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PREFACE

The parallelism within an algorithm at any stage of execution can be defined as

the number of independent operations that can be perfonned in parallel. These

independent operations can be simultaneously scheduled on multiple processors. The

scheduling algorithm used for this purpose influences the time taken to complete the

entire set of operations. The efficiency and overhead of such a schedule depends on many

issues such as task decomposition, allocation of tasks to processors, and processor

communication overhead. In general, a given problem can be decomposed into smaller

tasks/processes/operations, with interdependencies among them (i.e., the precedence

relation among the tasks). Using known algorithms, the maximum possible parallelism

can be extracted from these interdependencies. Subsequently, the tasks can be allocated

to a set of available processors. The objective of the proposed thesis was to improve such

parallel executions (in terms of multiprocessor performance) by reducing the

communication overhead among processors. Research has been mainly conducted on

detenninistic scheduling algorithms for multiprocessors. These algorithms can schedule a

set of tasks, given in the fonn of a directed acyclic graph (DAG), on a given number of

processors. Communication overhead between processors can be an important

distinguishing factor among possible schedules of a given task system. The purpose of

the thesis was to reduce the communication overhead between processors, which could

result in faster execution times for algorithms.
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A simulation program was developed to study the effects of reducing processor

communication overhead in multiprocessor scheduling. The program implements the

proposed algorithm (algorithm D) which generates a schedule for a task system based on

each task's predecessors. The test suite consisted of task systems obtained from various

sources, but mostly from a task system generator program, which was designed and

implemented as part of this work. It was found that algorithm D reduces the inter

processor communication overhead in most of the cases.
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CHAPTER I

INTRODUCTION

Parallel processing offers one possible solution to meeting the ever-increasing

demand for computational speed in solving complicated problems. Parallel processing is

generally used to increase the overall throughput of a system. In parallel processing that

utilizes the method of function parallelism, a program is divided into a number of

processes, tasks, or threads, which can run concurrently on the available processors. All

processors in a parallel processing system normally reside in a single machine, unless the

system is distributed or loosely coupled.

Implementing parallel algorithms for a given problem, in order to attain high

performance has multiple parts to it. The first step in the implementation of parallel

algorithms is decomposition. Problem decomposition involves identifying sequential

units of computation, called "tasks", in the given problem. The second step involves the

identification of dependencies among the decomposed tasks and thus determining the

extent and degree of parallelism existent in the given problem. The last step involves the

allocation of the tasks to the available processors.

A problem partitioned into tasks forms a task system. A task system is represented

by a directed acyclic graph (DAG) or a rooted tree. A DAG consists of a set of nodes and

a set of directed arcs (edges) connecting them. A rooted tree is a directed graph in which



2

each node has at most one successor (the root has no successors) and any number of

predecessors (including zero predecessors for the leaves).

Having decomposed a problem into a task system, the individual tasks must be

assigned to the set of available processors, using a scheduling algorithm. The goal is to

reduce, and ideally to minimize, the time taken to complete the execution of the task

system. Tasks that are on the same path of a DAG may not in general be assigned to the

same processor one after another. Since a task needs to pass along data to its successors, a

schedule will involve a certain amount of communication overhead in tenns of

information transferred among processors. The thesis focuses on reducing the

communication overhead among processors. Since this type of inter-processor

communication in general comprises unproductive time, curtailing the communication

between processors can lead to a potentially significant gain by eventually increasing the

throughput of the system.

The rest of the thesis is organized as follows. Chapter IT contains basic algorithm

used. Chapter III describes the design and implementation issues of the simulation

program. Chapter IV describes the experimentation conducted and chapter VI contains

the summary, conclusion and future work.



CHAPTER II

BASIC ALGORITHMS

This chapter reviews the basic model used for task system representation in the

context of three scheduling algorithms. The three basic algorithms are described in the

following subsections, with each algorithm having advantages over the preceding one.

2.1 Scheduling Algorithm A

A task system given in the form of a rooted tree can be scheduled by using

Algorithm A. This algorithm (Figure 1) follows the same broad approach used in Hu' s

algorithm for multiprocessors [Mandyam and Samadzadeh 92b].

Algorithm A has certain limitations. Primarily, it is restricted to scheduling task

systems that are rooted trees. However, a DAG need not necessarily be a rooted tree,

because the nodes of a DAG can have more than one successor. A second restriction is

that the rooted tree should have nodes with equal weights, which need not be true for a

general DAG.

2.2 Scheduling Algorithm B

To address the problems of Algorithm A, Algorithm B was developed [Hu 61]

[Mandyam and Samadzadeh 92b]. This algorithm (Figure 2) first preprocesses a given

3
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DAG. A rooted tree is obtained with equally weighted nodes by replication of some of

the nodes in the DAG.

Algorithm B presumes that a given task graph has already been preprocessed so

that a corresponding rooted tree (which is equivalent to the original DAG) with equally

weighted nodes, is at hand.

2.3 Scheduling Algorithm C

The only limitation of Algorithm B is its replication (repetition) of nodes during

the preprocessing phase. To overcome this problem, a multiprocessor scheduling

algorithm (Algorithm C) was developed [Mandyam and Samadzadeh 92a] (see Figure 3).

This algorithm schedules a task system, given in the form of a DAG (and not necessarily

a rooted tree), on multiprocessors. The advantage of Algorithm C over Algorithm B is

that Algorithm C schedules the DAG directly, and the intennediate phase of converting a

DAG with multiple successor nodes into a rooted tree containing only equally weighted

nodes, is therefore removed.



The tasks are labeled using the labeling scheme mentioned below.
Every node of a given graph is ass,igned a label as follows.

• The root node label is set to 1.
• The label of any other node is set to 1 plus the label of its

single successor node.
Using this labeling arrangement, a label table is created for the rooted tree.

Let L denote the value of the maximum label in the label table. Wi denotes the
subset of the nodes or tasks with label i and IWil denotes the number of tasks
mWj.

The width of the graph is defined as
WG = max{lwd, IW 21•...• IWLD

The tasks are then grouped into sets. for scheduling on p processors, using the
following algorithm.
Ll:

if IWil ~ p for i =L, .... 1 then
goto L3

else if for some i, Iwd > p then
n =i;

L2:

ifn *L then
find a internal node from Wn that does not have any
predecessors in W n+\;

change the node's label from n to n+ I;
end /* then */
ifn =L then

select any node from the set WL as the victim;
/* since all are leaf vertices in WL

change the node's label from L to L+l */
increment L by 1;

end /* then */
goto Ll;

L3:
fonn the schedule as follows
for i =1, 2, ... , L do

execute a task in the set Wi in the (L-i+ l)th unit of
time on one of the p processors;
/* if fewer than p tasks are available, the
remaining processors will be idle */

end /* do */

Figure 1. Algorithm A. Scheduling a Rooted Tree on p Processors [Hu 61)

5
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Consider a rooted tree with replicated nodes that corresponds to a
given DAG that has been preprocessed. Each node in the graph is
assigned a label as follows.

• The root node label is set to I.
• The label of any other node (including the replicated nodes) is

set to 1 plus the label of its single successor node.
Using this labeling arrangement, a label table is created for the rooted tree.

Let L denote the value of the maximum label in the label table, let Wi

denote the subset of the nodes or tasks with label i, and let IWi Idenote
the number of tasks in Wi.

The width Wa of the graph is defined as in Algorithm A.

repeat
Select at most p tasks from Wi for i =L, ... , I such that:

they are leaf nodes or
all their predecessors have been assigned in an interval
previous to the current time interval;

if the predecessor of a task is a repeated node, then
any counterpart of the repeated node can be considered the
predecessor of the task;

.if a repeated node needs to be selected, then
if any of its counterparts has been selected
earlier or in the current interval, then
discard it from the current set Wi;

else select it for the current time interval;
end;

if all tasks in the set Wi have been tried for selection,
then examine the next set Wi+l;

Schedule p (or fewer) tasks on p processors during
the current interval;

until (all tasks have been scheduled);

Figure 2. Algorithm B. Scheduling a Rooted Tree with Repeated Nodes on p Processors
(originally in [Hu 61] and modified in [Mandyam and Samadzadeh 92b])



The tasks are labeled according to the same labeling scheme used for
Algorithm A. The tasks are grouped into sets, for p processors, using the
following algorithm.

Let L denote the value of the maximum label in the label table.

Ll:
if Iwi! $ p for i =L, ... , 1 then

gotoL3
else if for some i, IWil > P then

n = i;
L2:

ifn #. L then
find an internal node from Wn that does not have any
predecessors in Wo+l;

if no such node is available in W n then
n = n + 1;
goto L2

end J* then */
change the node's label from n to n+1;

end /* then */
ifn =L then

select any node from the set WL as the victim;
/* all nodes in WL are leaf nodes */
/* change the related node's label from L to L+1 *J
increment L by 1;

end /* then */
goto Ll;

L3:
fonn the schedule as follows
for i = 1, 2, ... , L do

execute a task in the set Wi in the (L-i+ I )th unit of
time on one of the p processors;
/* if fewer than p tasks are available, the
remaining processors will be idle */

end /* do */

Figure 3. Algorithm C. Scheduling a DAG on p Processors Directly (originally
in [Hu 61) and modified in [Mandyam and Samadzadeh 92b])

7



CHAPTER III

DESIGN AND IMPLEMENTATION ISSUES

This chapter describes the design and implementation issues of the simulation

program (i.e., the software tool created as part of this thesis). The simulation program

was implemented in C under Solaris 7 (SunOS v5.7).

3.1 Overview of the Simulation

The simulation program was developed as a tool that aids in the study of the

effects of inter-processor communication overhead in multiprocessor scheduling. The

input to the simulation is a random task system (DAG) obtained by using the random task

generator program, which was also designed and implemented as part of this research

effort. Task systems from various other sources, inclUding those from previous research

papers [Hu 61] [Samadzadeh 92] [Ananthaneni 97] and the Internet [Battista, et a1. 96]

were also used as inputs to test the program, to provide greater variability.

The random task system generator program creates task systems by placing

dependencies among tasks that are located at different levels of the task system. The

number of tasks in the system is used as a primary constraint. All other elements,

including the number of levels in the task system, the number of tasks in each level, the

number of dependencies (i.e., the number of successors of each task in the task system

except the root), and the successor tasks, are randomly generated.

8
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Consider the DAG given in Figure 4. The format of the input file for the given

DAG is shown in Figure 5. In Figure 5, the first line indicates the number of tasks in the

task system. The rest of the lines contain task name, task level, task weight, number of

successors, and successor names, for all tasks in the system.

Figure 4. Example of a DAG [Mandyam and Samadzadeh 92b]
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For the ex.ample illustrated in Figure 5, the task names range from TI to T26.

Task TI is always the root and has no successors. Task T26, which is on level 8, can have

successors from tasks T25 to Tl, which are all in levels below level 8. Thus the

maximum number of successors of any other task, ranges from one to the total number of

tasks in the levels below the level of the task under consideration.

26
TI 120
T22 I I TI
T32 I I TI
T4 2 2 I TI
T9 2 2 I Tl
T53 I 1 T2
T63 11 T3
1'732 I T4
T8 3 2 I T4
TI4 3 2 1 T9
TID 421 T5
T1142 I T5
TI2 421 T6
TI3 4 22 T7 TS
TI9 4 2 I T14
T22 4 2 1 T6
TI5 52 1 TIO
T16 5 2 I TIl
Tl7 5 2 1 TI2
TI8 52 1 TI3
T20 6 2 2 T 15 T 16
T2I 621 TI7
T23 621 TI8
T24 7 2 2 T 19 T20
T25 7 2 2 T21 T22
T26 8 2 3 T23 T24 T25

Figure 5. Format of the Input File for the DAG in Figure 4
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3.2 Algorithm Implementation

The program's algorithm consists of four main functions. They are gen_setsO,

Hu_scheduleO, random_scheduleO, and the proposed_scheduleO. The function

gen_setsO implements Hu's algorithm (actually Algorithm C). All functions schedule the

tasks on p processors and compute the inter-processor communication overhead

incrementally when each task is executed. Each function calls the sub program

compute_overheadO to compute the inter-processor communication overhead. In Hu's

algorithm, each task from each task set (a set of tasks that do not have dependencies

among them) is selected in the order of its appearance in the task set and is assigned to

the first available processor.

The function random_scheduleO implements the random algorithm. In this

function each task from each task set is chosen and is assigned to a randomly selected

processor. For randomizing the schedule, the function randO provided by the C compiler

is used.

The function proposed_scheduleO implements the proposed algorithm shown in

Figure 6, and also the worst case algorithm. This function schedules the tasks based on

their predecessors already assigned to the processors.

Each task from each set is selected in the order of its appearance in the task set.

For the best case, each task from each set is assigned to a processor that has the highest

number of that task's predecessors. For the worst case, each task from each set is

assigned to a processor that has the lowest number of its predecessors or zero

predecessors assigned. For the best case and the worst case, the function calls the sub

function CheckForPredO to find the processor to which the highest number of
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predecessors of a task have been assigned, and the lowest number of predecessors of a

task or no predecessors of a task have been assigned, respectively. Thus the proposed

algorithm attempts to schedule tasks that are on the same path of a DAG to the same

processor one after another, to the extent possible, to reduce the inter-processor

communication overhead incurred. The worst case algorithm on the other hand, attempts

to schedule tasks that are on the same path of a DAG to different processors, to the extent

possible, to increase the inter-processor communication overhead incurred.

The program uses four main structures. The structure Node stores attributes of

each task in the DAG. These attributes include task name, task weight, task level, number

of successors of the task, number of predecessors of the task, successor names, and

predecessor names.

The attributes of each level in the DAG are stored in the Width structure. The

processor structure is used to execute the tasks scheduled on each processor. Considering

the worst case, the memory allocated to the Width and processor structure is the same as

the memory allocated to the Node structure, i.e., each task in the DAG has the maximum

number of successors possible. The precedence structure is used to store the highest and

the lowest number of predecessors of a task assigned for the given number of processors.

This structure is used by the function proposed_scheduleO for the best case schedule for

and the worst case schedule.
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The tasks are labeled using the labeling scheme mentioned below.
Every node of a given graph is assigned a label as follows.
• The root node label is set to 1.
• The label of any other node is set to 1 plus the label of its

si ngle successor node.
Using this labeling arrangement, a label table is created for the rooted tree.

Let L denote the value of the maximum label in the label table, Wi denotes the
subset of the nodes or tasks with label i, and Iwd denotes the number of tasks
mWi·

The width of the graph is defined as
WG = max{lwd, IW 21, ... , Iwd}

The tasks are then grouped into sets, for scheduling on p processors, using the following
algorithm.
Ll:

if Iwd :<:; p for i =L, ... , 1 then
goto L3

else if for some i, Iwd > p then
n = 1;

L2:
if n i= L then

find an internal node from Wn that does not have any predecessors in Wn+l;

change the node's label from n to n+1;
end /* then */
if n =L then

select any node from the set WL as the victim;
/* since all are leaf nodes in wL.change the node's label from L to L+l */
increment L hy 1;

end /* then */
goto Ll;

L3:
form the schedule as follows
for i = 1, 2, ... , L do

assign a task in the set Wi to one of the p processors which has the
highest number of its predecessors assigned;
if the numbers of predecessors of the task are equally assigned to more
than one processor, select anyone of the processors with
predecessors assigned;
compute the conununication overhead for task execution;
execute a task in the (L-i+1)th unit of time;
/* if fewer than p tasks are available, the remaining processors will be idle */

end /* do */

Figure 6. Proposed Algorithm. Scheduling a DAG on p Processors



CHAPTER IV

EXPERIMENTATION

This chapter contains a description of the experiment conducted using the

simulation tool. In the sets of runs comprising the experimentation, the input task systems

(i.e., the test suite) were obtained by using the random task system generator which was

designed and implemented as part of this thesis work. Task systems from various other

sources, including those from previous research papers [Hu 61] [Samadzadeh 92]

[Ananthaneni 97] and the Internet [Battista, et a1. 96] were also used as input.

Twenty task system sets (each being a set of task systems containing the same

number of tasks) were generated using the random task system generator, with each task

system set containing 20 task systems. The number of tasks in each task system ranged

between 25 (the first task set) to 120 (the last task set), in steps of 5. In each task system,

the number of levels in the DAG, the number of tasks in each level, the number of

successors, and the successor names were randomly generated. The number of levels in

each task system ranged from 2 to number of tasks in the system. The number of tasks in

each level ranged from 1 to the number of tasks remaining to be assigned minus the

number of levels remaining. The number of successors of each task (except the root)

ranged from 1 to the total number of tasks in the levels below the level of the task under

consideration. Each task had at least one successor in the level just below itself.

14
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The simulation program was executed several times for each task system, by

varying the number of processors used from 2 to the maximum of 50 and the maximum

width of the task systems. Fifty was the maximum number of processors used if the

maximum width of the task system was greater than 50. Although these numbers were

arbitrarily chosen, the idea was to cover as much of the spectrum of reasonable situations

as possible.

The task systems were scheduled using Hu's algorithm, the random algorithm,

algorithm D, and the worst case algorithm. The inter-processor communication overhead

was calculated as the task systems were scheduled on the processors according to the

schedule generated by each algorithm. In very few cases Hu's algorithm and the random

algorithm performed better in reducing the inter-processor communication overhead, than

algorithm D.

For the same schedule length, if tasks that are on the same path of a DAG are

assigned to the same processor one after another to the extent possible, the inter-

processor communication overhead for the task system will be less than other

alternatives. Algorithm D assigns each task from each task set (i.e., a set of tasks in a task

system that do not have dependencies among them) to the first available slot for a given

number of processors in the order of their appearance in the task set with the specific

processor selected based on where each task's predecessor has been scheduled

previously. Algorithm D considers the past scheduling decisions to reduce the inter-

processor communication overhead. This scheme sometimes proves to be less efficient

than assigning tasks using the random algorithm. Hu' s algorithm selects each task from

each task set (i.e., a set of tasks in a task system that do not have dependencies among

them) in the order of their appearance in the task set for assignment, and the first
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available processor is selected for all the aVailable times. Thus sometimes Hu's

algorithm (first available task selection and processor selection) and the random

algorithm (arbitrary task selection and processor allocation) assigns tasks that are on the

same path of a DAG to the same processor, thus ending up with less overhead than

algorithm D.

Figure 7 through 10 show the average inter-processor communication overhead

with increasing number of tasks executed (25 to 120 in steps of 5) on a given number of

processors (2 to 12) as scheduled by Hu's algorithm, the random algorithm, algorithm D

and the worst case algorithm. With the increase in the size of the task system executed,

the average inter-processor communication overhead was generally found to be

increasing. As the figures suggest, Hu's algorithm and algorithm D performed better than

the random algorithm and the worst case algorithm in terms of the communication

overhead incurred.

Figure 11 shows the average inter-processor communication overhead for all the

task systems executed on a given number of processors in the range 2 to Wmax

(maximum width of each task system), where Wmax is less than or equal to 50 as

scheduled by Hu's algorithm, the random algorithm, algorithm D, and worst case

algorithm. The worst case algorithm and the random algorithm behaved expectedly more

erratically than Hu's algorithm and algorithm D. Also, as indicated by the figure, the

average inter-processor communication overhead generated by algorithm D was less than

the average inter-processor communication overhead generated by the other three

algorithms.
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CHAPTER V

SUMMARY AND FUTURE WORK

In Chapter I the main objective of this thesis was presented. Chapter IT presented

algorithms A, B, and C. Chapter In discussed the design and implementation issues

involved in this work including the proposed algorithm (algorithm D) for reducing inter

processor communication overhead in multiprocessor scheduling. Chapter IV described

the tests conducted and presented the results of the simulation. The simulation program

takes a random task system as input, schedules and executes it according to Hu's

algorithm, a random algorithm, algorithm D, and the worst case algorithm, and calculates

the communication overhead for each schedule as the tasks are allocated to the available

processors.

It was found that algorithm D reduces the inter-processor communication

overhead in most of the cases and the percentage reduction in inter-processor

communication overhead was generally independent of the number of tasks in a task

system. The overhead introduced by algorithm D is the time complexity of selecting a

processor for the next schedulable task and the space complexity of keeping enough

information around to do so. Algorithm D can be further improved by introducing more

heuristics into the process of selecting a processor for a task ready to be dispatched.

It should be noted that algorithm D does not always produce the optimal schedul.e

for a given task system. Limitations of the simulation program include the following: the
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maximum number of tasks in each task system is 120 (in the current implementation), it

is not an interactive program, its input fonnat specification is somewhat rigid, and it

assumes error-free input.

Future work in this area includes the following. Instead of considering abstract

task systems, actual programs can be considered as the basis for the generation of the task

systems. The performance of algorithm D when task weights are variable can also be

studied. Task systems with multiple roots can be considered as well. In Hu' s algorithm,

when selecting a task from each task set as victim to be moved it to a higher numbered

task set, the choice could be based on the number of predecessors of the task under

consideration in the higher numbered task set. A graphical user interface can be

developed to visualize the variations in the inter-processor communication.
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APPENDIX A

GLOSSARY

Communication Overhead Unproductive time due to processor communication.

DAG Directed Acyclic Graph.

Deterministic Scheduling When the infonnation needed for scheduling tasks is
known apriori.

Precedence Graph A task system in which a precedence relation exits
among the tasks. This precedence relation specifies
the general order of task executions.

Rooted Tree A directed graph similar to a precedence graph in
which each node has at most one successor (and any
number of predecessors, including zero predecessors).

Schedule A description of the work to be carried out by each
processor as a function of time.

Tasks Sequential units of computation, identified by problem
or program decomposition.

Task set A set of tasks that in a task system do not have
dependencies among them. Tasks that have the same
distance from the root in a rooted tree. Tasks at the arne
level of a rooted tree.
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APPENDIXB

PROGRAM LISTINGS

This appendix has two programs listed. The first program is the random task system
generator, which generates the input to the second program. The second program listed is
reducing processor communication overhead in multiprocessor scheduling which
executes the input.

///////////////////////////////////////////////////////////////////////////////
// Program Random Task System Generator
// Author Suraj S Bhat
// Instructor Dr. Mansur H. Samadzadeh
// Date January 2000
// Programming Language C
///////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////
// The program algorithm consists of 2 main functions getlevel() and
// gen_dependencies{) .The function getlevel{} randomly generates the
/1 number of levels (2 to number of tasks in the system) in the task
II system and the number of tasks in each level. The number of tasks
II in each level range from 1 to the number of tasks remaining to be
// assigned minus the number of levels remaining. This function is used to
// generate dependencies among various tasks. The aim is to generate the
// number of successors, which is done randomly. The successor names are also
// chosen randomly, but the properties of the DAG are maintained. In each set
// of the initial set representation, it is checked to see whether any of the
// tasks have dependencies in the same task set. Thus, when the task system
// is being randomly generated, in each step of its process of generation, it
// is checked to see whether the DAG properties are being violated or not.
///////////////////////1///////////////////////////1////1//////////////1////1/1

#include <stdio.h>
#include <stdlib.h>

//MAX is the number of nodes or tasks in the system.
#define MAX 50

// Structure holds the attributes of all tasks of the task system or DAG.
struct task {

char task_name(80); // name of the task
int task_level; // task level
int task_weight; // task weight
int predecessors; // number of predecessors
char pred[200l (20); // predecessor names
char suc(200) (20); // successor names
int index; // number of successors

tasks[MAX + 1);

struct level {
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char task_name[MAX + 1) [20]; // the task names in each level of the task
// system.

int index; // the number of tasks in each level of the
// task system.

}levels[MAX + 1);

// This array is used to stack all the probable successors of each task in
// each level of the task system.
char stack[200] [20];

// function prototypes for all the functions used.
void initialize(void);
void getname(void);
int getlevel(void);
void getweight(void);
void getpredecessors(void) ;
void get-pred_names(int);
int Strcmp(const char[), const char[]);
void getprint(int);
void gen_dependencieslint );
int stack_up(int);
int get_task(char[]);
int isrepeater(int, int[]);
void print_it(int);

main()
{
int i;

// Number of levels in the task system range from 2 to the number of tasks in
// the system. Since tasks systems with only one root is considered and the
// number of tasks in the task system are greater than 2, the above mentioned
// range is considered.

int levels;

// Number of DAGS to be generated.
int Number_of_DAGS = 20;

// The srand() function uses the argument seed(time(O) as a seed for a new
// sequence of pseudo-random numbers to be returned by subsequent calls to
// rand()
srand(time(O») ;

/1 This for loop calls all the functions and generates the DAGs.
for (i = 1; i < Number_of_DAGS; i++)

(
initialize() ;
getname();
levels = getlevel();
getweight{) ;
gen_dependencies(levels) ;
print_it Ii) ;

}

/////////////////////////////////////////////////////////////////////////////
// This function prints all the task names and the task variables to the
// outputfile.
/////////////////////////////////////////////////////////////////////////////
void print_it(int i)
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register int t;
FILE *fp;
char file[BO);

// The randomly generated task system is stored in a file. The file name is
// generated using sprintf. Thus each time the function is called a new file
// name is generated with the prefix DAG and the value of i concatenated.
sprintf (file, "%s%d", "DAG" , i);

// Opening file to write.
if «fp=fopen(file, "w"»==NULL) (

printf("cannot open file. \n");
exit(l) ;

// The number of nodes in the system is printed in the output file first.
// The program implementing the proposed algorithm reads this first
// and allocates memory accordingly.
fprintf (fp,"%d\n", MAX);
for (t = 1; t < MAX + 1; t++)

{

fprintf (fp,"%s" tasks[t].task_name);
fprintE (fp, "%d • tasks[t) . task_level) ;
fprintf (fp, "%d" tasks[tJ . task_weight) ;
fprintf (fp, "%d", tasks It] . index) ;
for (i = 1; i < tasks[t] . index + 1; i++)

fprintf(fp, " %s", tasks[t].suc[i]);
fprintf(fp, "\n");

}

fclose(fp);
}

111111///1/1/111//11/1//////////////////////////1////////////////////////////
I/lnitialize the variables of the -tasks· and -levels· structure.
/////////////////////////////////////////////////////////////////////////////
void initialize(void)
{

register int t;

for (t = 1; t < MAX + 1; t++)
{
tasks[tJ.index = 0;
levels[t] . index = 0;

}

}

/////////////////////////////////////////////////////////////////////////////
//This function generates task names from T1 to TMAX.
lilt copies the task names to the task-name variable of the task structure.
///1//////////////////////////////1////////////////////////////////////////1/

void getname(voidl
(

register int t;
char task[BO);

for (t = 1; t < MAX + 1 ; t++l
{

sprintf (task, "%s%d", "Tn, t);
strcpy(tasks[t] . task_name, task);

}

////////////////////////////////1///////////1////////////////////////1/1/////
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// This function randomly generates the number of levels (2 to number of tasks
// in the system) in the task system and the number of tasks in each level.
// The number of tasks in each level range from 1 to the number of tasks
// remaining to be assigned minus the number of levels remaining.
/////////////////////////////////////////////////////////////////////////////
int getlevel(void)
(

// variables used in the for loop for generating the number of tasks in
// each level and the task names.
register int i,j,t;

// the number of tasks in each level.
int no_tasks;

// variable used to as a counter put the successor names into the level
/ / structure.
int big = 1;

// counter used to start the insertion of tasks in the level structure
// from level 2
int counter = 2;

// number of levels in the DAG, range from 2 to the number of levels in the
II DAG
int no_level;

int max;

// number of tasks in each level range from 1 to the number of tasks
/ / rerna.ining to be assigned minus the number of levels remaining.
int level tasks = 0;

no_level = 2 + rand() % (MAX - 1);

1/ The level one will have only one task, i.e., T1, in all DAGs. The level one
// will have no successors, only predecessors, because it is the root.

tasks[lJ . task_level = 1;
levels[l] .index++;
strcpy(levels[l] . task_name [1] , tasks[l}.task_name);

// The following for loop randomly generates the number of tasks in each
/1 level. The number of tasks in each level range from 1 to the number of
// tasks remaining to be assigned minus the number of levels remaining. Then
1/ the tasks are copied into the level structure, thus when the level
// structure is accessed, each index would contain the number of tasks in
1/ that level and the task names.

for (t = 2; t < no_level + 1; t++)
{

// the number of tasks in each level are randomly generated
// using the following equation
max = MAX_tasks % (no_level - t + 1);
no_tasks = 1 + rand() % (max + 1);
MAX_tasks = MAX_tasks - no_tasks;
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{
level_tasks = MAX + 1;
no_tasks = MAX - counter + 1;

}

II this inner for loop is for copying the task names to each level.
II the variable task~name is printed in the output file by the print_it()
II function
for (i = counter; i < level tasks + 1; i++)

{
II the task level of each task is inserted in the structure task the
II variable task_level is printed in the output file by the
II print_it{) function.

tasks[i) . task_level = t;

strcpy(levels[t] . task_name [big) , tasks[i) .task_namel;
big++;

}
big = 1;
levels[t) . index = no_tasKs;
counter = counter + no_tasks;
if (level_tasks == MAX + 1)

break;

return no_level;

II the weight of each task is randomly generated in the range 1 to 3.
void getweight(void)
{

register int t;
for (t = 1; t < MAX + 1; t++) (

tasKs[t) . tasK_weight = 1 + rand() % 3;

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II This function is used to generate dependencies among various tasKs.
II The aim is to generate the number of successors which is done
II randomly. The successor names are also chosen randomly, but the
II properties of the DAG are maintained. It is checked to see if tasks
II are dependent on themselves i.e., the node points to itself. In each
1/ set of the initial set representation, it is checked to see whether any
II of the tasks have dependencies in the same tasK set.
/1111/11/111/1////1//////1/1//1111/111/////111//1////////1//////11//1/111//1/
void gen_dependencies(int no_levels)

/1 variables used in the for loop for generating successor predecessor
II relationship between tasks in the task system.
register int i, j, p, m, n;

/1 The number of successors of each task (except the root) range
II from 1 to the total number of tasks in the levels below the
// level of the task considered. Each tasK has at least one successor
// in the level just below the level of the task considered.
int successors;

II variable names used as index or flags
int big, suc_name, taSK_number, check;

/1 store the successors of the task (integers from 1 to MAX). This array
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II is used to check whether the randomly generated SUCCeSsor has been
II repeated or not.
int array [MAX] ;

for (i = no_levels; i > 2; i--)
{

for (j = 1; j < (levels[i] . index + 1); j++l
{

II tasks below level i are stacked or stored, and big is the number
II of tasks in the stack. The stack is later used to get the successor
II name (randomly generated)
big = stack_up(i);

II number of successors of a task could be from 1 to the number of
II tasks in the stack.
successors = 1 + rand() % big;

if (successors >= big)
successors = 1 + rand() % (big - 1);

II get the task number. To get the index of the task structure into
II which the number of successors and successor names are stored.
task_number = get_task(1evels[i] .task_name[j]);

for ( n = 1; n < MAX + 1; n++)
array(n) = 0;

for ( p = 1; p < successors + 1; p++)
{

II The successor name is chosen randomly. The successor could be
II any task available in the array stack.
suc_name = 1 + rand() % (big -1);

II At1east one successor is chosen from the level n-1, to maintain
II the task level dependency between all tasks in the task system.
if (p == 1)

suc_name = (big - levels[i-1) . index) + rand() % leve1s[i-1] . index;

II since the suc_name is generated randomly, it is checked whether
II it has been repeated or not. if repeated the index is decrement
II until a valid successor name is found.
check = isrepeater(suc_name, array);

II If the suc_name is not repeated then the task from the stack is
II copied to the task structure.
if (check 1)

(

array[p] = suc_name;

II for each task the successors are copied to the suc variable
strcpy (tasks (task_number] .suc[p),stack(suc_name);

II the number of successors are incremented for the task.
II or tasks[task_number].index = successors;
tasks (task_number) .index++;

}

else
--Pi

II all the tasks in level 2 will always have T1 as its successor, because
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II the task system has only one root i.e., Tl.
if (i =:=: 2)
{

for (p =: 1; p < (levels[i] . index + 1); p++)
{

task_number get_task(levels[i).task_name(p]);
strcpy(tasks[task_number] .suc[I),levels(i-l] .task_name[I);
tasks [task_number) .index++;

J

11111111111111111111111111111111111111111111111111111111111111111111111111111
II This function is used to check whether the randomly generated successor has
II been repeated or not.
111111111111111111111111111111111111111111111111111111111111/1111111111111111
int isrepeater(int suc_name,int array[)
{

register int t 0;
for (t = 1; t < MAX + 1; t++)

{

if (suc_name =:=: array(t)
return 0;

}

return 1;

111111111111111111111111111111111111/1111111111111111111111111111111111111111
II returns the task number. i.e., for example if T5 is sent to the function
II it returns 5 to the function called.
1111111111111111/111111111111111111111111111111111111111111111111111111111111
inc get_task(char tempt])
{

register int m;
for (m =: l;m < MAX + 1; m++)

{

if (Strcmp(tasks[m] . task_name, temp) 0)
return m;

11111111111111111111111111111111111111111111111111111111111111111111111111111
II All the tasks in the levels below the level i that could be the successors
II of the task, are stacked up. The function returns the number of tasks
II in the stack to the called function.
11111111111111111111111111111111111111111111111111111111111111111111111111111
int stack~up(int i)
{

register int t,j;

II The number of elements in the stack
int big =: 1;
for (t =: 1; t < MAX; t++)

strcpy(stack[t) ,"n);
for(t =: 1; t < i; t++)

{
for(j =: 1; j < levels[tJ . index + 1; j++)

(
strcpy{stack[big] ,1evels[tJ .task_name[j]);
big++;

)

return big;
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/////////////////////////////////////////////////////////////////////////////
// String compare function
/////////////////////////////1/1////////11//1/1/////// ///////////////////////
int Strcmp(const char Lhs[], const char Rhs[)
{

int i;

for (i = 0; Lhs[i] == Rhsli); i++)
if (Lhs[i] == '\0')

return 0;

return Lhs[i] - Rhs[i];
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111111111111111111111111111111111111111111111111111111111/11/1/11///1111///111
II Program: Reducing Processor Communication Overhead in
// Multiprocessor Scheduling
// Author: Suraj S Bhat
/1 Instructor: Dr. Mansur H. Samadzadeh
II Date: January 2000
/1 Programming Language: C
/1111111//111/1111//////11/////////////1/111//11111111//1//1////////1//////1/1

1/11/1///////////1//1///////111////1/1///1111/11111111/11111/11111/11////11/111
II The program algorithm consists of four main functions. They are gen_sets(),
// Hu_schedule(), random_schedule() and the proposed_schedule(). The gen_sets()
/1 implements the Hu's algorithm or Algorithm C. All functions schedule the
/1 tasks on p processors and compute communication overhead when each task is
/1 executed. Each function calls compute_overhead() to compute the communication
// overhead because of task allocation to each processor. In Hu's schedule,
II each task from each set is selected on a first come first serve basis and the
/1 task is assigned to the first available processor.
/1 The random_schedule() implements the random algorithm. In this function each
/1 task from each task set is chosen and is assigned to a randomly selected
1/ processor. For randomizing the schedule, the randl) function provided by the
II C compiler is used. The prudent_schedule() implements the proposed algorithm
II and also the Worst case algorithm. The function schedules the tasks based on
// its predecessors assigned to the p processors.
II Each task from each set is selected on a first come first serve basis. For
1/ the best case, each task from each set is assigned to a processor, which has
II the highest number of the task's predecessors. For the worst case, each task
II from each set is assigned to a processor, which has the lowest number of its
II predecessors assigned or zero predecessors assigned. For the best case and
1/ the worst case, the function calls CheckForPred() to find the processor to
/1 which the highest number of predecessors of a task has been assigned and the
II lowest number of predecessors of a task or no predecessors of a task has been
II assigned, respectively.
II The program uses four main structures. The structure Node stores attributes
II of each task in the DAG. These attributes include the task name, the task
II weight, the task level, the number of successors of the task, the number of
// predecessors of the task, the successor names and the predecessor names.
II Memory equivalent to the number of tasks in the structure times the size of
/1 the structure is allocated using malloc().
1/ The attributes of each level in the DAG are stored by the Width structure.
II The processor structure is used to execute the tasks scheduled on each
1/ processor. Considering the worst case, the memory allocated to the Width and
1/ processor structure is same as the memory allocated to the Node structure,
II i.e., each task in the DAG has the maximum number of successors possible. The
II precedence structure is used to store the highest and the lowest number of
II predecessors of a task assigned to the given processors. This structure is
II used by the function prudent_schedule for the best case schedule and the
II worst case schedule.
/1111111/////1/1//1//////111///1//1/1/1///1////1111/111/1//111//1/////1/111111/1

#include <stdio.h>
~include <stdlib.h>

/1 Number of processors in the system
~define PROCESSORS 3

// Stores all the attributes of al~ tasks of the DAG.
struct Node {

char task_name [80] ; 1/ task name is stored
int task_weight; II weight of the task is stored
int task_level; // level of the task in DAG
int successors; 1/ successors of the task in the DAG
int predecessors; // predecessors of the task in the DAG
int suc[25] [6]; /1 names of the successors are stored
int pred[25] [6]; 1/ names of the predecessors are stored

} ;



II Width structure stores attributes of each level in the DAG.
struct Width {

int nllmLtasks; II number of tasks in the level
char task_names [40] [6J; II names of the tasks in the level

} ;

1/ This structure is used to store the initial set representations of the DAG.
struct last {

int NUITLtasks;
char Task_names [40) [6];
last[25J;

II This structure is used to execute the tasks on the processors.
struct processor {

char time_unit [25J [25J;
} ;

II This structure is used to check whether a time unit of a processor has
II been allocated to a task or not.
struct CHECK {

char open_close[80];
} CHECK [l 0 0 J ;

1/ This structure is used to find the largest and the smallest number of
II predecessors of a task allocated to any of the processors.
1/ The largest number is used to allocate the task to the processor when
II the proposed algorithm is implemented.
II The smallest number is used to allocate the task to the processor in the
II case of WORST_eASE_SCHEDULE of the tasks.
struct precedence (

int big:
int small;
PRED[lOO] ;

II Number of sets or levels in the DAG before and after the implementation
II of the Hu's algorithm.
int SETS;

II function prototypes for the program.
void gen_sets(int MAX, int level, struct Node ~node, struct Width ·width);
int prudent_schedulelstruct processor ~P, struct Width ~width, struct Node
·node, int MAX, int worst_case);
int Hu_schedule(struct processor *P, struct Width ·width, int MAX,
struct Node *node);
int randoItLschedule(struct processor *P, struct Width ·width, int MAX,
struct Node *node);
void print_schedule(struct processor *P);
void print_star();
int SMALL();
int BIG();
int CheckForPred(struct processor *p, char *temp, struct Node *node, int MAX,
int index, int row, struct Width *width, int worst_case);
int isrepeater(int suc_name, int array[], int MAX);
int compute_overhead(struct processor *P, char "temp, int index,
struct Node ·node, int t, int MAX) :
void scheduler(struct processor *p, struct Width *width, struct Node ·node,
int MAX);
struct processor *get_memory(int );
void init-processor(struct processor "P);
struct Node *get_struct(int );
struct Width ~get_width(int );
void label_table(int MAX, struct Node *node , struct Width *width);
void read_file(int MAX, FILE *fp, struct Node ·node);
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int get_level (int max, struct Node *node);
void init-pred( int max, struct Node *node);
void get-pred(int MAX, struct Node *node);
void init_width(int MAX, struct Width *width);
void delete(struct Width *width, int victim, int index);
int get_task_num(char * temp, int MAX, struct Node *spade);
int get_task(char * temp, struct Width *width, int index);
int check-pred(char * temp, int MAX, int index, struct Width *width,
struct Node *node);

main( )
{

// File pointer to open and read the input file.
FILE *fPi

// MAX variable is the number of nodes in the DAG.
int MAX;

struct Node *node;
struct Width *width;
struct processor *P;

// reading the input file.
if ( (fp = fopen ("DAG16" , "r"» == NULL)

{

printf ( "The input file is not found. Aborting .... \n") i
exit (0);

// Reading the number of nodes in the DAG.
fscanf(fp, "%d", &MAX);

// Memory is allocated to the structures Node, Width and processor according
// to the value of MAX.
node = get_struct(MAX);
width = get_width(MAX);
P = get-rnemory(MAX);

/ /The variable task_names is initialized.
init_width(MAX, width);

//The remaining part of the input file is read.
read_file (MAX, fp, node);

// The input file is closed.
fclose (fp) ;

// The label_table is generated according to algorithm C or Hu's algorithm.
label_table (MAX, node, width);

// The scheduler produces all the four types of schedules.
scheduler (P,width,node, MAX);

)

//////////////////////////////////////////////////////////////////////////
// Allocating memory to the Width structure.
//////////////////////////////////////////////////////////////////////////
struct Width *get_width(int MAX)
{

struct Width *widthi
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if «width = (struct Width *)malloc( MAX * sizeof(struct Width»)
printf("Allocation error - aborting.·);

NULL) {



exit(1) ;
}

return width;

///////////////////////////1////////////////////////// ////////////////////
// Initializing the values of num-tasks and task names variables of the
// Width structure.
//////////////////////////////////////////////////////////////////////////
void init_width(int MAX, struct Width *width)

{

register int i,j;
for Ii = 1;i < MAX + 1; i++)

{

width[i] .num_tasks = 0;
for lj = 1; j < MAX; j++)

strcpy(width[i] .task_names[j], "OJ;

//////////////////////////////////////////////////////////////////////////
// The label table initializes the task systems by implementing the Hu's
// algorithm. It generates the final set representation to the given
// number of processors.
//////////////////////////////////////////////////////////////////////////
void label_table(int MAX, struct Node *node, struct Width *width)
{

int max_width;
int level;
struct processor *P;

// level - The number of levels in the system
level = get_level (MAX, node);

// This function copies all the data from the Node structure to Width
// and other structures as required.
initializelMAX, node, width);

// This function generates the final set representation of the DAG, i.e., it
// implements Algorithm C or HU's Algorithm for given number of processors
gen_setslMAX, level, node, width);

1//////////////////////1///////////////////////////////////1////////11/11//
// All four types of schedules are obtained using this function.
/ / 1 .. Hu' s schedule is obtained and is directly scheduled on the given
// number of processors.
// 2. In Random schedule, from each set. the available tasks are randomly
// chosen for task allocation and the processors to which the tasks
// allocated are also randomly chosen.
// 3. Proposed Schedule: Tasks are scheduled according to predecessors of
// each task.
// 4. Worst schedule: This schedule is exactly opposite to the Prudent
// schedule.
///////////////////////////////////////////////////////////////////////////
void scheduler(struct processor *P, struct Width *width, struct Node *node ,
int MAX)
{

register int i,j;
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int execution_time 0; // Communication Overhead

// Used to store the width structure before each of the schedules are



II implemented.
char backup [100] [25];

II Variable used as a counter while storing task names in the array "backupM
int counter = 1;

II When prudent assignment of tasks is to be done the variable worst_case
II is set to 0 and for worst case assignment of tasks the variable is
II set to 1.
int worst_case = 0;

II saving the width structure before scheduling using Hu's algorithm.
for , i = 1; i < SETS + 1; i++)

for ( j = 1; j < width[i] .nllrnLtasks + 1; j++) (
strcpy(backup[counter],width[i] .task_names[j]);
counter++;

II Communication overhead is obtained after scheduling according to
II Hu's algorithm.
execution_time = Hu_schedule(P,width,MAX, node);

II The schedule and the communication overhead is printed after Hu's schedule
II is implemented on the given number of processors.
print_star');
printf("Tasks scheduled on the processors, before prudent assignment\n");
printf(" of tasks (Hu's algorithm)\n");
print_star() ;
print_schedule(P) ;
print_start) ;
printf("The processor communication overhead before prudent assignment\n");
printf (" of tasks(Hu's algorithm)\n");
print_star() ;
printf ("Processor Communication %d\n", execution_time);

II The saved status of the width structure before scheduling Hu's
1/ algorithm is copied back to the Width structure.
counter = 1;
for ( i = 1; i < SETS + 1; i++)
for ( j = 1; j < width[i].num_tasks + 1; j++) (

strcpy(width[i) .task_names[j], backup[counter]);
counter++;

II Communication overhead is obtained after scheduling according to
II random algorithm.
execution_time = random_schedule(p, width,MAX,node);

II The saved status of the width structure is restored.
counter 1;
for ( i = 1; i < SETS + 1; i++)

for ( j = 1; j < width[i).nllrnLtasks + 1; j++) (
strcpy(width[i) .task_names[j], backup[counter);
counter++;
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scheduled on the processors, before prudent assignment\n");
of tasks (randomly)\n");

II The schedule and the communication overhead
II implementation of the random schedule.
print_start);
printf ("Tasks
printf ("
print_star() ;
print_schedule(p) ;

is printed after the



print_star () ;
printf("The processor communication overhead before prudent assignment\n");
printf (" of tasks\n");
print_star() ;
printf ("Processor Communication %d\n", execution_time);

// worst_case is set to 0 for prudent assignment of tasks.
worst_case = 0;

// The communication overhead is obtained after the implementation of
// prudent or proposed schedule on the given number of processors.
execution_time = prudent_schedule(P, width, node, MAX, worst_case);

// The schedule and communication overhead is printed after the
// implementation of prudent schedule on the given number of processors.
print_star () ;
printf("Tasks scheduled on the processors, after pruden~ assignment\n");
printf(" of tasks\n");
print_star();
print_schedule(P);

print_start);
printf("The processor communication overhead after prudent assignment\n");
printf (" of tasks\n");
print_star();
printf ("Processor Communication %d\n", execution_time);

// The saved status of the width structure before scheduling prudent
// algorithm is copied back to the Width structure.
counter 1;
for ( i = 1; i < SETS + 1; i++)

for ( j = 1; j < width[i] .num_tasks + 1; j++) {
strcpy(width[i] .task_narnes[j], backup [counter] );
counter++;

// worst_case is set to 1 for worst case assignment of tasks.
worst_case = 1;

// The communication overhead is obtained after the implementation of
// worst case schedule on the given number of processors.
execution_time = prudent_schedule(P, width, node, MAX, worst_case);

// The schedule and communication overhead is printed after the
// implementation of worst case schedule on the given number of processors.
print_start) ;
printf("Tasks scheduled on the processors, after worst case assignment\n");
printf(" of tasks\n");
print_start) ;
print_schedule(P) ;
print_star();
printf("The processor communication overhead worst case assignment\n");
printf (" of tasks\n");
print_star();
printf ("Processor Communication %d\n", execution_time);

/////////////////////////////////////////////////////////////////////////////
// The schedule obtained from Hu's algorithm is directly scheduled on to the
// processors also the communication overhead when each task is allocated is
// taken into account. The function returns communication overhead for the
// schedule.
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1111111111111111111111111111/111//1////1//11//1//11/1111///111/111//1//1///11
int Hu_schedule(struct processor *P, struct width *width. int MAX.
struct Node *node)
{

register int i, j;
int count = 0; // count is the communication overhead for each task

II Counter is the total communication overhead at any point of time.
int counter = 0;

for(i = SETS; i > 0; i--) {
for (j = 1; j < PROCESSORS + 1; j++)

{

II if the number of tasks in the set is less than the number of
II processors, the remaining tasks are made NULL.
if (j > width[i] .nurn_tasks)

strcpylwidth[i].task_names[j]. "NULL");

// The tasks are scheduled on the processor.
strcpy(p[i] .time_unit[j], width[i] .task_names[j]);

/1 each task is sent to the function compute_overhead to get the
1/ communication overhead because of the task allocation to the
II processor.
count = compute_overhead(P, P[i] .time_unit[j]. j, node, i, MAX);

// The counter keeps track of the total communication overhead
1/ at any given time.
counter = counter + count;

return counter;

/1/111111////111111//1111//1/1//11/1//11/1//1111//1////111///1/111/1//1///1/1
// The schedule is obtained by randomly selecting each task from each task set
/1 and the time unit slot of each processor is also selected randomly, thus to
// get a totally random schedule, (psuedorandom number generator provided by
1/ the C complier is used). The function returns the communication overhead for
// the schedule.
1///1///1/1////11////1////1//1////1///1//1111//111///1/1/11111///////11//////
int random_schedule(struct processor *p, struct Width *width, int MAX,
struct Node *node)
(

register int i.j,k,m;

/1 When a task is selected for allocating a time slot on the processor the
1/ array is filled with the task number. for instance if T5 is selected,
// 5 is filled in the array. Thus when the same task is selected randomly,
II the array is checked, to make sure the same task is not allocated again.
int array(lOO];

// When a time slot has been allocated a task (randomly), the array process
// is filled with that slot number. Thus when the same slot is chosen again
// randomly. the array process is checked to see whether the slot has
/1 allocated or not.
int process[lOO];

/1 task_name is the index for the Width structure variable Task_names.
// check is used check the validity of the chosen task.
// index is used check the validity of the chosen time slot of the processor.
int task_name, check, index;
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II Variable is used when the index of the Width structure do not match
II the index of the processor structure.
int send = 0;

II Variable is used to get the total communication overhead because of the
II schedule.
int counter = 0;

II Variable is used to get the communication overhead because of the task
II allocation to a processor.
int count = 0;

II The array and process variables are initialized to O.
for(i = SETS; i > 0; i--) {

for(m = 1; m < MAX + 1; m++)
array[m] = 0;
process(mj = 0;

II The random scheduling begins here.
for (j = 1; j < PROCESSORS + 1; j++}

(

II The task name is chosen randomly, the range would be from
II 1 to the given number of processors.
task_name 1 + rand() % PROCESSORS;

II If the task_name is greater than the number of tasks in the set
II then the task_names is set to NULL.
if (task_name> width[ij .nllmLtasks)

strcpy(width(ij . task_names [task_name] , "NULL");

II It is checked whether the task_name has been already selected.
check = isrepeater(task_name, array, MAX);

II If not then proceed.
if (check 1)

{

II Find a slot on any processor, that is valid, loop until
II the slot is found.
for (k = 1; k < PROCESSORS + 1; k++)

(

II The time slot is randomly chosen.
index = 1 + rand() % PROCESSORS;

II Check whether the slot has already been taken.
check = isrepeater(index, process, MAX);

II If the slot has not been taken proceed.
if (check == 1) {

II The arrays process and array are filled with the
II time slot selected and the task selected respectively.
process[jj = index;
array[jj = task_name;

II The task is allocated the time unit on the processor.
strcpy(P(ij .time_unit[index].

width[i] .task_names[task_namej);
send = j;

if (j != index)
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send = index;

// Communication overhead because of the task allocation.
count = compute_overhead(P, P[i) . time_unit [index] ,

send, node, i, MAX);

// The communication overhead at any given time.
counter = counter + count;
break;

// If the time slot selected is not valid then --leo
else
--k:

// If the task name has been already selected, then --j.
else

--j;

return counter;

////////////////////////////////////////////////////////////////////////////
// This fuction is called during printing the schedule and the communication
// overhead for a schedule.
////////////////////////////////////////////////////////////////////////////
void print_start)
{
printf("***********************************************·************\n");

////////////////////////////////////////////////////////////////////////////
// The schedules are printed. They are:
/1 1. Hu's algorithm Schedule
// 2. Random schedule
// 3. Proposed algorithm schedule
// 4. worst case schedule
////////////////////////////////////////////////////////////////////////////
void print_schedule(struct processor *P)
{

register int i,j,k;
for ( i = 1; i < PROCESSORS + 1; i++) {

printf ("Processor P%d: ", i);
for (k = SETS; k > 0: k--) {

for (j = i; j < i+l ; j++)
printf("%4s ", P[k].time_unit[j]);

}

printf("\n") ;
}

}

////////////////////////////////////////////////////////////////////////////
// The best case and the worst case schedule are obtained using this function
// For the best case or prudent algorithm, the task is allocated to the
// processor which has the highest number of the task's predecessors.
// For the worst case algorithm, the task is allocated to the processor
// which has the lowest number of the task's predecessors.
////////////////////////////////////////////////////////////////////////////
int prudent_schedule(struct processor *P, struct Width *width, struct Node
"node
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,int MAX, in_t worst_case)
{

register int i,j,k,m,l;

II task_name is the index for the Width structure variable Task_names.
II index is used check the validity of the chosen task
int task_name, index;

II Variable is used to get the total communication overhead because of the
II schedule.
int counter = 0;

II Variable is used to get the communication overhead because of the task
II allocation to a processor.
int count = 0;

II Variable is used when the index of the Width structure does not match
II the index of the processor structure.
int send;

for( i = SETS; i > 0; i--) {
for ( m = 1; m < PROCESSORS + 1; m++)

II The time unit slots are open for each processor.
strcpy(CHECK [m) . open_close, "open") ;

for ( j = 1; j < PROCESSORS T 1; j++)

II If the task name is greater than the number of tasks in the set
II then the empty slots are set to NULL.
if (task_name> width[i) .num_tasks)

strcpy(width[il . task_names [task_name) , "NULL");

II The first set of tasks are leaf nodes and hence are scheduled
lion a first come first basis.
if (i != SETS)

(

II The time unit slot of a processor is chosen which is based on
II the value of the worst case.
index = CheckForPred(P, width[i).task_narnes[j], node, MAX,j,Lwidth,

worst_case) ;

II If the task name is NULL then it is checked to find an open slot
lion any other processor.
if (Strcmp(width[i).task_narnes[j), "NULL") 0)

{

for(l = 1; I < PROCESSORS + 1;1++)
if (Strcmp(CHECK[l) . open_close, "open") 0)

{

index = I;
break;

}

II Allocate the task to the index retuned by the function
II compute_overhead
strcpy(P[iJ.time_unit[index), width[i).task_names[j]);

II The slot flag is set to "closed"
strcpy (CHECK [index] . open_close, "closed");

}
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// The first task set is allocated to the processors on first come
// first serve basis. The processors are also chosen on first come
// first serve basis.
else

strcpy(P[i) .time_unit[j), width[i) .task_names[j]):
send = j:
if (j != index)
send = index;

// Communication overhead because of the task allocation.
count = compute_overhead(P, P[i) . time_unit [index] , send, node, i, MAX);

// Total communication overhead at any point of time.
counter = counter + count:

return counter:

//////////////////////////////////////////////////////////////////////////
// This function checks for predecessors of each task assigned on any of the
// processors.
// returns the processor to which the largest number of predecessors of a
// task assigned, when the worst case = 0;
// returns the processor to which the lowest number of predecessors of a
// task assigned, when the worst case = I:
//////////////////////////////////////////////////////////////////////////
int CheckForPred(struct processor *p, char *temp, struct Node *node, int MAX,
int index, int row, struct Width *width, int worst_casel
(
register int i, j, k, n, rn, 1;

// The tasks scheduled on a particular processor is stored in the array str.
char str(40) [10]:

// A counter used for storing the task names in the variable str.
int point;

// Variable would have the task number.
int task:

// Variable to store the initial index.
int initial:

// Variable to check whether a task's predecessor has matched any of the
// tasks scheduled previously on the processor.
int flag;

// The initial value of the index is saved.
initial = index:

// If the task is NULL then index is sent back to the called function.
if (Strcrnp(temp, "NULL") == 0)
return index;

// The task number is found, for instance for task~name T5, the task number
// would be 5
task = get_task_num(temp, MAX, node):

for (i = 1; i < PROCESSORS + 1; i++)
(
// Initializing the variables big and small of the precedence structure.
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PRED [i j . big = 0;
PRED[ij . small = 0;

II If the time slot of the processor is open, then all the tasks
II scheduled on the processor is copied to the array str.
if (Strcmp(CHECK[ij . open_close, "open") == 0)

{

point = 1;
for (k = SETS; k > row; k--)

for (j = i; j < i + 1; j++)
{

strcpy(str[pointj, P[kj .time_unit[jj);
point++;

II If any of the predecessors of the task match the tasks scheduled
lIon the processor, then big or small is incremented. depending on
II the best case schedule or the worst case schedule respectively.
for ( m = 1; m < node [taskj .predecessors + 1; m++)

{

for (n = l;n < point; n++)
(

if «Strcmp(str[n), node[task).pred[mj) == 0) && worst_case 0)
PRED[ij .big++;

else if «Strcmp(str[n), node[task) .pred[mj) == 0) &&

worst_case == 1)
PRED[i) .sma1l++;

flag = 0;

II For prudent assignment of tasks.
if (worst_case == 0)

(
II Check whether the task has predecessors on any processors.
for(m = 1; m < PROCESSORS + 1; m++)

{

if (PRED[mj .big == OJ
f1ag++;

II If the task don't have any predecessors assigned then return
II the initial value of index.
if(flag == PROCESSORS)

{

for(l = 1; I < PROCESSORS + 1;1++)
if (Strcmp(CHECK[I) . open_close , "open") -- OJ

{

initial = 1;
break;

}

return initial;
}

II Return the index of the processors to which the largest number
II of the task's predecessors has been assigned.

return BIG ( ) ;
}

II Worst case assignment of tasks.
else if (worst_case == 1)

{
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/ / Check whether the task ha.s predecessors on any processors.
for(m = 1; m < PROCESSORS + 1; m++)

(

if (PRED[m] . small == 0)
flag++;

// If the task donot have any predeceesors assigned then return
// the initial value of index.
if(flag == PROCESSORS)

{

for(l = 1; 1 < PROCESSORS + 1;1++)
if (Strcmp (CHECK [1] . open_c lose, "open·) 0)

{

initial = 1;
break;

}

return initial;
)

// Return the index of the processors to which the lowest number
// of the task's predecessors has been assigned.

return SMALL();

/////////////////////////////////////////////////////////////1//1/////////
// Return the index of the processors to which the highest number
1/ of the task's predecessors has been assigned.
/1////////////1//////////////////////////////////////////////1////////////
int BIG ()
{

register int i;
int big = 0;
int ret;
for ( i = 1; i < PROCESSORS + 1; i++)

{

if (Strcmp(CHECK[i] . open_close, "open") 0)
if (PRED[i] .big > big)

(
big PRED[i] .big;
ret i;

return ret;

////////////////////////////////////////////////////// ///////1////////////
// Return the index of the processors to which the lowest number
// of the task's predecessors has been assigned.
//////////////////////////////////////////////////////////////////////////
int SMALL ( )
{

register int i;
int big = 999;
int ret;
for ( i = 1; i < PROCESSORS + 1; i++)

{
if (Strcmp(CHECK[i] . open_close, ·open") 0)
if (PRED[i] . small < big)

{

big PRED[i] .small;
ret i;
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return ret;

//////1////////////1///11111111111/11//1///111111/11////1/1/////1/1//////1
1/ Checks whether the task's· predecessors has been assigned to a particular
// processor. This function is called to compute communication overhead
// whenever a task is scheduled to a processor.
//11///1//////11////////1//1//1/1//1/11/1///111////////1////////1///////11
int compute_overhead(struct processor .p, char -temp, int index,
struct Node *node, int t, int MAX)
{

register int i,j,k = 1;

// Used to store the tasks scheduled on a particular processor.
char str(50] (16);

// A counter used for storing the task names in the variable str.
int point;

// Variable would have the task number.
int task;

// The total communication overhead of all the tasks scheduled is stored
// in this variable.
int counter = 0;

// If the task_name is NULL or if the first set of tasks are being scheduled
// return counter.
if ( t == SETS II (Strcmp(temp, "NULL") == 0)

return counter;

// Copy all the tasks scheduled on the processor to the variable str.
forti = SETS; i > 0; i--) {

for(j = 1; j < PROCESSORS + 1; j++) {
if (j I = index) {
strcpy(str(k], P(i] .time_unit[j);

k++;
point++;

)

)

// The task number of the task_name is found.
task = get_task_num(temp, MAX, node);

// The communication overhead is calculated for the particular processor
// i.e., if the task's predecessor matches any of the tasks scheduled
// the variable counter is incremented.

for{j = 1; j < node [task) .predecessors + 1; j++)
{
for(k = 1; k < point + 1; k++)

if (Strcmp(str[k), node[task].pred{j)) 0)
counter++;

return counter;

////1////1////////////////////////////////////1/1////////////////1//1////
// This function checks whether a task has been assigned to a processor.
// If the task has been assigned to a processor the function returns 0 else
// returns 1.
/////////////////////////1//1/////////////////////1///////////1/1//////1/
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int isrepeater(int suc_name, int array[), int MAX)
(

register int t;
for (t = 1; t < MAX; t++l

(

if(suc_name == array[t)
return 0;

return 1;

1111111111111111111/11111/111/1111111/11/1/1111/111111111/////////11/////
IIMemory is allocated to the structure processor.
11/111//1/1/111111//11/1/111//1111/1/11//111//1/11111/1111///////111////1
struct processor *get_memory(int MAX)
(

struct processor *node;

if ((node = (struct processor *)malloc( MAX * sizeof(struct processor»))
== NULL) {

printfC"Allocation error - aborting.");
exit (1) ;

}

return node;
}

/11111/111/11111/11/111//11/11111/11111111/11111/1111111111/1/////1111111
/1 This function implements Hu's algorithm, where the number of tasks in each
1/ task set would be less than or equal to the number of given processors.
111/11111111/11/111/1111/11//1111/111111111111111111111111/11/////11/111/
void gen_sets(int MAX, int level, struct Node *node, struct Width *width)
{

register int i,j,k,n,m;
int max_width; II maximum width or the largest task set of the DAG
int level; II number of levels in the DAG

/ I When a set would cont.ain all leaf nodes, a node is randomly chosen as
II a victim to move to t.he higher level.
int victim;

struct Temp *temp;

II Variable to check a node has been found or not.
int node_found = 0;

II Predecessors of each task is found.
get-pred (MAX, node);

II Number of levels in the DAG
level = get_level IMAX , node);
i = level;

II Implementation of Hu's algorithm begins here.
whileCi > 0)

{

/1 If IWil <= P for i = L, ,1 then schedule it
II else If for some i, i.e., if the number of tasks in the set is greater
II than the number fa processors then go further
if (width[i) .num_tasks > PROCESSORS)

(

1/ if n is not equal to L, where L is the number of levels in the DAG
if (i != level)
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n i;
node_found = 0;
while(node_found == 0 && n <= level)

{

II find a node from Wn that does not have predecessors in Wn+l
II if no such node is available in Wn then n = n + 1
II if a node is found change the node's label from n to n+l

for (k = 1; k < width[n] .num_tasks + 1; k++)
{

node_found = checK-pred(width[n] . tasK_names [k] , MAX, n, width,
node) ;

if (node_found == 1) {
n++;
width[n] .num_tasKs++;
j = width[n] .num_tasKs;
strcpy(width[n] . tasK_names [j], width[n-l] .tasK_names[k]);

II The victim is moved from one level to a higher level.
victim = get_tasK(width[n].tasK_names[j], width,n-ll;

II And it is deleted from the present level.
delete(width, victim, n-l);
breaK;
}

}

if (node_found 1)
break;

else
n++;

if(n == level)
{

i = level;
break;

}

WL as the victim, since all are leaf

)
}

if n = L then
select any node from the set
nodes in this set
change the node's label from L to L+l
increment L by 1
( i == level)

1/
II
II
1/
1/

if
{

II A victim is chosen randomly.
victim = 1 + rand() ~ width[i].num_tasks;

II Number of levels in the DAG is incremented.
level++;

II Number of tasKS in the new level is incremented
width[level] .num_tasks++;
j = width [level] .num_tasks;

II Victim is copied to the new level and deleted from the
II previous level.
strcpy(width[level] .tasK_names[j], width[i] .tasK_names{victim]);
delete (width, victim, i);

}

i = level;
}

II If the number of tasks in the set is less than the number of processors



1/ then the set is untouched.
else if (width[i] .nUIlLtasks <= PROCESSORS).

i--;

II Each task and its predecessor names are printed.
print_start);
printf (" Node name and its predecessor\n");
print_start) ;

forti = 1; i < MAX + 1; i++) {
printf ("%5 --> ",node[i].task_name);
for (k = 1; k < node[i) .predecessors + l;k++}

printf( "%5, ",node[i).pred[k]);
printf("\n"} ;
}

II The final set representation is printed.
SETS = level;
print_star ( ) ;
printf(" final set representation\n");
print_start) ;

for (m = 1; m < level+l; m++) {
printf ("W%d --> {", m};

for (k == 1; k < width lm] . num_tasks + 1; k++)
printf("%s, ", width[m].task_names[k]);

printf("}\n") ;

II The initial set representation is printed.
level = get_level(MAX,node);
print_start) ;
printf(" Initial set representation\nn);
print_start) ;

forti =: 1; i < level + 1; i++)(
pr in t f (n W%d - - > (", i);

for (j == 1; j < last[i] .Num_tasks + 1; j++)
printf("%s, n, last[i].Task_names[j]);

printf(n}\n") ;
)

1111111111111111111111111111111111111111111111/1111111111111/1 I1111111111
II Returns the task number of the task name.
1111111111111111111111111111111111111111111111/1111111111111II I11111I1111
int get_task(char *ternp, struct Width *width, int index}

(

register int i;
for (i =: 1; i < width [index] . num_tasks + 1; i++)

if (Strcmp(temp, width{index] .task_names[i) === 0)
return i;

1111111111111111111111111111111111111111111111/1111111111111II11111111111
I I This function checks whether the node's (the node is in the set Wn)
II predecessors exist in the set Wn+l.
1111111111111111111111111111111111111111111111/ 1111111111111/1 I1111111111
int check-pred(char *ternp, int MAX, int index, struct Width *width,

struct Node *node)

register int i,j, k;

II Task set is stored in the array str.

49



char str[25] [61;

// Task number of the task name is stored.
int task;

for (i = 1; i < width[index + II.n~tasks + l;i++)
strcpy(str[il, width[index + II .task_names[i]);

}

// If any of the tasks in the set match the predecessors of the
// task then return 0 else return 1.

task = get_task_num(temp, MAX, node);
for (j = 1; j < node[taskl .predecessors + 1; j++)

for (k = l;k < width[index+ll .num_tasks+1; k++)
(
if(Strcmp(str[kl,node[taskl.pred[j]l == 0)
return 0;

return 1;

/////////////////////////////////////////////////////////////////////////
// The task name in the form of string is sent to this function and the number
// corresponding to that task is sent back to the called function.
/////////////////////////////////////////////////////////////////////////
int get_task_num(char *temp, int MAX, struct Node *spade)

(
register int i;
for(i =1; i < MAX + 1;i++)

(
if (strcmp(temp,spade[il.task_name) 0)

return i;

/////////////////////////////////////////////////////////////////////////
// When a task is moved from a lower level to a higher level, the task has to
// be deleted from the lower level. This function deletes the victim from the
// lower level. The victim is selected by random or on first corne first
// serve basis.
/////////////////////////////////////////////////////////////////////////
void delete(struct Width ·width, int victim, int index)

{
register int i,j = 1;
char temp[251 [61;

for(i = 1; i < width[indexl .num_tasks + l;i++)
{

if ( i != victim)
(
strcpy(temp[jl, width [index] .task_names[i]);
j++;

}
}

for(i = 1; i < width [index] .num_tasks + 1; i++)
strcpy(width[indexl .task_names[i], "");

width[index].num_tasks--;
for(i = 1; i < width[index].num_tasks + 1; i++)

strcpy(width[index] . task_names [i], ternp[i);

50



111111111111111111111111111111111111111111111111111/111////111/1111/11/11
II The predecessors of each task is found and stored in the array pred[i) [j]
II of the Node structure.
111111111111111111111111111111111/1/111/111111111111111111/11/111111111/1
void get-p.redlint MAX, struct Node *node)
(

register int i, index, j;
int level, pred, temp;
level = get_level (MAX, node);
init-pred(MAX, node);
forti = 1; i < MAX + 1; i++)

{

for (j = 1; j < node[i) . successors + 1; j++)
(

index = get_nurn_tasklnode[i) .suc(j), MAX, node);
node [index) .predecessors++;
temp = node[index) .predecessors;
strcpy(node[index) .pred[temp), node[i) . task_name) ;

}

11/11//11111/111111111/111/11111111111111111111/11111111/111////1111111//
I I The variable predecessors of the structure Node is set to o.
/1/111/111111//1//11111/11/111111111/11/1111/1//111111111////1111//111111
void init-pred( int max, struct Node *node)
{

register int i;
for (i = 1; i < max + 1; i++)

node[i] . predecessors = 0;

111/1111/1111111111111/1111111111/111111111//11111/1111/1111//111111//11/
II The string compare function.
IIIIII////III!III/i////I/i/II//III//I/I/III/IIIII/i/I//1111///11/1111////
int Strcmp(const char Lhs[), const char Rhs[)l
{

int i;

for (i = 0; Lhs[i) == Rhs[i); i++)
if (Lhs(i] == '\0')

return 0;

return Lhs[i) - Rhs[i);

11////1/1/1/1//111/11//111111/1111/1//11//1111111111/1111111/1///1//11111
II All the tasks in the system are copied into the structures Width and last
/1 for further operations on them, and last is used to store the initial
II representations of the task sytstem. i.e., before implementing Hu's
II algorithm.
11111//11//111111/1111/1111/11/11/1//11111111111//////1/1///11///1/111111
initialize(int MAX, struct Node *node, struct Width *width)
{
register int i, j, count = 1;
int level;
level = get_level IMAX , node);
for Ii = 1; i < level + 1; i++}

{
last[i) .Nurn_tasks = width[i].nurn_tasks;
for (j = 1; j < width[il .nurn_tasks + 1; j++)

{
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strcpy(width[i] .task_names[j), node[count] . task_name) ;
strcpy(last[i).Task_names[jl, node [countl . task_name) ;
count++;

}

//////////////////////1/1///1////1////1//1////////////////////////////1//
// Returns the number of levels in the DAG.
///1///1///////1////////////////////////////////1///////////////1////////
int get_level (int max, struct Node *node)
{

return node [max) . task_level;

////////////////////////////////////////////////////// ////////////////1//
// Reads the input file.
////////////////////////////////////////////////////// //////////1////////
void read_file(int MAX, FILE *fp, struct Node *node)
{

register int i, j;
char *temp;
strcpy(temp, " ");

printf("*******·*****************************************··*********\nn)i

printf ("Task_name Task_level Task_weight Task_succesors Successors\n");
printf("******************************************************·*****\n");

for (i = 1; i < MAX + 1; i++)
{
fscanf (fp, "%s",node[i].task_name);
fscanf (fp, "%d", &node [i) . task_level} ;
fscanf (fp, "%d" , &node[i).task_weight);
fscanf (fp, "%d", &node[i] .successors);
printf ("%6s %8d %lOd %14d %9s",node[i) . task_name, node[i) .task_level,

node[i).task_weight, node[i) .successors, temp);
for (j = 1; j < node[iJ .successors + 1; j++) {

fscanf (fp, "%s", node[i).suc[j]);
printf (" %5", node[i) .5UC[j]);

}

printf("\n") ;
}

}

/////1////////////////////////////////////////////////////////1//////////
// Allocate memory to the structure Node.
/////////////////////////////////////////////1//111///////////1/1////////
struct Node *get_struct(int MAX}
{

struct Node knode;
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if «node = (struct Node *)malloc( MAX * sizeof(struct Node»))
printf("Allocation error - aborting.");
exit (1) ;

}

l"eturn node;
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APPENDIX C

OUTPUT LI STINGS
This appendix presents two output lislings. The first output listing is a sample of the output of the seconu program in appendix 13. The secunu
output listing presents the output for a task system set (a set consisting of 20 task systems).

A sample task system is executed using Bu's algorilhm, the random algorithm, the proposed algorithm and the worst case algorithm. The inpul
furlllat, the predecessors of each task in the task system, the initial set representation, the final set representation for schedule on processors fl'llill
2 to 5. and the schedule for each number of nrocessors for alilhe alQorilhms is summarized

The input format
task name lask level task weight # task succesors successors---

T1 1 2 0
T2 2 1 1 T1
T3 2 1 1 Tl
T4 2 3 1 Tl
T5 3 3 1 T3
T6 4 1 2 T5 T2
T7 4 3 1 T5
T8 4 1 3 T5 T4 T3
T9 5 3 1 T7

T10 5 2 8 T8 T5 T2 T6 T3 17 T4 T1

T11 6 3 8 T9 T3 T8 T1 T4 T5 T10 T7
T12 6 1 6 T9 T3 T7 T4 T2 T8

T13 7 1 2 T12 T3
T14 7 3 2 T12 T6
T15 7 3 3 Tll T3 T7

1~6 8 3 6 T13 T10 T5 T9 T14 T12

T17 8 1 9 T14 T7 T3 T8 T12 T6 T13 T11 T1
T18 9 1 9 T16 T6 T2 T17 T1 T10 T9 T7 T3

T19 9 1 12 T17 T2 T6 T15 T1 T14 T3 T5 T4 T7 T8 T13
T20 10 2 ? T19 T5 Tl T9 T13 T3 T7

T21 11 3 1 T20

T22 11 1 15 T20 T12 T10 T4 T8 T6 T2 T5 T19 T11 T18 T9 T16 T3 T15

123 11 2 3 T20 T13 T15

T24 11 3 13 T20 T7 T10 T4 T1 T3 T16 T1 T5 T14 112 T2 T13 T18

T25 11 3 15 T20T16T19T2T18T5Tl T17T12T6T8T13Tl1 T7T4



Dependencies among tasks (successor-predecessor relationship)
task name predecessors of the ask

T1 T2 T3 T4 T10 T11 T17 T18 T19 T20 T24 T25
T2 T6 T1 0 T12 T18 T19 T22 T24 T25
T3 T5 T8 T10 T11 T12 T13 T15 T17 T18 T19 T?O T22 T24
T4 T8 T10 T11 T12 T19 T22 T24 T25
T5 TGT7T8T10T11 T16T19T20T22T25
T6 T10T14T17T18119T22T25
T7 T9 T10 T11 T12 T15 T17 T18 T19 T20 T24 T25
T8 T10 T11 T12 T17 T19 T22 T25
T9 T11 T12T16T18T20T22
T10 T11T16T18T22T24
T11 T15 T17 T22 T25
T12 T13 T14 T16 T17 T22 T24 T25
T13 T16 T17 T19 T20 T23 T24 T25
T14 T16T17T19T24
T15 T19 T22 T23 T24
T16 T18 T22 T24 T25
T17 T18 T19 T25
T18 T22 T24 T25
T19 T20 T22 T25
T20 T21 T22 T23 T24 T25
T21
T22
T23
T24
T25

lJl
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Tasks in each level of the task system are
represented by task sets (W1, W2, ... , W11).
These task sets represent the task system

before implementation of the Hu's algorithm.

Initial Set Representation
set name tasks in each set

W1 T1
W2 T2 T3 T4
W3 T5
W4 T6T7T8
W5 T9 T10
W6 T11T12
W7 T13 T14 T15
W8 T16 T17
W9 T18 T19

W10 T20
W11 T21 T22 T23 T24 T25

I
VI



Tasks in each level of the task system are
represented by task sets (W1 , W2, ... , W14).
These task sets represent the task system

after implementation of the Hu's algorithm on
a given number of processors in the range 2

to 12 or 2 to Wmax.
Final Set Representation for Two Processors
set name tasks in each set

W1 T1
W2 T3 T4
W3 T5 T2
W4 T7 T8
W5 T9 T6
W6 T12 T10
W7 T14 T11
W8 T15 T13
W9 T16 T17
W10 T18 T19
W11 T20
W12 T23 T25
W13 T24T22
W14 T21

Ul
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Processor P1
Processor P2

Inter-Processor Communication Overhead 60

Processor P1
Processor P2

Inter-Processor Communication Overhead 68

Processor P1
Processor P2

Inter-Processor Communication Overhead 59

Processor P1
Processor P2

Inter-Processor Communication Overhead 64

VI
-.I



Final Set Representation for Three Processors
set name tasks in each set

W1 T1
W2 T2T3T4
W3 T5
W4 T6 T7 T8
W5 T9 T10
W6 T11 T1?
W7 T13 T14 T15
W8 T16 T17
W9 T18 T19
W10 T20
W11 T22 T23 T25
W12 T24 T21

VI
00



Tasks Scheduled on 3 Processors Using Hu's Algorithm
Processor P1 T24 T22 T20 T18 T16 T13 T11 T9 T6 T5 T2 T1
Processor P2 T21 T23 NULL T19 T17 T14 _T12 T10 T7 NULL T3 NULL-- ----- ----- -- _._- ----
Processor P3 NULL T25 NULL NULL NULL ,.15 NULL NULL T8 NULL T4 NULL

Inter-Processor Communication Overhead 82

Tasks Scheduled on 3 Processors Using the Random Algorithm
Processor P1 T21 T25 T20 T18 NULL T13 NULL NULL T6 NULL T4 NULL
Processor P2 NULL T23 NULL T19 T17 T15 T12 T9 T7 NULL T3 NULL
Processor P3 T24 T22 NULL NULL T16 T14 T11 T10 T8 T5 T2 T1

Inter-Processor Communication Overhead 84

Tasks Scheduled on 3 Processors Using the Proposed Algorithm
Processor P1 T24 T22 T20 T18 T16 T13 T12 T9 T7 NULL T2 NULL
Processor P2 T21 T23 NULL NULL NULL T15 NULL NULL T8 NULL T4 NULL
Processor P3 NULL T25 NULL T19 T17 T14 T11 T10 T6 T5 T3 T1

Inter-Processor Communication Overhead 71

Tasks Scheduled on 3 Processors Using the Worst Case Algorithm
Processor P1 T24 T22 NULL T19 T17 T15 NULL T9 T8 T5 T4 NULL
Processor P2 T21 T23 NULL T18 T16 T13 T11 NULL T6 NULL T2 T1
Processor P3 NULL T25 T20 NULL NULL T14 T12 T10 T7 NULL T3 NULL

Inter-Processor Communication Overhead 95

V\
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Final Set representation for Four Processors
Set Name Tasks in Each Set

W1 T1
W2 T2 T3 T4
W3 T5
W4 T6 T7 T8
W5 T9 T10
W6 T11 T12
W7 T13T1/tT15
W8 T16 T17
W9 T18T19
W10 T20
W11 T21 T22 T23 T25
W12 T24

g



Tasks Scheduled on 4 Processors Using Hu's Algorithm
Processor P1 T24 T21 T20 T18 T16 T13 T11 T9 T6 T5 T2 T1
Processor P2 NULL T22 NULL T19 T17 T14 T12 T10 T7 NULL T3 NULL--- -_._----
Processor P3 NULL T23 NULL NULL NULL T15 NULL NULL T8 NULL T4 NULL
Processor P4 NULL T25 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Inter-Processor Communication Overhead 86

Tasks Scheduled on 4 Processors Using the Random Algorithm
Processor P1 NULL T23 NULL T18 T16 T14 NULL T10 T6 NULL T2 T1
Processor P2 NULL T21 T20 NULL T17 T13 T11 NULL NULL T5 NULL NULL
Processor P3 T24 T22 NULL NULL NULL T15 NULL NULL T7 NULL T3 NULL
Processor P4 NULL T25 NULL T19 NULL NULL T12 T9 T8 NULL T4 NULL

Inter-Processor Communication Overhead 94

Tasks Scheduled on 4 Processors Using the Proposed Algorithm
Processor P1 T24 T21 T20 T18 T16 T13 T12 T9 T7 NULL T3 NULL
Processor P2 NULL T22 NULL T19 T17 T14 T11 T10 T6 T5 T2 T1

-
Processor P3 NULL T23 NULL NULL NULL T15 NULL NULL NULL NULL NULL NULL
Processor P4 NULL T25 NULL NULL NULL NULL NULL NULL T8 NULL T4 NULL

Inter-Processor Communication Overhead 74

Tasks Scheduled on 4 Processors Using the Worst Case Algorithm
Processor P1 T24 T21 NULL T19 T16 NULL T11 NULL T6 NULL T3 NULL

Processor P2 NULL T22 T20 NULL T17 T15 NULL T10 NULL NULL NULL NULL

Processor P3 NULL T23 NULL T18 NULL T13 T12 NULL T7 T5 T4 T1

Processor P4 NULL T25 NULL NULL NULL T14 NULL T9 T8 NULL T2 NULL

Inter-Processor Communication Overhead 112
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Final Set Representation for Five Processors
Set name Tasks in Each Set

W1 T1
W2 T2T3 T4
W3 T5
W4 T6T7T8
W5 T9 T10
W6 T11 T12
W7 T13T14T15
WB T16 T17
W9 T18 T19
W10 T20
W11 T21 T22 T23 T24 T25

0
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Tasks Scheduled on 5 P Usina Hu's Alaorith
Processor P1 T21 T20 T18 T16 T13 T11 T9 T6 T5 T2 T1
Processor P2 T22 NULL T19 T17 T14 T12 T10 T7 NULL T3 NULL
Processor P3 T23 NULL NULL NULL T15 NULL NULL T8 NULL T4 NULL
Processor P4 T24 NULL NULL NULL NULL NULL NULL ~J:!b.h.. NULL NULL NULL--- --_...- ----- -----_.- -_._-
Processor P5 T25 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Inter-Processor Communication Overhead 92

S P U' 'h
Processor P1 T23 T20 NULL NULL T14 NULL NULL NULL NULL NULL NULL
Processor P2 T21 NULL NULL T17 NULL T11 NULL T8 NULL NULL T1
Processor P3 T25 NULL T18 NULL NULL NULL T9 NULL NULL T3 NULL
Processor P4 T24 NULL NULL T16 T15 NULL NULL T7 T5 T2 NULL
Processor P5 T22 NULL T19 NULL T13 T12 T10 T6 NULL T4 NULL

Inter-Processor Communication Overhead 102

d AlaorithUsina the PTasks Scheduled on 5 P ------ - - - - --

Processor P1 T21 T20 T19 T17 T13 T11 T10 T6 T5 T2 T1
Processor P2 T22 NULL T18 T16 T14 T12 T9 T7 NULL T3 NULL
Processor P3 T23 NULL NULL NULL T15 NULL NULL NULL NULL NULL NULL
Processor P4 T24 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
Processor P5 T25 NULL NULL NULL NULL NULL NULL T8 NULL T4 NULL

Inter-Processor Communication Overhead 84

Tasks Scheduled on 5 P Usina the Worst Case Alaorith
Processor P1 T21 T20 T18 NULL T13 T11 NULL T8 NULL T2 NULL
Processor P2 T22 NULL NULL T17 T15 NULL NULL T7 NULL T4 NULL
Processor P3 T23 NULL T19 T16 NULL T12 NULL NULL NULL NULL T1
Processor P4 T24 NULL NULL NULL NULL NULL T9 T6 T5 NULL NULL
Processor P5 T25 NULL NULL NULL T14 NULL T10 NULL NULL T3 NULL

Inter-Processor Communication Overhead 118
0.....



A sample of 20 task systems (numbcr of tasks in each task systcm is 25) scheduled usillg Hu's algorithm. tile random algorithm,

the proposed algorithlll, and lhe worst case algorithm. The task systems arc executed on 2 10 Wmax (maximum width) proccssors.

The inter-processor cOllllllllnication overhead fur each t;lsk syslelll when each algorithlll schedules is prt:sclIled.

Number of Processors 2 3 4 5 6 7 8 9 10 11 12

Inter-processor Communication 20.00 23.00 24.00 24.00 25.00 27.00 27.00
Overhead for Hu's Algorilhm

Inler-processor Communication 20.00 34.00 26.00 38.00 38.00 35.00 38.00
Overhead for the Random Algorithm

Inler-processor Communication 16.00 1700 19.00 16.00 18.00 20.00 20.00
Overhead for the Proposed Algorithm

Inter-processor Communication 30.00 37.00 42.00 42.00 42.00 42.00 43.00
Overhead for the Worst Case Algorithm

Inter-processor Communicalion 25.00 30.00 34.00 34.00
Overhead for Hu's Algorilhm

Inter-processor Communication 28.00 30.00 35.00 39.00
Overhead for the Random Algorithm

Inler-processor Communication 22.00 26.00 28.00 28.00
Overhead for the Proposed Algorithm

Inter-processor Communication 29.00 36.00 44.00 48.00
Overhead for the Worst Case Algorithm

Inter·processor Communication 13.00 16.00 19.00 19.00 21.00 21.00 21.00 21.00 21.00 21.00 23.00
Overhead for Hu's Algorilhm

Inter-processor Communication 13.00 16.00 19.00 19.00 20.00 21.00 21.00 21.00 21.00 22.00 23.00
Overhead for the Random Algorilhm

Inter-processor Communication 13.00 17.00 19.00 19.00 21.00 21.00 21.00 21.00 21.00 21.00 23.00
Overhead for the Proposed Algorithm

Inter-processor Communication 13.00 17.00 19.00 20.00 21.00 22.00 21.00 22.00 22.00 22.00 23.00
Overhead for the Worst Case Algorithm

~



Inter·processor Communication 13.00 12.00 1200 1200 12.00
Overhead for Hu's Algorithm

Inter-processor Communication 23.00 28.00 29.00 28.00 32.00
Overhead lor the Random Algorithm

Inter-processor Communication 10.00 11.00 12.00 12.00 12.00
Overhead lor the Proposed Algorithm

Inter-processor Communication 26.00 36.00 38.00 39.00 40.00
Overhead for the Worst Case Algorithm

Illter-processor Communication 15.00 19.00 19.00 19.00
Overhead for Hu's Algorithm

Inter-processor Communication 20.00 29.00 35.00 32.00
Overhead lor the Random Algorithm

Inter-processor Communication 12.00 12.00 20.00 20.00
Overhead for the Proposed Algorithm

Inter-processor Communication 33.00 39.00 40.00 43.00
Overhead lor the Worst Case Algorithm

Inter-processor Communication 17.00 25.00 24.00 27.00 25.00 27.00 27.00
Overhead lor Hu's Algorithm

Inter·processor Communication 22.00 32.00 29.00 41.00 35.00 37.00 35.00
Overhead lor lhe Random Algorithm

Inter-processor Communication 13.00 20.00 23.00 27.00 25.00 27.00 27.00
Overhead for the Proposed Algorithm

Inter·processor Communication 29.00 39.00 40.00 42.00 43.00 43.00 44.00
Overhead lor the Worst Case Algorithm

Inter-processor Communication 19.00 22.00 26.00 29.00 28.00 30.00 30.00 30.00 31.00 31.00 30.00
Overhead for Hu's Algorithm

Inter-processor Communication 21.00 26.00 28.00 28.00 31.00 33.00 34.00 35.00 35.00 34.00 33.00
Overhead lor the Random Algorithm

Inter-processor Communication 18.00 22.00 26.00 26.00 28.00 29.00 30.00 30.00 29.00 31.00 30.00
Overhead for the Proposed Algorithm

Inter-processor Communication 22.00 28.00 31.00 35.00 33.00 34.00 35.00 35.00 35.00 35.00 36.00
Overhead lor the Worst Case Algorithm

0-
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Inter-processor Communication 13.00 14.00 14.00
Overhead for Hu's Algorithm

Inter-processor Communication 25.00 33.00 40.00
Overhead for the Random Algorithm

Inter-processor Communication 9.00 14.00 14.00
Overhead for the Proposed Algorithm

Inter-processor Communication 35.00 43.00 46.00
Overhead for the Worst Cas!:' Algorithm

Inter-processor Communication 23.00 28.00 29.00 38.00 34.00 40.00 36.00 38.00 38.00 43.00 39.00
Overhead for Hu's Algorithm

Inter-processor Communication 22.00 35.00 38.00 39.00 41.00 40.00 41.00 45.00 47.00 44.00 4700
Overhead for the Random Algorithm

Illter-processor Communication 21.00 28.00 27.00 30.00 32.00 35.00 33.00 38.00 4100 42.00 4000
Overhead for the Proposed Algorithm

Inter-processor Communication 31.00 43.00 42.00 45.00 47.00 47.00 47.00 52.00 5200 5200 52.00
Overhead for the Worst Case Algorithm

Inter-processor Communication 8.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
Overhead for Hu's Algorithm

Inter-processor Communication 25.00 33.00 33.00 33.00 38.00 40.00 37.00 37.00 40.00 37.00 39.00
Overhead for the Random Algorithm

Inter-processor Communication 12.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
Overhead for the Proposed Algorithm

Inter-processor Communication 31.00 39.00 42.00 43.00 44.00 44.00 44.00 44.00 44.00 44.00 44.00
Overhead for the Worst Case Algorithm

Inter-processor Communication 18.00 19.00 31.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 30.00
Overhead for Hu's Algorithm

Inter-processor Communication 19.00 29.00 36.00 33.00 39.00 40.00 38.00 36.00 38.00 40.00 39.00
Overhead for the Random Algorithm

Inter-processor Communication 16.00 19.00 22.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00
Overhead for the Proposed Algorithm

Inter-processor Communication 24.00 34.00 40.00 42.00 44.00 44.00 44.00 44.00 44.00 44.00 44.00
Overhead for the Worst Case Algorithm

0'
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Inter-processor Communication 13.00 15.00 15.00 15.00 15.00 17.00 17.00
Overhead for Hu's Algorithm

Inter-processor Communication 19.00 21.00 28.00 29.00 35.00 34.00 33.00
Overhead lor the Random AlgOrithm

Inter-processor Communication 11.00 12.00 15.00 16.00 14.00 17.00 17.00
Overhead for the Proposed Algorithm

Inter-processor Communication 31.00 34.00 38.00 39.00 38.00 38.00 3900
Overhead lor the Worst Case Algorithm

Inter-processor Communication 3.00 3.00 3.00
Overhead lor Hu's Algorithm

Inter-processor Communication 24.00 25.00 26.00
Overhead lor the Random Algorithm

Inter-processor Communication 3.00 3.00 3.00
Overhead for the Proposed Algorithm

Inter-processor Communication 3100 40.00 42.00
Overhead for the Worst Case Algorithm

Inter-processor Communication 24.00 30.00 34.00 34.00 36.00 3700 40.00 40.00 40.00 39.00 42.00
Overhead for Hu's Algorithm

Inter-processor Communication 26.00 34.00 38.00 42.00 42.00 46.00 44.00 46.00 47.00 42.00 46.00
Overhead lor the Random Algorithm

Inter-processor Communication 24.00 29.00 34.00 32.00 39.00 3900 40.00 36.00 37.00 38.00 40.00
Overhead lor the Proposed Algorithm

Inter-processor Communication 31.00 41.00 46.00 46.00 52.00 53.00 53.00 49.00 50.00 50.00 50.00
Overhead for the Worst Case Algorithm

Inter-processor Communication 12.00 16.00 17.00 17.00 18.00 t800
Overhead lor Hu's Algorithm

Inter-processor Communication 19.00 25.00 27.00 34.00 28.00 30.00
Overhead for the Random Algorithm

Inter-processor Communication 10.00 17.00 14.00 15.00 17.00 17.00
Overhead for the Proposed Algorithm

Inter-processor Communication 26.00 35.00 34.00 35.00 35.00 3600
Overhead lor the Worst Case Algorithm

0-
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Inter-processor Communication 22.00 23.00 24.00 25.00 28.00 29.00 29.00

Overhead for Hu's Algorithm

Inter-processor Communication 24.00 26.00 39.00 39.00 42.00 37.00 37.00

Overhead for the Random Algorithm

Inter-processor Communication 15.00 21.00 22.00 20.00 20.00 22.00 22.00

Overhead lor the Proposed Algorithm

Inter-processor Communication 28.00 38.00 47.00 44.00 45.00 44.00 45.00

Overhead for the Worst Case Algorithm

Inter-processor Communication 6.00 6.00 6.00

Overhead for Hu's Algoritllm

Inter-processor Communication 23.00 28.00 30.00
Overhead for the Random Algorithm

Inter-processor Communication 6.00 600 6.00

Overhead for the Proposed Algoritlllll

Inter-processor Communication 35.00 41.00 44.00
Overhead for the Worst Case Algorithm

Inter-processor Communication 25.00 32.00 32.00 32.00

Overhead for Hu's Algorithm

Inter-processor Communication 24.00 28.00 40.00 37.00

Overhead for the Random Algorithm

Inter-processor Communication 22.00 23.00 23.00 23.00

Overhead for the Proposed Algorithm

Inter-processor Communication 29.00 47.00 52.00 53.00

Overhead lor the Worst Case Algorithm

Inter-processor Communication 6.00 6.00 6.00 6.00 6.00

Overhead for Hu's Algorithm

Inter-processor Communication 25.00 33.00 34.00 36.00 39.00

Overhead for lhe Random Algorithm

Inter-processor Communication 6.00 6.00 6.00 6.00 6.00

Overhead for the Proposed Algorithm

Inter-processor Communication 35.00 44.00 45.00 46.00 47.00

Overhead for the Worst Case Algorithm 0-
00



Inter-processor Communication 21.00 27.00 29.00 31.00 31.00 31.00 33.00 34.00 33.00 33.00 34.00

Overhead for Hu's Algorithm

Inler-processor Communication 2200 29.00 32.00 30.00 3700 39.00 38.00 35.00 39.00 3900 38.00

Overhead tor the Random Algorithm

Inter-processor Communication 21.00 26.00 2600 30.00 2900 27.00 2700 28.00 27.00 29.00 28.00

Overhead lor tile Proposed Algorithm

Inter-processor Communication 28.00 34.00 3800 40.00 44.00 42.00 42.00 4200 42.00 42.00 42.00

Overhead tor lhe Worst Case Algorithm

0
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