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CHAPTER I

INTRODUCTION

Humans, primates, rodents and domestic farm animal species undergo

similar events during the first few days of embryonic development. Following

hatching from the zona pellucida the domestic farm species undergo a period of

prolonged noninvasive implantation, which differs from that of the human,

primate and rodent. Conceptus development in the pig is unique from that of

other domestic animal species. In the pig, the conceptuses undergo a rapid

transformation from spherical (10 mm) to tubular (15-40 mm) and finally,

filamentous (150-200 mm in length) morphology between days 11 and 12 of

pregnancy (Perry & Rowlands, 1962; Anderson, 1978). Attachment of the

conceptus to the uterine surface epithelium begins on day 12 through 18 of

pregnancy. This implantation period is the most critical period for early

embryonic loss.

Production of estrogen by the developing conceptuses on day 12 of

pregnancy provides the maternal recognition signal to maintain CL function

throughout the 114 days of gestation in the pig (Bazer & Thatcher, 1977). The

release of estrogen by the conceptuses alters secretion of uterine proteins and



prostaglandins, stimulates uterine blood-flow and changes uterine cell

morphology necessary for establishment of pregnancy (Geisert et aI., 198.2b).

Implantation by the pig conceptuses is non-invasive, thus forming the

diffuse. epitheliochorial type of placentation (Keys & King, 1990). Secretion of

numerous protease inhibitors from the porcine endometrium prevents invasion

into the endometrium by the normally protelytic conceptus (Fazlebas et aI.,

1983).

The following review of literature will discuss the events associated with

early embryogenesis, factors affecting uterine receptivity, and the participation of

the embryo itself in the establishment of a successful pregnancy in the pig. The

possible role of the Kallikrein-Kininogen-Kinin system in embryo implantation and

establishment of pregnancy will also be reviewed.
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CHAPTER II

LITERATURE REVIEW

Embryonic Mortality

Much effort has been devoted to discover the time period and cause of

embryonic loss since Corners' 1923 conclusion that the number of conceptuses

was almost always less than the number of corpura lutea present on the ovaries.

A minimum of two embryos per uterine horn must be present before day 16 of

gestation for pregnancy to be established in the pig (Dziuk, 1968). Estimates of

embryonic mortality in swine range from 20 to 46 percent with the majority of

embryonic loss occurring between day 10 and 20 of gestation (Pope, 1994).

Although the amount of uterine space available per conceptus is related to later

fetal loss in the pig, it is not considered a cause of embryonic mortality normally

observed before day 30 of pregnancy (Webel and Dzuik, 1974). Pope et aI.,

(1982) concluded that during early conceptus growth, the differential

development of embryos gave the more advanced developing embryos the

preferential chance for survival over the less-developed embryos. Studies have

concluded that it is not the lack of smaller conceptus' ability to develop and

survive in the uterus, but its inability to compete with its more advanced

littermates that causes early embryonic loss (Wilde et al., 1988). It is believed
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that although uterine capacity is not the major cause of mortality before day 30 it

limits the number of conceptuses that will survive after day 30 of gestation.

Experiments to test this theory have included superovulation, superinduction

(transferring additional embryos into the uterine lumen) and unilateral­

hysterectomy-ovariectomy (UHO) (Christenson et aL, 1987). Litter size resulting

from superovulated or superinduced sows have similar number of fetuses

compared to the control groups (Dzuik, 1968; Huang et aL, 1987). UHO females

have similar CL number as control females with no difference in the number of

embryos when measured at day 30 of gestation (Huang et al., 1987). However,

when compared on day 86 of gestation, the single horn of UHO females

contained about half the number of fetuses as control pigs (Christenson et aL,

1987). These results suggest that uterine capacity is a major factor regulating

embryonic mortality during later gestation in the pig.

Peri-Implantation Conceptus Development

The pig is well known for being one of the few species that the prei­

implantation conceptus undergoes rapid elongation within the uterine lumen

(Anderson, 1978; Geisert et aI., 1982b; Pope, 1994). Just prior to trophoblastic

elongation, during the spherical stage of conceptus development, several key

steroidogenic enzymes become available for the conversion of lumenal steroids

precursors by the conceptus to synthesize estradiol (Gadsby et aI., 1980; Fischer

et aI., 1985; Modschein et aL, 1985; Pusateri et aI., 1990; Conley et aL, 1994; Ko

et aL, 1994; Yelich et aL, 1997). Although we don't know much about the

mechanism(s) controlling this event, we do know that cytochromes P450 17a.-
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hydroxylase and aromatase, two key enzymes responsible for high levels of

conceptus estrogen, are present and coincident with conceptus elongation.

Expression of 17a-hydroxylase is limited to the trophectodenn (Conley et aI.,

1994; Ko et aI., 1994) and is responsible for the conversion of progesterone to

17a hydroxyprogesterone. Aromatase, localized in the inner cell mass layer

(hypoblast) of the trophectoderm (Conley et aI., 1994, Ko et aI., 1994), is the

enzyme essential for the conversion of testosterone to estradiol. Gene

expression of these two key enzymes is notably increased during the

development of 4 to 7 mm spherical conceptuses (Yelich et aI., 1997).

Immediately following elongation of the trophoblast, gene expression for both of

these enzymes decreases dramatically (Conley et aI., 1994; Ko et aI., 1994;

Green et aI., 1995).

The increase in conceptus estradiol production is first detected on day 10

of pregnancy with an enhanced elevation in synthesis on days 11-12 (Perry et

aI., 1973). The first increase of estrogen is associated with the expansion of the

spherical conceptus, which occurs through mitotic increase of trophoectodermal

cells (Fischer, 1985). The conceptus continues to expand until it reaches the 10

mm spherical morphology at about day 11 of pregnancy. The sharp increase of

estrogen production noted on approximately day 11 to 12 of gestation provides

the signal for maternal recognition of pregnancy in the pi.g (Bazer and Thatcher,

1977). In 1986, Pope proposed that this early, surge release of conceptus

estrogen on day 11 to 12 of pregnancy sets the stage for equidistant spacing of
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the developing conceptuses, an important mechanism to embryonic survival in

polytocous species such as the pig.

The 10 mm spherical stage in conceptus development is critical because

this is the stage proposed to be associated with cellular remodeling for

trophoblast elongation in the pig (Geisert et aI., 1982b, Gupta et aI., 1996).

Yelich et al. (1997) indicated the appearance of the mesoderm within the

embryoblast was temporally associated with initial expression of the brachyury

gene in the conceptuses. The brachyury gene encodes for a transcription factor

that is necessary for mesodermal differentiation (Herrmann et aI., 1990).

Brachyury gene expression parallels expression of P450 170.- hydroxylase and

aromatase, suggesting that brachyury may be involved in regulating

steroidogenic events in the conceptus. Once conceptus diameter reaches 10

mm, the conceptus rapidly undergoes a transition to a tubular (12-30mm) and

finally a thin filamentous form measuring 100 mm in length (Geisert et aI.,

1982a). In 1987, Morgan and coworkers reported that conceptus elongation was

partially regulated by developmental maturity of individual conceptuses. These

researchers observed that the 7 to 8 mm conceptuses did not appear to elongate

at the same time as their 10 mm littermates. Once the conceptus reaches a

diameter of 10 mm it begins to take on an ovoid morphology with the

trophectoderm cells having a cuboidal shape (Anderson, 1978; Geisert et aI.,

1982b).

The transformation from tubular to filamentous morphology is a rapidly

occurring event lasting less than 2 to 4 hours in duration (Geisert et aI., 1982b).

!U!



-

During this morphological transformation, the trophectoderm and endodermal

cells undergo an alteration in shape and ultrastructure (Geisert et aL, 1982b;

Mattson et aL, 1990). During rapid elongation, the actin cytoskeleton, consisting

of filamentous actin (f-actin), mediates organizational events within the

trophectoderm (Mattson et aL, 1990). The period of rapid trophoblastic

elongation does not occur through cellular hyperplasia but through remodeling of

the trophoblast and endoderm layers of the conceptus (Geisert et aI., 1982b;

Pusateri et al. I 1990). By day 15 of gestation the filamentous conceptus

becomes twisted and coiled as it makes contact along the apical uterine luminal

epithelial surface (Keys and King, 1990). The initial adhesion of the conceptus to

the surface epithelium on day 12 of gestation may be essential to early

trophoblastic elongation followed by a more permanent continuous adhesive

attachment of the placenta throughout gestation (King et aI., 1982).

The luteolysin that is released from the uterine epithelium into the

peripheral circulation of the cyclic gilt induce the corpora lutea to lysis is PGF2 (l

(Bazer and Thatcher, 1977). In the pregnant animal, conceptus estrogen release

causes a diversion in PGF2 (l secretion from endocrine to an exocrine direction

resulting in the majority of prostaglandins being secreted into the uterine lumen

rather than the uterine vascular system. Thus, the uterine luteolysin PGF2 (l is

sequestered in the lumen and does not reach the CL to stimulate luteolysis.
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Factors Involved in Conceptus Development

Trophoblast elongation is primarily controlled by maturational development

of individual conceptuses within a litter (Morgan et aL, 1987), however uterine

secretions playa large part in its growth and survival. Retinol, which is

transported by retinol binding protein (RSP), is a primary growth promoting and

cellular remodeling factor. Retinol (Vitamin A) is important because it can

function to induce or alter extracellular matrix proteins (De Luca, 1991) and

cellular adhesion molecules (Agura et a ., 1992). Retinol has been detected in

uterine endometrium during the period of conceptus elongation in the pig

(Schweigert et aI., 1999). Retinol bound to RSP is transported into the uterine

lumen where it can further metabolize it into the biologically active form of retinoic

acid. Retinoic acid is a cellular morphogen that may regulate trophoblastic

morphology during elongation through changes in the presence of retinoic acid

receptors (RAR) within the conceptus (Harney et aL, 1990). There are many

isoforms of the retinoic acid receptor, RARu. RARp, and RARy. Yelich et aL,

(1997) indicated that gene expression for these isoforms in conceptus tissues

changed during early conceptus development. RARa gene expression increased

linearly during early conceptus development until it plateaued at the 9 t01 0 mm

spherical conceptus stage while RARp gene expression was detected in

diminutive amounts across all stages of conceptus development. RAHy gene

expression, although evident, was not affected by developmental stage (Yelich et

aL, 1997). Retinol binding protein (RSP) transports retinol from the plasma into

the uterine lumen where it can be utilized by the conceptus. Retinol binding

8



protein mRNA can be detected not only in the uterine tissue layers but also the

conceptus (Harney et al., 1994). Retinol binding protein gene expression was

significantly affected by the stage of conceptus development (Yelich et al.)

1997). RBP mRNA levels increase with conceptus size, increasing in the 2~8

mm spherical stage, decreasing in the tubular stage and then increasing during

the filamentous stage, between days 11 and 12 of gestation (Harney et. al.,

1994, Yelich et aI., 1997). This pattern of RBP gene expression is proposed to

protect the early developing conceptus from lethal concentrations of retinol within

the uterine lumen (Harney et aI., 1990; Trout et ai, 1991) in addition to directing

retinol to existing target cells (Trout et aI., 1991). Another function of RBP

proposed by Vallet et ai., (1996) is protection of the uterine and conceptus

tissues from the lipid oxidizing activity of uteroferrin. All of the roles of RBP

mentioned above suggest a model for retinol, RAR and RBP possible

involvement in the trophoblastic elongation and conceptus development process

(Geisert and Yelich, 1997).

Uteroferrin, an iron transport protein, was one of the first and most

extensively studied progesterone stimulated uterine proteins investigated in the

pig (Roberts et aI., 1993a). This glycoprotein serves to transport iron to the fetus

throughout pregnancy in addition to its proposed role as a haematopoietic stem

cell growth factor during early conceptus development (Bazer et aI., 1991; Michel

et aI., 1992). Uteroferrin increases in uterine secretions at the time of maternal

recognition in the pig (Vallet et aI., 1996). Uteroferrin is capable of catalyzing

lipid peroxidation in the presence of ascorbic acid, which is found in the uterine

9
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environment (Vallet, 1995). Vallet and coworkers (1996) noted that the increase

of acid phosphatase activity (uteroferrin) on day 13 of the estrous cycle and

pregnancy was highly correlated with the presence of retinol binding protein and

transferrin, both known inhibitors of acid phosphatase activity. Transferrin, an

iron containing protein found in plasma, does not catalyze lipid peroxidation.

Transforming growth factors (TGF's) can also playa role in porcine

conceptus development. TGFWs 1, 2, and 3 have been identified in porcine

conceptus tissues and the intensity of appearance in relation to conceptus

development suggests that TGFWs play important roles during this crucial period

of conceptus growth (Gupta et aL, 1998a). The role of each TGF~ isoform is not

well understood but this family of cytokines is involved in a multitude of functions

associated with early pregnancy such as cellular proliferation, cellular

differentiation, extracellular matrix protein synthesis, tissue repair, intergrin

modification, immunoSupplression, and angiogenesis (Gupta et aL, 1998b). The

increase in TGF~'s gene expression and TGF~ receptors in uterine tissues along

with the detection of bioactive TGFWs in the uterine lumen on days 12, 13 and 14

of pregnancy suggest a potential role of TGF~s in the interactions between the

uterus and conceptus during early pregnancy. In contrast to Gupta's findings

Yelich et aL, (1997) did not detect gene expression of TGF-~2 in conceptus

tissues whereas TGF-~3 gene expression increased throughout early conceptus

development, remaining high throughout trophoblastic elongation.

Another family of growth factors which have been shown to regulate cell

proliferation, cell differentiation. matrix formation and cell movement are acidic

IO
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and basic fibroblast growth factors (aFGF and bFGF). These two growth factors

appear to play different roles during early porcine conceptus development and

both are present in both the conceptus and uterus during early pregnancy (Gupta

et aI., 1997).

Two other growth factors expressed in the uterus at the time of

trophoblastic elongation are epidermal growth factor (EGF) and transforming

growth factor ex (TGFex) (Brigstock et at, 1990; Kim et aI., 1995). TGFa serves to

increase fluid acquisition and subsequently blastocoel expansion in the early

developing mouse conceptus (Dardick and Schultz, 1991). This could also be a

suggested role for TGFex in porcine conceptus development. Both TGFa and

EGF have been localized in the surface and glandular epithelium of the

endometrium (Kennedy et ai, 1994; Kim et aI., 1995). Diehl et ai, (1994) found a

substantial increase of EGF in uterine secretions on day 12 of pregnancy. The

fact that both EGF and TGFa can bind the EGF receptor (Prigent and Lemoine,

1992) and receptor expression can be found in both endometrial and conceptus

tissues (Kennedy et aI., 1994), suggests that uterine secretion of EGF and TGFex

could have a regulatory role in conceptus and uterine growth and differentiation.

The conceptus production of cytokines and growth factors may play

important roles in maternal reactions and adjustments to facilitate a proper

environment for advanced embryo development (Mathialagan et al., 1992).

Interleukin -1 (IL-1 P) is a cytokine produced by the porcine conceptus that may

playa temporary role in maternal recognition of pregnancy (Tuo et aI., 1996).

Conceptus IL-1 r~ could also playa communicative role between trophoblast and

11
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uterus during the time of establishment of pregnancy through its influence on

conceptus remodeling and stimulation of prostaglandin E release (Geisert and

Yelich, 1997). Porcine conceptus tissues also express cytokine genes such as

interferon-y (INF-y) (Lefevre et aL, 1990) and interferon-a (INF-a) (Cross and

Roberts, 1989) prior to implantation. In ruminant species interferon-'t exerts and

antiluteolytic effect for the maintenance of CL function (Bazer et aL, 1992). The

pig does not express interferon-'t and the interferon's produced by the

conceptuses do not have any antiluteolytic affect (Lefevre et aL, 1990).

Interferons produced by the porcine conceptuses may play more of an

immunological protective role.

Another estrogen-controlled participant in conceptus differentiation and

remodeling is plasmin. Plasminogen activator, a serine protease, produced by

the conceptus, cleaves plasminogen to yield plasmin (Christman et aL, 1977).

Plasmin plays important roles in cellular remodeling (associated with embryo

development) and degradation of fibrin. Bode et aI., (1979) first identified the role

of plasminogen activator in midgestation mouse embryos. Midgestation is the

time of mouse embryogenesis that the embryo undergoes rapid growth. In the

pig, plasminogen is present in the greatest amounts on day 12 of pregnancy

(Fazleabas et aI., 1983). To regulate plasmin conceptus estrogen stimulates the

release of plasmin/trypsin inhibitor from the endometrium as a defense against its

normally proteolytic functions thus blocking the invasive nature of the porcine

conceptuses (Fazlebas et aI., 1982).

12
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Porcine Conceptus Estrogen Synthesis

In the pig, conceptus estrogen synthesis is vital to the establishment of

pregnancy. Conceptus estrogens' role in the establishment and maintenance of

pregnancy involves, and increase in uterine blood flow, stimulation of endometrial

secretions, maintenance of the Cl, initiation of placental attachment, and

participation in conceptus elongation (Geisert et aI., 1990). Synthesis of

estrogen by the porcine conceptus is the signa'i to the uterus and ovary to

undergo the necessary adjustments to establish and maintain early pregnancy.

The estrogen synthesized by the conceptus is the result of its metabolism of

androgens and progesterone to estrogen (Fischer et aI., 1985). The conceptus

does not continually synthesize and release estrogens. The earliest detection of

conceptus-produced estrogen is at the 5 mm spherical stage of development,

which is about day 11 of gestation (Geisert et aI., 1982a). This is the stage

temporally associated with mesodermal development and trophoblastic growth.

There is a surge release of estrogen as the porcine conceptuses elongate

through the uterine horns. A second surge of conceptus estrogen synthesis is

detected around day 16 of gestation (Geisert et aI., 1982b). This is the critical

time for allantoic membrane development from the hindgut and f1iuid

accumulation within the allantois to attach the chorion to the entire uterine lumen.

Changes in conceptus estrogen production are parallel with the cellular content

of P450 17a - hydroxylase and aromatase discussed earlier in this chapter. In

response to conceptus estrogen synthesis, many endometrial substances are

released to maintain pregnancy. These substances will be described in detail in

13
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a later section. One would conclude that the larger amounts of conceptus

estrogen could be detrimental to the embryo as well as the maternal system if

released into the vascular system in a free, active form. However, the presence

of progesterone stimulated endometrial sulfotransferase activity, for example

sulfoconjugated estrone, estradiol, and estriol allows the sow to regulate the

activity of estrogen (Geisert et aI., 1982a; Meyers et aI., 1983; Stone et aI.,

1985). Another suggested mechanism for conceptus and maternal protection in

the presence of large amounts of estrogen is the ability of the conceptus to

synthesize estrogen 2 and 4 hydroxylase, which converts estrogen to catechol

estrogens (Chakraborty et aI., 1989). Mondschein et aI., 1985, noted an initial

peak in catechol estrogen synthetic activity on day 12 and 13 of pregnancy in the

pig and Stice et aI., (1987) concluded that the presence of these catechol

estrogens plays a large role in the control of uterine blood flow, which increases

at the time of placental attachment in the pig.

Uterine Secretions During the Estrous Cycle and Early Pregnancy

Many uterine secretions play an important role in conceptus development

and maternal preparation of the endometrium for embryo implantation and

survival. The majority of these secretions are stimulated by the coordinated

efforts of estrogen and progesterone. Prolonged ovarian progesterone

stimulation initiates the secretion of endometrial proteins by the pregnant uterus

(Knight et al., 1974). Prolonged CL progesterone release down-regulates the

progesterone receptor (PR) on the uterine surface and glandular epithelium,

14



while PR is maintained in the uterine stroma and myometrium (Geisert et al.,

1994). Down-regulation of epithelial PH is suggested to be the critical period

when conceptus factors involved in growth and placentation must be activated

(Geisert et aI., 1994). One of those growth factors critical to conceptus growth

would be keratinocyte growth factor (KGF). Keratinocyte growth factor/fibroblast

growth factor-7 (KGF/FGF-7) has been identified in abundance in porcine

endometrium between days 12 and 15 of the estrous cycle and pregnancy (Ka et

aI., 2000). KGF is an established paracrine mediator of hormone-regulated

epithelial growth and differentiation. KGF, is produced by cells of mesynchymal

origin that includes the uterus (Pekonen et aI., 1993), functions to induce

epithelial growth as a stromal - derived paracrine regulator of epithelial

proliferation (Koji et aI., 1994). It could also playa protective role by blocking

apoptosis and preventing oxidative damage to the conceptus (Ka et aI., 2000).

Two additional uterine factors associated with this time of development is

the increased release of calcium (Ca++) and prostaglandin E (PGE) (Geisert et

aI., 1982a). The increase of Ca++ and PGE in addition to conceptus PGF2a

suggests that conceptus estrogens may function to initiate endometrial secretion

of histotroph into the uterine lumen in the efforts to provide nutrients for the

developing conceptus (Geisert et aI., 1982a).

During the time of conceptus elongation many haematopoietic cytokines

---
can be detected in uterine flushings but one of the most notable cytokines,

secreted by the pig uterus, involved in cellular differentiation and growth, is

leukemia inhibitory factor (L1F) (Angeon et aI., 1994). L1F plays a vital role in
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mouse embryo development (Stewart, 1994). Evidence of increased endometrial

gene expression and increased levels of L1F in the uterine lumen on days 11 to

12 of pregnancy and days 7 and 13 of the estrous cycle (Anegon et al., 1994)

which is in co-ordinance with increased conceptus gene expression of L1F

receptors associated with the conceptus (Yelich et aI., 1997a) suggests that L1F

may playa role in embryo development. L1F also binds to the receptor for

colony-stimulating factor 1 (CSF-1) (Bazan, 1991). Gene expression for CSF-1

increased in endometrial and conceptus tissue on day 10 of pregnancy, but

greatest gene expression is not detected until after day 30 of pregnancy,

suggesting a primary role for CSF-1 in placental and fetal growth following

implantation (Tuo et aI., 1995).

It is well known that relaxin is released from the luteal cells of the CL in the

pig (Sherwood, 1994). Most recently relaxin mRNA has been identified in the

uterine epithelium during the time of conceptus placental attachment in the pig

(Knox, 1994). Bazer et aI., (1981) suggests that relaxin plays a stimulatory role

in growth of the uterus for accommodating the expanding conceptus.

Another growth factor that has been completely characterized in uterine

flushings of the pig (Sfmmen et aI., 1993) is insulin like growth factor-1 (IGF-I).

IGF-I is a mediator of cellular growth and differentiation and has demonstrated

measurable biological actions in the uterus and placenta (Simmen et aI., 1993).

--
It is believed that uterine secreted IGF-I plays more of an autocrine directed role

in uterine development because the uterus has an abundance of IGF-I receptors

(Simmen et aI., 1992b) where in contrast, the conceptus expresses the receptor

16



-

in very low levels (Chastant et aI., 1994). The maximal concentrations of IGFs in

the porcine uterine lumen occur during the period of conceptus elongation (day

11 to 12), which would suggest vital roles of these growth factors in early

development of the conceptus (Simmen et aL, 1989; Ko et aL 1994). IGF-I can

bind to IGF-II receptor with some affinity and therefore could exert a biological

effect. Chastant et aI., (1994) identified trophectodermal conceptus expression

of IGF-II receptor. The identification of IGF-II receptor on the conceptus and the

proposed binding of IGF-I to this receptor suggests IGF-Il's possible role in

conceptus growth and differentiation. Lewis et aI., (1992) set out to determine

whether the embryo actually responds to insulin as a possible embryonic growth

factor during the period of conceptus elongation. They concluded that the pig

conceptuses respond to physiological levels of insulin in similar ways as other

species. Lewis also concluded that because there is the possibility of cross­

reaction between the insulin receptor and IGF-I, IGF-I could potentially playa

role as an embryonic growth factor.

Connective tissue growth factor (CTGF) is another growth factor whose

essential role is in proliferation of connective tissue and production of ECM (Ball

et aI., 1998). The target cells for CTGF are fibroblasts and smooth muscle cells

where CTGF acts to induce mitosis, chemotaxis, and construction of extracellular

matrix (ECM) (Brigstock et aI., 1997). With the identification of CTGF in the

--- trophectoderm and inner cell mass of the perimpantation mouse embryo as well

as localization in both luminal and glandular uterine epithelial cells and

myometrium, Surveyor et aI., (1998) suggested a role for CTGF in growth,
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cellular migration, cellular adhesion, and extracellualr matrix production in both

the uterus and the embryo. The identification of multiple low mass forms of

CTGF in both pregnant and nonpregnant pigs along with its ability to interact with

basic fibroblast growth factors present on days 10-14 of pregnancy, suggest that

CTGF plays an important role at this stage of development of porcine pregnancy

(Ball et aI., 1998).

Placental Attachment

The last decade of study into regulation of reproductive function in the pig

has identified many factors regulating and promoting placental attachment.

MUC-1, a heavily glycosylated integral transmembrane glycoprotein is one of the

major factors exhibiting its affects on the timing of placental attachment and has

been quantified in a number of species (Pemberton et aI., 1992). Mouse and

human research has associated the loss of this glycoprotein with the time of

/

implantation (Braga and Gendler, 1993; Alpin et aI., 1994; Surveyor et aI., 1995).

Investigators purpose that the molecular structure of MUC-1 yields itself to being

an antiadhesive molecule (Hilkens et aI., 1992). Previous studies have identified

gene expression of MUC-1 in the periimplantation uterus but at the time of

implantation MUC-1 gene expression levels decrease to basal levels (1993;

Braga et aI., 1993; Surveyor et aI., 1995). This down regulation of MUC-1

--- seemed to parallel down regulation of progesterone receptors (Surveyor et aI.,

1995). With this in mind Bowen e1 aI., (1996) set out to quantify the gene

expression of MUC-1 in the pig. Bowen's studies revealed that MUC-1 is present
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on apical uterine epithelium on day 0 but absent by day 10 In both cyclic and

pregnant gilts. This down-regulation of MUC-1 in response to progesterone-

regulated events could serve to promote the transition of the uterus from a

prereceptive to a receptive state by exposing adhesion molecules necessary for

successful implantation (Bowen et aI., 1996).

Many adhesion molecules have been characterized during placental

attachment in mammalian species, such as the rodent and humans. Among

those characterized are proteoglycans, lectins, cadherins, extracellular matrix

components (ECM), and integrins (Cross et aI., 1994). Integrins are a family of

cell surface glycoproteins that are involved in cell-to-cell and cell-to-ECM

interactions (Cross et aI., 1994). Integrins function as transmembrane

heterodimers comprising a. and ~ subunits that are closely associated with

cytoskeletal and cell signaling proteins (Clark et aI., 1995). These subunits

determine the function of each individual integrin and there individual binding

affinity (Bowen et aI., 1996). There are 16 a. and 9 ~ subunits of integrins known

at this time. The ~1 subunit can form heterodimers with 12 of the 16 a. subunits.

The pig demonstrates spatial and temporal expression of, 04, Us • ~1 ,and possibly

((, subunits, suggesting control of their expression within the uterine epithelium

by reproductive steroids (Bowen et aI., 1996). Subunits 04, Us, Uv, ~, and ~3 are

also expressed on trophectoderm during the peri-implantation period (Bowen et--
aI., 1996). The integrin subunits highly expressed during the peri-implantation

period are members of the fibronectin and vitronectin families of receptors and

could be candidates for stabilizing attachment in the pig (Bowen et aI., 1997).
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Fibronectin gene expression has been detected in conceptus and uterine tissues

throughout pregnancy (Tuo and Bazer, 1996). Work in the human, has identified

integrin subunits av~3 and C4~1 in uterine epithelium at the time of maternal

recognition of pregnancy and implantation (Lessey et aI., 1994). The uterine

epithelium of the pig also expresses heterodimers C4~1, <X5~1, and av~1 during the

time of implantation (Bowen et aI., 1996). The expression of fibronectin

associated integrin subunits during the time of implantation infers a major role of

integrins in the establishment of epitheliocorial type placentation in the pig.

Embryo implantation depends on a multitude of contributing factors. At

the time of implantation, three families of proteases are involved in the matrix

degradation: the cysteine, serine and matrix metalloproteinases (Salamonsen,

1999). In the pig endometrium, the cysteine proteases that have been identified

are cathepsins 8, 0, E, (Roberts et aI., 1976) and L (Geisert et aI., 1997).

Cathepsins work to cleave the N-terminal peptides of collagen that contain the

covalent cross-links that occur in and between molecules (Salamonsen, 1999).

Cathepsins have been characterized as regulators of invasive implantation in rats

(Elangovan and Moulton, 1980). Progesterone induces cathepsin L activity in the

pig uterus (Geisert et al., 1997). Cathepsins have a high affinity for collagen and

elastin (Salamonsen, 1999). Cathepsins affinity for collagen and elastin in

cordinance with the fact that elastase activity and collagen remodeling play an

important role in uterine growth and expansion during early pregnancy (Renegar,

1982), suggests a possible role for cathepsins in embryo attachment. An

additional member of the cystine protease family is interleukin 1~-converting
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enzyme. This enzyme releases active interleukin 1~ from its precursor allowing it

to regulate the transcription of matrix metalloproteinases (Salamonsen, 1999). A

couple of the serine proteases extensively investigated are urokinase-type

plasminogen activator, plasmin, and kallikrein (Salamonsen, 1999). These

enzymes exert their action on matrix degradation. The third class of these

protease's is the metalloproteinases (MMP's). MMP's fall into four categories:

the collagenases, gelatinses, stromelysisns and membrane type.

Despite having an epitheliochorial type of placentation the porcine

trophoblast will invade extracellular matrix when transplanted to ectopic sites

(Samuel and Perry, 1972). Trophoblast production of proteolytic enzymes

facilitates this non-uterine associated invasion (Fazleabas et aI., 1983).

Therefore, the lack of uterine disruption of conceptuses within the uterine lumen

must occur through production of uterine protease inhibitors (Samuel and Perry,

1972; Fischer et al. , 1985). Uterine expression of the antileukoproteinase gene,

also known as secretory leukocyte protease inhibitor (SLPI) is regulated by

conceptus estrogen secretion (Badinga et aI., 1994). SLPI as an inhibitor of

neutrophil elastase and cathepsin G would provide protection against epithelial

cell destruction (Thompson et aI., 1986). In pregnant gilts, SLPI is located

specifically in glandular and luminal epithelial cells (Reed et aI., 1996). Reed et

aI., (1998) suggests that TGFa plays a possible role in up-regulation of SLPI

gene expression. Another protease inhibitor secreted by porcine surface

epithelium of the endometrium at the time of trophoblastic elongation is uterine

plasma/trypsin inhibitor (UTPI) (Badinga et aI., 1999). SLPI and UTPI exhibit
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potential growth factor activity in addition to their protease inhibition during early

pregnancy suggesting an autocrine function for these two classic protease

inhibitors (Badinga et aI., 1999).

Recently, a new serine protease inhibitor has been detected in porcine

endometrium during the estrous cycle and early pregnancy known as the inter-a-

trypsin inhibitor (Ial) family (Geisert et aI., 1995; Diederich et aI., 1997). This

family consists of four heavy chains and the light chain known as bikunin. These

inhibitors consist of a combination of two heavy chains lalH1, lalH2 and bikunin,

or lalH3 and bikunin or lalH2 and bikunin (Salier et aI., 1996). Bikunin contains

two kunitz-type protease inhibitor domains giving it the ability to inhibit serines

such as trypsin, cathepsin G, elastase and plasmin (Hochstrasser et aI., 1981).

Although a clear biological role for inter-a-trypsin inhibitors is not established,

Diedrich et ai, (1997) suggests that, the detectable gene and protein expression

of bikunin on days 12 and 18 of pregnancy indicates bikunin could assist with
/

regulation of endometrial invasion of the porcine trophoblast. The lal family act

as acute phase proteins from the liver during trauma (Gonzalez-Ramon, 1995).

Acute phase proteins are involved with inflammatory processes as indicated by

its regulation by interleukin-6, an important inflammatory mediator (Sarafan et aI.,

1995). Therefore, a possible function of these acute phase proteins would be

their role in prevention of tissue degradation during the period of embryo

attachment and implantation. lal heavy chains contain a von Willebrand type A

domain that is known as a target for adhesion molecules like integrins, collagen,

proteoglycans and heparin (Salier et aI., 1996). The preceding research along
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with the latest research by Bost et al., (1998) suggest an important role in

extracellular matrix stabilization.

Many theories have evolved as to how conceptus estrogen initiates the

biological effects associated with its elongation and implantation. Geisert et aI.,

(1998) provided some possibl'e insight into its mechanism with the discovery of

inter-a-trypsin inhibitor heavy chain 4 (laIH4), which is produced by the porcine

endometrium. Initially these researchers identified a 30 kDa glycoprotein

(GP30), which was homologous to the C-terminal region of a larger 120 kDa pig

plasma glycoprotein, lalH4 (Geisert et aI., 1995). lalH4 was most highly

expressed in the porcine endometrium at the time of conceptus attachment.

Heavy chain 4 in the pig is unique compared to the other lal heavy chains

discussed earlier because it does not possess protease inhibitory ability and it

lacks the consensus sequence to bind bikunin. Inter-a.-trypsin inhibitor H4 is

however a substrate for the plasma serine protease, kallikrein (Nishimura et aI.,
I

1995). In the pig, plasma kallikrein could cleave 1a.IH4 to release severall

fragments including GP30 (Geisert et aL, 1995). The cleavage of 1a.IH4 by

kallikrein could induce local alterations in receptivity of the uterus to the

expanding conceptus that allows it to have contact with integrins, developing a

firm attachment to the uterine epithelium (Bowen et aI., 1997).

-Kallikrein - Kininogen - Kinin System

In addition to the previously mentioned activity of kallikrein, the increased

serine protease activity detected during conceptus elongation suggests the
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presence of the Kallikrein-Kininogen-Kinin (K-K-K) system within the porcine

uterus (Vonnahme et aL, 1999). The K-K-K system consists of several members

that include kallikrein, kininogens, kinins, kallikrein binding proteins, and

k,ininases (Bhoola et aL, 1992). In this system, tissue or plasma kallikrein

cleaves either high or low molecular weight kininogens (HMWK and LMWK)

releasing kinins, mainly the vasoactive peptide, bradykinin (Boohla et aL, 1992).

A number of studies have quantified the K-K-K system in reproductive processes

such as ovulation (Gao et aL, 1992), implantation (Valdes et aL, 1996; Corthom

et aI., 1997), menses (Clements and Mukhtar, 1994) and parturition (Brann et aL,

1995). Figure 2.1 describes the two different pathways resulting in bradykinin

release from kallikrein and kininogen.

Bradykinin is a vasoactive peptide that plays major roles in calcium

release, blood flow, uterine contractions, decreased membrane permeability, and

release of prostaglandin's (Cooper et aL, 1985; Bhoola et aL, 1992). The K-K-K

I
system has been previously implicated in the process of embryo implantation and

parturition in the rat (Valdes et aL, 1993; Brann et aL, 1995; Corthom at aL,

1997). The presence of the K-K-K system at the time of implantation suggests a

major steroid regulated role in the induction of prostaglandin and histamine

cascade known to be involved in increasing endometrial receptivity of the rodent

conceptus.
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Figure 2.1 Plasma and tissue kallikrein proteolytic pathways involved in
the generation and destruction of bradykinin. Taken from
Rusiniak and Back, (1995)
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Kallikrein

Kallikrein is a serine protease that is identified by its site of synthesis or

detection: plasma and tissue (glandular) kallikrein, each having a different

function. Plasma kallikrein cleaves HMWK releasing the nonapeptide,

bradykinin, whereas tissue kallikrein acts on LMWK to release Iysl-bradykinin or

kallidin, which is later converted to bradykinin by amino-peptidase (Shoola et ai.,

1992; Margolius, 1996). Plasma kallikrein is derived from a single gene in the

liver (Shoola et a!., 1992), but tissue kallikrein is a multiple gene family (Shoola et

a!., 1992; Rusiniak and Back, 1995; Margolius, 1996). In addition to its role in the

K-K-K system, kallikrein also converts pro-renin (Sealy et a!., 1978) and

plasminogen to plasmin (Mandie and Kaplan, 1977). Kallikrein content in the

kidney, uterus, ovary, and anterior pituitary of the rat can be increased by

estrogen (Clements et a!. 1986; Powers, 1986;Chen et ai., 1992; Clements et al.

1997; Corthom et al. 1997). Another known action of kallikrein is its cleavage of

IGF-BP's. Seminal plasma kallikrein, otherwise referred to as prostate-specific

antigen, is an IGF-SP protease that cleaves IGF-BP3 (Cohen et aI., 1992).

Kininogen

Kininogen can be of two forms based on molecular weight, high (HMWK)

or low (LMWK) (Shoola et aI., 1992; Cabin in et aI., 1993). The gene for
.---"

kininogen is divided into three regions: the heavy chain, which is common to both

HMWK and LMWK, the bradykinin moiety, and the light chains, which are unique

to each kininogen (Schmaier, 1997). Each domain has its own unique bioactivity;
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bioactivities such as calcium binding, cell binding, and site-specific binding, Le.

bradykinin site serving as binding site for kallikrein (Schmaier, 1997). In addition

to light chain sequence differences, HMWK and LMWK differ in their bradykinin

moiety domain (Shoola et aL, 1992; Schmaier, 1997).

The kininogen gene contains eleven exons. The first nine exons are

identical between HMWK and LMWK. Exon ten encodes for the bradykinin

sequence common to both HMWK and LMWK and the 3' end of HMWK (which

encodes the HMW-kininogen-specific gene). Exon 11 contains the sequence

specific for LMWK.

Kininogen has been detected in regions of the body affecting reproductive

function such as the placenta (Hermann et aL, 1996), adrenal (Wang et aL,

1996), and rat uterus (Brann et aI., 1995).

Kinins

The four known mammalian kinins are kalladin, bradykinin, T-kinin and

Met-T-kinin (Bhoola et aL, 1992). T-kinin and Met-T-kinin identification has been

limited to the plasma of rats (Bhoola et aL, 1992). Kallidin, otherwise known as

Iysl-bradykinin, is the result of tissue kallikrein action on LMW kininogen. Kallidin

is readily converted to bradykinin by aminopeptidases (Bhoola et aI., Rusiniak

and Back, 1995; Margolius, 1996). Bradykinin is a nonapeptide released from

H'MW kininogen by plasma kallikrein (Bhoola et aI., 1992). Bradykinin is

identified by its eight amino acid sequence, which is common to all of the

mammalian kinins: Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (Shoola et aL, 1992).
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Kinins are rapidly degraded by kininases and have a half-life of less than

ten seconds in the blood (McCarthy et aI., 1965; Rusiniak and Back, 1995;

Margolius, 1996). Kinases are peptidases, such as aminopeptidases and

carboxypeptidases that hydrolyze kinins and terminate their biological activity

(Bhoola et aI., 1992).

In recent years researchers have studied and proposed theories on the

biological affects kinins have on a variety of different tissues. Kinins mediate a

wide range of physiological actions such as, vasodilatation, stimulation of GnRH

release, increased sperm motility, increased vascular permeability, smooth

muscle contractions, and increased blood flow (Schill and Haberland, 1974;

Busse and Fleming, 1996; Mombouli et aI., 1996; Regoli et aI., 1997; Andre et

aI., 1998; Shi et aI., 1998). On a cellular level bradykinin stimulates; calcium

increase, cell division, cGMP increase, phospholipase A2 activation, release

norepinephrine, histamine, activation of platelet-activator factor leukotrienes, and

I

prostaglandins (Bhoola et aI., 1992). Kinins exert their action by adhering to

membrane receptors. Kinins bind to their receptor inducing smooth muscle

tone, the release of hormones, neurotransmitters, autocoids, and the activation of

ion transport in epithelia and endothelia (Regoli et aI., 1993). Kinins can also

induce effects indirectly by the release of agents, such as nitric oxide, platelet

activating factor, arachidonic acid metabolites, tumor necrosis factor, interleukin-

1,iiistamine, acetylcholine, noradrenaline, and neuropeptides (Regoli et aI.,

1993).
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Bradykinin Receptors

Kinins act through specific receptors that belong to two major catagories;

~1 , and ~2' The bradykinin ~1 receptor (BK1r) mediates the rapid acute

responses such as smooth muscle contraction or relaxation in addition to slower

effects such as collagen synthesis,. which appear to modulate interleukins (1 9aO;

Regoli et aI., 1993). Bradykinin ~2 receptor mediates the majority of physiological

effects of kinins. The bradykinin ~2 receptor (BK2r), in the rat, has a protein

sequence of 366 amino acids with a molecular mass of -42 kDa (Margolius,

1996). Bradykfnin and Iysl-bradykinin have similar affinities for BK2r (Bhoola et

aI., 1992). BK2r has been shown to be a G-protein coupled, rhodopsin type

receptor consisting of seven hydrophobic membrane domains connected by

extracellular and intracellular loops (Regoli et aI., 1993). This would suggest that

kin ins can exert their effects through both a paracrine and an autocrine pathway

(Regoli et al. , 1996). Kinin receptors utilize a variety of mechanisms (i.e.

mediators or second messengers) to exert their effects. Kinins can bind to their

receptors that act as mediators stimulating the release of substances such as

nitric oxide, prostaglandins, platelet activating factor, noradrenaline and a

number of other substances (Regoli et aI., 1993). Kinins can also bind to their

receptors exerting secondary messenger affects such as the regulation of

actiVities of cyclases and induce changes in intracellular concentrations of cyclic

nucelotides such as cAMP and cGMP (Regoli et al. , 1993).

Bradykinin ~2 receptor can be found in the uterus of a number of

different species, such as the rat (Yaqoob and Snell, 1994; Murone et aI., 1999),
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sheep (Murone et aI., 1996). human (Shams et al. , 1996), canine (Figueroa et aI.,

1997), the guinea-pig (Murone et aI., 1996), and the rabbit (Damas et aI., 1995).

The receptor can also be found in a number of different reproductive tissues, like

the human adrenal gland (Wang et aI., 1996), human umbilical artery (Abbas et

aI., 1998). guinea-pig brain (Murone et aI., 1996), and human decidua cells

(Rehbock et aI., 1997).

Bradykinin stimulates uterine contractions through the induction of smooth

muscle contraction, mediated by the BK2r (Bhoola et aL, 1992; Damas et aI.,

1995). To further understand the mediation of BK2r Murone and coworkers

(1999) localized this receptor in the endometrial and myometrial layers of the rat

uterus. In addition to their localization studies researchers also examined the

effects of estrogen and progesterone on the gene expression of BK2r. Murone

and coworkers discovered that during diestrus BK2r were localized to both the

circular and longitudinal smooth muscle layers of the myometrium, the
/

endometrial stroma, the glandular epithelium, and the layer subjacent to the

luminal epithelium. During early proestrus BK2r gene expression in both

myometrium and endometrium was at its lowest. In contrast, during late

proestrus myometrial BK2r protein and mANA levels were highest. This increase

of BK2r protein and mRNA levels, when estrogen levels are at their highest,

suggests that estrogen regulates myometrial BK2r gene expression. Further

/

conclusions of this study suggest that both myometrial and endometrial BK2r

gene expression are regulated during the estrous cycle. These changes may be

due to regulation by estrogen and progesterone, as myometrial receptor levels
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are at their highest when estradiol levels peak, both myometrial and endometrial

receptor levels are at their lowest when progesterone levels peak. Previous

studies by Murone and coworkers (1996) identified similar gene expression of

BK2r in the ovine uterus and detected down-regulation of BK2r in the myometrium

during pregnancy. This information, in coordination with the knowledge that in

the rat elevated levels of uterine bradykinin on day 22 of rat gestation playa role

in uterine contraction during parturition (Brann et aI., 1995), suggests that BK2r

down-regulation could playa vital role in prohibiting preterm uterine contractions.

Studies into the localization and characterization of BK2r have established

potential roles for bradykinin in the different regions of the uterus. Scientists

have well established a role for bradykinin in myometrial function (Bhoola et aI.,

1990; Damas et aI., 1995). Unfortunately, bradykinins' role in the endometrium is

not as easy to determine. Endo and coworkers (1991) suggest a role as a

growth factor because of its role in mobilizing intracellular calcium and induction
/

of DNA synthesis in what would be normally quiescent endometrial stromal cells.

Another suggested role would be in maintaining uterine electrolyte environment

through its ability to enhance sodium absorption (Matthews et aI., 1993) and

changes in increasing arachidonic acid release, stimulating prostaglandin

synthesis from endometrial stromal cells and glands (Bonney et aI., 1993). In

addition to these roles, Shams and coworkers (1996) also suggested that

bradykinin acting though BK2r increases vascular permeability and vasodilation

associated with implantation.
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Statement of Problem

Conceptus derived estrogen, the signal for maternal recognition of

pregnancy in the pig (Bazer and Thatcher, 1977) begins a cascade of events in

the uterus that have yet to be completely understood. We do know that there are

events in the uterus, which need to be in complete concert with the conceptus for

successful embryonic development and placental attachment to occur.

Identification of kallikrein enzymatic activity in the porcine uterine lumen in

co-ordinance with kallikrein and kininogen gene expression in the uterus

suggests a functional role for the kallikrein-kininogen-kinin system in the porcine

uterus (Vonnahme et aI., 1999). Kinins mediate physiological events such as

prostaglandin and histamine release, increase in vascular permeability, and

increase in blood flow, all essential components of conceptus development and

placental attachment in the pig.

The presence of kin ins in the porcine uterine lumen needs to be

evaluated. In addition, gene expression of the bradykinin ~2 receptor throughout

the estrous cycle and early pregnancy should also be investigated to establish a

pathway mediating kinin induced events possibly involved in conceptus

elongation and placental attachment.
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CHAPTER III

DETECTION OF KININS IN THE PORCINE UTERUS DURING THE ESTROUS

CYCLE AND EARLY PREGNANCY

Introduction

Porcine conceptus development is unique among the farm animal species

because they undergo a rapid morphological transformation from a spherical

shape to a long filamentous thread in a matter of just a few hours on

approximately Day 12 of gestation (Geisert et aI., 1982b). During this process,

the conceptus releases estrogen, which acts as the signal for maternal

recognition of pregnancy in the pig (Bazer &Thatcher, 1977). Conceptus

estrogen stimulates the release of various proteins (Roberts et aI., 1993),

prostaglandins (Bazer and Thatcher, 1977), alters uterine cellular morphology

(Geisert et aI., 1982b; Keys and King, 1990), and increases uterine blood-flow

(Ford et al. , 1982). Numerous studies have thoroughly described the influence of

conceptus estrogen on uterine secretory activity but the underlying factors

activated by estrogen in the uterus that influence conceptus development and

survival have yet to be fully elucidated.

Conceptus implantation is not an accurate description of placental

formation as the trophoblast in the pig forms a non-invasive, epitheliochorial
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placenta (Keys and King, 1990). However when placed outside of the uterine

environment, porcine conceptuses produce several proteolytic enzymes that

allow them to invade into ectopic tissues (Samuel and Perry, 1972) suggesting

that uterine protease inhibitors playa significant role in formation of the diffuse,

epitheliolchorial placentation in the pig.

Recently our laboratory has isolated and characterized a glycoprotein that

is homologous to inter-a-trypsin inhibitor heavy chain 4 (laIH4) (Geisert et aI.,

1998). lalH4 is unique, compared to the other lalH family members as it does

not have a binding site to bikunin and is cleaved by the serine protease, kallikrein

(Nishimura et aI., 1995). In addition to its interaction with lalH4, kallikrein could

also interact with its normal substrate kininogen to release kin ins (Shoola et ai.,

1992) within the porcine uterine lumen. Kinins are vasoactive peptides that are

normally involved with inflammatory associated effects such as tissue

prostaglandin synthesis and release, increased blood flow, histamine release and

induction of smooth muscle contractions (see Shoola et aI., 1992). The detection

of kallikrein enzymatic activity in the porcine uterine lumen and endometrial gene

expression, as well as identification of endometrial LMW kininogen protein and

gene expression (Vonnahme et aI., 1999) indicates the possible presence of an

active kallikrein-kininogen-kinin system in the porcine uterus.

The objective of the current investigation was to determine the changes of

bradykinin content in the porcine uterine lumen and alteration of endometrial

bradykinin receptor gene expression during the estrous cycle and early

pregnancy. Although bradykinin can effect tissues through two specific
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receptors, ~1 and ~2 ; bradykinin ~2 receptor mediates the majority of

physiological effects of kinins (Shoola et aI., 1992). Therefore, we evaluated the

presence and alteration of endometrial bradykinin ~2 receptor gene expression

during the estrous cycle and early pregnancy.

Materials and Methods

Evaluation of Uterine Lumenal Content of Bradykinin and Endometrial

Bradykinin /32 Receptor Gene Expression of Cyclic and Pregnant Gilts

Cyclic, crossbred gilts of similar age (8-12 months) were checked twice

daily of estrus behavior by contact with an intact boar. Onset of estrus was

considered day 0 of the estrous cycle. Gilts assigned to be mated were bred

naturally with fertile boars at the onset of estrus and 12 hours later.

Cyclic (n=20) and pregnant (n=12) gilts were surgically hysterectomized

through midventral laparotomy on days 0, 5, 12, 15, and 18 of the estrous cycle

and days 12, 15, and 18 of pregnancy as previously described by Gries et ai,

(1989). The initial induction of anesthesia was through a 2.5 cc i.m.

administration of a cocktail consisting of 2.5 cc Rompum (zylazime; 100mg/ml)

(Miles, Inc., Shawnee Mission, KS), 2.5 cc Vetamine (ketamine HCL; 100mg/ml)

(Mallickrodt Veterinary, Mundelein, IL) in 500 mg of Telazol (tiletamine HCL and

zolqzepam HCL) (Fort Dodge, Syracuse, NE). Anesthesia was maintained with a

closed-circuit system of halothane (Halocarbon Laboratories, Riveredge, NJ) and

oxygen (1.0 liter/min). After exposure by midventallaparotomy, the uterine horns
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and ovaries were surgically removed. The incision site was closed using routine

surgical procedures, and gilts were treated Lm. with penicillin (20,000 IU/kg BW).

Uterine flushings (UTF) and endometrium were collected immediately

following removal of the uterus. The two horns were isolated and one horn was

flushed with 20 ml of phosphate buffered saline (PBS; pH 7.4) while the second

horn was flushed with 20 ml of PBS containing 200 IJ.I of an enzyme cocktail

inhibitor solution consisting of; EDTA (132.35 mg/100 ml; Sigma, St. Louis, MO).

1,10 phenanthroline (90 mg/100 ml; Sigma, St. Louis, MO), chicken-egg-albumin

trypsin inhibitor (7.3 mg/1 00 ml; Boehringer Mannheim, Mannheim, Germany),

hexadimethrine bromide (30.5 mg/100 ml; Sigma, St. Louis MO), and aprotinin

(2.0 mg/100ml; Boehringer Mannheim, Mannheim, Germany) to prevent the rapid

proteolytic cleavage of bradykinin. Uterine flushings were examined to confirm

pregnancy in mated gilts. Conceptuses collected on Day 12 of pregnancy were

characterized as to stage of development (spherical, tubular, or filamentous) and

then were immediately snap frozen in liquid nitrogen. Uterine flushings were

placed on ice until centrifugation (3000 x g, 20 min; 4°C) at the laboratory, and

stored at -SO°C. After flushing, the uterine horn was cut along its anti-

mesometrial border and endometrium was exposed for removal with sterile

scissors. Endometrium was collected, snap frozen in liquid nitrogen and stored

at -SO°C until processed for extraction of RNA.
/

Bradykinin Radioimmunoassay
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Content of bradykinin in uterine flushings was quantified by RIA following

manufacturers recommendations for the Bradykinin RIA Kit (Peninsula Labs,

Belmont, CA). Aliquots of two individual samples of different bradykinin

concentration diluted with RIA buffer (25, 50, 75,100 Ill) displaced the 1125·labeled

bradykinin from antiserum to produce a binding curve parallel to the standard

curve (Figure 3.1). Addition of 64, 128,256, and 512 pg bradykinin to a flushing

sample resulted in a recovery of 61, 13B, 226, and 508 pg (Figure 3.2). The

sensitivity of the assay was 2 pg/ml. Uterine flushing samples (100 Ill) were

assayed in duplicate in a single assay. The intra-assay coefficient of variation

was 19.18%.

RNA Extraction

TRlzol reagent (Gibco/Life Sciences, Gaithersburg, MD) was utilized to

extract total RNA from endometrium. A total of 0.5 grams of endometrium was

homogenized in 5 ml of TRlzol reagent using a Virtishear homogenizer (Virtis Co.

Inc., Gardiner, NY). One ml of chloroform was added and the samples were

centrifuged for 30 min at 3500 x 9 (4°C). The aqueous layer was removed and

placed into a new tube. RNA was precipitated by the addition of 2.5 ml of

isopropanol at room temperature. After centrifugation (3500 x g; 4°C) for 10 min,

the supernatant was poured off. RNA pellets were washed with 5 ml of 75%

/

ethanol and centrifuged (5 min, 3500 x g; 4°C). RNA was rehydrated with 10mM

Tris 1mM EDTA (pH 7.4) and stored at -BO°C until further analysis. Total RNA
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was quantified spectrophotometrically by absorbance at 260nm. RNA purity was

determined from calculation of 260/280 ratios.

Complementary DNA Preparation

Total RNA was reverse transcribed to eDNA in a Perkin Elmer Cetus

(Norwalk, CT) DNA Thermal Cycler Model 480. Total volume of the reactions

was 20/-11 containing 200 U of Moloney murine leukemia virus reverse

transcriptase-Rnase H (M-MLV-RT), 1.0 Ilg of 0Iigo(dT)1s primer, 0.5 mM each of

dATP, dCTP, dGTP, dTTP, 50mM Tris-HCL (pH 8.3), 75 mM KCL, 3 mM MgCI,

10mM dithiothreitol, 20 U of Rnasin, and 2.0 I1-g total RNA brought to volume with

DEPC water. The sample preparation was incubated at 22°C for 15 min, 42°C

for 30 min, and terminated by heating to 95°C. The samples were then cooled to

4°C and placed in the -20°C freezer for long-term storage. Quality and quantity

of endometrial eDNA was checked by evaluating PCR expression of

glyceraldehyde-3-phosphate dehydrogenase (G3PDH) as previously described

(Yelich et aI., 1997). M-MLV-RT, reaction buffer, Rnasin, and oligo(dThs primer

were obtained from Promega Corporation (Madison, WI).

Bradykinin f32 Receptor Primer, Optimization, and Sequencing

/ Primers to bradykinin P2 receptor eDNA were designed to regions of

homology between human (Hess et aI., 1992) and mouse bradykinin receptor

(BK-2) mRNA (Yokoyama et aI., 1994). The sequence of human bradykinin Ih

receptor mRNA (bp 668-1269) coinciding to homologous region of the mouse
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was utilized to construct the 5' TCTACAGCTTGGTGATCTGGGG and 3'

GTTTGTGAATCTGGCGTTCCAC primers (Hess et aI., 1992). PCR reactions

were carried out in 25 I-li volumes covered with 30 III of mineral oil. To optimize

PCR conditions, pooled porcine endometrial eDNA from various days of the

estrous cycle and pregnancy were amplified with 0.6 U of Taq DNA polymerase

and its supplied MgCI2 -free buffer (Promega, Madison, WI) and a 3X2X3

factorial (see table 3.1) combination of primer (50, 150, or 250 nM),

deoxynucleotide triphosphates (dNTPs 50 or 100 J.LM) and MgCI2 (1.25,2.5, or

3.75 mM). All samples were maintained on ice until loaded directly into the heat

block of the thermocycler, which was allowed to heat to 95°C before loading.

The first cycle used a denaturation temperature or 95°C for 2 min, annealing

temperature of 55 CJ C for 1 min, and an extension at 72 CJC for 2 min. The

subsequent 29 cycles utilized a denaturation temperature of 95°C for 1 min,

annealing at 55°C for 1 min, and a 1 min extension at 72°C. The terminal cycle

ran a 9 min extension at 72°C and cooled to 4°C for completion of the PCR. The

resulting PCR product was resolved in a 3% agarose gel run at 90 volts for 1.5 h,

followed by a 30 min staining in ethidium bromide (1.0mg/ml). The gel was

destained in distilled water for 15 min. The optimal conditions chosen for

endometrial bradykinin ~2 receptor gene amplification were 3.75 mM MgCI2 , 100

J.lM'dNTPs, and 150 nM primer (see Figure 3.3). To verify PCR product as

bradykinin ~2 receptor, pooled eDNA was amplified with the previously described

optimal conditions, run on a 2% agarose gel, stained with ethidium bromide, and

bands were cut from the gel with a razor blade. The PCR product was extracted
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using Qiaquick (Qiagen, Santa Clara, CAl, and sequenced by the Recombinant

DNA/Protein Research Facility at Oklahoma State University. The resulting 625

base pair peR product (Figure 3.4) was determined to be 90% homologous to

Bos taurus bradykinin ~2 receptor (Fahrenkrug et aL, 2000) and 85% homologous

to Homo sapien bradykinin ~2 receptor mRNA (Hess et aL, 1992) .

Endometrial cDNA (2 IJg) was amplified using the optimal conditions

previously described to determine bradykinin ~2 receptor gene expression in the

uterus during the estrous cycle (Days 0, 5, 12, 15, and 18) and early pregnancy

(Days 12, 15, and 18). The peR products were resolved on a 2% agarose gel at

95 V for 1 h followed staining with ethidium bromide. Agarose gel was exposed

to ultraviolet light and photographed with an MP4 Polaroid Camera System

(Fotodyne, Inc., Hartland, WI). Molecular standards were obtained from

Boehringer Mannheim (Indianapolis, IN). To quantitate the PCR synthesis

procedure for comparable amounts of starting cDNA in samples, glyceraldehyde-

3-phosphate dehydrogenase primers (Yelich et aL, 1997) were utilized. The

products were run in a 3% agarose gel, stained with ethidium bromide and bands

were observed.

Quantitative Reverse Transcriptase-Polymerase Chain Reaction

/ Bradykinin receptor endometrial gene expression was quantified by using

the one-step RT-PCR reaction following manufacturers recommendations for

TaqMan® Gold RT-PCR kit (PIN N808-0233) (PE Applied Biosystems, Foster

City, Cal. The TaqMan@ Gold RT-PCR kit is designed to reverse transcribe and
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amplify target RNA that results in alterations of fluorescence from the bradykinin

receptor specific probe permitting a quantitative measure of gene expression.

The Taq Man probe contains a 5' reporter dye (FAM) and a 3' quencher dye

(TAMRA). Cleavage of the probe by the endogenous 5' nuclease activity of

AmpliTaq Gold DNA polymerase results in increased fluorescence of the reporter

dye. The total reaction volume of 50 III contained, TaqMan Buffer A, 5.5 mM

MgCI2 , 300 IlM deoxyATP, 300 11M deoxyCTP, 300 IlM deoxyGTP, 600 IlM

deoxyUTP, 200 nM bradykinin receptorforward primer (bp 427-446),

GCCTCCTACGTGGCCTACAG, 200 nM bradykinin receptor reverse primer (bp

475-493) AGTGCTTGCCCACGATCAC, 100 nM fluorescent labeled bradykinin

receptor probe ( bp 448-469) AACAGCTGCCTCAACCCGCTGG, all designed

from the porcine bradykinin ~2 receptor mRNA sequence (Figure 3.4), 0.025

U/Ill AmpliTaq Gold DNA polymerase, 0.25 U/Ill MultiScribe reverse

transcriptase, 1.25 U/1l1 recombinant Moloney murine leukemia virus (MuLV)

reverse transcriptase, 0.4 U/1l1 Rnase Inhibitor and 100 ng of total RNA brought

to volume with Rnase-free water. The PCR amplification was carried out in the

ABI PRISM® 7700 sequence detection system (Applied Biosystems, Foster City,

CA). Thermal cycling conditions were 50°C for 2 min, 95°C for 10 min followed

by repetitive cycles of 95°C for 15 sec and 60°C for l' min. Ribosomal 188 RNA

cotltrol kit (431 08993E, Applied Biosystems, Foster City, CA) was run as a

control for RNA loading.

Following RT-PCR, quantitation of gene amplification was made by setting

the threshold on the FAM layer in the geometric region of the plot after examining
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the semi-log view of the amplification plot (Figure 3.5). Relative quantitation of

bradykinin ~2 receptor gene expression was evaluated using the comparative CT

(cycle threshold) method as described in the manufacture's bulletin (Applied

Biosystems, Foster City, CA). The ~CT value is determined by subtracting the

bradykinin ~2 receptor CTof each sample from its ribosomal 188 C, value.

Calculation of ~~CT involves using the highest sample ~CT value as an arbitrary

constant to subtract from all other ~CT sample values. Fold changes in gene

expression of bradykinin receptor is determined by evaluating the expression, 2-

M Ct. A validation of the quantitative PCR was performed with 5, 1,0.2,0.04.

0.008, 0.0016 ng RNA from a selected sample of RNA using both bradykinin ~2

receptor and 188 primers within the same PCR well. Expression of bradykinin ~2

receptor and 18 8 RNA was parallel across the dilutions of RNA (Figure 3.6).

Endometrium from an additional group of animals was collected on day 10 of the

estrous cycle and early pregnancy for quantitative analysis of bradykinin P2

receptor gene expression.

Statistical Analysis

Data were analyzed by ordinary least-squares analysis of variance using

the General Linear Models Procedure of 8A8 (SAS, 1990). The statistical model

us~d to analyze UTF bradykinin concentration and endometrial gene expression

of bradykinin P2 receptor during the estrous cycle included day (0, 5, 10, 12, 15,

and 18). Model for analysis of reproductive status effects included the effects of

Day, (0,5,10,12,15, and 18), reproductive status (estrous cycle and pregnant),
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and day x reproductive status. Data were log transformed for analysis of

bradykinin concentrations of UTF.

Results

Bradykinin Radioimmunoassay

A Day effect (P<0.01) for total bradykinin content in UTF during the

estrous cycle was detected (Figure 3.7). During the estrous cycle, bradykinin in

the UTF is greatest on Day 0 (estrus) followed by a 5-fold decrease on Day 5. A

moderate 2-fold increase in bradykinin occurred between Day 12 and 18 of the

estrous cycle. Pregnancy affected (P<0.001) bradykinin concentrations in UTF.

There was no day x reproductive status interaction (P>0.1 0), Pregnant UTF

bradykinin concentration was 5-fold greater than UTF from cyclic gilts on Day 12

with a 8 to 10-fold increase in bradykinin content detected on days 15 and 18

respectively (Figure 3.7).

Semi-Quantitative Analyses of Bradykinin f32 Receptor Gene Expression

PCR amplification of endometrial G3PDH mRNA expression was similar

across the days of the estrous cycle and early pregnancy (Figure 3.8 a and b).

Endometrial gene expression of bradykinin ~2 receptor was detected on Day 0, 5,

12;' 15, and 18 of the estrous cycle and Day 12, 15 and 18 of early pregnancy

(Figure 3.9 a and b). Although this particular PCR technique is only a semi­

quantitative measure of gene expression,endometrial gene expression of

bradykinin Ih receptor was decreased on Day 5 compared to Day 0 (estrus),
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followed by a gradual increase of gene expression from Day 12 to 18 of the

estrous cycle. Endometrial gene expression of bradykinin ~2 receptor appeared

to be h,igher throughout early gestation in the pig. similar to expression observed

on the same days of the estrous cycle.

Quantitative RT-PCR of Bradykinin /32 Receptor with the ABI Prism System

Relative quantitation of bradykinin ~2 receptor gene expression was

evaluated using the comparative CT (cycle threshold) method. Endometrial gene

expression of bradykinin ~2 receptor was detected on Day 0, 5, 10, 12, 15, and

18 of the estrous cycle and early pregnancy. Fold changes in gene expression of

bradykinin ~2 receptor were determined by evaluating the expression, 2-M
Ct (see

Table 3.2). There was no effect of reproductive status on endometrial gene

expression of bradykinin P2 receptor (P> .19) between Days 12 to 18. There was

a significant effect during the estrous cycle on bradykinin ~2 receptor gene

expression (P< .0001). Bradykinin P2 receptor gene expression was highest on

Days O. 15, and 18 of the estrous cycle. Gene expression decreased almost 6-

fold on Days 5 and 10 of the estrous cycle (Figure 3.1 Oa). There was a tendency

for day x reproductive status interaction to effect receptor gene expression (P<

.06) for comparison of Day 10, 12, 15 and 18, endometrial gene expression of

bradykinin ~2 receptor between cyclic and pregnant gilts (Figure 3.1 Ob).

Bradykinin ~2 receptor gene expression was 3-fold greater in the endometrium of

pregnant gilts on Day 10 and 12 of pregnancy compared to the estrous cycle.
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However, bradykinin ~2 receptor gene expression was similar between cyclic and

pregnant gilts on Day 15 and 18.

Discussion

Porcine conceptuses undergo a rapid morphological transformation from a

10 mm sphere to a thin filamentous shape on Day 12 of gestation (Anderson,

1978; Geisert et aL, 1982b). Developing conceptuses produce estrogens that

a'lter uterine cellular morphology (Geisert et aL, 1982b), vascular permeability

(Keys and King, 1990), uterine blood flow (Ford et al. , 1982), secretion of

endometrial derived proteins (Roberts et aI., 1993), and prostaglandin release in-

to the uterine lumen (Bazer and Thatcher, 1977).

Porcine conceptus attachment to the uterine surface epithelium begins on

Day 12 and continues to Day 18 of pregnancy. This implantation process is non-

invasive, therefore forming the diffuse epitheliochorial type of placentation of the

pig (Keys and King, 1990). Many of the events associated with conceptus

development and implantation in the mouse and rat are associated with uterine

activation by estrogen and uterine changes that mirror the inflammatory process

(Clements et aL, 1997). Although porcine conceptuses do not implant into the

uterine tissue in stark contrast to rodents, conceptus estrogen release is involved

with placental attachment to the uteri.ne epithelium and a inflammatory reaction
/

also occurs during placental attachment in the pig (Keys et aI., 1986; Keys and

King, 1988).
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Recent identification of kallikrein in the porcine uterine lumen during early

gestation (Vonnahme et aL, 1999) in coordination with the presence of lalH4

suggested a possible role for kallikrein in placental attachment in the pig (Geisert

et aL, 1998). Inter-a-trypsin inhibitor heavy chain 4 has been identified in the

porcine uterus during the estrous cycle and early gestation (Geisert et aI., 1998).

Heavy chain 4 in the pig is unique compared to the other lal heavy chains

because it does not possess protease inhibitory activity due to the lack of a

binding site for the serine protease inhibitor, bikunin and is cleaved by the serine

protease, kallikrein (Nishimura et ai., 1995). The release of endometrial derived

kallikreins into the uterine environment (Vonnahme et aL t 1999) were suggested

to playa potential role for attachment of the placenta to the uterine surface

through the possible alteration in lalH4 during conceptus elongation and

estrogen release. Presence of kallikrein in the porcine uterus suggested that the

kallikrein-kininogen-kinin (K-K-K) system may be active during the period of

placentation and could be associated with the increase in uterine blood flow,

prostaglandin release and changes in uterine tone observed during early

pregnancy in the pig (see Ford, 1989). The substrate for kallikrein, LMW­

kininogen is present in the uterine lumen of the pig throuQihout the estrous cycle

and early pregnancy !in the gilt (Vonnahme and Geisert, unpublished results).

Uterine tissue kallikrein could cleave LMW-kininogen releasing the vasoactive

nonapeptide bradykinin. The presence of bradykinin in the uterine flushings

supports our proposal for kallikrein stimulated release of bradykinin from LMW­

kininogen during the estrous cycle and early pregnancy in the pig. The greatest
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uterine content of bradykinin during the estrous cycle was detected at estrus.

These data would suggest that estrogen could playa regulatory role in

endometrial release of bradykinin in the pig. In cyclic animals, bradykinin initially

decreased from Day 0 to Day 5 then increased moderately to Day 18, suggesting

that progesterone may have a suppressive effect on bradykinin release during

the early diestrous period. Kallikrein, the key regulatory enzyme in the liberation

of bradykinin from LMW-kininogen, activity increases slightly in porcine UTF after

Day 10 of the estrous cycle (Vonnahme et aI., 1999). The increase in kallikrein

enzyme activity on Day 12 and 15 of the estrous cycle and pregnancy are not

significantly different (Vonnahme et aL, 1999), however, there is a 5 to 10-fold

increase in bradykinin content in the uterine lumen of pregnant compared to

cyclic gHts. Although, the association of kalHkrein enzyme activation and

conceptus estrogen release during early pregnancy (Vonnahme et aI., 1999)

supports a role participation of the conceptus in the release of bradykinin into the

uterine lumen, the release of bradykinin may not occur through the uterine tissue

kallikrein. Kallikrein belongs to a multigene family of serine proteases, which

consists of approximately 15 related genes in the rat (Gauthier et aL, 1992) and

three in human (Carbini et aL, 1993). The kallikrein family has diverse substrate

specificity's and variable sensitivities to inhibitors such as aprotinin (Gauthier et

al. , 1992), however the genes have extensive homology to each other and
/

between species (Clements, 1997). It is possible that the porcine conceptus

produces a kallikrein specific for LMW-kininogen that is different from the uterine

kallikrein detected during the estrous cycle. Vonnahme et aI., (1999) reported
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gene expression for kallikrein by early porcine conceptuses. It is possible that

uterine kallikrein enzyme activation is involved with changes in the extracellular

matrix of the uterine surface necessary during trophoblast attachment, through

cleavage of lalH4, and is also involved with the removal of insulin-like growth

factor binding proteins observed during Day 10 to 12 of the estrous cycle and

pregnancy (Lee et aI., 1998; Geisert et aI., 1999). Conceptus synthesis and

activation of kallikrein specific for LMW-kininogen would provide a local control of

bradykinin release. The release of bradykinin in the uterine lumen during early

pregnancy is consistent with the known effects of bradykinin in prostaglandin

synthesis, smooth muscle contraction, increased blood flow, and altered vascular

permeability (8hoola et aI., 1992), which are all obselVed changes In the porcine

uterus during early pregnancy (see Geisert et aI., 1990).

Further supporting evidence for a role of bradykinin in the establishment of

early pregnancy is the identification of endometrial gene expression for

bradykinin ~2 receptor during the estrous cycle and early pregnancy in the pig.

Endometrial gene expression of bradykinin 132 receptor changed throughout the

estrous cycle with an increase in gene expression occurring after Day 10 of the

estrous cycle and early pregnancy. Higher levels of bradykinin ~2 receptor gene

expression on Day 0 of the estrous cycle would further support that estrogen may

stimulate bradykinin [3 2 receptor gene expression in the endometrium as an

increase in expression is also detected on Day 12 of pregnancy when conceptus

estrogen occurs for maternal recognition of pregnancy. It is clear that bradykinin

~2 receptor gene expression increases close to the period of conceptus
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trophoblast elongation and attachment to the uterine surface. eorthom and

Valdes (1994) previously suggested that kallikrein-kininogen-kinin system plays

an important role for implantation in the rat. The increased gene expression of

bradykinin ~2 receptor and subsequent increase of kallikrein and bradykinin

during the time of implantation in the present study suggests that the kallikrein­

kininogen-kinin system may play an important part in the establishment of

pregnancy in the pig.

49



..

Figure 3.1 RIA validation using two representative samples
measured by dilutions (0, 25, 50, and 75 ~I) with RIA
buffer.
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Figure 3.2 Recovery of mass measured in uterine flushings. Yellow
line indicates the amount of mass recovered; green line
indicates the calculated mass to be recovered.
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Table 3.1 Conditions for PCR optimization depicting changes in
primer, dNTP's, and MgCI2 .

Lane Primer (5~ stock) DNTPs (10mM stock) 10 x MgCI
1 0.5 Jl\ 0.5 JlI 1.25 JlI
2 0.5 0.5 2.50
3 0.5 0.5 3.75
4 0.5 1.0 1.25
5 0.5 1.0 2.50
6 0.5 1.0 3.75
7 1.5 0.5 1.25
8 1.5 0.5 2.50
9 1.5 0.5 3.75
10 1.5 1.0 1.25

.11 1.5 1.0 2.50
12 1.5 1.0 3.75
13 2.5 0.5 1.25
14 2.5 0.5 2.50
15 2.5 0.5 3.75
16 2.5 1.0 1.25
17 2.5 1.0 2.50
18 2.5 1.0 3.75
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Figure 3.3 Photograph of an ethidium bromide stained 3% gel with
PCR products from bradykinin ~2 receptor primer
optimization. Conditions utilized for amplification of
bradykinin ~2 receptor in lane 12 (see Table 3.1) were
selected for analysis of gene expression in porcine
endometrium. The arrow indicates the proper band size
(625 bp). L represents the molecular ladder lane.
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Figure 3.4 Nucleotide sequencing of the 625 bp peR product is 90%
homologous to Bos Taurus bradykinin ~2 receptor. P
indicates the porcine sequence; B indicates the Bos
Taurus sequence with black color as homologous base
pairs and red color indicating differences in base pairs.
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P1:

B176:

P41:

B216:

PBl:

B256 :

P121:

B296:

P161:

B336:

P201:

B3 76:

P241:

B4l6:

P2B1:

B456:

P321:

B496:

TCTACAGCTTGGTGATCTGGGGCTGCACGCTGCTCTTGAG

TCTACAGCCTGGTGATCTGGGGCTGCGCGCTGCTTCTGAG

CTCGCCCATGCTGGCCTTCCGGACCATGCAGCACGAGTAC

CTCGCCCATGCTGGCCTTCCGCACCATGCAG GAGTAC

ACGGCCGAGGGCCACAACGTCACCGCCTGCATCATCAAGT

CGCCGAGGGCCACAACGTCACCGCCTGCGTCATCAATT

ACCCCTCGCGC GCTGGGTGGTGTTCACCAACATCCTCC

ACCCATCCCACA GCTGGGAGGTCTTCACCAACATCCTCC

TCAACTCCGTGGGCTTCCTGCTGCCCCTGAGCATCATCAC

TGAACTCTGTGGGCTTCCTGCTGCCCCTGAGCGTCATCAC

CTACTGCACCGTGCAGATCCTGCAGGTGCTGCGCAACAAC

CTTCTGCACCGTGCAGATCATGCAGGTGCTGCGTAACAAC

GAGATGCAGAAGTTCAAGGAGATCCAGACGGAGAGGAAGG

GAGATGCAGAAGTTCAAGGAGATCCAGACTGAGAGGAAGG

CCACGGTGCTGGTCCTGGCCGTGCTGCTGCTGTTCGTCGT

CCACGCTGCTGGTCCTGGCCGTCCTGCTGCTGTTCGTGGT

CTGCTGGCTGCCCTTCCAGATCAGCACCTTCCTGGACACG

CTGCTGGCTGCCCTTCCAGATCAGCACCTTCCTGGACACG
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P361:

B536:

P401:

B576:

P441:

B616:

P481:

B656:

P521:

B696:

P558:

B736 :

CTGCTGCGCCTCGACGTCCTCTCGGGCTGCTGGGACGAGC

CTGCTGCGCCTCCACGTCCTCTCGGGCTGCTGGGACGAGT

ACGTGGTCGACGTCCTCACGCAGATCGCCTCCTACGTGGC

ACGTGATCGACATCTTCACACAGATCGCGTCCTTTGTGGC

CTACAGCAACAGCTGCCTCAACCCGCTGGTGTACGTGATC

TTACAGCAACAGCTGCCTCAACCCCCTGGTGTACGTGATC

GTGGGCAAGCACTTCCGCAAGAAGTCGCGGGAGGTGTACT

GTGGGCAAGCGCTTCCGCAAGAAGTCGCAGGAGGTGTACG

GGCGGCTGTGCGGGAAAGTGGGCTGCGGGCCC GAGCC

CGCGGCTGTGCCGGCCAGGGGGCTGCGGGTCCGCGGAGCC

CAGCCAGACGGAGAATTCCCTGGGC

CAGCCAGACGGAGAACTCCGTGGGC
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Figure 3.5 Quantitation of bradykinin ~2 gene amplification, made by
setting the threshold on the FAM layer in the geometric
region of the plot after examination of the semi-log view of
the amplification plot.
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Figure 3.6 Validation of bradykinin ~2 receptor (BK2r) gene
expression using the TaqMan® Gold RT-peR kit. Gene
expression for dilutions of RNA (5, 1, 0.2, 0.04, 0.008,
0.0016 ng RNA) for bradykinin ~2 receptor (red line) and
188 ribosomal RNA (yellow line) were parallel.

62



E 40
::J
E c::
.- 0 35>< .-
ra rn
:!: rnQ) 30.., ~

ra c.
rn >< 25Q)W

- Q)

~ ai 20

~C)
o 15
Z

26.94

14.79
16.16

18.25
19.8

23.24
25.47

10 +-----,------.-----.---------,.-------r--_

5 0.2

RNA (ng)

6

0.04 0.008 0.0016



-

--

Figure 3.7 Bradykinin content in uterine flushings from cyclic (blue
bar) and pregnant (red bar) gilts. An effect of Day was
detected (P < .01) in addition to an effect of reproductive
status (P < .0001). There was no day x reproductive
status interaction (P > .10). Data were log transformed for
statistical analysis.
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Figure 3.8 Gene expression of glyceraldehyde-3-phosphate
dehydrogenase (G3PDH) in endometrium from the
estrous cycle and pregnancy used to quantitate the peR
synthesis procedure for comparable amounts of starting
cDNA in samples.
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Table 3.2 Relative Quantitation Using the Comparative CT Method
for Bradykinin ~2 Receptor (BKr2)

Day & BKr2 Avg. 1BS-Ribo ~CT MCT BKr2
Status CT Avg,CT BKr2-1BS ~Cr~CT10C 2-MCt

OC 27.12 ± 0.71 21.76 ± 0.58 5.36 ± 0.15 -2.74 ± 0.15 6.67
5C 28.78 ± 0.24 21.05 ± 0.24 7.73 ± 0.41 -0.37 ± 0.33 1.32
10C 29.42 ± 2.90 21.32 ± 3.00 7.08 ± 0.99 -1.02 ± 0.99 1.00
10P 28.69 ± 1.10 21.73 ± 0.36 6.96 ± 1.42 -1.14 ± 1.42 3.11
12C 27.86 ± 0.53 21.39 ± 0.46 6.48 ± 0.38 -1.63 ± 0.38 3.17
12P 26.89 ± 0.97 21.77 ± 0.23 5.12 ± 0.93 -2.99 ± 0.93 9.18
15C 27.54 ± 0.41 22.11 ± 0.53 5.43 ± 0.48 -2.67 ± 0.48 6.62
15P 27.43 ± 0.77 21.90 ± 0.50 5.53 ± 0.51 -2.57 ± 0.51 6.21
18C 27.17±0.08 21.86 ± 0.27 5.32 ± 0.19 -2.78 ± 0.19 6.92
18P 27.22 ± 0.67 21.50 ± 0.52 5.72 ± 0.28 -2.39 ± 0.28 5.30
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Figure 3.10 Relative quantitation of bradykinin P2 receptor gene
expression across days of the estrous cycle and
early pregnancy in relation to 10C.
a. Blue bars indicate cyclic animals. An effect of

Day was detected (p < .0001).
b. Red bars indicate pregnant animals and blue

bars indicated cyclic animals. A tendency for day
x reproductive status interaction to effect
receptor gene expression (p < .06). There was
no effect of reproductive status on endometrial
gene expression (p > .10).
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CHAPTER IV

GENERAL DISCUSSION

Domestic animal species are different from the rodent, human and primate

in that they must undergo a prolonged period of implantation for successful

establishment of pregnancy. The pig is well known for being one of the few

species that the peri-implantation conceptus undergoes rapid elongation within

the uterine lumen (Anderson, 1978; Geisert et aI., 1982a; Pope, 1994).

Conceptuses undergo a rapid morphological transformation from spherical (10

mm) to tubular (15-40 mm) and finally, filamentous (150-200 mm in length)

morphology between days 11 and 12 of pregnancy (Perry & Rowlands, 1962;

Anderson, 1978). Conceptus elongation occurs uniquely enough without an

increase in cell number (Geisert et aI., 1982b; Pusateni et aI., 1990). During this

transformation porcine conceptuses release estrogens which act as the maternal

recognition signal for pregnancy (Thatcher and Bazer, 1977), in addition to

influencing protein secretions (Roberts et aI., 1993) redirecting prostaglandin

release into the uterine lumen (Bazer and Thatcher, 1977), increasing uterine

blood-flow (Ford et aI., 1982), and altering uterine cellular morphology (Geisert et

al.. 1982b; Keys and King, 1990). A second surge of estrogen can be observed
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on day 15 of gestation. This second surge is essential for maintaining prolonged

corporallutea function.

Implantation by the pig conceptuses is non-invasive, thus forming the

diffuse, ep,itheliochorial type of placentation (Keys & King, 1990). In-vivo the

conceptuses are observed to be non-invasive but when placed outside of the

uterine lumen the conceptuses will aggressively invade into the surrounding

tissue (Samuel and Perry, 1972). In light of this observation, one would deduce

the porcine endometrium must produce proteolytic inhibitors to prevent invasive

implantation.

Attachment of the conceptus to the uterine surface epithelium begins on

day 12 th rough 18 of pregnancy. The conceptus trophoblast is secured by the

uterine epithelial glycocalyx present on the microvilli (Keys and King, 1990). The

timing at which this occurs is largely controlled by the presence of the

glycoprotein, MUC-1 (Bowen et aI., 1996, 1997). Mouse and human research

has associated the loss of this glycoprotein with the time of implantation (Braga

and Gendler, 1993; Alpin et aI., 1994; Surveyor et aI., 1995). When MUC-1 is

removed from the uterine surface epithelium, extracellular matrix proteins readily

bind to uterine surface integrins, promoting placental attachment (Hynes, 1992).

Integrins are a family of cell surface glycoproteins that are involved in cell-to-cell

and cell-to-ECM interactions (Cross et aI., 1994). The pig demonstrates spatial

and temporal expression of integrin subuni.ts, CX4, 0'.5 , ~1 ,and possibly 0.1,

suggesting control of their expression within the uterine epithelium by

reproductive steroids (Bowen et aI., 1996). Integrin subunits are also expressed
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on the trophectoderm during the peri-implantation period (Bowen et aI., 1996).

The integrin subunits highly expressed during the peri-implantation period are

members of the fibronectin and vitronectin families of receptors and could be

candidates for stabilizing attachment in the pig (Bowen et aI., 1996). The inter-a­

trypsin inhibitor (Ial) family members, serine protease inhibitors, are also

recognized as extracellular matrix stabilizers (Bost et aI., 1998). This family

consists of four heavy chains and the light chain known as bikunin (Salier et al.,

1996). lal heavy chains contain a von Willibrand domain which is known to bind

adhesion molecules such as collagen, integrins, heparin and proteoglycans

(Salier et aI., 1992), which suggests a possible involvement in placental

attachment. lal heavy chain 4 (laIH4), recently identified in the porcine uterus

(Geisert et aI., 1998), supports the hypothesis that la\ heavy chains could playa

role in trophoblastic attachment. Although a clear biological role for inter-cl.­

trypsin inhibitors is not established, Diedrich et ai, (1997) suggests that, the

detectable gene and protein expression of bikunin on days 12 and 18 of

pregnancy indicates bikunin could assist with regulation of endometrial invasion

of the porcine trophoblast. Heavy chain 4 (laIH4) in the pig is unique compared

to the other lal heavy chains because it does not possess protease inhibitory

,ability because it lacks the consensus sequence to bind bikunin. Inter-a-trypsin

Inhibitor H4 is however a substrate for the plasma serine protease, kallikrein

(Nishimura et aI., 1995). In the pig, plasma kallikrein could cleave 1(J.IH4 to

release several fragments including GP30 (Geisert et aI., 1995). The cleavage of

lalH4 by kallikrein could induce local alterations in receptivity of the uterus to the

7')
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expanding conceptus that allows it to contact with integrins, developing a firm

attachment to the uterine epithelium (Bowen et aI., 1997).

Kallikrein can also bind to its natural substrate, low molecular weight

kininogen (LMWK), releasing the vasoactive, nonapeptide bradykinin (Shoola et

aI., 1992). Vonnahme et aL, (1999) detected kallikrein activity in the uterine

lumen and kallikrein endometrial gene expression during the estrous cycle and

early pregnancy in the pig. In addition, Vonnahme and coworkers discovered

LMW kininogen in the uterine lumen and LMW kininogen gene expression in the

porcine endometrium.

The present investigation examined bradykinin concentrations in the

porcine uterine lumen and endometrial gene expression of bradykinin ~2 receptor

across the days of the estrous cycle and early gestation. This study detected

varying concentrations of bradykinin in uterine flushings (UTF) examined from

different stages of the estrous cycle and early pregnancy. In cyclic animals,

bradykinin initially decreased from Day 0 to Day 5 then increased to Day 18.

Kallikrein activity also increases in porcine UTF during this time (Vonnahme et

aI., 1999). Kallikrein, the key regulatory enzyme in the liberation of bradykinin

from LMW-kininogen, activity increases slightly in porcine UTF after Day 10 of

the estrous cycle (Vonnahme et aL, 1999). The increase in kallikrein enzyme

activity on Day 12 and 15 of the estrous cycle and pregnancy are not significantly

different (Vonnahme et aI., 1999), however, there is a increase in bradykinin

content in the uterine lumen of pregnant compared to cyclic gilts. Although, the

association of kallikrein enzyme activation and conceptus estrogen release
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during early pregnancy (Vonnahme et aI., 1999) supports a role participation of

the conceptus in the release of bradykinin into the uterine lumen, the release of

bradykinin may not occur through the uterine tissue kallikrein. Kallikrein belongs

to a multigene family of serine proteases, which consists of approximately 15

related genes in the rat (Gauthier et al., 1992) and three in human (Carbini et aI.,

1993). The kallikrein family has diverse substrate specificity's and variable

sensitivities to inhibitors such as aprotinin (Gauthier et aI., 1992), however the

genes have extensive homology to each other and between species (Clements.

1997). It is possible that the porcine conceptus produces a kallikrein specific for

LMW-kininogen that is different from the uterine kallikrein detected during the

estrous cycle. Vonnahme et aI., (1999) reported gene expression for kallikrein by

early porcine conceptuses. It is possible that uterine kallikrein enzyme activation

is involved with changes in the extracellular matrix of the uterine surface

necessary during trophoblast attachment, through cleavage of lalH4, and is also

involved with the removal of insulin-like growth factor binding proteins observed

during Day 10 to 12 of the estrous cycle and pregnancy (Lee et aI., 1998; Geisert

et aI., 1999).

Kallikrein levels have been shown to be regulated by ovarian hormones

such as progesterone and estrogen (Brann et al. , 1995). Valdes et al. , (1996)

noted an increase in kallikrein activity, and subsequent kinin release, associated

with increased estrogen, in the rat uterus. Progesterone seems to have a

negative and estrogen a positive affect on kallkrein production. When observing

the estrous cycle of the pig by Day 12-15, progesterone levels are declining due
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to the regression of the corpora lutea and follicles are growing, therefore

releasing increased levels of estrogen. These events could be influencing

factors affecting the increased kallkrein activity and subsequent bradykinin

concentrations in cyclic UTF's.

Significantly, higher and increasing levels of bradykinin can be detected in

pregnant UTF's. Again, this correlates with the findings of Vonnahme et al. ,

1999. Steroid influence would seem to be the controlling factor at this stage as

well but in this case I the source of estrogen would be the conceptuses

themselves. Synthesis of estrogen by the porcine conceptus is the signal to the

uterus and ovary to undergo the necessary adjustments to establish and

maintain early pregnancy (Thatcher and Bazer, 1977). Previous investigations

have identified estrogen mediated events such as influencing protein secretions

(Roberts et aL, 1993) prostaglandin release (Bazer and Thatcher, 1977),

increasing uterine blood-flow (Ford et aL, 1982), and altering uterine cellular

morphology (Geisert et aI., 1982b; Keys and King, 1990). Increased

concentrations of bradykinin paralleled with the conceptus production of estrogen

could explain some of the unexplained uterine dynamics associated with

conceptus estrogen release. Increased uterine blood flow could be indirectly

regulated by estrogen through bradykinin due to its physiological ability to

increase increased blood flow (Shi et aL, 1998). Increased blood flow was

detected in the pregnant uterus by Ford and Christenson (1979). Another

biological action of bradykinin is the stimulation of phospholipase A2 which in turn

stimulates prostaglandin release (Bhoola et aI., 1992), a factor associated with
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early pregnancy in the pig. In addition to the previous mediation, bradykinins

could also play an important role in conceptus orientation in the uterus through its

ability to stimulate smooth muscle contractions. Of course, without its receptor,

bradykinin ~2, bradykinin would not be able to exert any of its affects on uterine

responses. Kinins exert their action by adhering to membrane receptors.

Bradykinin ~2 receptor mediates the majority of physiological effects of kinins,

The present research detected endometrial gene expression of bradykinin

~2 receptor throughout the estrous cycle and early pregnancy of the pig.

Endometrial gene expression of bradykinin Ih receptor in the cyclic animal was

similar to the concentrations of bradykinin found in the uterine flushings of those

same animals, exhibiting a significant decrease in expression on Day 5 of the

cycle then increasing till Day 18. These results suggest a possible regulating

role for steroid hormones in the gene expression of bradykinin ~2 receptor.

Increased gene expression of bradykinin ~2 receptor in pregnant endometrium

suggesting again their mediation of biological events stimulated by bradykinins.

There is an interesting similarity between events stimulated by conceptus

estrogen in the pig and inflammatory events occurring during tissue damage

(Clements et aI., 1997). Events such as histamine increased vascular

permeability, vasodilation, edema and a number of other things. It is a well­

known fact that the K-K-K system is associated with inflammatory responses

(Bhoola et aI., 1992). The immunological biological affects of bradykinins that

are released from endometrial sources could be acting in co-ordinance with the

conceptus to stimulate these effects. Research performed by Mathialagan et a/.,
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(1992) suggests that IL-6 is secreted from the porcine conceptuses between

Days 13 to 17 of gestation. IL-6 upregulates lal heavy chains 1 through 3.

Therefore another responsibility of bradykinin mediated events would be to

stimulate IL-6 release from the porcine conceptus to upregulate lal members,

supporting conceptus attachment.

Further investigation into the regulation of bradykinins and their receptors

need to be performed. One means of investigation would be the observation of

hormone supplemented ovarectomized gilts, measuring kallikrein, kininogen,

bradykinin and bradykinin receptor gene expression in the uterus. Bradykinin

affects also need to be elucidated by localizing and characterizing bradykinin ~2

receptor in the uterus.

The present data and its relation to the previously explained events taking

place in the porcine uterus at the t~me of conceptus elongation and attachment

supports this laboratories hypothesis that the K-K-K system is active in the

porcine uterus and may play an important role in conceptus elongation and

attachment.
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ASI- Quantiative RT-PCR Reaction Conditions

Reagent Total Volume Cone. Of Reagent
In Master Mix (Ill) in Solution

10X Taq Man
Buffer A 210

25 mM MgCI
462 5.5 mM

10mM dATP
63 300 11M

10mM dGTP
63 300 11M

10mM dCTP
63 300 11M

20mM dUTP
63 600 11M

10 11M Ribosomal
Forward Primer 10.5 200 nM

10 11M Ribosomal
Reverse Primer 10.5 200 nM

40 11M Ribosomal
RNA Probe 2.63 50 nM

10 }.lM Bradykinin
Forward Primer 42 200 nM

10 }.lM Bradykinin
Reverse Primer 42 200 nM
5 flM Bradykinin

Probe 2.1 100 nM
Amplitaq Gold

DNA Polymerase 10.5 .25 U / III
Multiscribe

Reverse Trans. 10.5 .25 U / III
RNAse Inhibitor

42 .4 U / fll_.

100 ng of RNA was added to each reaction tube.

The Master Mix (MM) was separated in equal amounts into 46 tubes (reactions).
Tubes 1-40 were tubes measuring sample gene expression. Tubes 41-46 were
tubes containing increasing amounts of RNA.

DEPC water was used to bring the reactions to volume.
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