
Local Feature Relevance for Efficient Navigation

and Visualization of Large Data Sets

By

Peng Xiang

Bachelor of Mechanical Engineering

Nanjing University of Aeronautics
and Astronautics

Nanjing, China

1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
August 2002

Local Feature Relevance for Efficient Navigation

and Visualization of Large Data Sets

Thesis Approved: .

__---~A.~~
De~cmateCollege

11

.'

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my major advisor, Dr. Douglas

Heisterkamp. His careful reviewing for my thesis and constructive advice are very

important for the completion of the thesis. Thanks go to my committee members, Dr. G.

E. Hedrick and Dr. John P. Chandler. Their precious instructions are guarantee for the

success of this thesis. Thank you, Dr. Douglas Heisterkamp, Dr. G. E. Hedrick and Dr.

John P. Chandler. Their help is really appreciated.

Finally, I also want to thank my family. Their encouragement keeps me away

from laziness and depression. I also thank their love, without which I would give up long

time ago. My thanks also extend to my friends for their support and understanding.

III

· TABLE OF CONTENTS

1. Introduction '-" , 1

2. A survey of some visualization Representation of Data Exploration 2

2.1 Turn-Key 3

2.2 Data-Flow , 3

2.3 Spreadsheet-like Interface 4

2.4 Design Gallery , ,..4

2.5 Image Graph 5

J. Background 5

3.1 Distance Metric 6

3.2 Content-Based Image Retrieve (CBIR) , 6

3.3 Relevance Feedback (RF) , 6

3.4 Covarian.ce Matrix , , 7

4. Local Feature Relevance for Efficient Navigation and Visualization of Large Data

Sets 8

4.1 Design Analysis 8

4.2 Specific Methods 9

5. Performance Experiments , 13

5.1 Experimental Framework I3

5.2 Results and Discussion 16

6. Summary 17

References " 21

Appendix A Example code "" " " 22

IV

&

Portion 1.: Code for System Calculation 22

Portion 2.: Code for mapping process 30

Appendix B Glossary 41

v

LIST OF TABLES

Table 1. Framework for system background calculation l ~·l~ .::..r t..~ 14

Table 2. Classes for mapping process -----------------.---------~--,~--~--,~~-------~'-------------15

Table 3. Driver Programs --~-------------15

Table 4. Summary of the experiment -------------'-- 17

LIST OF FIGURES

Figure 1. Flow chart of implementation process -- 11

Figure 2. A selection-based dispersion ~euristic -------:---------------------------------------12

Figure 3. User-interface map -----------:--16
" I '

Figure 4. Practical operation 1--18

Figure 5. Practical operation 2--19

Figure 6. Practicaf operation 2--19

Figure 7. Practical operation 2--20

Vl

1. Introduction ."

AU

jl nrll<1

, .

, i

Both efficient algorithms and intuitive user interfaces are pretty useful to gain

insight from large, scientific data sets via visualization. A simple definition of (scientific)

visualization is the merging of data with the display of geometric objects through

computer graphics [5]. Visualization is important for its convenience and intuition in

analyzing large data sets. T.J. Jankun-Kelly and Kwan-Liu Ma already explored the

intuitive user interface that is a spreadsheet-like interface [18] to present and navigate

through the visualization of the data. That means the user can modify or navigate

parameters by a user interface. Design Gallery [8] and image graph [12], which adopt

different ways to navigate parameters by an intuitive interface. A different approach from

above all is provided in this thesis. We apply a weighting updating method to regenerate

image. Adapting the input vector parameters based on the user's feedback in the original
!

input space is the general idea of the method. The key point is that all of the navigations

are performed by system platfonn, which is hidden from user, and the only thing needed

is feedback from the user by clicking relevant images and irrelevant images. This system

includes several key elements: input vector is a list of parameters that control the

generation of the output graphic via a mapping process. The distance metric on the space

of input vectors approximates the perceptual similarity of the output spaces. The

dispersion of graphics is to present the user dispersed graphics through a perceptually

reasonable arrangement method that makes use of the distance metric. The end user need

only recognize and select appealing graphics from gallery.

A brief introduction of visualization of data will be given in section 2, and we are

going to give some background knowledge for our approach in section 3. The specific

approach at the algorithmic level will be presented in section 4. Section 5 introduces the

s=

concret,e ,experiment in detail. Section 6 is the summary of the thesis t , V{hioh includes

main contribution of our work and future work. Example code is presented in appendix

A, and glossary is in appendix B.

2. A survey of some visualization Representation of nata Exploration

First of aU, we should know what the purpose of visualization of data [6] is.

a. Harness perceptual capabilities of human visual system to extract information

from data sets.

b. Look for structure, features, patterns, trends, anomalies, relationships.

c. Provide a qualitative overview of large, complex data sets.

d. Assist mn identifying region(s) of interest and appropriate parameters for more

focused quantitative analysis.

Secondly, we would like to introduce some common terms for you.

• Visualization - the graphical (as opposed to textual or verbal)

communication of information (e.g. data, documents, structure).

• Interaction - a fundamental component to visualization which permits

user-specified modifications to the visualization parameters.

• Data model - representation of data, may include structure, attributes,

relationships, behavior, and semantics as well as repository for data values

themselves.

• Graphical attributes - user-controHable aspects of the image generation

process, including position, size, color, shape, orientation, speed, texture,

and transparency of graphical entities.

2

""

• Mapping - associating data values and attributes to graphica1 entities and

attributes.

• Rendering - creating and displaying an image.

• Field - a grid of data points, may be uniform/nonuniform.

• Scalar - a single numeric data value.

• Vector - a list ofvalues associated with a single datum.

2.1 Turn-Key

In traditional tum-key visualization, a user iteratively changes parameter va~ues

directly in order to search for the.desired result, see [18].

This trial and error process is inefficient and does not communicate context that

directs a user toward the goal. Once an acceptable visualization result is obtained, only

the final parameter settings and images are available to be recorded and shared with

collaborators; all previous results are lost.

2.2 Data-Flow

Data-flow interface represent the data exploration process by a directed network

of connected components. These components act upon the data sets or output of other

states to produce their final result(s). Each component in the network represents an

operation or transformation on the output of the previous step. Components can set

parameter values for subsequent visualization techniques, see [18].

Data-flow interfaces have a better state display than traditional turn-key interface

through the data-flow graph, and this flow graph can be shared with collaborators to

3

communicate the process needed to generate the final result, but one weakness of the

approach is that it does not indicate the history of the visualization process.

2.3 Spreadsheet-like Interface

The spreadsheet-like interface [18] represents a two-dimensional window into a

multidimensional visualization parameter space. Data is explored by navigating this

space via 2D spreadsheet interface. The visualization parametel' space is presented to the

user in a manner that identifies which parameters correspond to which visualized result.

Operations defined on this space can be applied which generate new results. Combined

with a general-purpose interpreter, these functions can be utilized to generate the desired

results. Like the Design Gallery and image graph, Spreadsheet-like interface consider

visualization exploration a process of examining a multidimensional space of parameter

values.

By visually organizing the data exploration process while providing tools to build

upon and share this process, spreadsheet-like interface makes visualization more efficient

and effective, but it complicates matters as it represents a multidimensional space. It is

difficult to force a 2D view on a multidimensional space.

2.4 Design Gallery

The Design Galleries system [8] considers data expl.oration a process of exploring

a multidimensional space of visualization parameters. The results a user desires exist

within this space. It is the system's job to aid in the discovery of the parameters that

correspond to the images. After a preprocessing rendering stage, the system displays a 3D

4

=

representation of the design space. A user then navigates this space to find the desired

images.

By replacing a trial and error approach with a struotured navigation of parameter

values, the system allows a more efficient exploration. Screen space becomes limited as

the number of different parameter settings increases. In addition, it is pre-computed j

global, and fixed sampling of visualization parameters.

2.5 Image Graph

The image graph system [12] fallows a similar structured approach. Unlike th~
•• j

DG system, image graphs are built dynamically instead of during a preprocessing stage; it
I

avoids preprocessing in favor of adding newly rendered images to an image graph. An

image graph is a graph representation of the visualization process that distinctly displays

the relationship between generated images via glyph edges. The graph is used to explore

the space of visualization parameters. As mare visualization is added, the graph structures

itself so that related images are clustered together. A user can manipulate this structure as

desired. Operations upon the edges and nodes in the graph can be used to generate further

result with the result itself. The user can take advantage of the information in image

graphs to understand how certain parameter changes affect visualization result. Users can

also share image graphs to streamline the process of collaborative visualization.

The interface is limited by its display and manipulation of a single data set at a

time. This prevents cross data set comparisons or operations.

3. Background

5

3.1 Distance Metric (,) . \.

:xc _

In 11:1<' 1.

The set of input attributes, for. which we, want to make a prediction about the

resulting output attributes, is caned the qlleio/, or query point. The fn-st step is to define

what is meant by similarity. We have to define a distance metric that'tells how close two

points are. The distance between two points ,(between their input attributes) in a scaled

Euclidean distance metric is defmed by: I \

dist(q,r)= ((q'-rY A(q-r)f (1)

where A is an identity matrix (a diagmtal ~atrix composed of ones) and q and r refer

to vectors of input attributes. Other distance metrics include Manhattan distance, and

Mahalanobis distance [2]. Scaled Euclidean distance works well for most cases.

3.2 Content-Based Image Retrieve (CBIR)

Typically, the content of an image can be characterized by a variety of visual

properties known as features. The key issue in Content~based image retrieval [14, 15, 16,

20] is how to match two images according to these computational extracted features. It is

common to compare images by color, texture, and shape.

3.3 Relevance Feedback (RF)

Relevance feedback is a technique to learn the user's subjective perception of

similarity between images,. It is the modification of the mapping process to improve

accuracy by incorporating infonnation obtained from prior relevance judgment. RF has

been used in CBIR, but has not been used explicitly in visualization of data sets. There

are two basic types of relevance feedback: (l) weighting updating [10, 11, 17, 19], and

6

f' !", .' (2) query point moving ill], or combine~ vers!0l{- [3]. In the weighting updating method,

the weights (parameters) associated with the similarity measure are updated based on the

feedback. In the query point moving, theque'ry Z is modified based on the feedback.

In this thesis, we consider the combined approach. In' probabilistic feature

relevance learning (PRFL) [9], retrieved images with relevance feed back are used to

compute local feature relevance. The relative relevance can be used as a weighting

scheme for a weighted k-nearest neighbor search (KNN):

(2)

where t is the number of samples with RF, " is a measure of feature relevance at query

Z and T is a parameter that can be chosen to maximize (minimize) the influence of

r, on WI. For further details, see [9]. Then we can get diagonal weighting matrix such as

(
WI' OJB= "o w

ll

(3)

which provides parameter on distA.B
2 which stands for the squared distance between

image A and B.

dis! 2(q,r)=(q-ry B(q-r)

where q and r are vectors corresponding to image A and B.

3.4 Covariance Matrix

Covariance matrix is represented as equation 5, and we can use it to calculate

Mahalanobis distance distM 2 (x) [2] of x from the mean vector m x' Equation 6 shows

the specific method.

7

=-

distM2 (X) = (x -mXr C~' (x - mX)

(5)

(6)

This matrix provides us with a way to measure distance that 1S invariant to linear

transformations of the data.

4. Local Feature Relevance for Effident Navigation and Visua.lization of Large Data
Sets

4.1 Design Analysis

This approach is to generate images rather than retrieve images from a large

database. The whole process is a cycle that is depicted in the flow chart (Figure 1). Input

is input vectors Q depicted in chart 1 of Figure 1. A modified dispersion algorithm is

used in dispersing images, because it is impossible to present all images to user. This

algorithm is modified based on DG dispersion algorithm. There are some differences

between them (See Figure 2 in detail). Since it is not necessary for user to be involved in

navigating parameters so that it doesn't require higher level of user's expertise, we design

a simple GUI (Graphical User Interface) for user to select his/her desired images (See

Figure 3 in detail). RF is explicitly used in visualization of data sets by this approach,

which applies weighting updating method in calculating weighting matrix. The central

idea behind the weighting updating method is simple and intuitive. Since an N

dimensional feature vector represents each image, we can view it as a point in an N

dimensional space. Then, the basic idea is to enhance the importance of those dimensions

of a feature that help in retrieving the relevant images and reduce the importance of those

dimensions that hinder this process [7]. A simple algorithm based on this idea was

8

_ ozx

described in the ImageRover system p7]. Query point moving method is ne.~essarily

used in this approach to direct user to the goal. In the beginning, we independently do

sampling for each dimension on modified space by standard normal distribution, after

that, covariant nonnal distribution should also be tried in sampling on modified space so

that we can compare their effects. A structure such as trainingSet is designed to save the

user's feedback (relevant or irrelevant images' information) during every stage. We need

to remember all selections of user so that user can reuse them and keep the history so that

user can go back to previous stage to reselect. Our code is designed to handle multi

dimensional vectors such as hundreds or more parameters of vectors.

4.2 Specific Methods

The whole process is de~cribed as following flow chart (see Figure 1). Let's

explain chart by chart.

The modified dispersion algorithm is adapted from DO dispersion algorithm and

is outlined in Figure 2. The dispersion method is used to find a set of input vectors that

map to a well-distributed set of output vectors in DO, whereas we want to find a well

distributed set of input vectors themselves. We disperse according to distance of input

vectors, and then it is necessary for us to modify the dispersion algorithm so that it can be

used in our approach. We calculate similarity (distance) between input vectors instead of

similarity of output vectors. The detail of modification is introduced in Figure 2.

W,e construct a simple GUI rendered with GL and implement mouse functi.on and

keyboard function to interact with user. Then take advantage of PRFL to calculate

weighting matrix. Project relevant vectors and irrelevant vectors R in new space so as to

get modified space.

9

•

(7)

First of aU we need to solve mean value and deviation of the vectors, m/ E R,

n

p = I-m,jn
;o=l I

n=lml

(8)

(9)

(10)

Then we tried to choose samples independently by stand~d normal distribution

for each dimension of a vector on this space. Covariance matrix method that takes all

impacts of all parameters of a vector into account is also tried. So a new set of vectors G

is generated on the modified space by sampling, then we disperse 20 vectors by modified
,

DG dispersion method and query point moving method. At last, project back to original

input space after that.

(11)

Query point moving method is also used in this approach. We use Rocchio

equation [4] whose parametersa,,B,y can be adjusted to get new query value.

(12)

(13)

where i ~ 0' and m j is vector of mean values for positive feedback, and n/ is vector of

mean values for negative feedback. Since we saved all relevant and irrelevant input

vectors in memory, an optional function is designed to decide if take the previous

10

relevant vectors or irrelevant vectors into account. Currently we display ten of the twenty

images by modified DG dispersion algorithm and other ten images by query point

moving algorithm. First, get new query point based on previous query point, and then we

sample ten points by standard normal distribution.

Input vectors D =AQ whereI Input vectors Q -------1
j ...
I

... A is identical initially---------2

Generate by sampling Dispersed by modified Dispersed by modifieda new set of vectors DG dispersion algorithm
G on the modified

DG dispersion
... and query point moving algorithm -------------3

space. -----------------8 method ------------------9

~

,r

Project vectors R in Project back to
new space so as to get original input space.
modified space. o =A -IT ------4

...
D =AR ------------7

~~

"Calculate weighting
Generate 20 small [mages User satisfied

matrix B by PRFL
~ and construct GUI to get ~I Exit---I J Ifrom RF (update A). feed back from user ------5

B = A TA ------ --6
II-

Data sets -------10 I
Figure 1: Flow chart of implementation process

11

Input:
L, a set of input vectors..
n < ILl, the si.ze of the selected subset

Output:
I c L, a set of n dispersed vectors.

Procedure:

Selection_disperse(L, n)
{

10(- Ll;

for i 0(- 2 to n do
{

p_scor,e 0(- -00;

fCH each q E L do

{
CLscor,e 0(- 00;
for each rEI do
{

ifdist (q,r) < CLscore then
CLscore 0(- dist (q,r);

}
if CLscore> p_score then
{

p_score 0(- CLscore;
po(- q;

}
Io(-IV{P}

L 0(- L \{ P }

Notes:
Ll denotes the random input vector in the set L.
\ denotes set difference.
dist (q,r) returns the value computed by equation 1.

Figure 2. A selection-based dispersion heuristic
(This is Modified version, which is cited from
DO [8]. The first difference, it begins at Ll rather
than O. The second, image_diff based on output
vectors is replaced by dist depending on dissimilarity
of input vectors.)

12

5. Performance Experiments . .'

5.1 Experimental Framework

Current implementation is in C++, using openGL [13]. The whole procedure is

divided into two portions, one is mapping process, and another is background calculation.

First of aU, select an appropriate subset of input vectors over the original input space.

Then, render with GL in back buffer, and copy back buffer into block of memory. Of

course, different input vectors create different visualizations, that is, they correspond to

different mapping processes.. W~ are going to try rendering circle and teapot in our

experiment. Of course, the code is ~esigned to be suited for multi-dimensional vectors.

After rendering, the final twenty images are going to be presented to user in reasonable

dispersion by the user interface. Because we don't want user adapt parameters by

himself, the only thing needs to do is to select the images that they want, we just need a

simple user interface like III =20 , which is arranged by 5 x 4 small windows (see

Figure3). It needs to be pointed out that ten of images are generated by moditled

dispersion algorithm and others are produced by query point moving method. Basically,

we define VECTOR in whose element's type is double to act as a vector, and will be

always taken as basic element in both portions. There expect are five classes in system

calculation portion (see table] in details). Mapping process includes two classes and

driver program (see table 2 and 3 in detail). The vector consist of four parameters in

rendering circle, the first one is hue, the second and third one are saturation and

brightness, the last one is radius of circle. Meanwhile, the vector is ten parameters vector

in rendering teapot, they are hue, saturation, brightness (the three are for material of

teapot), size of teapot, light location on x axis, light location on y axis, light location on z

13

, . axis, the angel rotation about x axis, the angel rotation about y axis, the angel rotation

about z axis.

Class Methods' Behavior
Name Name

Selection_di~perse Disperse vectors in reasonable way with modified DG
dispersion algorithm.

dist Calculating distance by equation 1.

mean Calculate mean values of a set of vectors, equation 8,
10 ..

Und deviation Calculate standard deviation of a set of vectors,
equation 9, 10.

selection Independently choose some samples on each
dimension by standard normal distribution.

transform M A set of vector project to modified space by
multiplying weighting matrix. This method is used to
implement right hand of equation 7.

T A set of vectors also needs to be projected back to
original input space. This method is to implement
right hand of the equation 11.

RF WM Get diagonal weighting matrix by equation 2.

bg cak 1. Retrieve the vectors based on relevant images.
2. Calculating weighting matrix depended on the

relevant vectors, equation 2 l 3.
3. Project to the modified space.
4. Solve mean and deviation values of the

relevant vectors and mean values of the
irrelevant vectors as weI] as out.

5. Sampling on the modified space (two ways),
equation 5 and 6.

6. Project them back to original input space.
7. Disperse ten of twenty input vectors by

modified DO dispersion algorithm and other
ten input vectors are selected by query point
moving algorithm, equation 12, 13.

Table 1: Framework for system background calculation.

14

I' (

','

Class I Methods' Name Behavior
Name I ,

colorconv HSVtoRGB I Convert from Hue-Saturation-Value color space
I to Red-Green-Blue color space.

Canvas ' setWindow Set parameters of the window
setViewport Set parameters of view port
getWindowAspect Get values of window aspect
lineTo Draw a line to a destined point
moveTo Move to a destined point ,

turn Turn a angle based on original angle
tumTo Turn to a destined angle
forward Move to or line to a destined point
ngon Draw a polygon of n edges

Table 2: Classes for mapping process.

Driver Program's Functions' Name Behavior
Name
circle mylnit Clear back ground color and set window

SIze
display Display circles and construct GUI
mouse Click left button to choose relevant

images, go to next stage or back to
, previous stage. Click middle button to

zoom out, click right button to zoom
back in.

keyboard Click Esc key to exit
getFeedback Get tnformation from user's operations

teapot mylnit Clear back ground color and set window
Size

display Display teapots and construct GUI
mouse Click left button to choose relevant

images, go to next stage or back to
previous stage. Click middle button to
zoom out, click right button to zoom
back in.

keyboard Click Esc key to exit
Table 3: Dnver Programs

15

o

"

" · \

Figure 3: User~interface map

Twenty small images will be shown separately 011 these twenty small windows.
When user click middle key on the target, the full-size image of the target will be shown
011 the screen. User can go back to old stages when he/she click 011 the "back" mark ¢:::I,

he/she can also go to next stage when he/she click on the "nexC mark q after chose at
least one relevant image, user can also take the previous selections into account by
clicking the middle circle mark, of course it is an optional function.

5.2 Results and Discussion

We present user 10 images with distance between two of them is as large as

possible by our modified dispersion algorithm, which makes user have as many as

possible choices, and present other 10 images by query point moving method. We tried

two algorithms in sampling on modified space, one is to choose sample independently on

16

each dimension by standard nonnal distribution, the other take advantage of covariance

matrix. Both of them work wen in our experiments. Query point moving method, which

directs user toward hislher goal, is appEed in our experiment, and it is verified to be

effective. On other hand, user can go back old stage to select again if current images are

not satisfied by the simple UGI. The approach is more flexible and the history of each

stage is saved in the memory so that they can be retrieved later. There are two resulting

examples showed in Figure 4 and 5.

Application Circle Teapot

Input vector Radius, hue
Material, size, angle,
light position

Table 4: Summary of the experiment

6. Summary

We apply a relevant feedback mechanism for navigation and visualization of large

data sets. In this approach, a PRFL measure is defined over the user's feedback and the

probabilistic method is applied in sampling m the modified space. The modified

dispersion algorithm is verified to be useful m spreading images, and query point

moving method work well too to direct user to the goal. The standard normal distribution

method used in independently choosing samples on each dimension also works well in

our experiment. We adapt input vector parameters based on user's feedback, meanwhile

save more useful information into training set so as to approach to user's idea quickly. By

navigating data in the background, our approach makes visualization simpler. The GUI

used in our experiment is easy to operate and easy to understand by user. We are going to

keep exploring more reasonable algorithms in section of system calculation so as to make

navigation of the large data sets more efficient in the future.

17

=

~" u ,,,"'j' -

Figure 4. Practical operation I.The top picture is a scenario for rendering circles and user
Choose four out of them (row 1, column 5; row 2, column 4; row 3, column 5;
row 4, column 5, from left to right, top to bottom), the bottom picture is the
result based on these choices.

18

2.0 plot for first 20 circles

-500 -300 -100 100

Hue,

300 500

Figure 5. This plot shows 20 input vector parameter values corresponding to top 20
images in figure 4. The four points (marked as asterisks) stand for input
vectors selected by user.

20 pilot synthesized result

-500 -300 -100 100

Hue

300 500

-----_._---_._---------------'
Figure 6. This plot shows 40 input vector parameter values corresponding to top and

bottom 20 images in figure 4. The 20 input vectors marked as triangles are 20
input vector parameter values corresponding to bottom 20 images in figure 4.

19

Figure 7. Practical operation 2 (The top picture is a scenario for rendering teapots and
user chose three out of them (row 1, column 2; row 2, column 2; row 3, column
3, from left to right, top to bottom), the bottom picture is the result based on
these choices).

20

REFERENCE

[1] C. Meihac and C. Nastar, "Relevance Feedback and Category Search in Image Database" Proceeding
IEEE International Conference, Multimedia Computer & System, Florence, 1999, Pages 512-517,
Volwne 1.

[2] Charles W. Therrien, "Decision Estimation and Classification - An Introduction to Pattern. Related
Topics" Jiohn Wiley & Sons, New York, 1989.

[3] Douglas R.Heisterkamp, ling Peng, H. K. Dai, "Feature Relevance Learning with Query Shifting for
Content-based Image" Proceedings International Conference on Pattern Recognition, September 3-7,
2000, Barcelona, Spain, Pages 250-253, Volume 4.

[4] David AGrossman, Ophir Frieder, "Information Retrieval Algorithms and Heuristics" Kluwer
Academic Publisher, Boston, 1998.

[5] Edward Angel, "Interactive Computer Graphics - A Top-down Approach with OpenGL" Addison
Wesley, Massachusetts, 2000.

[6] Georges Grinstein, "Introduction to Visualization: Vis '96 Tutorial #2" The MITRE Corporation and
Uni.v. of Mass., Lowell, The Institute for Visualization and Perception Research, 1996.

[7] Hong-jiang Zhang, Zheng Chen, Wen-Yin Liu and Mingjing Lt, "Relevance Feedback in Content
based Image Search" 12th International Conferance on New Information Technology (NIT), Beijing,
May 29-31, 2000.

[8] 1. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H.
Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, "Design Galleries: A General Approach to Setting
Parameters for Computer Graphics and Animation" Proceedings 0fSIGGRAPH97, Los Angeles, Aug.
t997, Pages 389-400.

[9] J. Peng, B. Bhanu, and S. Qing, "Probabilistic Feature Relevance Learning for Content-based Image
Retrieval" Computer Vision and Image Understanding, Special Issue un Content Based Access of
Image, July/August 1999, Pages 150-l64, Volume 75.

[10] J. Peng, B. Bhanu, and S. Qing, "Learning Feature Relevance and Similarity Metrics in Image
Databases" IEEE Workshop on Content-based Access of!mage and Video Libraries, Santa Barbara,
CA. USA 1998, Pages 14-18.

['11] lR. Bach, C. Fuller, and et aL, "The Visage Image Search Engine: An Open Frame Work for Image
Management" Proceeding 0fSPIE Storage and Retrievalfor Image and Vedio Database, 1995, Pages
76-87, Volume 2670.

[l2] K. L. Ma, "Image Graphs-A Novel Approach to Visual Data Exploration." Proceeding IEEE
Visualization 1999, Oct. 1999, Pages 81-88.

[13] OpenGL Architecture Review Board, Mason Woo, Jackie Neider and Tom Davis, "OpenGLTM
Programming Guide: The Official Guide to Learning OpenGL, Version 1.2" Addison Wesley,
Reading, Massachusetts, 1999.

[14] N. Vasconcelos and A. Lippman, "A Probabilistic Architecture for Content-based Image Retrieval"
Proceedin.gs of IEEE Conference on Computer Vision and Pattern Recognition, South Carolina, 2000,
Pages 216-221, Volume I.

[15] N. Vasconcelos and M. Kunt, "Content-based Retrieval from Image Databases: Current Solutions and
Future Directions" Proceedings ofInternational Conference on Image Processing, Thessaloniki,
Greece, 200l, Pages 6-9, Volume 3.

[16] R. O. Stehling, M. A. Nascimento, and A.. X. Falcao, "An Adaptive and Efficient Clustering-based
Approach for Content-based Retrieval in Image Databases" Technical Report a1-03, Dept. of
Computer Sciences, Univ. of Alberta, March 2001.

[17] S. Sclaroff, L Taycher, and M. La Casica, "Imagerover: A Content-based Image Browser for the
World Wide Web" IEEE Workshop on Content-based Access ofImage and Video Libraries, June
1997, Pages 2-9.

[l8] T.l .. Jankun-Kelly and Kwan-Liu Ma, "Visualization Exploration and Encapsulation vi.a A
Spreadsheet-like Interface" IEEE transaction on visualization and computer graphiCS, July-Sept 200 I,
Pages 275-287, Volume 7, Issue 3.

[19J Yong Rui, et ai, "Relevance Feedback: A Power Tool for Interactive Content-based Image Retrieval"
IEEE Transactions Circuits and Video Technology, 1995, Pages 644-655, Volume 8, lssue 5.

[20] Y. Rui, T. Huang, and S. Mehrotra, "Content-based Image Retrieval with Relevance Feedback in

21

Mars" Proceeding IEEE International conference on Image Processing, Oct. 1997, Pages 815-818,
Volume 2.

Appendix A

Example code

Portion 1.: Code for System Calculation.

/*

Class dispersion is used to implement modified DG dispersion
algorithm.
~**********

*/
class dispersion
(
private:

canst static double infinite 2147483648.;
unsigned int count, mark;
double p_score, ~score,d;

VECTOR p;
public:

dispersion() {}
void Selection_disperse (unsigned int size,unsigned int m,unsigned int n,

vector<VECTOR>L,vector<VECTOR>&I);
double dist(VECTOR a,VECTOR b, unsigned int size);

double dispersion: :dist(VECTOR a,VECTOR b, unsigned int size)
{

sum+=pow ((a [iJ -b [i]) ,2) ;

double sum=O.O;
forlunsigned int
{

}
return sqrt(sum);

i=O;i<size;i++)

void dispersion: :Selectioo_disperse(unsigned int size,unsigned int m,unsigned
int n,
vector<VECTOR>L/*in*/,vector<VECTOR>&I/*out*/)
{

I [OJ =L [0] ;
count = 1;
L.erase(L.begin(}) ;
--m;
forlunsigned int k=l;k<n;k++)
{

p_score = - infinite;
for (unsigned int l=O;l<m;l++)
{

~score = infinite;
for{unsigoed iot t=O;t<count;t++l
(

d = dist(L[l],I[t],size);
if(d<~score)

q_score = d;

22

if(~score>p_score)

{
p score = ~score;

p = L[l];
mark = 1;

}
I [k] = p;
++count;
L.erase(L.begin()+markli
--m;

/*

We define a class Und, which is used to implement uniform
distribution.
**.
*/
class Und
{
public:

Und () {}
void mean(VECTOR &m,vector<VECTOR> MI);
void deviation(VECTOR &d,vector<VECTOR> MI, VECTOR m);
void selection(vector<VECTOR>&s,unsigned int num, VECTOR m, VECTOR dl;

Urand draw;
double rand;

} ;

void Und: : mean (VECTOR &m/*out*/,vector<VECTOR> MI/*in*/)
(

double temp;
unsigned int n = MI.size();
unsigned int dim = MI[O] .size();
for (unsigned int j=O;j<dim;j++)
(

temp = 0.;
for (unsigned int i=O;i<n;i++)

temp += MI[i][j]
m(j] = temp/n;

/*

Following method is to calculate deviations for each dimension of
vector based on a set of vectors.

*/

void Und: :deviation(VECTOR&d/*out*/,vector<VECTOR>MI/*in*/,VECTOR m/*in*/)
(

double temp;
unsigned int n = MI.size();
unsigned int dim = m.size();
for (unsigned int j=O;j<dim;j++)
(

temp = 0.;
for (unsigned int i=O;i<n;i++)

23

temp += pow(MI[il [j] - m[jl),2);
temp sqrt (temp/n) ;
d [j 1 = temp,

/*
**.*
Chose some sampling points on each dimension of vector by uniform
distribution.
**

'*/
void Und: :selection(vector<VECTOR> &s,unsigned int num, VECTOR m, VECTOR d)

unsigned int dim = m.size();
for (unsigned int i=O;i<num;i++)
{

for (unsigned int j=O;j<dim;j++l
(

//s[iJ [jl = «(doublelrandO/RAND_MAX)*6. - 3.)*d(jl + m[jl;
sri] [j] = snorm()'*d[jJ + m[jJ;

/*
.*********

(STANDARD-) NOR MAL DISTRIBUTION

**
**

FOR DETAILS SEE:

AHRENS, J.H. AND DIETER, U.
EXTENSIONS OF FORSYTHE'S METHOD FOR RANDOM
SAMPLING FROM THE NORMAL DISTRIBUTION.
MATH. COMPUT., 27,124 (OCT. I973), 927 - 937.

ALL STATEMENT NUMBERS CORRESPOND TO THE STEPS OF ALGORITHM 'FL'
(M=5) IN THE ABOVE PAPER (SLIGHTLY MODIFIED IMPLEMENTATION)

Modified by Barry W. Brown, Feb 3, 1988 to use RANF instead of
SUNIF. The argument IR thus goes away.

**
THE DEFINITIONS OF THE CONSTANTS A(K), D(K), T(K) AND
H(K) ARE ACCORDING TO THE ABOVEMENTIONED ARTICLE

'*/
float snorm(void)

class transform
{
public:

transform () {}
void M(VECTOR&result, vector<VECTOR> B, VECTOR R)
(

for(unsigned int i=O;i<R.size() ,i++)
result Ii) = B [i] [i] *R [i] ;

24

fl
void T(VECTOR&result, vectoreVECTOR> B, VECTOR G)
(

for(unsigned int i=O;icG.size() ;i++)
result!i] '" (l.O/B[i)[i])*G[i);

} ;

/*
******************************k*************************~*************

void genmn(float *parm,float *x,float *work)
GENerate Multivariate Normal random deviate

Arguments
parm --> Parameters needed to generate multivariate normal

deviates (MEANV and Cholesky decomposition of
COVM). Set by a previous call to SETGMN.
1 : 1 - size of deviate, P
2 : P + 1 - mean vector
P+2 P* (P+3)/2 + 1 - upper half of cholesky

decomposition of cov matrix
x c-- Vector deviate generated.
work c--> Scratch array

Method
1) Generate P independent standard normal deviates - Ei - N(D,l)
2) Using Cholesky decomposition find A S.t. trans(A)*A = COVM

3) trans (A)E + MEANY - N(MEANV,COVM)
**************************'.***
*/
void genmn(float *parm,float *x,float *work)

/*
**

void setgmn(float *meanv,float *covm,long p,float *parm)
SET Generate Multivariate Normal random deviate Function
Places P, MEANV, and the Cholesky factoriztion of COVM
in GENMN.

Arguments
meanv --> Mean vector of multivariate normal distribution.
covm c--> (Input) Covariance matrix of the multivariate

normal distribution
(Output) Destroye.d on output

p --> Dimension of the normal, or length of MEANV.
parm c-- Array of parameters needed to generate multivariate norma

deviates (P, MEANV and Cholesky decomposition of
COVM) .
1 : 1 - P
2:P+l -MEANV
P+2 : P*(P+3)/2 + 1 - Cholesky decomposition of COVM

Needed dimension is (p* (p+3) /2 + 1)
**
*/
void setgmn{float *meanv,float *covm,long p,float *parm)

/*
***.
Class bg is the most important portion of the implementation, which is
responsible for all tasks of calculation in the background that hidden
from user. We define tainntype as a pair of Boolean value a.nd a VECTOR,
which is going to be used as the type of element of trainingSet. That
means the label (relevant or irrelevant) always associated with the
vector. we know if it is relevant or irrelevant when we get a input
vector.
**************************************,********************************

25

void T(VECTOR&result, vector<VECTOR> B, VECTOR G)
{

for(unsigned int i=O;i<G.siz.e() ;i++}
result [i) = (1. O/B [i) [i]) *G [iJ ;

/*
**************.********************************~**.***************.***

void genmn(float *parm,float *x,float *work)
GENerate Multivariate Normal random deviate

Arguments
parm --> Parameters needed to generate multivariate normal

deviates (MEANV and Cholesky decomposition of
COVM). Set by a previous call to SETGMN.
1 : 1 - size of deviate, P
2 : P + 1 - mean vector
P+2 P*(P+3)/2 + 1 - upper half of cholesky

decomposition of cov matrix
x <-- Vector deviate generated.
work <--> Scratch array

Method
1) Generate P independent standard normal deviates - Ei - N(O,I)
2} Using Cholesky decomposition find A s.t. trans(A)*A = COVM
3) trans (A)E + MEANY - N(MEANV,COVM)

**
*/
void genmn(float *parm,float *x,float *work)

1*
** *********k******

void setgmn(float *meanv,float *covm,long p,float *parm)
SET Generate Multivariate Normal random deviate Function
Places P, MEANV, and the Cholesky factoriztion of COVM
in GENMN.

}.

)

"I
•
I

;,'

,
)

decomposition of COVM
1)

- P
- MEANY

+ 1 - Cholesky
is (p" (p+3) 12 +

+ 1
p*(p+3)/2
dimension

Arguments
--> Mean vector of multivariate normal distribution.
<--> (Input) Covariance matrix of the multivariate

normal distribution
(Output) Destroyed on output

--> Dimension of the normal, or length of MEANV.
<-- Array of parameters needed to generate multivariate norma

deviates (P, MEANV and Cholesky decomposition of
COVM) .
1 : 1
2 : P
P+2 :

Needed

meanv
covm

p
parm

.********

*1
void setgmn(float *meanv,float *covm,long p,float *parm)

1*
**
Class bg is the most important portion of the implementation, which is
responsible for all tasks of calculation in the background that hidden
from user. We define tainntype as a pair of Boolean value and a VECTOR,
which is going to be used as the type of element of trainingSet. That
means the label (relevant or irrelevant) always associated with the
vector. we know if it is relevant or irrelevant when we get a input
vector.
~*****

25

*/
typedef vector<double> VECTOR;
typedef pair<bool, VECTOR> traintype;

#define Relevant true
#define Irrelevant false

class bg
{

public:
vector<VECTOR> L,I;
vector<unsigned int> rel;//number of relevant images for each stage
unsigned int stage;
vector<vector<traintype> > trainingSet;
bool previous;

bg(unsigned int mm, unsigned int nn, unsigned int number,
unsigned int no_of_features);

void calc{);
-bg() {L.clear{) ;I.clea.r(};rel.clear() ;trainingSet.clear();

query. clear () ; PMEAN. clear () ; NMEAN. clear () ; DEV. clea.r () ; }

private:
vector<VECTOR> query,PMEAN,NMEAN,DEV;
unsigned int m;
unsigned int n;
unsigned int q;
unsigned int num;
unsigned int size;

unsigned int i,j,k,l;
double alfa,beta,gama,rand;

dispersion disp;
transform trans;
Und u;

};

/*
*****************'***
We initially select some vectors from the set L, then disperse into
the set I, and we always get input vectors from the set I to generate
20 images.
**

*/
//Background calculations
#include "bg.h"

')
:.
I,.
I

bg: :bg(unsigned int mm, unsigned int nn, unsigned int number,
unsigned int no_of_features)//constructor

, I

//number of images chose by query point moving

m = mm;
n = nn;
num = number;
size = no_of_features;
stage = 0;
alfa -.6;
beta = 1.2;
garna = .5;
q = 10;

//original input vectors
//number of images for every stage

//number of selected vectors
//siz8 of vector

26

cin»L{il [j];

previous = false;

query.resize(lOO);llquery point
PMEAN.resize(lOO);llmean value of relevant input vectors
NMEAN.resize(lOO);llmean value of irrelevant input vectors
DEV.resize(lOO) ii/deviation value
re.l.resize(lOO) i
trainingSet.resize(lOO} ,.
for(i=O;i<lOO;i++l
{

rel[i]=O,.
query!il .resizelsize);
PMEAN [i] . resize lsize) ;
NMEAN[i] .resize(size);
DEVIi] .resize(sizel;
trainingSet[i] .resize(n};I/twenty small images

L. resize (m) ;
I.resize(n) ;

for(i=O;i<m;i++)
{

if (i<n) I [i] . resize (size) ;
L [i] . resize (size) ;

for(i=O;i<m;i++)
{

for(j=O;j<size;j++)
{

}

disp.Selection_disperse(size,m,n,LrI) ,.

/*
**************************************'.*******************************

1. Retrieve the vectors based on relevant images.
2. Calculating weighting matrix depended on the relevant vectors.
3. Proj ec t to the modif ied space.
4. Solve mean and devia.tion values of the relevant vectors and

mean values of irrelevant vectors as well as out.
5. Sampling on the modified space (two ways) .
6. Project them back to original input space.
7. Disperse ten of twenty input vectors by modified DG dispersion

algorithm and other ten input vectors are selected by query
point moving algorithm.

**

*1
/Isampling on modified space and project back to original input space
//sampling on modified space and project back to original input space
void bg: :calc()
{

vector<VECTOR> B,R,IR,M;

1***************initialization******************1
B.resize(size) ;I/weighting matrix
for(i=O;i<size;i++)

27

",
J

r

B [i) . resize (size) ;

R.resize{lOO*n) if/relevant input vectors
IR.resize(lOO*n) if/irrelevant input vectors
for(i=O;i<100*n;i++) {R[i] .resize(size) ;IR[i] .resize{size);}

M.resize{numl if/sampling points on modified space
for(i=O;i<num;i++)M[i] .resize{size) i

/**/

j =0;
k=O;
if (previous)
{

for(I=O;l<=stage;l++)
{

for(i=O;i<n;i++l
{

if (trainingSet [1) [i) . first == Relevant)
{

R [j) =tra.iningSet [1J [iJ . second;
j++;

}
else
{

IR [kJ =trainingSet III [i) . second;
k++;

}
previous

}
else
{

false;

for(i=O;i<n;i++)
{

if (trainingSet [stage) [i) . first == Relevant)
{

R[jl =trainingSet [stage] {il.second;
j++;

}
else
(

IR[k] =trainingSet [stage] [i) . second;
k++;

unsigned int rn = j;/Iget the number of relevant images
unsigned int irn = kif/get the number of irrelevant images

Ilget \'Ieighting matrix
for(i=O;i<size;i++)

for(j=O;j<size;j++)
{

if(i==j)B[i] [jJ = 1.;
else B[i] [jJ = 0.0;

I/Modified space
for(i=O;i<rn; iTT) trans.M (R [iJ, B, R [i)) ;
for(i=O;idrniiH) trans.M(IR [i) ,B, IR[i] l;

28

...

u. mean (PMEAN [stage] ,R, rn) ;
u.mean(NMEAN[stage] ,IR,irn);
u. deviation (DEV [stage] ,R, PMEAN [stage] I rn) ;

cout«"The number of relevant images: "«rn«endl;
cout«"The number of irrelevant images: "«irn«endl;

for(i=O;i<size;i++J
CQut« "Mean ["« i«"] ="«PMEAN [stage] [i]

«" Deviation [" «i«") =" «DEV [stage] [i) «endl;

if (stage==Ol query [stage] =PMEAN[stage) ii/query point moving
else

for(i=O;i<size;i++l
query [stage) [iJ =alfa*query[stage-l] [i)
+ beta*PMEAN(stageJ [i] +gama*NMEAN (stage] [i] ;

l/for(i=O;i<size;i++)
/ / cout« "Query ["« i«." 1=" «query [stage] [i) < <endl;

//sampling on modified space
1*
*************************.*******************************.*********
Way 1: Select sample point independently by standard normal

dist.ribution.
~**~**~****************

*1
u.selection(M,num,PMEAN[stage] ,DEV[stageJ);

1*
**************.**
way 2: Select sample point by taking covariance matrix into
account.

************************************w******************************

*1
float *CM=new float [size*size] ii/covariance matrix
for(i=O;i<size;i++)
(

for(j=O;j<size;j++1
{

eM [i*size+j) = 0.;
for(k=O;k<=rn;k++)

CM [i *size+j) += (R [k) [i] -PMEAN [stage) [i) 1* (R [k) [j J -PMEAN [stage) [j)) ;

CM[i*size+j] 1= rn;

float * meanv = new float [size] ;
for(i=O;i<size;i++Jmeanv[i] = PMEAN[stage) [i);

float * parm = new float[int{size*(size+31/2. + 2.)];
/lsetgmn(meanv,CM,size,parm) ;

float * x = new float [size] ;
float * work = new float[size*sizej;

forli=O;i<num;i++1
{

~.

Ilgenmn{parm,x,work);
l/for{j=O;j<size;j++) M[i] [j) x [j) ;

29

/*
*select some input vectors by modified DG dispersion algorithm
*/
disp.Selection_disperse(size,num,n,M,I);

/*
*select some input vectors by query point moving
*/
for(i=n-q;i<n;i++J
(

forlj=O;j<size;j++J
I Ii] [j] =query [stage] [j] + snorm () *DEV [stage] [j] ;

/*
*project back to original input space
*/
forli=O;i<n;i++J

trans.T(I Ii] ,B, I [i]);

B.clear(J;
R. clear () ;
IR . clear () ;
M.clear() ;

delete [] meanv ;
delete []CM;
delete [] parmi
delete []x;
delete []work;

Portion 2.: Code for mapping process.

/*
**
Following mapping process is to render circles that has an input vector
of four parameters and construct a GUI that is used to interact with
user. The first parameter is hue, the secon one is saturation, and the
third is brightness, the last one is radius of circle. In the beginning
of the program, we set up some basic parameters.

*****************.*********.**
*/
#include "bg.h"
#include 19raphics2d.h"
#include "colorconv.h"

#define Relevant true
#define Irrelevant false

static unsigned int WindowSize 600;
static unsigned int level;
static double zoomfactor = .15;
static const int left = -47, bottom = -28, space = 19, win wid = 18;
static boo1 back = false, next = true,click = false, zoomout = false, middle;
static GLubyte* gallery [laO] [20] ;
static unsigned int i,j;
static double R,G,B;

30

//initialization:
//input 30 vectors, output 20 vectors,
//select 400 vectors on modified space, size of vector is -4
bg b(30,20,400,-4);
colorconv cc;
Canvas cvs {WindowSize, WindowSize, "My try") ;

void mylni t ()

gIClearColor(l.,l.,l.,O.) ;
cvs.setWindow(-60.,60.,-60.,60.) ;

void drawCircle(Point2 center, float radius)

const lnt numVerts = 5000;
cvs.ngon(numVerts, center.x, center.y, radius);

void display ()
{

if (next)
{

b.rel[b.stage]=O;//initialize the number of relevant images

float pI = -60* (l.-zoomfactor) , p2

Point2 c(p1,p2);

for(i=O,i<20,i++)
{

-60* (l.-zoomfactorl ;

if(b.I[iJ (0]>360.)b.I[i] [0]=360.;
//uper limit of h = hue --- range£0.0,360.0)
if(b.I[il [O]<O.)b.I(i] [0]=0.;
//lower limit. of h = hue --- range [0.0,360.0)
if(b.I[il [l]>l.)b.I[i] [1]=1.;
//uper limit of s = saturation --- range [0.0,1.0)
if(b.I[i] [l]<O.)b.I[il [1]=0.,
//lower limit of s = saturation range [0.0,1.0J
if(b.I[i] [2l>1.)b.I[i] (2]=1.;
//uper limit of v = brightness range [0.0,1.0]
if(b.I(i] [2l<O.)b.I(i] [2]=0.,
//lower limit of v = brightness --- range [0.0,1.0]
if(b.I[i] [3]>60.)b.I[i] (3]=60.,//uper limit of radius
if(b.I[i) [3]<0.)b.I[i] DJ=O.;//lower limit of radius

cc.HSVtoRGB(b.I[il (0] ,b.I(il [1] ,b.llil [2] ,R,G,B);
b.trainingSet[b.stage] til = make-pair(Irrelevant,b.I[il),

glColor3d(R,G,B) ,

drawCircle (c, b. trainingSet [b. stage] [i] . second [3] * zoomfactor) ;

31

'. I

gallery lb. sta.ge] [i] = new GLubyte [3*WindowSize*WindowSize] ;

glReadPixels (0, 0, (int) (WindowSize*z.oomfactor),
(int) (WindowSize*zoomfactor) GL_RGB,
GL_UNSIGNED_BYTE,gallery[b.stage] [1]) ;

glClear(GL COLOR_BUFFER_BIT);

if(back II next)
(

for(1=0;i<20;i++)
{

level = i/5;
j = i%5;
giRasterPos2i «int) (left+j*space) J (int) (bottom+level*space);
glDrawPixels((unsigned) (WindowSize*zoomfactor),

(unsigned) (WindowSize*zoomfactor) ,
GL_RGB,GL_UNSIGNED_BYTE,gallery[b.stage] [i]) ;

if (click II back II next)
(

for(i=0;i<20;i++)
(

level = i/5;
j = 1%5;

if(!b.trainingSet[b.stagel Ii] .first) glColor3f(0.,O.,1.);
el se giColor3 f (1. ,0. , °.);
IIDraw 20 small windows
cvs . moveTo ((int) (left+j *space) , (int) (bottom+level *space)) ;
cvs.lineTo((int) (left+j*space), (int) (bottom+level*space+win_wid»;
cvs.lineTo«int) (left+j*space+win_wid),

(int) (bottom+level*space+win_wid) ;
cvs.lineTo((int) (left+j*space+win_wid), (int) (bottom+level*space);
cvs.lineTo((int) (left+j*space), (int) (bottom+level*space»);

glColor3f(0.,0.,1.);
//Draw "Back" mark
cvs ,moveTo((int) (-20), (int) (-42);
cvs.lineTo((int) (-16), (int) (-38);
cvs.lineTo((int) (-16), (int) (-40);
cvs.lineTo((int) (-4), (int) (-40»);
cvs.lineTo((int) (-4), (int) (-44»;
cvs.lineTo((int) (-16), (int) (-44»;
cvs.lineTo«int) (-16), (int) (-46);
cvs.lineTo((int) (-20) ,(int) (-42»;

/IDraw "Next" mark
evs. moveTo ((int) (20) , (int) (-42)) ;
eys.lineTo((int) (16), (int) (-38»;
cys.lineTo((int) (16), (int) (-40);

cys.lineTo((int) (4), (int) (-40));

32

cvs .lineTo «int) (4), {intI (-44»;
cvs.lineTo«int) (16), (int) (-44»);
cvs.lineTo((int) (16), (int) (-46»;
cvs.lineTo((int) (20), (int) (-42»;

!!Oraw "circle" mark
if(b.previous && !next && !back) glColor3f(1.,0.,O.);
else glColor3f(O.,O.,1.);
float pI = 0, p2 = -42.;
Point2 c(p1,p2);
drawCircle(c,3.) ;

glFlush () ;
glutSwapBuffers() ;

void getFeedback(double x, double y)
{

if(x>-3 && x<3 && y>-4S && y<-39)!!click the circle
(

if(b.previous)b.previous = false;
b.previous = true;!ltake previous selections into account

back=false;next=false;click=true;
glutSwapBuffers() ;
glutPostRedisplay () ;

}
else if(x>-20 && x<-4 && y<-40 && y>-44)!!click Back
{

back=true;next=false;click=false;
if(b.stage>O)b.stage--j
glutPostRedisplay() ;

}
else if(x>4 && x<20 && y<-40 && y>-44)llclick Next
(

back=false;next=true;click=false;
if(b.rel[b.stage]<=l)glutPostRedisplay() ;
else(

b.calc() ;
b.stage++;
glutPostRedisplay() ;

for(i=O;i<20;i++)
{

level = i/s;
j = i%'S;
if (!middle && x> (int) (left+j *space) && x< (int) (left+j *space+win_wid)

&& y>(int) (bottom+level~space) &&
y«int) (bottom+level*space+win_wid))!lclick

if (!b.trainingSet [b.stage] [i] .first)
(

b.trainingSet[b.stage) [i] .first
b.rel[b.stage)++;

}
else
{

33

Relevant;

b.trainingSet[b.stage) [i] .first
b.rel{b.stage]--;

)
back=false;next=false;click=true;
glutSwapBuffers () ;
glutPostRedisplay () ;

Irrelevant;

}
else if(middle && x>(int) (left+j*space) &&

x«intJ (left+j*space+win_wid) &&
y> (intJ'(bottom+level *space) &&

y«int) (bottom+level*space+win_wid) l//zoomout

zoomout = true;
glClear(GL_COLOR_BUFFER_BIT) ;
float pI = 0, p2 = 0;
Point2 c(pl,p2);
cc.HSVtoRGB(b.trainingSet[b.stage] [i] .second[O],

b.trainingSet[b.stage) [i] .second[I],
b. trainingSet [b. stage] [i] . second (2) I R, G, B) ;

glColor3d(R,G,B) ;
drawCircle (c lb. trainingSet [b. stage) [i) . second (3)) ;

glutSwapBuffers() ;

void mouse (int button, int state, int X, int Y)
{

switch (buttonl
{

case GLUT_LEFT_BUTTON://click
iflstate GLUT DOWN && !zoomout)
{ -

middle = false;
get Feedback ((double) ((120. /WindowSize) * (X-WindowSize/2.) ,

(double) «120 ./WindowSize) * (WindowSize/2. -y) J ;

}
break;

case GLUT_MIDDLE_BUTTON://zoomout
if{state GLUT DOWN && !zoomout)
(

middle = true;
getFeedback({double) (120.jWindowSize)*(X-WindowSize/2.)),

(double) «(120. jWindowSize) * (WindowSizej2. -y)) ;

}
break;

case GLUT RIGHT_BUTTON://zoomin
if(state == GLUT DOWN && zoomout)
{

zoomout = false;
glutSwapBuffers();
glClear(GL_COLOR_BUFFER_BIT) ;

}
break;

default: break;

34

, I

void keyboard (unsigned char key, int x, int y)
{

switch (keyJ
{

case 27: exit(OI;IIEsc
break;

int ma.in (int argc, char '" *argvl
{

mylnit () ;
glutlnitDisplayMode(GLUT_DOOBLEIGLUT_RGB) ;
glutDisplayFunc(display) ;
glutMouseFunc (mouse) ;
glutKeyboardFunc (keyboa.rd) ;
glutMainLoop() ;

return -1;

1*
**
Different input victors have different mapping process, following
mapping process is to render teapot that has an input vector of ten
parameters and construct a GUI that is used to interact with user. The
ten parameters form first one to last one are: hue, saturation,
brightness (the three parameters for material of teapot), size of
teapot, value on x axis, value on y axis, value on z axis (the three
parameters for light position), angel rotated about x axis, angel
rotated about y axis, angel rotated about z axis (the three parameters
for orientation of teapot in the three dimensional space). In the
beginning of the program, we set some necessary parameters.
**

*1
#include "bg.h"
ffinclude "graphics2d.h l

#include "colorconv.h"

#define Relevant true
#define Irrelevant false

static unsigned int WindowSize 600;
static unsigned int level;
static double zoomfactor = .15;
static canst double left = -4.7, bottom = -2.8, space = 1.9, win_wid = 1.8;
static bool back = false, next = true,click = false, zoomout = false, middle;
static GLubyte* gallery(lOO] [20] ;
static unsigned int i,j;
static double R,G,B;

Ilinitialization:
Ilinput 30 vectors, output 20 vectors,
Iiselect 400 vectors on modified space, size of vector is 10

35

bg b(30,20,400,10);
colorconv cc;
Canvas cvs(WindowSize,WindowSize,"My try");

void myrnit ()

gIClearColor(O. ,0.,0.,0.);

void drawCircle(Point2 center, float radius)
{

const int numVerts = 1000;
cvs. ngon (numVerts, center. x, center. y J radius);

void display ()

glMatrixMode (GL_PROJECTION) ;
gILoadldentity() ;
glOrtho (- 6 . ,6. , - 6. ,6. , - 6. ,6.) ;
gIMatrixMode(GL_MODELVIEW);

if (next)
{

b.rel[b.stage]=O;//initialize the number of relevant images

float pI = -6* (l.-zoomfactor), p2 = -6*(l.-zoomfactor);

for(i=0;i<20;i++)
{

if(b.I[i] [0]>360.)b.I!i) [0]=360.;
//uper limit of h = hue --- range [0.0,360.0)
if(b.I(i] [O]<O.)b.I(i] [O}=O.;
//lower limit of h = hue --- range [0.0,360.0)
if(b.I[i] [l]>l.)b.I[i] [1]=1.;
//uper limit of 9 = saturateion --- range [0.0,1.0]
if(b.I[i] [l]<O.)b.I[i) (1]=0.;
//lower limit of s = saturateion --- range [0.0,1.0]
if (b. I [i) (2] >1. lb. I [i] [2] =1.;
//uper limit of v = brightness --- range [0.0,1.0]
if(b.I[i] [2]<0.)lb.I[i] (2]=0.;
//lower limit of v = brightness --- range [0.0,1.0]
if(b.I[i] [3]<0.)b.I[i] (3]=0.;//lower limit of teapot's size
if(b.I[i] [3J>4.)b.I[i] [3}=4.;//uper limit of teapot's size

b.I[i] [7]-=int(b.I[i] [7]/360.)*360;
b.I[i] [B]-=int(b.I[i] [8]/360.)*360;
b.I[i] [9]-=int(b.I(i) [91/360.)*360;

b.trainingSet[b.stage] til = make-pair(Irrelevant,b.I[i);

cC.HSVtoRGB(b.I[i) (0] ,b.I[i] [1) ,b.I[i] [2} ,R,G,B);
GLfloat mat_specular[] = {R,G,B,I.};
GLfloat mat_ambient[] = {R,G,B,l.};

36

IIGLfloat mat_diffuser] = {R,G,B,I.};
IIGLfloat mat_shininess(] = {SO.};
GLfloat light_position[] = {b.trainingSet[b.stage) ti] .second[4},

b.trainingSet[b.stage) Ii] .second[5],
b.trainingSet[b.stage] [i}.second{61 ,o.};

GLfloat white_light[] = {l.,l.,l.,l.};
glShadeModel(GL_SMOOTH);
glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR, mat_specular) ;
glMateriaHv(GL FRONT AND BACK,GL AMBIENT AND DIFFUSE,mat ambient);
IlglMaterialfv(GL FRONT AND BACK,GL DIFFUSE,mat diffuse);
IlglMaterialfv(GL::::FRONT::::AND::::SACK,GL::::SPECULAR,mat_shininess);

glLightfv (GL_LIGHTO, GL_POSITION, lightyosition) ;
glLightfv(GL~LIGHTO,GL_DIFFUSE,white_light);

glLightfv (GL_LIGHTO, GL_SPECULAR, whi te_light) ;

glEnable (GL_LIGHTING) ;
glEnable(GL LIGHTO);
glEnable (GL_DEP'TH_TESTl ;

glPushMatrix ();
glTranslated(pl,p2,O) ;
glRota ted (b, trainingSet [b. stage] [i) . second (7) , I, 0,0) ;
glRotated (b. trainingSet [b. stage] [i) . second [8) , 0,1, 0) ;
glRotated{b,trainingSet[b.stage] [i) .second[9] ,0,0,1);
glutSolidTeapot (b. trainingSet [b. stage] Ii] . second [3] *zoomfactor) ;
glPopMatrix () ;

gallery [b. stage] Ii] = new GLubyte [3*WindowSize*WindowSize) ;

glReadPixels (0, 0, (int) (WindowSize*zoomfactor),
(int) (WindowSize*zoomfactor),
GL_RGB,GL_UNSIGNED_BYTE,gallery[b.stage] [i));

if(back I I next)
(

for(i=O;i<20;i++)
{

level = i/s;
j = i%S;
glRasterPos2f(left+j*space,bottom+level*space) ;
glDrawPixels(unsigned inti (WindowSize*zoomfactor),

(unsigned int) (WindowSize*zoomfactor) ,
GL_RGB, GL_UNSIGNED_BYTE, gallery [b. stage) [i)) ;

if(click II back! I next)
(

glDisable(GL_LIGHTING) ;
glDisable(GL_LIGHTO) ;
glDisable(GL_DEPTH_TEST) ;

for(i=0;i<20;i++)

37

level = i/5;
j = i%5;

if (!b. trainingSet lb. stage] [i] . first) glColor3f (0. 10. ,1.) ;
else glColor3f(1.,O"O.);
//Draw 20 sn~ll windows
evs.moveTo(left+j*space,bottom+level*space) ;
evs.lineTo{left+j*space,bottom+level*spaee+win_wid) ;
evs.lineTo{left+j*spaee+win_wid,bottom+level*space+win_wid);
evs .1ineTo{left+j *space+win_wid, bottom+level *space) ;
cYs.lineTo(left+j*space,bottom+level*space) ;

glColor3f{O.,O.,1.) ;
//Draw "Back" mark
cYs.moveTo{-2.0,-4.2) ;
evs . 1 ineTo (-1 . 6 I - 3 . 8) ;
cYs.lineTo(-1.6,-4.0) ;
evs.lineTo(-.4,-4.0) ;
evs .1 ineTo (- .4, -4.4) ;
evs.lineTo{-1.6,-4.4) ;
cvs.lineTo(-1.6,-4.6) ;
cvs.lineTo(-2.0,-4.2) r

/ /Draw "Next" mark
cvs.moveTo(2.0,-4.2);
cvs.lineTo(1.6,-3.8);
evs.lineTo(1.6,-4.0) ;
cvs.lineTo(.4 / -4.0) ;
eys .1 ineTo (. 4 I - 4 .4) ;
cvs.lineTo{1.6,-4.4) ;
cvs.lineTo(1.6,-4.6);
cYs.lineTo{2.0,-4.2) ;

//Draw "Stop" mark
if(b.previous && lnext && !back) glColor3f(1.,O.,0.);
else glColor3f (1. ,1. , 0.) ;
float pI = 0, p2 = -4.2;
Point2 e(p1,p2};
drawCirele(e, .3);

glFlush() ;
glutSwapBuffers() ;

void getFeedback(double XI double y)
{

if(x>-.3 && x<.3 && y>-4.5 && y<-3.9)//eliek the circle
(

if (b.previouslb.previous = false;
else b.previous = true;//take previous selections into account
back:false;next=false;elick=true;
glutSwapBuffers() ;
glutPostRedisplay();

}
else if(x>-2.0 && x<-.4 && y<-4.0 && y>-4.4)//elick Back

38

back=true;next=false;click=false;
if(b.stage>O)b.stage--;
glutPostRedisplay();

}
else if{x>.4 && x<2.0 && y<-4.0 && y>-4.4)!!click Next
{

back=false;next=true;click=false;
if (b. reI [b. stage] <=1) glutPostRedisplay () ;
else (

b.calc{) ;
b.stage++;
glut PostRedisplay () ;

for{i=O;i<20;i++)
{

level = i/5;
j = i%'5;
if (!middle && x> (left+j*space) && x< (left+j *space+win_wid) &&

y>(bottom+level*space) && y«bottom+level*space+win_wid))
!!click small windows

if (!b.trainingSet[b.stage) Ii] .first)
{

b.trainingSet[b.stage] [i] .first = Relevant;
b.rel[b.stage]++i

}
else
{

b. trainingSet [b. stage] [i) . first
b.rel[b.stage]--;

}
back=false;next=false;click=true;
glutSwapBuffers() ;
glutPostRedisplay();

Irrelevant;

}
else if(middle && x>lleft+j*space) && x<lleft+j*space+win wid) &&

y> lbottom+l,evel*space) && Y< (bottom+level *epace+win_widl) / !zoomou.t

zoomout = true;
glClear(GL_COLOR_BUFFER_BITIGL_DEPTH_BUFFER_BIT) ;

glMatrixMode(GL_PROJECTION) ;
glLoadldentity();
glOrtho (-6. J 6 . , - 6. ,6. , - 6. ,6.) ;
glMatrixMode{GL_MODELVIEW) ;

cC.HSVtoRGB(b.I[i] [Ol,b.I[i) [11,b.I[i] [2],R,G,B);
GLfloat mat_specular[) = {R,G,S,l.};
GLfloat mat ambient[) = {R,G,B,l.};
GLfloat light-position[] = {b.trainingSet[b.stage] Ii] .second(4] ,

b.trainingSet [b. stage] Ii] .second[5] ,
b.trainingSet [b. stage] (i] .second[61,
o.);

GLfloat white_light [J = {1., 1. 11. ,1. } i

glShadeModeIIGL_SMOOTH) ;
glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular> ;
glMaterialfvIGL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,mat_ambient) ;
glLightfv (GL_LIGHTO, GL_POSITION, light-position) ;
glLightfv (GL_LIGHTO I GL_DI FFUSE , white_light) ;

39

glLightfv(GL_LIGHTO,GL_SPECULAR,white_light) ;
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO) ;
glEnable(GL_DEPTH_TEST) ;

glPushMatrix();
glRotated{b.trainingSet [b.stage) [iJ .second[7) ,1, 0, 0);
glRotated(b.trainingSet [b.stage) (i] . second [8) ,0,1, 0);
glRotated (b. trainingSet [b. 6'tage] [i] . second [9] ,0,0/1) ;
glutSolidTeapot (b. trainingSet [b. stage] [i) . second [3)) ;
gl PopMatrix () ;

glutSwapBuffers();

void mouse (int button, int state, int X, int Y}
{

switch (button)
{

case GLUT_LEFT_BUTTON://click
if(state GLUT DOWN && lzoomout)
{ -

middle = false;
get Feedback «double) «12 ./WindowSize) * (X-WindowSize/2.»,

(double) «12 '/WindowSize) * (WindowSize/2. -Y}»;

}
break;

case GLUT_MIDDLE_BUTTON://zoomout
if(state GLUT DOWN && lzoomout)
{

middle = true;
getFeedback ((double) { (12 ./WindowSi ze) Ir (X-WindowSize/2 .)) ,

(double) «12 ./WindowSize) * (WindowSize/2. -Y»);
}
break;

case GLUT_RIGHT_BUTTON://zoomin
if (state == GLUT DOWN && zoomout)
{

zoomout = false;
evs . setWindow (- 6 . / 6 . I - 6. , 6 .) j

//chage bacy- to original coordinate system
glutSwapBuffers{) ;
glClear(GL_COLOR_BUFFER_BITIGL_DEPTH_BUFFER_BIT) ;

}
break;

default: break;

void keyboard(unsigned char key, int x, int y}

40

r

switch (key)
{

case 27: exit(O) ;IIEsc
break;

int main(int argc, char **argv)
{

mylnit() ;
glutlnitDisplayMode (GLUT_DOUBLE IGLUT_RGB IGLUT_DEPTH) ;
glutDisplayFunc(display) ;
glutMouseFunc(mouse) ;
glutKeyboardFunc(keyboard) ;
glutMainLoop();

return -1;

Appendix B

Glossary

DG: Design Gallery.

CBIR: Content Based Image Retrieve.

RF: Relevance Feedback.

GL: openGL

GUI: Graphical User Interface

trainingSet: Training Set.

Relevant: Relevant images.

Irrelevant: Irrelevant images.

Back Buffer: One of the buffers in two buffers' rendering system.

41

VITA Z
Peng Xiang

Candidate for the Degree of

Master of Science

Thesis: LOCAL FEATURE RELEVANCE FOR EFFICIENT NAVIGATION AND
VISUALIZATION OF LARGE DATA SETS

Major Field: Computer Science

Biographical:

Personal Data: Born in Yaan, Shi Chuan Province, China, On June 6, 1971.

Education: Received Bachelor of Science degree in Mechanical Engineering from
Nanjing University of Aeronautics and Astronautics, China in 1994.
Completed the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in August 2002.

Experience: Raised in a factory in Yaan City; employed by Chuan Jiang Machinery
Company as an engineer; employed by Xin Ke Magnetic Products Company as
a supervisor; employed by Hongguan Technology Lt. Co. as an engineer;
Oklahoma State University, Department of Computer Science, 2001 to present.

