
A COM-BASED GRAPHICAL USER INTERFACE

FOR A DECISION SUPPORT SOFTWARE

By

YUAN

Bachelor of Science

Sichuan University

Chengdu, China

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2000

A COM-BASED GRAPHICAL USER INTERFACE

FOR A DECISION SUPPORT SOFrWARE

Thesis Approved:

I

7

Dean of the Graduate College

II

,(

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my thesis advisor, Dr. K. M. George for his

valuable advice, encouragement, and guidance through my M. S. study. Sincere gratitude

also goes to my thesis committee members, Dr. Hedrick, and Dr. Dai. This thesis would

not be possible without their assistance and encouragement.

I wish to thank to Department of Computer Sciences for awarding me the Phillips

scholarship and offering me the chance to pursue my Master degree under direction of

many kind and knowledgeable faculty.

I also want to thank my husband, Kun Cheng, for his love, support, patience, and

understanding. To my parents, Wu Chaozheng and Di.ng Zhengguo, who came all the

way from China to take care of my life and show their love and support.

Last, but not least, thanks to all my fellow students and friends.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION· 1

II. LITERATURE REVIEW 4

2.1 User Interface Overview .4
2.2 Graphical User Interface (GUI) 6

2.2.1 Characteristics of GUI 6
2.2.2 Interface Design 8

2.3 Decision Support System 13
2.4 Implementation Tools and Environment 14

2.4.1 Microsoft Visual C++ Environment 14
2.4.2 Component Object ModeJ (COM) 20

III. DESIGN AND IMPLEMENTATION 23

3.1 COM-based System 24
3.1.1 IDL Interface 25
3.1.2 COM Communication Establishment. 27

3.2 Input and Output Data Sources 29
3.2.1 Input Data Sources 29
3.2.2 Output Data Formats 34

3.3 Data Exchange 35

IV. RESULTS AND DISCUSSION 37

V. CONCLUSIONAND FUTURE WORK 56

REFERENCES 57

APPENFlXES 59

APPENDIX A-ACRONYMS 59

IV

LIST OF FIGURES

Figure Page

1. Cbutton in Class hierarchy 15

2. Client to object interface 22

3. The interface structure 22

4. Architecture of COM-based GUI System 23

5. Startup screen 19

6. Open input file through menu .40

7. Open file dialog " 41

8. Open database file dialog 42

9. Select database table dialog 43

10. Open remote site input file .44

11. Open Excel Workbook file .45

12. Save input file 46

13. Save as temporary file 47

14. Export to Excel .48

15. Copy contents of current view .49

16. Cut contents of current view 50

17. After cut contents 51

18. Paste the deleted contents 52

v

19. Print dialog for page setup 53

20. Print preview of current view 54

21. Print setup for paper size and orientation 55

VI

CHAPTER 1

INTRODUCTION

Decision support systems are software used to abstract system behavior and to help

decision-makers to make high quality decisions. Principal component analysis (PCA) can

be used in the decision support system to reduce the dimension of a data set that consists

of several interrelated variables, while retaining the information presented in the data set

as much as possible [19].

Wen developed a decision support system based on PCA [19]. It loads data from a fi Ie,

ranks items based on the data using PCA, and provides methods for performing

sensitivity analysis on the ranking. 1\.lso it provides a simple Graphical User lnterface

(GUO to view the results.

The decision support system developed in [19] lacks in several areas of user interface. A

user would like to have a system whose interface resembles the modem MS Windows

based interface with its associated features. It would be useful to provide capabilities to

exchange data between this application and other standard or custom applications. The

objective of this thesis is to design and develop a user-friendly interface with a more

extensive set of features based on the component object model (COM) for the decision

support system.

The new system is more adaptive to different input and output sources. On the input side.

text files, relational database tables and Microsoft Excel workbook files are acceptable.

On the output side, both text files and CSV (Comma delimited) files are available. The

new system is also more convenient to use. The toolbars have been customized to share

functionality with some menus. Each view's contents can be exported to Microsoft Excel

directly.

Due to this design and implementation approach being based on COM, the system should

be easier to develop and maintain in the future. This COM model divides the whole

system into a two-tier project. The front-end user interface takes care of input collection

and output presentation. The data calculation process between input and output is

wrapped into a COM object acting as back-end server. The user interface and the server

object communicate with each other via a component interface that provides inter-proce s

function calls [3]. One of the characteristics of this model is that tasks are separated into

different components. Consequently any changes made to a particular component have no

affect on other components. Thus, it makes the system more flexible to develop and

maintain.

The remainder of the thesis consists of four chapters. Chapter 2 reviews past research

related to user interface design and implementation and Component Object Model

(COM). Chapter 3, Design and Implementation focuses on three main development areas

of the project, COM-based architecture, diverse input and output data sources, and data

2

exchange with other applications. Results and discussion are shown in Chapter4. Chapter

5 concludes the project and proposes future work on it.

3

CHAPTER II

Literature Review

In this chapter we review issues related to user interface design and implementation. The

Microsoft Visual C++ environment for user interface and Component Object Model

implementation is also reviewed.

2.1 User Interface Overview

The human-computer interface is that part of a software system that allows a user to

enter, store, manipulate and retrieve data, and inihate commands [10]. It enables

communication between the user and the computer. The interface is an important factor

contributing to the usability and to the first impression of a system.

The user interfaces have evolved over the years from command line data entry to the

current generation of GUIs. On an IBM compatible personal computer (PC), the DOS

interface is an example of a command line interface. A command line interface gives the

user more opportunity to initiate and control the dialogue.

Better interface was considered to be a requirement to achieve the increase in

productivity that was being promised through the use of computers. This awareness led to

4

advances that made the interface more visual using techniques such as menus to ease the

burden on users' memories [15]. This style of interface, called a menu driven interface,

can be developed into a hierarchical menu system, where the main menu leads to sub

menus that themselves may lead to sub-sub-menus, continuing down an indeterminate

number of levels before the functionality of the program is available to the user.

Although menu driven interfaces are easy for the developer to construct they are very

restrictive to the user as the interface designer has to decide at the outset which options

are to be accessed from which menus and in what sequence the options are to be

presented [17].

Interface technology has been evolving continuously. The current point and click GUI

(Graphical User Interface) is adopted universally and is used in most applications.

Applications typically used the elements of the GUl that came with the operating system

then added their own graphical user interface elements and ideas to make using a

computer easier. Today the GUI familiar to most of us in either the Mac or the Windows

operating systems and their applications originated at the Xerox Palo Alto Research

Laboratory in the late 1970s. Apple used it in their first Macintosh computers. Later,

Microsoft used many of the same ideas in their first version of the Windows operating

system for IBM-compatible pes. currently the most popular user interface is possibly the

windows, icons, menus and pointer (WIMPS) style. This style of interface is used with

Microsoft Windows, Apple computers, and X Windows, and has become very acceptable

to wide variety of users. This thesis develops and implements a MS Windows based user

interface to a decision support system software [19].

5

2.2. Graphical User Interface (GUI)

As mentioned in the previous section, the graphical user interface we experience today

originated in late 1970's at the Xerox Palo Alto research laboratory and utilizes computer

graphics capabilities to make the applications easier to use. The primary interaction

mechanism is some kind of pointing device that is the electronic equivalent to human

hand. Commands and actions are encapsulated within icons, thus making it easy to

comprehend and lise. These icons serve as the primary vehicle of interaction between

applications and users [2]. Basically there are two styles of illteraction for graphical

systems, "direct manipulation" and "indirect manipulation".

As early as 1982 Shneiderman used the term "direct manipulation" to describe a style of

interface that is designed as an extension of the real world [15]. In this system graphical

elements replicate real world objects and provide similar continuous visibility. However,

direct manipulation might not be applicable in practice under certain circumstances. For

example, a window's space might be too limited to provide enough space for all the

objects. Typing sometimes may replace pointing. Nowadays, most window systems are a

mix of both direct and indirect manipulation. The interfaces developed in this thesis can

be classified as belonging to this group.

2.2.1. Characteristics of GUI

Compared to command line and event-driven systems, a GUI system has some

characteristics that make it widely accepted and applied to increasingly many

applications.

6

1. Sophisticated visual presentation

Most GUI systems allow display of information in a variety of fonnats - drawings,

color text, video, etc. Also, several controls are available to manage the presentation

of information.

2. Object Orientation

Current GUls are designed and developed using the object-oriented programming

model. The benefits of the model are ease of development, information sharing and

extension. MS Windows 95 (and later versions) belongs to this class of interface. In

Windows 95 there are several kinds of relationships called collections, constraints,

composites, and containers [8].

3. Limited control options.

The user can manipulate only the currently visible window (i.e. the window that has

the focus) and no other.

4. Simple interaction

The user depends on a simple pointing device, a mouse in most cases, to interact with

a graphical system. A complete action can be accomplished by point and click.

5. Multitasking

It's very common that graphical systems process more than one task at the same time.

The system can switch between multiple active tasks to maximize efficiency [20].

7

6. Easy transfer of data

In the Microsoft windows system it is convenient to use the clipboard or drag and

drop function to move objects between different applications.

2.2.2. Interface Design

Designing a good user interface is always a complex task. It should be useful and reflect

user's capabilities and respond to his or her specific needs. Better user interface design

can achieve the very real benefits in increased productivity, decreased training time,

decreased user errors, decreased development time, decreased customer support cost and

increased sale that better user interfaces can produce. Poor design is an expensive

mistake. Because if the important features are not easily available to users, no matter how

innovative or creative the technical solutions might be, they will be wasted [5, 7].

General principals

1. Compatibility

• User compatibility

"Know the user" is the fundamental principle, from which all others derive. A

very common assumption of developers is that all users are all alike. This error

leads to conclusion that if an interface is fine to a few users, it will be good to all

others. Another common assumption is that users feel and think like developers. It

has been proved that users usually differ significantly from developers in

motivation, sophistication, and needs [231. As a good interface designer, must

8

know and understand different aspects of users and adapt the interface to different

needs.

• Task compatibility

The structure and flow of a system should match the task that user must do to

perform the job. The organization of functions should allow easy transition

between tasks. Therefore task-oriented style should be preferred to application

oriented style [15].

• Product compatibility

More often than usual, users are already familiar with other graphical system or

an earlier version of the new system. Designers should take their habits and

expectation into account when designing a new system. Otherwise, users must

start over to learn the new system from beginning. Compatibility across system

can reduce learning time and errors significantly [15J.

However, compatibility shouldn't be overemphasized to the exclusion of technical

improvement over an older system, but it obviously should be one of the concerns of

developers in making design decisions.

2. Consistency

Consistency is very important because it permits people to reason by analogy and

predict how to perform jobs even if they've never encountered them before [8].

Inconsistency in most cases increases learning requirements. Excess learning

requirements are a barrier to people's achieving high performance, and they possibly

9

influence their acceptance of the system [13]. General design standards or guidelines

can help to maintain design consistency. Since late 1980s GUI industry and research

organizations have developed many guideline documents. These documents specify

how different controls of user interface behave and what they look like. They also

help designers decide when to use various elements.

3. Simplicity

A complex interrace is overwhelming and confusing to users. Unfortunately, many

business applications are so big and complicated that designers find it very hard to

provide corresponding complex functionality through a simple interface [1]. There

are a few methods that could help this situation.

• Layered approach

Present fundamentals to new users on first encounter and gradually introduce

advanced functions on deeper layers. The complexity in this way can be

distributed in order of]ayers and it makes novices comfortable while introducing

system components step by step [17].

• Defaults

Defaults like the layered approach hide some advanced functions from novice so

that they don't need to be burdened to make all decisions and can concentrate on

fundamentals first [17].

• Simple common tasks

Studies have proved that users often need to perform certain set of common tasks.

Making common tasks simple increases the whole system's efficiency [17].

10

• . I

4. Control

People prefer to feel control over the system when they are interacting with a

computer application. A tool-like interface is a good choice in that people find useful

and easy to master. People easily can gain the feeling of control if a simple.

consistent, and flexible interface is presented [23].

5. Flexibility

Flexibility reflects system's capability to respond to users needs [14]. Different

people have different needs based on their knowledge, experience, and preference. A

well-designed interface accommodates these needs by providing variety of ways to

access function and perform tasks. Interfaces that allow user tailoring and user

selections provide more flexibility.

Design Process

The design process used in thi s thesis is as follows [15]:

1. Define problem domai n

2. Analyze tasks

3. Define corresponding objects and functions

4. Design GUI's appearance and behavior

5. Evaluation

11

1. Define problem domain

This is the most important and basic step of design process. Even a small error during

this step can lead to major changes and corrections in subsequent steps. It is important

that domain concepts be identified as explicitly as possible. Multiple tools, such as UML

(Unified Model Language) products are available to help developers collect business

requirements and analyze use cases.

2. Analyze tasks

This step is to help developers understand what the users want to accomplish, the

strategies the users use in meeting their goals [18]. This information is essential to

designing a task-oriented system. Based on previous steps, this is accomplished by

determining basic business functions, describing user activities through task analysis,

understanding the user's mental model, and developing a conceptual model of the system.

3. Define corre.~ponding objects andfunctions

In this step designers determine the graphic objects to be selected for the user interface,

and the functionality to be accomplished by these objects. Also, specific methods of

communication between objects must be defined.

4. Design GUl's appearance and behavior

The purpose of this stage of design is to define a user interface in a way that is attracti ve

and compatible with user's habits and expectations.

12

5. Evaluation

The real test of an interface is the behavior in practice, but it is costly to modify the

interface at the stage of implementation. Thus it is important to evaluate the interface

prior to its actual implementation. Gould suggested different technique to be used in

evaluation [15].

1. Printed or video scenarios indicate the concepts captured in interface

2. Mock-ups demonstrate the appearance of the user intelface

3. Formal prototype test provides feedback on how well sample users can perform

specific tasks.

The user interface design process is iterative. Evaluation should be performed at each

step. When problems are found, corrective steps should be taken in the phase in which

deficiencies were found.

2.3. Decision Support System

As mentioned in the introduction, decision support systems are software used to abstract

system behavior and help decision makers to make high quality decisions from a large

interrelated data information system. Traditional methods including simulation and

modeling have been used widely to address the problem. In [6], George presented this

kind of decision support system to select a choice from many altcmatives.

Karl Pearson was the first researcher to develop principal component analysis (PCA) [9].

Since then other researchers have done comprehensive work in this area. An important

step in interpreting the data is the reduction of the dimension. Simplification of data is

13

•

another step. Principal component analysis can address these issues, while keeping most

of the infonnation present in the data set. It is widely used in many areas including

agriculture, biology, chemistry, geology, and quality control. This thesis is based on the

work done by Wen to develop a decision support system using PCA and presented in

[19].

2.4. Implementation Tools and Environment

There are currently many implementation tools available on the market to implement

software systems, especially user interfaces. Sun's JDK (Java Development Kit) provides

a cheap way to develop Java applets that are appealing to Web developers. Apple's

OpenGL SDK (Standard Development Kit) is a standard 3D graphics API (Application

Programming Interface) for Power PC based interface. Microsoft Windows provides

several tools for developing GUIs including the visual programming languages MS

Visual Basic and MS Visual C++ that are considered popular choices for developers. Due

to the dominance of windows application on PC, Microsoft GUI tools are widely

accepted for PC interface implementation [2]. Visual C++ is used to develop the

software in this research. Therefore, a brief description of the available tools is given in

the following sections.

2.4.1. Microsoft Visual C++ environment

Visual C++ provides an Integrated Development Environment (IDE) that allows

developers to write, build, and debug a 32-bit user interface program [21). Also, Visual

C++ gives developers a set of application wizards that guide the developer though

creating a new program. An application wizard is a tool in Microsoft Visual Studio that

14

•

can generate a new, fully functional application from which developers build a more

complex application. Included in the AppWizards are basic settings and structure code. It

saves considerable time especially for experienced developers [3]. A typical single

document Windows interface can be created using the MFC (Microsoft Foundation Class

library) AppWizard (exe). Developers are free to select basic structures and options, such

as DocumentlView architecture, database SUppOlt, and Automation.

Microsoft Foundation Class library is the core of MS Visual C++ [21]. Basically MFC

consists of a large number of classes. Most of these classes are derived from a single root

class at the top of the class hierarchy. CObject, with very low overhead, supports

serializing data and obtaining run-time class information. CButton class that

encapsulates all the information for Windows button control can serve as a good ex.ample

of the class hierarchy.

I CObject I

i CCmdTarget I

I CWnd I

I CButton I

Figure 1. Cbutton in Class hierarchy

is

The most frequently used classes for implementing user interface are:

Frame Window Classes (windows)

View Classes (windows)

Dialog Box Classes

Control Classes

Control. Bar Classes

Frame window and View are part of the basic structure of a Windows user interface.

Control and Control Bar are attached to the basic structure to present event-driven

functionality behind them. Dialog is a special kind of window that performs more

complicated tasks than regular control.s do like search-and-replace operation. Besides

these classes directly related to user interfaces, MFC also provides fi Ie and database

classes, drawing and printing classes, and networking classes. They are listed below

along with short descriptions of their use.

Cstring methods:

int GetLength() const return the count of the bytes in this CString object not including
the null terminator

Bool Cstring: :IsEmpty Tests whether the object contains no characters

Void Cstring::Empty Force the object to be empty and reclaim the memory

int Comparee LPCTSTR lpsz) const compare two strings (case sensitive) return zero if
identical; < 0 if this CString object is less than lpsz, or> 0 if this CString object is
greater than lpsz.

int CompareNoCase(LPCTSTR lpsz) const Compares two strings (case
insensitive) return zero if identical; < 0 if this CString object is less than lpsz, or> 0 if
this CString object is greater than lpsz.

16

•

void Format(LPCTSTR IpszFonnat, ...) write formatted data to a CString in the
same way that sprintf fonnats data into a C-style character array.

CString Left(int nCount) const
nCount length)
throw(CMemoryException)

CString Right(int nCount) const
nCount length)
throw(CmemoryException)

Extract and return the left part of the string (up to

Extract and return the right part of the string (up to

void TrimLeft()

void TrimRight()

Tlim the leading whitespace characters from the string

Trim the trailing whitespace characters from the string

int Find(LPCTSTR lpszSub) const
string

find the substring (lpszSub) inside the large

CString SpanExcluding(LPCTSTR lpszCharSet) const throw(CMemoryException)
Extract and return a substring that contains only the characters not in a

set(lpszCharSet)

Cdialog methods:

virtual int DoModal() Calls a modal. dialog box and returns when done. The return value
could be IDOK, IDCANCEL, or IDABORT.

Cdialogbar methods:
int GetDlgltemText(int nID, CString& rString) const Retrieves the caption or texl
associated with a control. Return the actual number of bytes copied to the buffer, not
including the terminating null character. The value is 0 if no text is copied

void SetDlgItemText(int nID, LPCTSTR IpszString)
text of a control in the specified dialog box

CWnd methods:

Sets the caption or

CWnd* GetDlgItem(int nID) const Retrieves the control with the specified ID from the
specified dialog box.

void SetWindowText(LPCTSTR lpszString)
(if it has one) to the specified text.

17

Sets the window text or caption title

•

void GetWindowText(CString& rString) const
title (if it has one).

Returns the window tex.t or caption

BOOL ShowWindow(int nCmdShov,,') Sets the visibility state of the window.
Return Nonzero if the window was previously visible; 0 if the CWnd was previously
hidden

CMenu* GetMenu() const Retrieves a pointer to the menu for this window.

CrichEditView methods:

CRichEditCtrl& GetRichEditCtrl() const Retrieves the rich edit control.

CrichEditCtrl methods:

int GetLineCount() const Retrieves the number of lines in the object
int GetLine(int nlndex, LPTSTR lpszBuffer) canst Retrieves a line of text from the
object

DWORD GetDefaultCharFonnat(CHARFORMAT& cf) const Retrieves the current
default character fonnatting attributes in the object

BaaL SetDefaultCharForrnat(CHARFORMAT& (f)

character fonnatting auIibutes in the object.
Sets the current default

void SetSel(long nStartClzar, long nEndChar) Sets the selection in the object

void ReplaceSel(LPCTSTR IpszNewText, BOOL bCal/Undo =FALSE) Replaces the
current selection in the object with specified text.

void Clear() Clears the current selection

Cmenu methods:

BOOL LoadMenu(UINT nIDResource) loads a menu resource from the application's
executable fjle and attach it to the CMenu object. Returns nonzero if the menu resource
was loaded successfully; otheIWise returns O.

CMenu* GetSubMenu(int nPos) const
menu.

Retrieves the CMenu object of a pop-up

18

BOOL TrackPopupMenu (UINT nFlags, int x, int y, CWnd* pWnd, LPCRECT lpRect =
o) Displays a floating pop-up menu at the specified location and tracks the selection
of items on the pop-up menu.

Cfi Ie methods:

virtual BOOL Open(LPCTSTR lpszFileName, UINT nOpenFlags, CFileException*
pError =NULL) Safely opens a file with an error-testing option

virtual void Close(); throw(CFileException) Closes a file and deletes the object

virtual void Write(const void* lpBuf, UINT nCounf); throw(CFileException) Writes
(unbuffered) data in a file to the current file position.

CDatabase methods:

virtual BOOL Open(LPCTSTR lpszDSN, BOOL bExclusive = FALSE, BOOL
bReadOnly = FALSE, LPCTSTR lpszConnect = "ODBC;", BOOL bUseCursorLib =
TRUE)
throw(CDBException, CMemoryException) Establishes a connection to a data
source (through an ODBC driver). Returns nonzero if the connection is successfully
made; otherwise returns 0 if the user chooses cancel when presented a dialog box asking
for more connection informatjon.

virtual void C1ose() Closes the data source connection.

CdaoDatabase methods:

void GetTableDefInfo(int nlndex, CDaoTableDefInfo& tablede./i/ifb, DWORD
dwlnfoOptions = AFX_DAO_PRIMARY_INFO)
throw(CDaoException, CMemoryException) Returns information about a
specified table in the database.

short GetTableDefCount() throw(CDaoException, CMemoryException) Returns the
number of tables defined in the database.

CrecordSet methods:

virtual BOOL Open(UINT nOpenType =AFX_DB_USE_DEFAULT_TYPE,
LPCTSTR lpszSQL = NULL, DWORD dwOptions = none)
throw(CDBException, CMemoryException) Opens the recordset by retrieving the
table or performing the query that the recordset represents. Returns nonzero if the

19

•

CRecordset object was successfully opened; otherwise returns 0 if CDatabase::Open (if
called) returns O.

virtual void Close() Closes the recordset and the ODBC HSTMT(statement handle)
associated with it.

void MoveLast()
throw(CDBException, CMemoryException)
last record or on the last rowset.

Positions the current record on the

BOOL IsBOF() const Returns nonzero if the recordset has been positioned before
the first record. There is no current record.

BOOL IsEOF() const Returns nonzero if the recordset has been positioned after
the last record. There is no current record.

void SetAbsolutePosition(long nRows)
throw(CDBException, CMernoryException)
corresponding to the specified record number.

Positions the recordset on the record

void GetFieldValue(short nlndex, CString& strValue)
throw(CDBException, CMemoryException) Returns the value of a field in a
recordset.

CdaoRecordSet methods:

void GetFieJdlnfo(int nlndex, CDaoFieldlnfo&fieldi~fo,DWORD dwlnfoOptio/ls =
AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMernoryException) Returns specific kinds of informalion
about the fields in the recordset.

short GetFieldCount() throw(CDaoException, CMemoryException)
value that represents the number of fields in a recordset.

2.4.2. Component Object Model (COM)

Returns a

COM refers to both specification and implementation model developed by Microsoft

[12]. It provides a framework for integrating component software. This framework

supports interoperability and reusability of distributed objects by allowing developers to

build systems by assembling reusable components from different vendors that

20

communicate via COM. By applying COM to build systems from existing components,

developers are able to enhance the maintainability and adaptability of the system.

COM defines an Application Programming Interface (API) to allow creation of

components for use in integrating custom applications or to allow different components

to interact as long as they adhere to a binary structure specified by Microsoft [3, 121.

Even the components written in different languages can communicate with one another.

COM makes it possible to divide a whole system into multiple tiers and distribute

individual components in different processes or even different computers connected by a

network. As shown in Figure 2, the client that is most often a user interface can interact

with these components (objects) via interface pointer. Figure 3 provides a more detailed

insight into the interaction. The client maintains a pointer to the interface that is a pointer

to a pointer to an array of pointers to the object's implementation of the interface member

functions. The pointer to the interface function table by convention is called pYtbl

pointer. The interface function table is called vtble. It is independent of programming

language or tool used to develop it. Therefore, this structure provides the basis for

interoperability between software components written in different language [3].

Particularly, Microsoft Interface Definition Language (IDL) is used to define the

interface method prototypes. The IDL is an extension of the DCE (Distributed

Computing Environment) interface language standard. A COM object can support any

number of interfaces. An interface provides a grouped collection of related methods. By

21

calling these methods, a client application feeds input to objects and receives the output

from them.

CLient
Application .. Object

1.
Interface
Pomter

Figure 2. Client to object interface

(Interface Pointer H pVtbL Pointer to Function 1
Pointer to Function 2
Pointer to Function 3

Object
implementations
of interface
functions

Figure 3. The interface structure

22

CHAPTER m

Design and Implementation of User Interface

In order to present a user-friendly interface for application of principal component

analysis to a decision support system, a window based GUI has been designed in this

thesis. We develop an implementation model based on COM to represent the problem

and provide an implementation. Written in Visual C++ 6.0, the interface is a typical

event driven model. Based on a framework structure provided by MFC Class Wizard, it is

customized to bind selectable menus and toolbars to functionality. As a result, users are

able to specify input data from different storage such as file systems or relational

databases and get results in desired formats.

All the functionality are available through six menus that include four standard menus,

File, Edit, View, and Help. The other lwo additional menus are Data and Sensitivity

Analysis. Under Data menu there are four menu items for data calculations. They arc

Calculate Correlation (CC), Estimate Eigenvector (EE), Estimate Rank (ER), and Sorted

Result (SR). Under Sensitivity Analysis menu there are two menu items, Interval for

Rank, and Interval for Weight. These six menu items under Data and Sensitivity Analysis

menus are also available through toolbars. All the documents visible in client area are

printable and compatible to standard clipboard (Cut, Copy, Past, Drag & Drop). The

23

system supports both pure text(local or remote site) and relational database input sources

although data must be in the required format. On the other hand, output could be pure text

or CSV, which is comma-delimited.

3.1. System Architecture

The system presented in this thesis is a COM-based system as described earlier. It

supports interoperability and reusability of distributed objects by allowing developers to

build system by assembling components designed and implemented by different groups.

In this way it enhances the maintainability and adaptability of the system.

The work performed as part of this thesis bui Ids a COM component in Microsoft Visual

C++ 6.0 environment. Particularly, ATL (Active Type Library) provides a framework

for the component. The software architecture of the system is shown in figure 4.

Wrapper of Excel

Other dialogs

Client

by

Interface

CObject

Server

Figure 4. Architecture of COM-based GUI system

24

On the left side of interface is the GUl that is a typical Windows application of

documentJview architecture. The main GUI application contains a document and a

mainframe structure. The document exchanges document infonnation with view and

interacts with other classes at the same time. On the right side of interface is the COM

component that implements the interface. Calculation logic consisting of Row. Table, and

Matrix classes are hidden from the interface and GUI.

3.1.1. IDL Interface

Client side GUI and server side component communicate via COM interface. The

interface is written in IDL as we mentioned earher. This IDL file (server.idJ) is the most

important part of the whole system in that it defines what functionality the COM

component exposes and how to interact with the component. Any client that desires to

interact with the component must have a copy of the IDL file before establishing real

connection. Code below shows how IDL defines a COM object. First part describes

properties of the component. Second one declares interface functions.

import "oaidJ.idl";
import "ocidl.idl";

II These are attributes of the interface object

object,
uuid(A21 118E2-55AD-41AF-A299-42CEIA4F7 lBC),
dual,
helpstring("Iobjectl Interface"), II The description of the interface
pointecdefault(unique)

25

•

II The declarations of methods in this interface

interface Iobjectl : IDispatch
{

lidO), helpstring("method NewTable")] HRESULT NewTable([in] int
row, [in} int col, [in} double init);

[id(2), helpstring("rnethod testing")} HRESULT testing([out, retval} int*
col);

[id(3), helpstring("method WriteRow")} HRESULT WriteRow([in} double
*temp_row, [in) int i);

[id(4), helpstring("method GetRowValues")} HRESULT
GetRowValues([in} int i, [out, retval] double *temp_row);

} ;

The IDL file contains the GUIDs (Globally Unique Identifier) of object and interface that

consist of 128 bits. The GUID number is created by running GUIDgen.exe which defines

a GUID unique over both space and time. To be unique in space, each GUID requires a

48-bit value unique to the computer on which it is generated. Use of this value guarantees

that a QUID generated by any individual computer is different from the GUID generated

by another computer. The other 60 bits of GUID stands for time stamp. It represents the

count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582. The concept of

GUID originated from Open Software Foundation (OSF) [4].

Besides GUIDs of object and interface, the IDL file also contains entries of interface

functions that are implemented by the COM object. Each entry of function consists of an

id, help string (description of the function), and the prototypes of the function. The return

value of all interface functions must be of type HRESULT for the purpose of detecting

possible network failure. The in and out parameter attributes indicate the flow directions

of the parameters. It is from chent to component (in) or from component to client (out).

26

•

The implementation of these functions is done in server object (COM component). The

implementation for one of the functions defined in the above IDL file (WriteRow) is

given below.

HRESULT Cobject::WriteRow(double *temp_row, int i)
{

II system generated
ABCMANAGE_STATE(AfxGetStaticModu]eStateO)

int rowNum, colNum;
rowNum = data->GetRowO;
coiNurn =data->GetCoIO;

II copy a row of input data to the corresponding row of the Table data.
(*data)[i].input(temp_row);

II successfully complete the method call
return S_OK;

3.1.2. COM Communication Establi shment

In order for the client to establish communication with COM component it is nece saryat

first to register the object and interface in Windows registry. So a running client can look

them up through the registry. A type library (server.tlb) which is actually the binary

version of IDL file is loaded and registered in the operating system registry. Following

code shows how to get the type library from current directory where the executable GUI

resides and then load and register it in Windows registry.

OLECHAR
ITypeLib*

wPath[256];
pTypeLib;

II load server's type library under current directory
GetCurrentDirectory«DWORD)256, wPath);
HRESULT hr =LoadTypeLibEx(wPath, REGKIND_REGISTER,

&pTypeLib);

II There is an error to load the type library

27

if (FAlLED(hr»
{

AfxMessageBox(lrfai led to load type library");
return false;

II successfully load the type library. Release it afterwards.
pTypeLib->ReleaseO;

Code below shows how to get a pointer to the interface through which GUI can call the

calculation functions. First the interface pointer called pUnknown is acquired from COM

object. Then calling QueryInterface of pUnknown provides the desired custom interface

pointer. This is implemented in Document class of GUr.

CLSID
LPUNKNOWN
Iobjectl *
HRESULT

clsid;
pUnknown;
pTest;
hr;

II uuid for the COM object
II pointer to IUnknown interface
II pointer to the customer interface
II handle of results

clsid =CLSID_objectl;

II structure to store information of one or more than one interface pointer
MULTCQI mqi[]={ {&UO_Jobjectl, NULL, hr} };
COSERVERINFO srvinfo = {O, remote_name, NULL, 0 I;
II try to get the interface object and store it in mqi.
hr = CoCreateInstanceEx(clsid, NULL,

I*CLSCTX_REMOTE_SER VER*ICLSCTX_INPROC_SER VER,
&srvinfo, 1, mqi);

II get interface pointer to IUnknown
if (SUCCEEDED(hr»
{

II pointer to rUnknown is always stored as the first element of mqi.
if (SUCCEEDEO(mqi[O].hr»

pUnknown=mqi[O].pltf;
else

AfxMessageBox("failed to get [Unknown");
return;

28

II cannot get information of interface object
else
{

AfxMessageBox("failed to connect to CObject");
return;

II get the customer interface pointer
hr =pUnknown->Querylnterface(IID_Iobjectl. (void **) &pTest);

II hr is failure return code
if (!SUCCEEDED(hr»
{

AfxMessageBox("failed to get pTest");
pUnknown->ReleaseO;
return;

}
pUnknown->ReleaseO;

Using the interface pointer (pTest) we can call all the functions implemented in the

component.

3.2. Input and Output Data Sources

The sole purpose of the COM-based Gill is to collect input and to present the output.

This GUI system is capable of handling different formats of input and output data so that

user can manipulate data more conveniently.

3.2.1. Input Data Sources

Text files and relational data files are acceptable to the system as input. For text file,

MFC provides CFile class to read the data. The process of creating an input stream from

input file through Cfile class is i.Ilustrated below.

29

II CfileDialog is system defined file open dialog
CFileDialog filedlg(TRUE, "*", "* .dat");
CFile ftemp;
CString filename;

II user click ok button in the dialog
if (filedlg.DoModaIO ==IDOK)
{

II get the complete file name including the path from the dialog
filename=filedlg.GetPathNameO;

}
else

return;

II change the GUI window's title to the name of selected file
SetTitle(filename);

II create the input stream for the input file
fstream fIn«const char*)filename, ios: :in);

if (fIn.failO) {
cerr«"can not open the input file!"<<filename<<endL
exit(l);

unsigned row, col;
II read data from input stream.
fln»row»coL

For relational database file, MFC provides CDaoDatabase and CdaoRecordset classes to

deal with the data. The following code shows how MFC database classes, CdaoDatabase

and CdaoRecordset help establish session with relational database and open the input data

table for later use.

CDaoDatabase m_database;
CDaoRecordset* m_pRecordset;

II select database files in the dialog
CFileDialog dlg(TRUE, ".mdb", "*.mdb");
if (dlg.DoModaIO == IDCANCEL)

return;
II get complete file name for the database

30

ffi_strDatabase = dlg.GetPathNarneO;

try
{

/I open the database
m_database.Open(m_strDatabase, FALSE, TRUE);

}
II catch the exception
catch (CDaoException* e)
{

e->DeleteO;
return;

m_strDatabase = m_database.GetNameO;

if (ffi_strQuery.IsEmptyO)
{

II select a table in the database through the dialog
CTableSelect tableDlg(&m_database);
if (tableDlg.DoModaIO != IDOK)
{

ffi_database.CloseO; II escape route
return;

II copy the sql query statement to m_strQuery
m_strQuery.Format("select * from %s", tabJeDlg.ffi_strSelection);

II create a resultset for the opened database
m_pRecordset = new CDaoRecordset(&m_database);
try
{

II put the results of the query statement in the resultset
m_pRecordset->Open(dbOpenDynaset, m_strQuery, dbReadOnly);

}
catch (CDaoException* e)
{

e->DeleteO;
return;

II move the pointer to the end of the recordset in order to count the number of
records.

if (!m_pRecordset->IsBOFO)

31

II

m_pRecordset->MoveLastO; II to validate record count
}

m_nRowCount =m_pRecordset->GetAbsolutePositionO;

For remote text file, :MFC provides ClntemetSession class to connect to remote

URL(Universal Resource Locator) and read data from the input file. Following code

shows how CinternetSession class connects remote s.ite file by opening URL and returns

a file pointer to handle input data.

CInternetSession
CStdioFile*
Cstring

try
{

session("My Session");
pFile =NULL;
uri = dlg.m_URL; II get urI from file-open-dialog.

II open the URL using the ClntemetSession and get a pointer to the remote
file

pFiJe = session.openURL(url);
unsigned row, col;

II read data in rows
pFi le->ReadString(temp);
sscanf(temp, "%d %d", &row, &col);

}
II failed to contact remote URL. Catch the exception
catch (CIntemetException* pE)
{

AfxMessageBox("failed to connect to the uri");
return;

II close the ClnternetSession
session.CloseO;

Since the GUI only collects the input data, it does not provide storage for it. Back-end

COM object will provide the storage for the data. The storage class is called Table that is

defined in COM object. Following code shows how to transfer the collected input data

32

from GUI client to COM object. On client side input data is temporarily saved in memory

then transferred to server object side for constructing Table object. Memory for

temporary input data is released then.

II pointer to the interface
Iobjectl>l< pTest;

II initialize the instance data of the COM object
pTest->InitializeO;

II creates a new Table instance
pTcst->NewTable(row, col, (double)O.O);

double *temp_row;
temp_row = new double[col];

II read the data from input stream and then transfer the data to COM object
for (unsignedj=O; j<row; j++)
{

for (unsigned i=O; i < col; i++)
{

fIn»*(ternp_row+i);
}
pTest->WriteRow(temp_row, j);

II reclaim the memory
delete [] temp_row;

II transfer the input data in rows.

To minimize the network overhead especially when transferring large amount of data,

this GUI system moves the data in rows as shown above instead of individual elements.

On COM object side, the input data transferred from GUI is stored in a new instance of

Table. WriteRow method accepts an array of data and stores it in the instance of Table.

To minimize the network traffic, a row of data is transferred each time as shown below.

STDMETHODIMP Cobjectl::WriteRow(double "'temp_row, int i)
{

II system generated

33

AFX_MANAGE_STATE(AfxGetStaticModu!eStateO)

int rowNum, colNum;
rowNum = data->GetRowO;
colNum = data->GetCoIO;

(*data)[i] .input(temp_row);

3.2.2. Output Data formats

There are two types of output files compatible with the system, text file and csy file. Both

of them are available through menu items, Save and Save As. The GUI system retrieves

the contents of CrichEditView and saves them in appropriate files. The di fference

between csv and text file is that csv is comma delimited instead of space delimited. The

text file is space delimited. The advantage of csv file is that it can be recognized by some

Windows applications such as Excel.

We show how the CrichEditView opens a file and saves the contents of the view to the

fi Ie using the following code segment:

CFile file;

II get CrichEditCtrl through CRichEditView
CRichEditCtrJ& edit =GetRichEditCtrlO;

II open the file to write
if (!file.Open(filename, CFile::modeCreate I CFile::modeWrite I

CFi Ie:: modeNoTruncate, &e»

II for debug purpose
#i fdef _DEBUG

afxDump« "Unable to open file" « e.m_cause« "\n";
#endif

II if the file cannot be opened, return with error information

34

filename = "Can not open the fi.le: " + filename;
AfxMessageBox(filename);
return;

II count the number of lines shown in the view
int line_count =edit.GetLineCountO;
for (int i = 0; i < line_count; i++)
{

edit.GetLine(i, buf, 256);
buffer.Format(buf);

II copy the contents in lines
file.Write(buffer, buffer.GetLength());
strcpy(buf. "");

3.3. Data Exchange

Data exchange is very important in modern window applications. Different applications

can directly share the data. More important is that one application can utilize the

functions of another application with minimal overhead.

This thesis makes it possible to have the GUI exchanging data with Microsoft Excel since

the input/output data and intennediate results are stored in a matrix. that actually is a

table. Excel provides many convenient functions to manipulate data in .its <.Iatasheet

including saving file in html format.

A menu item I toolbar of "Export to Excel" has been added to the GUI to fulfil the

functionality of dada exchange with Excel. The design strategy is to create an instance of

35

Excel application through the wrapper classes of Microsoft Excel, excel.cpp. excel.h. The

code below shows how the COM-based GUI starts the Excel application and makes the

window visible.

_Application excelApp;
boolean visible;

if (!exceIApp)
{

II one of the wrapper classes for Excel

II create a dispatch for excelApp
if (!exceIApp.CreateDispatch(ltExceI.Application lt)
{

AfxMessageBox("Couldn't start Excel. ");
return;

}
eJse
{

II check the visible status of excelApp
visible =exceIApp.GetVisibJe();
if (!visible)
{

excelApp =NULL;
delete excelApp;
if (!exceIApp.CreateDispatch("Excel.Application"»
{

AfxMessageBox ("Couldn '1 start Excel.");
return;

II makes the window visible
exceIApp.SetVisible(TRUE);
II set the window size as maximized
exceIApp.SetWindowState(3);

exceIApp.SetUserControl(TRUE);

36

II J-normal 2-minimized 3
maximized

CHAPTER IV

Results and Discussion

We use several sets of testing data including the one published in[6]. The data has been

stored in text file (local and remote) and relational database file to test the system.

Figures 5 through 17 show the user interface of the system. Figure 5 illustrates the screen

when user first starts the application. Figure 6 and figure 7 show how to load an input file

through the menu. Figure 8 and figure 9 illustrate how to open a relational database file

as input source. Figure 10 illustrates how to connect to an URL and open the remote

input file. Figure 11 illustrates how to open an Excel workbook file (extension xis).

Figure 12 shows how to save the contents of the view as original input file (same file

name). Figure 13 shows how to save as file (system generated file name). Figure 14

shows the worksheet containing the exported results from the system. Figures 15. 16, 17,

and 18 illustrate the functionality of copy, cut and paste. Figure 19 shows the print dialog

to print certain pages at selected printer. Figure 20 illustrates what print-preview looks

like for the contents of current view. Figure 21 shows print setup for paper size and

orientation.

This system separates GUI from calculation logic that is contained in COM component.

Each feature that we add to the system needs Lo be analyzed and divided into two pieces,

37

each of which goes to either ~UI or COM component. For ~UI part, dialog design and

class wizard provide tools to complete the implementation. For COM component part.

ATL helps accomplishing adding calculation functions. If IDL file, which defines

interface functions, changes, both GUI and COM components are to be recompiled.

38

Figure 5. Startup screen

39

a- QW

1M.ta... DIIoo\

friot- CIdoP..........
PJIolWtllL.

Figure 6. Open input file through menu

40

Figure 7. Open file dialog

41

I. X

La*~~' 1'"' -

FIo~ ..:;JT.stD....nd> 1 I", , IIPIft I

Flo",'. J ~I n e-I I

Figure 8. Open database file dialog

42

Figure 9. Select database table dialog

43

Figure 10. Open remote site input file

44

Figure 11. Open Excel Workbook file

45

...._lQl r&.D.1JIIE COST CAD IlIC_1lRS RaNt
'635.00 311.00 23216' ••0 ' •. 00 1538.00 1 .•9
3960.00 11'.00 U32U.I0 11.00 11".00 0.91

0.00 0.00 0.00 0.00 '3530.00 a.•'
2811.00 186.00 1010'0.20 "'.00 936.00 0.82
10'1.00 1'6. DO 38000.20 11.00 "81.00 O• • ,
33:27. DO 91.00 120330.'0 32.00 171.00 0.67
1861.00 1". 00 61323.20 .9.00 0.00 0.62
1009.00 111.00 3619' .'0 6.00 366&.00 0.36
2520. DO &•• 00 91137.50 9.00 un.oo 0.62
1957.00 lOD.OO 10199.20 30.00 26.00 a."
1511.00 la'.oo '6638.60. , .. ,,«.. ft.n

1680.00 13.00 601".60
S,.,OO 10'. DO 30nO.2

1560.00 19.00 "'07.10
1'60.00 19.00 ~6"07 .1
102&.00 86. DO 310'8.90
7~8.00 51.00 21'09.6

0.00 0.00 0.00
662.00 8& .00 23962.60
827.00 58.00 25J90' .•

1368.00 20,.00 6"13.30
87'. DO 51.00 3163•. 3

0.00 O. DO 0.0
311.00 38.00 11113.1
266.00 31.00 9628. '0
266 .00 33.00 9639.3
6'-' .00 18.00 23.81. 6

O. DO 0.00 0.00 O.
4.-30. aD 18.00 15~'1.60 10.
222.00 3' .00 8031.00 8.00 0.00 0.10
669.00 2.00 2'205.00 0.00 0.00 0.09
2'23.00 33.00 0062.30' 1.00 123.00 0.01
l~'.DO 6.00 5562.90 10.00 1681.00 0.01
165.00 28.00 5918.90 0.00 12.00 0.05
126.110 11. aD "61.10 0.00 17•• 00 0.01
1.5'.00 Ii. aD .5.562.90 HLOO 23.00 0.07

13.00 16. DO 262'.90 0.00 .5!1.00 0.03
90,00 6.00 32".30 O. DO 0.00 0.02

13.00 '.00 '77. '0 0.00 0.00 0.01

Figure 12. Save input file

46

0.10
0.09
0.01
0.01

0.0'
0.04
0.01
0.03

0.02
0.01

p.U\l<

1.19

0.91
0.011

0.12
0.41
0.67
0.62

0.3'
0.42
0.49

n ."

0.00
0.00

123. DO

1684.00
72.00

118.00
23.00

.58. DO

O. DO
0.00

KIC_lCRS
7538.00
1166 .00

43330. DO
936. DO

9~.1. DO
171. DO

0.00
3"4. DO
4318.00

26.00
1'1"l1O: nn

CAD
'1.01
47.00

0.00
~5.DD

11.00
32.00

".00
6.00
9.00

30.00

COS!
232764.80

1432".10
0.00

106050.20
38000.20

120330.U
61323.20
36.,5.30

91131.50
10199.20
5&638.40
60765.60
30520.20

'6'0' .1

~~~:~:~O I270&0'.60-

0.00
23962.60
2990'.40
.9413.30
31636 .30

,,,,~:~~oll:1:';":-~-;::=============O-;::==7=,rl
9628.50

9639.3~0~~E~~,ailt;;;;;;;;:f.!:===='J23481.6

0.00 O. ••
15567.60 10. Flet.

8037.00 8.00
2no~.00 0.00
8062.30 1. 00
"62.90 10.00
~978.90 0.00
456•• 10 o~oo

"62.90 10.00
26'5.90 0.00
32.5.5.30 o. DO

'77.410 0.00

P&D.lIU:
311. DO
116.0.0

0.00
186.00
196. DO
n.oo

1".00
181.00

61.00
100.00

10'.00
13.00

109.00
19.00
19.00
86.00
51. 00

0.00
st.OO

'8.00
20.00

'1.00
0.00

38.00
31.00
33.00
18.00

0.00
18.00
3~.00

2.00
33.00
6.00

28.00

17. DO

6. DO
16. DO

6. DO
6. DO

___lCR

643'.00
3960.00

0.00
1811.00

10'1.00
3321.00
"1861,00

1009.00

2'20.00
1951.00
1511.00
1610.00

8U,.00

1560.00
1560.00
lO:U,.OO
158.00

0.00
661. DO
821. DO

1368. DO

81~.00

0.00
311. DO
266.00
266.00
669.00

0.00
430.00
'222.00
669.00
123.00
156.00
In.OO
116 :00
156. DO

13.00
90.00
13. DO

Figure 13. Save as temporary file

47



IIU,-IIII
613'.00
U60.00

0.00
2877.00
10'1.00
3327.00
1861.00
1009.00 G
H20.00 MAN HR FAILURE COST ~l!!!IC_HR~

an.oo 6435 3172327646 6B[ 7536 1.49
"11.00 iixJ 1~1432441 47[ 1166. 0.91
1680.00 0- 0 0 0 4353J- 0-:06
8~~ .00 Ml7 1!f; 1ll405O 2 55 93,; 0.62

1560.00 1051 1$ 3OO)J 2 11 9561 0.42
1560.00 3327 91 12lJ33J 4 '32 171 0.67
1024.00 8 111;1 144 673232 49 0 0.62
H8.00 9 lOOl 161 35A955 6 3464 0.3,;

0.00 25<lJ 4B 911375 9 4316 0.42
662.00 1957 100 707992 3J 26 0.49
821.00 12 1511 104 5463B 4 38 1156_ 0.461368.00 3 1600 f3' 60765 6 21 153J 0.39-
87'.00

0.00 B-44 109 3J520 2 27 3415 0.3,;

311.00 1560 79 564071 21 377 0.38

266.00
-1560 79' 5G407 1 21 o' 0:38-

266.00 1024 64' 370469 24 00-:-33-

649.00 i5a 51 274096 13 4650 -0.22

o~oo 0 0 0 0: 14643 Ii.ro·
"30~OO 662 B4 23$26 38 333 0.35
722.00 627 56 29905 4 12 60 0.22
669.00 -223.00 --15'.00
165.00 28. DO 5918.90 {) .00 72.00 0.0'
126.-G0 11.00 4!16t.l0 0.00 178.00 0.0'
l!1".OO 6. DO "62.90 1.0.00 23.00 0.01
13.00 16.01) 2625.90 0.00 '8.00 0.03
90.00 6. DO 32!U.30 0.00 0.00 0.02
13. DO 4.00 "7.010 0.00 0.00 0.01

Figure 14. Export to Excel

48



3321.00
1861.00
1009.00

2520.00
19-51.00
1~1.1.00

1680. aD
8••. 00

1560.00
1560. 00
l02~. 00
758.00

0.00
662.00
82'1. DO

1368.00
87~.OO

O. 00
311.00
266.00
266.00
649.00

0.00
.30.00
222.00
669.00
223. 00
15~. 00
16~. DO

126.110
1.5'.00
13.00
90.00
13.00

91.00
1'4.00
181.00
l8.00

100.00

10'.00
13.00

109.00
79.00
79.00
8<.00
'1.00

0.00
81.00
'58.00
20.00
51. 00
0.00

38.00
31.00
33.00
18.00
0.00

18.00
35.00
2.00

33.00
6.00

28.00
17.00

6.00
16.00

6. 00
.... 00

...

120330.tO
61323.20
36495.50
91131.50
70799.20
54638.40
6016'.60
30520.20

'6'01.10
56'07.10
37048.90
21409.60

0.00
23962.60
29905.40
49473.30
31634.30

0.00
11473.10

9628.50
9639.30

23481.60
0.00

15.167. ti~

8031.00
2'4'0.5.00
8062.30
5562.90
"78.90
4.~64.10
5562.90
262~. 90
3255.30

177 ,tiD

32.00
49.00

6.00
9.00

30.00
38.00
21. 00
21.00
21.00
21. DO

2'. DO
13. 00

0.00
38.00
12.00

0.00
11.00

0.00
:21.00
18.00
11.00
10.00

0.00
10. DO
8.00
0.00
1.00

10.00
0.00
0.00

10.00
0.00
0.00

0.00

171.00
0.00

3464.00
431B.OO

26.00
1156.00
1530.00
3415.00

317 .00
0.00
0.00

'650.00
14643.00

333.00
60.00

240.00
25.00

10116.00
3119.00
2890.00
2593.00
663.00

5542 .00
0.00
0.00

0.00
123,00

168'.00
12.00

118.00
23.00

'0.00
0.00
() .00

0.61
0.62
0.36
0.42
0.49
0.48
0.39
0.36
0.38
0.38
0.33
0.22
0.03
0.35
0.22
0.20

0.'2
0.02
0.18
0.15
0.12
0.15
0.01
0.12
0.10
0.09
0.01
0.01
0.05
0.0'
0.07
0.03

0.02
0.01

Figure 15. Copy contents of current view

49



2811.00 186.00 10'0'0.20 ".00 936.00 0.82
10'1.00 1.96.00 38000.20 11.00 U81.08 0.'2
3327.00 91.00 120330.'0 32.00 111.0_ 0.67
1861. 00 1".00 67323.20 49.00 0.00 0.62
1009.00 181.00 36.9'.50 6. DO 3'" .00 0.36
2'20.00 &8.00 "131.50 9.00 6318.00 0.'2
1957.00 100.00 10199.20 30.00 26.00 D•.,
1'11.00 lOt .00 5'638.010 38.00 11".00 0.&8
1680. DO 73. DO 601".60 21.00 1530.00 0.39

84,..00 109.00 30'20.20 21.00 3'1'.00 0.36
1560.00 79.00 "'01.10 21.00 311.00 0.38
1560.00 19.00 .,,6t01.10 21.00 0.00 0.38
1024.00 8•. 00 310'8.90 26.00 0.00 0.33

1.58.00 51.00 21'09.60 13.00 -16.50.30 0.22
0.00 0.00 0.00 0.00 14"3.00 0.03

662.00 86.00 23"2.60 38.00 333.00 0.35
821.00 ".00 299U.'0 12.00 60.00 0.22

1368.00 20.00 '9'73.30 0.00 2&0.00 0.20
87'.00 ,l.00 3163.. 30 11.00 2'.00 0.22

O. DO 0.00 0.00 0.00 10116.00 0.02
311.00 38.00 11'73.10 21.00 3119.00 0.18
2606.00 31.00 9&28. '0 18 .00 2890.00 0.1.5
2". DO 33.00 9639.30 11.00 2593.00 0.12
,.,. DO 18.00 23.81.60 10. DO 663.00 0.15

0.00 0.00 0.00 0.00 "42.00 0.01
"3D. DO 18.00 15,.1.60 10.00 D. DO 0.12
222.00 3'.00 8031. DO 8.00 0.00 0.10
669. DO 2.00 24203.00 0.00 0.00 0.09
223.00 33. DO 8062. )0 1.00 123.00 0.07
15•. 00 6.00 5562.910 10.00 1681.00 0.01
16~1. 00 28.00 5918.90 0.00 12.00 0.05
126.00 17.00 "56•. 70 0.00 118.00 0.0'
15'.00 6.00 5562.90 10.00 23.00 0.01

73.00 16.00 262'.90 0.00 58. DO 0.03
90.00 6.00 325'.30 0.00 0.00 0.02
.13. DO t .00 471.40 0.00 0.00 0.01

Figure 16. Cut contents of current view

50



...- CtA rAnURE COS! CAD XIC_HR.S RU\k
2871.00 11'.00 10'0'0.20 ".00 936.00 0.12
10'1. 00 196.00 31000.20 11.00 U81.00 o.n
3321.00 91.00 120330 .•0 32.00 171.00 0.61
1161. 00 1'•. 00 61323.20 ".00 0.00 0.62
1089.00 181. 00 361".50 6.00 3U•. OO 0.36
2.520.00 6'.00 91131.50 9.00 Ull.DD 0 .•2
19'1.00 100.00 10199.20 30.00 26.00 O.U
1'11.00 10•. 00 "631.410 38. DO 1156.00 0.6'
1610.00 73.00 60765.60 21.00 1530.00 0.39
11".00 109.00 30520.20 21.00 3U5.00 0.36

1560.00 19.00 5'''01.10 21. 00 311.00 0.38
1560.00 79.00 5U01.10 21. 00 0.011 0.38
102'.00 86.00 37048.90 2•. 00 0.00 0.33
1'1.00 51.00 2U09.60 13.00 "'0. DO 0.22

0.00 0.00 0.00 0.00 UU3.00 0.03
662.00 8•. DO 23962.60 38.00 333.00 0.35
821.00 " .00 29905.60 12.00 60.00 0.22

1368.00 20.00 UU3.30 0.00 HO.OO 0.20
87'.00 .51.00 31636.30 11.00 25.00 0.22

0.00 0.0-0 0.00 0.00 10116.00 0.02
311.00 38.00 114113.10 21.00 3119.00 0.18
266.00 31.00 9628. "'A 18.00 2890.00 0.15
266.00 33.00 9639.30 11.00 2593.00 0.12
6"9.00 18.00 23'81.60 10.00 663.00 0.15

0.00 0.00 0.00 0.00 ".2.00 0.01
430.00 18.00 1"61.60 10.00 0.00 0.12
222.00 3'.00 8037.00 8.00 0.00 0.10
669.00 2.00 26203.00 0.00 0.00 0.09

223.00 33.00 806'2.3D 1. 00 123.00 0.01
1".00 6.00 "62.90 10. DO 161.. 00 0.01
16:1. 00 28.00 5918.90 0.00 12.00 0,0.5

126.DO 17.00 .564.10 D. DO' 118. DO 0.0'
1".00 6.00 "62.90 10.00' 23.00 0.01

13.00 16.00 2625.90 0.0'0 ".00 O.OJ

90.00 6.00 3253.30 0.00 0.00 O. D2
13.00 •. 00 471.40 0.00 0.00 0.01

Figure 17. After cut contents

51



IIU_IIII
~1lltE COST CAD' IDC_HItS RlU\Jl

6135.00 7.00 232761 .10 61.00 7531.00 1.19
3960.00 111.00 143211.10 41.00 1166.00 0.91

0.00 0.00 G.GG G.OO 0530.00 o .GI
2117.00 116.00 101050.20 55.00 936.00 0.82
1051. 00 196.00 38000.20 11.00 9511.00 D.n
3327. DO 91.00 120330.10 32. DO 171.00 0.67
1161. DO 161.00 67323.20 19.00 0.00 0.62
1009. DO 181.00 36195.50 6.00 3'61.00 0.36
2520. DO '8.00 91137.50 9.00 1311. DO 0.12
19'7.00 100.00 10199.20 30.00 26.00 0.19
1511.00 10'.00 51631.10 31.00 1156.0G 0.'1
1680.00 73.00 6076,5.60 21.00 1530.00 0.39

8 .... 00 109. DO 10520.20 27. DO JU5.00 0.36
1560.00 19.00 56101.10 21.00 317.00 0.31
1560.00 19.00 "6407.10 21.00 0.00 0.31
1021.00 II.OG 37048.90 2'.00 0.00 0.33

151 .00 31.00 27109.60 13.00 1650.00 0.22
0.00 0.00 o. 00 0.00 11613.00 o .DJ

66'2.00 8t .00 23962.60 38.00 333.00 0.35
121.00 51.00 29905.'0 12.00 60.00 0.22

1368.00 20.00 19ln.30 0.00 HO.OO 0.20
875.00 51. DO JJ631.30 11.00 25.00 0.22

0.00 0.00 0.00 0.00 10716.00 0.02
311.00 38.00 11413.10 21.00 3119.00 0.11
'266. DO 31.00 9628.50 11.00 2890.00 0.15
'266.00 33.00 9639.30 11.00 2593.00 0.12
619. DO 11.00 2311.81..60 10.00 66J.00 0.15

0.00 0.00 0.00 o. DO 5512.00 0.01
fo3D.00 18.00 1"'~61. 60 10.00 0.00 0.12
222.00 35.00 1037. DO 1.00 0.00 0.10

669 .00 2'.00 '.205.00 0.00 0.00 0.09
223.00 13.00 8062.30 1.00 12].00 0.07
15•. 00 6.00 5562.90 10.00 1681.00 0.01

16'.00 28.00 5978.90 0.00 12.00 0.05
126.80 11,,00 ."'.70 0.00 178.00 o .Ot
151.00 6.0.0 .5562.90 10.00 23.00 0.07

73.00 16.00 2625.90 0.00 58.00 0.03
90.00 6.00 32".30 0.00 0.00 0.02
13. DO 1.00 "7.40 0.00 0.00 0.0.1

Figure 18. Paste the deleted contents

52



1IU_1lR U.ILum: COS! Rank
6635.00 311.00 232164..80 loU
3960.00 11'-00 1,(32" .10 0.91
2871.00 186.00 1040"'0.20 0.12
3)21.00 91.00 120330 .• 0 0.61
1161. DO 14•. 00 61323.20 0.62
19'1.00 100.00 10199.20 O.U
1'11. 00 lot .00 ,H.'riJe.'lI 0.68
2520. DO U.OO 91131.50 o.n
10'1.00 196.00 3800Q.20
1680.00 13.00 6016.1 .6'
1'60.00 19.00 '6601.11
1'60.00 19. DO .56401.11
1009.00 181.00 36095. '1
8".00 109.00 30'20.21
662.00 St.oo 23962.61

102•. 00 8•. 00 37048. ~
827.00 .5"8.00 299D".4'
158.00 51. DO 21409.6
87~.OO Sl.oO 3163•. 1

1368.00 20.00 '~"3.31

J11.00 38.00 11413.1
266.00 31.00 9628.5
649.00 18.00 23181.6'
266. DO 33.00 9539. ]1
'30.00 18.00 1.5~1I51.6'

222. DO ".00 8031.0
669. DO 2.00 24205.0

O. DO 0.00 0.01
I"'. DO 6.00 5562.9
15•• 00 6.00 "62.90 10.00 23. DO 0.01
223.00 33.00 8062.30 1.00 123. DO 0.07
165.00 28. DO .5918.90 0.00 72.00 0.05
126.00 17.00 4..564.70 0.00 118.00 0.04

73.00 16. DO 262'.90 0.00 '8,00 0.03
0.00 0.00 0.00 0.00 14643.00 0.03
0.00 0.00 0.00 0.00 10716.00 0.02

90.00 6.00 3255.30 0.00 0.00 0.02
0.00 0.00 (LOO 0.00 ~"'"2 .00. 0.01

I}.DO ... DO '71.40 0.00 0.00 0.01

Figure 19. Print dialog for page setup

53



-_II.
'435 .••
nn."
un."
un."
lUt."
uel."
1511.11
152....

n'H."
u .....
1.5'1."
1.5n."
11.,. n.......
"l."

1024."
121."
151, ••

I" .••
In....

In.''
ZU. I'
"U.IO

lH."
... U ...

222.."

"'.11....
154."

l.54."
lU."
1.".10
UI.ID

'J.'~
'.10....

".11
'.10

13. to

IJW....
31'1."
114."

1"."
n ...

1...- .••
1.1•.••

1.M."......
U5."
73."
n."
n."

111."

1".".....
M_II
151,11

111.11
!S1.••

.21."
3....
31."
1 •.••

31."
11."
'I."

2 .••
I .••, .., .

U ..

21."
1.1.10

H."........,...
I. II
4. f.

COST

un'4 .• '
J.432".1I
11·4151, ZI

12U~'.""
"lZ]. ZI
111.'.21
MUI .•I
,u.n. $I

' ...._11

"7'$. "
5'411.11
66411.11

'''''.51
»1121.21

~"n. "
11MI."

"'1'5.4'
2-'14". ,.

''''N.JI
tHU.n
1U?J.1I

'U:I.!U
2MIS.U
tn:'.11

15"". "
al31."

1'4215. II
to II

lSUl. "",2.. ,.
'UZ.lI",.. ,.
45114. ,.

2125. II........
3U'.U....
4".41

010I
n .••
" ...
55."
n .••
4' .••
31."
3' .••

t .••

.11."

.11."
11 . ••
:U.II
1.11

21.11
31.11
24. I'
IZ. ,.U.,.
11."....
21 .•1
11.11
11.11

.11."

.1•.••....
'.11..

1 ..
1 ..

1 .••
f .••............
'.01....
•. at
t."

III:IC_JCl.S
'lu....

lUI. ",U.,.
11'1."....
u.tI

118'."

411'. ",,.1."
!.SU.II

111.11....
"'64.11
3415. at

111.11
•. al

't. a.
U5 ..

U ..
24,••••

31.U.II

z:."'....
'iii.""'31.••........

•. DI

43"'.••
u ......

23.11
123. 01
12.01

11•. O'
15'.01

t<tUl.O'
1-0111.0t

'.01
55.Z O'

t. (II

Figure 20. Print preview of current view

54



lIUI_llJl rULlmE cos, KIC_llJlS Rank
"35.00 317.00 232104.80 1338.00 1.49
3960.00 J1'.00 1t·32.4. to 1166.00 0.91
2817. DO 186. Do' 10.050,20 936.00 0.82
3321.00 91. 00 120330 .•0 171. 00 0.61
1861.00 1". nu 61323.20 0.00 0.62
nn.oo 100.00 70799.20 26.00 0.49
1.511.00 104.00 "638 .•0 1136.00 0 ••8
2S20.00 'e. 00 91137. SO 4318.00 o.n
10Sl.00 1915..00 38000.20 "81.00 0.42
1660.00 73. DO 60765.61 • •1560.0'0 79.00 56107. it
1560.00 79, 00 56'01.11
IOD9.lID 181.00 36'95.$'

S, •. OO 109.00 )0.520.2'
662.00 8t.OO 23962.61

1024..00 84.00 37048.9
827.00 .58.00 29905. t.
7'8.00 n. DO 27'09.6'
.7S. DO n.DD 3163•. 3!

1368.00 20.00 "'.73.31
)17. DO 36.00 11'73.1'
266.00 31.00 9628. '1
649 .00 18.00 23U1.61
266.00 )].00 9539."
430.00 18.00 15567.61
222.00 3S.DO 8031.0_
669. DO 2.00 2'20.5 .01

0.00 O. DO 0.01

1".00 6.00 '''2.9
15'.OD 6. DO "62.90 10.00 23.00 0.0'7
223.00 33. DO 8062. ~o 1. 00 123.00 0.01
16S.DD 28.00 5918.90 0.00 ".00 0.0'
126.00 11.00 .56'.70 0.00 178.00 0.06

13.00 16.00 262.5.510 0.00 '8.00 (LU)

0.'00 D. DO 0.00 O. DO 146'3. DO o .OJ
0.00 0.00 0.00 0.00 1071'.00 0.02

90.00 6.00 32SS.30 O. DO 0.00 0.02
O. DO 0.00 0.00 0.00 ".512. DO 0.01

13.0D f..00 '71. f.0 0.00 0.00 a .01

Figure 21. Print setup for paper size and orientation

55



CHAPTER V

Conclusion and Future Work

This thesis provides a COM-based GUI for a decision support system. Implemented in

Microsoft Visual C++, the user interface is user-friendly and convenient to update in the

future thanks to the COM model it is based on. The system is open to variety of input and

output data sources. It also will be able to exchange data with Microsoft Excel and gives

user more choices when exporting data to other applications.

This COM-based system separates the user interface from the calculation logic. It

successfully establishes the communication between these two parts based on COM

framework. Although it is possible to distribute the system on the network, developers

find it hard to configure the connected computers for security reasons. Also the firewalls

that are commonly used to protect Intranet restrict the establishment of such

communication. Microsoft has been developing a new standard called SOAP (Simple

Object Access Protocol) that is using XML (Extensible Stylesheet Language) as network

communication media. SOAP applications can be easi ly deployed on the network since it

uses port 80 (standard http port) to communicate without interference of firewalls [16].

Further research in this area is needed to enhance the practical use of the distributed

component systems.

56



REFERENCES

1. Cockburn, A. A. R. The impact of Object-Orientation on Application Development,
IBM Systems Journal, Vol. 38,308-332, 1998.

2. Collins, D. Designing Object-Oriented User Interfaces, Benjamin/Cummings, J995.

3. Corry, C., Mayfield, V., Cadman, J., Morin, R. COM/DCOM Primer Plus, Sums
Publishing, 1999.

4. Eddon, G., Eddon, H., Inside Distributed COM, Microsoft Press, 1998.

5. Fabian, R. The GUI Challenge, Info Canada, Vol. 16,7-10, September, 1991.

6. George, K. M. Computer Method for Sustainability Ranking, AFOSR report, 1996.

7. Hix, D. and Hartson, R. H. Developing User Interface: Ensuring Usability Through
Product and Process, John Wiley & Sons, 1993.

8. Jewell, D. Polishing Windows, Addison-Wesley Publishing Company, 1994.

9. Johnson, R. A., and Wichern, D. W. Applied Multivariate Statistical Analysis,
Prentice-Hall, Inc., 1982.

10. Laurel, B., Ed. The Art of Human-Computer Interface Design, Addison-Wesley,
1991.

11. Lee, G. Object-Oriented GUI Application Development, PTR Prentice Hall, J993.

12. Lewandowski, M. S. Frameworks for Component-based Client/Server Computing,
ACM Computing Surveys, Vol. 30, 3-27, March 1998.

13. Lionel, C. B., Morasca, S., Basili, R. V. Defining and Validating Measures for
Object-Based High-Level Design, IEEE Transactions on Software Engineering, Vol.
25,722-743, September/October, 1999.

14. Marcus, A. Graphic Design for Electronic Documents and User Interfaces, ACM
Press, 1992.

57



15. Mayhew, D. Principles and Guidelines in Software User Interface Design, PTR
Prentice-Hall, Inc., 1992.

16. Microsoft Corp., Digital Equipment Corp., The Component Object Model
Specification,
http://msdn.microsoft.comlisapilmsdnli b.idc?theURL=1I ibrary/specs/s 1d 139.hun,
1995

17. Thimbleby, H. User Interface Design, Addison-Wesley Publishing Company, 1990.

18. Treu, S. User Interface Design A Structured Approach, Plenum Press, 1994.

19. Wen, S. Application of Principal Component Analysis to Decision Support System,
MS Thesis, Oklahoma State University, 1997.

20. Wood, L. E. User Interface Design Bridging the Gap from User Requirements to
Design, CRC Press LLC, 1998.

21. Zaratian, B. Microsoft Visual C++ 6.0 Programmer's Gu~de, Microsoft Press, 1998.

22. Zave, P. A Component-Based approach to Telecommunications Software, IEEE
Software, Vol. 15,70-78, September, 1998.

23. Zetie, C. Practical User Interface Design, McGraw-Hill, 1995.

58



APPENDEX A

ACRONYMS

API Application Programming Interface

ATL Active Type Library

COM Component Object Model

DCE Distributed Computing Environment

GUI Graphical User Interface

GUill Globally Unique Identifier

IDE Integrated Development Environment

IDL Interface Definition Language

JDK Java Development Kit

OSF Open Software Foundation

PCA Principal Component Analysis

SDK Standard Development Kit

SOAP Simple Object Access Protocol

UML Unified Model Language

URL Universal Resource Locator

XML Extensible Stylesheet Language

59



\
VITA

Yu An

Candidate for the Degree of

Master of Science

Thesis: A COM-BASED GRAPHICAL USER INTERFACE FOR A DECISION
SUPPORT SOFIWARE

Major Field: Computer Science

Biographical:

Personal Data: Born in Chong Qing, China, September, 1973, the youngest child
of Wu Chaozheng and Ding Zhengguo.

Education: Graduated from Nankai High School, Chong Qing, China in June,
1991; received Bachelor of Science degree in Biochemistry, minor in
Applied Computer Science from Sichuan University in July 1995.
Completed the requirements for the Master of Science degree with a m~jor

in Computer Science at Oklahoma State University in May, 2000.

Experience: Research Assistant from May, 1999 to December, 1999 in Plant and
Soil Sciences Department at Oklahoma State University.

Professional Memberships: ACM (Association of Computing Machinery)




