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CHAPTER I

INTRODUCTION

Problem Statement

In recent reports, the Environmental Protection Agency (EPA) named

urban and agricultural runoff as the leading pollutant in U. S. waters (EPA, 1998).

Sediment is a major contaminant transported and deposited in lakes, rivers,

storm drainage systems, and other waterways. Over 4 billion tons of sediment

are lost each year as a result of erosion (Brady and Weil, 1999). Erosion is

simply the detachment, transport, and deposition of soil materials. A single

raindrop is the greatest force detaching and transporting sediment, and human

activities make the soil more vulnerable to the elements of nature (Brady and

Weil, 1999). For example, plowing, livestock grazing, vehicular movement, and

surface grading for construction alter the erosion of soil. Increased activity

ultimately leads to an increase in soil loss.

Sediment, in addition to being a pollutant in its own right, also absorbs

other contaminants such as oil, fertilizers, metals, and other toxins (Herzog et aI.,

2000). Waters that receive these contaminants have increased susceptibility to

long-term ecological and economic effects. Ecologically, the deposition of

sediment in rivers, lakes, and other waterways inhibits light for photosynthesizing

plants and depletes oxygen for aquatic life (Waters, 1995). From an economist's

viewpoint, the damages associated with soil erosion by water exceed over $11

billion per year (Herzog et aI., 2000). These damages include a decrease in the

recreational use and commercial fishing of waterways and an increase in the
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flood potential and use of water treatment operations (Herzog et aI., 2000).

Obviously, sediment controls are needed to protect our waterways from

contamination of harmful pollutants.

A device commonly used for sediment control is a silt fence. Silt fence is

typically constructed of a woven geotextile fabric fastened to wooden or steel

posts, with a wire mesh fence occasionally attached for structural support

(Sherwood and Wyant, 1976). Although woven geotextile fabrics have been

around since the 1950's for erosion control applications, little is known about the

hydraulic performance of these fabrics used in silt fence designs. Wyant (1980),

Kouwen, (1990), Barrett et al. (1995), and Wishowski et al. (1998) are among the

few who have conducted comprehensive studies on silt fence. These studies

suggest that the high trapping efficiencies of the tested silt fences are directly

related to the types of fabric used in the experiments. Sediment is capable of

blocking fabric openings; consequently, increasing the impounded volume behind

the fence and trapping more sediment. However, research conducted thus far

has failed to investigate the problems associated with sediment clogging the

fabric openings.

Objective

This research is part of an overall program aimed at modeling the

effectiveness of silt fences at trapping sediment. Specifically, the objective of this

study was to examine the hydraulic performance of silt fences exposed to a

range of sediment-laden flows. This research can potentially lead to improved

design criteria and installation procedures for silt fence.
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CHAPTER II

LITERATURE REVIEW

Silt Fence

Function

Silt fence is a common method for trapping sediment and slowing the

erosion process on drastically disturbed lands. The primary function of silt fence

is to screen soil particles from runoff water (Theisen, 1992), which is

accomplished by serving as a temporary porous dam for impounding surface

water (FHWA, 1998). As the impounded water level rises, eroded soil particles

begin to deposit; however, some particles are small enough to pass through the

fence while others become trapped in the fabric. Because the sediment trapped

in the fence clogs some of the openings, the flow velocity is reduced, allowing

more impoundment and increased detention time for the suspended particle fines

to settle (FHWA. 1998).

Silt fence placement is primarily targeted in locations where water sources

are threatened by the release of sediment. Common locations for silt fence are

along highways, sidewalks, the perimeter of construction sites, and other places

where the soil has been disturbed significantly. Silt fences are more successful

at trapping sediment from sheet erosion rather than from concentrated flow

(FHWA, 1998). Consequently, placement becomes an important factor in

controlling sediment release.
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Design, Installation, and Maintenance

As illustrated in figure 1, silt fence is made simply by fastening geotextile

fabric to wood or steel posts, with a wire mesh fence occasionally attached for

structural support (Sherwood and Wyant. 1976). Historically, silt fence has often

proven to be an ineffective sediment control because of improper design,

installation, and inadequate maintenance.

Figure 1: Schematic of a silt fence (Haan et aI., 1994).

Filter Fabrlc Wire Mesh
Wtth Fabric Bock or--.
Geotextile

Toe Of Buried filter
~ Fabric In Trench And
~BaCkfiued

,'" -~, .--
\,----

Fence Posts

Currently, guidelines governing the design and installation procedures of

silt fence vary significantly between regulatory authorities. For example, North

Carolina requires the fabric height of silt fence to be 0.46 m (1.5 ft) tall, while

Tennessee recommends a 0.91 m (3 ft) tall fabric (NCSCC, 1993; Smoot and

Smith, 1998). These variations can lead to performance differences and

problems. Additionally, the carelessness of the designer, installer, and inspector

often lead to silt fence failures like undercutting, overtopping, and flanking.
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Undercutting occurs by water movement underneath the fabric and is caused by

failure to properly bury the toe of the fabric. Overtopping is often blamed on

improper design and/or inadequate maintenance. When a fence cannot handle

the volume of flow from intense rainfall events or when sediment deposition

behind the fence has not been removed, overtopping can occur (Britton et aL,

2000). Flanking is caused by improper fence placement, that allows water to

divert around the end of the fence (Britton et aI., 2000). For a silt fence to work

properly; design criteria, installation procedures, and maintenance practices must

be addressed.

According to Richardson and Middlebrooks (1991), silt fence design

should be based on three criteria: estimated runoff volume, estimated sediment

volume, and geotextile selection. Most silt fences are designed to handle 10­

year, 24-hour storm events and have life expectancies of 6 months (FHWA,

1998). Furthermore, the drainage area for overland flow to the silt fence should

not exceed 1012 m2 (0.25 acres) per 30 m (100 ft) of silt fence (Richardson and

Middlebrooks, 1991). The North Carolina Sedimentation Control Commission

(NCSCC, 1993) along with Richardson and Middlebrooks (1991) also provide

criteria for silt fence applications in relation to slope length. Table 1 provides a

recommended maximum slope and slope length for silt fence installations

(NCSCC, 1993; Richardson and Middlebrooks, 1991). Richardson and

Middlebrooks (1991) recommend using the Rational Method (Linsley et aL, 1958)

to calculate the peak discharge delivered to a silt fence and the Universal Soil
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Loss Equation (NRCS, formerly SCS, 1977) to estimate sediment volume behind

the fence.

Table 1: Maximum slope and slope length for silt fence.

Slope (%) Slope Length (m)
<2 31

2 to 5 23
5 to 10 15
10 to 20 7.6

>20 4.6

Selecting geotextile for silt fence applications is difficult because of the

variety and number of geotextiles available in the market. Currently, geotextile

selection is based upon past performanoe. That is, selections are made based

on what has worked well in the past. Using this practical approach, Richardson

and Middlebrooks (1991) suggest selecting geotextiles with the following

properties:

1. Silt fence composed of woven slit film fabrics should have an apparent

opening size (ADS) between 0.15 mm and 0.60 mm.

2. Silt fences constructed of other types of geotextiles should have an

ADS between 0.15 mm and 0.30 mm.

3. The permittivity of the fabrics should be greater than 0.2 S·1.

Although Wyant (1980) states that ADS and permittivity are not indicators of siH

fence performance, Theisen (1992) agrees with Richardson and Middlebrooks

(1991) that the required storage capacity and soil deposition behind the fence are

directly related to the fabric ADS.
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AOS indicates the opening sizes of the fabric, that in turn affects the

amount of flow passed by the fabric. Smaller openings restrict the flow, allowing

more water impoundment and increased detention time for particles to settle.

Larger openings allow water to pass more freely; therefore, the impounded

volume of water is less than fabrics with smaller opening sizes. Consequently,

the AOS could be used as an indicator of the fabric storage capacity and the

amount of sediment that settles behind the fence.

Although most installation and maintenance practices are conducted as

rules of thumb, a silt fence can only perform as well as it is installed and

maintained. Depending on the impounded heights, stakes are normally placed

between 2 and 3 m (6 and 10 ft) apart. Wyant (1980) suggests using a wire

mesh fence for structural support when the strength of the geotextile fabric is

lower than 8.8 kN/m (50 Ibs/linear inch) and posts are spaced more than 3 m (10

ft) apart. To avoid undercutting the fence, burial of the fabric toe is

recommended between 0.15 to 0.20 m (6 to 8 inches) deep (Sherwood and

Wyant, 1976; NCSCC, 1993). Colored filaments are often woven in the fabric to

provide contractors guidance in how deep to bury the fabric toe. Regular

inspections of silt fences are recommended, with soil deposition behind the fence

never exceeding 1/3 of the fabric height (FHWA, 1998). These rules are merely

suggestions based upon observed performance of silt fence in the field.

In addition to the installation and maintenance practices, the quality of the

product should be addressed. After visiting several silt fence vendors, the quality

assurance of the product was observed in many cases to be poor. Silt fence
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products are typically sold in 100 ft rolls and often stored outdoors or in

warehouses. Because of the environmental conditions (rain, sunlight, etc.),

deterioration of the silt fence products stored outdoors was observed. Wooden

stakes were also observed to vary in quality. During field installation, several

wooden stakes were broken while hammering them into the ground. Additionally,

fabric filaments can exhibit variability, resulting in fabric holes andfor larger than

normal openings. Poor quality products would be expected to trap less

sediment.

To date, limited research has been conducted on silt fence to aid in its

design, yet Wyant (1980), Kouwen (1990), Barrett et al. (1995), and Wishowski et

al. (1998) are among the few who have performed comprehensive laboratory

studies on silt fence. Wyant (1980), whose work developed ASTM D 5141,

initiated the research on silt fence by examining geotextile filter efficiency,

strength, resistance to damage by ultraviolet rays, and the effects of pH on the

fabric. These tests included both laboratory and field studies on the fabrics, with

Wyant (1980) makirng the following conclusions from his research:

1. Fabrics that remove at least 75% of the soil particles from runoff water

are recommended for silt fence design.

2. Structural support provided by a wire mesh fence can be eliminated

from a silt fence design only if the fabric has tensile strength of 8.8

kNfm (50 Ibsflinear in) or more and stakes less than 3 m (10ft) apart.

3. Extreme values of pH showed no adverse effects on the fabrics tested.

Therefore, pH is not considered an indicator for geotextile selection.
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According to Wyant (1980), an optimal silt fence design would include fabrics

with high filter efficiencies, faster flow rates without compromising filter

efficiencies, and adequate tensile strength.

Wyant (1980) reported high trapping efficiencies in his studies. Sand

particles were almost entirely trapped by the fabrics and clay size particles

passed the fabrics. Although Wyant reported most trapping efficiencies higher

than 90%, most of the tests were conducted on nonwoven fabrics under low flow

conditions. Nonwoven fabrics are not traditionally used in silt fence applications

because they impound more flow and overtop more easily than woven fabrics. It

is recognized, however, that nonwoven fabrics can potentially trap more

sediment as a result of increased impounded volume and increased detention

time.

Kouwen (1990), Barrett et al. (1995), and Wishowski et a!. (1998)

conducted similar studies to Wyant's (1980) examination on the trapping

efficiencies of silt fence. Deviations between studies included fabric types, soil

distributions, approach slopes, and method of flow introduction (batch mixes

versus continuous feed). Kouwen (1990) reported trapping efficiencies of 90%

and higher, while Barrett, et a!. (1995) observed trapping efficiencies between 68

and 90%. Wishowski et a!. (1998) reported trapping efficiencies ranging from 69

to 81 %. Kouwen (1990), Barrett et a!. (1995), and Wishowski et a!. (1998)

concluded the high trapping efficiencies were a result of flow restriction through

the fabrics and increased impounded volume behind the fence caused by soil

particles lodged in the fabrics. Additionally, Kouwen (1990) reported using a #56
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Barnes silica sand with an average particle size of 0.2 mm. Because sand with

larger particle diameters was the test sediment in this study, higher trapping

efficiencies were expected.

Tests conducted by Barrett et aL (1995) varied slightly from those

conducted by Kouwen (1990) and Wyant (1980). Barrett et al. (1995) tested both

nonwoven and woven fabrics, using a silty clay soil as the test sediment. Higher

trapping efficiencies were observed from the nonwoven fabrics because more

flow was impounded, increasing the detention time. In addition to laboratory

tests, Barrett et al. (1995) also investigated a number of silt fence field

installations. While lower trapping efficiencies were observed in these field

studies, the sampling technique was cited as major reason for this difference.

Barrett et al. (1995) also observed that detention times for woven fabrics

decreased after major rainfall events. Barrett et a!. (1995) suggests that

accumulated sediment in the woven fabric was initially washed from the fence;

thereby, increasing the flow rate through the fence and decreasing the

impounded volume and detention time.

Wishowski et al. (1998) tested both high-density and low-density fabrics,

that showed significant differences in performance. The high-density fabric

trapped approximately 50% of the particles less than 2 microns, and the low­

density fabric trapped an estimated 30%; while both primarily trapped sand.

Wishowski et al. (1998) concluded that the type of fabric used for silt fences

makes a dramatic impact on trapping efficiency.
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Each of these studies suggests that the type of fabric used in silt fence

applications governs the amount of sediment trapped. For instance, nonwoven

fabrics trapped more sediment. This occurrence is due to increased flow

impoundment and increased detention time. Essentially all fabrics were able to

trap sand particles. This was expected since settling velocities are primarily

dependent on the particle diameter. That is, larger diameter particles have faster

settling velocities. While these studies present valuable information about the

sediment trapped behind silt fence, research has yet to focus on the blockage of

fabric openings caused by sediment.

Types of Geotextiles

Woven Geotextiles

In 1958, Carthage Mills produced the first woven geotextile fabric used for

erosion control in the United States (Mlynarek and Lombard, 1997). Woven

geotextiles are polymer-based fabrics mechanically made by textile-weaving

machines (Koerner, 1998). These machines interlace weft (horizontal-direction)

yarns with warp (vertical-direction) yarns in one of four weave patterns: plain,

basket, twill, or satin (Koerner, 1998). The plain weave fabric has the simplest

pattern in which each weft yarn is alternated over and under each warp yarn

(Mlynarek and Lombard, 1997; Koerner, 1998). The basket weave fabric refers

to a pattern where two or more threads are recognized as an individualized unit

(Koerner, 1998). The manufacturing of twill weave fabrics is similar to the

fabrication of the plain weave fabrics. The twill fabric alternates each weft yarn

over and under two warp yarns. Satin fabrics vary in design, meaning each weft
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yarn may alternate over three or more yarns and under one yarn (Mlynarek and

Lombard. 1997; Koerner, 1998). Each of these weave patterns adds to the

complexity of predicting the flow through a fabric.

Another influential component of the fabric is the individual yarn. Three

types of fibers are currently used in woven fabric designs: monofilament,

multifilament, and slit-film. A monofilament fiber is typically made by forcing

melted polymer through a spinneret, allowing it to take the form of an uniform

round or oval shaped thread (Mlynarek and Lombard, 1997; Koerner, 1998). A

multifilament yarn is a grouping of monofilament yarns that are twisted together

to form a single filament (Koerner, 1998). Slit-film fibers are described as tapes

of thread made by cutting continuous sheets of polymer into single fibers and are

often referred to as slit-film monofilament fibers. However, they may be twisted

to form slit-film multifilament fibers (Koerner, 1998).

Each woven fabric is unique, with varying filaments and weave patterns.

The filaments and weave patterns determine the opening sizes and fabric

thickness. The passage of water and particulates through the fabric is

dependent on these physical features, and these features add an element of

difficulty in modeling flow through a geotextile fabric.

Nonwoven Geotextiles

Unlike woven geotextiles, nonwoven fabrics have no set pattern but

instead have a randomness associated with them (Mlynarek and Lombard,

1997). Nonwoven fabrics are either made mechanically, thermally, or chemically.

A mechanical method for manufacturing nonwoven geotextiles is needle-
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punching. Needle-punching describes the action of the needles through the

fabric in which the fibers of the fabric are reoriented to create the randomness of

its pattern (Koerner, 1998). A thermal process for fabricating nonwoven fabrics is

heat bonding. Heat bonding creates a stiff, low-weight fabric by melting filaments

together at their points of intersection (Koerner, 1998). Chemically, nonwoven

fabrics are made by resin bonding. To fabricate a resin-bonded fabric, an acrylic

resin is sprayed upon the filaments to create an adhesive connection between

them (Koerner, 1998). Each of these manufacturing processes influences the

ultimate flow rate through the fabric and the particle size that will be trapped.

As stated previously, nonwoven fabrics are more random, resulting in an

undefined opening pattern. Fabrics of this nature are rarely used in silt fence

applications because the filament randomness decreases the percent open area

of the fabric and increase the likelihood of overtopping. Although laboratory silt

fence studies have shown an increase in sediment trapped by nonwoven fabrics

when compared to woven fabrics, the increased risk of overtopping limits the use

of these fabrics in field installations. Additionally, the flow through nonwoven

fabrics is difficult to model because no standard exists to evaluate the percent

open area of these geotextiles

Physical Properties of Geotextiles

Apparent Opening Size (AOS)

Developed by the U. S. Army Corps of Engineers, ASTM D 4751 is the

standard test method for determining the apparent opening size (AOS) of a

geotextile (Koerner, 1998). The AOS of a geotextile fabric is an indirect
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measurement of the fabric pore size, which is essentially equivalent to the largest

particle a fabric can pass (ASTM, 1995). To evaluate the opening size of a

fabric, a test specimen is attached to a sieve frame with known-diameter glass

beads placed on top of the fabric surface (ASTM, 1995; Koerner, 1998). By

shaking the framed fabric back and forth, the beads are set into motion, allowing

the beads to potentially pass the openings of the fabric (ASTM. 1995). This

process is repeated with increasingly larger diameter beads until no more than

5% of the beads pass through the fabric (Koerner, 1998). When less than 5% of

the beads have passed the fabric, the geotextile is defined by its 095-size. 095 is a

term based on the diameter of the beads, which describes the opening size of

the fabric in millimeters. The ADS is typically reported as a standard U. S. sieve

size number, which is easily converted from the 09s-size reported (Koerner,

1998).

Although ASTM D 4751 is a quick and simple method for determining the

opening size of geotextiles, Koerner (1998) identifies the following problems

associated with this method:

1. Glass beads become lodged in the fibers of the geotextile.

2. Fibers with,in a fabric shift easily, allowing beads to pass through

larger, non-typical pore sizes.

3. Repeatability of the method is poor because of the variations in bead

sizes and fabrics.

Additionally, the determination of the opening size using the ASTM D 4751

method is not representative of a real-world application of geotextiles used in silt
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fences. Fabrics used in silt fences are vertically placed, and impounded water

can alter fabric openings. Consequently, ASTM 04751 for AOS determination

may not accurately represent geotextile used in silt fence applications.

Percent Open Area (POA)

The percent open area (POA) of a geotextile is a term used to describe

the ratio of void spaces between adjacent yarns in a fabric to the total area of the

test fabric (Mlynarek and Lombard, 1997; Koerner, 1998). POA is a measurable

property; however, no standard has been established to estimate this value.

Koerner (1998) suggests projecting a light through the fabric onto a surface

where the openings can be measured and counted. Mlynarek and Lombard

(1997) suggest a more sophisticated means for measuring the POA of a fabric

based on an image analysis approach. This method requires specialized

equipment like an image analyzer microscope, which registers light projection

through openings in a test specimen and analyzes them based on a minimum,

maximum, and average opening size. POA is traditionally measured at a 90°

angle of light projection; however, the image analyzer allows rotation of the

sample so other light projection angles can be measured as well. An image

analyzer can determine the maximum POA of a fabric (Mlynarek and Lombard,

1997).

POA could be a useful property for indicating the flow through a geotextile.

Unfortunately, light projection through the fabric is often difficult to observe

because of how the fibers are oriented. As a result, this property is usually
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eliminated from the reported fabric specifications because the results are

deemed unreliable.

Permittivity

ASTM 04491 is the standard test method for water permeability of

geotextiles by permittivity, and this test is also used to report flow through a

geotextile. Permittivity is defined as the volumetric flow rate of water per unit

cross sectional area per unit head under laminar flow conditions, in the normal

direction through a geotextile (ASTM, 1992). Permittivity indicates the amount of

flow a geotextile can pass under isolated head conditions (ASTM, 1992). A

geotextile is placed horizontally in a permeability device with a head of 50 mm of

water maintained on its surface (ASTM, 1992; Koerner, 1998). The flow rate

through the fabric is measured under these conditions and used to calculate the

permittivity of the fabric (ASTM, 1992; Koerner 1998). Although this test method

indicates the flow through a geotextile fabric, it is important to note that this

method tests the geotextile under zero normal stress, which is uncommon in real­

world applications of geotextiles (ASTM, 1992). Therefore, the information from

these tests may not be representative of geotextiles used in silt fence design.

Filtration

Geotextiles in silt fences are used to filter sediment from runoff water.

Over time sediment can alter the performance of geotextile by clogging, blocking,

or blinding the fabric (Mlynarek and Lombard, 1997). Clogging is defined when

particles are retained within the fabric, causing flow restriction (Mlynarek and

Lombard, 1997). Blocking and blinding occur when particles settle in front of the
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fabric, forming a deposition pattern known as a filter cake (Mlynarek and

Lombard, 1997). This layer of sediment blocks fabric openings; therefore,

altering the filtration and drainage functions of the fabric (Mlynarek and Lombard,

1997; Smith et aI., 1999).

Most studies conducted to evaluate the influence of sediment

accumulation on geotextiles have examined fabrics oriented in a horizontal

plane. Fisher and Jarrett (1984) and Smith et al. (1999) tested the filtration

capabilities of several woven and nonwoven fabrics oriented in this fashion.

Fisher and Jarrett (1984) observed that the fabrics retained most of the sand and

coarse silt particles, while very little of the fine silt and clay particles were trapped

by the fabrics. Fisher and Jarrett (1984) also observed a decrease in flow

through the fabrics and concluded that soil accumulation on the fabrics restricted

the transmission of water. Testing fabrics in a similar fashion, Smith et al. (1999)

drew the following conclusions from their research:

1. More sediment was retained by the nonwoven fabrics than by woven

fabrics having similar opening sizes. This occurrence is thought to be

due to the distribution of pore sizes within the fabric.

2. Blinding and clogging were considered unrelated to the porosity of the

fabrics.

3. The porosity and AOS of the fabric are believed to be unimportant in

the clogging behaviors of geotextiles.
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Although this information is valuable, further studies on geotextile clogging

should be examined to evaluate the vertical fabric orientation like that typical of

silt fence applications.

Summary

Silt fence is a common method for trapping sediment on-site and slowing

the erosion process. For a silt fence to function properly and successfully trap

sediment, attention must be given to the fence design, installation, and

maintenance practices. To avoid failures such as undercutting, overtopping, and

flanking, regulations should be followed. For instance, proper burial of the fabric

toe may prevent undercutting, while adequate tensile strength and post spacing

may reduce fence overtopping. While silt fence design, installation, and

maintenance practices are based primarily on past performance evaluations;

successful use of silt fences must begin by following regulatory guidelines.

To date, silt fence research has concentrated on the trapped sediment

behind the fabrics, proving primarily that nonwoven fabrics trap higher

percentages of sediment than woven fabrics. However, nonwoven fabrics are

rarely used in silt fence applications because of their reduced flow through

capacity. This reduced flow causes the impounded volume behind the fabric to

increase, thereby increasing the risk of overtopping. Increasing the impounded

volume was also observed to trap more sediment because of a corresponding

increase in detention time. Additionally, studies have shown high percentages of

trapped sand particles, which is not surprising since larger diameter particles

settle more rapidly than smaller particles. Although the information on the fabric
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trapping efficiencies is valuable, research has failed to examine the influence of

impounded volume on sediment trapping efficiency.

Silt fence designers need additional guidance in selecting woven

geotextile fabrics for silt fence applications. This research attempts to fill that

void by modeling the effectiveness of silt fences at trapping sediment. This

research can potentially lead to improved design criteria for selecting woven

geotextile fabrics.
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CHAPTER III

EXPERIMENTAL EQUIPMENT

Test Flume

Tests were conducted indoors in a 5.7 m (18.7 ft) long by 0.9 m (3 ft) wide

flume (Fig.2) located at the USDA-ARS Hydraulics Engineering Research

Laboratory in Stillwater, Oklahoma. The flume floor was constructed with a 0.3 m

(1 ft) horizontal section upstream of the fabric with the remainder of the floor

sloping upstream at an 8% incline. A 2.4 m (8 ft) long section of the flume wall

was constructed out of a clear acrylic material for observation of sediment

deposition near the fabric barrier. The fabrics were 0.9-m (3 ft) tall and cut in

approximately 1.2 m (4 ft) wide sections for attachment to the flume. The fabric

was securely fastened to the end of the flume such that the maximum height of

the fabric exposed to the flow conditions was 0.8 m (2.5 ft).

Figure 2: Test configuration.
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Geotextile Fabrics

Research on three woven silt fence products (fabrics A, B, and C) was

conducted to evaluate their effectiveness at separating sediment from runoff

water (Table 2). Fabric A is described as an open, plain weave fabric made of

slit-film monofilament fibers. Fabric B is also a plain weave fabric that is more

tightly woven. It appears to be fabricated from a combination of slit-film

monofilament fibers in the warp (vertical) direction and fibrous monofilament

fibers in the weft (horizontal) direction. Fabric C is similar to fabric A, having a

plain weave pattern made of slit-film monofilament fibers.

Table 2: Vender fabric specifications (Nilex Corporation, 2000).

Property Test Method Fabric A Fabric B Fabric C
Nilex 2127 Nilex 915 Nilex 2130

Grab Tensile (N) ASTM 04632 350 665 x 555 550
Grab Elongation (%) ASTM 04632 15 15 15
Mullen Burst (kPa) ASTM 03786 1720 2410 2060

Puncture (N) ASTM 04833 130 290 290
Trapezoidal Tear (N) ASTM D 4533 220 290 x 290 290

AOS (Sieve No.) ASTM D 4751 10 40 30
Flow Rate (I/min/mZ

) ASTM D 4491 1220 1020 410
Permittivity (sec-1

) ASTM D 4491 0.3 0.4 0.05
UV Resistance (%) ASTM D 4355 80 90 80

The primary difference between the three fabrics lies in the number of

yarns in the warp and weft direction per unit area of fabric. For instance, fabric

A has an average of 48 yarns per 100 mm in the warp direction and 32 yarns per

100 mm in the weft direction. Fabrics Band C were observed to have an

average of 90 and 47 yarns in the warp direction and 31 and 44 yarns in the weft

direction, respectively. Subsequently, the number of yarns is an indicator of how

many openings are in a given fabric area.
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Measuring Devices

Test flows were delivered to the flume in a continuous flow from a

recirculation system. Flow entered a constant head tank and was then delivered

through a O.30-m (12-inch) diameter pipeline where the flow rate was measured

with an orifice meter and differential manometer. The differential manometer was

routinely checked to insure a constant flow rate.

To obtain sediment-laden conditions, a sediment shaker released a glass

bead mixture directly into the flow over feed rates ranging from 5.9 g/sec (0.78

Ib/min) to 26 g/sec (3.44 Ib/mln). A load cell and computer monitored the

sediment feed rate from the shaker.

To determine the fabric flow rate, the impounded water level behind the

fabric was measured in two fashions: manually with a carriage mounted point

gage and electronically using a digital encoder. The impounded water level, or

head, is the water level elevation above the lowest point on the flume floor. A

O.04-m (1.5-inch) diameter port was placed in the floor 0.15 meters (6 inches)

upstream of the fabric, and a O.05-m (2-inch) diameter sidewall port was placed

0.51 meters (20 inches) upstream of the fabric just above floor elevation. Both of

these ports directed flow to a wet well where the water level was recorded by the

digital encoder. The encoder recorded changes in head behind the fabric in five­

second intervals.

The changes in impounded head were used to calculate the volumetric

changes in storage for the flow recession period of each test. The recession

period of the test starts when the inflow to the flume is terminated and continues
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until the flume has completely drained. To accurately calculate the flow rate

exiting the fabric, a head versus flume volume relationship was developed. The

flume volume was determined by measuring the flume width from top to bottom

with a micrometer in vertical increments of 0.15 m (0.5 ft) and horizontal

increments of 0.61 m (2 ft). The flow rate exiting the flume was also monitored

with a strip chart recorder on a 0.23-m (O.75-ft) H-flume downstream of the fabric.

Point gage readings were taken at 5-minute intervals at the H-flume.
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CHAPTER IV

METHODS AND PROCEDURES

Flow Conditions

Twenty-one tests were conducted on three woven silt fence products with

the fabrics exposed to both clear-water and sediment-laden flow conditions.

Based on a 10-year, 24-hour storm event, Sedimont II (Wilson et al. 1984), a

computer program for estimating runoff from rainfall events through sediment

control structures, was used to approximate the maximum flow a silt fence could

handle without overtopping. Table 3 summarizes the flow conditions selected.

Table 3: Summary of test flow conditions.

Test # Fabric Inflow (m3/s) Feed Rate (g/s)

1 B 1.6E-03 7.1

2 B 6.3E-04 26.0
3 A 1.6E-03 11.0
4 A 6.3E-04 22.7
5 B 3.2E-03 6.4
6 A 3.2E-03 8.2
7 B 1.6E-03 21.4
8 A 1.6E-03 23.7
9 A 1.6E-03 6.8
10 A 6.3E-04 5.9
11 B 6.3E-04 7.9
12 B 1.6E-03 11.6
13 A 6.3E-04 11.2
14 B 6.3E-04 10.1
15 C 1.6E-03 11.0
16 C 6.3E-04 12.3
17 C 1.6E-03 7.6
18 C 6.3E-04 7.6
19 C 3.2E-03 7.7
20 C 1.6E-03 24.1
21 C 6.3E-04 21.3
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Each fabric was exposed to two clear-water tests typically lasting 20

minutes and one sediment-laden test typically lasting 60 minutes. A typical flow

through a fabric is illustrated in figure 3. The first clear water flow was usually

twice the flow rate of the second clear-water flow and the sediment-laden flow.

This method verified that the clear-water flows behave similarly for each test and

allowed direct comparison of clear-water and sediment-laden flows at higher

impounded heads.

Figure 3: Photograph of a test flow through the fabric.

To achieve sediment-laden conditions, glass beads were directly fed into

the flow at rates ranging from 5.9 g/sec (0.78 Ib/min) to 26 g/sec (3.44 Ib/min)

(Table 3). Sediment feed rates were selected based on a combination of

previous research experience as well as samples collected from a silt fence field

site located on the USDA-ARS Hydraulic Engineering Research Laboratory

grounds. Wyant (1980) observed maximum suspended solids concentrations of

3000 mg/L in the field, while Barrett et al. (1995) observed much lower

concentrations.
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Because of the variations in observed concentrations in the literature, a

field plot was constructed on the grounds of the USDA-ARS Hydraulic

Engineering Research Laboratory to evaluate the total suspended solids

concentrations from collected runoff samples. The site was 15.2 m (50 ft) by

15.2 m (50 ft) with an 11.5% slope. A red sandy clay soil was used for the field

plot because it was readily available. Based on the Unified Soil Classification

System, this CL soil exhibited a particle size distribution of 25% clay, 40% silt,

and 35% sand. Approximately 15.2 m (50 ft) of silt fence was placed on the

downstream end of the plot to capture sediment in runoff water. The Oklahoma

Department of Transportation pre-fabricated silt fence (Nilex 2130) was used at

the site, and it was installed according to documented silt fence installation

practices. For instance, the toe of the fabric was buried in a trench

approximately 15.2 cm (6 in) deep, and the ends ofthe silt fence were angled

upstream to prevent the fence from being flanked. The silt fence as installed in

the field is illustrated in Figure 4.

Figure 4: View of the silt fence field site.
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The field plot was evaluated based on runoff grab samples collected at the

site during intense rainfall events and field surveys collected after storm events.

Figure 5 shows the impounded runoff behind the fence and sample collection

downstream of the fence during a rainfall event. Collected grab samples

exhibited suspended solids concentrations between 18000 and 43000 mg/L, 10

times greater than that observed by Wyant (1980). Based on these results, feed

rates for the laboratory experiments were selected.

Figure 5: Grab sample collection at the field site.

Additional data collected at the site indicated that the silt fence performed

as intended. For instance, field surveys indicated an average of 13 cm (5 inches)

of soil deposited behind the fence over a 6-month period. The Federal Highway

Administration (1998) estimates a 6-month life expectancy for silt fence. In this

field study, the silt fence failed approximately six months after installation

because of the increased load placed on one of the stakes by impounded water

and sediment. If properly maintained, this fence would have continued to trap

sediment.
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Sediment Preparation

Four spherically shaped bead sizes were mixed and introduced into the

flow to simulate sediment. Although clay particles are typically plate-like in

shape, selecting beads as a representative soil allowed repeatability and

uniformity in testing. It is also recognized that sand and silt particles are typically

round in shape, so glass beads were thought to be a suitable substitute. A

disadvantage of using glass beads as the test sediment is that they are inert.

Soils can be more influenced by physical and chemical bonds that can bind

particles together. Additionally, organic matter and other materials are often

present in sediment, causing soil particles to aggregate. These materials were

absent in the glass bead mixture.

Using the beads, the same particle size distribution could be examined for

each test. A Microscan II particle size analyzer (PSA) was chosen as the primary

method for determining particle size distribution. Because the PSA limits the

maximum diameter used in the machine to 300 microns, the beads selected for

the experiments ranged from a clay to fine sand size (Table 4). The

manufacturer of the beads describes them as a soda lime material with a specific

gravity of 2.5 for the three larger sized beads and 2.65 for the smallest beads.

Table 4: Vender particle size specifications (Plonsker, 1999).

Particle Size (microns)
Bead Product 1.0. Mean 10% 50% 90%

A-2024 180 116 160 285
A-2429 93 60 89 138 i

A-3000 35 13 32 61
Bead Product 1.0. 100% 50% 21% 2%

L-207A 10 5 3 1
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The bead mixture consisted of 9.1 kg (20 Ibs) each of glass A-2024 and A­

2429, 11.3 kg (25 Ibs) of glass A-3000, and 15.9 kg (35Ibs) of glass L-207A. To

ensure the beads were thoroughly mixed, 45-kg (100 Ib) batches were placed in

a tumbler and mixed for 10 minutes (Fig. 6). The tumbler was constructed out of

a stainless steel tank with interior ribbing and rotated approximately 5 revolutions

per minute. The tank was constructed with a frame that allowed rapid adjustment

in tank position. The bead mixture usually ranged in size from 1.5 to 177 ,um.

Using the Unified Soil Classification System, the original bead mixture was

classified typically as a loam or silt loam soil.

Figure 6: Photograph of the tumbler.
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Total Suspended Solids Concentrations

Total suspended solids concentrations were evaluated for each of the

fabrics tested. At ten-minute intervals during the tests, 1-L grab samples were

collected upstream and downstream of the fabric. Upstream samples were

collected at mid-depth of the impounded flow. Plastic sheeting was attached to

the bottom downstream edge of the flume to direct the entire flow passing the

fabric into the downstream sample bottles.. Samples were processed 24-hours

later, so the suspended particles had time to settle. Excess water was decanted

from the samples, and the remainder of the sample was transferred to 250-mL

beakers. The samples were then oven-dried at a temperature of 105°C for a

minimum of 24 hours. Samples were then weighed, so concentrations could be

determined.

Particle Size Analysis

Particle size analyses were obtained on both the original beads introduced

into the flow and the particles passing the fabric. Particles passing the fabric

were collected approximately 24 hours after testing from the primary settling tank

located downstream of the H-flume. After allowing time for particles to settle,

excess water was then decanted from the settling tank through an exit port. The

remaining water and beads were washed from the primary settling tank into a

stainless steel bucket and placed in a convection oven for drying. The drying

process typically lasted at a minimum of 48 hours. After drying, the beads were

weighed and stored until particle size analysis was performed.

30



-

Microscan II as well as a hydrometer and sieve stack combination were

used to determine the particle size distribution of the original bead mixture and

the beads passing the fabric. The Microscan II eliminates much of the time

needed for processing samples. A hydrometer or pipette method requires 24

hours for determining the particle sizes; however, the PSA can provide the

results in a matter of minutes. The only limitation associated with the PSA was

the size of the particles that it could analyze, which was 0.1 to 300 microns in

diameter.

Microscan II uses Stoke's Law to determine particle sizes (Quantachrome,

1998). This technique yields particle diameters, assuming they are settling at the

same rate as spherical particles. The PSA engages a narrow, low energy X-ray

beam to scan particles as they settle in a sample cell (Quantachrome, 1998).

Optimal results were observed to occur with sample sizes of approximately 7.5

grams dry weight. Larger sample sizes caused clogging in the analyzer

hardware, and smaller samples resulted in inaccurate readings.

Since the PSA is not the standard test method for determining particle

size, calibration beads were purchased to evaluate its performance.

Commercially available beads with a guaranteed particle size range of 38

microns ± 7% were tested in the PSA. Figure 7 depicts the particle size

distribution of the calibration beads as determined by the PSA. The PSA

distribution fits the guaranteed particle size range of 35 to 41 microns reasonably

well, with more than 50% of the particles falling in the targeted ranged

guaranteed by the vendor. Complete instructions for operating the PSA are
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found in Appendix A; however, the operator of the PSA should be aware that

radiation safety training must be received prior to operating the machine.

Figure 7: Particle size distribution of calibration beads using the PSA.
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sizes. ASTM D 422 and D 1140 were followed for the particle size analysis.

Appendix B describes the test equipment and the procedure used to determine

particle size.

Trapping Efficiencies

The trapping efficiency for each experiment was determined. A load cell

monitored the amount of sediment introduced into the system. After each test,

the glass beads trapped in the flume were collected and placed in a tumbler for

drying. An electric heater attached to the frame of the tumbler provided the

necessary hot air for bead drying. Drying time took 24 to 72 hours depending on

the volume of beads trapped in the flume and the bead moisture content. After

the beads were dried, they were weighed to evaluate the trapping efficiency of

the fabrics. The trapping efficiency of the fabrics was estimated by taking the
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ratio of the dry bead weight trapped in the flume to the dry bead weight fed into

the flume.

Some error is expected in this determination because the beads trapped

within the filaments of the fabric were not accounted for in the trapped weight.

Other beads were lost during transfer operations and in the drying process. Yet,

the amount of beads lost in relation to the total amount collected from the flume

was small and thought to have little effect on the trapping efficiency calculation.
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CHAPTER V

RESULTS AND DISCUSSION

Soil Deposition

The fabric acted as a flow retarding structure to trap sediment. As flow

moved through the barrier, sediment blocked some of the fabric openings. The

blockage caused by filtration was more evident after the flow completely drained

from the flume. It is apparent, as illustrated in figure 8, that sediment can block

some of the fabric openings and impede the flow through the fabric.

Figure 8: Sediment trapped within fabric B.

As flow impounded against the fabric, sediment began to settle behind the

fabric. Visually, more sediment was observed near the fabric for tests conducted

on fabric A than on fabrics Band C. On two occasions when testing fabric A,

deposited sediment severely blocked the floor port to the wet well and partially

plugged the sidewall port, restricting flow to the wet well and: causing inaccurate

impounded head readings. Figure 9 illustrates the soil deposition behind fabric A

when both ports to the wet well were blocked with glass beads.
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Figure 9: Soil deposition behind fabric A.

Fabric A has larger openings, allowing more flow and sediment to pass, so

the water impoundment behind the fabric is less than that of fabrics Band C.

Because fabrics Band C have smaller openings, sediment is more likely to block

the openings and increase the impounded water volume. Figure 10 illustrates

the impounded flow volume for each fabric for a range of flow rates and relatively

constant sediment-loading rates after one hour of flow. An increased impounded

volume increases the detention time, which explains why more sediment was

trapped by fabrics Band C. Additionally, the increased impounded volume for

fabrics Band C explains the location of deposited sediment. Deposited sediment

was observed closer to fabric A than fabrics Band C, because fabrics Band C

impounded more flow allowing particles to settle further upstream.
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Figure 10: Impounded volume versus inflow rate.
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Flow through the Geotextile Fabrics

The changes in head over time for each test provided valuable information

about the fabric performance. The original impounded head data for both c1ear-

water and sediment-laden tests are plotted in Appendix C. The recession curves

of the impounded head data (Fig. 11) were used to calculate the volumetric

changes in flow exiting the flume. The recession curves were used for this

purpose to avoid corrections for flow rate and feed rate. As illustrated in figure

11, the influence of sediment on the fabric flow rate is clearly shown. The two

clear-water flows produced similar results, suggesting no flow correction is

needed as a result of contamination or changes in fabric properties.
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Figure 11: An example of the recession curves for the impounded head data.
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changed. To evaluate whether enough time had lapsed during testing, the three

fabric and an increase the impounded volume, or that the properties of the fabric

stabilize, that contamination in the clear-water flow caused micro-plugging in the

rise with time, indicating either that enough time did not lapse for the flow to

hours. Figure 12 illustrates the impounded head data from the long-term test of

fabric A.
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would be expected to have less of an influence on the flow through the fabric

From figure 12, the impounded head rises very little behind fabric A as a function

of time. Fabric A has larger openings; therefore, micro-plugging of the openings
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Figure 12: Long-term impounded head plot for fabric A.
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than with fabrics Band C. After approximately 23 hours of testing, it was more

evident that micro-plugging existed in fabric B (Fig. 13). Upon examining fabric B

is'
'~,

after testing, it was obvious that small sediment or rust particles from the pipes

blocked some of the fabric openings. This micro-plugging impeded the flow

through the fabric and caused the water elevation behind the fabric to rise.

Likewise, the clear-water flow through fabric C, as shown in figure 14, was

influenced by contamination, causing the impounded water volume to increase.

Visual examination of fabric C provided evidence that rust and sediment particles

clogged some of the fabric openings.
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Figure 13: Long-term impounded head plot for Fabric B.
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Figure 14: Long-term impounded head plot for fabric C.
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Based on visual observations of the fabrics, micro-plugging was

concluded as the reason for the increased impounded head over time. Although

filaments in the fabrics may have shifted during testing and the force of water

against the fabrics may have changed their properties, no evidence was
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collected to suggest the increasing impounded flow volume was a result of fabric

property changes.

Since clear-water flows typicaUy lasted 20 minutes, micro-plugging was

assumed to have little effect on the clear water fabric flow. No correction was

applied when calculating the sediment-laden fabric flow. This assumption is

supported by the repeatability of the two clear-water recession curves, as

illustrated in figure 11.

Because of modifications in the test flume, tests 1, 2, 3, and 4 were

omitted from flow evaluation. Additionally, tests 8 and 13 were not evaluated on

flow behavior because sediment primarily deposited in front of the fabric, causing

both the floor and sidewall ports to plug with beads and thus restricting flow to

the wet well. Head-discharge plots were developed for the remaining tests.

Appendix 0 includes the head-discharge graphs generated from the data. Each

of these plots demonstrates unique clear-water and sediment-laden flow

patterns. This observation provided insight in developing a prediction equation

for the flow each fabric can pass for a range of impounded heads.

Because each fabric is unique, with variations in opening size and weave

patterns, certain physical features of the fabric were considered. Each fabric is

composed of a matrix of openings. Consequently, the flow through the fabric

becomes dependent upon the number and size of the fabric openings. To

develop a fabric clear-water flow equation, the following assumptions were made.

1. The number of filaments in the weft and warp directions are an

indication of the number of openings in the fabric.
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2. The geometry of the fabric openings is a rectangular orifice opening.

Equation 1 calculates the number of openings experiencing a hydraulic head:

m= (hW)(vH)

where m is the number of openings, h equals the number of weft filaments per

meter, W is the width of the fabric in meters, v is the number of warp filaments

(I)

per meter, and H is the hydraulic head in meters. In this study, a 0.1 m (0.33 tt)

by 0.1 m (0.33 ft) sample area was selected arbitrarily to represent the entire

fabric, and the number of filaments in both the horizontal and vertical directions

were counted.

Since the assumption was also made that the openings were orifices, the

clear-water flow through the fabric was written as a modified form of the orifice

equation (Eq. 2), which takes into account the number of orifice openings from

equation 1.

..'.':
~·,

••
",·•,

Q=C mA(2gH) 0.5 (2)

where Q is the flow in m3/s, C' is an orifice coefficient (assumed to be a sharp-

edged orifice with coefficient of 0.61), m is the number of openings, A is the

orifice area (m2
), g is the gravitational constant, and H is the hydraulic head

impounded by the fabric (m).

Clear-water flow rate through the fabric is dependent on the area of the

fabric openings. Because the openings are small and would be difficult to

measure, a simple relationship was developed between the collected data and

the fabric specifications given by the company. Each impounded head

measurement has a corresponding flow associated with it. These data were
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used to back calculate the area of the opening by using equation 2. As illustrated

in figure 15, the calculated area was plotted against the square AOS (m 2
) of the

fabrics. For example, a fabric denoted as an AOS NO.1 0 in the fabric

specifications has a corresponding AOS of 2 mm, and by assuming the AOS is

perfectly square, the apparent opening area (AOA) becomes 4 mm2
. Because of

insufficient data, a linear relationship, as shown in figure 15, was chosen to relate

AOA and calculated orifice area. From this linear interpretation, the following

linear equation was used to estimate the area of the orifice:

A = 0.0129(AOA) + 0.0287 (3)

where the A is the orifice (opening) area in m2 and AOA is the AOS squared (m2
).

Figure 15: Linear relationship between the orifice area and AOA.
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With all parameters known, the clear-water flow rate through the fabric is

predicted by substituting equation 3 into equation 2. Figures 16, 17, and 18

compare the predicted clear-water flow rate for fabrics A, B, and C, respectively,

to the experimental data collected during the tests.
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Figure 16: Clear-water flow prediction versus the experimental data for fabric A.
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Figure 18: Clear-water flow prediction versus the experimental data for fabric C.
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From visual observation of figures 16 thru 18, the clear-water flow

the prediction equation further, the observed and predicted flow data for fabrics

equation does a reasonable job predicting flow through the fabrics. To evaluate
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A, B, and C were plotted with figures 19,20, and 21 illustrating them respectively.

Figure 19: Observed versus predicted clear-water flow for fabric A.
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Figure 20: Observed versus predicted clear-water flow for fabric B.
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Figure 21: Observed versus predicted clear-water flow for fabric C.
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A linear regression was performed on the observed versus predicted flow

data, yielding correlation coefficients of 0.99, 0.97, and 0.99 for fabrics A, B, and

C, respectively. Minor deviation from the line of best fit is observed, but is likely

accounted for by the fabric variabHity. For example, the assumption was made
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that the openings were uniform throughout the fabric. From visual examination of

the fabric. the openings are not uniform because the fibers in the fabric shift

easily, making some openings larger than others. Yet. the simplicity of the

prediction equation allows the silt fence designer to evaluate the performance of

the fabric based on the manufacturer's specifications rather than going through

the difficult task of measuring each individual fabric opening. Although this

procedure is not without error, it is simple and easy to apply.

As observed in Appendix 0, sediment clearly had an effect on the flow

through the fabric. Sediment plugged some of the openings in the fabric causing

flow restriction. To account for the influence of sediment, the clear-water flow

equation was modified to include a plugging coefficient, Cp:

Like the area of the opening. Cp was back calculated for each test and plotted

against the AOS of the fabrics. Figure 22 illustrates the linear regression

performed on the parameters, which produced the following fit equation:

Cp =64.24AOS + 0.3177
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Figure 22: Linear relationship of the plugging coefficient and AOS.
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Substituting equation 5 into equation 4, the sediment-laden flow through

the each fabric was calculated. Figures 23,24, and 25 depict the sediment-laden

flow prediction and the experimental data for fabrics A, S, and C, respectively.

From visual observation, the performance of fabrics A and C (Figs. 23 and 25)

are reasonably predicted with this technique. The performance of fabric B (Fig.

-
~,)

.:1')
}~

~~ I

I'-':~ I;;::. I
-tS I
'.~ :;'.

24) was not predicted as well as the other two fabrics.

Figure 23: Sediment-laden flow prediction versus experimental data for fabric A.
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Figure 24: Sediment-laden flow prediction versus experimental data for fabric B.
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Figure 25: Sediment-laden flow prediction versus experimental data for fabric C.
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To evaluate the observed and predicted sediment-laden flow more closely,

plots of observed and predicted sediment-laden flow were developed, and a
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linear regression was performed. Figures 26, 27, and 28 illustrate the observed

and predicted sediment-laden flow for fabrics A, B, and C, respectively. With

respect to fabric A, the correlation coefficient for sediment-laden flow is 0.99,

while fabrics Band C have correlation coefficients of 0.93 and 0.98, accordingly.

Figure 26: Observed versus predicted sediment-laden flow for fabric A.

Figure 27: Observed versus predicted sediment-laden flow for fabric B.
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Figure 28: Observed versus predicted sediment-laden flow for fabric C.
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Many observations can be made from the simple fit of the sediment-laden

flow equation to the experimental data. Upon closer examination, the prediction

for fabric B (Fig. 24) does a reasonable job fitting the experimental data for the

first 0.15 m (0.5 ft) of head, indicating that other factors influenced the flow

through the fabric at higher impounded volumes. This influence is more apparent

upon further inspection of figure 22, which shows more variation in the Cp for

fabric B. Based on these results, it must be noted that the simple fit relationship

does not account for the influence of sediment feed rate, inflow rate, particle size

distribution, and fabric property changes. The observation was also made that

fabrics A and C were not greatly influenced by sediment feed rate and/or inflow

rate, resulting in less scatter of Cp , as shown in figure 22. Although further study

may allow refinement of this relationship, it is important to note that fabric B has

smaller openings than fabrics routinely installed in the field.
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This simple silt fence flow model provides the designer and installer the

tools necessary to evaluate the performance of the fabric prior to installing them

in the field. By developing a relationship using fabric specifications provided by

industry, the designer can make a more informed decision on which fabric to use.

Let it be noted, however, that this research was limited to only three fabrics and

one particle size distribution. More testing is recommended to evaluate the

influence of particle sizes blocking the fabric openings, so future geotextile

selection can also be based upon the eroded soil distribution found at a particular

site.

Total Suspended Solids Concentrations

Grab samples collected during testing were evaluated for total suspended

solids (TSS) concentrations, with table 5 summarizing the average of six

upstream and six downstream samples collected during the tests. Initial

entrance concentrations are also provided in table 5. Entrance concentrations

were calculated based on the known sediment feed rate introduced into the

known flow rate of water entering the flume.

As the sediment-laden flow moved towards the fabric, particles settled in

the flume and TSS concentrations decreased. Grab samples in front of the fabric

indicated average total suspended solids concentrations ranging from 519 to

11100 mg/L, while the average TSS concentrations exiting the fabric were

slightly higher (Table 5). Lower concentrations observed in front of the fabric are

believed to be a result of the sampling technique. The grab samples upstream of
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the fabric were taken at approximately one-half of the impounded depth, and they

do not represent a vertically integrated composite sample.

Table 5: Total suspended solids concentrations.

Entrance Ave. Concentration Ave. Concentration
Concentration in Front of the Fabric Exiting the Fabric

Test # Fabric (mg/L) (mg/L) (mg/L)

1 B 4510 1370 1500
2 B 41200 11100 11600
3 A 7000 2840 3000
4 A 35900 10700 12800
5 B 2010 519 563
6 A 2610 802 863
7 B 13600 3240 3310
8 A 15100 7360 7480
9 A 4310 1550 1670
10 A 9350 2950 3790
11 B 12500 3260 4070
12 B 7380 2200 2320
13 A 17700 6430 7390
14 B 16100 3810 5340
15 C 7000 1810 2150 !

16 C 19500 4830 5600 I

17 C 4840 1240 1490
18 C 12100 2870 3620
19 C 2440 757 900
20 C 15300 4110 4880
21 C 33800 6930 9570

For the same inflow rate and similar sediment loading rates, fabric B

typically passed the lowest suspended solids concentration. Fabric A passed the

highest concentrated flow, with fabric C passing concentrations close to that of

fabric B. Since each test essentially had the same particle size distribution

introduced in the flow, the following conclusions can be made about the TSS

concentrations passing the fabrics.
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1. Since fabrics Band C have relatively small opening sizes, the

detention time for the particles to settle increased, allowing a reduction

in TSS concentrations.

2. Fabric A has more open area than the other two fabrics; therefore, the

detention time for particles to settle is shorter. Higher concentrations

and larger particle sizes were expected to pass through the fabric.

Particle Size Distributions

Each test was evaluated on the particle sizes passing the fabric. As

indicated earlier, the bead mixture introduced in the flow had a make-up typical of

a loam or silt loam soil. The particle size distribution of the bead mixture

introduced in each test and the particle size distribution of the beads passing the

fabric are depicted in Appendix E. Tests 12 and 13 are omitted from the analysis

because samples were mistakenly discarded.

The particle size distributions describe the characteristics of the particles

trapped by the fabrics and those passing the fabrics. From the plots in Appendix

E, the conclusion was drawn that all of the fabrics trapped 90% of the sand-sized

beads, those particles greater than 0.075 mm in diameter. For fabric A (Nilex

2127), coarse silt particles passed with ease through the fabric. Settling velocity

and overflow rate explain this behavior. As flow depth increases, the surface

area increases thus overflow rate decreases. Trapping efficiency is proportional

to settling velocity per overflow rate.

The plots in Appendix E also illustrate that the majority of the clay

component of the original mix escaped through fabric A. The concept of settling
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velocity and overflow rate explains the loss of clay as well. Because clay has

small particle diameters, the settling velocity is slow. Additionally, fabric A has

larger openings, resulting in a decrease of flow depth and surface area. A

decrease in both settling velocity and surface area lead to a decrease in trapping

efficiencies for clay particles.

Upon examining the particle size distributions for fabric B (Nilex 915), the

results were dramatically different from fabric A. All plots show that 95% or more

of the sand particles were trapped by the fabric. For the sediment passing fabric

B, 80% of the particles were 0.035 mm in diameter or less. It is recognized that a

high percentage of the clay component passed through the fabric, while coarser

silt particles became trapped. This tight weave fabric dramatically altered the

initial particle size distribution because flow impoundment increased, resulting in

a decrease in overflow rate.

The particles passing fabr,ic C were similar to those passing fabric B.

Fabric C trapped nearly all of the sand material. Eighty percent of the particles

passing the fabric were smaller than 0.03 mm in diameter, with the majority of the

clay particles escaping through the fabric. Like fabric B, fabric C was selective in

which glass beads were passed.

Regardless of which fabric is selected for silt fence design, the sand

component of the soil can be successfully trapped. Silt and clay size particles in

their eroded form create more of a challenge for silt fence, yet they too can be

trapped in an aggregated form. Since fabrics Band C had less open area, more

particles had the potential to plug the openings and increase the hydraulic head
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on the fabrics, whereas fabric A did not have this problem. Further study could

determine the influence particle size has on fabric plugging and could further

assist the designer on selecting geotextiles to trap particular soil types.

Trapping Efficiencies

Final analysis of the fabric performance was based on their trapping

efficiencies (Table 6). The average trapping efficiency for fabrics A, B, and C

were 55, 66, and 65%, respectively. For seven tests on each fabric the standard

deviation for fabrics A, B, and C was 7.08%, 5.93%, and 4.89%, respectively.

More sediment was trapped as the impounded volume increased.

Table 6: Summary of trapping efficiencies.

Test # Fabric Trapping Efficiency (%)

1 B 68
2 B 76
3 A 56
4 A 68
5 B 64
6 A 56
7 B 75
8 A 46
9 A 50
10 A 58
11 B 63
12 B 63
13 A 49
14 B 62
15 C 65
16 C 68
17 C 63
18 C 64
19 C 59
20 C 68
21 C 74
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Although the flow passing through each fabric was dramatically different,

the fabrics on average still trapped approximately the same amount of sediment.

Similar results in fabrics Band C were expected because the openings in fabrics

Band C were smaller than fabric A, restricting more flow and allowing more

detention time for the particles to settle. Fabric A passed higher flows at smaller

impounded heads because it had larger openings for the flow to move through.

Therefore, it is not surprising that fabric A also passed more material.

Compared to previous research results, the trapping efficiencies reported

from this study are considerably lower. Higher trapping efficiencies indicated in

other research are linked to the fabric types and sediment sizes used in the

studies. In many instances, nonwoven geotextiles were tested with the sand

component of a soil as the test sediment. Silt fences are more typically

constructed of a woven geotextile and exposed to natural particle size

distributions ranging from clay to sand size particles. Therefore, it is believed

that the results reported in this study represent a broader range of soil found at

typical construction sites.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

Sediment in agriculture and urban runoff is the leading pollutant

contaminating our water sources today. Because of the ecological and economic

effects sediment deposition has on streams, rivers, lakes and other waterways, it

is necessary to recognize the importance of sediment controls such as silt

fences. In this study, a first generation model was developed to predict the

effectiveness of silt fences at separating sediment from runoff water. Although

this model could effectively help the designer select geotextiles for silt fence

applications, it needs to be tested and validated for additional fabrics and particle

size distributions.

A review of literature indicated several research studies conducted on silt

fence products. Most studies report high trapping efficiencies, which is rarely

seen in real-world silt fence applications. These high trapping efficiencies are

attributed to many experiments evaluating nonwoven fabrics, which are non-

typical of current silt fence designs. Additionally, researchers limited fabric

evaluation to one component of a test soill such as sand. As observed in this

study, nearly all sand would be trapped regardless of the fabric used. While

these studies provide valuable information, little research has examined the

influence of soil particles on flow through the fabrics.

The performance of three woven silt fence products was examined for a

range of flow rates and sediment feed rates. Flow through the fabric along with
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total suspended solids concentrations, particle sizes passing the fabric, and

trapping efficiencies were measured to determine the effectiveness of the fabrics

in removing sediment from runoff water.

The fabrics were exposed to both clear-water and sediment-laden flow

conditions. A modified orifice equation was developed to predict the clear-water

flow though the fabric for a given hydraul.ic head.

Since sediment has a dramatic influence on the flow behavior through

woven geotextiles, modification to the clear-water equation is needed to account

for the influence of sediment. Sediment has a greater influence on fabrics with

smaller openings than fabrics with larger openings. The clear-water flow

equation developed herein was altered to evaluate the performance of the fabrics

exposed to sediment-laden flow by incorporating a plugging coefficient in the

equation. This simple fit relationship was developed for only one particle size

distribution and may not be applicable to others. However, this model is a first

attempt to assist designers in evaluating silt fence fabrics.

Dramatic differences were observed in how these fabrics pass flow. The

fabrics also exhibited the ability to selectively trap different sediment sizes. For

instance, fabric A continually passed higher concentrations and larger particle

sizes than the other two fabrics. This was expected since fabric A had larger

openings and impounded smaller volumes. If a designer selected fabrics based

solely on the trapping efficiency and the fabric flow rate, fabric A would be

selected because more flow can pass through the fabric at lower heads, while

trapping only 10% less sediment than the other two fabrics. While it is

58

J,

I:
J,

.)
h.
),
~.. .\. :

""-. ;

~ I
:";- :

~ i:e.,
:....
....



recognized that the other two fabrics trapped more material and reduced the

sediment concentrations in the runoff, the overtopping potential of the structure

would influence the final silt fence selection.

Conclusions

The clear-water and sediment-laden flow equations did reasonable jobs of

predicting the flow through three woven geotextile fabrics. More variation was

observed in fabric 8, which was more tightly woven and had the smallest AOS.

The inflow rate, sediment-loading rate, and/or particle size distribution may be

responsible for the observed variation of flow behavior through this particular

fabr"c. Inflow, sediment-loading, and particle size distribution did not greatly

influence the flow through fabrics A and C. Although additional research may

improve this method, it is recognized that fabric 8 is less frequently used in silt

fence design.

The introduction of sediment dramatically reduced flow through fabrics 8

and C, while sediment did not dramatically reduce flow through fabric A. Fabric

A had larger openings, allowing more flow at higher concentrations. Additionally,

larger particles passed through Fabric A. Fabrics Band C trapped more

sediment because sediment plugging the fabric openings caused the impounded

volume and detention time to increase allowing more particles to settle.

This research provides information necessary to select a geotextile based

on the flow behavior of the fabric. The designer can determine which fabric is

likely to overtop by evaluating the fabric opening size. If the designer plans on

long-term use of the silt fence, fabric A in this report would be recommended
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because it would be less likely to overtop and would trap almost as much

material as fabrics Band C. However, the flow through fabric A would have

higher sediment concentrations and would likely discharge larger particle sizes.

If the silt fence is used for short-term projects, fabrics Band C would be possible

solutions, since nearly aU of the sand and coarse sUt materials were trapped.

Less concentrated flow was passed thl"Ough these fabrics, yet the observation

was made that the particles plugged more fabric openings, impounding more

runoff volume behind the fence. Therefore, the potential for overtopping and

flanking would need to be carefully considered.

Recommendations for Future Studies

The clear-water and sediment-laden flow equations can be valuable tools

for selecting geotextHe fabrics for silt fence design. Testing additional fabrics

would be important to refine this approach. Since fabric B is less frequently used

in silt fence designs, further examination of the influence of inflow rates, sediment

loading rates, particle size distributions, and flow through this fabric may not be

necessary. However, to achieve a better understanding of how silt fence

selectively separates sediment from the runoff water, variations in particle sizes,

inflow rates, and sediment loading rates are recommended.

Additionally, this study limited the tested sediment to glass beads, which

did not have the chemical composition nor the particle shape of natural soil like

that of angular silt particles and platy-like clay. Real soil may add an element of

complexity in the flow prediction because of organic material and other
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compounds present in the soil. Yet, it would be helpful to evaluate the fabrics

using natural soil materials.

According to the Federal Highway Administration (1998), silt fence has a

life expectancy of 6 months in the field. Testing silt fence under cycling events

could indicate whether the dried sediment trapped within the fabric has a

continued influence on the flow through the fabric. This testing could determine if

the sediment is washed from the fabric by rainfall or when the flow initially

impounds against the fabric. Additionally, the impact of flow duration should be

evaluated to examine how silt fence responds to cyclic loading.

By coincidence, the fabric weave patterns in this study were the same and

were classified as plain weaves. More testing should be conducted on other

fabrics of different weave patterns to evaluate if and how weave patterns

influence fabric performance.

Field tests conducted on silt fence would be helpful to the designer

because it could develop better guidelines for burying the toe of the fabric,

spacing the stakes, and selecting the types of stakes. Currently, standards vary

among regulatory agencies on silt fence installation techniques. Evaluating the

depth of rills close to a silt fence could determine the depth for burying the fabric

toe. Likewise, measuring the loading on the stakes could determine what type of

stakes to use or how to space them. Field evaluation of silt fences could address

issues about proper silt fence installation practices.

In the early stages of this research, the probability of an opening plugged

by sediment was discussed. Although this research study does not address this
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statistical approach, a probability based examination of fabric plugging could

provide valuable information on how different particle size distributions affect flow

through the fabrics. An image analyzer could be used to evaluate the fabric

before and after testing. For instance, individual openings could be measured

using an image analyzer prior to testing, and again after testing to determine

whether the opening was plugged.

As suggested, many directions may be taken to continue silt fence

research. The first generation model developed by this research is only a start.

Additional, field and laboratory research are recommended to provide

supplemental assistance on fabric selection and installation protocol.
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Operating Procedure for Microscan II
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1. Prior to operating the PSA, radiation safety training should be taken;
otherwise, use of the PSA is unauthorized.

2. Sign the login sheet located in the operator's manual located on top of the
PSA prior to turning on the PSA.

3. Allow the PSA to warm up for 20 minutes before using by turning on the main
switch located on the back left side of the analyzer and then by pressing the
electronics button on front. Wait approximately 10 seconds then press the X­
ray button located on the front of the machine.

4. The computer software utilized by the PSA is Microscan PSA2PC Version
3.0. To open the software package, go to windows explorer, C:\ drive, and
the Msc2 file folder. Click on the Msc2pc.exe to execute the program (do not
use the icon on the desktop).

5. As the analyzer warms up, sample parameters may be set by going to the
parameters menu. Since the sample being analyzed is beads (representative
sediment), set the parameters to soil.par.

6. After selecting soil.par, the computer will automatically go to the next window.
By selecting A (data acquisition parameters), the user has the option to set
the operation parameters. For instance, the maximum diameter, minimum
diameter, and the specific gravity of the sample may be set under this menu.
Remember never to use samples with particles larger than 300 microns
because particles larger than that size have been known to clog the PSA's
tubing. Other parameters such as viscosity, temperature, fluid density may
be left at their default setting. After entering the necessary parameters, press
escape to go back to the previous window and save the soil.par file (choice
C). Press Y to overwrite the soil.par file.

7. After the soil.par file has been saved, the computer will automatically go back
to the main menu. From the main menu, go to the data acquisition menu.
From this menu, the following information may be entered: operator, sample
preparation notes, sample description, and other comments.

8. A file name will be entered as default, or it may be changed to keep better
track of the information. The default name incorporates the month, day, and
sample number ran. For instance, the file name SA092002.MRD means the
sample was ran on September 20, witll 02 labeling the second sample ran for
that day. The .MRD extension stands for Microscan raw data. This file type
may be opened in another program such as Excel or Notepad as a text file.

9. On the data acquisition menu, verify that the load operation parameter file is
soil.par. Then verify that the operation parameters are the same settings
predetermined in step 3.
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10. Once the analyzer has warmed up, pour approximately 50 mL of deionized
water in the sample cell located in front of the analyzer. The pump speed
dial should be set to 5 in the 12 o'clock position. Then press the pump
circulation button (middle black button above the pump speed dial).

11. After circulating deionized water through the system, press the stop button
located to the left of the circulation button on the front of the analyzer. Then
flush the system by flipping the fill level switch located on the left side of the
machine. Refill the sample cell with 50 mL of deionized water.

12. After refilling the sample cell, start the analysis from the data acquisition
menu on the computer by pressing S. The analyzer will automatically go
through a series of steps to initialize its settings. For instance, it will
measure a "no flux" value and "max flux" value, locate the top of the cell,
and go through a bubble removal routine.

13. After these steps, the computer will begin reading a delta flux. If the bubble
removal was successful, the delta flux values read a± 1%. If the PSA is
unable to remove bubbles, the delta flux will read high values and will
automatically abort the analysis. At this point, the computer will
automatically go back to the data acquisition menu. Press R to repeat
analysis, which essentially restarts the analysis under the same fill name as
used before.

14. Once the bubble removal is a success and the delta flux reads values
around 0%, the system will eventually stabilize and automatically go to the
next set of readings. The next readings are the flux which should read 100
± 1%. At this point, the sample may be added to the sample cell. For
optimal results, samples should be approximately 7.5 g.

15. The addition of the sample will drop the flux to usually 86%. According to
the operational manual located on top of the PSA, the analysis cannot start
until the flux is below 95%. When the flux stabilizes within 0.5% of the
dropped flux value, activate the computer to take readings by pressing R.

16. The analysis of the sample takes approximately 6.5 minutes. As the sample
is being analyzed, the computer screen will show a plot of the particle size
distribution.
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17. After the analysis, the computer will display the choice of Y for cleaning or N
for the menu. By pressing Y, the system will automatically go through a
cleaning cycle where the contaminated water is drained from the system
into a drain container (place in the floor so the contaminated water can
easily flow into it). Fresh deionized water will then enter the system
automatically from the supply container. If the water appears cloudy after
the cleaning cycle, the water may be flushed from the system by flipping the
fill level switch on the left side of the machine. If this process is needed,
another 50-mL of deionized water must be added to the sample. By
pressing N and returning to the menu, the analysis may be repeated on the
same sample.

18. The data is stored on the C:\ drive in the Msc2 file folder under the data
folder. The files may be copied from this location onto a disk. Files are
typically 7KB; therefore, they can be easily stored on 3.5" floppies.

19. The files report the ratio of the mass passing corresponding to a given
particle diameter in microns. These files may be opened in Excel; however,
the data structure will have to be manipulated. For instance, Excel opens
the file with all of the information in column A. To divide the data into
columns, go to the data menu and then to "text to columns." A Wizard to
Columns dialog box should appear. Check the box fixed width, and press
next. Then click on finish. The data will then be divided into workable
columns.

20. Since the mass passing is reported as a ratio, multiply the column by 100%
to report the mass passing as a percentage. Then graph the percent
passing versus the diameter of the particle.

21. After the tests, flush the system with deionized water by flipping the fill level
switch on the left side of the machine. Close the fill level switch and fill the
sample cell with deionized water again. Repeat this flushing process until
the beads are completely drained from the system. Beads are flushed from
the system when no visual traces are shown in the drain line.

22. Clean the sample cell thoroughly, draining alii water from the cell by flipping
the fill level switch to open. Once the machine is clean, turn off the X-ray
and electronics by pressing the appropriate buttons located on front of the
analyzer. Then turn off the main switch located in the back of the PSA.

23. Log out on the log sheet located in the operator's manual on top of the PSA.
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APPENDIX B

Hydrometer and Sieve Analysis Procedure
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ASTM 422 was followed for the hydrometer portion of the test, while

ASTM 1140 Method A was followed for the wet sieve analysis of the samples.

Equipment

1. ASTM Hydrometer (152H model)
2. Balance sensitive to 0.01 g
3. Beakers (250-mL)
4. Dispersing agent (NaP03• otherwise known as Calgon)
5. Distilled water
6. Sedimentation cylinder (1 OOO-mL graduated cylinder)
7. Stirring apparatus (malt mixer)
8. Thermometer sensitive to 0.5 °C
9. Stopwatch

10. Set of sieves, ranging in size from 2 mm (AOS NO.1 0) to 0.075 mm
(AOS No. 200)

11. Soil drying oven

Procedure

1. Prepare a blank by pouring 125 mL of NaP03 (40 g of Calgon per
1000 mL of distilled water) into 875 mL of distilled water into a 1000
mL graduated cylinder. Insert the hydrometer into the blank and
take a zero reading and a meniscus reading. A temperature reading
should also be taken.

2. Prepare the soil sampte by weighing approximately 50-g of sample
and soaking it in a 250 mL beaker containing 125 mL of NaP03 (40
g of Calgon per 1000 mL of distilled water) for approximately 16­
hours.

3. After soaking, carefully transfer the sample to a dispersion cup and
add distilled water until the cup becomes 2/3 full. Stir the contents
of the cup with a malt mixer for 1 minute.

4. After dispersion, transfer the contents to a 1OOO-mL graduated
cylinder, and add distilled water until the total volume becomes
1000-mL.

5. Place a stopper over the open end of the cylinder, and agitate the
sample by inverting the cylinder back and forth for one minute.
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6. Insert a 152H hydrometer in the sedimentation cylinder and begin
taking readings at the following times: 30 seconds, 1, 2, 5, 15, 30,
60,250,430, and 1440 minutes.

7. Temperature readings of both the soil sample and the blank should
be taken at the specified times given in step 6. The temperature of
the contents makes corrections to the hydrometer readings.

8. After the hydrometer analysis, pour the contents of the
sedimentation cylinder into a stack of sieves. Wash the sample
through the stack with distilled water.

9. Transfer the portion of sample retained on each sieve to a beaker
and oven-dry for at least 24 hours.

10. After drying, weigh the sample. This data combined with the
hydrometer data can be used to calculate the percent of soil passing
by weight.
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Figure C. 1.

Head versus Time
Test 1: Nilex 915
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Test 3: Nilex 2127
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Figure C. 5.

Head versus Time
Test 5: Nilex 915
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Figure C. 7.
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Figure C. 11.

Head versus Time
Test 11: Nilex 915
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Figure C. 12.

Head versus Time
Test 12: Nilex 915
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Figure C. 15.
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Head versus Time
Test 16: Nilex 2130
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Figure C. 17.

Head versus Time
Test 17: Nilex 2730
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Figure C. 19.

Head versus Time
Test 19: Nilex 2130
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Figure C. 20.

Head versus Time
Test 20: Nilex 2130
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Figure C. 21.
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APPENDIX 0

Head-discharge Plots
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Figure 0.1.

Test 5: Exit Flow versus Head
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Figure D. 3.

Test 7: Exit Flow versus Head

0.500.400.10 0.20 0.30
Head (m)

-e- Clear-water Flow
--a- Clear-water Flow
--.- Sediment-laden Flow

0.008

0.007

0.006

Ci)O.OOS
M-

E 0.004-
00.003

0.002

0.001

0.000 1.aJ~~~~~~=-'-----'---------i

0.00

Figure D. 4.

Test 9: Exit Flow versus Head

0.300.250.05 0.10 0.15 0.20
Head (m)

]-e- Clear-water Flow
-8- Clear-water Flow
--.- Sediment-laden Flow

0.008

0.007

0.006

Ci)O.OOS-M E 0.004-00.003

0.002 -

0.001
O. 000 .....Q!;t':~~---.---------,-----.----------r-------;

0.00

88



Figure D. 5.

Test 10: Exit Flow versus Head
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Figure 0.6.
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Figure D. 7.

Test 12: Exit Flow versus Head

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Head (m)

--- l
-&- Clear-water Flow

-a- Clear-water Flow

-.- Sediment-laden Flow

0.008 -,-----------­

0.007

0.006

u;-0.005-C")

E 0.004-
00.003

0.002

0.001

0.000 ~~~~~~~:==-,----,------\

0.00

Figure D. 8.

Test 14: Exit Flow versus Head
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Figure D. 9.

Test 15: Exit Flow versus Head
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Figure D. 10.

Test 16: Exit Flow versus Head
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Figure D. 11.

Test 17: Exit Flow versus Head
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Test 18: Exit Flow versus Head
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Figure D. 13.

Test 19: Exit Flow versus Head
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Figure D. 14.

Test 20: Exit Flow versus Head
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Figure D. 15.

Test 21: Exit Flow versus Head
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APPENDIX E

Particle Size Distribution Plots
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Figure E. 3.
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Figure E. 9.
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Figure E. 11.
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Figure E. 13.
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Figure E. 17.
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