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PREFACE

The purpose of this study was to develop a methodology whereby complex

structures, such as hard disk drive head stack assemblies, can be modeled accurately in a

compact form. The head stack assembly was divided into three sub-components, the

yoke/coil, the actuator arm, and the suspension. Finite element models of each sub­

component were created to provide the natural frequencies and corresponding mode

shapes ofthe individual sub-components. Coupling terms were then derived that

describe how the sub-components interact to form the overall system dynamics. The

resulting sub-component fInite element analytical model was a 15 degree of freedom

model that could quickly be solved using commercially available matrix manipulation

software. The model proved to be accurate in predicting the off-track motion of the head

stack assembly and helped provide understanding as to which resonances are the most

detrimental to drive performance. Initial simulations showed that some of the boundary

conditions and assumptions used in creating the sub-component finite element models

were incorrect. However, by comparing the model results to measured data, the sub­

component fInite element analytical model provided direction to improve the accuracy of

the sub-component fInite element models.

I would like to thank Mr. Roy Wood and Mr. John Stricklin who provided

valuable insight and assistance study. Without their knowledge and advice, this research

would not have been possible.
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1 Introduction

As society continues to demand accurate and timely infonnation, the need to

quickly and reliably store and retrieve data is ever increasing. To date, rigid, magnetic

disk drives have become the primary data storage devices in today's computer systems.

Disk drives are now used in desktop computers, workstations, and servers as well as

portable devices such as notebook computers and digital cameras. As the applications in

which disk drives are used continue to expand, disk drive users constantly demand

increased storage capacity and improved drive perfonnance while insisting that drive

manufacturers maintain or decrease the physical size of the drive. To keep pace with the

demand for storage capacity, the current trend in the disk drive industry is a doubling of

capacity each year.

For drive dimensions to remain unchanged or even decrease, drive manufactures

must be able to write more data on a given surface to meet the growing capacity demand.

Increasing the storage capacity ofa drive therefore requires increasing the bits per square

inch (areal density) that are written on a disk surface. Areal density is the product ofbits

per inch (BPI) and tracks per inch (TPI). BPI is defined as the number of bits that can be

written along an inch of data track in the circumferential direction, while TPI is defined

as the number ofdata tracks that can be written on an inch of the disk surface in the

radial direction. The width of a data track is the reciprocal of TPI. For example a 100

micro-inch wide data track corresponds to 10,000 TPI. At 10,000 TPI approximately 40
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data tracks could be written on the edge of a standard piece ofwhite paper (standard

white paper is approximately 0.004 inches thick). While BPI is limited mainly by the fly

height of the read/write head above the disk surface, TPI is limited by the track

following servo system. It is becoming increasing hard for drive manufactures to

increase the BPI, such that increased track densities are accounting for a larger

percentage of the annual areal density growth rate.

The limitations of the servo system are defined by the flexibility of the mechanical

components as well as the controller design. The flexibility of the mechanical

components can adversely affect drive performance in two ways. First, as TPI increases,

drives become increasingly susceptible to mechanical resonances that cause the

read/write head to move off-track, since the displacement of the head becomes an

increasing percentage to the total track width. Second, to compensate for the TPI

increase, the drive bandwidth must increase to maintain the drives ability to track follow

accurately in the presence of external shock and vibration disturbances. However, as the

drive bandwidth increases, the stability of the servo loop is threatened due to the

mechanical resonances of the drive, since increasing the bandwidth of the drive can

decrease the gain margin of mechanical resonances. Resonances that were previously

ignored due to insufficient amplitude to be of interest can become stability issues if they

are not raised in frequency or reduced in amplitude.

One way to categorize drive resonances is by how they are excited and what

performance specifications they affect. Using this criterion, drive resonances can be

split into two categories, in-the-Ioop and out-of-the-Ioop. In-the-Ioop resonances are

resonances that modify the open loop or structural response and are excited by control

2
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inputs to the actuator coiL In-the-Ioop resonances are typically head stack assembly

Actuator Body

Actuator Arm

Suspension

Slider

Figure 1-1: Head Stack Assembly (HSA)

(HSA) resonances, which include actuator ann, suspension, pivot bearing, and yoke/coil

resonances. Figure 1-1 shows a typical HSA. Out-of-the-Ioop resonances are all other

resonances that do not directly modify the open loop or structural response since they are

not directly excited by the servo loop and the dynamic positioning of the HSA. Out-of­

the-loop resonances include disk pack, basedeck and topcover resonances that can be

excited by windage forces generated by the rotating disks, external shock and vibration

excitations, and spindle motor bearing defects. These types of resonances can be

considered error excitations to the system.

As TPI continue to increase to meet the growing capacity demand and servo

bandwidths increase to help maintain drive performance margins, each generation of

drive becomes increasingly susceptible to drive resonances. In-the-Ioop HSA

resonances are the cause of significant servo stability and performance problems since

3
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they modify the open loop response. The open loop response is a combination of the

servo system and mechanical system transfer functions as shown in Figure 1-2. The

mechanical

Noise

Head
Position

G
(Mechanics)

Coil
r--------, Current

H
(Compensator)

Position
Error

1
Position
Reference--'

Head Position
Open Loop = GH = Position Error

Structw'al = G = Hea.d Position
COli Current

Coil Current
Compensator = H = P .. E

OSItIon ITor

Figure 1-2: Block Diagram of Control System

transfer function of the HSA relates coil current input to displacement of the slider. Any

significant dcfonnation of the HSA due to resonances of the yoke/coil, anns, suspension,

and pivot bearings can therefore adversely modify the open loop response. The ability to

accurately model the HSA in order to predict the effects of HSA resonances on drive

perfonnance would be a valuable tool to both the servo and mechanical drive design

engineers. Such a model would give servo engineers the ability to design track

following loops to compensate for the mechanical resonances and would give

mechanical engineers the ability to optimize the actuator design to reduce the impact of

HSA resonances on the servo system in advance of a working drive.

4
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The HSA is a complex structure made up of several sub-components (yoke~ coil,

pivot bearing, actuator body, actuator arms, and suspensions) as shown in Figme 1-1.

Typically, the dynamic behavior of complex structures such as HSAs can be modeled

effectively using finite element (FE) models. In order to accurately predict the off-track

displacement of the slider due to coil current input~ the entire HSA (all sub-components)

must be modeled and correct boundary conditions must be applied. As a result, the full

HSA FE model can become very large, on the order of 120,000 degrees-of-freedom

(DOF). FE models of this magnitude take numerous hours, even days, to develop and

solve, and can become cumbersome to work with. The goal of a HSA FE model is not

just to predict natural frequencies and mode shapes of HSA resonances, but to provide a

tool whereby the actuator design can be optimized to meet performance specifications

and reduce the impact of resonances on drive performance. However, if a full HSA FE

model is used, the model development time, solve time, and size are not conducive to the

numerous iterations that might be necessary to arrive at an optimal design, thereby,

reducing the usefulness of the full FE model as a design tool.

Due to the complexity and size of the full HSA FE model, a smaller, more compact

alternative would be preferred. The goal of providing this alternative without the size

and complexity of the FE model would most likely be achieved through the development

of an analytical model. As opposed to the thousands of DOF associated with the full

HSA FE model, the DOF of an analytical model would be limited to the number of

modeled resonances. There are numerous mechanical resonances of the HSA, however,

only resonances that cause off-track displacements of the slider are of concern. Thus,

the analytical model could be reduced to approximately 15 DOF which would include

5
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rigid body, yoke/coil, ann, suspension, and pivot bearing modes. Analytical models can

be expressed in a state-space fonn, which, can easily be solved by matrix operation

software such as Matlab in seconds as opposed to the hours required to solve the FE

model. Because of the compact size of the analytical model (15 OOF compared to

120,000 DOF for the analytical and FE models respectively), the analytical model can be

used to quickly and efficiently optimize the actuator design to provide improved HSA

dynamics. However, when analytical models are developed, the mechanical structure

being modeled is generally simplified such that the results of the model may not be

accurate or may not include higher order modes that are of interest. Since the HSA is a

complex structure, the assumptions and simplifications needed to create an analytical

model limit the accuracy of the model to approximately 6 kHz. The TPI, drive

bandwidths, sample-rates, and system dynamics oftoday's drives require that the HSA

model be able to accurately predict the off-track performance up to 15 kHz. There are

numerous HSA resonances above 6 kHz that significantly affect drive perfonnance and

servo stability that are difficult to model accurately by means ofan analytical model.

The disadvantages of both the FE and analytical HSA models limit the usefulness

of both methods in the prediction of HSA dynamics on drive performance. The

limitations of these modeling methods also prevent both the FE and analytical models

from being useful design tools in the optimization of the actuator to meet performance

specifications and reduce the impact of drive resonances on servo stability. Therefore,

the need exists for a model that can accurately predict the dynamics of complex

structures yet provide the model in a compact form that can be quickly and easily solved.

The complexity of the HSA, however, requires the use of FE models to accurately

6
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predict natural frequencies and mode shapes of the structure. The size, complexity,

development time, and solve time ofthe FE model can be reduced ifsub-components,

instead of the entire HSA, are modeled. Ifboundary conditions are modeled correctly,

sub-component FE models of the HSA can provide the natural frequencies and mode

shapes with the same accuracy of the full HSA model. The modal information obtained

from the sub-component FE model can be combined into a compact analytical model by

using mode summation techniques and by deriving the coupling equations that describe

how the sub-components interact. The resultant model is a compact model (15 DOF like

the analytical model) that can accurately describe the complex dynamics of the HSA.

The coupling of the sub-components describe how the flexibilities of the system interact.

The sub-component FE analytical model can therefore provide directions for improving

the mechanics to reduce the resonance impact on drive performance.

The objective of the research described in this thesis is to develop the methodolgy

whereby complex structures, such as a hard disk drive HSA, can be modeled accurately

in a compact fonn. This study will detail the development of a compact HSA model that

can predict the dynamic perfonnance of the drive while track following. The details of

modeling and combining the servo system and HSA mechanical models are not

addressed in this paper since there are several papers in the open literature concerning

this subject matter.

7
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2 Background

Little has been found in published literature concerning model development of

disk drive head stack assemblies. Currently, the majority of this research is being

performed by individual drive design companies or is funded by the disk drive industry

and, therefore, remains proprietary. However, there have been several papers published

recently that develop models to predict the track following and disturbance rejection

capabilities of the servo system. These papers develop and discuss methods for creating

full HSA models, as the mechanical resonances of the HSA significantly impact drive

performance and servo stability.

Radwan and Whaley [13] investigated how the mechanical flexibilities of a disk

drive interact with the servo system and were also able to demonstrate the capability to

predict both an open loop frequency response and the off-track performance of the HSA

due to operating vibration excitations. TIrrough this research, Radwan and Whaley

developed a full FE model, which can be utilized to calculate the mechanical frequency

response of the HSA. Using this full FE model, a modal analysis was performed and

then the corresponding frequency response function due to a hannonic force input to the

coil was calculated. The plot of the frequency response was then copied to an ASCII file

and imported to MathCAD where a transfer function of the servo system was added,

resulting in the open loop transfer function of the system. While good correlation

between measured and modeled data was achieved, the process of obtaining

8



the mechanical transfer function was difficult. The data that was imported to MathCAD

was not a model of the HSA but was simply the magnitude and phase versus frequency

data points obtained from the FE hannonic analysis. Thus, if any structural

modifications were to be considered, the entire process starting with the full FE model of

the HSA would have to be repeated.

In Radwan et al. [11], the use ofFE models to predict a drive's track following

capability was further refined. Instead of simply exporting a transfer function graph

representing the HSA mechanical response, the full FE model was reduced to a state

space representation of the HSA. The state-space HSA model was then combined with a

model of the servo system and MATLAB was used to solve for the open loop response.

The state space HSA model was created by frrst performing a modal analysis on the full

FE model. Nodal displacements at both the excitation and response nodes (a node on the

coil and a node on the slider respectively) from each mode shape were extracted from

the FE solution. The modal mass and natural frequency for each mode was also

extracted. Each mode was then modeled as a single OOF system with the total system

response the superposition of the individual modes. Not all modes were used in the state

space model. Only modes that had significant contribution in the off-track direction

were used in the modal sum. The benefits of this second model are that Radwan et al.

developed a method to reduce a detailed FE model of the HSA to a set of state space

equations. They also demonstrated that the off-track response of the FE model can be

approximated by the superposition ofa reduced number ofmodes. However, like the

first work, the model was ultimately reliant on a full detailed FE model of the HSA.

9
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While the two previous models discussed above dealt with the use ofdetailed FE

HSA models, a few examples of analytical HSA models can be found in the literature.

As previously mentioned, the complex nature of the HSA requires that the mechanical

structure be simplified in order to develop an analytical model. The simplifications

needed to create an analytical HSA model restrict the model's usefulness. While

assumptions and approximations can be made that allow first order modes to be

predicted, higher order modes of the system would be in error. Thus the use of

analytical models is limited. Radwan et al. [12] provides an example of a simplified

analytical model in order to predict track following performance under external shock

and vibration excitations. However, only the rigid body dynamics of the actuator were

modeled and mechanical resonances were not considered. Because mechanical

resonances were not considered, the frequency response of the model is valid for only a

few hundred hertz. The model presented by Radwan et al. is therefore useful only for

the investigation of the low frequency response of the actuator to external excitations.

The HSA model presented by Ono and Teramoto [10] expands the useful

frequency range of the model presented by Radwan et al. by including the flexibility of

the pivot bearings. The model presented by Ono and Teramoto was developed to

provide understanding of the interaction between the rigid body rotational mode of the

actuator and the flexible mode of the pivot bearings. While the model developed was

adequate for their study, the Ono and Teramoto model did not include flexible modes of

the yoke/coil, actuator anTIS, or suspensions. These modes must be included if the model

is to be used to understand the dynamic effects of the HSA on the servo system.

10
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Aruga et al. [1] modeled the HSA as a 3 DOF system, including the rigid body

rotational mode, a pivot bearing mode, and one ann mode. Their study dealt with the

design of a new concept actuator meant to reduce the off-track impacts of the

fundamental pivot-bearing mode. The Aruga et al. model is still too simplified for

today's disk drives and servo systems. There are several detrimental suspension, ann,

and yoke modes that must be accounted for in order to predict drive perfonnance and

servo stability.

The models and methods detailed in the open literature are either too complicated

(full FE HSA models) or too simplified (analytical models), resulting in limited use in

the prediction of HSA dynamics on drive perfonnance. The limitations of these

modeling methods also prevent the models from serving as useful design tools for drive

design engineers, who must optimize the actuator to meet performance goals while

reducing the impact of resonances on servo stability. This study will detail the

development of a compact model that can be used to predict the dynamic performance of

complex structures such as HSAs.

11
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3 Model Development

3.1 Background Theory

A multi-degree-of-freedom system can be described by a set of n simultaneous

second order differential equations. In matrix fonn, the equations are expressed as

(3-1 )

The general solution to equation (3-1) is the stun of the complementary function and the

particular integral. The complementary function satisfies the homogeneous differential

equation (right side of the equation equals zero) which physically corresponds to the free

vibration problem ( {F(t)} = 0). Under free vibration, the system is not subjected to any

external excitation and its motion is governed only by the initial conditions. When the

excitation source is hannonic ( {F(t)} = {FoSincd} ), the solution to the particular

integral is the steady state oscillation ofthe system at the same frequency <0 as the

excitation. Seldom is it necessary to determine the motion of a system under conditions

of free vibration. However, the analysis of a system in free vibration provides two

important dynamic properties of the system: the natural frequencies of the system and

the corresponding mode shapes. For a multi-degree-of-freedom system with n degrees­

of-freedom (DOF), there are n natural frequencies and mode shapes. Finite element

modeling software is often used to calculate the natural frequencies and mode shapes for

complicated systems with many degrees-of-freedom.

12
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If the effects ofdamping do not influence the natmal frequencies of the system,

when solving equation (3-1) for the free vibration case, the damping tenn is usually

omitted. For the undamped free vibration problem, equation (3-1) reduces to

(3-2 )

For free vibrations of the undamped structure, {y} is of the fonn

Yi = Ai sin(ax + VI) i = 1,2, ... , n

or in vector notation

{y} = {A }sin(M +VI) (3-3 )

where Ai is the displacement amplitude of the ith coordinate and n is the number of DOF.

Substituting equation (3-3) into equation (3-2) gives

(3-4 )

which is a set of n homogeneous linear algebraic equations in {A} with n unknown

displacements Ai and an unknown parameter aI. The nontrivial solution to equation

(3-4) requires that the detenrunant of the coefficient matrix ([[K]-at[M]]) equal zero.

Equating the determinant to zero gives the characteristic equation

(3-5 )

from which the natural frequencies of the system are found. In general, equation (3-5)

results in a polynomial equation ofdegree n in aI which is satisfied by n values of at,

where

Wi i = 1, 2, ... , n

13
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are the natural frequencies of the system and n is the number of DOF. Since equation

(3-4) is a homogeneous system of linear equations and the determinant of the coefficient

matrix is zero, the equations are linearly dependent such that there are an infinite number

of solutions for {A}. Thus, for each natural frequency (U; which satisfies equation (3-5),

there is not a unique solution for the corresponding displacement amplitude vector {A}.

Typically, one of the displacement amplitudes in the amplitude vector {A} is assigned a

unit value, although any number is sufficient. By substituting each of the natural

frequencies into equation (3-4), the corresponding amplitude vector {A} can be

calculated relative to the arbitrarily chosen element. These ratio values are known as the

mode shape or modal vector for a particular natural frequency. The mode shape is often

referred to as a normal mode since the elements in the vector {A} have been normalized

by an arbitrary value. Since there are n natural frequencies, there will be n

corresponding normalized mode shape vectors..

The normal modes may be conveniently arranged in the columns of a matrix

known as the modal matrix where each column represents a mode shape associated with

a particular natural frequency. For the general case of an n DOF system, the modal

matrix is written as

or

All AI2

[A]= ~I ~2 (3-6 )

14
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For an n OOF system, each natural frequency has its own mode shape and

behaves essentially as a single DOF system. The total motion of the system, the solution

to equation (3-2), is the superposition of the normal modes of the system.

where the C's and VS are arbitrary constants of integration that are detennined by the

initial conditions of the system.

An interesting property of the nonnal modes of a system is that they are

orthogonal with respect to the mass and stiffness matrices. The orthogonal nature of the

normal modes is defined as follows

{A}~[MRAL = 0 for i * j

{Ar[KHAL = 0 for i * j

and

{A};[M]{A}, = mm, i = 1,2, ... , n

{A};[KHA}, =mk, i = 1,2, ... , n

(3-8 )

(3-9 )

(3-10 )

(3-11 )

where mmj and mk, are defined as the modal mass and modal stiffness of the ith mode.

The resulting modal mass and modal stiffness matrices are diagonal.

As previously mentioned, the amplitudes of vibration for normal modes are only

relative values which may be scaled or normalized to an arbitrary value. It is often

convenient to nonnalize the mode shapes by the square root of the modal mass.

15
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where tAj is the modal mass normalized jth component of the jth modal vector. The modal

matrix can be re-written as

¢JII ¢12

[¢J] = ¢J21 ¢22 (3-13 )

Substituting {¢} i for {A} i in equation (3-8) through (3-11) results in

{¢J}~[M]{¢L =0 for i :;It j (3-14 )

{¢J}~[K]{¢L =0 for i :;It j (3-15 )

{¢J};[MM¢Jt =1 i = 1,2, ... , n (3-16 )

{¢J}~ [K M¢Jt =OJ/
2 i = 1,2, ... , n (3-17 )

The advantage of this normalization method will be shown below in equation (3-23).

The equations ofmotion represented in equation (3-2) are generally coupled

through the mass and/or the stiffness matrices. Dynamic coupling exists if the mass

matrix is non-diagonal where as static coupling exists if the stiffness matrix is non-

diagonal. If the equations are uncoupled by the proper choice of coordinates, each

equation can be solved independently of the others and each mode can then be examined

as an independent single-DOF system. Although it is always possible to de-couple the

equations ofmotion for the un-damped system, it is not always possible to de-couple

damped systems. Due to the orthogonal properties of the modal matrix, the modal

matrix, equation (3-6) or equation (3-13), can be used to de-couple the mass and

stiffness matrices in equation (3-2). To de-couple the mass and stiffness matrices, a

modal coordinate q, is defmed such that

16
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{y}= I{;}/qi
i-I

Substituting equation (3-18) into equation (3-2) and pre-multiplying by [¢.IT gives

(3-18 )

(3-19 )

However, from equations (3-8), (3-9), (3-16) and (3-17), equation (3-19) reduces to a set

of n de-coupled equations of the fonn

(3-20 )

So far, damping tenns have been ignored. As previously mentioned, when

damping is considered, it is not always possible to de-couple the equations ofmotion. If,

however, the damping matrix [C] is proportional to the mass [M] and/or stiffness [K]

matrix, the following hold true

(3-21 )

and

(3-22 )

so that equation (3-20) becomes

(3-23 )

In equation (3-23), each mode is expressed as a single-DOF system where the

total system response is the superposition of the contributing modes (equation (3-18».

The advantage of equation (3-23) is that an n-DOF system can be represented in tenns of

the modal parameters of the system without the knowledge of the mass and stiffness
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matrices. As previously mentioned, the modal parameters, such as the natural

frequencies and mode shapes, of complex systems can be determined from FE models.

Equations (3-23) and (3-18) allow a FE model of a complex system to be reduced to a

set of n single-DOF equations, where n is the nwnber of flexible modes considered, by

first solving the FE model for the natural frequencies and mode shapes of the system.

The mass and stiffness matrices generated by the FE software can be extremely large

(the mass and stiffness matrices will have as many rows and colwnns as there are DOF

of the system), but are not needed to calculate the system response.

For lightly damped systems, such as HSAs, the damping terms in equation (3-23)

serve mainly to limit the amplitude response at resonance. Appropriate damping terms

for each mode can be determined experimentally by direct measurement or can be

estimated by matching the resonant amplitudes from modeled and measured frequency

response functions. For the HSA model that is being developed, the damping in the

system is predominately due to structural damping such that ~ is generally asswned to be

less than one percent.

As in free vibration, it is also possible to express the response of a system to

forced vibration as the superposition of the nonnal modes. When the normal modes are

used to de-couple the set of system equations, the modal superposition method reduces

the problem of finding the response of a multi-DOF system to the determination ofthe

response of n single-DOF systems. In forced vibration, the equations ofmotion are de­

coupled by first solving for the natural frequencies (l4) and nonnalized mode shapes (¢)

from the free vibration case. For the forced vibration condition, equation (3-23)

becomes

18
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(3-24 )

where

For systems with a large number of degrees of freedom, every mode may not

significantly contribute or be of interest in the response of the system to forced

excitation. Modal superposition allows the response of a system to be approximated by

the sum of a limited number of normal modes thereby decreasing the number ofdegrees

of freedom of the system.

The response of a system to ground or base motion is a specialized case of forced

excitation. For an n-DOF system excited by base or ground motion, equation (3-24) can

be re-written as

where the term

n

Lm/pj ,

r. =..:;..)--'--
. I n

Imj¢J],
j-I

( 3-25)

(3-26 )

is called the modal participation factor and ji(t) is the motion of the ground. The modal

participation factor relates how the ground motion excites a given mode. In equation

(3-26), mj is the actual mass value from the mass matrix [M], associated with the jth row

and column. As previously mentioned, the differential equations of motion for a multi-

DOF system are generally coupled through the mass and/or stiffuess matrix. Equation

(3-26) assumes that system of equations only exhibit static coupling such that the mass
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matrix is diagonal and the equations are coupled through the stiffness matrix. When

deriving the equations of motion for n-DOF system, the choice of the system coordinates

will define the type of coupling. Just as a coordinate system can be found that de-

couples the system equations, a coordinate system can also be found that ensures only

static coupling. From equation (3-16), the denominator of equation (3-26) is equal to

one so that the modal participation factor becomes

n

r; =Lmj¢j;
j=1

3.2 HSA Model Development

The goal of this thesis is to develop a compact model that can describe the

dynamics of complex structures such as HSAs. The model that will be developed

combines both FE and analytical modeling methods. In order to minimize the

(3-27 )

complexity, development time, and solve time that is often associated with FE models of

complex structures, the HSA is divided into sub-components. The sub-component FE

models can be developed and solved in less time compared to a full FE model of the

HSA. The sub-component FE models provide the natural frequencies and mode shapes

of the individual sub-components. In order to describe the complete system, coupling

terms must be derived that describe how the sub-components interact to form the overall

system dynamics.

Figure (3-1) shows a representation of the HSA used for the model development.

In the model, only the off-track displacements of the various components are considered

since it is the off-track motion that adversely effects drive perfonnance. In the above
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figure, the off-track direction is indicated by the y-axis. The HSA model consists of five

Lumped Nodal Mass (ms;, mAil mYi)

ElementSt~(Kg;, K". KyO

Rigid
Actuator
Body

....
0-0....

IYi

Suspension Sub-Component FE Model (Illsi, KsJ
Arm Sub-Component FE Model (mAi. KAJ

Yoke/Coil Sub-Component FE Model (mYi. KyJ

lSi

IAi

------~--

Figure 3-1: HSA Model

main parts: the yoke and coil, an actuator ann, a suspension, the actuator body, and the

pivot bearings. The yoke/coil, actuator ann, and suspension are sub-component FE

models. The actuator body is assumed to be rigid and the pivot bearings are modeled as

a linear spring. Each sub-component FE model is represented by a series of masses and

springs. In Figure (3-1) and the model development that follows, the subscripts S, A, and

Yare used to identify parameters associated with the suspension, ann, and yoke/coil sub-

component FE models respectively. The mass terms associated with the sub-component

FE models (mSi, rnA;, and mYi) represent the lumped mass values at individual nodes and

the spring terms (Ksi, KAi, Kyi) represent the stiffness values of individual elements. The

total displacement of each lumped mass is expressed as the swn of the rigid body
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displacement, both translation and rotation, and the displacement due to the defonnation

of the sub-components.

{y },OIOJ ={y}rigid + {y }de/onnorI01l (3-28)

The deformation in the off-track direction of each nodal lumPed mass is obtained from

the results of the corresponding sub-component FE model. Using modal superposition,

the displacement due to deformation can be expressed in terms of the modal coordinates

as the sum of the nonnal modes as in equation (3-18). Substituting equation (3-18) into

equation (3-28) yields

11

{y },O,OJ = {y }rigld + L {¢}; ql

3.2.1 Development of the Mass and Stiffness Matrices of the Un-damped
System

The equations of motion are derived through the use of Lagrange's equation

(3-29)

(3-30)

where T is the total kinetic energy of the system, U is the total potential energy of the

system, q is a generalized coordinate and Q is a generalized force. In order to simplify

the derivation, damping tenns are omitted since the effects of damping do not influence

the natural frequencies of the system. Damping terms are, however, important and will

be addressed later in the model development. From Figure (3-1) and equation (3-29) the

total kinetic and potential energy of the system are expressed as
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2
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Substituting the kinetic and potential energy equations into Lagrange's equation and

solving yields a set of n equations where n is number of DOF of the system. The

number of flexible modes and rigid body modes that are considered determines the

number of DOF of the system. Putting the equations in matrix form, as in equation

(3-2), yields the following mass and stiffness matrices.

col.1-7

mr 0 r YI r Y2 r AI + msrt/JAlII r A2 + msr t/JAII 2

0 J r 0 0 0 0

r Yl 0 1 0 0 0

r n 0 0 1 0 0

[M]= rAJ +msrt/JAnl 0 0 0 1+ msrt/J~I msrt/JAn2t/JAni

r A2 + msrt/JAn2 0 0 0 msr t/JAnI¢AII2 1+ msrt/J~2

r A3 + msrt/JAll3 0 0 0 msrt/JAlII t/JAll3 msrt/JAn2¢All3

o
o

o
o

o
o

col.8-12

r A3 + msrt/JAn3

o
o
o

msrt/JAll3t/JAnI

msrt/JAn3t/JAn2

1+msr¢~3

r SI r S2

0 0

0 0

0 0

rSI¢An, r S2¢AnI
(3·33)

r S\¢An2 r S2¢An2

r sl ¢An3 r S2 t/JAn3

1 0

0 1
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KHariIIg 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0(UY)

0 0 0 2 0 0 0 0 0 0 0 0{Un

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0
[K]= {UAI

0 0 0 0 0 0 2 0 0 0 0 0
(3-34)

{UA2

0 0 0 0 0 0 0 2 0 0 0 0{UA3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0{Us I

0 0 0 0 0 0 0 0 0 0 2 0W S2

0 0 0 0 0 0 0 0 0 0 0

where

y
()

qyl

qy2

{y} = qAI (3-35)
qA2

q A3

qSI

QS2

In the derivation of the system equations, the identities established below were utilized,

in conjunction with the identities established in equations (3-14), (3-15), (3-16), (3-17),

and (3-27), to simplify the mass and stiffness matrices..

n

mST = LmSi
1=1
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The total mass of the suspension sub-component FE model is represented by mIT, and

each lumped nodal mass is represented by mSi.

(3-37)

The total mass of the HSA is represented by mr. The mass of the rigid body (as shown

in Figure (3-1» is represented by mB. As in equation (3-36), the mass of the yoke/coil,

arm, and suspension sub-component FE models are represented by the Im terms.

(3-38)

The total mass moment of inertia of the HSA about the pivot center is represented by Jr.

The mass moment of inertia of the rigid body about the pivot center is represented by J B.

The mass moment of inertia of the yoke/coil, arm, and suspension sub-component FE

models about the pivot center are represented by the Im/2 terms.

3.2.2 Development of the Force Input Vector

From Figure (3-1) and equation (3-24) the input force vector can be shown to be
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Fo

F;,Rc

tPYi1Fo

tPr;2 Fo

{F}=
0

0
(3-39)

0

0

0

where Rc represents the moment ann from the HSA pivot center to the force applied by

the coil. The HSA is moved and positioned by a voice coil motor (VCM) which consists

ofa coil of wire (as shown in Figure (1-1)) "sandwiched" between two magnets.

Applying a current I through the coil induces a torque T on the HSA which causes an

angular acceleration. The magnitude of the torque is proportional to the product of the

current f and torque constant K, of the VCM.

T =K,J

The units of K t are usually expressed in oz-in/Amp. Since the forces that move and

(3-40)

position the HSA are generated by applying current to the VCM, the input forces in the y

and Bdirections of equation (3-39) can be re-written in terms of the torque constant and

input current as

J....
~

and

F = K'f
o R

c
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(3-42)

The force generated by current flow through a constant magnetic field is the vector cross

product of the vector representing the direction of the current flow and the vector

representing the direction of the magnetic flux density. Due to the orientation of the coil

in the magnetic field, only the sides, or the active lengths, of the coil are useful for

generating torque to move the HSA (as shown in Figure (3-2)). The force vectors

Active Lengths

o Magnetic Flux out of the Page

e Magnetic Flux into the Page

Figure 3-2: Forces due to Current Input to the Coil

generated by the ends of the coil, or end turns, are directed either towards or away from

the pivot center and provide little or no torque. Typically, only the active lengths of the

coil are exposed to the magnetic field. Each active length provides one-halfof the force

and therefore one-half of the torque generated when current is passed through the coil.

The force is assumed to be unifonnly distributed along the active length of the coil and

can be approximated as a single force vector acting at the center of the active length, as
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illustrated in Figure (3-2). The moment ann, Rc, is therefore the distance from the pivot

center to the center of an active length.

Since the input force to the HSA model can be approximated as two equal forces,

each force is assumed to act at a single node at the mid-point of each active length in the

yoke/coil sub-component FE model. From equation (3-24), for each yoke mode

considered, the mode shape values «(i) for the two nodes where the forces are assumed to

act, must be know, and can be obtained from the yoke/coil sub-component FE model.

Thus, the input force from equation (3-39) can be re-written as

A. F - fA. + A. )! K,
\l'YII 0 - ~'T')JI"-I 'f'Yk In 2 R

c

(3-43)

Substituting equations (3-41), (3-42), and (3-43) into equation (3-39) yields the force

input vector in tenns of the input current.

K 1

Rc

K 1

(¢y) 1"-1 + ¢Ylrl n ) ~ ~I
C

(¢)J2..- 1 + ¢Y/C2n ) ~ ~I .
c

{F}= o
o
o

o
o
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3.2.3 HSA Modeling Assumptions

During the development of the HSA model, several assumptions were made in

order to simplify the equation derivations and the resulting mass and stiffuess matrices.

First, as previously mentioned, damping was omitted. The resonances of the HSA are

typically lightly damped and minimally coupled to adjacent modes so that damping does

not effect the calculation of the natural frequencies of the individual resonances. The

primary influence of damping in the HSA model is that oflimiting the amplitude

response at resonance. Since damping limits the amplitude at resonance, damping will

be accounted for later in the model development in order for the HSA model to

accurately predict off-track motion during track following. When damping is added,

damping terms will be treated as viscous, or proportional, damping.

Second, the HSA model is limited to track following. By limiting the model to

track following as opposed to seeking, the HSA can be assumed to behave as a linear

system. During seeking, the input current to the coil, and therefore the forces acting on

the HSA, is significantly greater compared to the input current and resulting forces that

act on the HSA during track following. The increased forces applied on the HSA and

the frequency content of a seek profile, can excite non-linear resonances that otherwise

would not be excited. Also during seeking, modes that were previously considered

linear may begin to exhibit non-linear behavior.

During track following, there is very little rotation of the HSA. By limiting the

model to track folJowing, the angular accelerations, velocities, and displacements of the

HSA are limited to small values such that the coupling between the rotational DOF (f1)

and the modal (qYi, qAt, qSt) DOF can be asswned negligible. This is an important
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assumption since the coupling factors between the rotational and modal OOF are

difficult to calculate. The modal participation factors (I) and mode shape values ((I)

used to couple the translational (y) and modal (qy;, qA.l, qSi) OOF in the mass matrix are

obtained from the sub-component FE normal mode solution. The modal participation

factors and mode shape values are typically made available as outputs of the FE

software. The rotational to modal coupling factors that are obtained through the

derivation of the system equations are of the form

fl

rmcfj = Lmi¢Ji),.
/.1

where rmcjj is the rotational to modal coupling factor for the jib mode, m/ is the ith

(3-45)

lumped nodal mass, ~j is the correspond mode shape value, and /1 is the corresponding

moment arm from the pivot center to the ith nodal mass. In order to calculate the

rotational to modal coupling factors, a custom solver would have to be developed and

used to solve the sub-component FE models. The validity of the assumption that the

rotational to modal coupling factor is zcro may be tested by placing terms in the mass

matrix that couple the rotational and modal DOF (the artificial coupling terms must be of

the same order of magnitude as other terms in the matrix). Re-solving the system

equations shows that the addition of the coupling terms does not alter the frequency

response of the system. The conclusion can therefore be drawn that the assumption

previously discussed is valid.

Lastly, the HSA is assumed to be perfectly balanced so that the center of gravity

is at the pivot center. This assumption removes any coupling terms between the

translational (y) and rotational (8) OOF. Imbalance ofthe HSA is primarily a concern for
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external shock and vibration disturbance inputs. In the case of external disturbances, any

amount of imbalance in the HSA can be detrimental to the overall drive performance.

Thus drive design engineers strive to minimize imbalance in the HSA. Realistically,

because ofmanufacturing tolerances, the center of gravity is always offset from the pivot

center so that every HSA has some amount of imbalance. Even though imbalance terms

are not included, the effects of imbalance can easily be studied with the HSA model that

has been derived. Imbalance terms can be calculated and placed in the mass matrix to

couple the translational and rotational DOF. However, just as the rotational to nodal

coupling terms do not effect the modeled frequency response, the rotational to

translational coupling terms will have almost no effect on the track following frequency

response of the model.

3.2.4 HSA Model Discussion

In the model development, the mechanical resonances of the HSA have been

divided into flexible and rigid body modes. The flexible resonances, as calculated

utilizing the sub-component FE models, result from the material properties and boundary

conditions of each sub-component system. The rigid body modes result from the

moving mass and rotational inertia of the HSA. Specifically, the two rigid body modes

considered in the model are the modes relating to and resulting from the translation and

rotation of the HSA in the y and () coordinate systems.

Since the HSA is free to rotate about the pivot bearings, the rigid body rotational

mode is an unconstrained mode at 0 Hz. The rigid body translational mode, or bearing

translational mode, is actually, in all technical accuracy, not a true rigid body mode since
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it is dependent on the deformation of the pivot bearings. Also, at the frequency that the

rigid body translational mode occurs, the sub-components may defonn. However, it is

referred to as a rigid mode in this paper as it primarily results from the moving mass of

the HSA and the spring constants of the pivot bearings_ The natural frequency of the

rigid body translation mode can be approximated by

[K::;
(J)TranslaJion =V~ (3-46 )

The resulting HSA model is an n-DOF model where n is the total number of

modes considered. The model consists of two rigid body modes, as previously

mentioned, and n-2 flexible modes of the yoke/coil, suspension, and arm. Each flexible

mode is considered as a single-DOF system in a modal.coordinate system qj_ The

system equations are dynamically coupled through the mass matrix. The coupling tenns

in the mass matrix are comprised of the modal participation factors (r) and specific

mode shape values (rf) obtained from the ann sub-component FE model. The~e coupling

factors indicate how the flexible sub-component and rigid body modes interact to form

the overall system dynamics. In the presence of support or ground motion, the modal

participation factor describes to what extent a given mode is excited. For the forced

vibration case, the modal participation factor describes to what extent the excited mode

transmits the input force to the ground or support structure.

The HSA model does not require that all mode shape values associated with each

node in the sub-component FE model be extracted. For each sub-component mode

considered, only the mode shape values at nodes where displacements of the FE model

must be known (such as the arm tip and slider) and nodes where forces are assumed to
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act are extracted from the sub-component model. This limits the number mode shape

values that must be obtained from the FE model to one or two values per mode for each

sub-component.

For each yoke mode considered, only the two mode shape values associated with

the nodes were the input force is asswned to act are required. These mode shape values

are used in the force input equation (equation (3-44». For each ann mode considered,

only one mode shape value at the tip of the ann where the suspension is attached is

required. The ann mode shape value describes the displacement due to deformation of

the arm tip. This arm mode shape value is the only modal value (¢JAni) that shows up in

the mass matrix (equation (3-33». It is part of the coupling factor between the ann and

suspension since the total displacement of the base of the suspension is the swn of the

rigid body motion and the defonnation displacement of the ann tip. Likewise, for the

suspension FE model, only one mode shape value per mode is required. The mode

shape that is required from the suspension FE model is a modal value on the slider since

it is ultimately the displacement of the slider that is detrimental to the drive perfonnance.

The mode shape value extracted from the suspension FE model is used only in the output

equation shown below (equation (3-53).

The FE software used in this thesis was Structural Dynamics Research

Corporation (SDRC) Ideas Master Series 7. SDRC calculates the modal participation

factor as part of an effective mass term. SDRC defines the effective mass as

,j

'.

'.,
".,,-

(3-47 )
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where Me is the effective mass, Fis the modal participation factor, mm is the modal

mass, mT is the total mass of the FE modal and i denotes the mode nwnber. The modal

participation factor can be calculated by rearranging terms.

(3-48 )

3.2.5 State Space Representation of the HSA Model

For simulation purposes, the equations are recast in a state space representation

where the system equations are described by a set of first order differential equations. In

state space [onn, the state of the system at any given time can be described by the

displacement and velocity of the system, which are called state variables. The state

space matrix equations take the general fonn given below

{i} = [A~x}+ [B ]u (3-49 )

where [A] is the system matrix, [B] is the input matrix, and {x} is the state variable

vector. The output equation can also be expressed in matrix form as
•·

{Y}= [cXx}+ [D]u (3-50 )
··,

where [C] is the output matrix and [D] is the direct transmission matrix. Expressing

equation (3-1) in state space [ann yields the following

(3-51 )
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where [M] and [K] are the mass and stiffness matrices and {F} is the input force vector.

For the HSA model, the input term u represents the coil input current I from equation

(3-44).

In equation (3-51), the term [M]"l[Cdamp] represents the damping of the system.

Damping terms were previously ignored in the model development. For the HSA model,

proportional damping is assumed so that the resulting damping matrix is diagonal.

(3-52 )

For the HSA model, the output and direct transmission matrices [q and [D] are

[C] =[1 - Rh 0 0 ... 0 0 0 . .. "'Snl A. ...)
'" "','),02

and (3-53 )

[n]= 0

where~ is the distance from the pivot center to the slider. The output matrix [C] is the

modal superposition of the rigid body and flexible modes that directly contribute to the

off-track displacement of the slider.
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4 Finite-Element Models

4.1 Full HSA Finite-Element Model

To illustrate the difficulties in dealing with large FE models of complex structures, a

full FE model of the HSA will fIrst be presented. The results of the full HSA model

were not used in the development of the sub-component FE analytical model. Figure 4-1

Figure 4-1: Full HSA FE Model

shows the full FE model of a typical HSA. The FE software used for all FE models

presented in this paper is SDRC Ideas Master Series 7 running on a Windows NT

platform. The HSA FE model consists of the actuator, coil, pivot bearings, and six

suspensions. The actuator and coil are composed of solid tetrahedral elements with
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mid-side nodes. Each suspension is comprised mainly of thin shell elements with the

exception of the sliders, which were meshed using solid brick elements. The pivot

bearings were modeled as sixteen linear springs connected between the actuator and

bearing shaft. The total number of elements for the full HSA model is approximately

22,000 and the total number of nodes is approximately 39,000. The boundary conditions

of the HSA model are such that the actuator is clamped at the top and bottom of the

bearing shaft and the six sliders are constrained to move only in the ofT-track direction.

The model development time for the full HSA FE model was approximately 80 hours.

All mode shapes and frequencies for the HSA under 17 kHz, approximately 80 modes,

were calculated. Due to the size of the model, the solve time was over 12 hours for a

single processor Pentium II 350 system with 256 MB of memory. The calculated natural

frequencies of the HSA are generally within 10% ofexperimental data, although the

mode shape amplitudes do not correspond quite as well. The discrepancies between the

FE HSA model and measured data can be seen in Figure 4-2. Figure 4-2 compares the

mechanical frequency response of the FE model due to a harmonic input at the coil and a

displacement output at the slider to the measured frequency response from a hard disk

drive. Th.e discrepancies between the measured and modeled transfer function are due to

errors in the FE model. Possible sources of error include improperly modeled pivot

bearings, improperly modeled coil (including inaccurate assumptions regarding coil

material properties), improperly modeled interface between the actuator and bearings,

improper boundary conditions (either too rigid or too soft), and the fact that the center of

gravity of the FE model is offset from the pivot center. All of the errors in the FE model

that contribute to the discrepancies between the measured and modeled transfer
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HSA FE Model vs. Measured FrElQ.Jency Response
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Figure 4-2: HSA FE Model vs. Measured Mechanical Transfer Function

functions can be corrected so that the modeled results agree more closely with the

measured data. However, due to the size of the model and the required solve time,

determining the exact cause ofthe errors and correcting the FE model would be

extremely time conswning. Thus the full FE model should not be used to produce

theoretical transfer fimctions.

4.2 Sub-Component FE Models

.,
"I
.J

-I

.1.. ~
I

Because of the complexity of the full HSA FE model, the HSA can be broken into

three sub-component FE models. The three smaller FE models consist of the coil and

yoke, a single ann with two suspensions, and a single suspension. These three models

are much smaller than the full model and take only minutes, compared to hours, to solve.
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The smaller sub-component models can be solved in system memory where as the full

model requires the use ofvirtual memory. Virtual memory requires dumping the system

memory to the hard drive and reading it back at a later time when the information is

needed. Any time a solution requires the use ofvirtual memory, the solve time increases

dramatically.

The boundary conditions of the sub-component models are critical if these models

are to agree with measured data. To verify the boundary condition ac;sumptions as well

as the accuracy of each sub-component FE model, the calculated natural frequencies and

mode shapes are compared against measured data. Typically, the calculated natural

frequency for each mode shape is within 7% of experimental data. Even though each FE

model represents only a sub-component of the total HSA, all experimental data is

measured from full HSAs in working drives. The sub-component FE models are

compared to full HSAs since the purpose ofthe sub-component model is to reduce the

complexity associated with creating and solving FE models of complex structures while

retaining accurate prediction capabilities for the natural frequencies and mode shapes of

the various HSA components. Thus, even though the sub-component FE models

represent only a portion of the entire HSA, the associated FE model should be able to

accurately predict the natural frequencies and corresponding mode shapes as if each sub­

component FE model were part of a complete HSA.

4.2.1 Suspension FE Model

Figure 4-3 shows a typical model of a suspension. The model consists of

approximately 360 elements and approximately 490 nodes. The suspension is modeled

using predominately thin shell elements, the exception being the slider, which is meshed
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Figure 4-3: Suspension Sub-Component FE Model

using solid brick elements. The nodes of the suspension armmd the swage hole, or base

of the suspension, are constrained in all six degrees of freedom and the four comers of

the slider are constrained with zero displacement in the vertical or z-axis. The slider is

free to move side to side or front to back. This constraint on the slider accurately models

the air bearing, the thin layer of air that separates the slider from the disk under operating

conditions, which has an axial stiffness ofgreater than 30 kHz. The justification for the

rigidly clamped boundary conditions around the swage hole is based on the assumption

that the flexibility of the ann does not significantly affect the mode shape of the

suspension. This is a valid assumption since drive design engineers strive to minimize

coupling not only between the arm and suspensions but also between any components in

the disk drive. If coupling exists, the track following performance of the disk drive is

degraded since coupled or adjacent modes without sufficient frequency separation can

cause greater displacements of the slider than individual modes. The model

development time for the suspension model was approximately 5 hours and the solve
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time on a Pentium II 350 system with 256 MB of memory was less than 1 min. Table

4-1 shows the results of the single suspension FE model compared with measured data.

The suspension mode shapes calculated from the sub-component FE model are shown in

AppendixA.

Modeled Measured
Mode Shape Frequency (kHz) Frequency (kHz) % Difference

1-' Bending 1.87 1.97 -5.1

1-1 Torsion 4.05 3.68 10.1

2"U Bending 5.82 5.61 3.7

2"" Torsion 10.66 9.88 7.9

3'" Bending 11.77 11.80 -0.3

Table 4-1: Suspension FE Model vs. Measured Natural Frequencies

4.2.2 Actuator Arm FE Model

The second sub-component model is of the actuator arm as seen in figure 4-4. The

Figure 4-4: Actuator Arm Sub-Component FE Model

42



model consists of approximately 2150 elements and approximately 4000 nodes. The

ann model consists of a single actuator arm and two suspensions and is meshed with

solid tetrahedral elements with mid-side nodes (the suspensions are as described above).

For the arm, the nodes at the base of the arm that fonn the body of the actuator are

constrained in all six degrees of freedom to model the arm being rigidly clamped. The

two suspensions are joined to the ann model by merging coincident nodes on both the

ann and suspensions so that the suspensions are rigidly attached to the arm. The

boundary conditions for the sliders are the same as for the single suspension model. For

the FE model of the sub-components to be accurate, the boundary conditions must be

correct. Thus it is necessary to include the two suspensions in the arm model. The

suspensions provide mass and inertia that dramatically affect the mode shapes and

frequencies of the arm. It appears redundant to solve FE models of the arm with two

suspensions as well as a separate model of a single suspension since the arm model

solution will give the natural frequencies and mode shapes for the both the arm and

suspensions. However, there are two advantages in treating the suspension and arm as

separate sub-components in the model development. First, by treating the two as

separate sub-components, the coupling factors between the ann and suspension modes

can be calculated, lending understanding as to how the suspension is excited by the arm

and how the arm is excited by the suspension. Second, once the model is developed,

new suspension designs can be evaluated quickly without the creation of a new ann

model. The suspension model must be created first anyway. The model development

time for the arm model was approximately 1 hour (the suspension model is assumed to

already exist) and the solve time on a Pentium II 350 system with 256 MB of memory

43

.1
'1
~

I'.,

'.oJ
It

~.
f
1



was less than 3 min. Table 4-2 shows the results of the ann FE model compared with

measured data. The arm mode shapes calculated from the sub-component FE model are

shown in Appendix B.

Modeled Measured
Mode Shape Frequency (kHz) Frequency (kHz) °/. Difference

1'" Bending 1.08 1.14 -5.3

2'"' Bending 7.51 7.69 -2.3

1'" Torsion 7.73 7.79 -0.8

Table 4-2: Actuator Arm FE Model vs. Measured Natural Frequencies

4.2.3 Yoke and Coil FE Model

The third sub-component model is of the yoke and coil as seen in Figure 4-5. The model

Figure 4-5: Yoke/Coil Sub-Component FE Model

consists of approximately 2600 elements and 5100 nodes. The yoke/coil model consists

of three parts: the yoke, the coil, and the epoxy that bonds the coil to the yoke. All
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elements used in the yoke/coil model are solid tetrahedral elements with mid-side nodes.

Similar to the ann model, the nodes at the base of the yoke that form the body of the

actuator are constrained in all six degrees of freedom to model the yoke being clamped

rigidly. Since the coil is not solid, the material properties (Young's modulus and mass

density) are difficult to determine. The density value that is used in the FE model is

adjusted so that FE model of the coil has the correct weight for the modeled coil volume.

The correct Young's modulus is found by iterating until the frequencies of the first few

modes agree with measured data. Since the model of the yoke/coil is small, the iteration

process only takes a few minutes. Once the Young's modulus is found, this value can be

used in future yoke models that contain similar coil designs. The epoxy that bonds the

coil to the yoke provides no structural stiffness to the system. The Young's modulus

that is used for the epoxy is simply several orders ofmagnitude less than that of

aluminum, the material of the yoke. Often the coil is modeled as an orthotropic material,

but this step is not necessary to accurately predict the frequency and mode shapes for the

first few modes. The model development time for the yoke/coil model was

approximately 2 hours and the solve time on a Pentium II 350 system with 256 MB of

memory was less than 5min. Table 4-3 shows the results of the yoke/coil FE model

compared with measured data. The yoke/coil mode shapes calculated from the sub-

component FE model are shown in Appendix c.

Modeled Measured
Mode Shape Frequency (kHz) Frequency (kHz) % Difference

1'" Bending 1.12 1.19 -5.5

1R Torsion 1.82 1.90 -4.2

Table 4-3: Yoke/Coil FE Model vs. Measured Natural Frequencies
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4.3 Experimental Verification of FE Models

Measurements of the natural frequencies and corresponding mode shapes of the

suspension, actuator arm, and yoke/coil were made with a Scanning Laser Doppler

Vibrometer (LDV). The LDV is an optical instrument that provides a non-contact

means to measure the velocity and displacement vibrations of a surface. It is important

that a non-contact technique be used since the components that are being measured are

relatively small with little mass. Devices such as accelerometers can mass load the

component and significantly alter the measurements. Mass loading occurs when the

mass of the measurement device is a significant portion of the effective mass of a

particular mode.

The scanning LDV automatically measures a set of user pre-defined points on the

structure and calculates the frequency response function for each measured point. The

frequency response function at each measurement point is calculated by dividing the

measurement output response by the input excitation for the system. For the scanning

LDV measurements of the HSA, the measurement output is the LDV vibration

measurement (typically velocity) and the input excitation is a random noise current input

to the coil. Once all of the points are scarmed, animations of the structure can be viewed

for any frequency in the measurement range since the magnitude and phase of each

measurement point are know from the frequency response functions. The animations

provided by the scanning LDV software are actually operating deflection shapes (ODS)

not mode shapes, since no modal parameters are calculated. However, ODS are

typically an accurate approximation of the mode shapes and tm-darnped natural

frequencies of a system provided adjacent modes are not closely coupled. The scanning
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LDV eliminates the tediousness and saves hours over manual data collection techniques

associated with modal analysis methods.

In order to animate an ODS, numerous points on the surface of the structure to be

analyzed must be measured. Since the components of the HSA are small in size,

measurements with the scanning LDV are typically limited to axial (perpendicular to the

disk plane) measurements to ensure a sufficient surface area for proper animation and

mode shape identification. As a result, only modes that have displacement components

perpendicular to the disk plane can be measured. This includes bending and torsional

modes of the HSA sub-components. Modes that have defonnation predominately in the

plane of the disk, such as arm sway modes, are very difficult to accurately measure with

the scanning LDV. Thus, in the previous tables which compare calculated and measured

natural frequencies of the sub-components, sway modes are excluded. However, since

the bending and torsion modes are typically within 7% of measured values, it will be

assumed that the natural frequencies of the yoke, ann, and suspension sway modes are

also be within 7% of the actual natural frequency.
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5 HSA Model Simulation Results and Discussion

5.1 Reduced Order Model Simulation

The results of the frequency response simulation ofa reduced order model will

fIrst be discussed. lbis model simplifies the overall dynamics of the HSA by removing

the flexible modes of the sub-components. The purpose of this section is to discuss a

deviation between the state-space model and measured data and show how the full order

model will be compensated to correct for modeling inaccuracies. Considering only the

rigid body rotational mode and the bearing translational mode reduces the model to a set

of two un-coupled system equations

( 5-1 )

where the total displacement ofthe slider is

(5-2 )

In Figure 5-1 below, the frequency response of the reduced order model is compared

with measured data from a hard disk drive. From Figure 5-1, it can be seen that the

modeled system transfer function deviates from the measured data. The modeled

frequency response starts to diverge from the measured frequency response at

approximately 2 kHz and the modeled bearing translational mode at 5.4 kHz has a
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Figure 5-1: Rigid Body State Space Model vs. Measured Frequency Response

different amplitude and phase compared to the measured data. Since the output of the

state space model is the sum of the translational and rotational displacements (equation

(5-2)), the relationship of the two equations is critical to the overall shape of the total

displacement frequency response. This is illustrated in Figure 5-2 where the individual

tranlsational and rotational components are shown. The differences between the

modeled and measured frequency response functions are due the frequency at which the

mass line of the rotational transfer function and the stiffness line of the translational

transfer function intersect. The DC gain of each transfer function determines where the

two curves intersect. For the rotational component, the DC gain is
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and for the translational component, the DC gain is

(5-3 )

(5-4 )

where KBW is the gain factor associated with the drive electronics and compensator. The
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Figure 5-2: Translational and Rotational Components of the State Space Model

terms that comprise the rotational and translational DC gain terms are measurable

properties of the system (torque constant (K,), rotational inertia (Jr), bearing stiffness

(Kbearlng), moment arm from input force to pivot center (Rc), and moment arm from slider

to pivot center(Rh». In order for the sum ofthe translational and rotational equations to

intersect and form a smooth transition, either the DC gain of the rotational component

must be lowered or the DC gain of the bearing translational mode must be increased to
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achieve the correct frequency response function. However, since the measured and

modeled frequency responses do not diverge until 2 kHz, it appears that the gain for the

rotational component is correct and the gain for the bearing tranlsational mode is

incorrect. Since the DC gain for the transational mode is proportional to the input force

(equation (5-4)), the input force is increased until the state space model matches the

measured data. The resulting gain adjustment needed to correct the error in the state

space model is

(5-5 )

where MT is the total mass of the actuator, Rh is the moment ann from the pivot center to
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Figure 5-3: Corrected State Space Model vs. Measured Frequency Response
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the slider, and Jr is the total mass moment of inertia of the HSA about the pivot center.

The physical reason why the adjustment gain is needed is not fully understood at this

time. However the gain adjustment tenn derived above is valid for all cases, not just the

model presented in this paper. Applying the gain adjustment factor to the force input for

the translational DOF corrects the offset problem as is seen in Figure (5-3).

In Figures 5-1 and 5-3 there is a slight difference between the calculated and

measured phase below 4 kHz. From 1 kHz to 4 kHz, the measured phase decreases as

frequency increases, where as the modeled phase remains constant. This phase

divergence is a result of the measurement technique that was used to obtain the

frequency response function from the drive. Referring to Figure 1-2, the structural

response of the drive is defmed as the head position divided by coil current. Both the

head position and input current to the coil can be measured directly from the drive.

However, the disk drive is a digitally sampled system with inherent computational delay

in the control electronics. Both the computational delay and the delay due to sampling

result in the phase loss shown in the measured transfer functions. The HSA model

presented in this paper is a continuous model and does not account for any delay terms.

Another method to achieve the correct frequency response for the two rigid body

modes, is to express the 2-DOF HSA model as a fourth order transfer function. The

HSA is a good example of a non-collocated system, where there is a flexible mechanical

member (pivot bearings) between the actuator (coil) and the sensor (read/write head).

Non-collocated systems accounting for one mechanical resonance can be modeled as a

fourth order system by the following normalized transfer function
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(5-6 )

where

(j) =
"

Kbearmg and K = K,R It K
BWJr

(5-7 )

From Figure 5-4 below, it can be seen that the non-collocated transfer function of
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Figure 5-4: Non-Collocated Transfer Function vs. Measured Frequency Response

equation (5-6) matches the measured data and the corrected state space model. The

transfer function can be easily transformed into an equivalent state space model using

MatJab so that the rigid body model can be used with the HSA model previously
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developed. However, for the full order model simulation results presented below, the

gain adjusted state space model is used.

5.2 Full Order Model Simulation

The full order model includes sub-component flexible modes and is a 15 DOF

model. The model consists of 2 rigid body modes, 3 yoke modes, 4 ann modes, and 6

suspension modes. The flexible modes that are included in the model are those

resonances whose mode shapes have displacement in the off-track direction or have the

potential to cause displacement in the off-track direction. The Matlab script file used in

the simulation is shown in Appendix D.

HSA modes can be identified as either in-plane or out-of-plane resonances. In­

plane resonances are resonances in which the motion of the structure is primarily in the

plane of the disk. The resulting motion of the slider due to in-plane resonances is radial

off-track motion. From an analytical point of view, these modes can be modeled as a

complex pole pair. Examples of in-plane resonances that will be considered in the HSA

model are the bearing translational mode and the sway modes of the arm, suspension,

and yoke. Out-of plane resonances are resonances in which the motion of the structure

is primarily perpendicular to the plane of the disk. In order for these modes to modify

the open loop or structural response, there must be some amount of radial or off-track

motion associated with the mode shape. Ideally, out-of-plane resonances would not add

to the off-track motion of the slider. However, unless the slider is at a nodal point of the

mode shape, out-of-plane modes will usually exhibit some amount off-track motion.

Out-of-plane modes can typically be modeled as complex pole/zero pairs. Examples of
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out-of-plane resonances that will be considered in the HSA model are bending and

torsion modes of the arm, suspension, and yoke.

The zeros associated with out-of-plane resonanaces make it difficult to accurately

model the off-track displacements. The relationship of the zeros and the poles determine

the magnitude and phase response of out-of-plane resonances. Slight differences in arm

or suspension geometry or time and temperature effects that can change the mode shape

and make the off-track displacements due to out-of-plane modes vary greatly from drive

to drive.

The results of the initial simulation of the sub-component FE analytical model can
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Figure 5-5: Initial Simulation of the Sub-Component FE Analytical Model

be seen in Figure 5-5 compared with data from a measured drive. As can be seen in

Figure 5-5, there are several differences between the measured and modeled data
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resulting primarily from the sway modes of the yoke, arm and suspension. The modal

participation factors (1) and modal displacements ((i) for these three modes are

approximately two times the desired magnitude. The appropriate values for the modal

participation factors and modal displacements are determined by iterating on these tenns

in the sub-component FE model until the model converges with the measured data. By
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Figure 5-6: Sub-Component FE Model Simulation with Corrected Sway Mode
Couplin2 Factors

reducing the modal displacements and coupling factors of the three sway modes by a

factor of two, the modeled frequency response agrees much more closely with the

measured data as seen in Figure 5-6. The remaining differences between the modeled

and measured transfer functions in Figure 5-6 result from two primary sources. First, the

natural frequencies of the sub-component FE models can differ from measured data by
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approximately 7% as previously discussed. Second, out-of-plane modes (bending and

torsion modes) do not exhibit sufficient off-track displacements in the sub-component

FE models.

The differences between the modeled and measured frequency response functions

arise from errors in the sub-component FE models. Errors in the FE model results can

be due to incorrect boundary conditions and incorrect assumptions and simplifications

regarding the modeled part. For example, when parts are modeled using FE models, the

part is typically assumed to be a nominal part and tolerances are not considered.

However, all parts deviate from nominal manufacturing values. Due to the increasing

TPls and the corresponding decrease in track widths, displacement of the slider of only a

few micro-inches can be detrimental to drive perfonnance. As a result, part tolerances

can have a significant impact on the dynamic perfonnance of the HSA. Slight bends,

twists, or asymmetries that arise due to part tolerances can change the mode shape so

that the resulting off-track motion for a given mode is reduced or increased. The HSA

model that has been developed is only as accurate as the sub-component FE models.

One of the greatest advantages of the HSA model developed in this paper is that it

that it can be used to provide direction for improving the sub-component FE models.

The sub-component FE analytical model that has been developed is a compact model

that can be used to determine the appropriate modal participation and displacement

values so that the model matches measured data. The new values obtained from the

HSA model can be used to improve the accuracy and reliability of the FE models. As an

example, the appropriate modal parameters (rand (J) were determined using the sub­

component FE model for the 3rd bending mode of the suspension such that the modeled
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frequency response matched the measured frequency response for the mode of concern.

Using the new rand ¢modal parameters as target values, the suspension sub-component

FE model was modified until the appropriate modal participation factor and mode shape

value for the 3rd bending mode matched the values dictated by the sub-component FE

analytical model. The necessary changes to the suspension FE model included twisting

the suspension two degrees and adding the copper runs that carry the read/write signal to

and from the head. The added twist to the suspension approximates the handling and

assembly tolerances that allow for a slightly imperfect suspension and the copper runs

add an asymmetrical mass loading to the suspension. The differences in the un-modified

and modified 3rd bending mode ofthe suspension can be seen in Figures 5-7 and 5-8. In

Figure 5-7: Original Suspension 3rd Bending Mode

Off-Track Displacement

Figure 5-8: Modified Suspension 3rd Bending Mode

Figure 5-7, the nodal lines are perpendicular to the center line of the suspension,

resulting in little or no off-track displacement of the slider due to the 3rd bending mode.
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However, in Figure 5-8, the nodal lines are an angle to the suspension center line as a

result of the modifications that were made, so that the slider will exhibit off-track motion

associated with the 3rd bending mode. The resulting changes that were required for the

3rd bending mode, show that the asswnptions and simplifications used to create original

suspension FE were incorrect.

By decreasing the sway mode coupling factors, adjusting the natural frequencies

to account for modeling/measurement differences, and correcting the sub-component FE

models so that out-of-plane modes exhibit sufficient off-track displacements, the sub-

component FE analytical model shows good agreement with measured data as shown in

Figure 5-9. The only significant discrepancies that remain between the modeled and

Modeled vs Measured Mecha1ical Transfer Function
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Figure 5-9: Modified Sub-Component FE Analytical Model Simulation
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measured data are due to un-modeled dynamics between 8 kHz and 9 kHz. The

yoke/coil, arm, and suspension sub-component FE models do not predict flexible

mechanical resonances between 8 kHz and 9 kHz. These modes are possibly system

modes where all of the sub-components contribute significantly to the overall mode

shape or coupled modes where multiple arms and suspensions deform together as a

group. In the case ofcoupled modes, the arms or suspensions of the HSA appear to be

coupled together since they deform simultaneously in similar mode shapes. Typically

patterns are established such that one coupled mode might involve every other ann of

the HSA at a particular frequency, while at a different frequency, the inner arms might

deform as a group out-of-phase with the outer arms. However, since the sub-component

FE analytical model only considers one arm and suspension, and not the entire HSA, the

model will not predict system or coupled modes.
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6 Conclusions and Future Work

6.1 Conclusions

The resulting sub-component finite element analytical model was a 15 degree of

freedom model that could quickly be solved using commercially available matrix

manipulation software. The model proved to be accurate in predicting the off-track

motion of the head stack assembly and helped provide understanding as to which

resonances are the most detrimental to drive performance. Initial simulations showed

that some of the boundary conditions and assumptions used in creating the sub­

component finite element models were incorrect. Due to modeling errors in the sub­

component FE models, the off-track amplitude and coupling factors of the in-plane sway

modes were approximately two times the desired magnitude. Conversely, the amplitude

and coupling factors of the out-of-plane modes were not of sufficient magnitude.

However, by comparing the model results to measured data, the sub-component finite

element analytical model provided direction to help improve the accuracy of the

individual sub-component models, as was demonstrated with the 3rd bending mode of the

suspension. Also, since coupling terms were derived that describe how the sub­

components interact to form the overall system dynamics, the sub-component finite

element analytical model can provide direction to help optimize the head stack assembly

design in order to reduce the impacts of mechanical resonances.
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6.2 Future Work

One of the main advantages of the HSA model developed in this paper, is that it

provides a means to predict track following perfonnance in advance of a working drive.

However, without the servo control loop, only the mechanical interactions between the

yoke, pivot bearings, arm, and suspension can be studied with the current HSA model. It

would be very beneficial to include the control loop so that the effects of HSA

resonances on servo stability could be investigated as well. By adding the servo control

loop, the HSA model could be used to study drive performance impacts for new actuator

and suspension designs in the presence of increasing TPI as well as provide a platform

for theoretical compensator design work.

Another area of work that needs to be furthered is an investigation as to the correct

boundary conditions and assumptions to be used for the sub-component FE models.

Specifically, the cause of the excessive displacement amplitudes associated with the

sway modes and the insufficient displacement amplitudes associated with the out-of­

plane modes needs to be understood so that accurate sub-component FE models can be

generated. As previously mentioned, the sub-component FE analytical model is only as

accurate as the sub-component models.

Lastly, no drives are identical. Each drive has a unique frequency response

function due to differences in each HSA caused by manufacturing and assembly

tolerances. These differences result in drive to drive variations in the natural frequencies

and amplitudes of the in-the-Ioop resonances. The off-track displacement amplitudes of

out-of-plane resonances are particularly susceptible to variations in the HSA due to the

zeros that are associated with these modes. In order represent the variations in the
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frequency response that might be expected over a large population of drives, the HSA

model can be used to generate probabilisitic distribution of transfer functions by using a

statistical sampling method. One such method is often referred to as a Monte Carlo

analysis where each variable in the model is asswned to have a statistical distribution.

For the HSA model, the off-track amplitude and natural frequency distribution for each

mode would best be obtained by measuring a large sample of drives. Using a Monte

Carlo analysis, numerous HSA transfer functions could be generated by randomly

selecting natural frequency, modal participation, and mode shape values from the

corresponding distribution functions. Once all the transfer functions have been

calculated, a minimum and maximum "envelope" transfer function can be detennined

that would represent a range of values that a population of drives should fall within.
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Figure A-I: Suspension 1st Bending

Figure A-2: Suspension 1st Torsion

Figure A-3: Suspension 2Dd Bending

Figure A-4: Suspension 2nd Torsion
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Figure A-5: Suspension 3rd Bending

Figure A-6: Suspension Sway
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Figure B-1: Arm lit Bending

Figure B-2: Ann Sway

Figure B-3: Arm 2Dd Bending
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Figure B-4: Arm lit Torsion
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Figure C-I: Yoke/Coil lit Bending

Figure C-2: Yoke/Coil ttt Torsion
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Figure C-3: Yoke/Coil Sway
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75



Sub-Component FE Analytical HSA Model

Written by: Jeff Andress
1/17/99

'"""

function [mag,phase,freq]=actmod
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Model Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Rigid Body Parameters %%%%%%%%%%%%%%%%%%%%%%%

Mt=13.5/4541386;
Kbrg=90000;
J=O. 00037/16;
Rhead=1.80;
Rcoil=.85;
Kt=9.6/16;
TPI=18145;
vpt=5;
Kbw=.0455;

%tota1 actuator mass (lbf-s A 2/in)
%bearing stiffness (lbf/in)
%actuator inertia about pivot (lbf-in-s A 2)
%pivot to gap distance (in)
%coil e.g. to pivot distance (in)
%torque constant (lbf-in/Amp)
%tracks/inch
%volts/track
%bandwidth adjustment factor to compensate
%for gain of drive electronics

p=normal mode (normalized by modal mass)
mrn=modal mass
g=modal participation factor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Model Parameters from FEM Analysis
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% FEM Yoke Parameters: %%%%%%%%%%%%%%%%%%%%%%%%

my=2.57e-5; %total mass of the yoke/coil FE model

%%% Mode 1: Yoke 1st Bending %%%
wyl=1l24 *2*pi;
mmy1=3.52826e-3;
py1=(9.8118e-3+4.0265e-3)/sqrt(mmy1);
gy1=sqrt(0.0*my) ;

%%% Mode 2: Yoke Torsion %%%
wy2=182l*2*pi;
mmy2=2.95827e-3;
py2=(3.0722e-2+7.0812e-3)/sqrt(mmy2) ;
gy2=sqrt(0.0*my);

%%% Mode 3: Yoke Sway %%%
wy3=5068*2*pi;
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mrny3=4.93233e-3;
py3=(1.46ge1+1.3564el)/sqrt(mrny3)/2;
gy3=sqrt(O.0087117*my)/2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% FEM Arm Parameters: %%%%%%%%%%%%%%%%%%%%%%%%%

mas=6.133e-6; %tota1 mass of the arm FE model

%%% Mode 1: Arm 1st Bending %%%
wal=1079*2*pi;
mrnal=l. 21434e-8;
pa1=4.9603e-6/sqrt(mrna1);
ga1=sqrt(O*mas);

%%% Mode 2: Arm 2nd Bending %%%
wa2=7508*2*pi;
rnma2=4.411692e-10;
pa2=4.8836e-S/sqrt(mma2);
ga2=sqrt(O.OOOOOl*rnas);

%%% Mode 3: Arm Sway %%%
wa3=7240*2*pi;
rnma3=1.10235e-7;
pa3=-3.1594e-l/sqrt(mma3)/3;
ga3=sqrt(O.216352*mas);

%%% Mode 4: Arm 1st Torsion %%%
wa4=7600*2*pi;
mrna4=6.50653e-lO;
pa4=-1.3948e-4/sqrt(rnma4);
ga4=sqrt(O.05*mas};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% FEM Suspension Parameters: %%%%%%%%%%%%%%%%%%

mst=2.699ge-7; %total mass of suspension FE Model

%%% Mode 1: Suspension 1st Bending %%%
wsl=1970*2*pii
mrnsl=2.66717e-lO;
psl=5.0782e-4/sqrt(mmsl);
gsl=sqrt(O.000042*rnst);

%%% Mode 2: Suspension 1st Torsion %%%
ws2=4200*2*pii
mrns2=3.8027ge-ll;
ps2=-3.2672e-3/sqrt(rnms2);
gs2=sqrt(O.OOOll6*mst) ;

%%% Mode 3: Suspension 2nd Bending %%%
ws3=S820*2*pi;
mrns3=4.6880ge-ll;
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ps3=-1.012ge-3/sqrt(rnms3)*2;
gs3=sqrt(O.0215*mst);

%%% Mode 4: Suspension 2nd Torsion %%%
ws4=9800*2*pi;
mms4=9.73791e-12;
ps4=-3.1100e-3/sqrt(mms4);
gs4=sqrt(O.00695*mst);

%%% Mode 5: Suspension 3rd Bending %%%
ws5=11770*2*pi;
rnms5=1.43310e-11;
ps5=6.232ge-3/sqrt(mms51:
gs5=sqrt(O.06*mst);

%%% Mode 6: Suspension Sway %%%
ws6=12830*2*pi;
rnms6=1.01493e-12;
ps6=4.1307e-3/sqrt(mms6)/2;
gs6=sqrt(0.156*mst);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Form Mass Matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m=[Mt 0 gyl gy2 gy3 gal+mst*pal ga2+mst*pa2 ga3+mst*pa3 ga4+mst*pa4 gs1
gs2 gs3 gs4 gs5 gs6;
o J 0 0 0 0 0 a 0 0 a a 0 0 0;
gy1 0 1 0 0 0 0 0 0 a 0 0 0 0 0;
gy2 0 0 1 a 0 0 0 0 0 0 0 a 0 0;
gy3 0 a 0 1 a 0 0 0 0 0 0 0 0 0;
gal+mst*pal 0 0 0 0 1+mst*pa1*pal mst*pal*pa2 mst*pa1*pa3 mst*pa1*pa4
gsl*pal gs2*pal gs3*pa1 gs4*pal gs5*pal gs6*pal;
ga2+mst*pa2 0 0 0 0 mst*pal*pa2 1+mst*pa2*pa2 mst*pa2*pa3 mst*pa2*pa4
gsl*pa2 gs2*pa2 gs3*pa2 gs4*pa2 gs5*pa2 gs6*pa2;
ga3+mst*pa3 0 0 0 0 mst*pa1*pa3 mst*pa3*pa2 1+mst*pa3*pa3 mst*pa3*pa4
gsl*pa3 gs3*pa3 gs4*pa3 gs4*pa3 gs5*pa3 gs6*pa3;
ga4+mst*pa4 a 0 0 0 mst*pa1*pa4 mst*pa4*pa2 mst*pa4*pa3 1+mst*pa4*pa4
gsl*pa4 gs3*pa4 gs4*pa4 gs4*pa4 gs5*pa4 gs6*pa4;
gsl 0 0 0 0 gsl*pal gsl*pa2 gsl*pa3 gsl*pa4 1 0 0 0 0 0;
gs2 0 0 0 0 gs2*pal gs2*pa2 gs2*pa3 gs2*pa4 0 1 0 0 0 0:
gs3 0 a 0 0 gs3*pal gs3*pa2 gs3*pa3 gs3*pa4 0 0 1 0 0 0:
gs4 0 0 0 0 gs4*pal gs4*pa2 gs4*pa3 gs4*pa4 0 0 0 1 0 0;
gs5 0 a 0 0 gs5*pal gs5*pa2 gs5*pa3 gs5*pa4 0 0 0 0 1 0;
gs6 0 a 0 0 gs6*pal gs6*pa2 gs6*pa3 gs6*pa4 0 000 0 1];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Form Stiffness Matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

temp=[Kbrg 0 wyl~2 wy2~2 wy3~2 wa1~2 wa2~2 wa3~2 wa4~2 wsl~2 ws2~2

ws3~2 ws4~2 ws5~2 ws6~2]:

k=diag(temp,O);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Form Input Array

78



-

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f=Kt/Rcoil*[Mt*Rhead/J Rcoil pyl/2 py2/2 py3/2 0 0 0 0 0 0 0 0 0 0] I;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Form State Space
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

za=0.005;
zs=O.OI;
zy=O.OI;

%damping ratio for the arm modes
%damping ratio for the suspension modes
%damping ratio for the yoke modes

a=zeros(30,30);
temp(1:15)=I;;
a(1:15,16:30)=diag(temp,O);
a(16:30,1:15)=-(inv(m)*k);
temp=[-2*0.03*sqrt(Kbrg/Mt) 0 -2*zy*wyl -2*zy*wy2 -2*.05*wy3 -2*za*wal
-2*za*wa2 -2*.Ol*wa3 -2*za*wa4 -2*zs*wsl -2*zs*ws2 -2*zs*ws3 ­
2*O.OI*ws4 -2*zs*ws5 -2*zs*ws6];
a(16:30,16:30)=diag(temp,0);

b(I:15,1)=0;
b(16:30)=inv(m)*fi

c=[l -Rhead 0 0 0 0 0 0 0 -psI -ps2 ps3 -ps4 -ps5 ps6];
c(16:30)=O;
d=O;

input=100*2*pi:5*2*pi:15000*2*pi;

if nargout==O

%frequency range for bode plot

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% load measured data for comparison
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load c:\matlab\toolbox\user\measmag.txti
load c:\matlab\toolbox\user\measph.txti
load c:\matlab\toolbox\user\freq.txti

[mag2,phase2,freq2]=bode(a,b,c,d,l,input);
mag2=mag2*TPI*vpt*Kbw;

subplot (2, 1, 1)
handlel=semilogx(freq2/(2*pi),20*logI0(mag2), 'k',freq,measmag, 'k');
grid;
maxy=max(20*logI0(mag2))+lO;
miny=min(20*loglO(mag2)-lO;
axis([1000 15000 -60 20]);
ylabel('Magnitude (dB) ');
title('Modeled vs Measured Mechanical Transfer Function');

subplot(2,1,2)
handle2=semilogx(freq2/(2*pi),phase2, 'k',freq,measph, 'k');
grid;
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axis«(1000 15000 -1500 10));
ylabel('Phase (deg) ');
xlabel('Frequency (Hz) ');
set (handlel (1) , 'LineWidth' ,2) ;
set(handle2(1), 'LineWidth',2);
legend('Model', 'Measured');

else

[mag,phase,freq)=bode(a,b,c,d,l,input) ;
freq=freq/(2*pi);
mag=mag*TPI*vpt*Kbw;

end
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