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1.0 INTRODUCTION

Nitrate contamination of drinking water sources has become an increasingly urgent

problem, particularly in rural areas. Primary contributors to these elevated nitrate levels

are excessive use of nitrogen fertilizers and improper handling of human and animal

wastes. Since 1945, nitrate has been known to cause methemoglobinemia or "blue baby"

syndrome, an acute and sometimes fatal respiratory distress in infants (Shuval and

Gruener, 1977). For this reason, a maximum contaminant level (MCL) of 10 mglL

nitrate (as nitrogen) has been established in the United States, regulating nitrate as a

primary drinking water contaminant.

Conventional means of removing nitrate from drinking water include ion exchange and a

variety of membrane technologies, such as reverse osmosis (Dahab, 1987). These

processes have heen proven effective in nitrate removal. However, disadvantages,

including poor selectivity for nitrate, concentrated waste disposal issues, cost, and

susceptibility to fouling (in the case of reverse osmosis), have fed the search for

alternative nitrate removal technologies. One such technology IS biological

denitrification, a process used routinely in wastewater treatment.

It has been known for quite some time that many common bacteria, mostly heterotrophic,

have the ability to reduce nitrate to nitrogen gas in the absence of oxygen, through a

process called dissimilatory denitrification. Heterotrophic bacteria require an organic

carbon energy substrate for growth. In mWlicipal waste, organic carbon is present in

abundance, but in the case of a drinking water source, particularly ground water, organic



carbon is in short supply. Thus, a carbon source such as acetic acid (commercial food

grade vinegar) or a glucose/fructose feed (commercial high-fructose com syrup) must be

provided for denitrification of drinking water.

Biological treatment of drinking water has been demonstrated in research projects.

However, questions over the biological and chemical stability of a biologically

denitrified water have, until recently, kept biological treatment, as a stand-alone process,

out of drinking water facilities in the United States. In addition, the proposal to add

microorganisms to a drinking water source goes against all traditional approaches in

which the goal has been to remove bacteria from the water supply. Public health

officials and researchers have raised several concerns with the use of a biological process

(Bouwer and Crowe, 1988; Dahab, 1987). First, is the water in the distribution system

biologically stable? Since a carbon source must be supplied to the heterotrophic bacteria

employed, there is a need to be certain that an optimum feed rate is maintained, so that

there is no unused substrate present in the finished water. Also, adequate filtration must

be provided to remove the constantly sloughing bacteria produced in the reactor.

Second, is the finished water chemically safe? Trihalomethanes and haloacetic acids are

often formed in utilities using chlorine as a disinfectant, due to the chlorination of the

natural organic matter in the water. It is conceivable that metabolic by-products of the

denitrification process may more readily comhine with the chlorine present in the

distribution system, resulting in an increased THM formation potential over conventional

treatment methods. Also, there is concern over the possibility of toxic metabolic

products and endotoxins being imparted to the treatment water (Dahab, ]99] ).
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In the summer of 1998, the small town of Coyle, Oklahoma, installed the first full-scale

stand-alone biological denitrification system in the United States. The purpose of this

study is to:

• Evaluat~ the performance of the full-scale system at Coyle, as it is

subjected to: (I) changing raw water quality, (2) normal plant operation

and maintenance constraints, and (3) operation by a traditional licensed

operator, as opposed to research staff. Anion levels (including nitrate and

nitrite) as well as nonpurgeable organic carbon (NPOC) are to be

monitored in the raw water and throughout the plant in order to evaluate

the performance of each step of the treatment process.

• Estimate the presence of THM precursors throughout the water treatment

facility by measurement of ultraviolet absorbance at 254 nm (UV254) as a

surrogate parameter.

• Identify areas which merit further investigation if biological

denitrification is to become a viable technology for the treatment of

drinking water.
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2.0 REVIEW OF THE LITERATURE

The United States is often considered a worl.d leader in providing safe and efficient

drinking water to its citizens. The need to provide safe water has, however encouraged

skepticism in adopting new treatment technologies such as biological drinking water

treatment. Despite the lack of experience with biological drinking water treatment in the

United States, there is a rather large body of research literature on the subject.

Researchers have applied knowledge of wastewater denitrification to develop reactors for

the study of drinking water. From this, different treatment configurations and processes

have been proposed. Full-scale and demonstration plants have long been operated in

Europe for the removal of organic carbon and nutrients. Recently, researchers from the

University of Colorado at Boulder have operated two field demonstration reactors In

Brighton, Colorado (Cook et aI., 1990) and in Wiggins, Colorado (Lamarre, 1998).

Biological denitrification may have a number of significant advantages over

physical/chemical nitrate removal systems that make it an attractive alternative.

According to Dahab (1991):

• The process appears to be cheaper to install with comparable operation

and maintenance costs to other treatment alternatives.

• The excess biological growth produced as waste is much easier and less

expensive to dispose of than waste salts and brines from other methods.

• The process is extremely effective in reducing nitrates to near zero

concentration in the treated water, regardless of nitrate concentration in

the raw influent water.
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• Process stability is excellent particularly when using static media reactor

systems (i.e., biofilm systems).

• The process does not impart excess undesirable chemicals such as

chlorides to the treated water.

• Biological treatment, in general, is probably better suited to the removal

of various toxic and hazardous micro-pollutants than most physical

chemical systems.

On the other hand, several concerns have been identified, which have slowed the transfer

of biological denitrification technology to water treatment. First, heterotrophic

denitrification requires that an organic carbon source be added to the water to promote

the presence and activity of microorganisms. Encouraging bacterial growth in a drinking

water goes against all traditional philosophies and provides for many potential problems,

including the possibility of high concentrations of residual carbon in the treated water.

This may make it necessary to further treat the water and increase the disinfectant

dosage, typically chlorine. The combination of high residual organics and a high

chlorine dose may increase the potential to form carcinogenic disinfection by-products

(DBPs) such as trihalomethanes (THM) and haloacetic acids (HAA). By nature, a

biological treatment system will create addltional volatile suspended solids which must

be removed prior to distribution. In addition, products of microbial actlvity, such as

endotoxins and soluble microbial products, often associated with taste and odor

problems, may be introduced to the treated water. Furthermore, operational concerns



anse, in that few drinking water treatment system operators are familiar with the

operation or even the fundamental theories of biological processes.

The following review of the literature will first explore the health effects associated with

nitrate consumption, including methemoglobinemia in infants, as well as suspected links

to cancer. Sources and distribution of nitrate contamination in the United States will be

examined as well as some of the factors which put a ground water source at risk for

nitrate contamination. A basic understanding of the nitrogen cycle will demonstrate the

role that biological denitrification can to play in the treatment of drinking water.

Understanding of these possibilities win be expanded by examining the research and

applications that have already occurred in the United States and abroad, utilizing

heterotrophic bacteria and a variety of biofilter configurations and filter media.

2.1 HEALTH EFFECTS OF NITRATE CONSUMPTION

"Every year as spring approaches, parents of infants in the central Illinois city of Decatur

line up to get free bottled water from their community. The practice isn't a goodwill

gesture. It's required by the state's Environmental Protection Agency." (Lamarre, (998)

Not unlike many other small communities and larger cities nestled among agricultural

lands, Decatur's ground waters are contaminated with nitrates. Ingestion of nitrate in

drinking water has caused the potential1y fatal disease methemoglobinemia in infants

under six months of age (Lamarre, 1998). Recognizing the noncancerous acute toxicity

associated with the ingestion of nitrate and nitrite, the U.S. Environmental Protection

Agency (EPA) has established maximum contaminant levels (MCLs) of 10 mglL NOJ-N,
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1 mg/L N02-N, and 10 mg/L (NO)-N + N02-N). This authority to set drinking water

standards has been delegated to the USEPA by Congress through the Safe Drinking

Water Act (SDWA) of 1974, amended in 1986 and 1996. National Primary Drinking

Water Regulations (NPDWRs or primary standards) are legally-enforceable standards

instituted to protect drinking water quality by limiting the levels of specific contaminants

that can adversely affect public health and are known or are anticipated to occur in

drinking water. These standards apply to public water systems (PWSs), which provide

water for human consumption through at least 15 service connections. or regularly serve

at least 25 individuals (USEPA, 1998). Montgomery (1985) reported that 23% of

primary drinking water standard violations were due to excessive nitrate concentrations,

according to a 1985 survey by the American Water Works Association (AWWA). "In

1995, Oklahoma had 25 public water supplies that exceeded the nitrate maximum

allowable limit of 10 mg/I. . .. Although public water supplies in the State have a

history of nitrate exceedances, there have been no reported cases of illness due to nitrates

associated with a public water supply in Oklahoma." (Oklahoma DEQ, 1999) Regulation

of nitrate/nitrite in drinking water based upon the threat to human health is not unique to

the United States. Table 1 presents a summary of similar nitrate/nitrite limits that have

been established by international regulatory agencies.
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Table 1: Limits 00 nitrate and nitrite io drinking water.

2.1.1 Methemoglobinemia

Ingestion of nitrate in drinking water has been known to cause methemoglobinemia or

"blue baby" syndrome in infants and certain susceptible portions of the adult population

(i.e., Navajos, Eskimos, pregnant women, and people with genetic deficiency of glucose

6-phosphate dehydrogenase or methemoglobin reductase) (Bitton, 1994). Although

nitrate is relatively non-toxic, being readily absorbed and readily excreted, it is regulated

because under certain circumstances, nitrate can be reduced to nitrit by bact ria in the

gastrointestinal tract (National Academy of ciences, 1972). Methemoglobinemia i

caused when hemoglobin (Hb) in the blood i converted to a brown pigment,

methemoglobin (MetHb), foHowing ox.idation, by nitrite, of Fe2'in h moglobin to Fe J
•.

Since methemoglobin is incapable of binding molecular oxygen, the ultimate re ult IS

suffocation (Bitton, 1994).

The conversion of Hb to MetHb occurs all the time in the body, but the quantity of the

latter is maintained at a low, steady- "tate level by reactions facilitated by methemoglobin

reductase and diaphorase enzymes in the red blood cells (Jaffe, 1964; National Academy

of Sciences, 1972). The National Academy of Sciences (1972) reported that
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methemoglobin is normally present in the human body at levels of 1-2% of the total

hemoglobin. Clinical symptoms of methemoglobinemia are not normally detectable until

the MetHb level reaches about 10%. Concentrations of 30-40% are compatible with life

but will normally lead to anoxic symptoms with death following at a level of 50-75%.

If detected early, methemoglobinemia is a condition that is easily treated. In mild cases,

a change in drinking water sources is normally the only treatment required. The USEPA

believes that water containing NOJ-N at or below 10 mglL is acceptable for daily

drinking over a lifetime and does not pose a methemoglobinemia health risk for infants

or adults (Skipton and Hay, 1998). In severe cases, methemoglobinemia may require

treatment by a solution of methylene blue administered intravenously. According to the

National Academy of Sciences (1972), the onset of the disease occurs promptly after the

nitrate or nitrite is ingested and at concentrations high enough to cause the characteristic

symptoms.

"Infants suffering from methemoglobinemia may seem healthy but show

intermittent signs of blueness around the mouth, hands, and feet. They

may have episodes of breathing trouble, some diarrhea and vomiting. In

some cases, an infant with methemoglobinemia has a peculiar lavender

color but shows little distress. Blood samples appear chocolate brown and

don't turn pink when exposed to air. When the methemoglobin level is

high, infants express a marked lethargy, excessive salivation, and loss of

conscIOusness. Convulsions and death can occur at extreme

methemoglobin levels." (Skipton and Hay, 1998)
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Whi Ie high nitrate levels In drinking water have been found to cause

methemoglobinemia, other factors have been identified which increase the risk for

infants and other susceptible portions of the adult population. Infants have a low

concentration (about 60% of the adult concentration) of the enzymes responsible for

converting MetHb back to Hb, as do some older individuals with an enzyme deficiency

(Skipton and Hay, 1998). As a result, the conversion back to Hb may proceed slower

than in a healthy adult, allowing for the accumulation of MetHb. In addition, fetal

hemoglobin may be more readily oxidized to methemoglobin than adult hemoglobin.

Stomach pH and gastrointestinal disturbances seems to be key factors as well. Nonnal

infant stomach pH is less acidic than in healthy adults, allowing bacterial growth to

establish itself in the stomach and upper intestine when gastrointestinal disturbances give

enteric bacteria the opportunity to move higher in the gastrointestinal tract. Shuval and

Gruener (1977) reported that when nitrate-reducing bacteria are not present in the

stomach or upper intestine, most of the nitrate is probably absorbed in its original nitrate

form before being converted to nitrite in the colon where most of the nitrate-reducing

bacteria are found. Furthennore, fluid intake and individual nutrition may contribute to

one's risk. Infants with average fluid intakes ingest more nitrate per gram of Hb than

their adult counterparts. Foods such as spinach and rhubarb have been found to

accumulate large amounts of nitrates; however, some nutrients like vitamin C can cure or

prevent methemoglobinemia (Shuval and Gruener, 1977). The National Academy of

Sciences (1972) has reported that infant poisonings associated with water have arisen

from water used in the preparation of milk fonnulas. In some cases, the nitrate was

presumably further concentrated by boiling.
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2.1.2 Nitrosamines

Nitrates and nitrites in food and water, together with secondary and tertiary amines, are

considered possible precursors of nitrosamines which have potential carcinogenic,

teratogenic, and mutagenic properties (Dahab and Kalagiri, 1996; National Academy of

Sciences, 1972; Shuval and Gruener, 1977). Mirvish (1991) reported that, in tests

conducted upon rodents, nitrosamines induced tumors of the liver, kidney, esophagus,

oral and nasal cavities, lungs, trachea, urinary bladder, pancreas, and thyroid. In

addition, nitrosamides indul:ed tumors of the stomach, intestine, brain, nervous system,

bone and skin, acute leukemia, and T and B cell lymphoma. There is no other group of

carcinogens that can produce such a wide variety of tumors (Mirvish, 1991). Greenblatt

et a1. (1971) reported just as many tumors resulting from the simultaneous feeding of

nitrite and secondary amines as from the feeding of preformed nitrosamine. Shuval and

Gruener ( 1(77) note the possibility that similar simultaneous ingestions in the human

diet, through food or water, may present a human hazard. Although n-nitrosamine

compounds have been shown to cause cancer in test animals, the USEPA has not

classified the carcinogenicity of nitrate and nitrite, because of insufficient long-tenn

(e.g., 20 to 30 years) case studies (Dahab and Kalagiri, 1996; Dahab and Sirigina, 1994;

Self and Waskom, 1992).

2.1.3 Additional Health Concerns

Less conclusive evidence exists relating nitrate and nitrite in drinking water to other

health complications. Spalding and Exner (1993) report that a number of correlation

studies have been conducted that provide only weak evidence of an association between

11



ingesting nitrate in drinking water and hypertension, increased infant mortality, central

nervous system birth defects, certain cancers, and non-Hodgkin's lymphoma. A lifetime

exposure to nitrates and nitrites above the MCL has the pot~ntial to cause diuresis,

increased starch deposits, and hemorrhaging of the spleen according to the USEPA

(1998). Skipton and Hay (1998) and Lamarre (1998) indicate that nitrate may be linked

to miscarriages, and Shuva] and Gruener ( 1977) report changes in heart blood vessels and

behavioral effects in laboratory animals.

2.2 NITRATE CONTAMINATION OF GROUND WATER

In 1990, the USEPA found, in the National Pesticide Survey (NPS), that approximately

11% of the 566 community drinking water supply wells tested in agricultural areas of the

United States contained between 3 and 10 mgIL NOJ-N; 1.2% of the wells tested

exceeded the 10 mgfL NOJ-N maximum contaminant level (MCL). Approximately 57%

of the private wells tested contained detectable levels of nitrates, with 2.4% exceeding

the MCL. This, according to the USEPA, indicates that up to 1,130 public and

approximately 250,000 private domestic water supply wells may have been exceeding the

MeL for nitrate in 1990 (Briskin, 1991). Significant evidence has been presented to

indicate that nitrate ground water concentrations have been and are continuing to increase

in agricultural portions of the world (Spalding and Exner, 1993). In 1992, the EPA

estimated that 4.5 million people in the U.S., including 66,000 at-risk infants, used

drinking water from either community supplies or domestic wells that exceeded the

federal nitrate limit.
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2.2.1 Sources o/Contamination

A low background concentration of nitrate exists In most natural waters. Though

nitrogen IS the most abundant element in the Earth's atmosphere, the nitrate

concentrations in natural surface waters are typically below 5 mgIL N03-N. Higher

concentrations are often observed in ground water, because of a lack of dilution from

surface runoff and because plant uptake and organic carbon for denitrification are

minimal (Gregory and Sheiham, 1981; Fraser et aI., 1980). Increases above the natural

background nitrate concentration are most often attributed to agricultural practices and

improper disposal of human and animal waste.

The application of nitrogen fertilizers, including manure, in excess of plant requirements

to crops and fields is a significant source of nitrate contamination of ground water.

Bacteria in the soil oxidize ammonium to nitrate, and because nitrate is both very soluble

and negatively charged, it is quite mohile, moving at approximately the same rate as

water. Once it reaches ground water, the nitrate ion is very stable and, since it does not

volatilize, nitrate is likely to remain in water until it is consumed by plants or other

organisms. As a result, steadily increasing nitrate concentrations are being experienced

in many rural ground water sources (Cook et aI., 1997; US EPA, 1998).

After the application of fertilizers, the most prevalent source of nitrate contamination is

probably organic nitrogen from animal feed lots, septic systems, and municipal waste

treatment discharge. Wild (1997) indicated that urban sewage effluents can contribute up

to 40% of the nitrates present in surface water. There is an increasing trend toward tht:
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reuse of sewage effluents. In semiarid areas with limited ground and surface water, such

as Israel, this is an important source of water. In Israel, shallow ground water

contamination by nitrates was attributed to apphcatlons of fertilizer and sewage effluent

(Ronen and Magaritz, 1985; Spalding and Exner, 1993).

2.2.2 National Distribution ofNitrate Contamination

The first comprehensive, nation-\\-;de evaluation of the areal distribution of nitrate in

ground water was completed by Madison and Brunett (1985). Their study drew from

data in the U.S. Geological Survey's Water Storage and Retrieval System

(WATSTORE), representing a 25 year record of nitrate analyses in more than 87,000

wells. The map (Figure I) resulting from this study indicates that the distri bution of

ground water nitrate is nonunifonn, with greatest concentrations found in the central and

western regions of the United States.

Nilrott-nITro~.n coneen1rQ!"'n

WOllr ,,,mpl" e>lcllded 3mg/L In:

• 2!> per<:enl Or more of sompled .ell$

~ Fewer ll>on 25 p"c~nl of ~","j)led weill

No. l!~ter,.illed

D Fewer lhQrl ~\Ol'Ctl, ller coonty in ~to bo••

Figure 1: Areal distribution of NOJ-N concentrations in ground water in the continguous USA
(Madison aDd Brunett, 1985)
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Nitrogen gas is the most abundant gas in the atmosphere, and as such provides a reservoir

from which nitrogen is removed through the transformation of nitrogen fixation. Cells

convert nitrate or ammonium to proteins through assimilation. Organic nitrogen is

transformed to ammonia during the biological decomposition of dead plant or animal

tissues and animal fecal matter. This process is referred to as ammonification. In the

presence of molecular oxygen, two categories of nitrifying-bacteria are responsible for

oxidizing ammonia to nitrate in a two-step process. Nitrosomonas oxidize ammonium to

nitrite via hydroxylamine (NH
2
0H); then, Nilrobacter oxidize the nitrite to nitrate

(Bitton, 1994). Energy released during this nitrification transformation is used in
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synthesizing cell material from carbon di.oxide. In a similar manner, in an anoxIc

environment, many heterotrophic as well as some autotrophic bacteria are capable of

transforming nitrate to nitrogen gas through a multi-step process by using nitrate as the

terminal electron acceptor along with an external carbon source. This is referred to as

denitrification.

2.4 HETEROTROPHIC DENITRIFICAnON

Nitrogen removal may be accomplished through one or a combination of physical.

chemical, and biological processes. For the removal of nitrogen from municipal

wastewater, by far the most common approach to treatment has been biological. In

recent years, efforts have been made in the United States and abroad to take the

biological denitrification processes used in the treatment of wastewater and adapt them to

the treatment of drinking water as suitable alternatives to the expensive

chemical/physical processes currently employed. The majority of this research has been

conducted at the bench and pilot plant scales. Through these studies, a selection of

reactor types and configurations have been proposed.

Biological denitrification processes are divided into two categories, heterotrophic and

autotrophic, based upon the type of bacteria facilitating the reduction of nitrate to

nitrogen gas. A suitable carbon and energy source must be available for biological

denitrification to take place. Heterotrophic bacteria require an organic carbon source,

which may also serve as the source of energy to fuel the reaction. Since drinking water

sources, and ground waters in particular, are inherently low in organic carbon content, an
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external carbon source may need to be provided. Autotrophic bacteria, on the other

hand, are capable of assimilating inorganic carbon such as carbon dioxide and

bicarbonate, while satisfying their energy requirement through the oxidation of molecular

hydrogen or reduced sulfur species (Kruithof et aI., 1988; Rutten and Schnoor, 1992).

Biological denitrification occurs in a two step process. The organisms first reduce

nitrates to nitrites, and then produce nitric oxide, nitrous oxide, and nitrogen gas (Dahab

and Srinivas, 1993; Kurt et aI., 1987). The pathway for nitrate reduction is:

The last three compounds are gaseous products that can be released to the atmosphere.

The microorganisms responsible for biological denitrification are facultative aerobes,

meaning that they are capable of using nitrate and nitrite as terminal eJ ectron acceptors in

the absence of molecular oxygen. Facultative bacteria will use available electron

acceptors preferentially, based upon the which one will release the greater amount of free

energy. In the case of facultative aerobe populations, preference will first be given to

oxygen, followed by nitrate, iron III or manganese IV, sulfate, and finally carbon

dioxide. Because the reduction of molecular oxygen releases a greater amount of free

energy than the reduction of nitrates, the denitrification process must be carried out in an

anoxic environment. According to Bitton (1994), denitrification may occur between 5

and 50°C with reactions slowing at the lower temperatures. Denitrification is most

effective at a pH between 7.0 and 8.5, with the optimum being around 7.0. To avoid the

performance variability associated with extreme variations in raw water characteristics,
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biological denitrification In drinking water studies has been limited to treatment of

ground waters.

Many genera of heterotrophic bacteria are known to denitrify, including: Pseudomonas,

4

Achromobacter, Alcaligenes. Bacillus, Hyphomicrobium, Chromobacterium,

-

Halobacterium, Moraxella. Micrococcus, Neisseria, Paracoccus, Azospirillum,

Rhodopseudomonas, Proteus, Thiobacillus, Vibrio, Xanthomonas, and Klebsiella

(Rittmann and Langeland, 1985). These bacteria use an organic carbon source to fulfill

their requirements for both energy and carbon for cell synthesis. In traditional

wastewater applications, it has been possible to take advantage of the organic material

already existing in the water as a readily available carbon and energy source. Adaptation

to the treatment of drinking water requires that an external carbon source be added to the

water. since organic carbon concentrations in drinking water sources are typically too

low to support significant denitrification. Sugar, corn syrup, acetic acid, propionic acid,

ethanol. acetone, and methanol have all been studied as potential low-cost carbon and

energy substrates for denitrification (Boehler and Haldenwang, 1992; Lamarre, 1998; St.

Amant and McCarty, 1969). Of these, methanol has been the most commonly-used

substrate for economical and operational (low solids production) reasons (Dahab and

Lee. 1988). Although methanol is a known human poison. it is felt safe for use at the

low concentrations required (St. Amant and McCarty, 1969).

When methanol is used as the carbon source, the energy and synthesis reactions can be

represented as follows (Metcalf and Eddy, 1991):
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Energ)' Reaction, Step 1: Nitrate to Nitrite

6N03- + 2CH30H ~ 6N02' + 2C02 + 4H20

Energy Reaction, Step 2: Nitrite to Nitrogen Gas

6N02' 3CH30H ~ 3N2 + 3C02 + 3H20 + 60H'

Overall Energy Reaction:

6N03"+ 5CH30H ~ 3N2 + 5C02 + 7H20 + 60H'

As represented by the production of hydroxide in the overall energy reaction above, one

overall effect of denitrification is an increase in alkalinity and pH,

Metcalf and Eddy (1991) also reported the following equations developed by McCarty et

a1. (1969), In practice, 25-30% of the methanol utilized is required for bacterial cell

synthesis (Metcalf and Eddy, 1991). Therefore, laboratory studies were used to develop

an overall equation to describe the removal of nitrate.

Typical Bacterial Synthesis Reaction:

3N03" + 14CH30H + CO2 + 3H+ ~ 3C5H70 2N + H20

Overall Nitrate-Removal Reaction (Empirical Equation):

NO)" + 1.08CH30H + H+ ~

0,065C5H70 2N + 0.47N2 + 0.76C02 + 2.44H20

If all nitrogen to be removed is in the form of nitrate, and there is an absence of dissolved

oxygen (as is frequently the case for ground water) the above empirical equation may be

used to determine the overall methanol requirement. In some cases, non-negligible

amounts of nitrite or dissolved oxygen may be present in the reactor influent, and the
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carbon/energy source requirement will be correspondingly increased. Nitrite will elevate

the methanol requirement according to the step two reaction above. The substrate

demands for oxygen, which must be removed before denitrification will occur, can be

estimated stoichiometrically from the following equation (St. Amant and McCarty,

1969):

Oxygen Demand Reaction:

302 + 2CH30H ~ 2C02 + 4HzO

Combining these reactions, St. Amant and McCarty (1969) have proposed the following

empirically derived equation for calculation of the total methanol requirement where

nitrate, nitrite, and dissolved oxygen are present.

Overall Methanol Requirement:

Cm = 2A7No + 1.53N, + 0.87Do

where: Cm = required methanol concentration, mglL

No = initial nitrate-nitrogen concentration, mglL

Nt = initial nitrite-nitrogen concentration, mglL

Do = initial dissolved-oxygen concentration, mg/L

Similar energy and empirical equations can be developed for each of the many carbon

sources proposed for use in biological denitrification. When a simple carbon source such

as methanol or acetic acid is chosen, the biological solids production by the system is

small, a useful characteristic in that the overall sludge production is minimized (USEPA,

1975). "While different types of organic compounds may affect biomass yield
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differently, the choice of a compound is generally based on economic comparison."

(Dahab and Lee, 1988)

In addition to whether a biological denitrification reactor utilizes heterotrophic or

autotrophic bacteria to accomplish nitrate removal, biofilters may also be classified by

the way they retain biomass within the filter and bring it into contact with the water to be

treated. Reactors may be of either the attached growth or suspended growth type. In

1994, Green et al. reported on ground water denitrification using an upflow sludge

blanket (USB) reactor. Suspended growth systems retain biomass by sludge

aggregation. Once flocs fonn, they then remain suspended in a sludge blanket where

contact with the upward flowing treatment water occurs. Green et al. (1994) found that

this type of reactor was strongly affected by the hardness of the water as a result of the

mineral content of the flocculated sludge granules. In their study, water containing

between 150 and 380 mgIL (average of244 mg/L) of hardness (as CaCOJ) resulted in the

fonnation of large granules with low mineral content (10-15% of TSS) and poor settling

characteristics. Consequently, floating sludge and biomass washout occurred. High

sludge blanket biomass concentrations of 30-40 g/(L sludge blanket) were maintained

when a water with a hardness of 380-450 mg/L as CaCOJ was used. This sludge had a

mineral content of about 25% with very low sludge volume index (SVI) values of 15-30.

Under these latter conditions the USB reactor exhibited stable operation at volumetric

loading rates up to 4 kg N/mJ*day, corresponding to a retention time of 8 min (Green et

aI., 1994).
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In an attached growth reactor, a support medium is supplied for the biomass to

accumulate upon, forming a biofilm which the water then passes over. Attached growth

biofilter systems are generally used to minimize the potential washout problems

associated with continuous solids separation. Instead of continuous solids separation, a

periodic air scour is used to breakup solids during a backwashing and solids wasting

cycle (Cook et aI., 1997). Anoxic biofilters tend to be operated in an upflow mode to aid

in the release of nitrogen gas produced. In the published studies, the use of heterotrophic

denitrification processes far exceeds the use of autotrophic processes. These processes

generally employ a fixed film reactor followed by a filtration step to remove the biomass

that has sloughed from the reactor.

In 1988, Dahab and Lee operated a static-bed upflow reactor for 10 months with a feed

concentration of 100 mgIL N03-N. Their two-fold objective was to examine nitrate

removal characteristics exhibited by static-bed reactors packed with two different types

of commercially available media, one made of 25 mm spherical modules and the other of

16 mm cylindrical Pall rings. Second, the team sought to determine basic kinetic

coefficients and develop a simplified kinetic model to describe the fundamentals of

biological denitrification of drinking water. Laboratory reactors were constructed of

Plexiglas tubes, 125 mm inner diameter by 1.20 m tall, packed with the different

synthetic medium. The carbon to nitrogen ratio (C:N expressed as grams of carbon to

grams of nitrogen) and hydraulic retention time were used as the principal variables

throughout the study. Using acetic acid as the supplied carbon source, it was determined

that an optimum C:N ratio was between 1.45-1.5: 1. A CN ratio of 1.45: I resulted in
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low soluble and suspended solids in the effluent, but such attempts to reduce the C:N

ratio below 1.5: 1 resulted in breakthroughs of nitrate into the reactor dfluent. The

background turbidity (turbidity of filtered samples) was used as a measure of colloidal

matter in the reactor effluent. Turbidity levels were fairly high, indicating that additional

treatment would be required to remove the colloidal material. It was noted however, that

background turbidity continued to improve as the reactors aged (Dahab and Lee, 1988).

In a similar study, which lead to the development of the process installed in Coyle,

Oklahoma, Cook, Silverstein, and Hogrewe (1997) operated and detennined the kinetics

of an upflow packed tower reactor developed at the University of Colorado, Boulder.

This biofilm process featured the introduction of "intennittent fluidization of the buoyant

high-porosity column packing media with air flow to minimize reactor clogging and

associated deterioration in denitrification perfonnance and to minimize discharge of

suspended biofilm matter into the denitrified product water." (Cook et aI., 1997) This

"air scour" procedure, implemented every 21 days, was thought to be more easily

achieved than operation of a continuously fluidized bed. In this study, two Plexiglas

reactors (15.2 cm in diameter by 2.6 m tall) were operated in series. Each reactor was

packed to a depth of 2.1 m with a buoyant polypropylene media (Jaeger Tri-Pak, #1,

Polymer Piping and Materials, Houston, TX). The reactor influent was City of Boulder

tap water augmented with nitrate, phosphate, sodium bicarbonate, and acetic acid. Flow

rates averaged 1.14 liters per minute, resulting in an empty-bed detention time of 83

minutes. To facilitate the denitrification reaction, dissolved oxygen was stripped from

the influent water before chemical addition by contact with nitrogen gas flowing at a rate
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of 200 ml/min through a 5.1 cm diameter by 2.6 m tall Plexiglas tube. During two two

month periods of operation, the int1uent nitrate nitrogen was reduced from an average of

20 mgfL NOJ-N to an average of 2.9 mgfL NOx-N by supplying acetic acid at a C:N ratio

of 1.5:1. "First-order, zero-order, and half-order kinetic models of packed tower

denitrification were evaluated, and it was found that the half-order model best fit the

steady-state nitrate profiles, with a reaction constant of 0.0331 (mg-N03-N/L)°,5/min."

(Cook et aI., 1997) In response to an influent pulse of 40 mg/l N03-N lasting 5 hours,

nitrate reduction did not deviate from the 18 mgfL N03-N experienced under normal

operation. This inability of the biofilm to respond to an instantaneous increase in

influent nitrate is better explained by a zero-order model (Cook et aI., 1997).

This process was later up-scaled to a yearlong demonstration project, conducted in

Wiggins, Colorado, a small fanning town (population 650) located 75 miles northeast of

Denver (Lamarre, 1998). The process was scaled to two 3-ft diameter reactor columns

each standing lOft tall and packed with highly porous polypropylene media.

Researchers opted to provide food-grade com syrup as the required carbon source

because it is 40% carbon by weight, already approved for human consumption, has a low

water content (minimizing the possibility of contamination hy other bacteria), and is

typically less expensive than vinegars with high levels of acetic acid (Lamarre, 1998).

Researchers suggested that although com syrup possesses the property of crystallization

at low temperatures, it should not pose a problem as this can be overcome by the use of

inexpensive heaters during cold periods. This demonstration plant which used sand

filtration to remove residual bacteria and fine particles showed that it was capable of
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consistently removing more than 85% of the incoming nitrate which had been augmented

to 20 mgIL for testing purposes. "Data from the Wiggins demonstration enabled the

town of Coyle, Oklahoma, to win state approval for the first commercial application of

the technology." (Lamarre, 1998)

Although the full-scale installation at Coyle, Oklahoma is the first in the United States,

similar processes have long been operated in Europe. Richard and Th6bault (1992)

reported on seven years of operation and progress with biological denitrification in full

scale municipal water treatment plants using the Nitrazur process in Europe. "The

biological removal of nitrates first became operational in 1981, at the Chateau-Landon

plant in France. From the setting up and operation of this first-generation plant, a

number of design improvements emerged, resulting in second-generation plants such as

those operating at Issoudun, in France, and at Hanau, in Germany. Considerable cost

reductions, mainly in manpower expenditure, have been obtained by optimization of

operating procedures." (Richard and Thebault, 1992) Figure 6 shows the general layout

of the Nitrazur process at the first-generation Chateau-Landon plant in France which

includes as its major stages:

• Nitazur D reactor - an up-flow bed reactor filled with Biohte L (grain size

originally 1.7 mm but increased to 2.7 mm for improved biomass

distribution) to a depth of 3 m. The reactor surface is 6.5 m2 giving a

nominal operating rate of 8 m1hr. Raw water, dhanol (carbon substrate),

and phosphoric acid are introduced into the reactor through a manifold

located near the reactor bottom. The reactor is reported to be capable of
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denitrifying raw water with nitrate contents up to 150 mg/L (34 mg/L as

nitrogen).

• Cascade aeration - used to oxygenate the water before filtration.

Coagulants such as ferric chloride may be added at this point to improve

filter operation.

• Filtration through granular activated carbon (GAC) - 6.5 m2 by 1.2 m

deep (empty bed contact time 9 minutes) used to trap residual floc from

reactor, breakdown biodegradable organics (excess ethanol in particular),

and return any nitrites present to their nitrate form as well as nitrify any

ammonia which might be present.

• Filtered water tank - includes both 30 mJ of unchlorinated storage for

reactor wash water and 100 mJ of chlorinated water storage providing

sufficient disinfectant contact ti me.

30



-

Ethanol Phosphoric
acid

Chlorine

To supply
.,.

Wash water
pumps ~~--,---""

"---------.:..-----<

';..

Ra'Hwater

Pumping Denitrification Aeration GAC
filtration

Disinfection

Figure 6: General Jay-out of the Nitrazur process (Richard and Thebault, 1992)

Operation and maintenance of the system requires a reactor wash consisting of an air

scour, followed by draining of the waste wash water to municipal waste, and then a rinse

with treated but not chlorinated water. The system produces about 18 grams of sludge

per 100 grams of nitrate removed. Problems encountered at the Chateau-Landon plant

included nitrite formation and water loss.

Richard and Thebault (1992) reported that nitrite output, rather than nitrate content,

became the more important operational parameter at the Chateau-Landon plant for the

following reasons:

• The raw water nitrate content was relatively stable over time.
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• The reduction in nitrate content was roughly proportional to the amount of

carbon substrate (ethanol) applied.

• The plant was geared to produce water with a nitrate content less than half

of the 50 mg/L (11.3 mg/L as nitrogen) allowable, providing a large

margin of safety.

It was reported that residual nitrites were generally removed in the subsequent cascade

aeration, activated carbon fi ltering, and chlorination stages, provided that nitri fying

bacteria such as Nitrobacter , which colonize the activated carbon filter, are given time to

adapt to the variation in nitrite content. Experience has shown that the appearance of

nitrite is preceded by a decrease in the level of nitrate reduction for a given amount of

injected alcohol as illustrated in Figure 7 by the region marked by arrows.

mg/I ) ....

N03 inlet

N03 outlet
~

time
Figure 7: Reduction in nitrate removal prior to tbe release of intermediate nitrite (Richard and
Tbebault, 1992)
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At the Chateau-Landon plant, the following changes were implemented to counter the

nitrite problem:

• In April 1985, the use of acetic acid as carbon substrate was replaced by

ethanol. In addition to less frequent and lower concentration nitrite

occurrences in the reactor effluent (see Figure 8), the plant also

experienced the benefit of a reduced operating cost and fewer problems

with corrosion of substrate handling lines.

• In May L985, the plant was equipped with an in-line nitrite meter which

measures nitrite levels following the filtration and chlorination steps.

Pumping is automatically halted, and duty staff alerted if nitrites ever

exceed I mg/L (0.3 mgIL as nitrogen).

• The effective size of the Biolite filter media was increased from 1.7 mm

to 2.7 mm to provide a more even distribution of biomass over the entire

reactor depth. This change remained consistent with the need for efficient

washing to remove old biomass and thus avoid the appearance of nitrites.

• A system was established to improve circulation throughout the reactor to

prevent the accumulation of reagents at the bottom of the reactor during

the operating cycle.

Richard and Thebault (1992) report that during their expenences with biological

denitrification facilities, water loss occurred in two primary ways: as a result of reactor

and filter washes, and by poor matching of water production to demand. They report that

up to 20% of the total volume treated at the Chateau-Landon plant was lost through the

overflow outlet due to insufficient tank capacity, especially in winter. In contrast, the

plant at Issoudun was reported to have sufficient holding capacity. With efficient
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management of water reserves, overflow losses were eliminated, and so losses of only

5% (yearly average) of the total volume pumped could be wholly attributed to washing

operations.
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Figure 8: Replacement of acetic acid by ethanol (Richard and Thebault, 1992)

Investigation of start-up and operation of a fixed-bed denitrification reactor using ethanol

as carbon substrate for biomass attached to various light to heavy carrier materials was

conducted by Kappelhof et a1. (1992). Start-up of the up-flow reactors was conducted

with and without inoculation. The start-up procedure consisted of recirculation of a

nutrient enriched medium (1000 mglL NO)-, 400 mglL ethanol, and 4 mglL PO/") with

renewal of the medium upon nitrate depletion. This initial recirculation phase was
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followed by a step-wise increase in the superficial velocity each time the nitrate in the

reactor effluent was reduced to less than 10 mgIL. This step-wise increase continued

until the desired nitrate removal capacity was reached after 75 days, giving a total start

up time of 94 days. Start-up with inoculation was carried out in much the same way

except that the reactor was inoculated with a biological denitrification reactor effluent

that was augmented by the same nutrient enrichment used in the previous start-up. This

medium was recirculated only until the nitrate concentration fell below 50 mglL

(achieved within two days) and then the step-wise increase of the superficial velocity

began. With inoculation, the total start-up period was shortened to about 20 days. To

avoid short-circuiting and maintain reactor performance, a reactor rinse was necessary.

During the superficial velocity increase phase of start-up a rinse cycle, consisting of air

flow at 50 mJh for 5 min followed by a water rinse until the effluent turbidity dropped

below 4 NTU, was implemented each time nitrate concentrations increased due to

nitrogen gas accumulation.

Kappelhof et al. (1992) presented their experiences with the necessity, effectivity, and

control of rinsing procedures to maintain reactor biomass constant during normal

operation. Sufficient rinsing is necessary to prevent biomass and nitrogen gas

accumulation which may cause short-circuiting and poor effluent quality; however,

overly-intensive rinsing must be avoided so that biomass concentrations remain high

enough to provide the desired nitrogen removal capacity. The effectivity of the rinse

depends upon the rinsing procedure used (separate air/water rinsing or combined
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air/water rinsing followed by rinsing with water), velocities of air and water, duration of

rinse, and the rinsing frequency.

Kappelhof et al. (1992) present the following five parameters which may be used to

detennine when the reactor rinses should occur:

• Increasing nitrate concentrations 10 the reactor effluent as a result of

channeling;

• Increasing biomass concentration on the carrier material as indicated by

the bed height (not a useful parameter at short-tenn as it may take weeks

for the effects of biomass accumulation to be seen);

• Increasing headloss in the reactor due to production and accumulation of

biomass and entrapment of nitrogen gas within the filter (only a reliable

parameter for starting a rinsing procedure when headloss has not reached

its maximum for the specific weight, grain size, and bed height of the

carrier material, and when it continues to rise continuously between

rinses);

• Increasing turbidity in the reactor effluent as a result of biomass wash-out;

or

• Decreasing ratio of active biomass concentration (although the active

biomass concentration may be estimated by ATP (Adenosine-Tri

Phosphate) measurement, the application of this parameter is still under

development).

Three carrier materials were investigated by Kappelhof et al. (1992). A brief summary

of their experiences with expanded schist (Filtraperl), anthracite, and sand is presented as
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Table 3. In spite of a relatively high rin e water demand, sand was chosen a the

preferred carrier material. All three carrier materials were capable of achie ing good

biomass attachment and nitrogen removal capacity; however, sand proved to be the least

abrasive at the high rinse velocities required for effective biomass removal. At lower

rinse velocities, the lighter expanded schist and anthracite experienced problems with the

carrier material floating due to nitrogen gas accumulation in the excessive flocculent

biomass which was not sufficiently removed. An additional benefit to the use of the

heavier sand as carrier material is that it is more likely to lend itself to reactor control by

headloss as described above.

Material Exp. Schist Anthracite Sand

Grain Size 2.5-4.5 2.5-4.0 2.0-3.0

Max. Biomass Cone. (giL)· 95 80 160

Removal Cap. (gI(m3'b» 550 430 600
Removal of Biomass hard hard hard

Complexity of Rinsing complex comple simple

Process Stability - --
Quality of Material not constant good good

Abbrasive yesC yesC no

Rinsing-Water Demand (%)b 3 3 6

a maximum biomass concentration observed (in g biomass per liter carrier material)
b related to the treated water
c at high rinsing velocities

Table 3: Experiences with three types of carrier material in a fixed bed upnow denitrification
reactor (Kappelbof et aI., 1992)

In a more recent study (Dahab and Kalagriri, 1996), research was conducted on two-

stage cyclically operated, fixed film bio-denitrification reactors in an effort to overcome

the problem of residual carbon release. "In two-stage cyclic operation, two equally sized
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reactors are operated in series. After a certain period of operation to maintain stability in

the first (lead) reactor, the flow regime is reversed and the influent feed solution is

transferred from the lead to the follow reactor. In the case of nitrate removal, the length

of period between flow reversals is to be chosen on the basis of optimizing overall nitrate

and residual organics removal in the combined system and once such removal begins to

decline in the follow unit, then the flow reversal is effected. In this manner, the follow

reactor is maintained in or near an endogenous respiration mode thus ensuring effective

residual substrate removal in this unit. Thus, the two-stage cyclic operation would be

capable of producing much lower organic concentrations than single-stage systems

operating at the same organic loading." (Dahab and Kalagiri, 1996)

In the experiment conducted by Dahab and Kalagiri (1996), reactors were constructed of

Plexiglas tubes standing 460 mm high with a 70 mm inner diameter. Dispersion rings

were placed periodically throughout the length of the reactors to minimize the effects of

short circuiting. Biomass was supported on 16 mm cylindrical Pall rings having a

specific surface area of 0.44 mm2/mm J
• Flow through the reactors was controlled by

peristaltic tubing pumps delivering a solution intended to simulate a natural ground water

with a nitrate concentration of 50 mg N03-N/L. Ethanol was added as the external

carbon source. Throughout the experiment the reactors were monitored for nitrate,

nitrite, COD, total suspended solids, pH, and turbidity. This experiment was operated in

six phases with the hydraulic residence time (HRT) being set as the variable between

phases. The two-phase cyclic reactor systems studied in phases one through six were

operated at HRT values of 24 hr, 12 hr, 6 hr, 3 hr, I hr, and 30 min, respectively. Flow
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through the two-stage reactor was such that the two units were operated in series with the

lead unit receiving the full nitrate load and the follow unit receiving the effluent of the

lead. Flow reversal occurred by changing the flow scheme so that the follow reactor

took the lead position and vice versa, thus completing one full cycle (see Figure 9).

During each phase of the experiment a single stage reactor was operated under identical

flow rate and nitrogen loading conditions as the two-stage reactor and served as the

experimental control.
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i

Rl R2
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~e>--

Cycle One Cycle Two

--

Figure 9: Schematic diagram of tbe two-stage cyclic reactor system (Dabab and Kalagiri, 1996)

Results of this study showed little variation 10 the nitrate removal efficiencies

experienced by the one and two-stage denitrification reactors. Both configurations

demonstrated the ability to sustain greater than 98% nitrate removal efficiencies at HRT

values as low as 30 min. At HRT values of 3 hrs or less, intermediate nitrite began to

appear as a result of the shortened contact times. The advantage of the two-stage reactor

was demonstrated i.n its improved ability over the single stage reactor operating at the
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same HRT and nitrate and COD loading rates to eliminate residual carbon and

intermediate nitrite release in the final effluent, particularly at lower HRT values. This

increased N02- and COD removal efficiency comes from the exposure of the lead unit

effluent to the high concentrations of biomass acquired in the follow unit as a result of its

previous operation as the lead unit.

The two-stage reactor exhibited the ability to effectively deal with the shock loads

experienced as a result of flow reversal. Dahab and Katagiri (1996) noted that the lead

reactor initially lost a portion of its nitrate removal capacity following flow reversal.

Nitrate removal capacity nearly recovered after one week of operation with steady-state

performance of the lead reactor typically regained after two to three weeks. Despite the

reduction of lead reactor performance, overall two-stage performance remained nearly

constant throughout the stage reversal process. The authors highlight the potential

advantages of the two-stage process.

• The follow unit acts as a polishing unit to provide additional removal of

nitrate, nitrite, and organic carbon breaking through the lead reactor.

• The follow unit serves as a "safety net" should the lead unit fail.

• The follow unit, having a high concentration of biomass capable of

receiving extreme shock loads, serves as a stand-by unit which could

easily be switched to the lead position at any time without any major

anticipated loss of performance.
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2.5 COMPETING TECHNOLOGIES

Although biological denitrification has been proven effective in the removal of nitrate

and nitrite from drinking waters, as mentioned previously, concerns over the chemical

and biological stability of the treated water have been raised. Until biological

denitrification is able to address these issues and prove itself to be an economically viable

alternative through operation of full-scale facilities such as the one installed in Coyle,

Oklahoma, treatment of high nitrate drinking waters will continue to be dominated by the

various physical and chemical processes currently in use. These processes include ion

exchange, reverse osmosis, and blending. Other methods are available to partially reduce

nitrate concentrations such as distillation, electrodialysis (Kapoor and Viraraghavan,

1997), and to a very limited degree, chemical precipitation (Huang et aI., 1998; Kapoor

and Viraraghavan, 1997; Princz et aI., 1987), but these methods have not yet been proven

economical for use at full-scale (Dahab, 1987; Self and Waskom, 1992).

2.5.1 Ion Exchange

The process of ion exchange i.s frequently used for the removat of nitrates from water. In

the ion exchange process, the contaminated water supply is passed through an ion

exchange resin bed of porous granules or beads. During contact, nitrate ions in the water

are exchanged for a similarly charged ion, such as chloride, according to the following

reaction (Dahab, 1987).

R-CI + NaN03 ---+ R-N03 + NaCI
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"In the above reaction, 'R' represents the resin immobile (i.e., solid) phase. When the

resin's exchange capacity is used up. the resin bed must be taken out of service and

regenerated. Regeneration restores the bed's exchange capacity to its original state by

reversing the reaction and thus forcing the nitrates out of the resin under the action of a

concentrated (brine) solution." (Dahab, 1987) The regeneration reaction can be depicted

as follows:

R-N03 + NaCl ~ R-Cl + NaNO)

After the bed has been regenerated and washed, it is ready to be returned to regular

operation.

To date, nitrate removal by ion exchange has been limited by two basic problems, which

have driven continued research into improving the ion-exchange process, as well as

alternative treatment methods such as biological denitrification. The first problem is the

need for an ion-exchange resin bed that shows a high selectivity for nitrate. Typically

anion-exchange resins display the highest selectivity for sulfate, followed by nitrate,

chloride, then bicarbonate (Kapoor and Viraraghavan, 1997). Sulfates are commonly

found in ground waters at concentrations that are several times that of nitrate. In these

cases, the nitrate removal capacity of the ion-exchange resin is reduced considerably by

the sulfate ions which are preferentially exchanged. Some researchers, such as Jackson

and Bolto (1990), have reported the development of nitrate selective resins. They report

that the preference of an anion-exchange resin for nitrate over sulfate increases as the

resin becomes more hydrophobic (less polar) and that nitrate-selective resins are more
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difficult to regenerate with sodium chloride solutions than their sulfate-selective

counterparts.

The second problem is disposal of the used regenerant. The regeneration process

produces a waste that is very high in nitrate and chloride (in the case of chloride

regeneration) and "although not considered hazardous, this waste stream typically

represents about 3% of the original water input and can be costly to dispose of."

(Lamarre, 1998) Regenerant waste disposal options currently available to ion-exchange

facilities include discharge to local municipal waste treatment facilities, land application,

and transport to other treatment works (Dahab, 1987, 1991).

2.5.2 Reverse Osmosis

Reverse osmosis is a process by which the water to be treated is forced across a

semipenneable membrane by subjecting it to pressures exceeding its corresponding

osmotic pressure. These pressures, which range from 300 psig (2,070 kPa) when treating

brackish water to 1,500 psig (10,350 kPa) for desalinating seawater, have the effect of

reversing the nonnal osmotic flow of water, leaving nitrates and other ionic species

behind (Kapoor and Viraraghavan, 1997; Dahab, 1987, 1991).

"Membranes commonly used are made of cellulose acetate, while membranes made of

polyamides and composite membranes are also available. These membranes do not show

preference for any ion, but the degree of salt rejection is found to be proportional to the

valence of ions present in the water supply." (Kapoor and Viraraghavan, 1997) As a

result, reverse osmosis generally results in better removals of multivalent ions than
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monovalent ions; therefore, it has been suggested by Montgomery (1985) that reverse

osmosis might be used to remove sulfates from a water supply prior to ion-exchange for

nitrate removal.

Fouling, compaction, hydrolytic deterioration, and concentration polarization are

common problems associated with reverse osmosIs membranes. The problems are

caused by deposition of particles and soluble materials, excessive temperature, pH

variations outside tolerance levels, and biological and chemical attacks (Dahab, 1991).

Therefore, pretreatment is generally required in order to minimize these problems and

associated maintenance. In addition, one-half to two thirds of the water rcmains behind

the membrane as rejected water (Self and Waskom, 1992). This rejected water contains

an elevated concentration of contaminants providing a disposal dilemma similar to that

experienced with ion exchange.

2.5.3 Blending

Reduction of nitrate concentrations In drinking water may also be accomplished by

blending the water with a lower nitrate water from a different source (i.e. water from a

deeper well), such that the overall concentration of nitrate in the finished water is

reduced to acceptable levels. It is important to note that this approach to solving the

problem of high nitrates does nothing in the way of removing the contaminant from the

water, but only dilutes it to a concentration considered safe for consumption. This

alternative may be used where the cost of nitrate removal or total conversion to the new

water source is considered excessive. This approach is often used in conjunction with
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other denitrification processes in the form of a split train treatment when the process of

choice is capable of treating water to levels well below the legal limit for nitrate. In this

way, only a portion of the water is required to be denitrified, with a second portion

bypassing the denitrification reactor and being remixed at an appropriate blend ratio.
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3.0 MATERIALS AND METHODS

During this study of the effectiveness of the biological denitrification process at Coyle,

Oklahoma, the water treatment facility was routinely monitored for anion concentrations

(C2H)OO·, cr, N02", NO)", PO/, and SO/) and non-purgeable organic carbon (NPOC).

During the latter part of the study, the water was also monitored for UV absorbance at

254 om, "a measure of humic-like constituents with an aromatic character (both humic

and fulvic acids)" which serves as an excellent surrogate parameter for estimating THM

precursors in water (Quanrud et aL, 1996; Edzwald et aI., 1985).

3.1 SAMPLE COLLECTION

Sampling events during the study occurred between 7:00 and 7:45 AM on Mondays,

Wednesdays, and Fridays at the Coyle, Oklahoma, water treatment facility. Coyle is a

small town located approximately 20 miles southwest of Stillwater on state highway 33.

"Construction of the Coyle, Oklahoma system was approved by the Oklahoma

Department of Environmental Quality (DEQ) in the Spring of 1997. The system was

installed during the summer of 1998 and has been operational since August of 1998. The

system was put into service on December 3, 1998 after completion of the testing required

by DEQ. The current system provides water to the 290 residents of Coyle and 400

school children." (NRT, 1999).

Seven taps throughout the facility, as indicated by Figure 10 (also included as Appendix

A) were routinely sampled during the study. Table 4 identifies each tap for purposes of

this study and indicates the tests that were routinely conducted on samples taken from
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each tap. Samples were collected in one-liter amber glass bottles with Teflon~ cap liners.

Before filling the sample bottles, the tap was opened and allowed to flush with several

volumes of sample, and the sample bottle was rinsed once with water from the sample

tap. A sample was obtained, then the samples were in ulated and brought to the

Oklahoma State University Environmental Engineering laboratories where they were

analyzed the same day. If testing was unable to occur during the morning hours, sample

bottles were kept refrigerated at 4°C until time of testing.

Tap # Tap Name Analysis

I Raw Anions, NPOC, UV254, Temp.

2 Post Vinegar Anions, NPOC, UV254

3 Post Reactor Anions, NPOC, UV254

4 Post Roughing Filter Anions, NPOC, UV254

5 Post Clear Well Chlorinated Anions, NPOC, UV254

6 Mixed Chlorinated Anions, NPOC, UV 254, Temp.

7 Post Sand Filter Anions, NPOC, UV2 4

• This tap is numbered out of equencc with the rest of the laps because it was not made availablc unlll 8/27/99,
nearly 3 monlhs after tcsting began.

Table 4: Taps utilized at the Coyle, Oklahoma water treatment facility

3.2 ION CHROMATOGRAPHY

Monitoring of common anions in the Coyle water was conducted by ion chromatography

(IC) on a Dionex (Sunnyvale, California), DX- 120 Ion Chromatograph controlled by

PeakNet 5.1 software. The chromatograph was equipped with an AS40 Automated

Sampler accepting 5 ml disposable PolyVials with filter caps. Anion separation of the 25

~I sample injection volume occurred in an IonPac AS 14 (4 x 250 mm) analytical column.

The eluent used was 3.5 mM Na2CO/I.0 mM NaHCO) at a flow rate of 1.2 mUmin.
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Detection occurred by suppressed conductivity usmg an ASRS-ULTRA Anion Self-

Regenerating Suppressor connected in the AutoSuppression Recycle Mode.

As a rule, 1000 mgfL (as compound) stock standards for each anion were made, and a

four-point standard calibration curve was created for the Ie shortly after the fir t of each

month during the duration of this study. Stock standards were made in accordance with

Standard Methods (APHA, 1992) and stored in one liter Nalgene plastic bottles

refrigerated at soc. Table 5 indicates the chemical (type, brand, and purity) us d in

making each of the stock standards and the anion concentration found in each of the

calibration and check standards routinely used. Before a freshly made stock standard was

used in the development of a new calibration curve, it was first run as a check standard

against the current calibration curve to verify consistency with previous standards. A

check standard and duplicate were incorporated into each analysis schedule in order to

monitor the consistency of performance of the ion chromatograph. Originally all

samples were run in duplicate, but repeated analysis showed Iittl variability b tween

duplicates so the use of duplicates was reduced to one per sample schedule in order to

conserve disposable vials.

Stock Standard CuUhration Standards (mlVl.)' Check Standurd

Anion Chemical Brand Purity (mg/L)' I.evell Level 2 Level 3 Level 4 (mWI.)'

CzHpO' CzH,Oz Spectrum Glacial. Reagent, A.C.S. 1000 I 30 60 tOO 40

cr NaCI Spectrum Crystal. Reagent, A.CL 1000 1 50 100 150 100
NOz' NaNOz Fisher Certified A.e.S. 1000 I 2 4 8 0.8

NO)' INaNO) Spectrum Crystal. Reagent, A.C.L. 1000 1 10 30 60 40

PO/' KHzPO, EM Science GR Crystals 1000 1 2 4 8 4

SO," K1SO. Fisher Powder. Certified A.C.S. iOOO I 30 60 100 60

Expre ed as compound.

Table 5: Ion chromatography calibration standard data
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3.3 TOTAL ORGANIC CARBON

The analysis of non-purgeable organic carbon (NPOC) was conducted on a Shimadzu

(Columbia, Maryland), TOC-5000A Total Organic Carbon Analyzer with an ASI-5000A

autosampler. The glass sample vials accepted by the autosampler contained

-

approximately 3 ml of sample, or 32 rol of standard, and were sealed with Parafilm prior

to being loaded into the autosampler tray to help prevent contamination during the

analytical run time. Regular sensitivity analysis of the NPOC was perfonned using the

acidification and sparge technique. The samples were acidified to a pH < 2 by the

automatic addition of 50 ,.11 of 2 N HCl. Just prior to injection, each sample was sparged

with zero grade compressed air for 10 minutes. This air was used as the carrier gas and

was supplied at a flow rate of 100 and 150 mUmin for sparging and carrier purposes

respectively.

Stock standards and calibration curves for the detennination of NPOC were also created

near the first of the month and at other times deemed necessary by changes in the

instrument operation or response or more commonly, a change in dilution water. The

stock standard was a 1000 ppm TOe solutlon made in a 250 ml volumetric flask by

dissolving potassium bipthalate (CSH5K04) in delonized water and acidifying to pH < 2

by the addition of sulfuric or phosphoric acid. The stock standard was kept refrigerated

at 4°C. Before a freshly made stock standard was used in the development of a new

calibration curve, it was first run as a check standard against the current calibration curve

to verify consistency wlth previous standards. The stock standard was then used to create

a low range (1, 2, 3 ppm) and a high range (4, 16, 24 ppm) calibration curve used in
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analysis of the samples. For each NPOC determination, the sample was injected a

maximum of 5 times with the best 3 or the first 3 to produce a standard deviation of less

than 200 area counts or a coefficient of variance of less than 2% being used to determine

the mean NPOC. These criteria were established by accepting the default limits built

into the software. NPOC determinations for all samples were run in duplicate and two

check standards (2 and 16 ppm) were incorporated into each analysis schedule in order to

monitor the consistency of performance of the TOC analyzer.

3.4 ULTRAVIOLET ABSORBANCE AT 254 NM .::

Ultraviolet absorbance at 254 om (DVm) was measured on a Shimadzu (Columbia,

'.i
,,,

'J

"-
Maryland), UV-160IPC UV-Visible Spectrophotometer in the Oklahoma State

University Microbiology and Molecular Genetics laboratory. The dual beam instrument

was first zeroed by placing two matched I-em quartz cells filled with deionized water

Both unfiltered and filteredinto the reagent and sample paths, respectively.

measurements were taken for water samples from each of the seven taps in Coyle.

Filtering occurred via a 0.45 /lm nylon syringe filter (FisherBrand). The filters for each

sampling point were reused and were rinsed with approximately 35 ml of deionized

water and 10 ml of sample before each use. The 5 mt plastic syringe used for

transferring samples was triple rinsed with deionized water and then triple rinsed with

sample before each use. The sample cell was well rinsed with a jet of deionized water

between each use. To compensate for haseline drift, the instrument was rezeroed

between measurements on each of the seven sample bottles.

-
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Possible interferences to the detennination of UV254 include pH and particulates

(Edzwald et al., 1985) as well as NO)' and N02' (Rittmann and Huck, 1989).

Comparison of values measured from filtered and unfiltered portions of sample

confinned a positive interference in Wlfiltered samples, most apparent in reactor and

roughing filter effluent samples where particulate matter was often visible. As a result,

only UV254 measurements collected from filtered samples have been used in estimating

changes in the presence of THM precursors throughout the facility. Measurements from

Wlfiltered samples have been included in Appendix C for comparison purposes only, and

in conjunction with the filtered values (also in Appendix C), may provide a rough

indication of the relative presence of particulates at various pre-sand filter locations at the

facility. Possible interference by NO)' and N02' was investigated by preparing dilutions

of each from IC stock standard solutions (see Table 5 above) and analyzing them for

UV254• Results of this procedure indicated that interferences by NO)' and N02' were

negligible over the range expected for samples in this study.
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4.0 RESULTS AND DISCUSSION

This study has provided the first look at system operation and perfonnance of a full-scale

biological denitrification system in the United States under the control of a part-time

operator as opposed to research personnel. Anion concentrations, including acetate,

chloride, nitrite, nitrate, phosphate, and sulfate were monitored, along with non-

purgeable organic carbon (NPOC). The system was monitored for 5 1/2 months with

samples taken from the raw well water and following every major unit or operation in the

facility. In addition, ultraviolet absorbance at 254 run (UV254) was measured during the

final two months of testing as a surrogate parameter for estimating trihalomethane

(THM) precursors. The data have been compiled and are presented here, along with

discussions of trends as they relate to the data and operational events occurring at the

facility.

To facilitate discussion, the operations and sampling taps at the drinking water facility

have been divided into four functional groups: raw water, biological denitrification,

filtration, and finished water. This section will first examine each of these groups

individually, looking at system operation and perfonnance with respect to time. Then,

discussion will shift to examination of trends that occurred with respect to location in the

facility, with the focus being placed on THM precursors.

4.1 RAw WATER

The ground water supply for the city of Coyle is quite shallow (approximately 20 feet).

Since Coyle is located within a mile of the Cimarron River, it was suspected that the raw
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well water quality is influenced by seasonal variations in precipitation and river

conditions, and that any such changes would be made manifest within days of such an

event. For this reason, measurement and monitoring of chloride in the raw water was

carried out as a simple means of detecting changes in the raw water quality. The ground

water is relatively high in chloride, reaching as high as 114.44 mgIL during this study.

Figure 11 graphically presents the results of chloride monitoring in the raw well water.

Note the large dip in chloride concentration beginning after June 23; this corresponds to a

large rainfall event that occurred over a period of several days. During this dip, the

chloride concentration reached a low value of 75.47 mglL, the lowest recorded in the raw

water during this study. One can see that after the dilution effects ofthe spring and early

summer rains had passed, the chloride concentration began to steadily climb during the

relatively dry summer and fall seasons. During the final weeks of testing, the chloride

concentration began to stabilize until one final small rainfall event was experienced in

late October, resulting in the small dip occurring at the end of the collected data.
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Before sampling began, the expectation was that an increase in nitrate concentration in

the raw water would be observed in response to rainfall events, as nitrate from fertilizer

applications was carried into the shallow ground water. This expected response did not

occur during the study period. Since sampling did not begin until the 20th of May, the

sampling period could have been too late in the spring to detect any major seasonal

variations or spikes in the nitrate concentration due to the timing of fertilizer application.

Another possible scenario is that the rainfall occurring during this study may have been

carrying with it a large amount of nitrate from the fields, but the amount of rainfall was

proportionately higher such that the net effect of the rainfall event was a dilution of

nitrate in the water supply. Nitrate levels during the study were at their highest during

the first few weeks. During this time, nitrate-nitrogen level was measured as high as

7.35 mgIL on May 17; at no time did any of the nitrate measurements exceed the MeL of

10 mgIL NOJ-N.

The well pump at the Coyle facility is cyclicaHy operated and pumps the raw water into a

1000 gallon holding tank. Raw water samples were taken from Tap #1 (see Appendix A)

immediately following the holding tank. A spot check of water temperature at this point

on September the 8th and 10th showed the ground water temperature to be 16°C.

Measurement of the water temperature from Tap #6 (after blending and just prior to

entering the distribution system as shown in Appendix A) showed little warming with

sample temperatures reading 18°C and l7°C on the two days, respectively. Since the

facility treats a ground water source, the water the temperature is expected to remain

fairly consistent throughout the year. Organic carbon concentration in natural ground
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water which will be reblended with a second portion of untreated raw water. In this

manner, the nitrogen concentration in the finished water can be reduced to acceptable

levels while avoiding the ex.cessive cost of providing carbon and nutrients for the direct

treatment of all water. During the period of study, nitrate levels in the raw water never

exceeded the MCL and as such there was no obligation to reduce the nitrate

concentration. With a biological system however, some flow must continue to be treated

through the reactor in order to maintain an active microbial population. A more detailed

discussion of blend ratios utilized at the Coyle water treatment facility during this study

will be presented later in the "Finished Water" section of this chapter; but in general, the

facility operated a 50:50 split stream (Appendix B).

4.2.1 Carbon and Phosphorous Dosing

[n order for biological denitrification to occur, organic carbon and phosphorus must be

available in quantities great enough to meet the stoichiometric requirements for both the

removal of any dissolved oxygen and nitrate present. Since the 0.42 to 1.11 ppm range

of NPOC present in the raw water is insufficient to meet these requirements, the portion

of water to be biologically treated is augmented with an external carbon and phosphorous

source. The BioDenTM technology uses commercially-available food-grade acetic acid as

the carbon source. "Acetic acid was chosen because of its low price, availability, non-

toxicity, and easy storage. It is not flammable, and no special handling, operator

training, or storage pennits are required" (NRT, 1999). During this study, Coyle was

using a 300 grain (30%) food grade vinegar purchased from Burns Philp Food, San

Ramon, California. The vinegar was supplemented on site with mono sodium phosphate
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purchased from Van Waters & Rogers, Oklahoma City, Oklahoma. Dilution and analysis

in the OSU Environmental Engineering laboratories estimated the vinegar to have an

acetate concentration of 268,000 mgIL and an NPOC of 128,000 ppm. IC analysis also

showed the phosphate concentration in the feed solution to be 47,000 mgIL with traces of

sulfate present.

As the process water approached the inlet of the denitrification reactor, a pump injected

the flow with a metered pulse of the carbon and phosphate feed. The feed pump was

equipped with an in-line graduated cylinder that could be filled with the vinegar feed so

that the feed rate could be determined by averaging the vinegar use per given amount of

time. This calculation of vinegar feed rate was a standard entry in the voluntary record

keeping (Appendix B) maintained by Joe Galloway, the system operator, and is a critical

parameter in the successful operation of the system. If too much vinegar is added, the

reactor may enter sulfate reducing conditions, producing hydrogen sulfide and releasing

excess organics into the finished water; too little vinegar results in incomplete nitrate

removal with possible accumulation of intermediate nitrite. This is to be avoided, as it is

the potential for nitrates to convert to nitrite within the human body that has driven the

regulation of nitrates in drinking water. As discussed previously, nitrite converts

hemoglobin in the blood to methemoglobin causing the illness methemoglobinemia in

infants and certain susceptible adults.

The electronic controls for the BioDen1M system include a digital flow meter and flow

totalizer, both of which have experienced some technical difficulties since installation.

Data from these meters have also been included in Appendix B. As part of the operating
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gpm with nitrate levels in the finished water less than 8.0 mg/L-N (NRT, 1999). As

such, the facility has been operating at approximately half of its flow capacity. Raw flow

data recorded by the system operator are included as Appendix B.

Figure 17 shows the nitrate, nitrite, and phosphate data collected from the denitrified

water leaving the reactor. For reference, nitrate and phosphate concentrations from the

inlet have been superimposed on the chart. One will notice that a small amount of

phosphate was utilized by the bacteria in the reactor; however, the general shape has

remained the same. Since the addition of phosphate was proportional to the acetate

provided (they were injected as a mixed solution) and the plot shape has remained

relatively unchanged after denitrification, the phosphate plot will be used as a surrogate

for the reactor influent acetate plot when discussing trends and occurrences in the data as

they relate to high or low inputs of acetate.
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Theoretical acetate consumption for denitrification is 1.5: 1 grams carbon:gram nitrate-

nitrogen reduced, based upon the following stoichiometric equation, assuming a biofilm

mass yield of 0.2 g VSS/g CH3COO' (Cook et aI., 1997):

where CSH70 2N is the empirical chemical formula for VSS. This theoretical requirement

is valid in the absence of dissolved oxygen. Where oxygen is present, the actual

requirement will be correspondingly higher. Figure 22 is a plot of the acetate-carbon

conswned vs. total nitrogen (nitrate + nitrite) removed from the Coyle water supply as it

passed through the reactor. The theoretical requirement of 1.5: 1 carbon:nitrogen

(grarn/gram) has been included as well. One will note that the plotted data lie above the

theoretical line, a result of acetate consumed to remove influent dissolved oxygen. If the

entire amount of acetate-C consumed ahove the theoretical amount can be attributed to

dissolved oxygen in the reactor influent, then this dissolved oxygen concentration may be

determined using the following stoichiometric relationship:

This method estimates that the dissolved oxygen concentration averaged about 8.6 mglL

during this study period. NRT (1999) has previously reported that influent dissolved

oxygen at the Coyle facility remained steady at 7.3 mgIL with a standard deviation of

±O.1 mglL during their testing between October 1998 and January 1999. The reader will
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recall that carbon dosing guidance available to the operator (Table 6) is based on an

influent dissolved oxygen concentration of only 7.5 mgIL.

By rearranging the acetate consumption data presented in Figure 22 and plotting the

specific acetate consumption (acetate/nitrogen ratio), Figure 23 has been derived. A

similar plot for phosphate consumption (Figure 24) has been created. A linear regression

of the data points indicates that the system has gradually increased its consumption of

both acetate and phosphate. A number of possibilities may account for this trend. First,

the increase may be due to a gradual increase in influent DO. If the dissolved oxygen

were to increase, the total acetate consumed would increase as well. Second, the trend

may be a function of biofilm maturity. This appears unlikely, as the system has been in

operation for nearly a year. This trend merits attention as a possible area for future

study, since any increase in chemical consumption will eventually appear as an increase

in operating cost.
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performance following an air scour procedure. It is difficult to see that aIr scours

occurring during the Coyle study had any effect on reactor performance~ any effects of

an air scour have been masked by the effects of carbon dose fluctuation.

One matter of great concern is how a biological system for the treatment of drinking

water will react to isolated incidents such as power outages or system shutdown which

may be beyond the control of the system operator. One such incident occurred on

September 17. When the samples were collected for that day, the system was recovering

from difficulties that occurred the day before and extended through the night. The

previous day, a six-inch water main had broken in the distribution system, and operation

of the system had been altered to allow repairs to occur. Repairs were completed, and

the system was brought back into service before the end of the day. During that night, a

condition in the electrical distribution system had caused the electricity in the facility to

blink on and off for an extended period of time. By early morning, power had been

restored, and the facility was put back into operation just before samples were taken. As

a result of this operational upset, nitrogen removal at the time of sampling was the least

efficient recorded during the study (46.78 %). The facility recovered from the upset and

by the next sampling date, three days later, system performance had returned to its

previous level.

On October 20, the system was upset once again. When flow and feed rate data were

collected that morning by the system operator, the water feed rate through the BioDen™

split was at 17.9 gpm (well above the 13.0 gpm average). This is the only day where

high nitrite (more than 1.0 mg/L-N) and residual acetate appear together in the reactor
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effluent. One probable explanation for the occurrence on October 20 is that the shift in

feed rate had shortened the detention time in the reactor enough that the detention time

had become the limiting factor. The established bacterial population was unable to

achieve total denitrification before the process water was displaced. The flow rate was

then reduced to 11.7 gpm. Post reactor results for the days following the readjustment of

the feed rate indicate that perhaps the flow rate was readjusted too low for the established

vinegar feed rate. By adjusting only the water flow rate and not simultaneously reducing

the vinegar feed rate, the C:N ratio was increased, allowing for large amounts of residual

acetate (as high as 1.66 mglL) to leave the reactor.

It is extremely important to realize that these observations are based upon analytical

system performance data that the system operator does not have at his disposal on a day

to-day basis, when decisions have to be made. This once again underscores the need to

develop a logical and usable means by which the system operator can detennine and then

accurately administer an optimum carbon dose.

4.3 FILTRATION

Effluent from the denitrification reactor is void of dissolved oxygen, and as illustrated

above, contains elevated amounts of NPOC which periodically includes residual acetate.

The effluent also contains biomass (VSS) which has sloughed off the filter media

through the natural course of aging. This was often evident in the water flushed from the

post reactor tap before collecting samples. Removal of VSS and dissolved organics is

essential to providing a biologically stable finished water. Reaeration, which occurs in

76



the roughing filter, both promotes the removal of residual dissolved organics and

mcreases the palatability of the water. The water treatment facility in Coyle

accomplishes these goals by treating the reactor effluent through an aerobic roughing

filter to remove both particulate and soluble organics and then through a slow sand filter

which serves as a "polishing" by removing additional organics by a combination of

physical straining and biological activity.

4.3.1 Roughing Filter

The BioDen™ roughing filter is operated as an aerobic thin-film reactor. The biofilm is

retained in the filter by the same media used in the denitrification reactor, but operation

occurs in a downflow mode. The filter serves the purpose of re-oxygenating the treated

water while biological activity consumes both dissolved and particulate organics and

readjusts the pH, which has increased as a result of anaerobic denitrification.

Figure 25 shows anion concentrations experienced in the roughing filter effluent. The

N03-N and N02-N concentrations from the post reactor tap have been superimposed on

the figure for reference. Chloride and sulfate levels in the roughing and sand filter

effluents did not significantly change from levels in the reactor effluent and so will not

be discussed here. Chloride and sulfate data may be found in Appendix C and Appendix

D. There are two occurrences worth discussing from Figure 25. First, one will notice

that, with the exception of one occurrence on May 24, all residual acetate that was

present in the reactor effluent has been removed post-reactor to non-detection levels.

The second occurrence is that the nitrite that was found in the reactor effluent has begun
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to oxidize to nitrate. Nitrite is an unstable oxidation state of nitrogen, and in the presence

of dissolved oxygen, readily converts to nitrate. In a system operated under ideal,

theoretical conditions, there would be no need for nitrite conversion to nitrate since all

nitrogen would have been converted to nitrogen gas in the reactor. When intermediate

nitrite does break through into the reactor effluent, it is important for nitrite to rapidly be

oxidized to nitrate. First, it is the nitrite ion, whether by direct ingestion or by

conversion of nitrate in the human body, that is responsible for methemoglobinemia in

infants. Second, if nitrite is present at the time of cWorination, it will exhibit a chlorine

demand as nitrite is oxidized to nitrate by the following reaction (Snoeyink and Jenkins,

1980):

H20 + N02"~ NO)" + 2H+ + 2e"

2e" + H+ + HOCl ~ Cl" + H20

An increase in chlorine demand means that more chorine will be consumed and operating

costs will similarly increase.
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that the aerobic bacteria in th rou ing filter sho Id r mov or than 50% f th

parti ulate and s luble orga ic materials present in the denitrification reactor effluent.

igure 26 displa s actual NP r rna al efficiencies achie ed by the roughing fiIt r

during the tudy p nod. Notice t at the actual removal efficiencies are typically quite
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unng tme f high I el org nic ar n r I a nitri fica i n
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As me io

filt r 0 curr d durin the stu y, on Septem er 15. N chan e in filt r per~nrnn!:lnce wa

apparent, with resp ct to residual nitrit c versio or N re. val efficiency.

4.3.2 Slow Sand Filter

The slow and filtration proces m yle consists of two concrete filtration basins

operated in parallel. The basins are filled by a titer bed of s d d lO = .8 - 1.2 mm; U

< 1.5) supported by gravel ( R ,I 9). he filters remove particul te m terials by both

physical filtration and b biological mechanisms. Operation of the slow sand filter leads
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to the formation of a biological layer, called a "schrnuzdecke," in the top few millimeters

of sand. This layer is very effective in the removal of Giardia, Cryptosporidium, and

bacteria. The filters are cleaned by removal of the top 1/4 to 1/2 inch of the slow sand

filter surface periodically, to avoid excessive head-loss through the filter. Despite initial

estimates of cleaning every four to six months (NRT, 1999), the Coyle facility performed

its only cleaning, on one filter, during the sampling period. At the time of the operation

the system had been on-line for nearly a year, The system is operated with two filtration

basins in parallel in order to allow for continued filtration in one unit while maintenance

is occurring in the other.

The tap at the outlet of the slow sand filters was not installed at the facility until August

27. This tap was placed immediately downstream of the point where effluent from the

two filtration basins are remixed. IC data for this tap (minus chloride and sulfate) is

presented in Figure 27. Note that nearly all nitrite has been removed by the sand filter.

Of concern, however, is that nitrite was able to break through the sand filter on

September 17 and October 20, The reader will recall that September 17 was the day

following persistent electrical outages, and October 20 was the day on which the flow

rate through the BioDen™ split stream had drifted to 17.9 gpm, In this figure (Figure

27), one can see that with the oxidation of intermediate nitrite occurring in the slow sand

filter, nitrate levels increased over those recorded in the post roughing filter effluent.
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igure 30 illus ate th NP oval ffi ien i

fficiency experienced a ross the entire filtrati n pr c ss ( P remo al fro reactor

efflu nt to low s d filter effluent). e pper and lower shad d areas beneath th dark

line represent the porti n of the olal NP C r moval co tri ute y the slow s d lit r

and roughing filter respectively. The read r will note that d pit m j r nuctu ti ns in

post-reactor NP concentrations, the sand filter co sistently rem v d 1 a erag

24.42% of the post-rea tor NP C. In contrast, the rou 109 filters re al

efficienc wa much m re dependent upon influ nt NP concentration. A result,

the roughing filter served only to guard against peak releases of residual organics.
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4.4 F D A

distributi n syste .

he final oup of pr cesse at he I f: i icon i ts of hlori a I n, t ra e in t

preparation ~ r elea toII, and r blending with a raw water split streIe

4.4.1 Clearwell

fier exiting th sand filters, th denitrified water fl ws by gra ity to the c1earwell,

which is located below ground Ie el in a recessed comer f the building. s the wa er

falls into th 1000 gal cI arwell, it is injected with Great alue brand Ii uid chlorine.

The 6.00% by weight hypo hlorite lution is purchased by the gallon from WI-Mart.
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The main purpose of the clearwelL is to provide contact time between the denitrified

water and the disinfectant.

The clearwell is plwnbed with an overflow outlet that dumps to waste if the clearwell

overfills. On many occasions, water was observed coming out of the overflow during the

collection of samples on Monday, Wednesday, and Friday mornings. Comparison

between flow data on either side of the clearwell indicates significant water loss. Since

the last calibration date of the flow meters used at the facility was unknown, it was

unclear which flow rates recorded throughout the facility were the most reliable when

slight discrepancies occurred. For this reason, clearwell losses were calculated by the

four methods defined in Table 7, to roughly define the range of clearwell loss

experienced (Figure 31). Flow data for this comparison came from the digital flow meter

and totalizer installed to measure flow to the BioDenTM system, and an older flow

totalizer located just downstream of the clearwell but prior to the blend station. Waste

flow has been determined by the simple difference between daily usage at the points.

Flow data have not been included for days affected by the malfunction of the digital

flowmeter as noted in Appendix B. Water is required to be consumed for the occasional

scouring of reactors, but continuous wasting of water, particularly post-treatment water,

can become a sizable portion of the operating costs due to the additional acetate,

phosphate, chlorine, and electricity consumed in the pumping and treatment of the

wasted water.
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s would be expected, there is little change t the anion profile i the learwell. he

chloride c nc ntration is increased slightly r a result of chI rination (see igure 32) and

nitrite h completely returned t the nitrate f, nn.
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Ob ervati n of e po t cl arwell effluent demonstrates the r lationship betwe n cet te

addition d ni at r oval. Figur 33 i a pi t of the nitr t re ent in

the learwell efflu nt. sing the pho phate curve a a urr

addition f ac tat ( alid for gen r J c panson purpo e

e original

a d

proportionally to acetate and has rem in d virtu By unchan d throu h t the dy), it

IS b ious that a mirror image occurs been the curve. When ph sp ate, an

therefore a etat ,dos w re high, nitrate was redu ed to I lev Is. When acetate

ad ition was insignificant, nitrate rem val was I w. NP levels remaine steady in the

c1earwell effluent at an a erage c ncentration f 0.787 ppm. is is approximat ly the

P I v I original y exp rienced in the raw water.
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4.4.2 Blended Waf r

with a portion of raw water such that the len ed arc ntain n acceptabl itrate

ebl nd

vels, the

anioDen™ system treat 0 ly portio f t r

mce it IS unnece ary t treat drinki g water t e tre ely I w itrat

co centration with an dequ te margin 0 a~ ty (i.e.. bl nded < 8.0 giL). t

Co Ie, wat r from the c1earwell is brought u t line pressure by u p an hen mixe

with raw ater via identical ble d al . The ble d ra i wa

report d as a rati f the 0 readings on the incremented flow val es. Thr ugh ut

of the s d pen d, t e blend rati w s 5 :50. On three occasions, July 12 - 14, August

2 - Septe b r ], and September 7, th fl w rate w adjusted y increasing the

percentage f raw ater in the ble d. Two identi al flow t talizers were in place
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between the c1earwell and the blend station and in the raw water line leading to the blend

station respectively, but the one in the raw water line was not functional. Although the

blend valves were identical, they were old and the pressure behind each valve was

unknown.

Without the flow data from two of the three pipes entering or leaving the blend station, it

was impossible to directly confirm the recorded blend ratio. In the absence of flow data,

nitrate and phosphate data collected from the raw water, post clearwell, and mixed

chlorinated taps were used to complete a mass balance and confirm the blend ratio.

Nitrate and phosphate were chosen because they have distinctly different concentrations

in the raw and post clearwell waters. The data from these taps were analyzed and plotted

in Figure 34 as a percent recovery of the measured concentration in the blended water by

the theoretical blend concentration calculated from raw and post clearwell data according

to the following equation:

)

,,,:

..

where: R

r

C

C

M =

Measured raw water concentration, mg/L

Reading from raw water blend valve, % open

Measured post clearwell concentration, mg/L

Reading from the treated water blend valve, % open

Measured mixed water concentration, mg/L
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n will notic that th percent re ov ry urv s b ar resemble a h h r in sha and

are mirror imges 0 their corr sp ndin nc ntr tion c nt

facility. ak n sepately, neither urv w uld in icate ,t n

together, the 0 curves ppear t be center d w II ab ut the I % (or only Ii htly

high r re overy mark. It i the belief of th author that the apparent r Image

devi tion from th 10 % r covery line by the two pI Lte Ii e IS r It f itrat

ph sphate being adjacent peaks in inc r matography eluti n. Inter ay ccur

in the integration of peak areas of the adjacent peaks when ne IS m ch I' g r than the

other, au 109 som portion of the peak area to be inaccurately acco nte to th wrong

peak. It is beli v d that ba ed upo the data's reflecti e position a ut the 10 %
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recovery line, it is safe to assume that the blend ratio reported for each day is a close

approximation of the actual blend.

The direct chlorination that regularly occurs in the facility is in the clearwell. In other

words, the raw water that is used for blending relies on chlorine in the clearwell stream

for its disinfection. Free chlorine is constantly monitored in the blended water by an in-

line digital chlorine meter and recorded every morning by the system operator (see

Appendix B). In addition, the chlorine residual is tested at the Coyle school cafeteria

upon competition of daily monitoring and maintenance at the treatment facility. Testing

of the chlorine residual is done by colormetric methods using a Hach Kit. The school

cafeteria was selected as the point of testing because it lies toward the far end of the

distribution system. From the residual chlorine concentration, it is suspected that the

average residence time of water in the system is very short. Free chlorine leaving the

plant averaged 1.14 mg/L and chlorine residual in distribution averaged 0.86 mg/L

during the time encompassed by this study. The chlorine monitor at the Coyle facility is

wired to start an emergency back-up chlorine pump if the detected chlorine residual

drops too low. This back-up pump injects directly into the blended water.

Figure 35 and Figure 36 present the anion concentrations found in the blended water.

This represents the final water that is released to the distribution system. Figure 37

shows the nitrate-nitrogen concentrations present in the raw and blended water along

with a graphical depiction of the overall nitrate removal efficiency experienced by the

facility during this study. The average NPOC in the blended water was 0.689 ppm.
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4.5 TRIHALOMETHANE PRECURSORS

One objective of this study was to investigate the presence of THM precursors

throughout the facility, and note any fluctuations across unit processes that may be

attributed in some way to the use of biological treatment. This was accomplished by

observance of the ultraviolet absorbance at 254 nm of samples in conjunction with

corresponding NPOC measurements, in lieu of the expensive, time-consuming, and more

laborious trihalomethane formation potential (TFP) analysis described in Standard

Methods (APHA, 1992).

Trihalomethanes and other hannful halogenated organic by-products are formed when

free chlorine comes in contact with humic or other organic substances during

chlorination or subsequent contact time with in the distribution system. Consequently, it

is conceivable that treatment of drinking water by a biological process could increase the

presence of THM precursors through the rel.ease of intact or partially degraded carbon

substrate or decaying biomass.

Edzwald et at. (1985) reported good linear correlation between NPOC, UV254' and total

trihalomethane formation potential (TTHMFP). In their study, they found that predictive

equations could be derived that could relate the three parameters. These empirical

equations however, were found to be site-specific when applied to natural waters, unless

the nature of organic matter in other supplies is similar (Edzwald et aI., 19X5). The

potential for applicability to other sources was determined by comparing the ratio of

UV254 to Toe of the two waters.
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Figure 38 and Figure 39 show the range of NPOC and UV254 values respectively,

measured at each point throughout the Coyle facility during the UV254 analysis period. In

the case of the UV254 chart, it appears at first that there may be a slight increase occurring

throughout the facility, but further observance of individual dates indicates that this trend

is only obvious on a few select days such as September 10 and 13. The NPOC chart,

however, displays great fluctuation throughout the facility. The drastic difference in the

general appearance of the two charts (UV254 is relatively stable, NPOC increases

drastically with vinegar addition and then declines) calls into question the similarity of

water at the different taps throughout the facility and, thus, the ability to estimate THM

precursors throughout the facility by use of UV254 and NPOC data alone.

Figure 40 shows the range of specific absorbances (UV2541NPOC ratio) determined

throughout the facility. The specific absorbance gives an indication of the similarity of

the nature of organic material in the water at each location. Those taps exhibiting a

similar range of specific absorbances, such as the raw, post clearwell, and mixed water

taps, have a similar organic nature and are better suited to comparison with each other

with respect to THM precursors via the UV254 and NPOC surrogate parameters than those

taps such as the post vinegar tap where the specific absorbance is drastically different.

Fortunately, the specific absorbance for taps at the head and tail ends of this system are

roughly the same. The reader will notice that in both figures (Figure 38 and Figure 39),

little fluctuation is detectable between the values measured in the raw water and those

measured at locations following filtration, seeming to indicate that the biological
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5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This study has been the first to investigate a commercially installed, full-scale stand-

alone biological denitrification process for the treatment of drinking water in the United

States. During the 5 1/2 month study of system performance at the Coyle, Oklahoma

drinking water treatment facility valuable data and experiences were gathered in order to

fulfill the three-fold purpose of this study. The purpose of this study was to:

• Evaluate the performance of the full-scale system at Coyle, as it is

subjected to: (l) changing raw water quality, (2) normal plant operation

and maintenance problems, and (3) operation by a traditional licensed

operator, as opposed to research staff.

• Estimate the presence of THM precursors throughout the water treatment

facility.

• Identify areas which merit further investigation if biological

denitrification is to become a viable technology for the treatment of

drinking water.

5.1 EVALUATION OF SYSTEM PERFORMANCE

Throughout the study it became clear that biological denitrification was not a treatment

method best suited to the needs of the facility at Coyle, Oklahoma. The raw water

quality experienced by the Coyle facility was much more stable than originally

anticipated. At no time during the study did nitrate concentrations in the raw water ever

exceed the established MCL of 10 mgIL NO)-N, thereby requiring nitrate removal. The

biological reactor and roughing filters employ living microorganisms and as such must
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be operated continuously in order to maintain an active microbial population. As a

result, the biological system consumed carbon and phosphate substrate, energy required

for pumping, and operator man-hours during the full 5 1/2 month study with minimal

improvement to the quality of the finished water (NO)-N between the raw and distributed

water was reduced from an already acceptable concentration of about 8 mg/L NO)-N by

an average of approximately 3 mg/L NO)-N). Despite the poor suitability of biological

denitrification to the needs of the Coyle facility, additional information was gathered on

system performance, operation, and maintenance that should be of value in determining

the suitability and operation of future applications.

As discussed in the previous chapter, the studied system was capable of achieving good

nitrate removal (> 90% of nitrate-N + nitrite-N removed from water tlowing through the

reactor) when carbon substrate in the form of acetate was supplied in sufficient

quantities. The facility was lacking, however, in the ability to consistently provide an

appropriate carbon dose for the biological activity occurring in the reactor. Periods of

insufficient carbon addition resulted in potentially serious accumulations of intermediate

nitrite (as high as 3.36 mg/L N02-N). Excessive carbon dosing resulted in both residual

organics up to 4.36 ppm NPOC being released in the reactor effluent as well as the

occasional onset of sulfate reducing activity. This lack of consistency was due less to the

effects of changing raw water quality as originally anticipated and more to the lack of a

means by which the system operator could accurately determine and administer the

carbon dose, a problem complicated by the attempt to denitrify a raw water with an

already acceptable nitrate concentration.
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Filtration processes at the facility were effective in providing opportunity, within an

oxygen rich environment, for the intermediate nitrite to oxidize to nitrate and residual

organic carbon to be removed via physical straining and biological consumption. This

essential step insured that neither nitrite nor organic carbon was released to the

distribution system at levels significantly higher than in the raw water. As a result,

filtration served more as a safety net than a final polishing step in the treatment of reactor

effluent. The roughing filter was found to be most effective in the elimination of large

concentration breakthroughs of NPOC (> 1.5 ppm) and did little to reduce lower levels

of residual NPOC « 1.5 ppm) or intermediate nitrite. The slow sand filters consistently

removed approximately 30% of the residual NPOC reaching them as well as the

remaining intermediate nitrite (with the exception of two instances on September 17 and

October 20 when nitrite broke through the sand filter but was not detected in the

c1earwell effluent).

Reactor performance during the study indicated the need for a better method of

determining and applying a carbon dose appropriate to the water to be treated. A number

of factors continue to hinder the accurate determination of this dose. The current method

in use by the system operator relies heavily upon maintaining flow rates and substrate

feed rates within historical operating ranges and is supplemented by a chart of theoretical

matchings of flowrate to feed rate (presented previously as Table 6) developed by NRT.

This approach makes use of two assumptions that may be inappropriate for use. First, it

assumes that historical operating ranges have produced desired results. The current

practice of tweaking the flow or feed rates because they appear to have increased or
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decreased significantly from the previous day or over a period of several days provides

opportunity for the operating ranges to drift from the optimal range if actual performance

is not frequently checked. This introduces the second hindrance to determining the

carbon dose to be applied. The current tables available to the system operator for

determination of carbon feed rates are based upon an estimated 8.0 mglL NOJ-N removal

from a water containing 7.5 mglL of dissolved oxygen. There is a problem in that

frequent analysis for these parameters, along with TOe, is not currently required. As a

result, the system operator has no way of verifying the N03' or DO concentration of the

reactor influent (allowing for the determination of dose by mathematically tabulated

values), or of knowing the concentrations of N03', N02', and TOe in the final product

water (adding credibility to the use of historical operating ranges and facilitating the

development of valuable operator experience).

Normal operation of the facility calls for a routine air scour of both the main reactor and

the roughing filter in order to remove excess accumulations of biomass. In addition, the

slow sand filter must be serviced by removing the top layer of sand when headloss

through the filter becomes excessive. These routine operations posed few problems for

the operator who was able to conduct them without the assistance of a second operator.

Non-routine operating and maintenance incidents did however cause temporary problems

with system performance. Electrical outages on the night of September 16 and high

water flow rates on October 20, resulted in only 50% nitrogen removal from reactor

influent accompanied by high residual carbon being released on the second date. The
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system recovered quickly from the upsets and regained typical nitrogen removals by the

following sampling dates.

One finding of great concern, from an operational and economic perspective, was the

amount of water loss that occurred throughout the facility. Water loss from the system

was found to occur in one of two primary ways: through routine air scours required for

reactor maintenance or as waste through the clearwell overflow. Water required to

maintain the system in normal operating condition can hardly be considered wasted and

should be viewed as part of normal operating costs. Overflow Losses on the other hand,

resulting from poor matching of flow rate to the demand and storage capacity of the

system, can be avoided by optimization of water management. These losses resulted in

an average of 4559 gpd of treated, unblended water, or approximately 12.5% of the water

flowing through the reactor being released to waste throughout the study. This is water

that would ideally have been mixed with an equal portion of untreated water (assuming

the 50:50 blend ratio used during the study period) to create 9118 gpd of additional

finished water for release to distribution. Water loss reduces the maximum treatment

capacity of the reactor and in this quantity, can account for a large portion of the

operating cost of the system since 12.5% of the acetate and phosphate supplied, as well

as a portion of the electrical power required for pumping are allocated to the treatment of

the wasted water.
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5.2 ESTIMATION OF THE PRESENCE OF TRIHALOMETHANE PRECURSORS

This study found no indication that the concentration of trihalomethane precursors

increased throughout the facility as a result of biological denitrification or successive

filtration. Calculated values of the specific absorbance at 254 nrn followed an increasing

trend throughout the treatment process indicating that a proportionately larger amount of

the organics present later in the treatment process belonged to potential THM precursors.

but further investigation revealed that this increase in the UV254INPOC ratio was due

primarily to the reduction of NPOC throughout the treatment process and not to an

increase in the presence of THM precursors. Specific absorbance values throughout the

facility were heavily dominated by the NPOC tenn. thus indicating that the use of this

parameter may have limited use when applied to the evaluation of biological systems

where proportionately large amounts of carbon substrate are added.

5.3 RECOMMENDATIONS FOR SYSTEM IMPROVEMENT AND FUTURE STUDY

Biological denitrification merits further research and consideration as an emerging

treatment method for the removal of nitrates from drinking water because it has shown

the ability, under controlled conditions. to achieve good nitrate reduction with minimal

maintenance demands. This study has however, revealed a number of concerns, some

quite serious, that deal with various operational aspects of the system that should be

addressed in system operation and maintenance.

First. a simple and standardized method must be developed that will provide a

traditionally licensed operator the ability to consistently detennine and administer a
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carbon dose appropriate to the influent raw water quality. There appears to be two

general approaches that would work in the detennination of the carbon dose:

theoretically (based upon stoichiometric values derived for a known influent raw water

quality) and empirically (based upon measured reactor perfonnance). In either case. it

appears that it will be necessary to provide scheduled analytical detennination of water

quality (NO)-, N02-. and organics) in the raw and/or finished water for the detennination

of the carbon dose or verification of reactor perfonnance. Drinking water facilities

considering the use of biological treatment would do well to prepare themselves for this

increased volume of water quality analysis since inconsistent reactor performance in this

study indicates that the system should be closely monitored for nitrites and organic

carbon released in the finished water.

Though not the only solution, similar installations in France have had success with full

automation including an in-line nitrite meter (Richard and Thebault, 1992). Automation

of both nonnal operation and reactor washes allowed for the reduction of manpower

expenditure from every morning to two mornings a week to check and maintain sensors

and automatic systems as well as actual plant control operations. The fully automated

plant automatically ceases water production and alerts operating staff when there is low

chlorine, high nitrites, high nitrates. or reactor clogging. Where automation is not

practical, other options exist. The operator may be provided with equations or

mathematically derived tables and/or charts that are applicable over the whole range of

anticipated influent conditions and reactor perfonnance needs. This approach should
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account for the possibility of changing raw water quality and its application should be

based upon periodic checks of actual influent NO)' and DO.

Second, water management practices between the plant and distribution system must be

optimized in order to avoid water loss through holding tank overflows. Waste through

overflow appears to be a common problem for biological facilities which typically

require uninterrupted use and has been documented previously by Richard and Thebault

(1992). Since biological denitrification, and the BioDen™ system in particular, is a

technology that may be retro-fitted into an existing treatment works that may not have

been operated continuously in the past, capacity issues should become key parameters in

the design of future installations. It must be understood that the installation of biological

denitrification technologies into a relatively simple groWldwater facility has the effect of

changing the facility from batch process operation into continuous operation. This

change in operation validates the need to take a broad look at the size and sufficiency of

the whole treatment and distribution system. Not only should the system be sized to

accommodate peak demands, but the system should also provide adequate storage to

meet continuous off-peak production. The operator should be provided with the

knowledge or guidance required to adjust system production without disturbing system

perfonnance, as seasonal water usage changes.

Third, since nitrate levels in natural ground waters can exhibit seasonal fluctuation, it

appears that it would be beneficial for researchers to investigate the development of an

economical "stand-by" mode that the reactor could be put into during times of low

influent nitrate. Unlike ion-exchange and reverse osmosis, biological denitrification
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reactors cannot be temporarily shutdown when seasonal variation provides an influent

raw water quality meeting the MeL for nitrates; they require continuous operation to

maintain an active microbial population. This ··stand-by'· operation may take the fonn of

a recirculation mode requiring the addition of small amounts of nitrate and carbon

substrate in order to maintain an active microbial population. Key parameters to be

investigated would be the ability and speed with which the system could be revived and

brought back into service and the cost of feeding the recirculating system vs. the cost of

regular operation during times of low nitrate contamination.
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APPENDIX B

FACILITY OPERATION DATA
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I
Feed ! Vinegar Total Flow Water Room

I

Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp
May Time Ratio (gpm) Total Flow (gal) (mllmln) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Comments

1 37440 1.11 0.96 360 7.2 -10
2 37440 1.25 0.98 360 7.2 -10

.-

0.793 37440 129 360 7.2 ·10-
36420 1.29 0.79 360 7.2 ·104-

0.73 360 7.25 35210 1.25 -10-
34620 1.15 063 360 7.2

--
6 -10-

7:35 50: 50 • 135- 31680 103 060 360 7.27 2961853 6.50 -10
-

31680 0.61 360 7.2 -108 1.11
9 31680 1.14 0.71 360 7.2 -10
10 7:10 50: 50 13.2 3020578 6.50 31680 1.22 0.81 362 7.2 -
11 7:05 50: 50 12.9 3039C65 6.50 34560 1.34 0.91 359 7.2 -3

- •• +

3057939 1.2012 7:15 50: 50 13.2 6.30 34560 1.17 359 7.2 -3-
31680 1.1013 7:10 50: 50 12.0 3075661 1.29 359 7.2 -3--

14 7:10 50: 50 14.2 3094724 6.60 31680 1.08 0.95 359 7.2 -3
15

-
30240 1.20 0.91 359 7.2 -3

16 30240 1.21 0.78 359 7.2 -3
17 8:15 50: 50 13.1 3150890 6.20 34560 1.16 0.77 359 7.2 -3

-
-18 7:15 50: 50 13.0 3161789 36000 1.23 0.82 359 7.2 -3 Air Scour

50 138 3188494 34560 1.69 1.00 359 72
---

19 7:15 50: 6.75 -3
~ ---

7:05 50: 50 14.4 3208341 6.50 33120 1.20 0.97 359 7.2 -3 2220
21 7:05 50: 50 13.1 3227327 6.50 33120 1.27 0.96 359 7.2 -3
22

1-

33120 1.21 0.92 359 7.2 -3
23 33120 1.31 098 359 7.2 -3-

33120 1.17 0.46 359 7.2 -3
-

24 7:10 50: 50 12.8 3284165 I 6.50 20
25 7:05 50: 50 12.6 3302594 33120 1.21 1.00 359 7.2 -3

A 33120 1.17 0.82 359 7.2 -3
---

26 7:03 50: 50 13.1 3321150 6.25 20
27 7:08 50: 50 12.~ 3339718 7.00 33120 1.14 0.79 359 7.2 -3
28 7:10 50: f§Q . 12.2 + 3358075 I 7.25 30240 1.29 0.82 359 72 -3 19
29 I 30240 111 0.61 359 7.2 -3
30 28800 1.20 0.80 359 7.2 -3
3, 20800 1.16 0.79 359 7.2 -3

- - -
;., Indicates that feed rat. was Increased by operator attar recording flow for the day.

_~':Idlcates tI1at feed rate was decreased bJ operator after recording flow for the day.
• Indicates that flow meter was not working when flow data was taken.
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Feed Vinegar Total Flow Water Room

Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp
June Time Ratio (gpm) Total Flow (gal) (mllmln) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Comments

1 7:07 SO: 50 12 3427803 J 7.00 31680 1.45 1.01 359 7.2 -3-
115 0.96 359 7.22 7:05 SO: SO 13 3446299 7.00 31680 -3

3 7:08 SO: SO 11.9 3464313 31680 1.20 0.95 359 7.2 -3
4 31680 1.14 0.92 359 7.2 -3
5 31680 1.18 090 359 72 -3
6 31680 1.19 0.90 359 72 -3--

316807 7:10 SO: SO" 11.1 3535392 6.90 120 0.91 370 7.1 - 24
8 7:10 50: SO 11.6 3553036 31680 1.23 091 360 7.2 -10
9 702 SO: SOv 14.5 3571849 7.00 36000 1.06 0.74 360 7.2 -10 25
10 705 SO: 50 " 112 3590077 34272 1.16 0.91 360 7.2 -10
11 7:10 SO: SO" 12.5 3601882 6.90 31680 1.25 0.94 360 7.2 -10 -

-
12 31680 091 360 7.2

~

1.19 -10
13 31680 1.15 0.90 360 7.2 -10
14 6:58 SO: SO 12.2 3648932 31680 1.22 0.92 360 7.2 -10

--
22

-- 15 7:05 SO: SO 13.7 3667991 6.SO 36000 1.10 084 360 7.2 -10
16 7:06 SO: SO 13.0 3686771 6.80 34560 1.06 0.80 360 7.2 -10 22
17 7:05 SO: SO" 11.0 3703947 31680 1.30 0.92 360 7.2 -10
18 7:10 SO: 50 12.2 3722325 6.SO 33120 1.17 0.90 360 7.2 -10 21
19 31680 1.30 0.91 360 7.2 -10
20 31680 1.40 0.97 360 7.2 -10
21 7:03 SO: SO" 11.8 3772038 6.SO 31680 1.25 0.91 360 7.2 -10 24 Air Scour
22 7:10 SO: SO" 11.2 3788057 v 7.75 31680 1.07 0.81 360 7.2 -10
23 6:57 SO: SO 11.8 3805030 7SO 31680 1.38 0.97 360 7.2 -10 23
24 7:05 50: 50 12.4 3822692 31680 1.18 0.89 360 7.2 -10
25 9:40 50: SO 11.5 3841712 7.SO 31680 1.17 0.89 360 7.2 -10
26 31680 1.18 090 360 72 -10
27 I 31680 1.27 0.91 360 7.2 -10
28 7:20 31680 1.27 0.91 360 7.2 -10

-
SO: SO 10.8 I 3889390 7SO

-~- 7:00 SO: SO 12.4 3906653 31680 1.10 0.84 360 7.2 -10
--30 6:55 SO: SO 129 - 3923196 31680 101 0.80 360 7.2 -10

A Indicates that feed rate was Increased by operator after recording flow for the day.
y IndlC8tes that feed rate was decreased by operator after recording flow for the day.
• Indicates that flow meter was not working when flow data was taken.
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I
Feed Vinegar Total Flow Water Room

Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp
July Time Ratio (gpm) Total Flow (gal) (mUmin) Station (gal) (gpd) (plant) (ruidual) Alkalinity pH Stability (C) Comments

1 7:10 50: 50 12.4 3941526 31680 134 0.99 360 7.2 -10
12.2 3959421 0.93 360 7.2

--2 7:05 50: 50 31680 1.30 -10 26--
360 72 ·103 31680 1.21 0.90

4 31680 1.13 0.87 360 7.2 -10
5 7:30 50: 50 126 4016342 31680 1.16 0.80 360 7.2 -10

4033539 0.79 360 7.2 -10
--

6 7:00 50: 50 14.1 31680 1.12-
360

-
7 6:50 50: 50 14.4 4054217 31680 1.27 0.81 72 -10 28
8 7:00 50: 4074306 31680

-
f- 1.00 360 7.2 ·1050 13.9 1.41

-9- - 705 50: 50 4093844 31680 360 7.2 -10
-

13.3 1.19 0.80
'--- - - -

-1010 31680 1.22 0.81 360 7.2
11 31680 1.30 0.90 360 7.2 -10

-12 7:00 40: 60 138 4148848 6.14 31680 1.24 1.13 360 72 -10
13 7:10 40: 40 ~ 12.7 4167100 37440 1.23 1.12 360 7.2 ·10---

4186896 6.40 37440 1.12 360 7.2 -10
---

14 7:00 30: 6O~ 12.1 1.22
15 7:00 50: 50 11.5 4205414 33120 1.27 1.13 360 7.2 -10

f--
16 7:05 50: 50 11.2 4221365 6.50 33120 1.27 1.13 360 7.2 -10
17 33120 1.18 1.00 360 72 -10
18 33120 1.25 0.97 360 7.2 -10
19 7:10 50: 50 14.0 4269673 6.00 36000 1.27 0.98 360 7.2 -10
20 7:10 50: 50 13.3 4289190 36000 1.25 0.97 370 7.3 -

~1 7:03 50: 50 13.7 4309004 6.25 36000 1.20 0.82 364 7.1 -6
- -

22 7:05 50: 50 14.7 4328819 36000 1.23 0.91 364 7.1 -6
23 -- I--;foo 6.60 36000 364 7.1 -6

- -
50: 50 13.9 4348475 1.22 0.91

24 36000 1.22 0.91 364 7.1 -6
2S 36000 1.15 087 364 7.1 -6
26 7:05 50: 50~ 14.0 T 4410396 6.00 38880 1.19 0.90 364 7.1 -6 28----v 38880 1.13 0.86 364 7.1 -6

-
7:10 50: 50 16.0 4433735 - -

28 7:10 50: 50 16.2 4457247 6.00 38880 1.11 0.85 364 7.1 -6 28
29 7:07 50: 50 16.1 4480551 38880 1.12 0.86 364 7.1 -6
-~ 7:07 - ~ 50 162 4503651 6.30 38880 1.11 0.85 364 7.1 -6 28
-31 38880 1.08 0.tl3 3t:i4 7.1 ~

A Indicates that feed rate was increased by operator after recording flow for the day.
.'!....!!!~I~88 that feed rate was decreased by operator after recording flow for the day. -_. - -
* Indicates that flow meter was not working when flow data was taken.
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Feed I Vinegar Total Flow Water Room

Blend Rate I Feed To Blending Pumped Chlorine Chlorine Temp
August Time Ratio (gpm) Total Flow (gal) (mllmin) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Comments

1 50: 50 I 38880 1.05 0.81 364 7.1 oS
f- -- - ---

2 7:05 50: 50 ~~. 4573232
6.75 38880 108 0.83 364 7.1 oS 28

3 7:00 50: 50 .]58 4595286 43200 1.15 0.92 364 7.1 oS
-

-
I-- 7:10 - -

4 50: 50 16.2 -l 4618405 6.50 43200 1.05 0.81 364 7.1 oS
S 7:10 50: 50 15.9 4641097 43200 1.01 0.80 364 7.1 oS_.
6 7:00 50: 50 15.5 4663684 6.50 43200 1.19 093 364 7.1 oS

50: 50 43200 364
--- --

7 1.13 0.90 7.1 -S
8 50: 20. 43200 1.16 0.91 364 7.1 -S-

705 ~ ·15.5 4731390 7.25 7.2 26
- -

9 50 v 41760 1.12 0.89 363 - Air Scour

~
-

705 50: 50" 15.7 4749587 6.25 43200 1.38 0.98 360 -3
--

7.1
11 7:07 50: 50 15.6 4772103 640 41760 1.11 0.79 360 7.1 -3 28
12 7:15 50: 50 158f- 4793655 38016 1.11 0.79 360 7.1 -3 ~te-N =5.5 mgll. _
13 700

-
6.25 360 -3 2750: 50 15.6 4815865 37440 1.10 0.86 7.1----

50: 50 37440 1.22 0.90 360 7.1 -314
1S 50: 50 31680 1.19 0.99 360 7.1 -3

710 50: 50 14.3 t 7.90 37440 0.99 360 7.1 -3 26 -
16 4877844 v 1.19
17

- -
7:05 50: 50 14.4 4898408 6.40 34560 1.15 081 360 7.1 -3

18- - -
6.40 1.07 3607:10 50:~ 14.1 4918771 , 37440 1.05 7.1 -3 25

19 7:10 50: 50 - 141- 4938800 6.10 34560 1.14 0.78 360 7.1 -3
- ·7:05 4959054 1.03 0.79 360 --

20 50: 50 14.2 6.08 33120 7.1 -3 23- - - -- --
33120 360 7.1 -3

- -- ----
21 50: 50 1.11 0.82
22 50: 50 33120 1.05 0.80 360 7.1 -3
23- - --7:03 50: 50 13.6 5019651 6.25 33120 1.10 0.74 360 7.1 -3 -
24 7:10 50: 50 13.1 5039205 6.25 31680 1.05 0.87 360 7.1 -3-zs- _. 7:10 50: 50 13.1 I 5058057 6.00 31680 1.06 0.80 360 7.1 -3 24

- -

31680 1.03 360 7.1
- --

26 705 50: 50 13.6 5077360 6.00 0.77 -3
27 -7:05- 40: 60" 13.5 5097064 5.60 40320 1.03 0.69 360 7.1 -3 26
28 33120 0.89 0.58 360 7.1 -3 --

I

29 33120 1.14 0.78 360 7.1 -3
7:05- 137T -- -

30 40: 60 5157326 5.80 36000 1.04 0.61 360 7.1 -3 26
3r - 7:()S-- 4U: 13.4! 5169112 I 5.80 36000 1.23 0.85 360 7.1 -3 - -- -- -

100

" Indicates that feed rate was Increased by operator after recording now for the day. -- -
y Indicates that feed rate was decreased by operator after recording now for the day. -- -
• Indicates that flow meter was not working when flow data was taken.
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Feed Vinegar Total Flow water Room
Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp

September Time Ratio (gpm) Total Flow (gal) (mUmln) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Comments
1 7:05 41: 46 13.1 5188264 6.50 5194300 34560 1.18 0.96 361 7.2 -- 25_.

7:10 50: 50 13.4 5207460 6.50 5210900 1.09 0.87 3602 33200 7.2 -1
3 7:05 50: 50 13.2 5226324 6.30 5223600 34560 1.18 0.95 360 7.2 -1 25 System Off.

r--- 4- 34560 1.32 1.02 360 7.2 -1
5 40320 0.95 0.90 360 7.2 -1
6- I-- 7:50 50: 50 13.6 5289609 6.50 5282600 34560 1.23 0.97 360 7.2 -1 -

'- -., 7:05 30: 40 13.5 5308606
..

5300400 36000 1.25 1.01 360 7.2 -1
-

. -
NRT system off. Temp

8 6:55 50: 50 v 15 5329536 6.50 5313500 34560 1.11 0.84 360 7.2 -1 24 @ 1-16C. 6-18C.
9 - 7:00 5[' 50

1-
13.4 5349286 5331300 34560 1.28 1.06 360 7.2 -1

~ - --- ---- -
Temp @ 1-16C, 6-17C.
School-26C. Ballpark-

10 7:00 50: 50 13.4 5368430 6.00 5349300 34560 1.09 1.00 360 72 -1 24 25C.
I-

11
- -

37440 1.07 0.97 360 7.2 -1
12 33120 1.06 0.97 360 7.2 -1

e- -~

7:05 50: 50 134 5430193 6.00 5401100 34560 1.25 0.97 360 7.2 -1 2213
7:15 50: 50 13.9 5450154 6.00 5418800 34560 1.20 1.01 360 7.2 -1

-
14
15 7:05

-
50: 50 13.1 5469514 A 5.30 5436500 34560 1.18 0.92 360 7.2 -1 22 Air scour roughing fiIIeI:

16 7:05 50: 50 14.4 5489584 5451500 36000 1.02 1.02 360 7.2 -1
17 7:10

-
50: 50 16.0 5512620 5.90 5471200 40320 1.14 1.03 360 72 -1

-1-8-- - - - -
40320 1.04 1.02 360 7.2 -1

-

19 38000 1.10 1.05 360 7.2 -1
13.2 5570228 6.40 5520300 30240 0.99 0.69 360 7.2 -1

-
20 7:10 50: 50

21 7:10 50: 50 13.2 5589080 5536300 31680 1.19 0.89 360 7.2 -1-
50: 50 12.9 5607740 6.00 5551900 32256 0.97 0.68 360 7.2 -1

---
22 7:10

--2-3-- 7:05 50: 50 12.8 5626089 5567400 31680 1.12 0.85 360 7.2 -1
f----

1--- .. 7:05 50: 'so 12.7 5644555 550 5584100 34560 1.13 0.83 360 7.2 -1 20
-- - -- -

24
25 34560 1.19 0.86 360 7.2 -1
26 34560 1.25 0.91 360 7.2 -1

27
_.

7:00-'50: 50 1:14 5699978 600 5637000- 37440 1.20 0.89 360 7.2 -1 23 Air Scour
--

50: 12.7 5718688 690 5652100 33120 1.29 0.96 360 7.2 -1 -28 7:05 50 v
. -

29
-

7:00 50: 50 12.4 5736218 6.00 5668300 33120 1.08 0.80 360 7.2 -1 17
30
--- 7:00 1 50: 1

50 5753836 5663700 33120 1.09 0.61 360 7.2 -1 - --

~ Indicates that feed rate was Increased by operator after l1ICordlng flow for the day.
Y Indicates that feed rate was decreased by operator after I1ICOrdlng flow for the day. -
• Indicates that flow meter was not wori(ing when flow data was taken.

-1
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Feed Vinegar Total Flow Water I Room

Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp
October Time Ratio (gpm) Total Flow (gal) (mUmln) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Convnenta

1 8:15 50: SO 12.2 5771699 ~ 6.00 5699300 33120 1.13 0.86 360 7.2 -1 18
2 so: SO 33120 1.12 0.86 360 7.2 -1
3 33120 1.12 0.85 360 7.2 -1

f--~~-

--r:10 SO: SO 1~ 5824242 6.75 5746300 33120 1.13 0.86 360 7.2 -1 164

1------._5~_ 7:10 SO: SO' 132 58371SO 6.70 5783700 34560 1.04 0.87 360 7.2 -1
6 7:05 so: SO 12.3 5855174 640 5781200 33120 1.12 0.80 391 7.2 - 18

12.8
-

5872948 5797900 31620 1.10 0.80 380 7.3 117 7:15 SO: SO 'I -
7.3 11 --8 7:05 SO: SO 10.8 5889112 5813300 28800 1.18 0.78 380

9 33120 0.97 0.79 380 7.3 11
10 31680 1.02 0.74 380 7.3 11

f-----
6.60 5863300 380 7.3 20 -

11 7:00 SO: SO 12.3 5932512 36000 0.95 0.96 11
12 7:10 50: SO 13.2 __ 5951227 5881200 35136 1.02 0.61 380 7.3 11

, 14.2 7.00 0.87 0.66 380 7.3
- --

13 7:05 SO: SO 5963533 5898900 37440 11--
37440 0.87 074 380 7.314 7:00 SO: SO 14.6 f- 5984332 5916800 11

50 6005053 6.30 5935300 34560 1.09 0.70 380 7.3 22
. --

15 7:10 SO: 14.0 I 11
-

37440 0.98 0.79 380 7.316 , 11
17 33120 0.23 0.90 380 7.3 11
1-8-' 1--- ~ 15.0 t- 0.85 380 7.3

- -
7:05 SO: SO 6051754 I 5990600 34560 1.14 11 16

19 7:05 SO: SO 13.8 6072733 I 6007900 34560 0.95 0.71 380 7.3 11 Air Scour
20 715 SO: SO 'I 1:r.g-- 6098732 8.00 6024700 28800 0.53 0.78 380 7.3 11 - 181---

I

--21- .•. -
6113178 7.30 6039400 29400 1.33 0.79 380 7.3 11

-
7:05 SO: SO' 11.1

---r05 - 29400
-

1.04 0.77 380 73 18
.. _---

22 SO: SO 11.1 6129158 7.30 6053200 11
23 29400 1.03 0.81 380 7.3 11

-_._-~-- --
24 _ 2~00 0.93 0.80 380 73 11-
25 . 7:05 so: SO 11.0

.
6176678 7.00 -6096s00 29400 0.89 _ 0.83 __ _ 380 7.3 11- 18I--

26 - 710
.

7.3SO: SO 11.3 6193377 6110500 28000 1.12 0.85 380 11
27- -- 6209914 30400 1.00 0.77 380 7.3 f- --_.-

7:10 SO: 50 11.7 I 700 6125700 11 18-
11:"8 6140100- _. 28800

0.98 0.76 380 7.3
- ---

28 7:05 SO: SO 6226920 11
6.80 6154200 28200 1.04 0.77 380 7.3 -

29 7:10 SO: SO 11.8 6243995 11 21- . - - f---- - . -
30 28200 1.19 0.90 380 7.3 11
31 28200 1.07 380 7.3 11

-
~ Indicates that feed rate was Increased bi operator after recording flow fOf the day:.
v Indieat8! tha~ feed rate was decreased by operator after recording flow for ttle day. - -
• Indicates that flow meter was not workina when flow data wall taken.
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Feed Vinegar Total Flow Water Room
Blend Rate Feed To Blending Pumped Chlorine Chlorine Temp

November Time Ratio (gpm) Total Flow (gal) (mllmin) Station (gal) (gpd) (plant) (residual) Alkalinity pH Stability (C) Comments
1 7:10 50: 50 12A 6290339 650 6191800 28200 1.04 0.74 380 7.3 11 18
2 705 50: 50 10.5 6305850 6205000 26400 124 0.80 380 7.3 11

---
I- 3 705 50 50 A 10.2 6320362 6.50 6218000 26400 1.00 0.74 380 73 11
f-

4 6:57 50: 50 103 6335447 6231200 26400 1.20 0.71 380 7.3 11
5 7:05 50: 50 10.5 6330536 6.50 6243800 26400 1.09 0.69 380 7.3 11 -

f-- 6- 26400 073 380098 7.3 11
7 26400 1.18 0.74 380 7.3 11
-8-- -

7:00 50: 50 10A 6394941 6280100 26400 1.07 380 7.3 11
--

9
- ----- ------

fo-- - - ----

11
12
13

-

14
15

--16 - ----

17
18

---

19
20
21

~' 22
--

23
-_._~ --

f-._- --- - --- - _.
24
25

-- _.

26
- - -

- - ._- - -
27
28

-
29

- - ---

30 - - -

---
A Indicates that'ftied ratewas increased by operator after recording flow for the day.
v Indicates that feed rate was decreased by operator after recording flow for the day.

--

• Indicates that flow meter was not wor1<ing when flow data was taken.
- -

1
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N
Vl

NPOC (ppm) 10-Sep 13-Sep 15-Sep 17-Sep 20-Sep 22-Sep 24-Sep 27-Sep 29-Sep I-Oct

Raw 0.770 0.728 0.765 0.745 0.761 0.621 0.648 0.619 1.043
Post Vinegar 17.495 12.470 11.405 8.491 16.960 15.500 11.890 11.630 14.910 15.210
Post Reactor 2.795 1.126 1.167 1.042 1.025 1.149 0.957 0.955 1.191 1.188
Post Roughing FiJter 2.021 1.109 0.979 1.076 0.959 1.144 0.917 0.924 0.847 1.338
Post Sand Filter 0.837 0.769 0.749 0.785 0.779 0.766 0.687 0.717 0.646 0.898
Post Clear Well Chlorinated 1.033 0.926 0.759 0.800 0.811 0.789 0.638 0.661 0.636 0.872
Mixed Chlorinated 0.904 0.867 0.678 0.765 0.731 0.687 0.590 0.679 0.591 0.774
Distribution System 0.837

UVZS4 10-Sep 13-Sep lS-Sep 17-Sep 20-Sep 22-Sep 24-Sep 27-Sep 29-Sep I-Oct

Raw 0.020 0.019 0.016 0.012 0.016 0.015 0.014 0.013 0.017
Post Vinegar 0.018 0.022 0.016 0.016 0.011 0.015 0.016 0.015 0.014 0.015
Post Reactor 0.019 0.022 0.017 0.016 0.012 0.015 0.015 0.015 0.014 0.015
Post Roughing Filter 0.018 0.023 0.017 0.016 0.011 0.017 0.014 0.016 0.014 0.016
Post Slind Filter 0.021 0.021 0.019 0.015 0.016 0.015 0.014 0.015 0.014 0.015
Post Clear Well Chlorinated 0.021 0.024 0.019 0.019 0.017 0.020 0.Q15 0.016 0.016 0.018
Mixed Chlorinated 0.023 0.024 0.020 0.018 0.016 0.018 0.018 0.018 0.014 0.015
Distribution System 0.026

UVzsiNPOC [lJ(mg*m») lo-Sep 13-Sep 15-Sep 17-Sep 2o-Sep 22-Sep 24-Sep 27-Sep 29-Sep l-oct

Raw 2.60 2.61 2.09 1.61 2.10 2.42 2.16 2.10 1.63
Post Vinegar 0.10 0.18 0.14 0.19 0.06 0.10 0.13 0.13 0.09 0.10
Post Reactor 0.68 1.95 1.46 1.54 1.17 1.31 1.57 1.57 1.18 1.26
Post Roughing Filter 0.89 2.07 1.74 1.49 1.15 1.49 1.53 1.73 1.65 1.20
Post Sand Filter 2.51 2.73 2.54 1.91 2.06 1.96 2.04 2.09 2.17 1.67
Post Clear Well Chlorinated 2.03 2.59 2.50 2.38 2.10 2.53 2.35 2.42 2.52 2.07
Mixed Chlorinated 2.54 2.77 2.95 2.35 2.19 2.62 3.05 2.65 2.37 1.94

Distribution System 3.11



N
0\

NPOC (ppm) 4-0ct 6-0ct 8-0ct II-Oct 13-0ct IS-Oct I8-0ct 20-0ct 2S-0ct I-Nov

Raw 0.7'd7 0.783 0.604 0.614 0.581 0.515 0.517 0.533 0.642 0.642
Post Vinegar Ig.420 14.480 22.100 17.320 13.395 13.885 10.665 12.595 20.655 13.275
Post Reactor 1.350 1.429 1.384 1.001 0.893 0.917 0.930 1.603 2.502 4.286
Post Roughing Filter 1.293 1.215 1.192 0.968 0.885 0.858 0.802 0.749 1.211 1.029
Post Sand Filter 0.941 0.954 0.661 0.629 0.645 0.629 0.679 0.556 0.700 0.658
Post Clear Well Chlorinated 0.842 0.985 0.699 0.68\ 0.745 0.579 0.579 0.573 0.732 0.653
Mixed Chlorinated 0.873 0.773 0.624 0.650 0.546 0.517 0.478 0.519 0.613 0.669
Distribution System

UV1S4 4-0ct 6-0ct 8-0ct II-Oct 13-0ct IS-Oct I8-0ct 20-0ct 25-0ct I-Nov

Raw 0.015 0.014 0.015 0.017 0.012 0.016 0.Ql5 0.015 0.014 0.015
Post Vinegar 0.014 0.016 0.016 0.016 0.015 0.016 0.015 0.013 0.014 0.015
Post Reactor 0.0\6 0.016 0.016 0.015 0.014 0.016 0.013 0.014 0.016 0.016
Post Roughing Filter 0.019 0.015 0.016 0.0\6 0.016 0.016 0.013 0.016 0.0\7 0.017
Post Saod Filter 0.014 0.014 0.014 0.015 0.014 0.015 0.014 0.015 0.013 0.014
Post Clear Well Chlorinated 0.016 0.0\6 0.014 0.016 0.015 0.017 0.016 0.015 0.015 0.016
Mixed Chlorinated 0.020 0.016 0.QI5 0.016 0.010 0.015 0.015 0.014 0.013 0.014
Distribution System

UV1S4INPOC [lJ(mg*m)l 4-0ct 6-0ct 8-0ct ll-Oct 13-0ct IS-Oct IS-Oct 20-0ct 25-0ct I-Nov

Raw 1.91 1.79 2.48 2.77 2.07 3.11 2.90 2.81 2.18 2.34
Post Vinegar 0.08 0.11 0.07 0.09 0.11 0.12 0.14 0.10 0.07 0.11

Post Reactor 1.19 1.12 1.16 1.50 1.57 1.75 1.40 0.87 0.64 0.37

Post Roughing Filter 1.47 1.23 1.34 1.65 1.81 1.86 1.62 2.14 1.40 1.65
Post Sand Filter 1.49 1.47 2.12 2.39 2.17 2.38 2.06 2.70 1.86 2.13
Post Clear Well Chlorinated 1.90 1.63 2.00 2.35 2.01 2.94 2.77 2.62 2.05 2.45

Mixed Chlorinated 2.29 2.07 2.41 2.46 1.83 2.90 3.14 2.70 2.12 2.09
Distribution System
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