limit our survey to these algorithms and their extended

applications.

2.3.1 Algorithms For Flow-Shop Problems

In many manufacturing and assembly facilities a number of operations have to be
done on every job. Often, these operations have to be done on all jobs in the same order,
which implies that the jobs have to follow the same route. The machines are assumed to
be set up in series and the environment is referred as a flow-shop. Johnson [1954] gives
an O(n log n) algorithm to solve the n/2/F/F,,,, problem. The logic tumns out to be simple.
Johnson [1954] also provide a particular case to solve the n/3/F/F,,.. problem in
polynomial time, though n/3/F/F .. is strongly NP-hard [Garey, Johnson and Sethi 1976].

Enumerative methods are also commonly used in real life because of their

straightforwardness and simplicity. These three algorithms are shown in this section and

simple examples are also provided in the following section.

2.3.1.1 Johnson’s Algorithm For The N/2/F/F . Problem [Johnson 1954]

(n job,

2 machines (each job in order M1, M2), flow-shop, to minimize maximum

flow time)

Step I:
Step 2:

Step 3:

Step 4:

The basic logic of Johnson's algorithm for the n/2/F/F,,.. problem with

Pj =ajand P =b; j=1, 2, ..., n:

(1) if ay = min{ay, a>..., a,, by, ba..., b,}, there is an optimal schedule
with Ji first in the processing sequence;

(2) if by = min{a,, a>..., a,, by, bs..., b,}, there is an optimal schedule
with J; last in the processing sequence;

Johnson's Algorithm

Set k=1, [=n.

Set the current list of unscheduled jobs = { J; J>..., J,}.

Find the smallest of all the a; and b; times for the jobs currently

unscheduled.

If the smallest time is for J; on first machine, i.e. a; is smallest, then:

(1) Schedule J; in kth position of the processing sequence.

(2) Delete J; from the current list of unscheduled jobs.

(3) Increment kto k +1.

(4) Goto Step 6.

Step S: If the smallest time is for J; on the second machine, i.e. b; is smallest, then:
(1) Schedule J; in the [th position of the processing sequence.
(2) Delete J; from the current list of unscheduled jobs.
(5) Reduce [to [-1.
(6) Go to Step 6.

Step 6: If there are any jobs still unscheduled, go to Step 3. Otherwise stop.

Note: If the smallest time occurs for more than one job in Step 3, then pick J;
arbitrarily.

Example: A 7/2/F/F . scheduling problem. The processing time on machines is
as follows:

(The problem contains 7 jobs, 2 machines, flow shop, which minimize maximum

flow time).

Job M, M,
I 6 3
2 2 9
3 4 3
4 1 g
5 7 l
6 4 5
7 7 6

Applying the algorithm, the schedule is as follows:
Job 4 scheduled: 4 -

Job 5 scheduled: 4 * * # * * "

Job 2 scheduled: 4 * * > * * 5

Job 3 scheduled: + 2 » c * 2 5

Job 1 scheduled: < 2 " * X 3 5

Job 6 scheduled: 4 2 6 g 1 3 5

Job 7 scheduled: 4 2 6 7 1 3 5
Hence, the optimal order is (4, 2,6, 7, 1, 3, 5)

In the preceding schedule, there are two arbitrary choices. We could have put Job
5 into the last position of the sequence before scheduling Job 4, and the resulting
sequence would have been the same. Also we could have scheduled Job | in the sixth
position instead of Job 3. This would have led to a different, but equivalent, processing

sequence (4, 2,6,7,3, 1, 5).

2.3.1.2 Johnson’s Algorithm For ‘The N/3/F/F,... Problem [Johnson 1954 |[Szwarc 1977

Johnson’s algorithm for the n/3/F/F,,q, problem is a special case of his algorithm

for n/2/F/F .. problem. Here are the pre-conditions for this problem:

either

or

1.e. the maximum processing time on the second machine is no greater than the minimum

time on either the first or the third. In such a case, an optimal schedule for the problem

may be found by letting
a =p,tpPp
b; =PptPp

and processing the jobs as if they are processed on two machines only, but with the
processing time of each job being a; and b; on the first and second machine respectively.

Example: A 6/3/F/F . problem with processing time and order is as follows:

Actual Processing Time Constructed Processing Time
Job M, M, M; [* Machine 2™ Machine

| 4 l 3 5 4

2 6 2 9 8 11

3 3 1 2 4 3

4 5 3 7 8 10

5 8 2 6 10 8

6 4 | 1 5 2

(a) Check the processing time on machines 1, 2, and 3.

] 1]

4]
miin{Pu}=3: qu{Pz;}=3: miln{Pf‘}= .
J= = J=

6]
Thus we have min{PU}: max{P:;}=3- (pre-condition is satisfied)

J=1 =
(b) Construct a; and b; times. a,=p,+p,, and b, =p, + p .. For the results

of the equation see the preceding table.

(c) If we apply Johnson's algorithm for n/2/F/F .. we have the following processing
sequence (2,4, 5, 1, 3, 6).

For the results of sequencing see Fig. 5 Gantt Chart for 6/3/F/F .. Problem.

.].2 J4 J_'| JI J] J5

6 11 19 23 26 30

M,

A [R
M,

6 8§ 14 21 24 27 31
M Ty 1, I s 1 1y 35 8
() 8 17 24 30 33 35

Fig. 5 Gantt Chart for the 6/3/F/F,,.. Problem

2.3.1.3 Akers’ Graphical Solution To The 2/M/F/F .., Problem [Akers 1956]

(two jobs n machines flow-shop case, graphically minimizing maximum flow
time)

The method generates schedules one by one, searching for an optimal solution. It

uses procedures of elimination to see if the non-optimality of one schedule implies the

non-optimality of many others not yet generated. It may not search all of the sets of
feasible solutions.

Use a horizontal line to represent work on one job, a vertical line on the other, and

a 45° line on both. The optimal schedule can be drawn with the following steps.

Step 1. On a piece of graph paper, lay out the processing times of job 1, in
order of processing on the (X) horizontal axis. Lay out the
processing times of job 2 in order of processing on the (Y) axis.
(total time on job 1 2 total time on job 2).

Step 2. Find the oblong area where the processing time on the first
machine required by job 1 crosses the processing time required by
that same machine on job 2. Crosshatch this area. This area is the
time when both jobs require the same machine.

Step 3 Complete step 2 for all remaining machines.

Step 4 Start from the origin, (0,0), draw (if possible) a 457 line until you
hit an oblong area. Follow the edge of the oblong area until you
can again go at a 45°[1]. Continue until you have completed all
processing. (Justification: if we started at the origin and went to the
right, job 1 would be done, letting job 2 wait. If we went straight
up, job 2 would be done, letting job | wait. Therefore, a 457 line
through a square indicates progress on both jobs).

Step 5 Starting from the origin (0,0), count each square through which the

line passes. This is the time for the optimal schedule. Check to see

which job has to wait by looking for horizontal (job 2 waits) or
vertical (job 1 waits) lines.

[1] If you hit the comer of an oblong area, follow both edges,
generating alternative solutions. Pick the line that gives the least

processing time.

The maximum flow time of the schedule can also be counted by either:

Fo.= ZP” + sum of length of vertical segments of the schedule line
J=l
or

F_. = E P,, + sum of length of horizontal segments of schedule line

max
i=1

where m ---- number of machines,
P,;---- processing time of job 1 at machine |
P;---- processing time of job 2 at machine j
Example. Graph Schedule for a 2-job, 7-machine process with data as follows:
Job 1 Order of machines A C E F B D G
Processing times 1 2 2 4 3 | l
Job 2 Order of machines C F A E G D B

Processing times 3 3 2 1 l 1 2

30

14

13
B 12 7//’
D 1l 4
G 10 1>

5 il
E 8 > //
Ag? A

/f
F 5 /
/|

‘2 4
c 2 //

1 /

12 34567 891011121314 X

Fig. 6_Graph Of Schedule In 2/7/F/F nay_

2.3.2 Algorithm For Job-Shop Problems

Relaxing the flow-structure can create an immediate generalization of the flow-
shop problems. Rather than requiring each job to progress through the processing stage in
an identical fashion, we now allow jobs to have different ordering requirements. In this
context, we also allow job operations to involve repetitious processing. By a modification
of Johnson’s algorithm for n/2/F/F mayx, the n/2/G/F,,.. (n job, 2 machine general job-shop,
minimizing maximum flow time) the problem can be solved in polynomial time.

Johnson’s algorithm for the n/2/G/F ., problem [Johnson 1954] is as follows:

Suppose that the set of n jobs { J; J>..., J,} may be partitioned into four types of
jobs as follows:

Type A: those to be processed on machine M only.

31

Type B: those to be processed on machine M; only.

Type C: those to be processed on both machines in the order M, then M,

Type D: those to be processed on both machines in the order M; then M,

The construction of an optimal schedule is straightforward.

(1)
2)
3)

4)

Schedule the jobs of type A in any order to give the sequence S

Schedule the jobs of type B in any order to give the sequence Sg.

Schedule the job of type C according to Johnson’s algorithm for
n/2/F/F . problems to give the sequence S¢

Schedule the job of type D according to Johnson’s algorithm for
n/2/F/F,. problems to give the sequence Sp (here M; is the first machine
and M, is the second machine).

An optimal schedule is then:

Machine Processing Order
M, (Sc. Sa. Sp)
Mg {SD SB. S(')

This schedule clearly minimizes the idle time when M; is kept waiting for jobs of

Type C to complete on M; or when M, is kept waitiig for jobs of Type D to complete on

M. Therefore it is an optimal schedule.

Example: A 9/2/G/F . problem with times and processing order as follows:

Job First Machine Second Machine
| M, 8 M, 2
2 M, 7 M, 5§
3 M, 9 M, 8

5 M, 6 M, 4
6 M, 5 M, 3
7 M, 9 *

8 M, 1

9 M, 5 *

Find the optimal schedule.

Type A jobs: Only job 7 is to be processed on M, alone.

Type B jobs: Jobs 8 and 9 require M> alone. Select arbitrary order (8, 9).

Type C jobs: Jobs 1, 2, 3, and 4 require M, first and then M, Johnson's algorithm for
this 4/2/F/F ... problem gives the sequence (4, 3, 2, |).

Type D jobs: Jobs 5, 6 require M, first and then M,; Johnson’s algorithm for this
2/2/F/F ac problem gives the sequence (5, 6)(M, is the second machine).

Hence, an optimal sequence for the overall problem is:

Job Processing Sequence

Machine M, 4.3,2 1, 7. 5, 6)

Machine M, (5,6, 8,9 4,3 2 1)

33

M, 1, I3 1, 5 J, Js Js

M: % g Psl I | g, 3 % %)

0 6 . 12 L7 24 32 37 39

Fig. 7 Gantt Chart For The 9/2/G/F,.. Problem

2.3.3 Algorithm For Open Shop Problems

Though open shop problems have been proved to be NP-Complete [Parker 1995],
minimizing makespan in the open shop with two machines (n/2/0/C,,..) problem tums
out to be solvable in polynomial time due to Gonzalez and Sahni’s [1976] contribution.

Algorithm for n jobs, two machines open shop problem (1n/2/0/C yy).

Step 1: Initialize by setting A; = o=k =r=Pp; =Pp2=0; 7=0; i =0,
Step 2: Compute 4; «~ A4, + Py, A2 « A + Pp.

If Py =P, go tostep 3, else go to Step 4;

Step 3: If Py 2Pz then extend 7z by concatenating as 7r and set r ¢ i else, concatenate

as /. If i =n, goto Step 5: else set i « i+1 and return 2.

Step 4: If P;; 2Py then extend 7z by concatenating as k7 and set k «i; else, concatenate

as iz If i =n, goto Step 5: else set i ¢« i+17 and retumn 2.

Step 5:If 4) - Py < 4y - Pro set m « mrk and m « ks else set 7 ¢k and

7 ¢« rkz. Remove all 0’s from the permutations 7; and 7> and schedule in these
orders on respective processors.
Example: Four jobs, two machines, open-shop, minimizing makespan problem

(4/2/0/Cnay). The four jobs and operation times are shown bellow:

Job M, M,
1 7 3
2 2 4
3 5 8
4 2 6

The computation can be easily summarized in the following table:

After iteration T r ___k
] 0 | 0
2 00 1 2
3 200 1 3
4 3200 1 4

By applying Step 5, we form m; « mrk = {320014} and 7, «— kmr = {432001 }. Or upon
eliminating dummy 0s, we obtain m; = {3214} and m, = {4321}. The corresponding

schedule is shown in Fig. 8.

LA LA N N ppe— y

@ » —Bsiria ¥

™ MR AL LS
e e L T T

F e

5 7 14 16

—
—

Fig. 8 Final Schedule for 4/2/0/C ..

2.4 Algorithms For Parallel Machine Problems

In this section, problems are described by a three-field classification o/p/y.
[Conway, Maxwell, and Miller, 1967], [Lawler, Lenstra, and Rinnooy Kan, 1982],
[Herrmann, Lee and Snowdon, 1993].

For parallel machine problems, we assume an environment characterized by two
or more machines where these machines have similar capabilities (but perhaps different
performance qualities, such as speed and so on). That is, any of M > 2 machines are
available for processing a given job. The aim is to find an assignment of all jobs to
existing machines that makes optimal some predetermined measure. Here we focus on
algorithms for the makespan case.

This problem can be described as a given finite set of jobs J, a non-negative
duration t; for each i € J, a number m = 2 of machines, and a completion time threshold

D>0, find a partition (Jy, J, ..., J») of J such that

max{Y r:1<k<m}<D

€]y

It is clear that for any fixed number of m machines, the problem can be solved in
polynomial time. But when m is free, it is a NP-complete problem. Facing this difficulty,
it comes as no surprise that the problem has been studied in the context of approximation

approaches.

24.1 List Processing [Parker, R. G. 1995] I

The method can be summarized in the following manner:

Create a list of jobs L and from this list, form a schedule as follow. Whenever a 1‘|
processor becomes available, schedule the first available job from the list. ;‘
The building of the list L might be guided by some sense of priority among jobs Ii |

with the latter based on attributes such as job duration, due dates, and so on. The schedule .‘f
3

building is simple and the results of the schedule satisfy the user’s required priority, but

, ol i 8

the schedule is not necessarily optimal.
Example: A three-machine problem with duration time and ordered list as follows:

Job Processing Time and Order List

Lt

Processing time: 7 3 5 4 8 6 3 5 4
Ordered List: 1 2 3 4 5 6 7 8 9 10
Following the preceding rules, the lists generated are (1,6,), (2,5,7,10). (3,4,8,9).

See Fig. 9.

37

Fig. 9 List Processing Schedule

2.4.2 Longest Processing Time Heuristic [Graham 1969]

The method can be summarized as follows:

Create L with jobs arranged in non-increasing t-order (longest processing time or

LPT order). Form a schedule as follows: whenever a processor becomes available,

P

T

schedule the first available job from the list.

i
\
:
|

Example: A four-machine problem with duration time and ordered list as follows:

Job Processing Time and Order List

Processing time: 7 7 6 6 5 5 4 4 1
Job Order List: 1 2 3 B 5 6 7 8 9
Following the preceding rule, the list processing generated is (1, 7, 9), (2, 8), (3,

5), (4, 6). The result is shown in Fig. 10.

38

I [5| 5 |
7 11 15
) | 3 |
7 11
E]
6 11
R
6 11

Fig.10 Example for Longest Processing Time Heuristic

2.4.3 MULTIFIT Heuristic [Coffman et al. 1978]

For some time the Longest Processing Time Heuristic was the best known in
terms of a performance guarantee. However, this position of prominence was
relinquished when Coffman et al. (1978) offered the MULTIFIT Heuristic which cleverly
employs a natural dual-like relationship between the problem P||Cmax and the well-known
BIN-PACKING problem.

BIN-PACKING seeks an admissible assignment or packing of a finite set of
“chips,” each with some positive weight, into the fewest number of finite capacity “bins.”

This dualistic relationship should be evident as illustrated by the following:

39

Wi atieh g Mrbiddy

.~ —

BIN-PACKING P(IC max

Bins Machines
Capacity Cnax threshold
Chips Jobs

Moreover, if packing into no more than m bins each with capacity of C, then there
exists a suitable schedule with makespan no greater than C.

BIN-PACKING logic is considered for the following heuristics:

2.4.3.1 First-Fit, Decreasing Weight Heuristic (FFD)

Create a list L of chips arranged in non-increasing weight-order. Select chips from

L in this order, placing a given selection in the first available bin into which it will fit.

Example: Let C = 61 and consider the list of chips given as L = (44, 24, 24, 22,

21, 17, 8, 8, 6, 6). Applying the First-Fit, Decreasing Weight Heuristic produces the four- ;

bin packing in Fig.11.

. .] 1 44 61
6 ; 9]
=l _8 T =]
P 3 5 2 24 48 56
=l T] | |]
1 3 22 43 51 60
2 4

Fig. 11 First-Fit, Decreasing Weight Heurnistic

40

2.4.3.2 MULTIFIT Heuristic

Step 1: Initialization. Let T be the set of jobs and fix upper and lower

bounds relative to T and m, as B,[T,m] and B,[I.m]
respectively. Let B3,(0)« B, and f,(0) < B, . Choose a number

of iterations t and an iteration counter i < 1.

Step 2: Capacity change. If i > t, stop. Otherwise, set

C(Bli-)+46-1) 4

Step 3: Upper bound. If the number of bins required by the First-Fit,

Decreasing Weight Heunistic operating on T with capacity C, given

as FFD[T,C], is no greater than m, set f,(i)«C,
B,(i) « B,(i—1), update i < i+1 and go to Step 2. ;
Step 4: Lower bound. If FED[T,C]> m, set f,(i)« C, B,(i)« B, (i-1).

update i ¢~ i+1 and go to Step 2

where

gtk 2 ey)|

By [T,m]=max{2zr%,m?x(h]}

Example. A three-machine, seven-job problem with data as follows:

Job Number: | 2 3 4 5 6 g

4]

Processing time:

Choose iteration t = 6.

59 47

The fixed Lower bound is:

22 13

Br=(59+47+38+22+ 13+ 12+11)/7= 67.3

The fixed upper bound is:

B. =2x67.3=1346

The computation is summarized as:

Wheni=1:

C =100.9,

Wheni=2:

C=284.1,

When i = 3:

C=757,

Wheni =4:
C=715.

Wheni=S5:

C =694,

Wheni=0:

C=70.5,

Wheni=7: Stop.

FFD[T, C] <3,

FFDI[T, C] <3,

FFD[T, C] <3,

FED[T,; C] <3,

FFDI[T, C] > 3,

FED[T, C] < 3,

B (1) =100.9,

ﬁ; (2) — 84.1,

B (3)=757,

ﬂ; (4) = 7[5.

B (5) =715,

B (6) =70.5,

Final packing yields the schedule shown in Fig. 12.

11

B (1)=673

B (2)=673

B (3) =673

B (4)=673

B (5)=69.4

B (6)=69.4

M, 1, []]
59 70
M, 1 | |
47 69
M; | L | 5 | 3 |
38 51 63
Fig. 12 Schedule of MULTIFIT Heuristic

Scheduling of jobs on parallel machines 1s very hard to solve. The scheduling of
jobs with precedence constraints on parallel machines is harder, but there are some

interesting solvable unit duration time cases. One is given by Hu [1961].

2.44 Hu's Algorithm

Step 1: Compute the length of a longest path from each vertex. Call these values /i

Step 2: Create a list L. of jobs arranged in non-increasing [-order. Perform List
Processing on L.

Hu’s Algorithm solves P\iree, t; =1|Cpax

Example: Three machines, 17 jobs are constrained as shown in Fig. 13. Each job

is of one unit processing time. The final schedule can be seen in Fig. 14.

—

e ——

“‘i.‘-‘_‘_ £ Ww.‘."‘

6 2
6| 3
6 4
61 s
Fig. 13

Precedence Constraint Diagram

List L is builtas (1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17)

N E llOJ[ZJ 15[17]

M,
M, 2] 5 9| 113}
M, 3[6 | 8]14]16]
Fig. 14 Schedule of Hu's Algorithm

44

i ——

| —

b el Gl NI~

LR E™)

2.5 Some Problems In Combinatorial Optimization

Some scheduling problems can be solved efficiently by algorithms presented in the
previous sections. Others require methods in combinatorial optimization. In this section,
we will review the widely used methods for scheduling, such as traveling salesman and

genetic algorithms.

2.5.1 Christofides Heuristic Algorithm For Traveling Salesman Problems

The traveling salesman problem (TSP) is one of the most popular problems in
combinatorial optimization. Since the problem is so widely studied with most major
results readily accessible in the literature, we will briefly review the Christofides’
heuristic for the TSP and explicitly show this algorithm with an example.

The classic TSP asks for a tour through n “cities” that cover least total travel
distance. The tour must begin and end at the same city with no city visited more than
once. In graph-theoretic language, the problem is usually defined on a complete graph
where edges are weighted as w: E — Z and the aim is to find a spanning cycle of the least
amount of total weight. Christofides’ heuristic is described by the following steps:

Step 1: Find a minimum weight spanning tree in G. Let this tree be given by T C E.
Step 2: Let the odd-degree vertices in the tree of Step 1 be denoted by V; and find a
minimum weight perfectly matching in the subgraph induced by V, Let this

matching be denoted by M C E.

45

L WR VLW AT B'F = TV
e T g, ———

e W
-

"1 Produce the corresponding

Step 3: The graph formed as M U T is called Eulerian
(Eulerian) cycle and, interpret it as a vertex sequence, form a TSP tour by
beginning as the initial vertex, and proceed in order, “shortcut” past duplicated
vertices until the starting vertex is reached again.

Note: [1] ---- Given that the Eulerian graph is G = (V, E), does G posess a walk that

begins and ends at the same vertex and includes each edge exactly once? Such a walk is

called an Eulerian traversal and a graph that admits it is called Eulerian [Euler 1736).

For example, consider the graph in Figure 15. The problem is shown in part G. In part a,

the tree is given. The matching of Step 2 is shown in part b, and in parts ¢ and d, the

Eulerian cycle and generated tour are shown respectively.

46

] sy S

et tp—ein. -

i

fr

[3 1
6 4 4
5
(G) (b)
) 2
J \ 3 1
6 4 6
5 (1,3,6,5432,1) 5
(a) {c)
2
| /\ 3
66 4
5
(d) Fig. 15 Example Of Heuristic For TSP

47

Sl i IB28m
o R

et A W R TIOTEN

L.

i

fr

2.5.2 Genetic Algorithms

Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search
algorithm [Goldberg 1989]. Genetic algorithms have been widely used in search and
optimization in the areas of biology, computer science, engineering and operations
research, job scheduling, and so on [Goldberg 1989], [Brown and Scherer 1995], [Kerr
and Szelke 1995].

The mechanics of a genetic algorithm are surprisingly simple. It involves nothing
more complex than copying strings and swapping partial strings. Its operation is
composed of three operators, Reproduction, Crossover and Mutation. Reproduction is a
process in which individual strings are copied according to their objective function
values. After the newly reproduced strings in the mating pool are mated at random, an
integer position k along the string is selected uniformly at random between 1 and the
string length less than one (1, L-1). Swapping all characters between position k+1 and L.
inclustive creates two new strings. Mutation is a random walk through the string space for
an occasional alteration of the value of a string position. Genetic algorithms are powerful
in solving all kinds of problems in real life with the suitable implementation of these
three operations.

Example: Maximize the function fix)=x", where x is permitted to vary from 0 to 31.

48

foetash, -

R ' o . T

Pl Yee S LIULIJILIREDGS,

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Choose an initial population by four repetitions of five coin tosses where head =
1, tail = 0. See table 1.

Reproduce a new population of four strings by using random selection.

Use coin tosses to pair off the happy couples. First couple 01101 and 11000,
second couple 01000 and 10011.

Use coin tosses to select the crossing site to cross over the mated string couples.
First couple at position 4, second couple at position 2.

Randomly select a mutation position, perform bit-by-bit mutation according to
probability of mutation, (in this case no bits undergo mutation during a given
generation for the rate is too small).

If not satisfied with the result, go to Step 2, else go to Step 7.

Stop.

The operation stops after 2 iterations. The maximum value of f{x)=x" increased

from 576 to 729. See Table 1 and Table 2 for the results.

Table 1 Initial Genetic Productions.

String Initial ﬂ:\') Fitness

No. Population x value X slot size Count
1 01101 13 169 0.14 |

2 11000 24 576 0.49 2

3 01000 8 64 0.06 0

4 10011 19 361 0.31 |

49

—— e &

R R WAV BTy

Table 2 Result of Genetic Cross Over.

Mating Pool Crossover New fix)
After E"rod. Mate Site Population x value X

011 q 1 2 f 01100 12 144
110q0 | 4 11001 25 625
01000 4 2 11011 11 729
10011 3 2 10000 16 256

50

= = wws ‘_ "_"3 “L‘-‘..

2z TP
—a8e &

-
-y

CHAPTER 3

INDUSTRIAL APPLICATIONS

Although scheduling algorithms originated from industry and have been
developed to solve all kinds of problems, these algorithms can’t cover all real world
problems. In industrial practice we must analyze our problems, find the proper algorithm
or combine a few algorithms together, or simply borrow some ideas from the available
algorithms to find a good solution to our problems. Let’'s examine a mobile workforce

dispatching problem and find a combinatorial solution to the problem.

3.1 Background

A company called CGV has hundreds of service stations scattered all over a state
on the eastern coast of the United States. These services have been providing repair and
maintenance services for customers in their service areas. CGV plans to merge all the
small services into a few service centers. Since the maintenance technicians are scattered
around the state, it is impossible to have all the technicians gather at one service center,
pick up their maintenance orders, and drive back to work each moming. Therefore, CGV
plans to build a computer-aided dispatching station (CDS) and fumish a laptop computer

for each technician's maintenance vehicle. The CDS station will communicate with each

51

technician through a wireless network (see Fig. 16). Thus, the technician will receive his
maintenance orders for a day as soon as he gets in the van and starts his computer. The
technician is required to send back his maintenance report and time sheet when a job is
done or when he completes his assignment for a day. Not only the company benefits from

doing this, but also customers and the technicians.

Main Frame Station

Mobile Data Terminal

Computer Aided Dispatching (CDS) Station

v

CDPD, Cellular Satellite, [P

Mobile Data Terminal

Fig.16.Network Configuration

Based on this specific condition, the company provided a short list of

requirements for the design of the CDS system:

Y]
2)

3)

4)

5)

6)

Every individual is assigned a responsible area.

Don’t let technicians work overtime, if possible.

Customers don’t like a technician to leave a job half done once it gets
started.

Urgent jobs shall be scheduled and processed on the required date.

Normal maintenance jobs may be planned in the service center a few
weeks or even a few months ahead of actual scheduled time.

Generally, the processing time ranges about 15 minutes to four hours

(mostly less than one hour).

3.2 Initiation Of Project

3.2.1 Preliminary Assumptions

According to the above-mentioned requirements, the following assumptions are

made to simplify the selection of scheduling algorithms:

1)

2)

3)

All technicians are equally good at all assigned jobs.

If a technician doesn’t have enough jobs to do in his respective region, he
can request to work in nearby areas.

Before dispatching jobs to a technician, the service center is supposed to

have received a work request that includes the technician’s name, work

53

322

location, starting time and working hours of the day (a technician can
make more than one request for a day).

4) The dispatching algorithm will only dispatch jobs available at dispatching
time.

S) A technician can’t be interrupted once he is working on a job (i.e., this is
non-interruptible scheduling).

6) The sum of a technician’s work time and travel time shall be within eight
hours per day.

7) Special cases not mentioned above will be handled through special

dispatching channels (not to be discussed in this thesis).

Design Of Scheduling Logic

According to the user’s requirements and our assumptions, this problem seems to
be a problem of m machines in parallel, n jobs with precedence constraints,
minimizing total cost. Now we divide the state into a few regions. According to
their locations, characterize all jobs by zip codes (i.e. group all jobs into the
divided regions). Each technician is assigned to work in one region. Since these
technicians’ daily tasks are not closely related, we can consider one technician
and n jobs as a scheduling unit. The problem thus becomes a single machine, n
job problem. The parallel operation of the m technicians is separated from the
scheduling of n jobs to a single technician. This parallel operation is easily

managed by the CDS by checking whether or not each region has a technician

54

logged in and jobs are evenly distributed among these regions. We only have the

problem of scheduling n jobs with precedent constraints to a technician.

3.2.2.1 Job Storage And Management

1) Jobs are arbitrarily stored in the CDS database characterized by job

identification number, job type (urgent or normal), estimated working time, ;g
N
due date, relative coordinates, address, and so on. E;‘
2) Jobs shall be dispatched from central lists to each technician’s urgent job !
queue and normal job queue according to their due dates. '
3) Priornty rules for job dispatching: o

K Urgent jobs have priority to be dispatched first, and normal jobs will not
be dispatched unless the urgent jobs have been properly dispatched.

° On the due date of a normal job, it is automatically changed to an urgent
job and transferred to the urgent list.

o If urgent jobs are in regions where there are no technicians on duty, these

jobs shall be dispatched through a special channel.

3.2.2.2 Location Checking Method

The relative coordinates of each job specify all job locations. The coordinates of

his registered home address also specify a technician’s start point.

55

3.2.2.3 Procedures of Assigning Jobs To Technicians

When a technician logs in and requests some hours of work (the ready time of
each technician may be different), the CDS shall send jobs to a technician according to
his expected work area, available hours, and taking the technician’s registered address as
the start point. Following the optimality and evaluation rules, the system will dispatch
jobs from his job pool, report to CDS when jobs are done. The CDS will automatic

update its database with information received from each technician.

3.2.2.4 Optimality And Evaluation

The optimality of this non-interruptible scheduling 1s to have the technician’s
work time in a day as near to eight hours (may change according to his requested work
hours) as possible with as little travel time as possible. Since the scheduling logic is
leading to a one-machine n jobs with precedence constraints, maximizing working hours

problem, this problem can be solved by applying the following algorithms repeatedly in

two cases:
. Shortest travel distance first scheduling (SDF).
. Shortest process time first scheduling (SPT).
. Longest processing time first scheduling (LPT).

° Genetic SDF scheduling (GSDF).
. Genetic SPT scheduling (GSPT).

. Genetic LPT scheduling (GLPT).

56

. Dispatch one job from one of the above six queues that schedules the
longest working hour and least traveling time in the following sense.
Case 1: Requested work time is longer than the total work time of jobs available.

The technician’s work time bin is larger than all available jobs could fill. All the
algorithms listed above will pack the time bin with the same amount of work time and
different drive time. Since the SDF algorithm will build schedules with the shortest travel
time, the system will only invoke SDF scheduling. The best solution is guaranteed.

Case 2: Plenty of jobs waiting to be processed.

Since there are plenty of jobs waiting to be processed, the technician’s time bins
can be packed with the six algorithms for each job request. The system will choose one
queue that has been filled with the longest work time and dispatch the first job from the
queue. When the job is done, the system will mark the job status “done” and transfer it to
CDS’ finished job database. If the technician requests another job, the system will fill the
new time bin provided by the technician with remaining jobs in the job pool. The above
steps will be repeated for each job request until the technician wants to stop. Since the
time bin size is relatively fixed for each job request, more work time means less drive
time. Each time a technician requests a job, the system will build six queues for selection.
Choosing one job every time from the queue identified by maximum work time

optimality is surely enough to guarantee a very good schedule.

3.2.2.5 Program Flowchart

According to the design of the scheduling logic, the following program flowchart

provides us with the solution. See Fig. 17.

37

4 il B A AL

r Start computer q

o

.

Read input data

:

Sort jobs by due date

Request a job?

Select work area

;

» Select work hours

;

1) Schedule jobs by SDF
2) Schedule jobs by SPT
3) Schedule jobs by LPT
4) Schedule jobs by Genetic SDF
5) Schedule jobs by Genetic SPT
6) Schedule jobs by Genetic LPT

T

Dispatch one job from the best schedule of these six

:

Arrive on site, get job done

Request another job?

Fig. 17 Program Flow Chart End [*

. B T R

« 4 W el MSALIT P S B

’
-

3.3 Empirical Application of the Combinatorial Solution

3.3.1 The Simulation Program

To simulate the scheduling, the following requirements have been kept in mind

during programming:

a)

b)

¢)

d)

e)

Login and logout date and time zone are Eastern Time as provided by the
computer.

Actual work time, travel time, mileage, jobs completed shall be reported to
the CDS as soon as a job is completed.

The final report shall include today's total work time, mileage and jobs
completed.

A technician can change his expected work hours when he requests
another job.

A technician can login and logout as many times as he needs to in a day.

The program was written in C. See Appendix A.

As illustrated above, the program first employs three algorithms (SDF, SPT, LPT)

to make three schedules. It is known that the three algorithms will not provide an optimal

solution each time a job is dispatched. There are many uncertain conditions not

considered by the three. Thus, a genetic algorithm 1s applied to optimize these three

schedules respectively, and the result is exciting. The genetic algorithm reschedules the

three queues about 6! times each (It is estimated that a technician will work out 6 jobs

each day on average. The possible permutation of jobs in the queue is estimated to be 6!).

The best schedule is saved for final comparison. The final schedule chooses one Job from
one of these six schedules whenever a technician requests a job. Therefore, a
combinatorial schedule is automatically built up, and provides us with a very good job

dispatching sequence.

3.3.2 Empirical Application

In real life, there are many aspects that influence scheduling. The combinatorial
scheduling logic has given certain considerations to the boundary conditions. The
empirical application considers four technicians working in four different areas
respectively (see Fig.18). All the job locations originated from random numbers and the

technicians’ home locations are arbitrarily chosen.

3.3.2.1 An Eight Hour Day at Normal Jobs

Technician Mike Jackson ID #111 requests to work eight hours in his home area with
zip code 100. The system finds that normal jobs #10 to #26 in this area are available.
According to his requested work area, zip code, and work hours, the system first sorts
these jobs by due date and then schedules six queues of jobs each time he requests a job.
The system automatically finds one job from the best of the six schedules and assigns it
to the technician. When he arrives on site, the actual work time starts. When the job 1s
done, the job is reported to the CDS. The system will ask if he requests another job, if he
wishes to change expected work time, and so on. until the total time is near to eight

hours. Let’s examine the scheduling and assignment in detail.

60

Location of Technicians And Area Numbers

-t -

- ———

120
Man 333 Man 444
Arca 300300 Area 400
- Fponde Zipcode 400
5
Z
i o0 +
=
b= |
3 Man 111 Man 222
Zipcode 100 ZIPCOdE 200
O IS 1 L il A L _:
0 60 120
West € East

Fig. 18 Location of Technicians And Area Numbers

1) Man L11 first requests to work for eight hours. The following six queues are created.

Table 3. Eight-Hour Schedules for M111 In Area 100

" Algorithm | Schedule Work Travel No. of
Time (hr) | Time (hr) | Jobs
SDF #10, #11, #12, #15, #13, #14, #16, #17 | 4.8 24 8
SPT #16, #19, #20, #24, #10, #1 1, #12, #15 | 3 4.26 8
LPT #26, #25, #13 375 3.83 3
GSDF #10, #11, #12, #15, #13, #14, #16, #17 | 4.8 24 8
GSPT #11,#15,#12, #13, #14, #18, #17 4.8 3.13 7
GLPT #10, #11, #14, #17, #18, #26 4.8 2.3 6

61

See Table 3 for detail schedules. These travel routines , see Fig.19 to Fig. 24..

60
|
Schedule By Ailgorithm SDF.
o Work 4.8 hr; Drive 2.4 hr; Idle 0.8 hr.
J20
40 J26 @
J19
J21
®
30
@®
20 Man .J23
J24
J10
10
. J25
0|;J_¢n11141||||. i 4 4 41 : --------- : ----- P T lll{
0 10 20 30 g 50 60
One Day's Work and Travel (8 hr) In Area 100
Fig. 19 Possible Travel Route for Man 111 By SDF
60
Schedule by Algorithm SPT.
' Work 3 hr; Travel 4.27 hr; Idle 0.73 hr,
50
[
40
a9 ® .
20
10 . J25
0 ++ = [+ ua— e e |
0 10 20 30 40 50 80

One Day's Work and Travel (8 hr)In Area 100

62

60

Schedule By Algorithm LPT.
Work 3.75 hr; Travel 3.83 hr; Idle 0.42 hr.

50
40
a0
® .2
20
10 3J25
Oll T “‘Ae‘l‘.lllll:Llllllll.l; ;;;;;;;;; ‘l
0 10 20 30 40 50 60
One Day's Work and Travel (8 hr)In Area 100
Fig. 21 Possible Travel Route for Man 111 By LPT
60
Schedule By Algorithm GSDF
Work 4.8 hr; Drive 2.4 hr; Idle 0.8 hr.
50
J20
®
40 J.?B.
J19
Jig . J21
& @
30
@®
®
20 J23
I”4
10 . J2s
D lllllll J-Aluxl,._n --:11-11.1 -:-1--:.4141_-lll| lxxian.an.._,__.__=
e 10 20 30 40 50 60

63

‘ Schedule By Algorithm GSPT
Work 4.8 hr; Drive 3.13 hr; Idle 0.07 hr.

50
[J20
40 6@
| o
J18
J21
- ®
30
f a7 @ s ® .
|20 J14 e ® .
J24
J12
T a @
10
J13 @
T L S S
0 10 20 30 40 50 60
One Day's Work and Travel (8 hr) In Area 100
- Fig. 23 Possible Travel Route for Man 111 By GSPT
60
Schedule by Algorithm GLPT
Work 4.8 hr; Drive 2.8 hr; Idle 0.4 hr.
50
Jz2o .
40 =

0 10 20 30 40 5u 60
One Day's Work and Travel (8 hr)In Area 100

Fig. 24 Possible Travel Route For Manl11 By GLPT |

64

2) After eight requests and assignments, the final applied travel routine (see Fig. 25)
is none of the above six routines. The resuit is the combinatorial schedule automatically
created by the system. The system chooses one job from the best schedule of the six each
time when a technician requested a new job. Thus. the combinatorial schedule is formed.
The final schedule is #10, #11, #12, #14, #16, #18, #21, #26. Among these jobs, #10,
#11, #12, #16, #26 are chosen from the queue created by SDF, #18 from the queue
created by GSDF, #14, and #21 from the queue created by GLPT. The work time is 5.25
hours, travel time is 2.53 hours, idie time is 0.22 hour. For a comparison bar chart see

Fig. 26

Applied Combinatorial Schedule
Work 5.25 hr; Travel 2.53; Idle 0.22 hr

G

0 10 20 30 40 50 60
One Day's Work and Travel (8 hr) In Area 100

65

Comparison of Schedules For Man 111

Hours in a day
O = N W & 0 OO N @ 0

1 2 3 4 5 6 Fi
OPTM SDF SPT LPT GSDF GSPT GLPT

Fig. 26 Bar Chart of Total Work Time and Travel Time
Note: OPTM ---- Final Combinatorial Schedule.
SDF ---- Shortest Travel Distance First Schedule.
SPT ---- Shortest Process Time First Schedule.
LPT ---- Longest Process Time first Schedule.
GSDF ---- Genetic SDF Schedule.
GSPT ---- Genetic SPT Schedule.
GLPT ---- Genetic LPT Schedule.
Observing the above travel routes and the bar chart of schedule comparison, it is
clear that a genetic algorithm plays a very important rule in optimizing schedules. In most
cases, the final combinatorial schedule intelligently chooses a job from the queue

optimized by a genetic algorithm although priority has not been given to these queues.

3.3.2.2 An Eight Hour Day At Normal Jobs Of Long Duration

66

- TP .
TR L]

The typical day’s work at normal jobs of long work time tests the performance of
algorithm LPT. As expected, the final combinatorial schedule (OPTM) intelligently
created a very good solution. By chance, the schedule created by OPTM and genetic LPT
(GLPT) are the same. These six schedules are listed in Table 4. Comparison of work time

and travel time see Fig 27.

Table 4. Eight-Hours Schedules for M222 In Area 200

! Algorithm | Schedule Work Travel No. of
Time (hr) | Time (hr) | Jobs
SDF #32 #35,#34, #36,#37, #38,#39,#40,#41 | 4.0 3.23 9
SPT #31,#33, #35, #37, #38, #40, #43, #32 | 2.25 4.83 8
LPT #47 #45 #42 475 1.77 3
GSDF #45 #46,#47 #42 5.25 257 84
GSPT #32 #35 #34 #41 #42 #45 4775 3.13 6
GLPT #47, #46, #45, #44, #42 573 2.03 5
OPTM #47, #46, #45, #44, #42 5:15 2.03 5

67

P o

Comparison of Schedules For Man 222

Hours in a day

1 2 3 4 5 6 7
OPTM SDF SPT LPT GSDF GSPT GLPT

Fig. 27 Comparison of Work Time and Travel Time of SchedulesFor Man 222

3.3.2.3 An Eight Hour Day At Normal And Urgent Jobs In Different Areas

In the following schedule, jobs #51, #52 and #57 are urgent jobs. The system
schedules all urgent jobs first. See the Stage 1 Schedules of Urgent Job table for details.
The OPTM schedule is the same as the SDF schedule. Thus, the total time for urgent jobs
1s 5.05 hours. When all urgent jobs are done, the technician still has 2.95 hours to work
for the day. The system automatically turns to normal jobs. See the Stage I Schedule of
Normal Job table. The normal jobs are scheduled in accordance with the remaining time
of the technician. For work time comparison of schedules, see Figure 28, and for the final

combinatorial travel route see Figure 29.

68

S8

Table 5. Eight Hour Work Schedule For Man 111 In Area 300

Stage I Schedules of Urgent Jobs

Algorithm | Schedule Work Travel No. of
Time (hr) | Time (hr) | Jobs
SDF #57 #52 #51 125 3.8 3
SPT #57,#51,#52 1.25 6.5 3
LPT #51,#52 #57 1.25 45 3
GSDF #5T7 #52.#51 1.25 38 3
GSPT #57 #51 #52 1.25 6.5 3
GLPT #S1 #52#57 125 4.5 3
OPTM #5T H#52 #51 1.25 38 3
Stage II Schedules of Normal Jobs
SDF #66.#59,#61 0.75 14 3
SPT #55 0.25 2.2 I
LPT #63 1.0 B, 1
GSDF #60.#65 1.5 1.13 2
GSPT #60,#65 3 113 2
GLPT #60,#65 L.5 118 2
OPTM #60,#65 1.5 113 2

69

iTid

n

Hours in a day
Y

Man 111 in Area 300 for Urgent and Normal Jobs

Comparison of Work Time of Schedules

3

2

Ahnl

0 — B ; . y =
1 2 3 4 5 6 7

LPT GSDF GSPT GLPT

Fig. 28 Comparison Of Work Time for Man 111 in Area 300

OPTM SDF

SPT

120
110
100
90
80 1
70 A
60 A
50 A
40 A
30 A
20 A
10 4

@ ¢

Combinatorial Schedule (Urgent Jobs J51, J52, J57)
work Time 2.75 hr, Travel Time 4.93 hr, Idle time 0.32 hr

. J66

‘59

J61

J65

60
J64

.J 51.]

J68 .T
53

Man

154
@
0,

Js2

® 5o

‘53

O-M—WM_M*MMM&H

0

Fig. 29 Travel Route Of Man 111 From Area 100 To Area 300

One Day's Work and Travel (8 hr) From Area 100 to Area 300

10

20

30

40

a0

70

80

3.3.2.4 An Eight Hour Day At Normal And Urgent Jobs In Area 400

In the following schedule, jobs #71, #72, #81 and #82 are urgent jobs. The
system, as designed, schedules all urgent jobs first. See the Stage I Schedules of Urgent
Job table for detail. The OPTM schedule is the same as the SDF schedule. Thus, the total
time for urgent jobs is 5.05 hours. When all urgent jobs are done, the technician still has
2.95 hours to work for the day. The system automatically tumns to normal jobs. See the
Stage II Schedule of Normal Job table. The normal jobs are scheduled in accordance with
the remaining time of the technician. For work time comparison of schedules, see Figure
30. For the final combinatorial travel route see Figure 31.

Table 6. Eight-Hour Work Schedule For Man 444 [n Area 400

Stage 1 Schedules of Urgent Jobs

Algorithm | Schedule Work Travel No. of
Time (hr) | Time (hr) | Jobs
SDF H#E2H#T2,#81,#71 }.37 2.1 4
SPT #81 #82#T2#T 1 R 137|263 4
LPT #T1H#72#82,#81 1.37 3.37 1
GSDF H#82H#T2#81 #71 1.37 2.1 4
GSPT #81 #82#T2,#71 { 1.37 2.63 4
GLPT #71 #72 #82 #81 1.37 3.37 4
OPTM #82H#T2#81 #71 1.37 2.1 4

71

4 457

Stage 11 Schedules of Normal Jobs

Algorithm | Schedule Work Travel No. of
Time (hr) | Time (hr) Jobs
SDF #88, #87, #80, #77, #75 2.25 217 5
SPT #77, #86, #79 0.8 3.5 3
LPT | #85 0.85 2.2 I
GSDF #88, #87, #80, #77, #75 2.25 2.17 5
GSPT #88, #87, #77, #80, #75 2.25 2.17 5
GLPT #88, #87, 477, #80, #75 2.25 2.17 5
OPTM #88, #87, #80, #77, #75 2.25 2:17 5
g Comparison of Work Time of Possible Schedules
7 Man 444 in Area 400 on Urgent and Normal Jobs
> 6
L s
@ 5
£ 4
2
3 3
5]
T 2
0 I I I
2 3 4 5 6 7

SDF

SPT LPT

72

GSDF GSPT GLPT

Fig. 30 Comparison Of Work Time for Man 444 in Area 400

Combinatorial Schedule (Urgent Jobs J71, J72,J81,J82)
Work 3.65 hr; Travel 4.27 hr; Idle 0.08 hr

120 T
110 £ i
E J7
g < @
F a7 J78
100 | mt
Jgz —‘ ®

90 | - ’ J7a
i* JBB .

- . o |

One Day’'s Work and Travel (8 hr) In Area 400

Fig. 31 Travel Route Of Man 444 In Area 400

3.3.3 Observation On The Empirical Application

From the preceding tables of schedules with four applications, we can see that the
SDF algorithm only gives consideration to jobs in the nearest distance. Reasonable
application of this algorithm will guarantee the shortest travel distance of a day’s work,
but not the maximum work time of the day. It occasionally schedules a technician with

longer idle time or a considerable travel time. The SPT algorithm increases the number of

13

80 | Jrr = J78
Jeo J85 -
70 | ._. Jaz Jaa
475 P &
:
.JUE J74 .
60 s W P R R S G R -
60 70 80 90 100 110 120 |

\

jobs in each schedule. It often schedules a technician with considerable travel distance
and less actual work time. The LPT algorithm helps a technician to find jobs with the
longest work hours. In turn, this algorithm often results in a situation where jobs with less
work time are ignored in favor of jobs with longer duration; the final total work time
doesn’t increase much, but the travel time does.

The genetic algorithm has provided an unexpected contribution to the success of
this combinatorial solution. It keeps a good schedule and continues to find a better
chromosome to perfect the schedule. We can see the work time of schedules by GSDF,
GSPT and GLPT is longer than that of SDF, SPT, and LPT. The travel time of queues by
GSDF, GSPT, and GLPT is shorter than that of SDF, SPT, and LPT. In most cases, the
final combinatorial schedule intelligently recognizes GSDF, GSPT, and GLPT. It chooses
a job from these queues to create the final best schedule each time a technician requests a

job, though priority has not been given to these queues.

74

iL 4

CHAPTER 4

SUMMARY AND CONCLUSION

The theory of scheduling is characterized by a virtually unlimited number of
problem types. Most research has traditionally been concentrated on deterministic
machine scheduling. This thesis emphasizes algorithms for scheduling non-interruptible
tasks. Academics require algorithms to be theory-based and written in a mathematical
fashion. In the real world the people who need them ask for plain explanation and simple
examples. This thesis bridges the gap in communication. Different from other academic
theses, this paper keeps the academic style of algorithms, explains them in basic
language, and shows simple examples for each algorithm. A total of six types of
problems and nineteen algorithms are covered in Chapter 2 to complete this survey.

As the world is accepting scheduling methods, people gradually find that most
methods only give consideration to the dedicated conditions. The real world is too
complicated. We need to simplify the real applied conditions and combine all possible
algorithms to work out an solution. In Chapter 3, such an application is presented. The
combinatorial solution successfully uses genetic algorithms to optimize approximately a
schedule for the Shortest Process Time First (SPT) algorithm, Longest Process Time First
(LPT) algorithm and Shortest Travel Distance First (SDF), and finally selects a job from

the best queue of these six. The logic of this empirical application can be summarized in

75

one sentence: simplify the complicated, and optimize approximately the obtained. The
advantage of this combinatorial method (OPTM) is that it always provides a very good
solution according to the given conditions. The disadvantage is that genetic algorithms
need a few seconds to do the calculation. As the practical job scheduling is carried out by
the mobile laptop of the technician, the calculation has no influence on the CDS. Since
the laptop is on most of the time, it doesn’t bother the technician if it needs one extra
second for calculation. So this OPTM is successful and applicable.

However, nothing is perfect in the real world. The OPTM can be further improved
by building in penalty factors for the work time of each job selected, the number of jobs
in each queue, the travel mileage, and the idle time. This work needs the cooperation of

the user’s financial advisors, production managers and experienced technicians.

76

BIBLIOGRAPHY

Akers, S. B. [1956] A graphical approach to production scheduling problems. Operations
Research 4, 244-245.

Burns, R.N. [1976] Scheduling to minimize the weighted sum of completion times with
secondary criteria. Naval Research Logistics Quarterly 23, 125-129.

Baker, K. R. [1974] Introduction to Sequence and Scheduling. John Wiley, New York.

Baker, K. R. and Scudder, G. D.[1990] Sequencing with earliness and tardiness penalties:
a review. Operations Research 38, 22-36.

Bruno, J. L, Coffman, Jr., E. G. and Stehi, R. [1974] Scheduling independent tasks to
reduce mean finishing time. Conununication of the Association of Computing

Machinery 17, 382-387.

Bruno, J. L. and Gonzalez, T. [1976] Scheduling Independent Tasks with Release Dates
and Due Dates on Parallel Machines. Technical report 213, Computer Science
Department, Pennsylvania State University.

Cheng, T. C. E. and Gupta, M. C. [1989] Survey of scheduling research involving due
date determination decision. European Journal of Operation Research 38,
156-166.

Conway, R.W., Maxwell, W.L. and Miller, L.W [1967] Theory of Scheduling.

Addison-Wesley, Reading, Mass.

77

Coffman, Jr., E.G., Garey, M.R. and Johnson, D.S. [1978] An application of bin packing
to multiprocessor scheduling. SIAM Journal of Computing 7, 1-17.

Davis, E. and Jaffe, J.M. [1981] Algorithms for scheduling tasks on unrelated processors.
Journal of Association of Computing Machinery 28, 721-736.

Brown, D. E. and Scherer, W. T. [1995] Intelligent Scheduling Systems,
Kluwer Academic.

Du, J. and Leung, J.Y.-T. [1988a] Scheduling tree structure tasks with restricted
execution times. Inform. Process. Lett. 28, 183-188.

Du, J. and Leung, J. Y. -T. [1988b] Minimizing Mean Flow time with Release Time
and Deadline Constraints. Technical Report, Computer Science Program.
University of Texas, Dallas.

Elmaghraby, S. E. and Park, S. H. [1974] Scheduling jobs on a number of identical
machines. AIIE Trans. 6, 1-12.

Edmonds, J. [1965d] The Chinese postman’s problem (abstract). Operations Research
13, Suppl. 1, B73.

Euler, L. [1736] Solutio problematis ad geometrian situs pertinentis. Commentarii
Academiae Petropolitanae 8, 128-140).

French, S. [1982] Sequencing and Scheduling, Ellis Horwood

Friesen, D. K. and Langston, M. A. [1986] Evaluation of a MULTIFIT-based scheduling
algorithm. J. Algorithms 7, 35-39.

Friesen, D. K. [1987] Tighter bounds for LPT scheduling on uniform processors. SIAM
Journal of Computing 16, 554-560.

Friesen, D. K. [1984] Tighter bounds for the multifit processor scheduling. SIAM

78

Journal of Computing 13, 170-181.
Frederickson, G. N., Hecht, M. S. and Kim, C. E. [1978] Approximation algorithms for
some routing problems. SIAM Journal of Computing 7, 178-193.

Graham, R. L. [1978] Combinatorial Scheduling Theory. L.A. Steen (ed.), Mathematics
Today. Springer-Verlag, New York, 183-211.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. [1979]
Optimization and approximation in deterministic sequencing and scheduling: a
survey. Ann. Discrete. Math. 5, 287-326.

Garey, M.R., Johnson, D.S., and Sethi, R. [1976] The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research 1, 117-129.

Gonzalez, T. and Sahni, S. [1976] Open shop scheduling to minimize finish time.
Journal of Association of Computing Machinery 25, 92-101.

Goldberg, D. E. [1989] Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley.

Herrmann, J., Lee, C.-Y. and Snowdon, J. [1993] A classification of static scheduling
Problems,” in Complexity in Numerical Optimization, P.M. Pardalos (ed.), pp.
203-253, World Scientific.

Hall, L.A.and Shmoys, D.B. [1992] Jackson’s rule for single-machine scheduling:
making a good heunistic better. Mathematics of Operations Research 17, 22-35.

Haupt, R. [1989] A survey of priority rule-based scheduling. OR Specktrum, 11, 3-16.

Hu, T. C. [1961] Parallel sequencing and assembly line problems. Operations Research,
9, 841-848

Jackson, J.R. [1955] Scheduling a Production Line to Minimize Maximum Tardiness.

79

Research Report 43, Management Science Research Project, University of
California, Los Angles.

Johnson, S. M. [1954] Optimal two- and three-stage production schedules with set up
time included. Naval Research Logistics Quarterly 1, 61-68.

Kise, H., Ibaraki, T. and Mine, H. [1978] A solvable case of the one machine scheduling
problem with ready and due times. Operations Research 26, 121-126.

Kunde, M. and Steppat, H. [1985] First fit decreasing scheduling on uniform
multiprocessors. Discrete Applied Mathematics 10, 165-177

Lawler, E. L. [1973] Optimal sequencing of a single machine subject to precedence
constraints. Management Science 19, 544-546.

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. [1982] Recent development in
deterministic sequencing and scheduling: a survey, in Deterministic and
Stochastic Scheduling, Dempster, Lenstra & Rinnooy Kan [1982] 35-73.

Lenstra, J. K. [1977] Sequencing by Enumerative Methods. Mathematical Centre Tracts
69, Centre for Mathematics and Computer Science, Amsterdam.

Moore, J. M. [1968] an n-job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15, 102-109.

Morrison, J. F. [1988] A note on LPT scheduling. Operations Research Letters, 7, 77-79.

Pinedo, Michael [1995] Scheduling Theory, Algorithms, and Systems. Prentice Hall.

Nowicki, E. and Smutnicki, C [1987] On lower bound on the minimum maximum
lateness on one machine subject to release date. Opsearch 24, 106-110.

Panwalker, S. S. and Woollam, C. R. [1979] Flow-shop scheduling problem with no

in-processing waiting: a special case. J. Opl. Res. Soc. 30, 661-664.

80

Panwalker, S. S. and Woollam, C. R. [1980] Ordered flow-shop problems with no
in-processing waiting: further results. J. Opl. Res. Soc. 31, 1039-1043.

Panwalker, S. S. and Iskander, W. [1977] A survey of scheduling rules. Operations
Research 25, 45-61.

Parker, R. G. [1995] Deterministic Scheduling Theory. Chapman & Hall.

Cretienne, P., Coffman Jr., E. G., Lenstra, J. K. and Liu, Zhen [1995]
Scheduling Theory and Its Applications, John Wiley & Sons.

Brucker, Peter [1998] Scheduling Algorithms, Springer-Verlag Berlin. Heidelberg.

Rinnooy Kan, A .H.G. [1976] Machine Scheduling Problems: Classification, Complexity
and Computations. Mutinus Nijhoff, The Hague, Holland.

Robert E. D. Woolsey and Huntington S. Swanson [1969] Operatiosn Research for
Immediate Application: A Quick & Dirty Manual. Harper & Row.

Roger Kerr and Elizabeth Szelke| 1995] Artificial Intelligence in Reactive Scheduling,
Chapman & Hall.

Silberschatz, A.and Galvin, P. B. [1998] Operuting System Concepts, Addison-Wesley.

Sturm. L. B. J. M. [1970] A simple optimality proof of Moore’s sequencing algorithm.
Management Science 17, B116-B118.

Smith, W.E. {1956] Various optimizers for single state production. Naval Research
Logistics Quarterly 3, 59-66.

Swarzc, W. [1977] Optimal two machine orderings in the 3 x n flow-shop problem.
Operations Research 25.70-77.

Smith, M. L., Panwalker, S. S. and Dudek, R. A. [1976] flow-shop sequencing problem

with ordered processing time matrices: a general case. Naval Research Logistics

81

Quarterly 22, 481-486.

Sahni, S. [1976] Algorithms for scheduling independent tasks. Journal of Association for
Computing Machinery 23, 116-127.

Sahni, S. and Cho, Y. [1980] Scheduling independent tasks with due times on a uniform
processor system. Journal of Association for Computing Machinery 27, 550-563.

Sturm, L. B. J. M. [1970] A simple optimality proof of Moore’s sequencing algorithin.
Management Science 17, B116-B118.

Tanacv, V. S., Gordon, V. S. and Shafransky, Y. M. [1994] Scheduling Theory. Single-
State Systems, Kluwer Academic.

Tanaev, V. S., Gordon, V. S. and Shafransky, Y. M. [1994] Scheduling Theory. Multi-
State Systems, Kluwer Academic.

Thomas M. Cook and Robert A. Russell [1981] Introduction to Management Science,
Prentice-Hall.

Van Wassenhov, L.N. and Gelders, L.F. [1980] Solving a bicriterion-scheduling problem.
European Journal of Operation Research 4, 42-48.

Van Wassenhov, L.N. and Baker, K. R. [1980] A bicriterion approach to time/cost
trade-offs in sequencing. Paper presented at the 4™ European Congress on
Operational Research, Cambridge, England, July 22-25, 1980. Submitted
to A.LLE. Trans.

White, D. J. [1969] Dynamic Programming, Oliver and Boyd, Edinburgh.

Yueh Ming-1 [1976] On the n job, m machines sequencing problem of a flow-shop.

In Operation Research 1975, Haley, K. B. (Ed.), North Holland, Amsterdam.

APPENDIX A

C PROGRAMMING CODE FOR COMBINATORIAL
SCHEDULING NON-INTERRUPTIBLE TASKS

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<time.h>

#define TRUE 0

#define FALSE 1

#define EXSIZE 256

#define FULL 81

#define HALF 40

#define QUART 20

#define JOBHD 1

#define MANHD 2

#define SPEED 30

#define REPRODUCTION 40320

typedef struct Thedob{
int JobID;
int ZipCode;
char Type[QUART] ;
char Status[QUART];
float EWkTime;
float AWkTime;
char DueDay [QUART] ;
char StTime [QUART] ;
char FinTime [QUART] ;
char StDate[QUART] ;
char FinDate[QUART] ;
char Address[FULL];
int LocX;
int LocY:
float Mileage;
struct TheJob *next;
}TheJdob;

typedef struct TheMan(

//array size

//array size

//array size

//array size

//a flag for job queue

//a flag for technician queue
//driving speed
//reproduction number

//node for a job
//job identification number
//zip code

//job type

//job status
//estimated work time
//actual work time
//job due day

//job start time
//job finish time
//job start date
//job finish date
//job location

//job coordinate X
//job coordinate Y
//driving mileage

//node for a technician

int ManID; //technician identification number

int ZipCode; //zip code
char Name[QUART] ; //name of technician
char Address[FULL]; //technician home address
char LoginTime[HALF] ; //technician log in time
char LogoutTime[HALF]; //technician log out time
int LocX; //technician start coordinate X
int LocY; //technician start coordinate Y
float TwkTime; //work time
float Mileage; //driving mileage
struct TheMan *next;
}TheMan;
Thedob* JobHead=NULL; //head of job queue
TheJob* NewHead=NULL; //temp pointer
TheMan* ManHead=NULL; //head of technician queue
TheJob* UrgHead=NULL; //head of urgent job queue
TheJob* NomHead=NULL; //head of normal job queue

//functions used in this program

int AbsJulian(char*); //calculate Julian day numbers

int manageInput(); //filter out input like empty file, tab, space
void LinkJobs (Thedob*); //build job queue

void Inputdob(); //put input job data to job node

void PrintJobs(TheJob*);//print input jobs

void LinkMan(TheMan*); //build technician queue

void InputMan(); //put input technician data to technician node
void PrintMan(); //print technician login information

void SortDueDay(int) ; //sort jobs by due day

int FindDueDay () //find the due day of a job

void SetQueue(int*, int); //set a temp queue

void LinkMe (Thedob*); //insert a job node into linked list
void DeleteMe (TheJob*) ; //delete a job node from linked list

int TimeDuration({char*, char*, char*, char*);//calculate work duration
void JobDone(int, char*, char¥*); //mark job done

void ArriveOnSite(int, char*, char*);//mark technician arrives on site
void LogoutAccept(int); //check if log out is accepted

int IsNameinList(int); //check employee list

int LoginAccept(int); //check if log in is accepted

void ScheduleList(float, int); //build urgent and normal job lists

void FindUrgentJobs (Thedob*, float*, float, int);//pick out urgent jobs
void FindNormalJobs (TheJob*, float*, float, int);//pick out normal jobs

void NewdJobList (Thedob* }; //To build urgent and normal job queues

int Scheduling(int*, float, int); //manage overall scheduling

int ScheduleJdobs (TheJob*, int*, float, int); //do actual scheduling
void SetStartLocation(int, int); //reset start location
int SPTqueue(int*, float, int, int, int*);//by Shortest time first

int LPTqueue(int*, float, int, int); //by longest time first

int SDFgueue(int*, float, int, int);//by shortest distance first
int Genqueue(int*, float, int, int);//by genetic algorithm

int TravelDistance(int, int, int); //calculate travel distance

int TravelTime(int, int*, int*); //calculate travel time

void FindJdobLocation(int, int*, int*); //find job location

int FindWkTime(int) ; //find work time

void FindManLocation(int, int*, int¥*); //find technician’s location
void LinkNewMe (Thedob*) ; //building urgent or normal job queue

84

void SetWkTime(int, int, float); //record work time of a job

float getWktime (int) ; //fetch work time

void printTheJob(int, int *, int *); //print job information
void printTheMan (int); //print technician’s work report
void ChangeStatus (TheJob*, int); //change job status

int IsZipCodeValid(int, int); //check zip code validation

void printQueue(int*, float,int, int, FILE*);//print work summary

/*t**i**t***tt*t*t******t*t*t***t**tt*****t***t**ii**t**t*t***t*it***/

¥ i Read input job data and store it to job node *®

/******tt***tt*w******tt***t**t**t********it**tt****it**t*t*i*t**ti**/

void InputJdob()

{

FILE *fp; //FILE pointer

Thedob *JobPtr;

char TI[FULL!; //temp buffer

char* str; //character pointer

int Jobcount=0; //job counter

if((fp = fopen("JobX.dat","r")) == NULL){ //check input file

printf("Input file could not be opened\n");
exit (1) ;

)

JobPtr = ((Thedob*)malloc(sizeof (Thedob)));

while((fgets (T, FULL, fp))!=NULL) { //read input data
fgets (JobPtr->Address, FULL, fp); //get job location
str = gtrtek(T; *-=\n\G"); //get job 1D
JobPtr->JoblID = atoi(str);
str = strtok (NULL, "~\n\O"); //get zip code
JobPtr->ZipCode = atoil(str);
str = strtok(NULL, "~\n\0");: //get job type
strcpy (JobPtr->Type, str);
str = strtok(NULL, "-~\n\0"); //get job status
strocpy (JobPtr->Status, str);
str = strtok(NULL, "-~\n\0"); //get estimated work time
JobPtr->EWkTime = atof(str);
str = strtok{(NULL, "-~\n\0"); //get job due day
strcpy (JobPtr->DueDay, str);
str = strtok(NULL, "-\n\0"); //get coordinate X
JobPtr->LocX = atoi(str);
str = strtok(NULL, "~\n\0"); //get coordinate ¥
JobPtr->LocY = atoi(str);
JobPtr->AWkTime=0; //initialize actual work time
JobPrr->Mileage=0; //initialize mileage
strcpy (JobPtr->StTime, " e //initialize start time
strcpy (JobPtr->FinTime, * *);//initialize finish time
strcpy (JobPtr->StDate, " i I //initialize start date
strcpy (JobPtr->FinDate, " ");//initialize finish date
JobPtr->next=NULL;
LinkJobs (JobPtr} ; //insert job to linked list
Jobcount++; //count input jobs

JobPtr = ((TheJob*)malloc(sizeof (Thedob)));

}
fclose(fp);
SortDueDay (Jobcount) ; //sort input job by due day

85

JobHead=NewHead;
NewHead=NULL;

j*iﬁ****t*******t****t*****************t***i***t*itttti**ti*t*t*****t;

/*

Insert jobs into linked list */f

/********tt********************t******ﬁti*i*****iti*&i******!*it*****/

void LinkJobs (TheJob* Pt}

{

TheJob* walk=NULL; //pointer
walk=JobHead;

if (JobHead==NULL)
JobHead=Prt; //put job to head
else(
while{walk->next != NULL)//find the end of queue
walk=walk->next;
walk->next=Pt;

Nt

/"**w*******‘k**************‘k*'ﬁ********'k**t****t***!F‘.“**#*k*‘k*k****i*ti/

/*

/ x*
/

Print job assignment information when it is scheduled to L4
the dedicated technician. ¥

/**************************'ﬁ:******k**************k)tk*************ittt/

void printThedJob{int id, int *x, int *y)

{

FILE* fp; //input file pointer
int t=0,d=0;

TheJob* JobPtr; //node pointer
fp=fopen("fout", "a"};

JobPtr=JobHead;

while (JobPtr->JobID!=1d) //find the scheduled job
JobPtr=JobPtr->next;

//get travel distance to the job
d=abs (*x- (JobPtr->LocX)) +abs(*y- (JubPtr->LocY) } ;
t=60*d/SPEED;

printf ("\nYou are to work on:");

printf ("job #%d.\n", JobPtr->JobID);

printf ("Job type: $s\n", JobPtr->Type);
printf ("Job location: %s", JobPtr->Address);
printf (*Job due day: %s\n", JobPtr->DueDay):

printf ("Estimated working time: %2 .2f hours.\n", JobPtr->
EWkTime) ;

printf ("Estimated travel distance: %d miles.\n", dj;

printf ("Estimated driving time: %$d minutes.\n", t);

*x=JobPtr->LocX;
*y=JobPtr->LocY;

fprl;’ltf(fp, "%S", ll//*****tii***i*******i***ii**********/\n");

fprintf (fp, "%s", "\nYou are to work on:");

86

fprintf (fp, "job #%d.\n", JobPtr->JoblID):
fprintf (fp, "Job type: %s\n", JobPtr->Type);
fprintf (fp, "Job location: %s", JobPtr->Address);
fprintf (fp, "Job due day: %s\n", JobPtr->DueDay) ;

fprintf (fp, "Estimated working time: %$2.2f hours.\n", JobPtr->
EWkTime) ;

fprintf (fp, "Estimated travel distance: %d miles.\n", dj;
fprintf (fp, "Estimated driving time: %$d minutes.\n", t);
fclose(fp);

/***************t**********kk**********‘k****************ti***#t*tt*iw/

/* Print a technician’s work report i
/'k*******************k*****v\‘**k'ﬁ************************‘kit**tttt**xtf

void printTheMan{int id)}

{
FILE* fp; //file pointer
TheMan* ManPtr;
fp=fopen("fout", "a");
ManPtr=ManHead;
while {(ManPtr->ManID!=1d) //find the technician

ManPtr=ManPtr->next;

printf ("Name: $s\n", ManPtr->Name) ;
printf ("Employee ID: %d\n", ManPtr->ManlD) ;
printf ("From: $s", ManPtr->Address);
printf ("Login time: $s\n", ManPtr->LoginTime) ;
printf ("Logout time: %s\n", ManPtr->LogoutTime) ;
printf ("Total actual working time:%2.2f hours\n", ManPtr->
TWkTime/60) ;
printf ("Total driving mileage:%2.2f miles\n", ManPtr->Mileage);
printf ("Total time for today: %2.2f hours\n", ManPtr->
TWkTime/60+ManPtr->Mileage/SPEED) ;
fprintf (fp, "%s", " FINAL REPORTA\N") ;
fprintf(fp' "%S", "/****‘***t-‘rk*****w#***********‘t******/'\nll),.
fprintf (fp, "Name: %s\n", ManPtr->Name) ;
fprintf (fp, "Employee ID: $d\n", ManPtr->ManID);
fprintf (fp, "From: $s", ManPtr->Address);
fprintf (fp, "Login time: $s\n", ManPtr->LoginTime) ;
fprintf (fp, "Logout time: %¥s\n", ManPtr->LogoutTime) ;
fprintf (fp, “Total working time:%2.2f hours\n", ManPtr->
TWkTime/60) ;
fprintf (fp, "Total driving mileage:%2.2f miles.\n", ManPtr->
Mileage) ;
fprintf(fp, "Total time for today: %2.2f hours\n", ManPtr->
TWkTime/60+ManPtr->Mileage/SPEED]) ;
fclose(fp);

}

/****‘k******-ki*t’****’*******’(**'ﬁ***k*************k‘k*********y’t!t*itﬁ*!*/

/¥ Record work time of a technician on a job “y
/**********‘k****************k************,‘r*****k*************t«*****tllf‘

void SetWkTime(int jid, int mid, £loat tm)

87

TheMan* ManPtr;
TheJob* JobPtr;
ManPtr=ManHead;
JobPtr=JobHead;

while (JobPtr->JobID!=3id)
JobPtr=JobPtr->next;

tm=JobPtr->EWkTime;
JobPtr->AWKkTime=tm;
tm=tm*60;

while(ManPtr->ManID!=mid)
ManPtr=ManPtr->next;

//point to technician queue
//point to job queue

//find job node

//record work time

//find the technician

ManPtr->TWkTime=ManPtr->TWkTime + tm;//sum total work time

/‘k*‘kk*#*************i{****v’r*******1{*****************fiti******x*k*k**/

/* Print all input jobs

i

/*****************************1\'***************i*************tt**rﬁ*tl,i

void PrintJobs(Thedob* HD)

{
FILE* fp;
TheJob* JobPtr;
fp=fopen("fout", "a");
JobPtr=HD;

if (JobPtr==NULL)
return;

while (JobPtr->next ! =NULL} {
fprintf (fp, "JobID: %d
fprintf(fp, "ZinCode:
fprintf(fp, "Job Type:
fprintf (fp, "Job Status:

\t", JobPtr->JoblDj ;
$d \t", JobPtr->ZipCode};
%s \t", JobPtr->Type);

%s \n", JobPtr->Status);

fprintf (fp, "Estimated work time: %2.2f \t", JobPtr-=

EWkTime) ;

fprintf (fp, "Actual work time: %2.2f \t", JobPtr->AWkTime);
fprintf (fp, "Job Due Day: %s \n", JobPtr->DueDay) ;

fprintf (fp, "Job start time: %s \t",

JobPtr->StTime) ;

fprintf (fp, “Job complete time time: %s \n", JobPtr->

FinTime) ;

fprintf(fp, "Job start

date time: %s \t", JobPtr->StDate);

fprintf (fp, "Job complete date %s \n", JobPtr->FinDate);

fprintf(fp, "Locatin X:

fprintf(fp, "Location Y:
fprintf({fp, "Address:
JobPtr=JobPtr->next;

}

fprintf (fp, "JobID: %d \t",
fprintf(fp,"ZipCode: %d \t",
fprintf (fp, "Job Type: %s \t",

%d \t", JobPtr->LocX);

%$d \n", JobPtr->LocY);

%s \n", JobPtr->Address);

JobPtr->JoblD) ;
JobPtr->ZipCodej ;

JobPtr->Type) ;

fprintf (fp, "Job Status: %s \n", JobPtr->Status);
fprintf(fp, "Estimated work time: %2.2f \t", JobPtr->EWkTime] ;

fprintf (fp, "Actual work time:

%$2.2f \t", JobPtr->AWkTime};

88

"Job
"Job
"Job
"Job
"Job
"Locatin X: %d \t",

"Location Y: %d \n",
"Address: %s \n",

Due Day: %s \n",
start time: %s \t",
complete time time:
start date time:

fprintf (fp,
fprintf {fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (£fp,
fclose(fp);

%s \t",
complete date %s \n",
JobPtr->LocX) ;
JobPtr->LocY) ;
JobPtr->Address) ;

JobPtr->DueDay) ;

JobPtr->StTime) ;

$s \n", JobPtr->FinTime);
JobPtr->StDate) ;
JobPtr->FinDate) ;

/k**i*t*tt*t*i*t*;

/* read technician information and store

it to technician node LS

/***********************k******************x*******i**t*t***********'kf’

void InputMan/{}

{
FILE *fp;
TheMan *ManPtr;
char T[FULL];
char* str;

//temp buffer

if(({ fp = fopen("Man.dat","r")) == NULL){//check input file
printf ("Input file could not be opened\n");
exit(1l);

)

ManPtr = ((TheMan*)malloc(sizeof (TheMan)));

fgets (T, FULL, fp);

while((fgets(ManPtr->Address, FULL, fp)) !=NULL) {
str = strtok(T, "-~-\n\0"); //get technician address
strepy (ManPtr->Name, str); //get technician name
str = strtok(NULL, "~\n\(0O");
ManPtr->ManlD = atoi(str); //get technician ID number
str = strtok(NULL, “-\n\0");
ManPtr->ZipCode = atoi(str); //get technician zip code
str = strtok(NULL, "~\n\0"};
ManPtr->LocX = atoi(str); //get technician coordinate X
str = strtok (NULL, "~\n\(0");
ManPtr->LocY = atol{str); //get technician coordinate Y

strcpy (ManPtr->LoginTime, *
strepy (ManPtr->LogoutTime, "
ManPtr->TWkTime=0;
ManPtr->Mileage=0;
ManPtr-»>next=NULL;
LinkMan (ManPtr) ;

ManPtr
fgets(T,

FULL, fp);//get the
}

fclose(fp);

({TheMan*)malloc(sizeof

"y, //initialize login time

"y;//initialize logout time
//initialize total work time
//initialize driving mileage

//put technician to linked list

(TheMan))) ;
first line to Buffer T;

/***************kx*****#****************i*t‘k'k*ti************kti&i**t*/

/* Insert a technician node to linked

list >/

/*****k******!{'k***t**************'k***k***‘k*****ik**********#*ti***ﬁk\i/

89

void LinkMan(TheMan* Pt)
{
TheMan* walk=NULL;
walk=ManHead;

if {ManHead==NULL)
ManHead=Pt;

else(
while(walk->next != NULL) //find the node
walk=walk->next;
walk->next=Pt; //insert it to the list
}

/*************************’k*’k**********k**********k*****itit*ti***t*t[

7 Print all technicians who have been registered X
/**'k*****i*****************‘k******t************‘k**i’t******it********i/

void PrintMan{)

{

FILE* fp;

TheMan* ManPtr;

ManPtr=ManHead;

fp=fopen(“*fout", "a");

fprintf (fp, "%s", " ALL TECHNICIANS ON THE LIST\n");

fprintf(fp' “%S", Il/*********«****i***********ﬂ'*****ii*/\n“),.

while (ManPtr->next ! =NULL) {
fprintf (fp, "Name: %s \t", ManPtr->Name) ;
fprintf(fp, "ManID: %d \t", ManPtr->ManlID);
fprintf (fp, "Z2ipCode: %d \n", ManPtr->ZipCode) ;
fprintf (fp, "Login Time: %s \t", ManPtr->LoginTime) ;
fprintf (fp, "Logout Time: %s \n", ManPtr->LogoutTime) ;
fprintf (fp, "Total work time: %s \n", ManPtr->TWkTime} ;
fprintf (fp, "Driving Mileage: %s \n", ManPtr->Mileage);
fprintf (fp, "LocX: %d \t", ManPtr->LocX);
fprintf (fp, "LocY: %d \n", ManPtr->LocY);
fprintf (fp, "Address: %s \n", ManPtr-=»Address);
ManPtr=ManPtr->next;

}

fprintf (fp, "Name: %s \t", ManPtr->Name) ;

fprincf (fp, "ManID: %d \t", ManPtr->ManlID) ;

fprintf(fp, "ZipCode: %d \n", ManPtr->ZipCode) ;

fprintf (fp, "Login Time: %s \t", ManPtr->LoginTime) ;

fprintf (fp, "Logout Time: %s \n", ManPtr->LogoutTime];

fprintf (fp, "Total work time: %s \n", ManPtr->TWkTime);

fprintf(fp, "Driving Mileage: %s \n", ManPtr->Mileage);

fprintf (fp, "LocX: %d \t", ManPtr->LocX);

fprintf (fp, "LocY: %d \n", ManPtr->LocY};

fprintf (fp, "Address: %s \n", ManPtr->Address);

fclose(fp) ;

}

/*****k********k***************'k*******i*i*********t********t********/

90

% Calculate Julian day numbers */
/*****k***‘k********‘k’k*‘kt***********‘k‘k******i*******************t*iﬁt*l’/

int AbsJulian{char* MDY)

{

int M; / /month
int D; //day
int Y; //year
int ndim(13]; //number of days in a month
int Lpyrs; //leap year
int days;
int d=0;
char* str;
char DD[QUART] ;
ndim([1]=0; //number of days at the beginning of a month
ndim(2]=31; //Feburary
ndim[3]=59; / /March
ndim[4]=50; //April
ndim[5]=120; / /May
ndim(6]=151; / /June
ndim([7]=181; //July
ndim([8]=212; //August
ndim[9]=243; //September
ndim(10]=273; //October
ndim[11]=304; / /November
ndim([12]=334; / /December
strcpy (DD, MDY) ;
str=strtok (DD, "/\0\n"};
M=atoil{stx); //get month number
str=strtok (NULL, "/\0\n") ;
D=atoil (str); //get day number
str=strtok (NULL, "/\0\n"};
Y=atoi(str); //get year number
if(Y »= 2000)

Y=(Y-2000)+100;
elsel

1£(¥>1900)

Y=Y-1900;

}
if (¥Y<95)

Y=Y+100;
Lpyrs=(Y¥/4);
if (Me=2)

D=D-1;
days=(Y/2)*365 + (Y/2)*365 + Lpyrs + ndim[M] + D;
return days;

}

r/*******************t****************r****k**xl‘**w*i**x\‘********w****t/

/* Sort input jobs 1in job gueue according to their due days)
'/**********************t********************t*'kttt*****************k!

91

void SortDueDay(int num)

{
ThedJob *walk, *Ptr, *Head=NULL;
int queue[EXSIZE]; //job queue
int 1i=0;
//put job ID in queue to represent the job, sort jobs in due day
SetQueue (queue, num) ;
while{num!=0) {//put jobs in linked list in sorted order
walk=Ptr=JobHead;
while(walk->JobID!=queueli])
walk=walk->next;
LinkMe (walk) ;
DeleteMe (walk) ;
i++;
num--;
}
JobHead=NewHead;
}

/*****‘k****k**t*‘k‘k*****'k*****’k*****'t******kt****k******i‘ﬁ**i’ktkt'ﬂ(ii*"*,)

/* Insert a job node into new scheduled linked list */
/**‘k*w***‘k**************t*****************ﬁ**‘k***************k**iﬁﬁkﬂ'{
void LinkMe (TheJob* Pt}
{

TheJob* walk=NULL;

walk=NewHead;

if (walk==NULL)
NewHead=Pt ;
elsef
while(walk->next !=NULL)
walk=walk->next;
walk->next=Pt;

i!k**********k***k*t‘k***k)(*‘k****************‘k****k*!****\l’**‘l‘ﬂ'****\’(J\-\k*k/

/* Delete a job node from linked list * /
/‘*‘x******‘k***‘k*‘k******‘***T‘r*‘k*‘kﬁ'*i‘****k*l'*k******t*t******t****}(*iti* b/

void DeleteMe (TheJob* Pt)

{
s

ThedJob* walk=NULL;
walk=JobHead;

1f (Pt==JobHead&&Pt ->next==NULL)
JobHead=NULL;

else if (Pt==JobHead&&Pt->next!=NULL) {
JobHead=Pt ->next;
Pt->next=NULL;

else(
while(walk->next!=Pt)//find the job
walk=walk->next;

walk->next=Pt->next;
Pt->next=NULL;

/**/

/* Rebuild temporary queue according to due day

*/

/********************************f********k******************ktli**#*f

void SetQueue{int* @, int cnt)

{

TheJob *walk;

int dueday=0; //due day

int i=0, j=0;

int id=0; //job ID

walk=JobHead;

//put JobID to gueue array

while (walk->next!=NULL) {
Qli++]=walk->JoblD;
walk=walk->next;

}

Qli++]=walk->JoblID;

for(i=1; i<cnt; 1i++){
dueday=FindDueDay (Q[1]); //find job due day
id=Q([i];
for(j=i; j»0 && FindDueDay(Q[j-1])>dueday; i--)

Qlj1=0[3-11; //sort job queue by due day

Ql3]=1id;

}

}

/ LR RS AR AR E RS E RS LR EREEEEREEEESEEEEEREEEEERENIEEEEEEEEESEEE R

/* Find job due day from list, rerurn due day in Julian day number

i 4

/*************#********xt*w***'k****‘k*’*'\'t***k******i’&*t***l't"»\"ktl‘i*i*i*h/‘

int FindDueDay (int JID)

{
ThedJob *walk;
int dueday=0; //job due day
walk=JobHead;
while (walk->JobID!=JID}
walk=walk->next; //find the job
dueday=absJulian(walk->DueDay) ; //get Julian day number
return dueday:
}

/**k*********‘*********iik*********************t***t*k*****t*******k*t/-'

93

/¥ Collect jobs from job list for today and call to build urgent */
/* job queue and normal job queue. *

/***tt***************i***iii*ii/

void ScheduleList (float hr, int Zcd)

{
TheJob* walk;
float Jhr=0; //work hour of a job
walk=JobHead;
FindUrgentJobs(walk, &Jhr, hr, Zcd);
FindNormalJobs({walk, &Jhr, hr, Zcd);

}

/************************k************#************v*********t***t****f

/*Check and make sure urgent jobs will be scheduled first. Normal */
/*jobs will not be scheduled unless urgent job gqueue is empty. Report*/
/*a technician’s start location if he has enough time to work on a */
/* well scheduled job. x4/

/***kk********t*******************************k*t**t*******t*t********/

int Scheduling(int* Sch, float hr, int mid)
{

int urgent=TRUE;

int normal=TRUE;

int I:
int x,y; //x and Y coordinates
int t; //work time

Thejob *walk=NULL;
walk=UrgHead;
X=y=t=1i=0;

for(i=0; i<QUART; i++) //initialize schedule array
G;

Schli]=

if (walk==NULL) //check if urgent queue 1is empty
urgent=FALSE;

1f (walk!=NULL) //schedule jobs in urgent queue first

urgent=8cheduledobs (walk, Sch, hr, mid);

if (urgent==FALSE) {
walk=NomHead; //else schedule normal jobs
normal=Scheduledobs(walk, Sch, hr, mid);

}

if (normal==FALSE) { //if no job is available, exit scheduling
printf("No job in this area is available by now.\n");
printf("You can quit here and request jobs in near by
area.\n");
return FALSE;

}

if(Schi{a]'=0){ //1f jobs are well scheduled,

FindManLocation(mid, &x, &y); //start job dispatching
t=FindWkTime (Sch[0]);//find estimated work time of the job
t=t+TravelTime (Sch(0], &x, &y)://find travel time

//check if a technician have enough time to work on the job
if ((hr*60)<t) {
printf("No job can be completed in %2.2f hour\n", hr);
printf{"You can go home now. See you tomorrow.\n"};

94

return FALSE;
}

//1if he does have enough time, report his start location
SetStartLocation(Sch(0], mid);

}

return TRUE;

/****************'k*************************t**k****i**tt******i******f

/*Schedule jobs by shortest work time first, longest work time first*/
/*and shortest travel distance first respectively. Reschedule these */
/*three queues by genetic algorithm. Find the best schedule from .. */
¥ these six qgueues and print out the solution. */
/*****i**********************************‘k****t********************t*/
int ScheduleJobs (TheJob* Jobhd, int* Sch, float hr, int mid)

{

FILE* fp;

int SPT[HALF]; //shortest work time first cueue

int LPT[HALF}; //longest work time first queue

int SDF[HALF]; //shortest travel distance first queue

int GSPT[HALF]; //SPT gueue rescheduled by genetic algorithm
int GLPT[HALF]; //LPT queue rescheduled by genetic algorithm
int GSDF[HALF]; //SDF queue rescheduled by genetic algorithm
int SUM[HALF]; //array to store work time of above six queues
int i, s;

int cnt; //job counter

int max; //maximum work time

int f£=TRUE; //flag

int *ptr=NULL;
ThedJob *walk;

walk=Jobhd;
fp=fopen("fout", "a"};
s=cnt=i=max=0; //initialize variables

while(walk->next!=NULL) {//make sure jobs have not been done yet
if({strcmp(walk->Status, "New")==0)
SPT(i]1=LPT[i]=8SDF[i++]=walk->JoblID;
walk=walk->»next;

}

if(strcmp(walk->Status, "New")==0)
SPT[i]=LPT[1]=8SDF[i++]=walk->JoblD;

cnt=1i; //count number of jobs scheduled

if(cnt==0)

return FALSE;
//build shortest distance first queue and return total work time
SUM([0]=8DFqueue(SDF, hr, cnt, mid);
//build shortest work time first queue and return total work time
SUM[1l]=SPTqueue(SPT, hr, cnt, mid, &f);
//build longest work time first queue and return total work time
SUM[2]=LPTqueue(LPT, hr, cnt, mid);

walk=Jobhd;

i=0;
while (walk->next!=NULL) {
if (strcmp(walk->Status, "New")==0)(
GSPT([1]=SPT[i]; //copy jobs from SPT to GSPT queue
GLPT[1i]=LPT[1]; //copy jobs from LPT to GLPT queue
GSDF[1]=SDF[i++]; //copy jobs from SDF to GSDF queue
}
walk=walk->next;

}

if(strcmp{walk->Status, "New")==0) {

GSPT[i]=SPTI[i];

GLPT[i)=LPT[i];

GSDF[1]=SDF[i++];
}
//build GSDF queue by genetic algorithm, return total work time
SUM[3]=Genqueue (GSDF, hr, cnt, mid);
//build GSPT queue by genetic algorithm, return total work time
SUM[4]=Genqueue (GSPT, hr, cnt, mid);
//build GLPT queue by genetic algorithm, return total work time
SUM[5]=Genqueue (GLPT, hr, cnt, mid);

max=SUM[0] ;
for{i=0; i<6; i++){//find the best schedule from these six queues
if({max<SUM([i]){
max=SUM[1];

s=1;

}

}

if (£f==FALSE)
s=0;

switch(s) {
case 0: ptr=SDF; break;
case 1: ptr=SPT; break;
case 2: ptr=LPT; break;
case 3: ptr=GSDF; break;
case 4: ptr=GSPT; break;
case 5: ptr=GLPT; break;

}

//copy the best schedule selected to current working schedule
for(i=0; i< cnt; i++){
Schli]=ptr(i];:
if((i+1)%8==0)
printf ("\n");
}

//print final selected best schedule
fprintf (fp, "POSSIBLE SCHEDULES FOR THE EXPECTED %2.0f MINUTES\n",
hr*60) ;

fprlntf(fp, "%S”, “/*k***t'ﬁ!****t*********t‘k********'***/\\n!l)'.
if(SDF[0]!1=0){

fprintf{fp, "%s", "Shortest Distance First(SDF) Schedule:\n");
printf ("Shortest Distance First(SDF} Schedule:\n"};

96

printQueue (SDF, hr,

}
if{SPT[0]!=0){

fprintf (fp, "%s", "Shortest Processing Time First (SPT)

Schedule:\n");

printf ("Shortest Processing Time First (SPT)
cnt,

printQueue (SPT, hr,
}
if{LPT[0] !'=0){

cnt,

mid, fp);

mid, fp);

fprintf(fp,"%s", "Longest Processing Time first (LPT)

Schedule:\n"}j ;

printf ("Longest Processing Time first (LPT)
cnt,

printQueue (LPT, hr,
}
1f (GSDF[0]!=0){

fprintf (fp, "%s", "SDF
Algorithm:\n");

printf ("SDF Schedule

printQueue (GSDF, hr,
}
1f(GSPT[0]1=0){
fprintf(fp, "%s", "SPT

Algorithm\n") ;
printf ("SPT Schedule
printQueue (GSPT, hr,
}
1E£{GLPT[O0] !=0){
fprintf(fp, "%s", "LPT
Algorithm\n") ;
printf ("LPT Schedule
printQueue (GLPT, hr,
}
fclose (fp) ;
return TRUE;

mid, fp);

Schedule Optimized by Genetic

Optimized by Genetic Algorithm:

cnt, mid, fp);
Schedule Optimized by Genetic

Optimized by Genetic Algorithm\

cnt, mid, fp};

Schedule Optimized by Genetic

Optimized by Genetic Algorithm\n");

cnt, mid, fp);

Schedule:

\n");

Schedule:\n");

;

/ﬁk-**lr***r****fc*\k**tk****k:‘:**kkké***k*ks**k**k*w******k"ﬁaﬁ.#hki*tak*n*f

/*Print the summary information of the best scheduling solution.

* f

/k*******i**k*k*-«***x***k*k#r**k*iwz‘r‘(k**** EEEEEES S S SR EREEEEEEEEESEEEEE NG

int cnt, int mid, FILE* fpi

work time

time

//temporary variable for times

and v

void printQueue(int* T, float hr,
{
float Total; //total
float wWktime; //work time
float Trtime; //travel
float tl1, t2, t3;
int i;
int sx, sy; //coordinates x
int min; //minutes

TheMan* step;
step=ManHead;

Total=Wktime=Trtime=tl=tZ=t3i=I=sx=sy=min=0;

while(step->ManID!=mid)
step=step->next;

sX=step->Loc¥;

97

sy=step->LocCcY;
min=60*hr;

//cal.

while{t3<min && i<cnt) {

Wktime=Wktime+FindWkTime (T[1i]) ;
Trtime=Trtime+TravelTime (T[i], &sx, &sy);
t3=Wktime+Trtime;
if(t3>min)
break;
printf ("#%d4, ",T[i]):
fprintf (fp, "#%d, ", T[i++]);
tl=Wktime;
t2=Trtime;
Total=t1l+t2;

}
if(£3>min) {

Wktime=t1;

Trtime=t2;
}
//print the summary of the best cueue
printf("\nwork time: %2.0f min.; ", Wktime);
printf("travel time: %2.0f min.; ", Trtime);

printf{"total %d jobs.\n", 1i);

fprintf (fp, "\nwork time: %2.0f min.; ", Wktime);
fprintf (fp, "travel time:

fprintf (fp, "total %d jobs.\n", 1i);

%$2.0f min.; *, Trtime);

the total work and total travel time of jobs in the queue

{"'v\"k'k'kti"'#k.ia***k***t!*'ﬁ('aﬂk}ci;‘.‘(.kﬂ!‘k)(k?**"(‘k»‘\'*ﬁki{ﬂ'#ii*kk!'k!k!hhikhalxhkll&f

/*Reset a technician’'s start location when he arrives at a job site.

&/

rf'******f.--.r’r-xt*****:&*-k****i**t*;ti—********kt*tir*x*++i—+titii*ki-ﬁ,i—tt:t-t-ni—,
/

volid SetStartLocation{int jid, int mid)

{

et

float miles=0;
TheMan* Mptr;
TheJdob* Jptr;
Mptr=ManHead;
Jptr=.
while(Mptr->ManID!=mid)

while(Jptr->JobID!=71id)

miles=abs (Mptr->LocX-Jptr->LocX)
Jptr->Mileage=miles;

JobHead;
Mptr=Mptr->next;
//find the job

Jptr=Jptr->next;

//get mileage

Mptr->Mileage=Mptr->Mileage+miles;

Mptr->LocX=Jptr->LocX;

Mptr->LocY=Jptr->LocY;

+ abs{(Mptr->LocY-Jptr->LocY) ;

//reset the technician’s start

location

/i‘k*****ﬁ:****************tkk*********‘k********ki‘k‘k**“ﬁ**f*kk***i’tix**i/
/

/*Reschedule jobs by genetic algorithm.
/*random numbers are generated,
/*numbers are swapped,

98

In a reproduction loop,
jobs in the positions of these two
total work time of jobs in the queue is

*/
%

*
/

/*calculated. The best schedule is picked out and kept from each loop*/

/***********t**********l’****‘k***t********i***************t‘******t*****/

int Genqueue(int* PT, float hr, int cnt, int mid)

{
int sx=0, sy=0; //coordinates x and y
int wt=0, wtl=0, wt2=0; //work time
int min=0; //minutes
int k=0;
int len; //number of jobs
int total—O‘ //total work time

int r=0,1=0, j=0, tp=0, m=0;

int temp HALF] ;

TheMan* step;

step=ManHead;

for(j=0; j<cnt; J++)
temp[j)=PT[J];

while(step->ManID!=mid) //find the man’s work locatien
step=step->next;

sx=step->LocX;

sy=step->LocY;

min=(hr*60) ;

while(total<min && k < cnt){
wtZ2=wtl;
wtl=wtl+FindWkTime (PT[k]) ; //get total work time
total=total+FindWkTime {PT[k])+TravelTime (PT[k++]), &sx,&sYy);

m=REPRODUCTION;

wtl=wt2;

if (cnt==1)
return;

len=cnt-1;

while{m--1!=0) { //reproduction loop
r= (rand() % len); //get random numbers
({rand(}) % len);

tp=temp(r]; //swap jobs in the pos. of these numbers
temp(r]=temp[i];
temp[i]=tp;

total=k=wt2=0; //initialize variables
sx=step->LocX; //get the new start location
sy=step->LocY;

while(total<min && k <cnt){ //calculate total work time
wb=wt2;
wt2=wt2+FindWkTime (temp[k]) ;
total=total+FindWkTime (temp(k])+TravelTime (temp [k++],
&sx, &8y
}
if(wtlewt) {//pick out the best from this reproduction
for(j=0; j<cnt; Jj++)
PT([jl=temp(3]:
wil=wt;

99

1
return wtl;

/************************i’i******i*******************k*t******i{**it*,‘

/*Reschedule jobs in the order of their travel distance from *y
/*the technician’s start location. Jobs of shortest distance first.*/

/*t*****tx****************i**************w*********'h*****t\t****k*****/

int SDFgueue(int* SDF, float hr, int cnt, int mid)

{
int i,3.k,n;
int min; //minutes
int wt,wtl; //work time
int sX,sy; //job coordinates x and vy
int dl1,d2,total, jid,m;
int x,v; //technician coordinates x and y

int tp[HALF], tpl[HALF];//temporary buffer

TheMan* step;

step=ManHead;
I=j=id=k=sx=sy=min=n=wtl=dl=d2=total=wt=x=y=7id=m=0;

while(step->ManID!=mid)

step=step->next; //find technician’s start location
x=step->LocX;
v=step->LocY;

for(i=0; i<cnt; 1i++)

tpl{i)l=tpl[i]=SDF[il]; //put jobs in temp array
i=j=cnt;
Jid=tp 0] ;
while (n<cnt) { //sort jobs in order of travel distance
dl=TravelDistance(jid, x, v);
while(j--1!=0){

1f(tp(3]11=0){
d2=TravelDistance(tp[j], x, ¥);
1f(d2<dl) {
dl=dz2;
jid=tpl3]:

1
!

FindJobLocation(jid, &x, &y);
SDE[n++]=7jid;
for{m=0; m<cnt; m++]
if(tp[m)l==jid}
tplm]=0;
jid=0;
for(m=0; m<cnt; m++)
if(tpim] !=0)
jid=tp[m];
j=cnt;
}
xX=sx=step->LocX;
y=sy=step->LocCY;

100

min=(hr*60) ;

m=n=0;

while{total<min && k<cnt){ //calculate total work time
wt=wtl; //and travel time of jobs
n=FindWkTime (SDF[k]) ; //in this queue
m=TravelTime (SDF[k++], &sx,&sy);
wtl=wtl+n;
total=total+n+m;

}

return wt;

/****************************’k*****t*i***********t*t**********t*ti*i*/

/*Calculate the travel distance from the technician‘’s start location*/
/¥ to a job. 7
/*****‘k****k********I‘*****t************t’-ﬁ-***i**k*w!ttv’r***ﬁ'*****'ﬁ*kwk*/
int TravelDistance(int id, int x, int)
{

int EX,EY; //jcb coordinates x and vy;

int d; //distance

int dx,dy; //relative distance in direction x and y

EX=EY=d=dx=dy=0;

FindJobLocation{id, &EX, &EY); //find job location
dx=abs (EX-x) ; //calculate distance
dy=abs (EY-vy) ;

d=dx+dy;

return d;

e

/******i"k'ﬂ’***‘kﬁi’*i’**i********i—*ﬂ“****i.f!r!r***i’i"k*k*************vrtlkﬁlﬁir‘.‘

g Search job queue to f£ind job location by a given job ID

/***********_?\r******iil‘k***********\'E*tkk.****i’-l—d:k*kk****i**i*****i*iti.'l!(:,-

void FindJobLocation(int id, int*EX, int*EY)

L

{
TheJdob *walk;
walk=JobHead;
Af(dd==0)
return;
while (walk->JobID!=1id)
walk=walk-»>next;
*EX=walk->Loc¥;
*EY=walk->LocY;
}
/*****************t*k‘xick*’(**t***********k**k*xw##*ﬁ*****t*#k***ﬁ*tit*/
/*Reschedule jobs in order of actual work time. Jobs of longest x/
ik work time first. */

/******************k**i{ﬁ**k*k2********1****i*i’tti1\-*******************']
int LPTqueue(int* LPT, float hr, int cnt, int mid)

{
int 1,3j.,k;

101

int min, t,total,wt,wtl;//work time
int 1id; //job ID

int sx, sy //technician coordinates x and y

TheMan* step;
step=ManHead;
I=j=id=k=sx=sy=min=t=total=wt=wtl1l=0;

while(step->ManID!=mid)

step=step->next; //find technician’s location

sx=step->LocX;
sy=step->LocY;

for(i=1; i<cnt;

i++) {

//reschedule jobs in order of work time

t=FindwWwkTime (LPT[1i]);

id=LPT[1];

for(j=i; >0 && FindwWwkTime (LPT[j-1])<t; j--)
LPT[j]1=LPT(j-11;:

LPT{j]=1id;

(—

min=hr*60;

while(total<min && k<cnt) { //calculate work and travel time

wh=wtl;

//of the rescheduled queue

wbl=wtl+FindWkTime (LPT[k]);
total=total+FindWkTime (LPT[k])+TravelTime (LPT[k++],

&SX, &S8Y)
}

return wt;

/'*'k**************k**k******t**tw************i**w*w**yitt*'k-}zk*n*i*twa/

/*Reschedule jobs in order of their actual work time. Jobs of *

/*shortest work time

first.

* /

/*'}:**k**k*****-}r****.‘e*k****k**kki*')-***k***********l\-*****k**'k*** ok ok ok ke k)
/

int SPTqueue(int* SPT, float hr, int cnt, int mid, int* f)
{

igt 1.3, k;

int id; //job ID

int sx,sy; //job coordinates x and vy

int t,total,wt,wtl,min;//work time

TheMan* step;
step=ManHead;

I=Jj=id=k=gx=sy=min=t=total=wt=wtl=0:

while(step->ManID!=mid)
step=step->next;

sx=step->LocX;
sy=step->LocY;

for(i=1; i<cnt;

1++){

//find technician’s location

//reschedule jobs

t=FindWkTime(SPT[1]);

id=8PT[i];

for(j=i; j>0 && FindwkTime(SPT[j-1])>t; j--)
SPT[j]=SPT[j-1];

SPT(jl=id;

}

min={(hr*60) ;

while(total<min && k<cnt) { //calculate total work time
wt=wtl; //and travel time of the

/ /rescheduled queue
wtl=wtl1l+FindWkTime (SPT[k]);
total=total+FindWkTime(SPT[k])+TravelTime (SPT [k++],
&SX,&SY) ;

if(total < min)
*£=FALSE;
return wt;

/***********************************k*****t******‘k********k**'k*k‘k*l\ﬂi'r,-

/*Calculate travel time from a technician to a job. */

/'X****t*******ﬁ*************"!********‘k***************k*'k‘ki***ki’*i:"’,‘kt’;’

int TravelTime{int id, int* sx, int* sy)
{
int EX,EY; //job coordinates x and y
int t; //work time
int dx,dy; //relative distance in direction of x and y
EX=EY=t=dx=dy=0;

FindJobLocation(id, &EX, &EY):
dx=abs (EX-*sx) ;

dy=abs (EY-*svy) ;

t=60* (dx+dy) /SPEED;

*sx=EX;

*sy=EY;

return t;

-

_'**tk***'k*t******‘k*****kﬁ"k*****k*****t‘k****#***l?***t*t*i***ttif'ri'tlri/

i Return the work time of a job. %
’,'-k'****tk****t*****A"k'ki—'lrir***ti(i***********r-kwrir*i**‘k‘k'ﬁ***t***’kirkiﬁ;‘vﬁ/
int FindWkTime(int JID)
§

TheJob *walk;

float t=0; //work time

int min=0; //minutes

walk=JobHead;

1f (walk==NULL)
return 0;

while(walk->JobID!=J1ID)
walk=walk->next;

103

t=walk->EWkTime;
min=(t*60) ;

return min;

/***i’****tt******i*****t*******‘!'********‘l‘***'ﬂ**************k*tk*iit**/

/*Pick urgent jobs out from job list and build an urgent job queue. */
/************i‘iw*t***************‘k********‘ki‘l'l‘*****‘i**k****ttﬁit**t*t}
void FindUrgentJcbs (TheJob* JobH, flecat*Jhr, float hr, int Zcd)
{

int Urg, New;

Thedob* walk;

walk=JobH;

while (walk-»next!=NULL && *Jhr <= hr*10){
Urg=strcmp(walk->Type, "Urgent") ;
New=strcmp(walk->Status, "New") ;

//pick out the new urgent Jjobs
if(Zcd==walk->ZipCode && Urg==0 && New==0) {
*JThr=*Jhr+walk->EWkTime;
NewJobList (walk); //build urgent job list
1
walk=walk->next;

Urg=strcmp{walk->Type, "Urgent"}) ;
New=strcmp(walk->Status, "New") ;
1f{Zcd==walk->ZipCode && Urg==0 && New==0 && *Jhr <= hr#*2)({
*Jhr=*Jhr+walk->EWkTime;
NewJobList (walk) ;

/*’A’*v*t‘l*"&'*t*************t***ﬁ********‘k*ﬁ**ti*****k‘h"kA'Ak**#n‘.k'-‘!ﬁ*‘!‘.’ki'ki/

/*Pick normal jobs out from job list and build an normal job queue. */

,’***rtx'}:‘*#*kk*‘k**********ii***L'*****!kfi*wikk**-‘zﬂ‘.‘.“kn‘ﬁtx*-ukkﬁi)k****i/
/

void FindNormalJobs (TheJob* JobH, fleoat*Jhr, float hr, int Zcd)

int Urg, New;
ThedJob* walk;
walk=JobhH;

while{walk->next!=NULL && *Jhr<=hr*10){

Urg=strcmp (walk->Type, "Urgent "} ; //find out normal jobs

New=strcmp (walk->Status, "New") ;

if{Zcd==walk->ZipCode && Urg!=0 && New==0){
*JThr=*Jhr+walk->EWkTime;
NewJobList (walk) ; //build normal job queue

}

walk=walk->next;

Urg=strcmp{walk->Type, "Urgent"} ;
New=strcmp (walk->Status, "New") ;
if (Zed==walk->Z2ipCode && Urg'!=0 && New==0 && *Jhr <= hr*2){

104

*Jhr=*Jhr+walk->EWkTime;
NewJobList (walk) ;

/X*******************************t*******!\'**l‘**i‘k****************“.’**’P

/*Reset job parameters to build a urgent or normal job queue. */
/**t***t*it******‘k**********/
void NewJobList {TheJob* wk)
{
TheJob* Ptr;
Ptr = ((TheJob*)malloc(sizeof (Thedob)));
Ptr->JobID=wk->JobID;
Ptr->ZipCode=wk->ZipCode;
strcpy (Ptr->Type, wk->Type) ;
strcpy (Ptr->Status, wk->Status);
Ptr->EWkTime=wk->EWkTime;
Ptr->AWkTime=wk->AWkTime;
strcpy {Ptr->DueDay, wk->DueDay) ;
strepy (Ptr->StTime, wk->StTime) ;
strcpy {(Ptr->FinTime, wk->FinTime) ;
strepy (Ptr->StDate, wk->StDate) ;
strepy (Ptr->FinDate, wk->FinDate) ;
strepy (Ptr->Address, wk->Address);
Ptr->LocX=wk->LocX;
Ptr->LocY=wk->LocY;
Ptr->Mileage=wk->Mileage;
Ptr->next=NULL;
LinkNewMe (Ptx} ;

f"k'l’*tk**kkk*#************'ﬁ'*k*k***'ﬂ******’kﬁk***kt*A‘f)l’kﬂ'}"knhk*l'l\lkkillir'

/* Building urgent or normal job queue. i
_,r*r*w&**-tk**tkﬁ*w*i****h*awﬁktkﬂ*****k*#**w*kaya-klp.-»kkiknwtwinak;&k*w-i)j
void LinkNewMe (ThedJob* Pt)
{

TheJob* walk=NULL;

if{strcemp (Pt->Type, "Urgent")==0) {
if (UrgHead==NULL) {
UrgHead=Pt;
return;
3

J

walk=UrgHead;

else{
if (NomHead==NULL) {
NomHead=Pt ;
return;
}
walk=NomHead;

while{walk->next != NULL)
walk=walk->next;
walk->next=Pt;

105

/‘k********‘k********'ﬁ**t‘k*******i*******'t*w**ttt*rii*******'t****t******/
/*Check login name and employee ID. If both are correct, this person */
/*is accepted and authorized to work on the position. The person’s o
/*login time is recorded by the system as start time. L

/**************************t****************«**x**************i*ti****/

int LoginAccept(int id)

{
FILE* fp;
time_t tl; //time
char *s; //time pointer
int flag=FALSE;
TheMan* mptr;
fp=fopen("fout", "a");
if(({tl=time{(time_t*)0))!'=(time_t)-1)//get system time
s=ctime(&tl);
else
printf ("Error time. \n"};
mptr=ManHead;
flag=IsNameinList{id);
if(flag==FALSE)
return FALSE;
while (mptr->ManID != id) //find the technician
mptr=mptr->next;
strepy (mptr->LoginTime, s); //print out login information
printf ("Name: %s\n", mptr->Name) ;
printf ("Employee ID: %d\n", mptr->ManiD);
printf ("Work zipcode: %d\n", mptr->ZipCodej;
printf("login at: %", mptr->LoginTime) ;
fprintf(fp, H%Sll’ "/:‘(kk**k'A'ti‘**k**'k*;k*ii—iiri—i'*i\-*ﬁ-***ik**—"."-\rl");
fprintf (fp, "Name: $s\n", mptr->Name) ;
fprintf(fp, "Employee ID: %d\n", mptr->ManlD) ;
fprintf (fp, "Work zipcode: %d\n", mptr->ZipCode) ;
fprintf(fp, "login at: %s”, mptr->LoginTime) ;
fclose(fp);
return TRUE;
!

Jhhkdkxhhhhkkhkhhhhdhkhhkhhhdhhhkhhrhxhhkdordhkhkhhrhdrhkhhkbdhhbdbddbddbdnkdhhoddddhkdkor/
i E

/*check if a person is in company’'s workforce list. */

/**ﬂ.'k************t*'k‘k*k**kl’**'k*k**tkki***k**‘k*****k}r*****k*:‘(*k*t)‘**k'/

int IsNameinList{int id)

{
T

int flag=FALSE;
TheMan* mptr;
mptr=ManHead;

106

while (mptr->next!=NULL) {//check the person by his employee ID

if{mptr->ManID == id)
flag=TRUE;
mptr=mptr->next;
}
if (mptr->ManID == id)

flag=TRUE;
return flag;

/‘**************************k******t************************’k****i*i*/

/*when a technician logout, this function will record his */

/*logout time and work summary. This information is printed out. */
/i‘****************************1'!******************‘K*****'kk‘k********ti/

void LogoutAccept{int id)

{
FILE* fp;
time_t tl; //time
char *str; //time pointer
int flag=FALSE;
TheMan* mptr;
fp=fopen("fout", "a");
if({(tl=time((time_t*)0))!=(time_t)-1)//get logout time
str=ctime(&tl);
else
printf ("Error time. \n");
mptr=ManHead;
while (mptr->ManID!=1id)
mptr=mptr->next; //find the technician
Strcpy(mptr >LogoutTime, str); //record logout time
printf("%s “, mptr->Name) ; //print logout information
printf("logout at: %s \n", str);
fprintf(fp,"%s ", mptr->Name);
fprintf (fp, "logout at: %s \n", str);
fclose(fp);
]
/'****t‘k*4‘ir****ﬁ**k*********ﬁ*r*rr#*i IS S S S SR EEEREEEEEEEEEREEEEEEESEEEES.] /

/*When a technician arrives on site, this function will record the */
/*time and date to calculate his drive time. This information is also*/
/% printed out. */
/*******t'ﬁ‘****k*fﬁ********i****#***x*k**‘k*****t********k***tk*.kkkk*h**/
vold ArriveOnSite(int id, char* St, char* Sd)
{

FILE* fp;

time_t tl; //time

struct tm *tptr; //time pointer

TheJob* Jptr;

fp=fopen{"£fout", “a";

107

if({tl=time((time_t*)0))!=(time_t)-1)
tptr=localtime(&tl); //get system Cime
else
printf("Error time. \n"};

Jptr=JobHead;
i1f (Jptr==NULL)

return;
while (Jptr->JobID !'= id)
Jptr=Jptr->next; //get the job

if (tptr->tm year < 100)
tptr->tm_year=1900 + tptr->tm_year;
else
tptr->tm_year=2000 + tptr->tm_vyear;

//record system time and date
sprintf (Jptr->StTime, "%d:%d:%d4d", tptr->tm_hour,tptr->tm min, tptr-
>tm_sec) ;
sprintf (Jptr->StDate, "%d/%d4d/%d4d", tptr->tm mon+l,tptr->tm_mday, tptr-
>tm_year) ;
strcpy (St, Jptr->StTime) ;
strcpy(Sd, Jptr->StDate);
printf({"job #%d start date: %s \n", id, Jptr->StDhate);
printf("job #%d start time: %s \n", id, Jptr->StTime);
fprintf (fp, "job #%d start date: %s \n", id, Jptr->StDate);
fprintf (fp, "job #%d start time: %s \n", id, Jptr->StTime);

fclose(fp) ;
)

/****k****k***#************‘kﬁk**********‘k**i*"ﬁ*****-iik*}'k*lti«khltizk')‘

/*when a job is done, this function record the date and time the *7
/*job is done, change status to DONE and. This information is also */
/* printed out. v

r;’k***'k****k*****k*ﬁ'***#ﬁw*#**i’**********ﬁ:**********k**f**lr*tit**kt*ﬁ*/

void JobDone(int id, char* Ft, char* Fd)

{
FILE* fp;
time_t tl; //time
struct tm *tptr; //time pointer
char *s;

Thedob* Jptr;

fp=fopen("fout","a");

if((tl=time((time_t*)0))!=(time_t)-1){

s=ctime (&tl);

tptr=localtime{&tl); //get system time
}
else

printf ("Error time. \n");
Jptr=JobHead;

if (Jptr==NULL
return;

108

while(Jptr->JobID != id) //get the job
Jptr=Jptr->next;

if (tptr->tm_year < 100)
tptr->tm_year=1900 + tptr->tm_year;
else
tptr->tm_year=2000 + tptr->tm_year;

//record time and date
sprintf (Jptr->FinTime, *"%d:%d:%d", tptr->tm_hour,tptr->tm min, tptr-
>tm_sec) ;
sprintf (Jptr->FinDate, "%$d4d/%d/%d", tptr->tm _mon+l,tptr->tm_mday, tptr-
>tm_year) ;
strepy (Ft, Jptr->FinTime) ;
strcpy (Fd, Jptr->FinDate) ;
printf("Job #%d complete date: %s \n", id, Jptr->FinDate);
printf{"Job #%d complete time: %s \n", id, Jptr->FinTime);
fprintf (fp, "Job #%d complete date: %s \n", id, Jptr->FinDate);
fprintf (fp, "Job #%d complete time: %s \n", id, Jptr->FinTime)};
fclose(fp};
ChangeStatus (JobHead, id);
ChangeStatus (UrgHead, id);
ChangeStatus (NomHead, id);
}

/**********k******‘k*****k************t*ﬂr*****i*********ttif‘k**&:‘r*i—*k*[

/*when a job is done, this function will change job status to DONE. */
/"k**:k*************t*******************ti***k************k**’****’*****tt[
void ChangeStatus (TheJob* HD, int id)

{
Thedob *walk;
walk=HD;

if {HD==NULL)

return;
while({walk->next !=NULL) { //find the job
if (walk->JobID==1d}
strepy (walk->Status, "Done"}; //change status to Done

walk=walk->next;

if(walk->JobID==id)
strcpy (walk->Status, "Done®) ;

f—

/"(*********7’&'*‘)'\'**7‘.**i'***********k*‘k***t*i***k*i************k****t**l:&k/

/*Input start time start date and finish time finish date. Total %/
duration of time is calculated and returned. */

/'k********kkJt**********‘A‘***********&t*k****ri‘***********t‘k*i**tl***‘k‘*/

int TimeDuration(char* St, char* Sd, char* Ft, char* Fd)
It

long Minutes; //minutes

long AbEnd; //absolute Julian end date number
long AbStart; //absolute Julian start date number
short EndHr; //end hour

short EndMin; //end minute

109

int EndDayMM; //total minutes in end day

long LapDay; //total duration of days
short StartHr; //start hour

short StartMin; //start minutes

short StartDayMH; //total minutes in start day
char StTime[QUART]; //start time string

char FinTime [QUART]:; //finish time string

char* str;

strcpy (StTime, St);
strepy (FinTime, Ft);

AbStart=AbsJulian(Sd); //get Julian day number
AbEnd=AbsJulian(Fd) ;

str=strtok(StTime, ":\0"); //pick hr and min.
StartHr=atoi (str);
str=strtok (NULL, ":\0");

StartMin=atoi (str);

str=strtok(FinTime, ":30"); //pick hour and minute.
EndHr=atoi(str);

str=strtok (NULL, *“:\0"j;

EndMin=atoi (str);

StartDayMM= (StartHr*60) +StartMin; //get total min. in start day
EndDayMM=(EndHr*60) +EndMin; //get total min. in end day

if (AbStart=AbEnd)
Minutes=EndDayMM-StartDayMM; //calculate time duration

else(
if (AbEnd>AbStart) {
LapDay=AbEnd-AbStart;
Minutes=LapDay*1440+EndDayMM-StartDayMM;
"
else
Minutes=0;
3

return Minutes;

f‘rtn':‘r****?{:‘::‘:*ti\k*k!!*iri'iir***ik***ii***‘k******‘k*kﬁ****k*“r*t*k**'ﬁi*i*&**#/

/*Get technician’s location and return the value back in *EX and *EY.*/

/‘)rxk********k********?i**é**&******kt***tti—i—t*:‘ri*A—'khi*w*ﬁ’k***it*tt*&r;}
void FindManLocation(int id, int*EX, int*EY)
{

TheMan *walk;

walk=ManHead;

while(walk->ManID!=id)
walk=walk-»>next;

*EX=walk->Loc¥;
*EY=walk->LocY;

110

/***i*i—t*****t*************t**t*t*s\-**t***twtt**u\-i—********ti't*******\\-**/
/*Check if the input file is empty or if the file contains invalid */
/*characters such as tabs, blanks and new line characters, then call */
/*Inputdob() and InputMan() to read in the input data. */

/*********************t***i’***************’k*************t*************/
int manageInput ()
{

FILE *fp, *wfp;

char TIFULL], EXZIT[QUART];

int i, flag=0;

if((fp = fopen("Job.dat","r"}) == NULL) {
printf("Can’'t open file!\n");
exit (0);
}
for(i=0; i<FULL; i++)
T(i]="20"; //clean the buffer
while{ (fgets (T, FULL, fp))!=NULL){ //check the wvalidity of input
for(i=0; i<FULL;i++)
iE(T[i)=="\t'||T[i]==" ' ||T(i)=="\n’|}T[i]=="\0")
else
flag =1;
}
if(flag==0){ //print alert messgage and exit

printf("This file is empty. Type EXIT to guit!\n");
scanf ("%s", EXIT);
while(strcmp (EXIT, "EXIT")!=0){
printf("\nType EXIT to quit!\n");
scanf ("%s", EXIT);
}
return FALSE;

N
I

fclose(fp):

wip=fopen ("fout", "w"); //print out put title
fprintf (wfp, "%s\n", " ALL INPUT JOB LIST");
fp‘rintf(wfp “%S", "/*tﬁ*r-ﬁ‘k****************k***l**'k**/\\n“);

fclose({wfp);

InputJob(); //call to read input data
InputMani() ;

wip=fopen("fout", "a"j;

fprincf (wfp, “%s\n", " JOB LIST SORTED BY DUE DAY");
fprintf(wfp' l-%suln/*****xi*******wx*****************/\nn);

fclose(wip) ;
PrintJobs {JobHead) ; //call to print all input jobs
PrintMan() : //call to print all input technician data

return TRUE;

111

/k************t*kt‘k************iﬂ*k**i*i************itl***i*i*******t/

/*Check the validity of technician’s assigned area zip code. *
/ir********’k_**_*************_****i_‘*"ﬁ*****f‘****_**t*'k*****t***ﬁ*\k*tt*****/
int IszZipCodeValid(int zp, int id)
{

TheMan* walk;

walk=ManHead;

while(walk->ManID!=id)
walk=walk->next; //find the technician

if{walk->ZipCode==zp) //check if input zip code is valid
return TRUE;
else if (zp==100)
return 100;
else if (zp== 200)
return 200;
else if(zp==300)
return 300;
else i1f(zp==400)
return 400;
else
return FALSE;

/***********W****************k*'k‘k******************w*r*********k****t’,l

/*Calculate the sum of work time and travel time. */
if*t******k**i**#********lN***#*i’***’f*‘*****i"‘(**'ﬁ******i***ii*"l'l‘*'*'l**‘,‘
float getWktime(int jid)
{

float tm=0;

TheJob* walk;

walk=JobHead;

while{walk->JobID!=jid)
walk=walk->next;

tm=tm+walk->AWKkTime;
tm=tm+walk->Mileage/SPEED;

return tm;

/*‘k*ksl'*****‘xk**t*k********7‘(***************************i****‘k*ﬁ'ﬁ‘kk****/
/*main()simulates the operation screen. It calls to read and mnage */
/*input, prompts login and logout information, call to schedule jobs*/
/*check the validity of input, provide an interface between the user*/
/* and the system. */
/****************wt************i*t******************t*k********ﬁ*****/
main()

{

ARE 1,58

int mx,my; //coordinates x and vy

int Eid,Jid; //employee ID, Job ID
int Accept=FALSE; //flag

int zp; //zip code

char wk[QUART] ; //select job flag

char EXIT([QUART]; //exit function flag
char Site[QUART] ; //arrive on site flag
char Done[QUART] ; //job done flag

float hr=0; //requested work time
float tm=0; //calculated work time
float TT=0; //total work time
float WT=0; //one job work time
char St [QUART] ; //start time

char SA(QUART]; //start date

char Ft [QUART]; //finish time

char FA[QUART]; //finish date

Chg [QUART] ; //temp buffers

int Sch[QUART] ; //change work time flag

i=x=zp=y=mx=my=Eid=Jid=0;//initialize variables

if {managelInput () ==FALSE) //read input
exitc (0} ;

printf{"Type your employee ID to login: ");
scanf ("&d", &Eid);

Accept=LoginAccept (Eid) ;

//1f login is incorrect, retype ID number and check again
while (Accept ! =TRUE) {
printf ("\nError! Retype your employee ID to login: ");
scanf ("%d4d", &Eid);
Accept=LoginAccept (Eid) ;

}
FindManLocation(Eid, &mx, &my); //get technician’ location
X=IX; y=my;

//check his request

printf(*\nRequest a job? Type YES! Quit? Type NO! ");

scanf ("%s", wk);

while(strcmp(wk, "YES")!=0 && strcmp(wk, "NO")!=0){
printf ("\nRequest a job? Type YES! Quit? Type NO! ");
scanf ("%$s", wk);

}

if(strcmp(wk, "NO")==0)
exit (0);

//check technician‘s input zip code

printf ("\nType your work zipcode: ");

scanf ("%d", &zp);

while(IsZipCodeValid(zp, Eid)==FALSE) {
printf ("\nError! Retype your work zipcode: "};
scanf ("%d", &zp);

if(IsZipCodeValid({zp, Eid) !'=TRUE)
printf("Area %d 1s beyond your home area, you will have a long
drivei!\n", zp};

printf ("\nHow many hours do you expect to work today: "};
scanf ("%f", &hr); //get his requested work time

ScheduleList (hr, zp); //schedule jobs for the technician

while(strcmp{wk, "YES")==0) {
strcpy(wk," "); strcpy{Site," *); strcpy(Done," "};

while (hr==0) {

printf ("Work hours can not be zero. Retype work time or type 9999 to
quit!");
scanf (*%$£", &hr);
if (hr==9999)

break;

}

//while loop continue to dispatch jobs for the technician
//1f he request to work over time, the system allow him to do so.
while(Scheduling(Sch, hr, Eid)==FALSE) {

printf ("Type EXIT to quit! or WORK to request a over time

jobt\n");
scanf ("%s", EXIT):
while(strcmp (EXIT, "EXIT")!=0 && strcmp(EXIT, "WORK®*) !=0){
printf("Type EXIT to quit! or WORK to regquest a over time

job!'\n"};
scanf ("%s", EXIT):;
}
if(strcmp (EXIT, “"EXIT")==0)
break;

if(strcmp (EXIT, "WORK")==0) {
printf {"\nHow many hours do you expect to work next: "});
scanf (" %f", &hr):

if(strcmp (EXIT, "EXIT")==0)

break;
printThedob(Sch([0], &x, &y); //print the scheduled job for him
printf ("\nWhen arriveg at site, type SITE "};
scanf ("%s", Site};
while(strcmp(Site, "SITE")!=0){
printf ("\nWhen arrives at site, type SITE *“);
scanf ("%s", Site);

}
ArriveOnSite(Sch(0]), St, S8d);//check man on site

printf("\nWhen job is completed, type DONE ");

scanf ("%s", Done);
while(strcmp (Done, "DONE") !=0){
printf ("\nWhen job is completed, type DONE "}

114

scanf ("%s", Done);
}

JobDone (Sch([0], Ft, Fd); //if job is done, mark job done
tm=TimeDuration(St,Sd,Ft,Fd);//calculate work time

SetWkTime (Sch(0],Eid, tm); //record work time

WT=getWktime (Sch([0]);

TT=TT+WT; hr=hr-wWT; //calculate remaining time in the day
printf("Remaining time %2.2f hours.\n", hr);
printf("This job takes %2.2f hours.\n", WT);
printf ("Total time used %2.2f hours.\n", TT);

//continue the loop, if he request another job, go on
printf ("\nReguest a job? Type YES! Quit? Type NO! ");
scanf ("%$s", wk};
while(strcmp (wk, "YES")!=0 && strcmpl{wk, "NO")!=0){
printf {"\nRequest a job? Type YES! Quit? Type NO! "};
scanf ("%s", wk);
}

//check if he request more work time or less work Cime
//make a change if he likes
if(strcmp(wk, "YES")==0) {
printf ("\nChange work time? Type YES! NO change? Type NO! ");
scanf ("%s", Chg);
while(stremp (Chg, "YES")!=0 && strcmp(Chg, "NO")!=0){
printf ("\nChange work time? Type YES! NO change? Type NO! ");
scanf ("%s", Chg);
}
if (strcmp(Chg, "YES*)==0) {
printf ("\nHow many hours do you expect to work next: ");
scanf (" %f", &hr);

}

tm=0;
}
LogoutAccept (Eid) ; //1if he finishes his job for the day, log out
printTheMan (Eid) ; //print the day’'s work report

]
a

115

VITA
Shengli Cao
Candidate for the Degree of

Master of Science

Thesis: A SURVEY OF ALGORITHMS FOR SCHEDULING
NON-INTERRUPTIBLE TASKS

Major Field: Computer Science
Biographical:

Personal Data: Bomn in Yongji, Shanxi, P.R. China, August 21, 1958, the son of
Shilong Cao and Chunxian Xu.

Education: Graduated from Yongji High School, Yongji, Shanxi, P.R. China in 1976;
received Bachelor of Engineering degree in Civil Engincering from Taiyuan
Institute of Technology, P.R. China in July 1982; completed the requirements for
the Master of Science degree at Oklahoma State University in July 2000.

Experience: Graduate teaching assistant of Computer Science Department of
Oklahoma State University, August 1999 to December 1999. Employed as a
computer lab assistant, August 1999 to November 1999. Employed as a senior
engineer by BERIS from 1982 to 1997

