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PREFACE

The purpose of this research was to examine a group of chJoride-proces titanium

dioxide (Ti02) reactors, and evaJuate for their merits in eliminating deposition of solid

Ti02 product on the reactor waJls. This is important to the industriaJ pigment industry, as

a great deaJ of effort is put into reducing or ehmating this deposition to control particle

size, and reduce reactor down time for cleaning. ComputationaJ fluid dynamic (CFD)

modeling was used to examine kinetic and thermodynamic phenomena within the e

reactors, while reactant nozzle configurations were altered to evaluate their effect on

deposition.
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CHAPTER I

INTRODUCTION

Titanium Dioxide

This thesis focuses on chloride-process reactors for the production of titanium

dioxide. Computational Fluid Dynamic (CFD) modeling is u ed to identify causes of,

and solutions for, scale growth on the reactor walls. More specifically, to evaluate

patented titanium dioxide reactor designs for their ability to control particle depo ition,

and to identify what factors are most instrumental in halting deposition.

Titanium dioxide (Ti02) occurs naturally in three crystalline structures: anatase,

rutile, and brookite. Anatase and rutile are both commercially produced. Both of these

structures are tetragonal, though rutile has two atoms per unit cell and anata e has four.

Rutile is harder, denser, and has a higher refractive index than anatase, scattering light

about 20% more effectively (Braun, 1997).

Ti02 rutile is a widely used pigment due to its high refracting index. In his article

"Titanium Dioxide - A Review," Braun (1997) stated "among pigment , only Ti02 and

carbon black have essentially no competition." Combined with its u age as paper filler,

catalyst support, paint opacifier, and in cosmetics, the world consume over 3 million

tons of Ti02 yearly (Pratsinis and Spicer 1998). More than half this amount comes from

aerosol synthesis, the 'chloride process,' and as of 1998, 8% of the total amount came

from Kerr-McGee corporation (Thayer 1998).

Aerosol Synthesis

Synthesis of powders via gas-to-particle conversion is an increa ingly important

I



process. The gaseous reactants fonn a super aturated vapor of product, which, upon

cooling, forms particles via nucleation, surface reaction, and coagulation. Product

molecules can agglomerate to particles by two mechanisms: uninhibited collisions, or

evaporation and condensation to and from clusters of molecules.

Advantages of gas-to-particle aerosol reactors are small particle sizes (nanometer

to micrometer) with a narrow size distribution, the particles produced are nearly

spherical, and the product tends to have high purity. On the down side, gas-to-particle

conversion is impractical for multicomponent materials, like mixed ceramics. Different

reaction rates and vapor pressures for the reactants tend to lead to non-uniform product

composition (Powell et al. 1997).

In the chloride process, gaseous titanium tetrachloride (TiCI4) produced from the

chlorination of Ti02 is oxidized within a flame to yield solid titanium dioxide and

gaseous chlorine. The overall equation is:

TiCl4 + 02 ~ Ti02 + 2Ch

In most current production processes, preheated oxygen (about 1300-1800 OF) i

introduced into the reactor within an axially directed flame. Cooler (about 600-800 OF)

TiC14 is introduced downstream, and reacts with the oxygen to form Ti02monomer.

Preheating both reactants serves to sustain the flame, as the reaction is only slightly

exothermic (~HO =-22.50 kJ/mol). Reaction temperature is typically in the range of

1291-2550 of (Akhtar et a1. 1991).

Directly downstream of the combustion chamber, the fluid enters a water-jacketed

quench zone to control particle size. Through homogeneous nucleation, the monomer

forms clusters of Ti02 anatase. After this point, the particles grow by heterogeneous



condensation of Ti02 vapor and by coagulation. The controlling mechani m i th

subject of some controversy, as discu ed in the Literature Review. A portion of these

particles will remain anatase, the rest are transformed to rutile. The condition that

determine transformation rate are the subject of controversy, as well. The rutile

crystalline structure is thermodynamically preferred, and is stable at all temperature . The

chloride process is a preferred production means because it produces particles that are

typically all within the 0.1-0.2 particle size. After milling, the final pigment-quality

particle size is typically in the 100-1000 micron range.

One of the major drawbacks of the chloride process is that reactors hi torically

have issues with scaling, and eventually plugging, by Ti02 on the reactor surface (Powell,

1968). A common problem is particle deposition on the wall of the initial section of

reaction tube, immediately downstream from the TiCl4 injection spool.

0/

Figure 1-1: Diagram of Ti02 reaction zone

The ultimate aim of our research is to eliminate this deposition. This, in tum, would

eliminate the costly process of scouring reactor tubes during TiOz production runs

(Kronos 1988, du Pont 1993, du Pont 1994). Generally, our research has a twofold
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purpose: cost reduction and increased production capability, and the study of depo ition

mechanisms in high tem.perature aerosol combustion reactors.

Many reactor designs, claiming to eliminate particle deposition, exi t in patent

literature, from the late 1960s to present day. Solutions to deposition range from knife

edged TiCl4 inlets that force the reaction to occur far down tream from the inlet

(Montecatini Edison 1973), to reactors that have chlorine product recirculated to the

reaction tube to cool the walls (Tioxide Group 1977). The validity of several of the e

patent claims are examined in this work, and their merit weighed against their feasibility

of implementation.

The technique utilized to analyze reactor configurations was CFD modeling. Thi

represents the physical structure within a CAD-type program, and then this model is

"meshed" with a web of finite elements. The mesh is given boundary conditions, and the

software then solves the energy, mass, and momentum balances simultaneously to give a

two- or three-dimensional representation of conditions throughout the reactor including

velocity, temperature, and species concentration profile. The package used for the KM

project was FLUENT 5, with GAMBIT as the geometry/me h building software.
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Objectives

This thesis is aimed toward understanding method that eliminate deposition on the

walls of TiOz aerosol reactors. The following tasks must be performed to reach this goal:

1. Find patent literature that details reactors designed with the purpo e of

eliminating product deposition in mind.

2. Evaluate these patents based on scientific merit and theoretical reproducibility.

3. Run simulations of these reactors in FLUENT 5 to authenticate the patents'

claims.

4. Interpret these results and suggest variations or improvements to the designs that

might further optimize reactor performance.
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CHAPTERll

LITERATURE REVIEW

Introduction

This section begins with a review of the chloride process in general, with an

explanation of the reaction kinetics and particle growth mechani m. (While there i an

extensive library of infonnation on cWoride-process production of Ti02, much of it

contains conflicting theories on the particle growth mechanism. Several theories will be

examined.) The next section is an examination of literature related to particle deposition

in Ti02 reactors, followed by a review of related CFD modeling techniques. While there

are relatively few publications on CFD modeling of Ti02 reactors, there are more on non

reacting flows, and a few on chemical vapor deposition (CVO) in aerosol processes,

which will be presented as an analog. The final section is a review of patented reactor

setups and their effect on the reduction of scale buildup.

The Chloride Process

Powell (1968) describes the four steps in the chloride proces for Ti02production:

1. Solid Ti02 are is chlorinated, forming a mixture of gases. Thi i done in

the presence of a reducing agent, typically coke. The reaction is as follow :

Ti02 (s) + 2C (s) + 2Ch (g) ~ TiCl4 (g) + 2CO (g)

This is nonnally carried out in a shaft furnace at about 800° C and a pres ure

just slightly above atmospheric.

2. The solid product is separated from the TiCI4. The most troubling of these

are iron chlorides, which can condense from the reactor effluent onto

condenser tubes and foul the system.
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3. The crude TiC4 is purified. Even after the removal of iron, there are till

impurities in the TiC4 stream. The e typically include vanadium and ilicon

compounds. Purification techniques often involve reaction followed by

distillation or filtration.

4. Gaseous titanium tetrachloride is reacted with oxygen at high-temperature

(typically in the presence of a flame) to form solid titanium dioxide by the

following reaction:

TiCl4 (g) + 02 (g) ~ Ti02(s) + Ch (g)

Reaction Kinetics and Particle Growth

Theoretical models of powder formation in tubular flow reactors conform to four

general steps. First, monomer is formed by chemical reaction. Monomer concentration

then increases as the gas flows down the reactor. Saturation is reached, at which point

particles are produced by homogeneous nucleation. After this point, monomer is

consumed by particle growth and diffusion to the reactor walls.

Many studies have been devoted to determining the kinetic of the oxidation of

TiCI4, and the particle growth mechanism following. Pratsinis and Spicer (1998) defined

two pathways for this reaction to progress: the vapor phase reaction of TiCl4 and O2 to

form titania or oxychloride particles at the rate Rg , and the reaction of TiCl4 and 02 on the

surface of previously formed titania particles at the rate Rs. The overall oxidation rate i

then:

de- =-R =-(R + R )dt g s
(2-1)

where C is TiCl4 vapor concentration (mole/cm\ R is generally put into the form of a

first order rate equation:
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R=kC

where k is calculated from the Arrhenius expression:

k =ATfJ exp(-E / RT)

(2-2)

(2-3)

The values of A and E have been determined experimentally by Pratsinis et aI. (l990) and

Kobata et al. (1991). No exponential temperature effect was found in either study, 0 the

value of ~ is zero in both.

Table 2-1: Arrhenius Constants

Author II A E (kllmol)
Kobata et al. I 25 X 10.1 1.020 X 10'

Pratsinjs et al. I 8.26 X 104 8.88 X 10'

Pratsinis (1990) created an experimental apparatus that bubbled argon (Ar) carrier

gas through a TiCl4 boiler, after which the mixture met an O2 stream. The premixed

reactants were then sent to an alumina tube that was externally heated by a furnace. A

filter removed the Ti02 product, and the ga eous effluent was ent through an FrIR

spectrometer for measurement. These experiments were carried out at a TiC4

concentration of 2.5 X 10-5 mollL, and with O2 concentrations varying from 2.5 X 10.5 to

1.1 X 10.3 mollL. The experimenters found that when oxygen concentration reached a

10: 1 excess the reaction rate became half-order with respect to oxygen, with A=1.4 X

Pratsinis and his colleagues went on to propose a sequence of chemical reaction

for oxidation of TiCl4 and the formation of Ti02 powder. The first step is the thermal

decomposition of TiCI4, followed by abstraction. The abstraction step produces TiCh

radicals, which go through the same decomposition/abstraction steps to produce TiCh,



and in turn TiCl, radicals. Radicals fonned, in the e reaction can al 0 ab tract chlorine

from TiCl4 molecules

TiCl4 + TiClx~ TiCh + TiClx+1

(where x = 3,2,1,0). The radicals can also undergo disproportionation reactions, where

they exchange chlorine atoms. These radicals are oxidized to produce TiO"Clyoxide ,

which readily coalesce:

TiOkClx + TiOkCly~ (TiOkhC1x+y-n + nCl

where k =0,1,2, y =3,2,1,0 and n =1'00 _,x. Coagulation reactions proceed as follow:

(TiOk)iClx+ (TiOk)jCly~ (TiOk)i+jClx+y-n + nCI

Chorine atoms are continuously removed from the growing particle, so the final growth

step is the following:

(Ti02); + (Ti02)j ~ (Ti02)i+j

Kobata et al. (1991) developed an experimental setup consisting of a Mullite tube,

heated externally by a furnace, with a concentrically heathed nozzle at one end. Dried

oxygen flowed down the reactor tube, and gaseou reagent grade TiC4 wa introduced

through the nozzle. Gaseous N2 flowed through the sheath, blanketing the exiting TiCk

To determine the rate equation, 3 vol. % TiCl4 was introduced with oxygen, and the

chlorine product absorbed into a KI solution. Generated 12 concentration was determined

by titration, and the TiCIJ02 reaction rate calculated (the constants are listed in Table 2-

I).

Suyama et al. (1975) found that rutile formation increased at higher temperatures,

and at low and high oxygen concentrations, but varied little by TiC4 concentration. The

experimenters used two different setups to gather data: one introduced premixed dilute O2
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and TiCl4 into the heated reaction tube via a single inlet, and the econd introduced the

reactants separately such that they mixed at the highest temperature zone in the reactor.

The difference between the two methods of injection seemed slight, a curv of rutile

content for both methods varied similarly with changes in O2 content. The tearn went on

to deduce that the product particle size decreased with decreasing TiCl4 concentration,

increasing reactor temperature, and increasing O2 concentration.

Kodas and Friedlander (1988) derived a series of design equations for calculating

the properties of an aerosol formed in a tubular flow reactor operated at teady state.

While previous calculations were based on a growth model for dp « 0.065 JlIIl, many

pigments and powders used for ceramic parts have a diameter of roughly 0.5 ~m. Kodas

and Friedlander extended the previous calculations to account for larger particle size (up

to 10 ~m). The set of equations they derived calculates product size based off of four

controlling dimensionless parameters, L (a surface tension group), 8 (the average

residence time), E (a diffusion group), and R (the rate of monomer formation). In their

conclusions they note that laboratory studies on nucleation rate are required to tune

multipliers within the equations.

Akhtar, et al. (1991) studied oxidation of TiCl4 in a tubular aerosol reactor. They

found that increasing residence time, temperature, and TiCl4 concentration all increaed

Ti02 particle size. Rutile content was determined to increase with temperature, as well.

The authors foreshadow the next work discussed here when they note that interparticle

forces do not account for an increase of coagulation with temperature. Instead of

investigating the surface growth mechanism, the researchers applied a coagulation

enhancement factor to the calculation.
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Pratsinis and Spicer (1998) attempted to reconcile the urface growth v .

agglomeration argument by developing a model that accounted for botb. The model

assumes Ti02 monomer to be a perfect monodisperse aero 01, coale cing upon colli ion.

The particle concentration and volume derivative were olved via the following

equations:

dN =1- O.5{3N 2

dt
(2-4)

(2-5)

Where I is the nucleation rate, f3 is the collision frequency, NA is Avagodro' number, and

V J is the solid-state volume of the Ti02 molecule. Rs is the surface reaction rate from

equation 2-1. The first term on the right hand side of the equation is the nucleation term,

while the second is the surface reaction term. The above equations were solved

simultaneously with the equations for 1, {3, particle diameter, and surface area via the

DGEAR routine, and the results ploued over a range of initial TiCl4 concentrations and

temperatures and compared to experimental data. The comparison wa striking in that it

showed that, very clearly, surface growth was the dominant mechanism at higher initial

TiCl4 mole fractions (</J), and the value of </J where the mechanism switched increa ed

with temperature. The experimental data fit the graph reasonably. The authors

concluded that the model reconciled and explained the conflicts in the literature on

fonnation and growth of titania.

Deposition Mechanism

As the previous section illustrates, there have been several different theories on the

particle growth mechanism in Ti02 reactors. Accordingly, there are several different
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theories on particle scaling on the reactor wall. The ubject of controversy eem to be

the means of transport of product to the wall. Some theorie pre ented her cite

thennophoresis as the mechanism, and others cite Brownian Diffusion. Thermophoresi

is simply defined as "a tenn describing the fact that small particles suspended in a gas

will acquire a velocity in the direction of decreasing temperature" (Montassier et al.

1990). Freitas (1998) sums up Brownian diffusion thusly: " ....from time to time, a

suspended particle receives a finite momentum of unpredictable direction and magnitude.

The velocity vector of the particle changes continuously, resulting in an observable

random zigzag motion, called Brownian movement."

Kim and Kim (1988) developed an apparatus to study deposition from a particulate

high-temperature gas flow, and concluded that thennophoresis effect was the cau e of

deposition for small particle sizes (dp < 15 ~), and particle inertia for larger particle

sizes. The experiment was perfonned by flowing solid Ti02 into a flat flame gas burner,

and collecting the spherical Ti02 particles on a cold Pt trip overhead. Optical inten ity

of a laser beam supplied incident to the strip measured deposition. The investigator

detennined a linear relationship to exist between deposition and wall temperature/bulk

fluid temperature difference (for dp < 311m), and developed a mathematical equation

representing particle mass flux at the wall:

(2-6)

The subscript w represents the wall value, m represents the value at the edge of the mass

transfer boundary layer, and e is the outer edge of the convection boundary layer. Le is

the Lewis number, aT is the thermal diffusion factor of the particles, and U is the fluid
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velocity parallel to the wall. The thermophoretic effect that is evident is the (Tg-Tw)ffw

term (the thermophoretic "suction" parameter). Stm i the local Stanton numb r at the

interface, and is augmented with a thermophoretic enhancement factor:

T T ill
St = (a Le) [~]~

m T W T
W ill.

Kim and his colleagues claim that this equation holds for particles of size such that

Sc« 1. At larger particle sizes, the therm.al terms drop out.

(2-7)

Montassier et al. (1990) investigated thermophoresis for particle sizes 0.05 ~m to 8

~m by developing an experimental device that flowed uranin, a flourescent aerosol, down

a deposition tube, which was then cut into segments and weighed. The study determined

that for small particle sizes (0.1 ~m< dp < I ~) the deposition was consistent with a

theoretical thermophoresis model, but at larger and smaller sizes, the relationship was

merely qualitative. Chang et al. (1990) created a device that passed silicon dioxide

(Si02) aerosol through a thermophoretic cell composed of a bras or porous stainIe steel

outer cylinder, and an inner cylinder of nichrome wire. They were able to induce

thermophoretic deposition of greater than 50% through variation in temperature gradient

between the inner and outer walls.

Okuyama, et al. (1992) attempted to develop a mathematical model of nucleation

and growth of particles in a laminar-flow Ti02 reactor. This did not evaluate

thermophoresis as a cause of axial dispersion, and instead classified it as the result of

Brownian diffusion. In turn, they developed separate mathematical models of mass and

number concentrations of monomers and polymer that are irrespective of temperature.

The reactor wall was treated as an adsorber, and the deposition fluxes calculated
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simultaneously with the mass and number concentration equation, mas balance, and

energy balance via the Crank Nicholson method. The results were compared with

experimental data, and they agreed. This is quite different from to the previou tudi of

Montassier and Kim. Okuyama did note though, that deposition of reactant vapor ,

monomer, clusters, and particles on the reactor wall were enhanced by low temperatures,

and interestingly, low feed concentration of the reactant, titanium tetrai opropoxide

(TTIP). What is also curious is that the amount of deposition was dependent on the

carrier gas, which was N2 or He. Okuyama presents the theory that this is a result of the

difference in diameter of the molecules of these gases. Because the helium molecule i

roughly three times as large as the nitrogen molecule, the diffusivity of a particle in

helium is about three times that of the particle in nitrogen. At a fast reaction rate, it is

difficult to say whether this would have an effect in our case without experimentation, as

the majority of particle growth occurs at the length of the reactor where deposition is

occurring. Seto et al. (1995) examined the effect of changing carrier gas on the intering

rate of titania powder and determined that there was no effect. The only ca e where

Seto speculated there could be effect were in porou particles (i.e. ceramic ) where

diffusion into the vacancies was dependent on diffusivity of gases in the solid phase.

Dekker, et al. (1993) investigated particle deposition, surface heterogeneou reaction, and

the structure of deposited powder in a titanium nitride (TiN) reactor. They decribe the

mechanism of controlled deposition of particles on a substrate layer as PP-CYD: particle

precipitation-aided chemical vapor deposition. An aerosol is formed at a high

temperature, and then particles are deposited on a cooled substrate via thermophoresis.

The PP-CVD process is further summed up in three steps: particle formation, deposition,
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and finally sintering. The paper goes on to briefly di cu a pos ible mechani m of

interest to this project, M-CVD, or modified chemical vapor depo ition, where the

substrate is the relatively cold reactor wall. This experiment differs from our y tern in

two main aspects. The aim in their study was to induce PP-CVD and gain a de ired

deposition structure, and the substrate surface was a dead-end quartz tube, an idealized

surface for deposition. The authors go on to conclude that the activation energy of the

process indicates whether the deposition reaction is controlled by surface kinetics

(approximately 100 kllmol or greater) or Brownian diffusion (typically 10-20 kllmo!).

An important thing to remember is that while a heated reaction tube would appear

to be a simple means to eliminate deposition, the wall must be cooled downstream to

quench the reaction and control the particle size of the rutile product. Many of the

studies mentioned previously searched for means to promote particle deposition, making

them somewhat helpful to understanding the mechanism, but relatively bereft of

development of ways to avoid it. Elimination of accretion within the reaction zone doe

away with the need of injecting scouring agent there, allowing it to be injected further

downstream where it can act as a sink to cool the effluent.

CFD Modeling

CFD modeling is a technique of solving the energy, mass, and momentum balances

for a finite-element representation of a system. While there has been considerable

progress in the field within the last ten years, there has been precious little research into

Ti02 production through CFD modeling. Many of the sources cited here deal with

related processes that are pertinent by analogy.

lang et al. (1995) used a modified moment method to solve the Navier-Stokes,
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continuity, vapor-conservation, and general dynamic (coagulation, diffusion, reaction,

thermophoresis) equations for a Ti02 reactor. While moment method had been u ed

previously to solve for particle properties (Kodas and Friedlander 1988), thi newer

solution accounted for a non-isothermal axial temperature profile within the reactor (a 2d

model). Particle size and distribution were calculated for networks from 15,000 to

30,000 finite elements with TEACH and LSODE computation packages. These results

were used to evaluate the effects of particle size and distribution on TiCL. and O2 partial

pressures and reaction temperatures. The model was compared with the experimental

results of lang and Jeong (1995) and good agreement determined.

Harris et al. (1996) used three examples to summarize the current state of CFD

modeling of chemical reactors: a stirred-tank. reactor, an extruder, and a tubular reactor

with competing parallel and consecutive reactions. The third example consisted of two

reactants, A and B, mixing in a nozzle to form products C and D. The reactants and

products react selectively with each other to form products E, F, G, and H. The software

package CFDS-FLOW3D was used to evaluate the mean value (MV), extended eddy

breakup (EBU+), and probability density function (PDF) reaction models. Upon

comparison with plant data (which show that the majority substance leaving the reactor

should be D), the researchers determined that the EBU+ model is not adequate for

parallel reactions, as it calculated similar rates for each parallel reaction. This i due to

the fact that all reactions had very fast rate, so the model replaces the Arrheniu rate with

a rate proportional to the frequency associated with turbulent eddies. (The eddy

dissipation model in FLUENT 5 is used in the current research, and is valid as it is

applied to a single reaction. It will be discussed further in Chapter III.) The researchers
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went on to define the current limiting factor in CFD modeling of chemical reactor to be

computer resources. They defrned another current limitation as being the difficulty of

modeling multiple phases. (FLUENT 5 is capable of handling multiple fluid phases, but

does not have the ability to model a reaction that forms a discrete olid ph e from fluid

reactants.)

Stovall et al. (1997) used FLUENT, with the RG turbulence model, to examine a

theoretical high velocity flow profile for a coolant (D20) through a narrow channel with

an inlet blockage. The group also created an experimental setup whereby thermochromic

crystals on a diagnostic heater measured wall temperature and laser Doppler velocimetry

measured fluid velocity. The results were compared, and the group determined that

FLUENT was accurate for determining the span-wise and axial velocity profiles, and

provided a conservative estimate for heat transfer behind the inlet blockage.

The modeling of a creeping-flow zinc selenide aerosol reactor by Shay (1998)

served to determine the flow regime in the reactor, and whether or not there was

backflow present. Shay developed a 2d model of the reaction tube with nonreacting flow,

supplied kinetic expressions and empirical mass transfer coefficient , and performed runs

under a variety of flow conditions in FLUENT. Upon comparison with plant data for the

reactor, he determined the FLUENT results to be reasonable and valid, as the model

matched the plant data within the error limits of mass flow rate uncertainty. Shay went

on to determine optimal flow rates and nozzle diameters for the reactants. Foster (1999)

reached similar conclusions in his FLUENT modeling of the same reactor, and

additionally ascertained optimal reactant and carrier gas flow rates and temperature for

high yield.
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Nami et al. (1997) investigated metalorganic chemical vapor depo ition (MOCVD)

using the FLUENT package. The inve tigators developed a 2d model of an inverted

batch reactor for the growth of Ti02 film, with TTIP and H20 a precur ors. The team

modeled gas velocity, temperature profile, concentration of reactant gas, and mo t

notably, deposition rate. The model included the effects of radiation, conductive wall ,

thermal diffusion, and surface temperature of the deposition urface. Deposition rate was

modeled as a mass flux rate into the solid receptor surface, and not as a reaction.

Theoretical results were compared with experimental data, and concentration profiles of

reactants in the FLUENT model were relative to the film non-uniformity found in the

experimental results. These results were used to back-calculate an Arrhenius rate

constant for the surface reaction.

Warnecke et al. (1999) used CFD modeling to develop yield improvements for a

proplylene chlorohydrin (a propylene oxide precursor) tube reactor. This is a complex

process, as the reaction scheme involves multiple equilibrium, consecutive, and parallel

reactions (all of different order), as well as multiple phases.

Both one and three-dimensional models were solved in the study. The Id model

was solved with the program SIMULSOLV, and the CFD package CFX was u ed to

solve the 3d model. The group modified the CFX code with a FORTRAN subroutine to

calculate compressible two-phase flow with mass transfer in between the phases.

Because the reactor geometry in the study is relatively simple, the ld model coincided

with the more elaborate 3d model. When more complex reactor geometries were

examined as alternatives to the tube shape, the ld results were only qualitatively correct,

and could be used as initial guesses for the 3d model.
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Patented Reactor Designs

The basic theme for metal oxide reactor patents that claim to eliminate depo ition

is that they simply attempt to drive the reaction zone downstream from the TiC4 inlet,

and away from the reactor wall. This deters both suspected mechanisms for cale growth,

agglomeration or surface reaction at the wall. After searching through the patent

literature, it appears the most common means for preventing deposition is flowing an

inert gas, or chlorine, through or along the reactor wall. Some of the more weB-defined

examples of this will be described in detail.

Another repeated theme in the patents is the notion of "shielding" the TiCl4 vapor

from the O2 stream when it initially enters the reactor. This is done by surrounding the

TiCl4 inlet with combustion gas, though some examples suggest an inert.

Researchers at American Cyanamid Company (1967) patented a configuration

whereby TiCl4 and O2 reactants, either or both preheated with a plasma gun (3,000 to

12,OOO°C) and brought to turbulent flow, meet at a Y -angle from 25° to 160° in the

reactor chamber. As the authors made the angle smaller «50°), reactor plugging was

minimized.

The back of the reaction chamber (Item 25, figure II-I) was a hemispherical dome,

which, according to the authors, also served to eliminate deposition. The reactant inlets

were flush with the reactor wall, and the absence of any sharp turns eliminated backflows

and eddies that could lead to deposition. This claim is backed up by the fact that

installation of the domed end led to 3% of the product not being suitable for pigmentation

(particle size too large) vs. 8% with a flat-backed wall.
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Figure II-I: American Cyanamid Ti02 Reactor (from U.S. Patent # 3,328,126)

Cabot Corporation (1967) developed a reactor consisting of a series of concentric

frusto-conical tubes, with reactants and combustion gas introduced via tangential,

diametrically-opposed nozzles. Fuel gas flows through one of the conduits (Item 14,

Figure 11-2) into the outer annulus, while a mixture of O2 and TiCl4 flow through the

second conduit (Item 16, Figure 11-2) into the middle annuJu . The flows meet in the

reaction chamber (Item 12, Figure 11-2) and mix, still spinning. The patent recommends

an axial velocity between 75 and 350 ftis. Above that range, the flame become

extremely unstable.

The purpose of the tangential flow is simply to sweep the deposits off the ide

without the use of an inert. The authors reported that the apparatus "substantially

eliminated" accretion.
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Figure 11-2: Cabot Corporation Ti02 Reactor (from U.S. Patent # 3,351,427)

British Titan Products, now part of Huntsman Corporation, created a design in

1969 (British Titan Products 1969) that consisted of oxygen at 170°C entering the reactor

through an outer annulus (Item 56, Figure 11-3), and TiCl4 at 150°C introduced

downstream through a second annulus (Item 57, Figure ll-3). A wall separated the

annuli. Both reactants flowed into the reaction tube through small holes tapped in it

outer wall, and inside were met with the output of a plasma gun emitting argon at 11,000

K (directed through an orifice upstream, Item 51, Figure II-3), heating the mixture to

about 2000°C. Additional TiCl4 was fed in through axial inlets (Item 66, Figure II-3)

facing the secondary reaction zone. The patent does not give a run time, but claims that

all zones of the reactor were "substantially free" of TiOz accretion.

Though it is not used in any of the patent examples, there is an inlet to an

additional concentric spool (Item 65, Figure II-3) where a "purge" gas can be introduced.

The spool directs the gas along the wall of the reaction zone, where it acts as a sheath for

the primary reactant stream. The authors list the purge gas possibilities to be one of the
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reactants, an inert gas (argon or nitrogen), or most preferably a halogen (chlorine for a

metal chloride reactant).

Figure 11-3: British Titan Products Ti02 reactor (from U.S. Patent # 3,464,792)

Researchers at Cabot Corporation (1971) developed a five-step process to eliminate

deposition from TiCl4 oxidizer walls. First, the reactor effluent stream met a

recirculating stream of product gases, split off downstream from a baghouse filter, and

upstream from the chlorine recovery unit. This stream cooled the reactor effluent from

2000°F to roughly 800-1400°F. The resulting suspension was then passed through a

series of water-jacketed counterflow heat exchangers. At this point, the effluent

temperature was roughly 600°F, and a small amount of water wa injected into the

stream. The patent makes it clear that the temperature must not be sub tantially greater

than this, in order to avoid the formation of hydrogen chloride from H20 and Ch. Ti02

product was then removed in the baghouse, and the effluent ga recirculated to the fir t

step. The patent claims that when a production run was started without water injection

the efflux temperature from the two heat exchangers increased from 580°F to 800°F for

the first, and 300°F to 500°F for the second over a period of four hour . After that point,

water was injected, and the efflux temperature from the first heat exchanger initially

dropped to 600°F, and then went to 590°F over the course of 16 hours. For the second
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exchanger, the temperature initially dropped to 320°F, and then went to 290°F over the

course of 16 hours. The patent does not make mention of product Ti02 structure, but

mentions that for an effluent stream of 5,000 lb/hr Ti02, 45 lblhr of titanium chloride

and 20 Ib/hr of aluminum chlorides come out.

Swirling flow was utilized in a series of patents assigned to Montecatini Edison

S.p.A. (1971,1972). Premixed TiCl4 and O2 entered the reactor through an annulu

where they meet an undisclosed "swirl device" (Item VI, Figure TI-4). One would

speculate that this device is a baffle or an irregular wall of some sort. A central axial

inlet introduced 02 for carbon monoxide (CO) combustion (Item T, Figure II-4),

surrounded by a CO annulus, again with a swirl device (Item V2, Figure II-4). Item C3

in the diagram is O2flowing through an outermost annulus, which the patent claims

"surrounds, like a film, the outer walls of the burner to prevent the formation of crusts on

the outside of the terminal part of the burner." (Montecatini Edison 1971) The walls

were also externally jacketed with a thermostatic liquid, presumably water. A the

diagram shows, a recirculating reaction zone is formed (Item R, Figure II-4), which

amounts to a common reaction zone for both CO combustion and TiCl4 oxidation. The

patent gives optimum dimensions and flow rates to maintain thi recirculation in the

"example" section.

"

Figure TI-4: Montecatini Edison Ti02 reactor (from U.S. Patent # 3,552,920)
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Titangesellschaft Corporation designed a reactor (Titangesell chaft 1972) that

introduced all the oxygen for TiC14 reaction with combusting CO and oxygen, and

brought in TiCl4 via rotating jets sheathed with CO. The CO sheath ideally created a

circular flame, which would force the reaction of TiCl4 and O2 down tream to a

predetennined reaction zone. The deposition deterrents of the patent are the tangential

injectors on the reaction chamber wall, which introduce cold inert gas tangentially to

essentially "sweep" deposits off (See Item 27, Figure ll-5). The example gas given in the

patent was air at room temperature. The patent does not give the run time of the

example, but claims that the chamber wall and gas-permeable plate were "largely free" of

Ti02 deposits after the run.

--

-

Figure II-5: Titangesellschaft Ti02 reactor (from U.S. patent # 3,647,377)

Montecatini Edison S.p.A. designed a similar type of reactor (Montecatini Edison

1973) and stated that the arrangement of reactant inlets avoided premature reaction
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between TiC4 and 02, thereby eliminating deposition. The inventor discount one major

aspect of earlier designs like the Titangesellscbaft reactor: the introduction of TiCl4 into

the area where there is unbumt carbon monoxide. This is for two reasons, the first being

that TiCl4 is a strong combustion inhibitor, causing a lower mixing temperature and

slower oxidation. Secondly, the uncombusted CO promotes rechlorination of Ti02,

giving decreased yield and poor particle size distribution. The solution proposed by the

inventors was a tapered TiCI4 inlet that extended past the combustion zone, downstream

from the CO inlets surrounding it. The views in Figure 11-6 are a cutaway side view, and

an axial upstream view of the reactor, respectively.
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Figure II-6: Montecatini Edison Ti02 reactor (from U.S. Patent # 3,764,667)

The TiCl4 inlet is ringed with spacers, seemingly for the purpose of choking down the

flow and pushing the reaction further downstream. These were added in the third of the

three examples in the patent. Another embodiment mentioned by the inventors, but not

given in an example, is the same configuration, but with a stream of nitrogen (N2)

interposed between the CO and TiCl4 outlets. They mention that this could have major
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drawbacks; most importantly it would contaminate the chlorine gas leaving the reactor,

which is typically purified and recirculated to the Ti02 chlorinator.

In the example, 02 is heated to 750°C, CO to 400°C, and TiC4 to 500°C. The

reaction temperature is stated to be about 1500°C. The patent claims of an 18-hour run

time without plugging, but a 25-40% percent number coefficient of particle size, which is

broad.

A simpler approach slowing the mixing of TiCl4 and O2 is the idea of a "turbulent

wake" burner (American Cyanamid 1979). Oxygen flowed through a centerline inlet and

through a diffuser screen (Item 6, Figure II-7) to force a flat velocity profile. TiCl4

entered through a slotted conduit, (Item 4, Figure II-7) and mixed with 02 in the turbulent

wake from the oxygen flow over the conduit. (The patent specifies a Reynolds number of

at least 50 for the oxygen flow, based off the conduit diameter.) The wake slows the

contact of O2 and TiCI4, and presents flashback of product upstream. Oxygen is supplied

-I-~·- - .- .~ .. _- -
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in excess so an unreacted portion can sweep the reactor waIJs.

a. b.

Figure II-7: American Cyanamid Ti02 Reactor (from U.S. Patent # 4,170,630)
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The patent does not have an example section, so some aspects of the reactor are not

detailed. Most notably, there is no description of how the oxygen i heated and reaction

zone temperature maintained. Sizing for any of the components is not supplied, either.

Tioxide Group, Ltd. designed a reactor (Tioxide Group 1977) that eliminate

deposition by passing an inert gas (or oxygen) through an outer annulus around the

reaction-completion tube and making the wall of the reaction-completion tube porous

(Item 22, Figure II-8), so the gas can transpire through it. This serves a two-fold purpose,

as it eliminates accretion and at the same time cools the reactor wall. In the example, a

mixture of argon arc-heated to 10,000 K and oxygen were introduced through the porous

wall of the preconditioning zone (Item 7, Figure 11-8). Premixed aluminum chloride (a

rutilization agent), O2, and TiC14 at 175°C were introduced through the outer perforated

jacket of the reaction zone (Item 11, Figure 11-8. Items 12-17 in the figure are crimped

disks which distribute the flow). Oxygen flowed through the reaction-completion tube'

porous wall and maintained a wall temperature below 500°C throughout the run. After

25 minutes of operation, the experimenters found "little accretion" in any zone of the

reactor.
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Figure II-8: Tioxide Group TiD2 reactor (from U.S. patent # 4,013,782)

Another theme that runs through several recent patents is the scrubbing of the

cooling tube wall by recirculating larger (above 150~) TiD2 particles (Kronos 1988, du

Pont 1993, du Pont 1994). The advantage of this is that TiD2 particles do not

contaminate the raw pigment, and no low melting eutetics are formed. This technique is

costly, and with tighter particle size distributions there are not an appreciable amount 01

large Ti02 particle present with which to scrub. This, along with flexing the reactor wall

to break up the accretion (Cabot 1965), and sonication of reactant gases (Cabot 1970)

amount to "brute force" methods of removal will not be examined here.
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CHAPTER III

ANALYSIS OF PATENTED REACTOR CONFIGURATIONS AND MODELING
TECHNIQUES

Introduction: Selection of Patents

The patents chosen for analysis in were the following: Cabot Corporation's reactor

with tangential reactant and combustion gas injection (Cabot 1967), and Montecatini

Edison's reactor with a knife-edged TiC14 spool (Montecatini Edison 1973), both

discussed in Chapter II. The main reason for selecting these reactors is that they both

claim to eliminate deposition without the presence of an inert gas. This is important, as

the presence of inert in the effluent stream would require larger equipment to obtain

undiluted chlorine for recirculation (Montecatini 1971).

In addition to examining the deposition reducing effect of these configurations, a

patent from Kranos USA Inc. (Kronos 1993) will be examined. This patent was chosen

because it is a good general example of an industrial scale apparatus.

Analysis of the Kronos Ti02 Preheater from U.S. Patent #5,196,181: A "Trial Run"

a. (side view) b. (back view)

Figure III-I: Kronos Reactor (from U.S. Patent #5,196,181)
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While this patent does not directly claim to reduce deposition, it serves as a good

model to test physical property calculation schemes. The conditions supplied in the

patent also put the flow in the turbulent regime, the only example of turbulent flow in this

work.

In this setup, oxygen flows into an annulus through four semi-circular inlets (Items

16-19, Figure Ill-I), and then into the preheat section with an axially directed toluene

(C7Hg) burner (Item 14, Figure Ill-I). The patent goes into detail describing the shape of

the preheat section and the oxygen annulus, as it claims the oxygen forms a protective

"film" on the surface of the refractory lined preheat section. The inventors purport that

this film enhances the life span of the refractory material.

Items 28 and 29 in the drawing are TiCl4 inlets. While a two-dimensional

representation is supplied in the "Drawings" section of the patent and a rna s flow rate is

supplied in the "Examples" section, the number of inlets is not given. This leaves the

parameter open to experimentation to determine the likely optimum number of inlets to

provide the best mixing scenario, and at the same time attempt to eliminate backflow.

The patent does not describe the geometry downstream from these inlets, so a reaction

tube in the shape of an inverted cone was added. This is a common shape for

downstream section from the TiCl4 inlets in much of patent literature. Cabot Patent #

3,351,427 (1967), Cabot Patent # 3,322,499 (1967), and Pittsburgh Plate Glass Patent #

3,356,456 (1967) are good examples. The following diagram shows the initial reactor

geometry used for the FLUENT simulation.
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Figure IIl-2: Initial GAMBIT Geometry of Kronos Reactor with 4 TiC4 Inlets (from U.s.
Patent #5,196,181)

To accelerate the iteration process, and to address issues of asymmetry within the

calculated results, this geometry was cut into a quarter, and each cut treated as a

centerline in the FLUENT. The following figure shows the final geometry used for

calculation.

Figure 1II-3: GAMBIT Geometry of Kronos Reactor with 4 TiCl4 Inlets (from U.S.
Patent #5,196,181) Used for Calculations

Several assumptions and simplifications were made to implement this model:
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1. As mentioned previously, a reverse-frustum reaction chamber was added, with

a small-side diameter of 480 mm (same as the TiCl4 spool), and a large ide

diameter of 560 mm. The tube is 2 m long.

2. In lieu of a toluene combustion reaction (C7Hg + 902 ~ 7C02 + 4H20), the

toluene burner is approximated as a velocity inlet, emitting carbon dioxide

(C02) and water (H20). This shortens the time per iteration, as there are not

two reactions with O2 as a reactant, one rate dependent on O2 concentration.

3. The reactor is approximated as adiabatic. This is only an assumption for the

bricks.

of interest to this work, and would just complicate the calculations.

refractory material, and insulated with 180 mm total thickness of insulating

STP

1223 K

723 K

Tem eratureFlow Rate
C7H 90 Uhr (liquid) with 170 Nm /hr O2

o 101 m/s

TiCI 12.5 tlhr (99% pure)

reaction chamber, as the patent states that the entire preheat zone is lined with

4. H20 and Cb in the effluent do not react to form HCl. This reaction is not really

The patent contain two separate examples, the first is for a con tant-diameter preheat

chamber, and the second, the one used in this work, gives the dimensions and boundary

in Table III- I, and the boundary conditions used in FLUENT are in Table 1II-2.

conditions for a variable-diameter preheat chamber. The given boundary conditions are

Table IlI-l: Boundary Conditions Given in Kronos Patent 5, I96,181, Example 2

--
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Bounda T e Value Temperature Turb. Intensity Length Scale
C7He burne Mass Flow Inlet 80.28 kg/h 2873 K 1% 3.675 mm

O2 inlet Velocity Inlet 101 m/s 1223 K 5% 4.2mm
TiCI4 inlet Velocity Inlet 85.84 m/s / # of inlets 723 K 5% 4.2mm

(Toluene burner is 81% CO2, 19% H20 by mass)

Table ill-2: Boundary Conditions Used with FLUENT Simulation of Kronos Patent
5,196,181

Length scale (I!.) is calculated for this system and for all following systems by

£ =0.07L (III-l )

from a heuristic provided in the FLUENT User's Guide (1998). L is the relevant inlet

dimension, either width or diameter, depending on the shape of the duct. The intensity

value of 5% represents full turbulence development at the boundary, which is reasonable

in this case, as the Reynolds number in the O2 ducts and the TiCl4 ducts are calculated to

be 50,000 and 190,000, respectively.

The patent is relatively detailed in its description of the preheat zone, giving the

diameters of every part of the chamber. These are tabulated in Table III-3. The

adjustable parameter for this case was chosen to be the number of TiCl4 inlet , which is

not specified in the patent. The only supplied parameters are the mass flow rate of TiCl4

(see Table 1II-2), and the inlet diameter.

Section Diameter Length

214 mm

118 mm'

300mm

60mm

128 mm"
72 mm"

475mm
1 mm

480mm

480mm
480 to 640 mm

640mm

640 to 480 mm
60 mm

60 mm (cylinder halved axially)

30mm

16 and 1

2

2
2

28 and 2
(" = Length measured from schematic, "" =Length for both is 200 mm, length of each measured from schematic.)

Table 111-3: Section Diameters for Items in Figure III-I and Corresponding Length
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Three different numbers of TiC4 inlets are used to detennine the optimum

arrangement to eliminate backflow: 2, 4, and 8. Total mass flow rate wa convened to

velocity based on the density at the TiCl4 inlet temperature, giving a total calculated

velocity of 85.84 rn/s for a single, 60 mm x 60 mm square duct inlet. This was simply

divided by the number of inlets to give the boundary condition for the simulation.

Analysis of Montecatini Edison Patent # 3,764,667

The Montecatini reactor, previously discussed in chapter II, has multiple oxygen

inlets, with the outermost inlet flowing O2 along the outer reactor wall (see Figure II-5).

As will be shown in the results, this oxygen remains mostly unreacted, shielded by a

stream of hot CO2 from the combustion of CO gas. This is a benefit that is not disclosed

in the patent, but likely plays a large role in the prevention of deposition.

The adjustable parameter chosen for this case is the tapering angle eof the inner and

outer walls of the TiCl4 annulus (see Figure 1II-4). The patent specifies a range of 4-20°,

and values over that range were examined in this work. The patent also specifies that the

inlets protrude in a range of 0.3 to 0.6 times the reactor width beyond the CO jets. In this

work, this length is exceeded for the 4° taper. This is purposely done to examine the

significance of this ratio.
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Figure 1II-4: Detail of TiCl4 Annulus for Montecatini Patent 3,764,667, Side View

Several assumptions were made to model the reactor geometry given in the patent.

They are as follows:

1. The tapering angle of the inner side of the TiCl4 annulus was assumed to

begin at the same axial coordinate as the opening of the CO annulus into the

reaction chamber.

2. The width of the inner wall of the TiCl4 annulus was based off triangulation of

the given eand length values for the wall. The width of the outer wall was

gained by measuring the inner/outer widths off the schematic, and scaling to

the triangulated inner wall value.

3. CO annulus openings were assumed to be 0.1 mm "pinholes".

4. There is no aluminum chloride (AICI) included in the TiCl4 injection. (The

patent lists a 1% composition of AICI3, but it is injected solely as a rutilizing

agent. This work does not encompass particle growth, making it meaningless

to include.)

The thlrd of three examples given in the patent lists the following known parameters:

I. Inside diameter of the TiCl4 inlet ring is 32 mm.
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2. Reactor length is 800 rom.

3. Reactor diameter is 61 rom.

4. Axial distance from the bottom of the CO spool to the bottom of the TiC4

spool is 27 rom.

5. The TiCl4 inlet is 2 mm wide.

6. Each TiCl4 ring spacer is separated by 2.5 mm OD.

7. There are 25 TiCl4 jets created by the spacers.

8. There are 8 jets on the inner CO tube, and 40 jets on the outer CO annulus.

Using this infonnation, a 3D model of the reactor was created in GAMBIT, the

geometry-building software bundled with the FLUENT package.

02

co

02
co

61 mm

02

Figure III-5: Side view of GAMBIT geometry for Montecatini Patent 3,764,667

Progress with this model did not extend beyond creation of the geometry, as creating grid

interfaces between the CO jets and the open reactor zone proved infeasible. This is
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because FLUENT cannot fonn a grid interface between one face and more than one

opposing face, an issue that will likely be addressed in future version of the software.

While using the current version, further investigation into the 3D model of this reactor

should involve attempting to fonnulate a system of subvolumes to allow this model to

function.

To continue forward, a 2D model of the reactor was created, and was used to carry out

all FLUENT runs. The following figure illustrates the geometry created in GAMBIT:

Figure III-6: 2D GAMBIT Geometry of Montecatini Patent 3,764,667 (8=8°)

The bottom of the diagram represents the centerline of the reactor. 2D reactor models

were made for five separate 8 values: 4, 8, 12, 16,and 20 degree. The table below give

the values for hi and h2, as shown in Figure m-4, calculated for each 8. The width of

each annulus wall was held constant.

27.0

20.2

20 15.8

Table II1-4: TiCl4 Inlet Geometry for Each Montecatini Patent 3,764,667 Reactor Mode~
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All geometries were analyzed using the same boundary conditions. Velocity values

were calculated from volumetric and mass flow rates given for each inlet in the third

example of the patent, using density values for each inlet temperature (see Table A-I).

...

TiCI

Total flow rate

7.5 Nm3/hr

15 Nm3/hr

87 kglhr

Tern erature

400 DC

750 DC

500 DC

Table UI-5: Boundary Conditions Given in Montecatini Patent 3,764,667, Example 3

Bounda T e Value Tem erature Turb. Intensit

Inner CO Inle Velocity Inlet 8.41 m/s 673 K 5% 0.87 mm

Outer CO InIe Velocity Inlet 8.41 m/s 673 K 5% 0.19 mm

Inner O2 Inle Velocity Inlet 20.51 m/s 1023 K 5% 0.13 mm

Middle O2 Inle Velocity Inlet 20.51 m/s 1024 K 5% 0.19 mm

Outer O2 InIe Velocity Inlet 20.51 m/s 1025 K 5% 0.14 mm

TiCI4 1nle Velocity Inlet 37.27 m/s 773 K 5% 0.14 mrn

Table 1II-6: Boundary Conditions Used with FLUENT Simulations of Montecatini Patent
3,764,667

The patent does not specify a TiCl4 supply ratio, but does specify a velocity range of

10-40 mfs for O2 and 20-120 mfs for TiC14. Stoichiometric ratio is 2.762: 1, inlet velocity

of TiCI4 vs. inlet velocity of 02. Assuming complete CO combustion, the required TiCl4

vs. O2 velocity ratio for stoichiometric reaction is J.X 1: I. The boundary condition given

in the example are almost exactly stoichiometric (1.84: 1).

All the reactor waJls were assumed to be adiabatic. This is done for simplification

purposes, and also because the reactor material and cooling methods are not specified in

the patent. The reactor model was given a length of 200 mm for the 12-20° tapers, 250
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nun for the 80 taper, and 300 nun for the 40 taper. These are all shorter than the 800 mm

specified in the patent, because trial runs showed that the great majority of the TiCl4

oxidation occurs immediately downstream from the TiCl4 inlet. This makes the region a

great distance downstream of little interest, as this is a region designated for particle

growth, which is not modeled in this work.

In addition to claims on configuration and flow rate ranges within the patent, it is also

claimed that the TiCl4 inlet protrudes into a zone of the reaction chamber where "only

oxygen and carbon dioxide are present" (Montecatini 1973). This claim is investigated in

this work, though only for validation of the combustion model.

Analysis of Cabot Patent # 3,351,427

This patent, previously discussed in chapter II, was selected for primarily the same

reason as the Montecatini patent. It also does not employ any inert gas, rather using

tangential flow of the product mixture through the reaction chamber to sweep the walls of

deposit. This reactor operates under an excess of oxygen (ideal outlet mole fraction for

example in the patent: 15.2%), the significance of which will be examined in chapter IV.

The GAMBIT geometry for the reactor is shown in Figures 111-7. CO enters through the

outer frustum, the TiCIJOz mixture enters through the middle frustum, and they meet at

the top of the apparatus. (The multiple rings at the top of the geometry in Figure 111-7 are

the edges of individual volume element, created to allow a high node density at the top

of the reactor. This is for better visualization at that zone, where the reactants meet.) This

is very different from the Montecatini patent, as the combustion and oxidation reactions

are intentionally occurring in the same space. The inner cone is the reaction tube.
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Figure 1II-7: GAMBIT Geometry of Cabot Patent 3,351,427

To develop the geometry and perform the simulations, several assumptions were

made:

1. The reactor is adiabatic. This is a large simplification, and was done for two

reasons. First, the addition of a heat transfer calculation for the reactor wall

led to divergence in the iteration process. Second, temperatures above -500

K tend to trigger the reaction of TiC14 and O2. Allowing heat transfer would

initiate the reaction before the mixture reached the flame front.

2. The inlet temperature of the mixture was set to 400 K. This was done for the

reason mentioned in assumption one, and also because it was found that,

because of the large amount of CO present, non-preheated reactants do not
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extinguish the flame. A temperature of 400 K is an approximation based off

mixing of O2 at 298K and reboiled TiCl4 at 588 K (600 OF), at a 0.27: 1 molar

ratio of TiCl4 to 02.

3. The walls are approximated as near-zero width. (Width =0.01 in.)

4. For simplification, the tangential inlets are set to 1/16" in diameter, same as

the width of the annuli.

5. The gap between the top of the inner cone and the enclosed top of the outer

cone is set to 0.1". This is an estimate based off the schematic included in the

patent (Figure II-2).

6. Inflowing CO is at standard temperature and pressure.

The patent's only variable parameter is the claim that the linear velocity of the

reacting mixture as it enters the reaction zone is between 75 and 350 ftJs (Cabot 1963).

The reason given for this requirement is that below 75 ftls, deposition of Ti02 on the

reactor wall was found to occur, and above 350 ftls, the flame became unstable. As will

be shown in chapter IV, the patent's sole example gives a velocity of 184.4 ftls.

To observe the effects of increased reactant flow rate on tangential velocities within

the reactor chamber, the flow rate of TiC14 was doubled and then tripled in separate

simulations. Accordingly, the oxygen flow rate was increased to a value that would

double and triple the excess amount, while still retaining the necessary stoichiometric

amount for CO combustion. Conversely, to examine the lower limits of the

recommended flow rate, the TiCl4 flow rate of the example was cut fivefold and tenfold.

The boundary conditions from the patent's example are shown in Table III-7; the

boundary conditions used in the simulations are hown in Table III-8.
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TiCI co

Unspecified Unspecified Unspecified

Flow Rate (s.c.f.h.)

Temperature

25 100 100

Table IlI-7: Boundary Conditions Given in Cabot Patent 3,351,427 Example

0.1 X TiCI4 Flow in Example Rate/Composition Temp. Turb. Int. Lenath Scale

Reactant Inlet 0.592 kg/h TiCI4 , 2.004 kg/h O2 400 K 5% 0.004375 in.

Comb. Gas Inlet 3.181 kg/h CO 298 K 5% 0.004375 in.

0.2x TiCI 4 Flow in Example

Reactant Inlet 1.184 kg/h TiCI4 , 2.19 kg/h O2 400 K 5% 0.004375 in.

Comb. Gas Inlet 3.181 kg/h CO 298 K 5% 0.004375 in.

1x TiCI4 Flow in Example

Reactant Inlet 5.91 kg/h TiCI4 , 3.689 kg/h O2 400 K 5% 0.004375 in.

Comb. Gas Inlet 3.181 kg/h CO 298K 5% 0.004375 in.
~

~~, l
2x TiCI4 Flow in Example ·· ~

Reactant Inlet 11.84 kg/h TiCI4 , 5.542 kg/h O2 400 K 5% 0.004375 in. )

Comb. Gas Inlet 3.181 kg/h CO 298 K 5% 0.004375 in.
.,
·.· ~..

3x TiCI4 Flow in Example
"·~
~ 1

Reactant Inlet 17.76 kg/h TiCI4 , 7.405 kg/h O2 400 K 5% 0.004375 in. : ~~
Comb. Gas Inlet 3.1'81 kg/h CO 298 K 5% 0.004375 in. •• ~ Ii

~

I' •

Table III-8: Boundary Conditions Used in FLUENT Simulations of Cabot Patent .; .....~
3,351,427 ~ ) ..;~

As for all examples, physical properties and calculation techniques are detailed in

appendix A. Initial runs using kinetic theory to calculate viscosity and thermal

conductivity with Lennard-Jones parameters did not converge, so constant values were

calculated for these, based off inlet temperatures for reactants, and reaction temperatures

for products. (They are tabulated in Table A-5.) This is a reasonable assumption, as the

eddy dissipation reaction model assumes that mixed reactants react immediately.
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CHAPTER IV:

RESULTS OF CFD MODELING

Introduction

This chapter contains information gained from computational fluid dynamic (CFD)

modeling of three separate patented titanium dioxide (TiO:d reactors from Cabot

Corporation (1967), Kronos Corporation (1993), and Montecatini Edison (1973). The

data are analyzed to first evaluate whether the CFD resuits agree with the claims of the

patent. The effect of variable parameters on the performance of the reactors is examined,

and the optimum value for each is determined.

While data taken from FLUENT simulation that is directly pertinent to analysis of

variable parameters is included in this chapter, there is additional data located in

appendix B that illustrate various factors in the reactors' performance.

Analysis of CFD Data for the Kronos Reactor

For each of the three sets of reactant inlets analyzed, the following criteria were

used, upon which the strength of each configuration was based:

1. Does the inlet configuration eliminate backflow, specifically the backflow of

Ti02 product?

2. Does the inlet configuration provide adequate and even mixing to give 100%

reactant conversion and consistent particle size?

3. In the O2 annulus, is the Reynolds number (Re) between 15,000 and 20,000 as the

patent states (Kronos 1993)? (For all configurations.)
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aT iguremore contr lied mixing, and flatter downstream concentrati pr file.

IV-l to igures IV-2 and IV-). Secondly, the high vel city pushe the

the area of the reactor wall immedi tely down trea from th inlet. . hi low r th

As the pr ious figur s and the f 1I0wing table (Table IV- ) iUu trate, the optimum

number f inlets appear t be two, f r two rea on . Fir t, the higher vel city f the

Ti 14 e iting the duct results in a oJIision and ddying f the two streams at the middle

of the reaction tube. T is channel xyg n t wards thi high- h ar ar a, allowing r

po sibility of crusting an eventually bloc age f the inlet. igure -12 thr ugh B-20,

in Appendix S, detail the r dial i02 concentrati n pr file immedi ely up tf am and

downstream from the Ti 14 inl ts.

In terms of the first criteri n, what Table IV-I shows is that due to the high

velocity of the iCI4 exiting the two inlets, there is little diffusional tran port or mjxing,

so the bulk of the reaction occurs farther downstream. Figure IV-7, when compared to

Figures IV-8 and IV-9 also indicates thi s very clearl y. When examining these, note that
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Again, the two inlet configuration appears to give the optimum results, The radial

mole fraction profile of TiOz is tight throughout the distance of the reactor, which

translates to consistent particle size. The reason the 4 and 8 inlet configurations do not

perform to this standard relates to the great density gap between TiCI4 and O2 (see

appendix A, Table A-2), Figures IV-8 and IV-9 also show a mole fraction higher than

ideal for TiOz. This is because a large part of the completely reacted mixture is made up

of Clz, at a 1.8: 1 mass ratio to Ti02, a mole fraction of TiOz higher than 14.7% says the

TiCl4 has not completely reacted. The high inlet velocity of the TiCl4 in the 2 inlet

reactor results in contact between the opposing TiCI4 streams, whereby they are dispersed

radially, perpendicular to their inlet direction. The dispersed TiCl4 reacts quickly, as is

evidenced by the high reaction rate behind the inlets at the centerline (Figure IV-4). The

4 and 8 inlet cases do not have a TiCI4 inlet velocity sufficient for the streams to collide.

Figures IV-10 through IV-12 below illustrate this, as well.
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Analysis of CFD Data for the Montecatini Reactor

For the five different titanium chloride (TiCI4) inlet geometries of the dimensions

in Table ill-4, three questions were asked:

1. Does the oxidation reaction occur far enough downstream to feasibly avoid

crusting on the TiCl4 inlet?

2. Does the reaction occur far enough away from the outer reactor wall to avoid

surface reaction or coagulation there?

3. Do the reactants mix well enough, and evenly enough, to ensure 100%

conversion and consistent particle size?

After perfonning FLUENT runs with each configuration, contours of TiCl4 oxidation rate

for each were examined. Figures IV-16 through IV-20 are close-ups of these contours.

The patent's merits are immediately apparent, as the reaction zone is removed from the

TiCl4 entrance by a small distance that grows visibly larger by the 9=8° configuration.

Conversely, the distance between the reaction zone and the reactor's outer wall (the left

side of the figure) grows smaller as 0 gets smaller. What is not apparent here is how

large a distance must be between the reaction zone and a growth surface to avoid

deposition. The one certainty is that having the zone of highest reaction rate immediately

on the nozzle or wall will lead to surface reaction on it.
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Figure IV-33: Ti02 Mole Fraction at Z02=O for 8=8°
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The mole fractions of reactant and product for an ideal plug flow reactor with

100% conversion using the given boundary conditions are the following: 26.0% Ti02,

52.0% Ch, 17,9% CO2, and 4.1 % O2. It becomes apparent from examination of Figures
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flow rate. The patent is unci ar n this, i ing nly a t tal v lumetric ow rate f 2

the reactor. ee ble III-5.) n summary, it could be possi le t get an even product

size range and reaction profile for this r actor, but It w uld require different v locitie for

each individual O 2 inlet. A go d place to start would be to halve the outer and middle 2

velocities whil doubling the inner O2 velocity.

As was mentioned in hapter 3, the pat nt claims to have complete combusti n of

carb n m noxid y the time the reactant mixture reaches the iCI4 inlet. diagram of

C reaction rate contours ( igure IV-40 compared with a corresponding diagram fC

concentrati n at Z02=O (Figure IV-41) for the shortest inlet (e =20°) show that it is not

necessarily true that there is no combustion occurring beyond the Ti 14 nozzle, and the
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Analysis of CFD Data for the Cabot Reactor

The inventors' claims for the Cabot reactor are direct, stating that if the linear

velocity as the mixture enters the reactor tube is above 75 ftls (22.9 m/s), deposition does

not occur in the reactor tube. The evaluation criteria are similar to the previous reactor,

with one change to accommodate the patent's claim:

1. Does the tangential injection of reactants creating a velocity> 75 ftls at the top

of the reaction tube sweep Ti02 product away from the reactor walls, most

notably in the reaction zone?

2. Do the reactants mix well enough, and evenly enough. to ensure 100%

conversion and consistent particle size?

For the five runs outlined in Chapter Ill, velocity at the mouth of the reaction tube

ranged from about 308 ft/s to just underneath the 75 ftls minimum. This is shown in

Table IV-5, with Figures IV-42 through IV-46 giving views of the inside of the reactors

and the velocity vectors.

Velocit
0.1 x Example 22.5 m/s (74.0 tus)

O.2x Example 22.5 m/s (74.0 tus)

1x Example 56.2 m/s (184.4 ftls)

2x Example 67.9 m/s (222.7 ftls)

3x Example 93.8 m/s (307.6 ftls)

Table IV-5: Average Linear Velocity at Reaction Tube Mouth for Multiples of Example
Ti CI4 Flow Rate
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From the charts, it appears that there is only a slight difference in the axial location

at which the spin ceases for each production rate. The real indicator of the significance

of the importance of the 75 ftls velocity limit would appear to be the axial location of the
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

For the two reactors with variable TiCl4 inlet geometry, both were very sen itive to

any changes made. While these geometric factors may not be the only keys to

eliminating deposition in chloride-process titanium dioxide reactors, it certainly play a

large role. Simulations of each of the patents did not verify many of their claims, but did

give credible results. Computational fluid dynamic (CFD) software packages, in thi ca e

FLUENT, prove to be an efficient method of analyzing flow regimes and reaction

kinetics within each of these reactors. The following sections give conclusions for each

individual design.

Kronos Reactor

The Kronos reactor gave optimum performance for each criterion with the two

TiCl4 inlet configuration. This case served a purpose in two regards: fir t, it validated

FLUENT as a calculation tool, second, it evaluated the claims of the patent. In regards to

the questions asked in chapter IV, the answers are as follows:

2 Inlets 4 Inlets 8 Inlets

Does the inlet configuration eliminate backflow? Yes No No

Does the inlet configuration provide even mixing? Yes No No

Is the Reynolds number 15,000-20,000 in the O2 inlet? No No No

Table V-I: Evaluation Criteria for Kronos Reactor Models
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The device described in the patent likely utilizes a single pair of TiC4 ducts. One

can only speculate about the Reynolds number issue, but in the high velocity, highly

turbulent flow within this reactor it is likely that the positioning of a bare-wire

thermocouple or other velocimeter would greatly affect measured velocity. This i

evidenced in the diagrams included in appendix B.

In addition to satisfying the purposes stated at the beginning of thi study, this

model served as a means to examine the deposition effects of TiCl4 flowed radially into a

plug flow of O2 in a tube.

Montecatini Reactor

Optimum performance for this reactor was achieved when f) is equal to 8°. All

nozzle configurations still had the same single problem in the end: with uniform oxygen

flow rates through each individual annulus, neither full TiCl4 conversion nor uniform

reaction rate can be achieved, and in tum, the reactor gives poor particle size distribution.

The claim that CO combustion is complete before the mixture reaches the mouth of the

TiCI4 nozzle falls to the same issue of O2 inequity.

These are issues that should be addressed in future work. Otherwi e, the reactor

lives up to the patent's claim; the reaction zone is away from the reactor wall and away

from the TiCl4 nozzle. This is a compelling and simple solution to the problem of

deposition. Assuming a 5 mm distance allowance for the wall, and a 10 mm allowance

for the inlet, the following table shows the results.
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9= 4 8 12 16 20

Does the reaction occur far enough downstream from
the TiCI4 nozzle to avoid deposition there? Yes Yes Yes No No

Does the reaction occur far enough away from the
wall to avoid deposition there? No Yes Yes Yes Yes

Does the reaction occur completely and evenly? No No No No No

Table V-2: Evaluation Criteria for Montecatini Reactor Models

Cabot Reactor

It is difficult to develop criteria for success of this reactor, as none of the simulated

production rates maintained tangential flow over the course of the reaction tube.

However, the deposition described in the patent at low velocities occurs in a zone where

it can cause "non-uniform mixing of the reactants through deflection or disturbance of

flow patterns of non-mixed reactants." (Cabot 1967). This would suggest that deposition

tends to occur near the mouth of the reaction tube, before the bulk of the oxidation can

occur. If this is the case, then the patent' claim of a 75 ftis velocity requirement at the

top of the reaction tube holds true. A single tangential injection of reactants al 0 has the

benefit of giving an even residence time and, in turn, particle size distribution for all of

the examined cases. Assuming an even radial TiOz mole fraction profile a the criterion

for lack of deposition, the following table shows the results of the evaluation.

0.1 0.2 1 2 3

Does the tangential injection of reactants sweep
Ti02 product away from the reactor walls? No No Yes Yes Yes

Do the reactants mix well enough to ensure
consistent particle size? Yes Yes Yes Yes Yes

Table V-3: Evaluation Criteria for Cabot Reactor Models
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Recommendations

One primary, universal goal should be the main point of future inve tigation for all

these reactors: the modeling of TiOzparticle growth. FLUENT allow the addition of

user-defined functions (UDFs) to the set of equations it solves for each cell. A good

growth model to use would be the work of Pratsinis and Spicer (1998) discussed in

chapter II. Their work addresses both vapor phase and surface reaction based on

temperature and reactant concentrations, and consists a relatively simple set of moment

equations for particle size.

Additionally, some effort should be invested into getting a converged solution

while applying multicomponent diffusivities to the mixture. It would be interesting to

compare those results with the approximations used in this work. (Discussed in appendix

A.)

As these works are all patents, and at one time or another proprietary information,

it is unfortunate that no recent experimental work on large scale TiOz production has

been perfonned that is public domain. It would be very useful to see more works

performed on the kinetics of TiCl4 oxidation in large-scale turbulent flow.

Kronos Reactor

Additional work on this reactor should include the addition of toluene combustion.

This was bypassed in this work by treating the toluene burner as a high-temperature

carbon dioxide and water inlet, which is a safe assumption. Some comparison should be

made between the combusting and non-combusting systems to determine how accurate

this approximation is.
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Kronos also has patented a cooling tube configuration that con ist of a erie of

modular conical tubes (Kronos 1986). The inventors claim a one-third reduction from a

cylindrical tube in the amount of scrub solids needed to prevent depo ition. It would be a

good idea to couple this reaction tube with the preheating section studied in this work and

examine the results. Additionally, calculation of heat flux across the reaction tube wall to

a water jacket should be approximated. The data from this work could be used in

conjunction with tabular data for water from any source, such as Incropera and DeWitt

(1996) to approximate the jacket as a counterflow heat exchanger and get a flux e timate.

Montecatini Reactor

Clearly, the most important work to be done on this model is to unequalize the

oxygen flow rate. While this is a small scale, laminar flow reactor, it has the potential to

be extremely useful if a set of proper boundary conditions may be determined.

This leads to the next step for the reactor, which should be the process of scaling it

up to a production-size model, and applying turbulent flow condition to it.

Cabot Reactor

This patent meets its claims in the cases tested. Like the Montecatini reactor, it

should be scaled up to a turbulent flow condition. Because of the succe s of tangential

flow, it would be a good idea to seek out further patents with a similar configuration.

The model should be augmented to include heat transfer between the walls. This

creates additional preheating of the reactants. It would be useful to under tand at exactly

what inlet temperature the reactants would combust in their entrance annulu ,and the

effect that a particle formation UDP would have on heat transfer.
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APPENDIX A

THERMODYNAMIC PROPERTIES, PHYSICAL PROPERTIES, AND
CALCULAnON TECHNIQUES USED IN FLUENT

To obtain solutions for the mass, energy, and momentum balances in FLUENT

computational fluid dynamics (CFD) software, the program must fIrst be supplied with

the appropriate properties for each molecule involved. FLUENT also requires the

selection of a reaction and flow models, mixture properties, and acceptable numerical

solver technique for all the balances.

To approximate the physical properties of Ti02 monomer, individual molecules are

treated as a single "grain" of solid with constant value for density, taken from the ASPEN

database (1999). The heat capacity value is taken from the same source, as it was the

only source available. For all other values, the particle is still treated as a gas.

The tables of densities below are tabulated for pressures of 1 atm. and 2.9 atm. The

first value is for the operating pressure of the Cabot and Montecatini reactor ~ the econd

is for the Kronos reactor. SpecifIc heat (table A-3) is independent of operating pressure.

Tem . K 298 400 SOD 750 1000 1500 2000 2500 3000 4000

CI 2.91 2.2 1.7 1.13 0.85 0.57 0.43 0.35 0.28 0.21

C 1.15 0.84 0.67 0.45 0.34 0.22 0.17 0.14 0.11 0.08

CO 1.8 1.36 1.06 0.7 0.53 0.35 0.26 0.22 0.18 0.13

0 1.31 0.96 0.77 0.51 0.38 0.26 0.19 0.16 0.13 0.1

TiCI 8.35 5.88 4.74 3.04 2.28 1.52 1.14 0.95 0.76 0.57

TiO Constant: 4250
Source: Quest Consultants (J 996) except Ti02• Aspen Technology (1999)

Table A-I: Density Values @ I atm. Used as Input in Simulations (kg/m3
)

92



Tem 298 400 500 750 1000 1500 2000 2500 3000 4000

8.28 6.31 4.96 3.33 2.48 1.63 1.21 0.99 0.85 0.64

5.24 3.87 3.08 2.07 1.54 1.01 0.75 0.62 0.53 0.4

2.22 1.6 1.28 0.85 0.63 0.41 0.31 0.25 0.22 0.16

3.74 2.78 2.24 1.47 1.12 0.74 0.54 0.45 0.38 0.29

29.4 18.4 13.85 8.92 6.64 4.36 3.23 2.66 2.28 1.71

TiO Constant: 4250
Source: Quest Consultants (1996) except Ti02, Aspen Technology (1999)

Table A-2: Density Values @ 2.9 atm. Used as Input in Simulations (kg/m3
)

Temp.
K 298 400 500 750 1000 1500 2000 2500 3000 4000

CI 484 499.9 510.8 523.4 529.9 604.3 896.7 1570.7 2789.9 7518.4
CO 1043.8 1049.8 1065.4 1126.6 1185 1122 535.4 -915.2 -3570.1 -13858.3

CO 849.1 940.8 1015.9 1150.1 1235.5 1404 1812.6 2753.6 198.89 11693.2

1947.5 1951.6 1986.9 2122.9 2285.7 2594 2784.7 2597.8 1991.7 -1185.5

919.7 945.1 973.6 1044.9 1091.2 983 399.1 -910.1 -3194.3 -11686.2

517.1 533.9 546.4 559 569.2 663.9 1073.5 2022.8 3741.8 10409.1

Constant: 905
Source: Quest Consultants (1996) except Ti02, Aspen Technology (1999)

Table A-3: Specific Heat Values Used as Input in Simulations (Jlkg-K)

Viscosity arid thermal conductivity for each component were calculated through

kinetic theory, where kinetic theory specifically means the Chapman-Engksog method for

viscosity Bird et al. (1960):

J.L = 2.6693 xl 0-5 JlfIT
a nil

(A-I)

where a is the characteristic length of each molecule, A and B, and Q is a dimensionless

function of temperature and the energy paramet~r (Elk) for the molecule. The value of a

and Elk (the Lennard-Jones parameters), where k is Boltzmann's constant, for each

molecule was obtained from the following correlations from Bird et aI. (1960)
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£ / k =O.77Tc

£ / k = 1.92Tm (J = 1.222v~.~ol.

(A-2,A-3)

(A4,A-5)

Tc K (J (A)

O
2

(1 154.59 49.77 119.03 3.5601
TiC14(2 638 45.99 491.26 5.8629
H

2
0(1 647.14 217.72 498.3 3.5082

CO(l 132.91 34.53 102.34 3.8239
CO

2
(1 304.14 72.79 234.19 3.93

C1
2

(1 416.9 78.87 321.01 4.2504

(J (A)

Ti0
2

(3) 3.3437

Sources: 1 - 78 th CRC Handbook of Chern. and Phys. (1997), 2 - Quest Consultants (1996), 3 
Subcommittee on Military Smokes and Obscurants (1999)

Table A-4: Lennard-Jones Parameters

Kinetic theory for thermal conductivity simply calculates k through an empirical

relationship with ~iscosity and specific heat values:

k = !2~ f.l[-±- C pM +!]
4 M 15 R 3

(A-6)

For the Cabot reactor, FLUENT could not come to a solution using kinetic theory; the

iterations consistently diverged. To get around this, constant values were calculated for f.l

and k of each component using kinetic theory, and those value entered into FLUENT.

The table below shows those values.
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k m-s k Jlkmol-k

400 2.859E-05 0.0270212

400 1.896E-05 0.0101217

298 2.041E-05 0.0212999

3500 7.242E-05 0.5870549

2500 6.204E-05 0.0974465

Table A-5: Viscosity and Thermal Conductivity Used in Cabot Reactor Simulation

HO J/k *mol SO J/k 'mol Ref. T
CO 1 -3.93E+08 213715.9 298.15
CO

2
(1 -1.11 E+08 197531.6 298.15

CI
2

(1 2816.454 222988 298.15
O

2
(1 0 205026.9 298.15

H
2
0 (1 -2.42E+08 188696.4 298.15

Ti0
2

(2,3 2397000 54332 298.15
TiCI

4
(2.4 2.49E+07 49322 298.15

Sources: 1- FLUENT database (1998), 2- Kerr-Mcgee plant data, 3-Aspen Technology (1999), 4- Quest
Consultants (1996)

Table A-6: Molecular Weight and Standard State Enthalpies and Entropies Used in
Simulations

Additionally, FLUENT requires specification of mixture propertie . "Mixture" in

this case implies all substances present in the reactor, reactive or not.

PropertY Calculation Method
Reaction Model Finite Rate / Eddy Dissipation

Density (p) Volume Weighted Mixing Law
Specific Heat (C,,) Mixin~ Law

Thermal Conductivity (k) Mass Weighted Mixing Law
Viscosity (J1) Mass Weighted Mi.xing Law

Mass Diffusivity (D) Constant Dilute Approximation

Table A-7: Mixture Property Calculations Used in Simulations

The reaction model in the table applies to both the combustion and TiCl4 oxidation

reactions. Fluent uses the reaction rate equation:
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!N "
R.. =M., R"k

I I I,

k=1

The finite rate component of the overall rate is calculated as follows:

" ......

R·, - k n [C ]'1'r,t
I,k - I.k j

/=1

(A-7)

(A-8)

FLUENT has the option of including third body efficiencies and backward reaction in

this equation, but neither is required in this work. (The subscript! denotes forward

reaction.) The Arrhenius rate constant k is calculated from the same form as equation 2-3,

Reaction Pre-exponential Factor AClivation Energy Temp. Exponent
(A) (E) kllmal (IJ)

TiCI4 + O2~ Ti02 + 2CI2 (I) 8.26 X 104 8,88 X 10/ 0
CO + Y202 ~ CO2 (2) 2.239 X 1O'~ 1.7 X lOIS 0

Source: I - Pratsinis ( 1992), 2 - R..UENT (1998)

Table A-~: Arrhenius Constants

The second component of the overall rate is the turbulence effect, calculated from the

eddy-dissipation model:

R"k =V"'k kM ..Ap~ mR

I, I, I kv' M
R,k R

I e 2tp nlp
R"k =V "k M.ABp --.,="----

I, I. I k ",\:"N" M
L../ V /,k j'

(A-9)

(A-lO)

This is also referred to as the Magnussen and Hjertager model (Magnussen and Hjertager

1976), The reaction rate is calculated from the equation of A-3 and A-4 with the smaller

value. mR and mp represent the mass fractions of a particular reactant and any product,

respectively. The elk factor is the inverse of the turbulent eddy time scale from the k-
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epsilon turbulence model, and A and B are empirical constants equal to 4.0 and 0.5,

respectively. In the finite rate/eddy dissipation reaction model, FLUENT calculate both

components, and uses the slower rate as the reaction rate.

The mixing law calculations performed for Cp, k, and J.l take the form

i'

(A-II)

where <I> is the mixture property. The volume-weighted form of the mixing law for

density is

1
P=--

I,ml'
j' Pi'

(A-12)

In early runs, multicomponent binary diffusion coefficients were used for the mass

flux equations, which were calculated with the Chapman-Engskog equation for

diffusivity (Bird et a1. 1960):

T\_l_+_l_)
M A M s

DAB =0.0018583 ~-.........;,;----::;,.-

paAB
2
0 D,AS

(A-l3)

O"AB and CAB are calculated from the arithmetic and geometric mean of the value for each

molecule, respectively. Preliminary runs were performed for each reactor studied,

utilizing a constant dilute approximation for the diffusion coefficient of all species.

Reactor Area-Weighted Average Temperature Operating Pressure

Cabot 1113 K 1 atm

Kronos 1067 K 2.9 atm

Montecatini 1876 K I atm

Table A-9: Average Reactor Temperature from Trial Runs
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The following tables of diffusion coefficients were obtained for each et of condition .

o
0.6902

1.0339
1.7572

1.4252

1.1684

0.2701602
0.7026795

0.5173573

0.3867824

TableA-IO: DAB (cm2s-1
) @ 1113 K, 1 atrn

0.0854498

0.2380853

0.1663926

0.1241583

Table A-II: DAB (cm2s· l
) @ 1067 K, 2.9 atm

0.7536373
1.7020325

1.2751016

0.9646221

Use of multicomponent diffusion coefficients, however, resulted in convergence

issues within FLUENT. Oscillating, non-converging residuals were obtained for species

concentrations and k and c values. As all coefficients obtained are within an order of
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magnitude of each other for each reactor, a constant dilute approximation was used based

on average multicomponent values for each case.

Reactor DAB (Const. Dilute Approx.)

Cabot 0.91557

Kronos 0.29836

Montecatini 2.09908

Table A-13: DAB for each case (cm2s- l
)

FLUENT uses the constant dilute approximation fonn of the binary diffusion coefficient

in the mass flux calculation:

am,
i;,,; =-pDi"/II~

ox;

(For Laminar Flow)

_ Ji, dm i ,
],.--(pD., +-)-

1.1 1,/11 S ::Ic, ox;

(For Turbulent Flow)

(A-14)

(A-IS)

Where Sc = JilpDt, and is the turbulent Schmidt number. Both the turbulent and laminar

cases are encountered through the course of this work.

In all cases involving turbulent flow in this work, FLUENT was configured to

calculate turbulent viscosity via the Standard k-e Model. The values of k and e are

calculated via the following differential equations:

Dk a [( Ji, Jak ]p - = - J.l + - -! + Gk + Gb - pe - YM
Dt ax; O"k ax;,
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(A-17)

The G terms represent energy generation from velocity gradient (Gd and buoyancy (Gb),

and YM represents the contribution from fluctuations in compressible turbulence. The C

terms are constants, and crk and cr£ are turbulent Prandtl numbers for k and e. The final

turbulent viscosity calculation is:

e
f.1r = pCJJ 

£

100
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