
TOWARD PLAGIARISM DETECTION IN

JAVA PROGRAMS

BY

DONGCHI WANG

Bachelor of Arts
Liaoning University
Shenyang, Liaoning

People's Republic of China
1990

Law degree
Law and Politics University of China

Beijing
People's Republic of China

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May 2002



TOWARD PLAGIARISM DETECTION IN

JAVA PROGRAMS

Thesis Approved:

11



PRAFACE

Similarity was inspected among a group of Java programs based on comparison of

program structures so that plagiarism could be detected. Research was conducted on

existing approaches to plagiarism detection. Ottenstein was the first researcher who

suggested checking program plagiarism automatically. Researchers had been making

progress in the efficiency and accuracy of detection. After reviewing similar work done

previously, carefully analyzing the attributes of Java as an Objected-Oriented

programming language, and considering typical program plagiarism practices, this study

utilized a new method to inspect programs and detect similarities. As a result of this

study, a tool called JPD was constructed to detect program plagiarism among Java

·programs.

The methods or algorithms already existing in the literature were investigated and

compared. Instead of using a text-based statistics-oriented detection method, this study

focuses on program structure. JPD, which consists of Scanner and TSM (Token Stream

Matcher), was implemented in C and Unix utility Flex. There are three passes for Scanner

to scan a Java program and translate it into a token stream. Then, TSM, which utilizes

dynamic common longest string-matching algorithm, compares two token streams from a

pair of Java programs. Tested by using real class assignments, IPD helps to detect similar

programs by comparing a group of Java programs in pairs.

111



ACKNOWLEDGEMENTS

I would like to extend my sincere appreciation to my thesis advisor, Dr. Mansur

H. Samadzadeh, for giving me valuable guidance, encouragement, wisdom, and patience

throughout my graduate studies at Oklahoma State University. My special thanks are also

extended to Dr. John P. Chandler and Dr. Blayne E. Mayfield for their valuable help and

participation while serving as members of my committee.

My special gratitude goes to my husband, Bo Deng, for his great support and trust

in the entire journey of my graduate studies. I am also grateful to my mother, Junjiang

Chi, and father, TaiShun Wang. They have contributed to my every single achievement

including my educational achievements.

I also appreciate the greatest love from my sisters, Dongbai Wang, who gave me

the great opportunity to study and enjoy life in America, and Dongqing Wang, who took

care of my morn through her recovery.

IV



I '

TABLE OF OONTENT

Chapter Page

I. INTRODUCTION 1

II. LITERATURE REVIEW 4

2.1 General Introduction .4
2.2 Methods Review 5

2.2.1 Earlier Methods 5
2.2.2 Contemporary Methods and Tools 6

III. DESIGN AND IMPLEMENTATION 9

3.1 Java as an 00 Programming Language 9
3.2 Sample Java Program 11
3.3 Problem Analysis 15

3.3.1 Typical Plagiarism Practices in Student Programs " .. 15
3.3.2 Sample Plagiarized Program 17

3.4 Data Collection-Scanner. 21
3.4.1 Design Idea 21
3.4.2 Discussion and Conclusions 24
3.4.3 Implementation Issues 26

3.5 Token Stream Matching - TSM 26
3.6 Overall Result Collection 28

IV. RESULTS AND DISCUSSION 29

4.1 Input Data Sources 29
4.2 Sample Result from Scanner 29
4.3 Pair-Wise Comparison Result Discussion 31

V. CONCLUDSION AND FUTURE WORK.. '" 33

REFERENCES " 34

APPENDICES 36

APPENDIX A: GLOSSARY .37

v



Chapter Page

APPENDIX B : ILLUSTRATION OF SAMPLE
RESULT OF PAIR-WISE COMPARISON #1 38

APPENDIX C : SAMPLE EXECUTION RESULT OF PAIR-WISE
COMPARISON #1 39

APPENDIX 0 : TARGET PROGRAM #1 .41

APPENDIX E : CANDIDATE PROGRAM WITH HIGH
SIMILARITY WITH TARGET #1. 44

APPENDIX F : ILLUSTRATION OF SAMPLE
RESULT OF PAIR-WISE COMPARISON #2 .47

APPENDIX G : SAMPLE EXECUTION RESULT OF PAIR-WISE
COMPARISON #2 48

APPENDIX H : TARGET PROGRAM #2 50

APPENDIX I: CANDIDATE PROGRAM WITH HIGH
SIMILARITY WITH TARGET #2 54

APPENDIX J : ILLUSTRATION OF SAMPLE
RESULT OF PAIR-WISE COMPARISON #3 57

APPENDIX K : SAMPLE EXECUTION RESULT OF PAlR-WISE
COMPARISON #3 58

APPENDIX L: TARGET PROGRAM #3 60

APPENDIX M : CANDIDATE PROGRAM WITH HIGH
SIMILARITY WITH TARGET #3 65

APPENDIX N: SCANNER PHASE I - FPASS 70

APPENDIX 0 : SCANNER PHASE II - SPASS 76

APPENDIX P : SCANNER PHASE III - TPASS 79

APPENDIX Q: TSM 81

APPENDIX R : SHELLSCRJPT1 84

APPENDIX S : SHELLSCRlPT2 85

VI



"

CHAPTER I

INTRODUCTION

Computer science as a field of study attracts more and more students as the need

for infonnation technology increases. However, programming generally gives students a

hard time. This is especially true about entry-level students because of the precise, strict

and concise syntax of programming languages, and the educational background

requirements for computing which are logical design skills and a solid mathematical

foundation.

Academic plagiarism and its detection have been perplexing problems in all

majors including computer science. Program plagiarism in computer science normally

refers to copying all or part of a program from some source and submitting the copy as

one's own work. This includes collaborating and submitting similar work.

The negative effect ofplagiarism is explained briefly by Harris [Harris 94] as follows.

Students who plagiarize cheat themselves by refusing their own education
and cheat the original authors by claiming the work to be theirs.

Plagiarism is a form of cheating. Any fonn of cheating is to be condemned, and

plagiarism is no exception. Theft of intellectual work by copying that work is still theft,

and should be treated as such.



2

Schools and instructors take every action attempting to stop the phenomenon of

plagiarism. Detection techniques, administrative procedures, and penalties vary greatly. It

appears that in introductory level courses, where not all students are skillful enough to

make their own programs work, program plagiarism is more common. An efficient way

to deal with academic dishonesty is to monitor program plagiarism by an automatic

detection system.

Theoretically, similarity detection, considered as the problem of equivalence of

two programs, is a decision problem, i.e., a computational problem for which every

specific instance can be answered "yes" or "no". In this sense, general similarity detection

is an unsolvable decision problem [Martin 97]. However, the practical problem itself is

more complex than just saying "yes" or "no". If we say two programs are similar, that

suggests they may not be identical syntactically, the semantic structure of the programs

must also be taken into consideration.

Historically, a lot of effort has been put into plagiarism detection for procedural

programming languages such as C and Pascal. A few systems have been built for Object

Oriented programming language such as C++, Java, and SmallTalk, but the underlying

algorithms have not been published as of this writing.

The purpose of this research was to build a plagiarism detection system specific to

Java programs. The main goal of this thesis was to design and implement a detection tool

to help discourage academic dishonesty involving program plagiarism. The system is

called JPD, which stands for Java Plagiarism Detection. It targets introductory Objected

Oriented programming classes at the university level. Data to test the tool was taken from

actual classes and real assignments. To protect the students' privacy, their names have



3

been suppressed. IPD was implemented in C together with some Unix utilities such as

Flex. The tool works under the Unix system.

The organization of this thesis is as follows. Chapter II provides a literature

review of similar work. Chapter III describes the design and implementation issues.

Chapter IV explains a sample result and its analysis. Chapter V discusses the summary

and future works. Some sample results, some sample programs used for testing JPD, the

source code of lPD, and the shell scripts to run lPD are attached as appendices.



CHAPTERll

LITERATURE REVIEW

2.1 General Introduction

There have been a number of attempts to detect program similarities

automatically. Most of the efforts have been from academic institutes or universities.

In the 70's and early 80s, work on plagiarism detection was quite popular. The

algorithms were very straightforward. Basically, they checked for textual similarities,

specifically for the frequencies of occurrences of statements or operators, and the efforts

focused on specific programming languages.

From the middle 80s up to now, work on plagiarism detection has been generally

less popular. Detection systems have been getting generally more powerful and complex.

Most of them can handle multiple programming languages such as C, C++, and Java.

Currently, web techniques become increasingly more popular, and there are a

number of publicly available online genetic program plagiarism detection systems.

Among them, the famous ones are MOSS from UC Berkeley and Jplag from University

of Karlsruhe, Germany. They work on most high level programming languages. The two

systems are further discussed in Section 2.2.2.

4



2.2.1 Earlier Methods

2.2 Methods Review r

I t

5

Ottenstein addressed the problem of automatic plagiarism detection [Ottenstein

76] by utilizing the four basic software science parameters suggested by Halstead

[Halstead 77] to measure the sameness of Fortran programs. The four basic software

science parameters are listed below.

(1) The number of unique operators n1.

(2) The number ofunique operands 02.

(3) The total number of occurrences of operators N1.

(4) The total number ofoccurrences of operands N2.

With the assumption that all programs to be considered. are well written, Halstead

came up with several relationships and properties involving the four basic counts. For

instance, he defined program length and vocabulary as follows.

vocabulary n = n1 + n2

program length in tokens N =Nt + N2

In Ottenstein's plagiarism detection system, programs with similar number ofN1,

N2, nl, and n2 are suspected to be involved in plagiarism. This algorithm has some

shortcomings [Ottenstein 76]. The results cannot always be reliable and precise since it

can only detect cosmetic changes. It does not take semantics of programs into

consideration. Even a little disguise effort, such as putting in redundant operators and

operands into the code, can crash the detection system, i.e., it can cause the system not to

detect plagiarism. Regardless, this detection system opened the curtain on plagiarism

detection work.



6

In 1980, Grier made a plagiarism detection system called iAccuse for Pascal

programs [Grier 80]. He was inspired by Ottenstein's algorithm and actually moved the

research forward. He started from the four basic software science parameters and

calculated twenty measurements. But as Grier himself indicated [Grier 80], his system

has some drawbacks too. Although it was able to handle more sophisticated ways of

intentionally changing similar code, it is still a text-based detection system with no

program structure considered.

2.2.2 Contemporary Methods and Tools

From the late 80's up to middle 90's, a nwnber of advanced detection systems

appeared in the literature. Detection systems had been getting generally more complex

and they worked on multiple programming languages. Some of the more recent detection

tools are still under testing. Generally, they catch plagiarism with more precision. Some

of them utilize the web to interact with the clients or users. Some of the popular

contemporary tools are briefly described below.

• Wen-yu Fu [Fu 86] developed a software tool that detects plagiarism in C programs.

This system collects and analyzed measurable properties of C programs to check for

similarities. It uses flowchart-like diagrams to show the calling relationship among

functions. It also considers some common changes plagiarists could make to disguise the

traces of copying, such as interchanging "for" statement and ''while'' statement, or

"switch case" statements and "if ... else if. .." statements. For example, if there are a

number of case statements in a program and the other program has a sequence of if

statements, the detector will consider this a similarity. It seems that this is the ftrst



7

reported attempt at trying to catch program similarity according to the analysis of the

semantic structure ofprograms.

• SIM from Wichita State University [Gitchelll and Tran 99]: SIM is a utility for

detecting similarity in computer programs. It utilizes the string-matching technology

originally developed to detect similarity of DNA strings [Huang et al 90] [Myers and

Miller 88] to compare structural similarity between two C programs. Compared to the

earlier methods, which just detected textual matches and ignored the possibility of

function reorder, variable name changing, and redundant components, SIM made big

progress. However, to handle the common copy strategy of function reorder, it takes

every pennutation of the orders to compare with the target code. It is neither time

efficient nor precise since a random reordering of the functions may not be in the same

sequence of the calling order as the program is actually executed. Hence, under this

system, two C programs with high similarity rate as judged by this system may not

always have something to do with plagiarism.

• Jplag from University of Karlsruhe in Gennany [Malpohl 00]: Jplag is an online

system from University of Karlsruhe in Germany. It checks for similarities among a large

set of programs. Not only can it detect program syntax similarities but also program

structural similarities. It works on C, C++, Java, and Scheme. It takes submission from

users and returns some statistics.

• MOSS from UC Berkeley [MOSS 00]: MOSS stands for a Measure of Software

Similarity. It is a generic system for detecting software plagiarism. It works on C, C++,

Java, Pascal, Ada, ML, Lisp, and Scheme programs. It was developed by UC Berkeley in

1994 and claimed to be a significant improvement over other cheating detection



8

algorithms known. The algorithm of MOSS has not been made public intentionally since

"while there is a big difference between a good cheating detection algorithm and a bad

one, all such algorithms can be fooled if one knows how they work. It is best if we don't

say too much here about the ideas behind Moss." [MOSS 00]. The user has to submit a

request for an account and only the instructors will be granted access. It also requires

writing a large shell script to submit programs to be tested for plagiarism.



II

1.

CHAPTER ill

DESIGN AND IMPLEMENTATION ISSUES

3.1 Java as an 00 Programming Language

Java Plagiarism Detector (JPD) is the plagiarism detection system designed and

implemented in this thesis. Since JPD is specific to Java programs, it is necessary to

briefly mention the characteristics of Java as a programming language. Java is a platfonn

neutral, Object Oriented programming language that provides a large number of

predefined library classes to simplify common programming tasks [Litwak 99].

The basic concept in Java is class. All executable code must be contained within a

class. Unlike CIC++, Java has no global functions that are defined outside of any classes

or friend functions that are defined in other classes [Litwak 99]. Conceptually, "class" is

similar to "structure" in e/c++. They differ in that a structure does not have method

members and the data members of a structure are accessible to the entire program in a

CIC++ program, while a class in Java has method members and all data members are

accessible only to that class by default. Members in a Java class may have different

accessibilities, such as private, protected, or public. This is an important feature of

Objected Oriented programming languages that is called data encapsulation. In Java,

inheritance allows classes to be written as extensions of other classes. A Java program

may have several classes that are organized by having "is a" or "has a" relationships. A

9



10

well-designed Java program IS arguably hard to plagiarize successfully without

understanding what the Java program is doing and how it is organized, since the

similarity cannot be easily disguised if the program structure and organization are not

significantly modified.

Like programs written in other programming languages, a Java program consists

of fundamental statements that embody the programming style and control flow of the

program. Java as a specific programming language.has a number of unique keywords.

Statements in Java can be classified as follows [Palmer 00].

1. Declaration, assignment, and basic operation statements that are followed by a

semicolon:

1) Assignment of a value to a variable, e.g., V =4;
2) Use of increment and decrement operators, e.g., I ++;
3) Method invocation, e.g., System.out.println ("Hello, world.");
4) Creation of a new object, e.g., InputStreamReader stdin = new

InputStreamReader (System.in);

2. Various sorts ofcontrol statements:

1) if. .. else
2) while
3) do-while
4) for
5) break
6) continue
7) switch-cases
8) conditional statement operator, ? :
9) return

3. Exception handling statements (keywords are unique to Java):

1) try-catch block
2) finally
3) throw
4) throws

4. The "synchronized" modifier that is unique to Java and is used to protect



11

simultaneous accesses to a critical section.

5. A block of statements that is a series of statements enclosed within curly brackets.

6. Variable declaration, e.g., int Inti;

7. A labeled statement that consists of a label used to identify the statement, a

colon, and a statement.

3.2 Sample Java Program

What follows is a sample Java program from an introductory Java programming

class that generates random license plate numbers and tag names for a vehicle. This

program was written by a student in an introductory computer science class. A

plagiarized version of this program appears in Section 3.3.2, followed by a discussion of

the similarities and modifications.

1) 11=========================================
2) II Program: Sample_Program 1
3) II
4) II Author: Sample_Student1
5) 11=========================================

6) import java. io. *;
7) import java.util.*;

8) public class Samplel
9) {
10) 11-----------------------------------------------------
11) IIThis method generates a random license plate number
12) Ilthat contains letters and numbers
13) 11-----------------------------------------------------
14)
15) public static String tagNumber()
16) (
17) Random tag = new Random();
18) int i;
19) String tagnum = "";
20) String alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
21) String tagletters = "";

22) II Generate random characters

23) for (int charcount = 0; charcount < 3; charcount++)
24) (
25) i = Math.abs (tag.nextlnt(») % 26;
26) tagnum = tagnum + alpha.charA.t (i) ;
27)



28) tagnum = tagnum + '-';

12

29) II Generate random numbers

30) for (int count = 0; count < 3; count++)
31) {
32) i = Math.abs (tag.nextlnt() , 10;
33) tagnum = tagnum + i;
34)

35) return tagnum;
36)

37) 11-----------------------------------------------------
38) II This method generates a nine-digit random driver's
39) II license number
40) 11-----------------------------------------------------
41) public static String licenseNumber()
42) {

43) Random license = new Random();
44) int i;
45) String licenaenum = "";
46) for (int count = 0; count < 9; count++)
47) {
48) i = Math.abe (license.nextlnt(» , 10;
49) licensenum = licensenum + i;
50) }
51) return licensenum;
52)

53) 11-----------------------------------------------------
54) II This method determines the cost of a customer'S tag
55) II depending on how old his/her car is
56) 11-----------------------------------------------------
57) public static float tagCoat(int year)
58) {
59) GregorianCalendar cal = new GregorianCalendar() ;

60)

61)
62)
63)
64)
65)

66)
67)

68)
69)
70)
71)
72)

int systemyear = cal.get(Calendar.YEAR);
int caryear = (systemyear - year);
float costoftag = 0;
if (caryear >= 0 && caryear <= 3)

costoftag = 85;
else if (caryear >= 4 && caryear <= 7)

coatoftag = 75;
else if (caryear >= 8 && caryear <= 11)

costoftag = 55;
else if (caryear >= 12 && caryear <= 15)

costoftag 35;
else

costoftag 15;
return costoftag;

73) 11-----------------------------------------------------
74) II This method takes a customer's name and converts
75) II it into a string that has only one white space in
76) II between its tokens
77) 11-----------------------------------------------------
78) public static String minimizeWhitespace(StringTokenizer t)
79) {

80) String namestring = "";



13

B1)
82)
83)
B4)
85)

namestring = (t.nextToken());
while (t.hasMoreTokens())
namestring = namestring + " " + (t.nextToken();
return namestring;

86) 11-----------------------------------------------------
87) II This method calculates a customer'S age based on the
88) II current calendar and the driver's birth date.
89) 11-----------------------------------------------------

90) public static int calcAge(String date)
91) {
92) GregorianCalendar cal = new GregorianCalendar();
93) int systemmonth = cal.get(Calendar.MONTH);
94) systemmonth = systemmonth + 1;
95) int systemdate cal.get(Calendar.DATE);
96) int systemyear = cal.get(Calendar.YEAR);

97) iot drivermonth = Integer.parseInt(date.substring(O,2))i
98) int driverdate Integer.parseInt(date.Bubstring(3,S));
99) int driveryear Integer.parseInt(date.substring(6));

100) int ageinyears (systemyear - driveryear);
101) if (systemmonth <= drivermonth && systemdate < driverdate)
102) ageinyears = ageinyears - 1;
103) return ageinyears;
104)

lilt •
I

String driver = stdin. readLine (J i

String drivername = "";
String request type = "";
String requesttypeout
String make = "";
String style = "";
String vehicleyear = "";
String driverdatein "";
int pass = 0;
int tagcostout = 0;
int numoftags = 0;
int numoflicenses = 0;

105)
106)

public static void main(String[] args) throws IOException
{

107) BufferedReader stdin = new BufferedReader(new InputStreamReader
(System. in)) i

108)
109)
110)
111)
112)

113)
114)
115)
116)
117)

118)
119)

120) 11--------------------------------
121) II Read input while input exists
122) 11--------------------------------

123) while (driver != null)
124) {
125) StringTokenizer tokenizer = new StringTokenizer (driver);
126) requesttype = (tokenizer.nextToken());

127) 11--------------------------------------
128) II If it is a tag request, perform tag
129) II methods

11--------------------------------------
130)
131) if (requesttype.equalsIgnoreCase("tag")
132) {
133) make = (tokenizer.nextToken());



14

while (tokenizer.hasMoreTokens()}
drivername = drivername + " " + (tokenizer.nextToken{)};

StringTokenizer tagnametokenizer = new StringTokenizer

vehicleyear + " -- II);

System.out.println(minimizeWhitespace{tagnametokenizer)) ;
numoftags = numoftags + 1;
drivername = "";

System.out.print(requesttype.toUpperCase(}
tagcostout = (int) tagCost(pass);
System.out.print("$" + tagcostout + " II);

System.out.print {tagNumber(} + • II + make

}
//-----------------------------------------------------
// If it is a license request, perform license
// methods
//------------------------------------------------

+ 01: OI};

+ rt '1 +

style = (tokenizer.nextToken(});
vehicleyear = (tokenizer.nextToken(});
pass = Integer.parseInt(vehicleyear};

134)
135)
136)
137)
138)
139)

140)

(drivername) ;
141)
142)
143)
144)
style + II II +
145)
146)
147)
148)
149)
150)
151)
152)

}
//-------------------------------------------------
// If no input is given, print a warning message
//-------------------------------------------------

driverdatein = (tokenizer.nextToken()};
while (tokenizer.hasMoreTokens())

drivername = drivername + II II + (tokenizer.nextToken());
StringTokenizer licensenametokenizer = new StringTokenizer

driver = stdin.readLine();

else153)
154)
155)
156)
157)
158)
(drivername) ;
159) request typeout = requesttype.substring (0,3);
160) System.out.. print(requesttypeout.toUpperCase() + ": $5 II);

161) System.out.print(licenseNumber() + " II + driverdatein + II

II + calcAge(driverdatein) + II __ II);

162) System.out.println{minimizeWhitespace(licensenametokenizer));
163) numoflicenses = numoflicenses + 1;
164) drivername = "";
165)
166)
167)
168)
169}
170)

171) System.out.println();
172) if (numoftags == 0 && numoflicenses == 0)
173) System.out.println("NO INPUT GIVENI!");
174) else
175) //----------------------------------------------
176) // Print total number of tags/licenses issued
177} // in this run
178} //----------------------------------------------
179)
180) System.out.println("Number of tags issued: II + numoftags);
181) System.out.println{"Number of licenses issued: II + numoflicenses);
182) }
183)
184)



15

3.3 Problem Analysis

As the Internet technology has grown, Java as a platfonn independent

programming language is getting increasingly popular. Most universities and colleges list

Java as a required introductory course for Computer Science majors. These courses

typically cover basic programming skills and objected-oriented programming concepts.

The programming assignmen\s designed by instructors are usually short and simple, and

sometimes the 1ava class names or even the method names are given to the students.

Since the students are new to programming, plagiarism is known to happen in these

classes.

3.3.1 Typical Plagiarism Practices in Student Programs

It is necessary to list some common practices encountered in program plagiarism.

Since JPD is designed for introductory programming classes, only basic plagiarism

strategies are concerned, such as variable renaming, adding redundant statements or

method reordering. Specifically, IPD catches the following cases.

(1) Variables Renaming: This is the most common action used to disguise program

plagiarism. It is also the easiest one. By the assistance of a text editor, an individual can

easily find and replace any specific word or sequence of words.

(2) Methods Reordering: This approach does not need any understanding of

programming. Normally, students simply cut and paste some methods and try to reorder

the original sequence of methods. It is quite vulnerable by human inspection, but it can

easily escape from some Unix utilities such as diff.



16

(3) Interchanging Equivalent Statements: Some compound statements can be substituted

by others, such as "if ... else if' statements and switch-case statements, or ''whil ' loops

and "for" loops. For example,the following statement,

Switch (i)
{

case 0:
case 1:
case 2:
default:

}

can be easily substituted by the following "if. ..else if' statement

if(i = 0)

else if(i = 1)

else if (i = 2)

else

(4) Redundant Variables Declared or Additional Methods Added: Some students may try

to declare more variables without referencing them later in the program. Or, they may put

more method definitions without calling them in the program. Once the program

compiles, these modifications would not do anything to the program. This can easi Iy

eliminate the effect of changes to some text-based detector.

(5) Combination or Decomposition of Statements: Students with more programming

knowledge may substitute a sequence of function calls by a nested function calls or vice

versa.

(6) Adding More Comments: By adding more comments, the original code would not be

changed but the size of the modified program may be significantly different from the

original one.



-
17

Certainly, students may use more complex methods to disguise the trace of

copying, such as splitting a method into several methods or even redesigning the

program. However, it can be argued that most people attempting to plagiarize would be

either not capable of modifying a program in that way or they are in such a hurry that

there is not enough time to modify a program significantly. Hence usually not much time

is spent eliminating the effect of changes. Also, presumably a student intelligent enough

to take out all traces ofplagiarism would not need to copy from others in the first place.

3.3.2 Sample Plagiarized Program

This following is a Java program plagiarized from the original verSIOn that

appeared in Section 3.2. The plagiarized verSIOn was written by a student in an

introductory computer science class.

1) 11=========================================
2) II Program: Sample_Program2
3) I I
4) II Author: Sample_Student2
5) 11=========================================

6) import java.io.*;
7) import java.util.·;

8) public class sample2
9) {

10) public static void main(String[] args) throws IOException
11) {

12)
13)

14)
15)
16)
17)

18)
19)

20)

21)
22)
23)
24)
25)
26)

InputStreamReader ir new InputStreamReader(System.in);
BufferedReader stdin new BufferedReader(ir) ;

int Ps 0;
int numoflicenses 0;
int TcostOut = 0;
int numoftags = 0;
String Drname = "";
String RTout = "";
String make = 1111;

String style = "";
String Vyear = "";

String Rtype = "";
String driverdatein = "";
String driver = stdin.readLine();

/*



-
18

it is a license request, manipulate
methods

process input until hit the end of the string

1*
Otherwise if
the license

*1

driverdatein = (tokenizer.nextToken(»);
while (tokenizer.hasMoreTokens()
Drname = Drname + II " + (tokenizer.nextToken(»);
StringTokenizer licensenametokenizer = new StringTokenizer

Ilotherwise print information
System.out.println("Number of tags issued: " + numoftags);
System.out.println("Number of licenses issued: " + numoflicenses);

}
}

else

}
System.out.println() ;
if (numoftags == ° && numoflicenses == 0)
System. out. println ("NO INPUT GIVEN! ! II); Ilgive warning if no input

else
{

StringTokenizer tokenizer = new StringTokenizer (driver);
Rtype = (tokenizer.nextToken(»);

*1
while (driver != null)
{

RTout = Rtype.8ubstring (0,3);
System.out.print(RTout.toUpperCase() + ": $5 ");
System.out.print{licenseNumber() + " " + driverdatein + " "

+ calcAge (driverdatein) + II - - ");
System.out.println(minimizeWhitespace(licensenametokenizer»);
numoflicenses = numoflicenses + 1;
drivername = "";

}
driver = stdin.readLine();

1*
Test if it is a tag request, if yes then perform
tag methods

*1
if (Rtype.equalsIgnoreCase (IItag") )
{

make = (tokenizer.nextToken(»;
style = (tokenizer.nextToken(»;
Vyear = (tokenizer.nextToken(»;
Ps = Integer.parseInt(Vyear);
while (tokenizer.hasMoreTokens(»
Drname = Drname + II II + (tokenizer.nextToken(»;

StringTokenizer tagnametokenizer = new StringTokenizer (Drname);
System.out.print(Rtype.toUpperCase() + ft: II);

TcostOut = (int) tagCost(Ps);
System.out.print("$" + TcostOut + " II);
System.out.print(tagNumber() + II II + make + II " + style + II

Vyear + II - - II);
system.out.println (minimizeWhitespace (tagnametokenizer»;
numoftags = numoftags + 1;
Drname "";

" +

27)

28)

29)

30)
31)
32)
33)
34)

35)
36)
37)
38)

39)
40)

41)
42)
43)

44)

45)

46)
47)
48)
49)
SO)

51)

52)
53)
54)
55)
56)
57)

58)

59)
60)
61)

62)
63)
64)
65)
(Drname) ;
66)
67)
68)

69)
70)
71)
72)

73)
74)

75)

76)
77)
78)

79)
80)

8ll
82)

B3)
B4)
B5 )



-
19

86)
87)
88)

/*
To determines the cost of the customer's tag

*/

89)

90)
91)
92)
93)

public static float tagCost(int year)

float Ctag = 0;
int Syear Calendr.get(Calendar.YEAR);
int Cyear = (Syear - year);

else

To gernerates a random license plate number that
contains letters and numbers

Ctag 15;
return Ctag;

}
/*

1111 •,

Tnum = 1111;

Aph;
Tletter

String
int k;
int i;
String
String

GregorianCalendar Calendr = new GregorianCalendar();
if (Cyear >= 0 && Cyear <= 3)

Ctag = 85;
else if (Cyear >= 4 && Cyear <= 7)

etag = 75;
else if (Cyear >= B && Cyear <= 11)

Ctag = 55;
else if (Cyear >= 12 && Cyear <= 15)

Ctag 35;

*/
public static String tagNumber()

{

94)
95)
96)
97)
98)
99)
100)
101)
102)
103)
104)
105)
106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)

118)
119)
120)
121)
122)
123)
124)
125)
126)
127)

Random tag = new Random();
Aph = "ABCDEFGHIJKLMNOPQRSTWWXYZ";

for (int charcount = 0; charcount < 3; charcount++)
/* Generate random characters */

i = tag.nextlnt();
i = Math.abs (tag.nextlnt()) % 26;
Tnum += Aph.charAt(i);

Tnum = Tnum + '-';

128)
129)
130)
131)

132)
133)
134)
135)
136)

for (int count = 0; count < 3; count++)
/* Generate random numbers */

i = tag.nextlnt();
i = Math.abs (tag.nextlnt(») % 10;
Tnum = Tnum + i;

return Tnum;

137) /*
138) To generates a nine digit random driver's license
139) number
140) */
141) public static String licenseNumber()
142) (
143) int j;



144)

145)
146)
147)
148)
149)
150)
151)
152)
153)

154)
155)
156)
157)
158)
159)
160)
161)
162)
163)
164)
name*/
165)
166)

167)
168)
169)
170)
171)
172)
173)

174)
175)
176)
177)
178)
179)

180)
181 )
182)
183)
184)
185)

20

String Lnum '" "";

Random license new Random() ;
for (int count c 0; count < 9; count++)

j = licenae.nextlnt();
j = Math.aba (license.nextlnt{» , 10;
Lnum = Lnum + j;

}
return Lnum;

/*
Convert customer's name which has mutiple spaces
in between into a string
that has only one white space in between

*/
public static String minimizeWhitespace(StringTokenizer n)
{

String Name = "";
Name = (n.nextToken(»; /* get the first name */
while (n.hasMoreTokens(»)

Name = Name + " " + (n.nextToken{»; /* get the last

return Name;

/*
Driver's age calculation

*/
public static int calcAge(String date)

{
int Smonth = Calendr.get{Calendar.MONTH);
GregorianCalendar Calendr =new GregorianCalendar();

int Syear = Calendr.get(Calendar.YEAR);
Smonth = Smonth + 1;
int Sdate = Calendr.get(Calendar.DATE);
int Drmonth = Integer.parselnt(date.substring(O,2»);
int Dryear Integer.parselnt(date.aubstring{6»;
int Drdate = Integer.parselnt(date.subatring{3,5»;

int Agyears = (Syear - driveryear);
if (Smonth <= Drmonth && Sdate < Drdate)

Agyears - = 1;
return Agyears;

Although these two programs (the original versIOn 10 Section 3.2 and the

plagiarized version above) are not exactly the same, they are very similar. The second

one varies from the first one only in the following ways.

(1) Variable Renaming. Most variables have been renamed in this program. This is the

most expected change students could make.



-
21

(2) Method Reordering. The original program ends with the mainO method with aU other

member methods ahead of it. The second version starts with the mainO method followed

by other member methods in a varied order. This modification can easily defeat most

text-based matching detectors.

(3) Variable Reordering and Additional Variable Declarations. Not only did the second

one modify the order of variable declarations, but also put in some useless variables. In

Sample 2, at line 114, the integer variable k is declared but never referred to later in that

module.

(4) Decomposition ofNested Methods Calls. In Sample 1, there is a nested methods call
at line 107 in the mainO method,

107) BufferedReader stdin = new BufferedReader(new InputStreamReader
(System. in) );

The line is decomposed as the two method calls in line 12 and line 13 in Sample 2:

12) InputStreamReader ir = new InputStreamReader(System.in);
13) BufferedReader stdin = new BufferedReader(ir);

(5) Different Documentation Styles. Sample I uses the symbol II while Sample 2 uses

1* ... *1 for commenting.

It is worth noting that since typically a plagiarist does not know much about

programming and/or the specific program, it is very hard for him/her to rename the

original variable names as something meaningful. Normally, helshe would just take some

abbreviation or compaction ofthe original variable names.

3.4 Data Collection-Scanner

3.4.1 Design Idea

One thing that makes computer programs different from other text documents is

their concise and precise statement flow. Several programs with different style and



-
22

organization may do the same thing.. However, once a program is set, it is hard to

plagiarize it without any trace since the flow of control and operators cannot be easily

changed thoroughly. For example, it can be argued that changing a Java program's

structure is not all that different from reprogramming.

As mentioned previously, JPD is Java Plagiarism Detector. First, JPD has a

scanner that tokenizes meaningful and comparable tokens based on the calling order of

statements for each candidate program. The scanner tokenizes each program into a stream

of tokens that may be taken as its identity ready to be compared with others.

The key words and reserved words take very important roles in deciding the flow

of control of a program. Operators and method calls are also very valuable in shaping a

program's structure. JPD recognizes Java key words, operators, and method calls, while it

skips the variables and the comments.

Some previous work skipped comments but tokenized each word induding

variable names [Gitchell and Tran 99]. There is a pitfall about this idea. Unlike a C

programmer, a Java program can declare variables anywhere, even among executable

code statements right ahead ofreferring it in the same block. If a plagiarist puts redundant

declaration randomly without calling them afterwards in the module or even calling them

by adding some meaningless statements, this would significantly change the size and

layout of the token stream. Thus the result from this kind of scanner may not be accurate

and the detection system may not work well.

lPD skips variable declarations, variable names, and comments. It even does not

keep track of the number of variables. For method calls, JPD keeps the operators, ' . "

and the method names regardless of weather they are library methods or programmer-



23

defined methods. In the case of encountering programmer~defined method calls, JPD

expands the method in place. JPD focuses on the flow of key words and operators since

they could not be changed significantly unless the plagiarist redesigns or recodes the

entire program. To do that, a plagiarist must be experienced in programming and

understand what the program does and how it works, and these take a lot oftime. We can

assume that such a person would rather program by him/herself instead of taking a lot of

time copying, studying and modifying somebody else's program.

Constant values also are considered since they have a direct relationship with the

algorithm and the design of the code, and they are hard to change. Unless the plagiarist

knows the program well, he/she can only make some superficial changes to the original

program.

Here is a segment of code from Sample Program 2 given in Section 3.3.2:

178) int Dryear = Integer.parselnt(date.substring(6));
179) int Drdate = Integer.parselnt(date.substring(3,S));

180) int Agyears = (Syear - driveryear);
181) if (Smonth <= Drmonth && Sdate < Drdate)
182) Agyears - = 1;
183) return Agyears;

The way JPD scans this piece of Java source code is as follows.

= .parselnt ( .substring ( 6) ); = . parseInt ( .substring ( 3 ,5 »; = ( - ) ; if ( < =

& & < ) - = I ; retu

Here is the original code segment from Sample Program 1given in Section 3.2.

98) int driverdate Integer.parselnt(date.substring(3,S);
99} int driveryear Integer.parselnt(date.substring(6»);

100) int ageinyears = (systemyear - driveryear);
101) if (systemmonth <= drivermonth && systemdate < driverdate)
102) ageinyears = ageinyears - 1;
103) return ageinyears;

The token stream that the scanner produces is as follows:



-
24

=. parseInt ( .substring ( 3, 5 ) ; =( .parseInt ( .substring ( 6 ) ); =( - ) ; if ( <
= && < ) = - I . return ., ,

Obviously, the two code segments are very similar based on comparing their

longest common streams.

There are 34 tokens in the LCS (Longest Common Stream) and the number of

tokens in each segment is 39. The similarity between them is calculated in the following

way: number of tokens in the LCS / number of tokens in Segment! / number of tokens in

Segment2.

In this case, we have:

34/39/39

As we have seen, the two code segments have the same size and also the number

of tokens in their longest common streams is very close to the average size of the two

programs. Similar size and a large number of tokens in longest common streams in a

group of pair-wise program comparisons are important signs of plagiarism that will be

explained in Section 4.3.

3.4.2 Discussion and Conclusions

IPD can handle most of the techniques that are typically used to disguise changes

made to programs when they are copied and plagiarized, especially for the common

practices mentioned earlier. A list of these practices and how JPD behave in response to

them is given below.

(1) Variables renaming

IPD is immune to vari.able renaming since it does not take variables into consideration.

(2) Method reorder



25

Since JPD tokenizes the source code in the execution order, it is able to handle the

reordering of the methods.

(3) Interchanging equivalent statements

When tokenizing programs, JPD assigns a common identifier for the 'switch...case' and

'if. .. else' keywords. "While" loop and "for" loop as well as all other interchan,geable

keywords also get the same identifiers.

(4) Redundant variables declared or extra methods added

Since JPD skips variable declarations and tokenizes programs in the execution order, any

uncalled method would be left untouched.

(5) Combination or decomposition ofmethod calls

This technique is very tricky, especially if programmer-defined method calls are nested

or decomposed. If this change is made to a program, assume JPD tokenizes the program

in the text layout order and expands programmer-defined method calls in place, the result

will be fairly misleading. However, by using a stack structure, JPD is able to deal with

nested programmer-defined method calls.

(6) More comments

JPD skips comments, so it is immune to this kind of change.

Each program in a suspected plagiarism case involving two programs may contain

one or more different classes from the counterpart program while each class consists of

one or more methods. The output from lPD's scanner for each input program is a stream

of tokens that is used by the second phase of JPD, TSM (Token Stream Matcher), as

input for further inspection.



-
26

3.4.3 Implementation Issues

In IPD, there are three passes of scanmng programs. They all have been

implemented using Unix facilities such as Flex and shell scripts, together with C.

Appendices N, 0, P, and Q contain the source code of JPD. The first pass of JPD is for

scanning aU the programmer-defined class names and method names, then storing them

into a linked list. The second pass is for tokenizing each method in aU classes and

outputting the token stream into a file by the name of the respective method. During this

process, when encountering a programmer-defined method being called in the middle of

another method, IPD just leaves the method name alone and goes on. Then, in the third

pass, IPD starts from the token stream file of the main method, and copies each token

into a file called "total". When encountering a programmer-defined method call, JPD just

expends the token stream of that method in place until exit from the main method. IPD

may need to run the third pass multiple times since one method may call another utility

method that in tum may call others.

3.5 Token Stream Matching - TSM

The second phase of JPD is to match each pair of token streams from two

programs in order to detect the similarity between each pair. By utilizing the dynamic

programming technique of locating the longest common stream (LCS), TSM (Token

Stream Matcher) has been implemented. Appendix Q is the source code ofTSM.

Assume there are two strings Xi and Yj. The entry c[i, j] is defined as the length

of an LCS of the sequences Xi and Yj. We have the recursive optimal substructure of the

LCS problem as follows [Connen et a1. 90]:



o

c[i,j] = { c[i-l,j-l]+l

Max (c[i,j -1], c[i - l,j))

The psudo code of the LCS program is as foHows.

LCS-LENGTH(X, Y)

ifi = 0 or j = 0

if i, j > 0 and Xi = Yj

if i, j > 0 and Xi ;t: Yj

27

1 m ~ length[X]
2 n ~ length[Y]
3 for i ~ 1 to m
4 do c[i, 0] ~ 0
5 for j ~ 0 to n
6 do c[O,jJ ~ 0
7 for i ~ 1 to n
8 do if j ~1 to n
9 do if Xi = Yj
10 then c[i,j] ~ c(i - l,j -1] + 1
11 b[i, jJ ~ "'\."
12 else ifc{i - l,j) ~ c[i,j -1)
13 then c[i, j] ~ c[i - 1, j]
14 b[i,j] ~ "I"
15 else c[i,j) ~ c[i,j -1]
16 b[i,j]~"~"

17 return c and b

Here, b[ 1..m, 1..n] is used to simplify the construction of an optimal solution. The

element b[i, j] points to the table entry corresponding to the optimal sub problem solution

chosen when computing c[i, j].

The actual implementation takes token streams from two files that are to be

compared. There is an integer variable count added in the algorithm to keep track of the



28

number of tokens In LCS, which is retrieved later to be used for investigation of

similarity.

3.6 Overall Result Collection

To automatically detect plagiarism among a set of programs, a shell script was

implemented. First, it calls Scanner to tokenize each Java program into a token stream

file, then it calls TSM to take each program as the target and calculate the LCS with

every other program, finally it outputs the distribution of the similarities for all pairs. The

final result can be used for detecting plagiarism and locating suspicious cases.

Appendices C, G, and K are execution results for a group of pair-wise comparisons of

Java programs that were caught by JPD as having suspicious pairs. The Java programs of

the pairs being caught have been attached in Appendixes D, E, H, I, Land M. By

utilizing charts to plot the data from execution results, the similarity distribution can be

clearly shown. Appendices B, F, and J illustrate the similarity distributions.



CHAPTER IV

RESULT AND DISSCUSION

4.1 Input Data Sources

The data sources that were used to test JPD were all from real computer science

classes. To protect the students' privacy, all names were discarded. A total of34 Java

programs were tested.

4.2 Sample Result from Scanner

After a candidate Java program is scanned, the token stream is output to a file

called "total". The following is the token stream of "Sample_Program I" mentioned

earlier in Section 3.2.

= new ( new ( . )) =. readLine ( ) ; = " " ; = " " ; = " " ; .. " " ; .. " "
= " " ; = " " ; = 0 ; = 0 ; = 0 ; = 0 While_For ( J = ) = new ( ) ; =
.nextToken If_EIse_Switch_Case .equalslgnoreCase ( ))
· nextToken ( ) ) ; = ( . nextToken ( ) ); (. nextToken ( ) ); . parselnt
) ; While_For ( . hasMoreTokens ( ) ) = + " " + ( . nextToken ( )) = new ( )
· .print ( .toUpperCase ( ) + II : " ); () = new ( ) ; = .get .); = ( -
) ; = 0 ; If_Else_Switch_Case (> 0 & & < = 3) B 5 Else Default
If_EIse_Switch_Case (> 4 & & < 7 7 5 Else Default
If_EIse_Switch_Case (> B & & < 11) 55 Else Default
If Else_Switch_Case > = 1 2 & & < = 1 5) 3 5 ; Else_Default = 1 5 ; return

; . .print ( " $ " + + " 11) •• print ( = new ( ) ; j = " " ; = II "; 11

While_For ( = 0 < 3 ; + + = .nextInt ( ) ; = .abs ( .nextInt ( ) ) % 2
6 = + . charAt () = + I - While For ( = 0 ; < 3 ; + + ) = . nextInt ( )

.abs (.nextlnt ») % 1 0 ; = + ; return +"" + + " " + + " " + + "
" ) ; . .println ( = " " ; = ( .nextToken ( ) ) ; While_For .hasMoreTokens

( ) ) = + " " + ( . nextToken ( ) ) ; return; = + 1 ; = " " ; Else_Default
( . nextToken ( ) ) ; While_For ( . hasMoreTokens ( ) ) = + " " + ( . nextToken (
) ) ; = new ( ) ; = .substring ( 0 , 3 ); .print ( .toUpperCase ( ) +" $
5 " ) .print ( = new () ; = " " ; While_For ( = 0 ; < 9 ; + + )
· nextInt ( ) ; = .abs . ( . nextInt ( ) ) % 1 0 ; = + ; return; +"" + + " " +
= new ( ) ; = .get ( . ) ; = + 1 ; = .get ( . ) ; = .get ( . ) ; = .parseInt

29



II II

-
30

· substring ( 0 I 2) ; = •parseInt ( . substring ( 3 I 5 ) ) i C • parseInt (
.substring ( 6 ) ) ( - ) ; If_EIse_Switch Case ( < = & & < ) = - 1 ; return

. println ( = " II ; = ( .nextToken ( ) ) ; Whi Ie For ( . hasMoreTokens ( )
= + II " + ( . nextToken ( ) l ; return; ; = + 1 ; = " II ; = . readLine ( )
.println () If_Else_Switch_Case ( = = 0 & & = = 0 ) .. println ( "! ")

Else Default ..println ( " : " + ) ; ..println ( " : " + l ;

The total number of tokens is 674.

The token stream of "Sample_Program2" is listed below.

= new ( . ) ; = new ( l i = 0 ; = 0 ; = 0 ; = 0 ; = " " ; = " " ; = " " ; = " "
; = " II ; = " " " " ; = .readLine (l While_For ( ! = ) = new ); =
. nextToken If_Else_Switch_Case ( .equalsIgnoreCase ( "l l
.nextToken ( ) ) ( .nextToken ( l l ( .nextToken ( l l .parseInt
l ; While_For ( .hasMoreTokens ( l ) = + " " + ( .nextToken ( » = new ( )

. print ( . toUpperCase ( ) + " : " ) ; = ( ) = 0 ; '" . get ( ) = ( - ) ;
new () If_Else_Switch_Case (:> 0 & & < = 3) 8 5 Else Default
If_Else_Switch_Case (:> 4 & & < 7 7 5 Else_Default
If_Else_Switch_Case (:> 8 & & < 11) 55 Else Default
If Else_Switch_Case > = 1 2 & & < = 1 5 ) = 3 5 Else Default = 1 5 ; return

.print { " $ " + + " " I .print ( = " " ; ; ; i = " " ; = new ( )
While_For ( 0 < 3 ; + + ) = .nextInt ( ) ; = .abs { .nextInt ( ) )

% 2 6 ; '" + .charAt ( ) + I - ; While_For ( = 0 i < 3 ; + + ) = .nextInt
( ) ; = .abs ( .nextInt ( ) l % 1 0 i = + ; return; +"" + + " " + + tl " + +

) .println ( ( .nextToken () While For
· hasMoreTokens ») = + " " + ( . next Token ( l l i return ; + 1 ; = " "
Else_Default = ( .nextToken ( l l ; While_For { .hasMoreTokens ( ) l = + " 11 +
( . next Token ( l) = new ( l . substring (0 3) . print
.toUpperCase ( ) + " : $ 5 " l ; ..print ( ; = " " ; = new ( ) ; While_For (
o < 9 ; + + l = .nextInt ( ) ; = .abs ( .nextInt ( ) ) % 1 0 i '" + ; return
+ " " + + " " + = .get ( .) = new () = .get ( . l ; = + 1 ; = .get (

= .parseInt ( .substring (0 2) .parseInt ( .substring ( 3 I 5 ) )
.parseInt ( . substring ( 6 l ) ; = ( -) If_Else_Switch_Case ( < .. & & < )
- 1 i return ; . println ( = " " ( . nextToken ( » While_For (

.hasMoreTokens (l = + " 11 + ( .nextToken ( ) l ; return i" + 1 i • " "
= .readLine ( ) .println () If_Else_Switch_Case ( '" .. 0 & & .... 0
.println ( "! ") Else Default .println ( " : " +) •. println ( II

+ ) i

The number of tokens in this stream is 678.

The LCS of "Sample_Program!" and "Sample_ Program2" is given below.

= new ( . ) ; = ( ) ; = i = ,; = ; :::: II " ; = It II i = " If i = U " ; = ; = ; ::: ;
; While_For ( ! = l = new ( l ; = .next Token () ; If_Else_Switch_Case
· equalsIgnoreCase ( " " ) ) = ( . nextToken ( l l ; = ( .nextToken ( l ) ;
.nextToken ( ) ) .parseInt ( ) ; While_For ( .hasMoreTokens ( ) l +"" +
( .nextToken ( ) l ; = new ( ) .print ( .toUpperCase ( ) + " : " ) ( l
= ; = . get ( . l = ( - ) ; = If El se Swi tch Case ( > = 0 & & < 3 8 5
i Else_Default If_Else Switch Case ( > '" 4 & & < = 7 l = 7 5 ; Else_Default
If Else Switch Case {> 8 & & < III 5 5 Else_Default
If Else_Switch_Case ( > = 1 2 & & < = 1 5 ) '" 3 5 i Else_Default = lSi return
· ... print ( " $ " + + " " ) ; .. print ( =; ="" i '" ; = " " ; While_For
( = 0 i < 3 i + +) .nextInt ( ) ; = .abs .nextInt ( ) ) % 2 6 i = +
.charAt ( ) i = + I - I ; While_For ( 0; < 3 + + ) = .nextInt ( ) ; = .abs
( .nextInt ( l ) t 1 0 i = + i return +"" + + " " + + " " + + " - - " l
.println ( = " " ; = ( .nextToken ( ) l While For { . hasMoreTokens ( l ) = +



31

II II + ( .nextToken ( ) ) ; return ; ; = + 1 ; = nil; Else_Default = (
.nextToken ( ) ) ; While For ( .hasMoreTokens ( ) ) = + II 11 + ( .nextToken ( )
) ; = new ( ) ; = .subst~ing ( 0 , 3 ) ; .. print ( .toUpperCase ( ) + " : $ 5
" ) ; ..print ( ; = " II ; While_For ( = 0 ; < 9 ; + + ) = .next:Int ( ) ;
· abs ( . nextlnt ( ) ) % 1 a ; = + ; return ; + 11 II + + 11 II + = new ( ) ; = . get
( . ) ; = + 1 ; = .get ( . ) ; = .parselnt ( . substring ( 0 , 2 ) ) ;
· parselnt ( . substring ( 3 , 5 ) ) ; = .parselnt ( . substring ( 6 ) ) ; = ( - )
; If_Else_Switch_Case ( < = & & < ) = - 1 ; return ; ; . .println ( = II II ; = (
· nextToken ( ) ) ; While_For ( . hasMoreTokens ( ) ) = + II II + ( .nextToken ( )
) ; return ; ; = + 1 ; = II II ; = . readLine ( ) .printIn ( )
If Else Switch Case ( = = 0 & & = = a .. println ( " ! ! II ) ; Else Default
.printl~ ( " :-11 + ) ; ..println ( II : II + ) ; -

The length of LCS (Longest Common Stream) of these two programs is 640. Thus the

similarity coefficient can be showed in the following way.

Number of tokens in LCS / number of tokens in Sample_Programl
/ number of tokens in Sample_Program2 = 640/674/678

As can we have in this case, not only are the sizes of both programs very close, but also

the number of tokens in LCS is close to the size of either program.

4.3 Pair-Wise Comparison Result Discussion

Output from ShellScriptl (APPENDIX R) and ShellScript2 (APPENDIX S) is an

overall similarity indicator for each pair-wise comparison. This indicator consists of

seven components: number of tokens in LCS, directory name of the target program,

directory name of the candidate program being compared, number of tokens in the target

token stream file, the file name of the target token stream file, the number of tokens in the

candidate token stream file, and the name of the candidate token stream file being

compared.

Each tuple looks like the following:

NTl SOl SD2 NT2 ../target NT3 total

NT 1 is the number of tokens in the longest common token stream for this pair



32

SD 1 is the target student directory name that can be used to locate the student

SD2 is the student directory name where the program that is being compared to the target

program resides

NT2 is the total number of tokens in the target token stream file

NT3 is the total number of tokens in the candidate token stream file which is being

compared to the target.

The components "..Itarget" and "total" are the name of token stream files being

compared.

Appendices C, G, and K are samples of execution result. Appendices B, F, and J

contain plots for these results. There is a small circle identifying the highest similarity in

each chart. The two programs involved have close sizes and have the highest number of

tokens in tenns of their LCS among all pair-wise comparisons in the group. Six pairs of

programs were identifies by JPD as being involved in plagiarism. Three of the six have

being attached as appendices in this thesis. Appendices 0 and E, H and I, and Land M

are the similar pairs of Java programs caught by JPD. By carefully inspecting each pair,

evidence of copying was noticed.

There are no definitive and conclusive criteria that can be used to judge whether

or not there is plagiarism for each group of pair-wise comparisons. The most judicious

way is to locate pairs of programs with similar sizes and relatively large number of

tokens in their respective LCS, and then to try to manually examine them.

....



CHAPTER V

CONCLUSION AND FUTURE WORK

JPD has been shown to work well by testing it on 34 Java programs written by

students in computer science classes. There were a total six pair of programs that were

caught. They were easily located by examining the charts generated from the data taken

from the execution results of JPD.

The following are limitations ofJPD.

1. All programs being tested must be compiled with no syntax errors.

2. The number of recognized tokens cannot exceed 1000. However, one can make a sman

change in the dimensions of the token array in the source code of TSM to overcome the

limitation.

3. Depend on the situation, a user may have to write his/her own shell script to test Java

programs automatically.

Some areas of future work that can be done to improve the detection system are

listed below.

1. JPD can handle multiple classes as long as no two methods share the same name. If

method overriding happens in the Java programs being investigated, JPD cannot

distinguish which method it calls.

2. A graphical user interface for JPD can be designed and implemented.

33



REFERENCES

[Cormen, et a1. 90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,
Introduction to Algorithm, MIT Press, Cambridge, MA, 1989.

[Fu 86] Wen-yu Fu, "Design and Implementation of a Software Tool that Detects
Plagiarism in C Programs," Master of Science Thesis, Department of Computer
Science, University of Houston - University Park, Houston, TX, May 1986.

[Gitchell and Tran 99] David Gitchell and Nicholas Tran, "Sim: A Utility for Detecting
Similarity in Computer Programs", Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education, pp. 266-270, New
Orleans, LA, March 1999.

[Grier 80] Samuel L. Grier, Jr., "A Tool for Detecting Plagiarism in Pascal Programs,"
Master of Science Thesis, Department of Computer Science, University of
Colrado, Boulder, CO, 1980.

[Halstead 77] M. H. Halstead, Elements ofSoftware Science, Elsevier North Holland,
New York, NY, 1977.

[Harris 94] James K. Harris, "Plagiarism in Computer Science Courses", Proceedings of
the Conference on Ethics in the Computer Age, pp. 133 - 135, Galtinburg, TN,
November 1994.

[Huang, et a1. 90] X. Huang, R. C. Hardison, and W. Miller, "A Space-Efficient
Algorithm for Local Similarities", Computer Applications in the Biosciences,

Vol. 1, No.2, pp. 373-381, June 1990.

[Litwak, 99] Kenneth Litwak, Pure Java 2 a Code-Intensive Premium Reference,
Sams Pulishing Companies, Inc., Indianapolis, IN, 1999.

[Malpohl 00] Guido Malpohl, "Jplag Detection Software Plagiarism WEB Page",
http://wwwipd.ira.uka.de:2222. last modified July 2000, access date October
2000.

[Martin 97] John C. Martin, Introduction to Languages and the Theory ofComputation,
McGraw-Hill Companies, Inc. New York, NY, 1997.

[MOSS 00] MOSS, "A System for Detecting Software Plagiarism",

34



http://www.cs.berkeley.eduJ-aikenlmoss.html, last modified April 2000, access
date October 2000.

[Myers and Miller 88] E. W. Myers and W. Miller, "Optimal Alignments in Linear
Space", Computer Applications in the Biosciences, Vol. 3, No.2, pp. 11-17,
April 1988.

[Ottenstein 76] K. J.Ottenstein, "An Algorithmic Approach to the Detection and
Prevention of Plagiarism," SIGCSE Bulletin, Vol. 8, No.4, December 1976.

[Palmer 00] Grant Palmer, Java Programmer's Reference, Wrox Press Ltd.,
Acock's Green, Birmingham, UK, 2000.

35

....



APPENDICES

36



APPENDIX A

GLOSSARY

Flex Fast lexical analyzer generator, a tool for generating programs that
perfonns pattern-matching on text files.

JPD Java Plagiarism Detector, the plagiarism detection tool implemented. as
part of this thesis.

LCS Longest Common Stream, an algorithm to look up the longest common
stream in two streams, equivalent to Longest Common Subsequence
[Connen et al. 90, pp 314 - 315].

OOP

Parser

Scanner

TSM

Objected Oriented Programming, writing programs in one of a class of
programming languages and techniques based on the concept of an
"object", which is a data structure (abstract data type) encapsulated with a
set of routines called "methods" that operate on the data.

An algorithm or program to determine the syntactic structure of a sentence
or a string of symbols in some language. A parser nonnally takes as input
a sequence of tokens that are output by a lexical analyzer or scanner. A
parser produces abstract syntax trees as output.

Also called lexical analyzer, a program that recognizes valid tokens and
symbols in a program for a specific language.

Token Stream Matcher, one of the components of lPD (Appendix Q).

37



APPENDIXB

Illustration of Sample Result of Pair-Wise Comparlson#1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Student IDNumber

-+-Number of tokens in LCS

_ Number of tokens in Target Program, S21

Number of tokens in Candidate Program

38



·1

APPENDIX C

Sample Execution Result of Pair-Wise Comparison #1

Each row of the result below has the following order: number of tokens in LCS, directory
name of the target program, directory name of the candidate program being compared,
number of tokens in the target token stream file, the file name of the target token stream
file, the number of tokens in the candidate token stream file, and the name of the
candidate token stream file being compared.

347 82.l 81 565 · ./target 723 total

545 821 82 565 .. /target 580 total

333 821 83 565 · . /target 725 total

373 821 84 565 · . /target 685 total

405 821 85 565 · ./target 710 total

361 821 86 565 · ./target 667 total ~..
)

353 821 87 565 · ./target 599 total ...
.....

404 821 88 565 · ./target 646 total

358 821 89 565 · . /target 674 total

411 821 810 565 · ./target 912 total

329 821 811 565 · . /target 603 total

416 821 812 565 · ./target 662 total

405 521 813 565 · ./target 861 total

379 821 814 565 · ./target 568 total

359 821 815 565 · . /target 520 total

436 821 816 565 · . (target 841 total

327 821 517 565 · ./target 661 total

377 821 818 565 · ./target 560 total

347 821 819 565 · . /target 946 total

318 821 820 565 · ./target 550 total

293 821 822 565 · . /target 435 total

353 821 823 565 · ./target 669 total

39



40

375 821 824 565 · ./target 763 total

277 821 825 565 · ./target 607 total

341 821 826 565 · ./target 547 total

321 821 827 565 · ./target 472 total

400 821 828 565 · ./target 547 total

400 821 829 565 · ./target 702 total

231 821 830 565 · ./target 332 total

392 821 831 565 · ./target 576 total

404 821 832 565 · ./target 586 total

368 821 833 565 · ./target 986 total

397 821 834 565 · ./target 689 total
)
:"

I

t
•I

a
~...
r
:ll'



APPENDIXD

Program from student 821 that was identified by JPD as being involved in plagiarism
with the program of student 82 which appears in Appendix E.
11=============================================================
II
II Program: Target Program #1
II
II Author: 821
II
11=============================================================

import java.io.* ;
import java.util.* ;
import java.text.NumberFormat;
import java.text.DecimalFormat;

public class pgm04 (

....
I

/1

public static String tagNumber() {
Random r = new Random();
int numl; double num2, numJ; char alpha;
String TAGNO = ~ ";
get alphabet

for(int i = 0; i<3;i++)

I..
~

Random num2 = r.nextdouble();
alpha= (char) (num2 * 27) + 65;
TAGNO += alpha;

II get numerals
TAGNO += "-";
for(int i = 0; i<3;i++)

numJ = r.nextdouble();
numl = (int) (num3 * 10);
TAGNO += numl;

return TAGNO;
}
II generate and return a license number in th format ("NNNNNNNNN").

Public static String licenseNumber()
{

Random lie = new Random();
double licnum2 lint licnuml
String LICENSEI = " ";
for(int i = 0; i<lO;i++l

}

}

licnuml (int) {(licnum2
LICENSEl += licnuml;

return LICENSE1;

lic.nextDouble{))*10) ;

II this returns the co~t of the tag based on the age of the vehicle.
Public static double tagCost(int year)

41



GregorianCalendar cal = new GregorianCalendar();
int yr = cal.get(Calendar.YEAR);
int COST = 0;
int yrdiff = yr - year;
if(yrdiff >= 0 && yrdiff <= 3)

COST = 85;
else if (yrdiff >= 4 && yrdiff <=7)

COST = 75;
else if (yrdiff >=8 && yrdiff <=11)

COST = 55;
else if (yrdiff >=12 && yrdiff <=15)

COST = 35;
else if (yrdiff >= 16)

COST = 15;
else;
return COST;

42

II this code eliminates all trailing white spaces.
Public static String minimizeWhiteSpace(StringTokenizer a)
{

{

}

}

String strl = " ";
while(a.hasMoreTokens(»

strl += a.nextToken() + " ";

return strl;

)....

II this code calculates the age of a licensee
public static int calAge (String date)

{
int AGE = 0;
GregorianCalendar cal = new GregorianCalendar() ;
int dayl = cal.get(Calendar.DATE);
int mon = cal.get(Calendar.MONTH} + 1;
int yr cal.get(Calendar.YEAR);
int mm Integer.parselnt(date.eubetring(0,2»
int dd Integer.parselnt(date.substring(3,5)
int yy Integer.parselnt(date.substring(6});
if (man> mm)

AGE = yr - yy;
else if (month < mm)

AGE = (yr - yy) - 1;
else if (man == mm)

if (dayl < dd)
AGE yr - yy;

else
AGE (yr - yy) - 1 ;

else;
return AGE;

II this code will process the input data
public static void main(String[] args) throws IOException

String linea;
int licl = 0, tagl = 0;

BufferedReader stdin = new BufferedReader
(new InputStreamReader(System.in»);

I..
•



linea = Stdin.readLine();
while (linea ! = null && linea .length () ! = 0)

StringTokenizer t = new StringTokenizer(input);
String tl = "";
tl = t.nextToken();
if (tl.equalslgnoreCase("tag"»

String manu = t.nextToken();
String tno = tagNumber();
String carmk t.nextToken();
int year = Integer.parselnt(t.nextToken();
String namea = "";
namea = minimizeWhiteSpace(tl;
double cost = tagCost(year);

System.out.println("TAG : " + "$" + (int)cost + " " +tno + " "

+ " " + manu + " " tagl++»;
II this counts the increment of the tags issued.

}
else
if (tl . equalslgnoreCase ("license") )

String year;
year = t.nextToken();
String nameb = "";
nameb = minimizeWhiteSpace(t);
int agel = caIAge(year);
String licno;
licno = licenseNumber();

System.out.println("LIC : $5" + " " +licno + " " + year +" " + agel
+ " -" + liel++);

II counts the increment of licenses issued
}

else;
II end of the while loop.

System.out.println(" ");
System.out.println("Number of tags issued: " + tagl);
System.out.println("Number of licenses issued "+ licl);

II method main

II end of class pgm04

43

)....

I..
I

•• ~I



APPENDIX E

Program from student S2 that was identified by lPD as being involved in plagiarism with
the previous program of student S21 in Appendix D.
11=====================================================================
II
II Program: Candidate Program with high similarity with Target #1
II
I I Author: S2
11=====================================================================

import java.util.·
import java.io.* ;
import java.text.*

..
I..
I..
•t·
)

65) ; J.

:T

public class pgm04
{
public static String tagNumber()
{
Random r = new Random();
int num1;
float num2,num3;
char xyz;
String TAGNUM = " ";

for(int i = 0; i < 3 ;i++)
{
xyz = (char) (( (num2=r.nextFloat (») *27) +
TAGNUM +=xyz
}
TAGNUM += lO-O<

for(int i 0; i < 3;i++)
{
numl = (int) ((num3=r. nextFloat () ) *10) ;
TAGNUM+=num1;
}
return TAGNUM;
}

public static String licenseNumber()
{
Random lc = new Random();
float Inum2;int Inum1;
String L1= " ";
for(int i = 0; i<10; i++)
{
Inum1 =(int) ((lnum2 =lc.nextFloat())*10l;
L1 +=lnum1;
}
return L1;
}

public static float tagCost(int year)
{

44



GregorianCalendar cal = new Gregoriancalendar();
int Year = cal.get(Calendar.YEAR);
int cost =0;
int yrdiff = Year - yeari
if (yrdiff >= 0&& yrdiff <= 3)
cost =85;
else
if(yrdiff >= 4 && yrdiff<= 11)
cost = 75;
else
if (yrdiff >= 8 && yrdiff <= 15)
cost = 55i
if (yrdiff >= 12 && yrdiff <= 15) cost 35;
else if(yrdiff >=16)
cost = lSi

else;
return cost;
}
public static int calcAge(String date)
{
int age = 0;

GregorianCalendar cal = new GregorianCalendar();
int day1 = cal.get(Calendar.DATE);
int month = cal.get(Calendar.MONTH) + 1;
int Year = cal.get(Calendar.YEAR);
int mm Integer.parselnt(date.6ubstring(0,2)
int dd = Integer.parselnt(date.8ubstring(3,5»
int yy = Integer.parselnt(date.6ubstring(6»;
if (month > mm)
age = Year - YYi
if (month < mm)
age = (Year - yy) - 1;
if (month == mm)
{
if (day1 < dd)
age = Year - YYi
else
age=(Year - yy) - 1;
}
else;
return age;
}
public static String minimizeWhiteSpace(StringTokenizer m)
(
String Strl = " "i

while(m.hasMoreTokens(»
(

Strl += m.nextToken() + " "i

}
return Strl;
}

public static void main (String[] args) throws IOException
(
String linemi
int leI = 0, tagl = 0;
InputStreamReader isr=new InputStreamReader (System. in) ;
BufferedReader Stdin = new BufferedReader (isr);

linem = Stdin.readLine();

45

..
I.....
•:.



while(linem != null && linem.length() != 0)
(
StringTokenizer tz = new StringTokenizer(linem) ;
String tl = "";
tl= tz.nextTokenl);
if (tl. equalslgnoreCase ("tag") )
{
String mfc = tz.nextToken();
String tno = tagNurr~er();

String vmake = tz.nextToken();
int year = Integer.parselnt(tz.nextToken()l;
String namem = "'I;

namem = minimizeWhiteSpaeeltz);
float cost = tagCost(year);

System.out.println("TAG "+ "$" + (int)cost + " " + tno + " " + mfe + .. " +
namem) ;
tagl++;
}
else
if(tl.equalsIgnoreCase("lieense"»)
{
String year;
year = tz.nextToken();
String namen = ""i
namen = minimizeWhiteSpace(tz);
int agel =ealeAge(year);
String Ino;

46

•

Ino = lieenseNumber();
System.out.println("LIC $5" + " " + Ino + " " + year +" " + agel +"
namen) ;
lel++;
}
else
System.out.println("wrong input");
linem = Stdin.readLinel);

System.out.println(" ");
System.out.println("Number of tags issued: " + tagl);
System.out.println("Number of licenses issued "+ lel);

" +

...
I
~.



APPENDIXF

Illustration of Sample Result of Pair-Wise Comparison#2

1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Student 10 Number

-+- Number of tokens in LCS

___ Number of tokens in Target Program, 56

Number of tokens in Candidate Program

47

....
•
I

l
i='.



APPENDIXG

Sample Execution Result of Pair-Wise Comparison #2

Each row of the result below has the following order: number of tokens in LCS, directory
name of the target program, directory name of the candidate program being compared,
number of tokens in the target token stream file, the file name of the target token stream
file, the number of tokens in the candidate token stream file, and the name of the
candidate token stream file being compared.

394 86 81 667 · ./target 723 total

361 86 82 667 · ./target 580 total

362 86 83 667 · ./target 725 total

362 86 84 667 · ./target 685 total

354 86 85 667 · ./target 710 total ).
366 86 87 667 · ./target 599 total ..
354 86 88 667 · ./target 646 tot"al ..
399 86 89 667 · ./target 674 total •I

I
413 86 810 667 · ./target 912 total t:

....
356 86 811 667 · ./target 603 total

1=
375 86 812 667 · ./target 662 total )

:I
· . /target total -367 86 813 667 861

352 86 814 667 · . /target 568 total

314 86 815 667 · ./target 520 total

418 86 816 667 · . /target 841 total

328 86 817 667 · ./target 661 total

337 86 818 667 · ./target 560 total

394 86 819 667 · ./target 946 total

353 86 820 667 · ./target 550 total

361 86 821 667 · ./target 565 total

277 86 822 667 · ./target 435 total

48



49

498 86 823 667 · . /target 669 total

434 86 824 667 · . /target 763 total

315 86 825 667 · . /target 607 total

323 86 826 667 · . /target 547 total

288 86 827 667 · ./target 472 total

341 86 828 667 · . /target 547 total

362 86 829 667 · ./target 702 total

235 86 830 667 · ./target 332 total

352 86 831 667 · ./target 576 total

357 86 832 667 · ./target 586 total

440 86 833 667 · . /target 986 total

357 86 834 667 · . /target 689 total

..
I,
I

t:
...
"



APPENDIXH

Program from student S6 that was identified by lPD as being involved in plagiarism with
the program of student 823 which appears in Appendix 1.
II ------------------------------------------------------------------
II
II Program: Target Program #2
II
II Author: 86
II
II ------------------------------------------------------------------

import java.text.*;
import java.io.*;
import java.util.*;
import java.lang.*;

public class pgm04
{

public static String licenseNumber ()
{
II Creates a method that calculates the 9 digit number of the license.

Random r = new Random ();
String lic = "";
int count = 0;

while (count < 9)

float f = r.nextFloat ();
lic += (int)(f * 10);
count ++;
}
return lic;

}
public static int tagCost (int yearl)
{
II Creates a method that calculates the amount paid for the tag
1/ depending on the age of the vehicle.

int tcost = 0;
GregorianCalendar cal new Gregoriancalendar ();

int yr2 = cal.get (Calendar. YEAR) ;

{if (yr2 - 3) <= yearl)
tcost = 85;

else if ((yr2 - 4) <= yearl)
tcost = 75;

else if ((yr2 - 8) <= yearl)
tcost = 55;

else if «(yr2 - 12) <= year1)
tcost = 35;

else if (yearl + 16) <= yr2)
tcost = 15;
}
return tcost;

50

..
,
•
j:



}
public static String tagNumber ()
{
II Creates a method that calculates
II last three numbers of the tag.

Random r = new Random ();
String tagA = "", tagB = "", tag
int count = 0;

while (count < 3)

the first three letters and the

llff •,

51

float f = r.nextFloat ();
char t = (char) «int) (f * 26) + 65);
tagA += t;
count ++;
}

count = 0;
while (count < 3) {

float f = r.nextFloat ();
tagB += (int) (f * 10);
count ++;
}

tag = tagA + "_II + tagB;
return tag;

}
public static String minimizeWhiteSpace (StringTokenizer t)
{
II Creates a method that minimizes the white space between each
II individual thing in each line of output.

String sentence = "";

while (t.hasMoreTokens ())

sentence += t.nextToken ();
sentence = sentence + " ";
}
return sentence;

}
public static int calcAge (String year)
(
II Creates a method that calculates the birthdate and age of the
II driver.

GregorianCalendar cal = new GregorianCalendar ();

int curmonth = cal.get (Calendar. MONTH) , curdate cal.get
(Calendar. DATE) , curyear = cal.get(Calendar.YEAR);

String month = year.substring (0,2);
String day = year.substring (3,5);
String year3 = year. substring (6);

double day2 = Double.parseDouble (day);
double month2 = Double.parseDouble (month);
double yearS = Double.parseDouble (year3);
int day1 = (int) (day2);
int month1 = (int) (month2);
int year4 = (int) (yearS) ;
int age = curyear - year4;

if (month1 < curmonth) {
age = curyear - year4;

if (month1 > curmonth)

...
r,



52

age = age - 1;
if (monthl == curmonth && dayl < curdate)

age = age - 1;
}

else;
age = age;

return age;
}
public static void main (String [] args) throws IOException
{
II Creates a method that calls all actions performed in the other
II methods.

String manufacturer, style, year, year4 = "";
String costl = "", sentence = II II ;

int tissued = 0, lissued = 0, yearl = 0;
BufferedReader stdin = new BufferedReader (new InputStreamReader(System.in»);

sentence = stdin.readLine ();

while (sentence != null)
StringTokenizer t new StringTokenizer (sentence);

if (t. countTokens () ! = 0) {
String name = t.nextToken ();

if (name. equalsIgnoreCase (" tag II) )

manufacturer = t.nextToken ();
style = t.nextToken ();
year = t.nextToken ();
double yr2 = Double.parseDouble (year);
int yrl = (int) (yr2) ;
System.out.print ("TAG: ");

int tcost = tagCost (yearl);
System.aut.print (11$" + tcost);

String tag = tagNumber ();
System.aut.print (" II + tag + II ,,);

System.aut.print (manufacturer + II " + style + " II + yrl + II II);

System.out.print (" __ " + " " + t.nextToken () + II II);

String middle = minimizeWhiteSpace (t);
System.aut.println (middle + II II);

}
if (name.equalsIgnareCase (Illicense"»)

year4 = t.nextToken ();

..

int age = calcAge (year4);
String lic = licenseNumber
System.aut.print ("LIC: $5
System.out.print (11 __ " + "

() ;
II + I ic + " II + year4 + II II + age +" "I;
" + t.nextToken () + II II);

String last = minimizeWhiteSpace (t);
System.aut.println (last);
}

if (name.equalsIgnoreCase ("tag"»
tissued++;
}

if (name.equalsIgnoreCase ("license"»
lissued++;

sentence stdin.readLine ();



}
if (tissued ! = 0) {

System.out.println (lI\nNumber of tags issued: II + tissued);
}

if (lissued ! = 0) {
System.out.println ("Number of licenses issued: " + lissued);
}

53

:

;:,
•I
•



APPENDIX I

Program from student S23 that was identified by IPD as being involved in plagiarism
with the previous program of student S6 in Appendix H.
1/***************************************************· ••• ****.*****
II
II Program: Candidate Program, with high similarity with Target #2
II
II Author: S23
//*****************************************************************

import java.io.*;
import java.text.*;
import java.util.*;

public class pgm04
{

static Random r
into function

new Random(); II allows for a new number to be put

public static int random_number(int size, int adjust) {
float f = r.nextFloat();
return (int) «f*size)+ adjust);

public static String tagNumber(){
int chnumber;

String plate="";
for (int counter = 0; counter < 3; counter++) {

chnumber=(random_number('Z' - 'A' +1), 'A'));
plate = plate + (char) (chnumber) ;

}
plate = plate + "-";
for (int counter = 0; counter < 3; counter++)

plate = plate + random_number(10, 0);
return plate;

public static String licenseNumber() {
String license = "";
for (int counter = 0; counter < 9; counter++)

license = license + random_number (10, 0);
return license;

public static float tagCost(int year) {
GregorianCalendar cal = new GregorianCalendar();

int current_year = (cal.get(Calendar.YEAR);

if (((current_year - year) >= 0) && ((current_year - year) <= 3»
return(BS) ;

54

··
...
,:
l

•I



55

else if «(current_year - year) >= 4} && ((current-year - year) <=
7} }

return{75) ;
else if «(current_year - year) >= 8) && «current_year - year) <=

ll} }

return (55) ;
else if ({(current_year - year) >= 12) && ((current_year - year)

<= 15»)
return(3S) ;

else
return(15) i

public static String minimizeWhitespace(StringTokenizer t) {
String token = "";
while (t.hasMoreTokens())

{
token += t.nextToken();
if (t.hasMoreTokens(})

token += " "i
}

return token;

public static int calcAge(String date) {
GregorianCalendar cal = new GregorianCalendar(} ;

int current_year = (cal.get(Calendar.YEAR»);
int current_month = (cal.get(Calendar.MONTH»);
int current_date = (cal.get(Calendar.DATE}}i
double ageYear = Double.parseDouble(date.substring(6»i
double ageMonth = Double.parseDouble(date.substring(O,2» i

double ageDate = Double.parseDouble(date.substring(3,S»;
int year = (int)ageYear;
int month = (int)ageMonth;
int datelnt = (int)ageDate;
int age = current_year - year;

if (current_month < month)
age--;

else if «(current month month) && (current_date < datelnt»
age--;

return age;

public static void main (String [] args) throws IOException
{

"

BufferedReader stdin
(System. in» ;

new BufferedReader (new InputStreamReader

String inputLine, make, model, tag, lic;
int year=O, tags=O, lics=O;

inputLine = stdin.readLine();

while (inputLine ! = null) {
StringTokenizer token = new StringTokenizer(inputLine) ;
if (token.countTokens() != O){

lic = token.nextToken();
if (lic.equalslgnoreCase("tag")} {

model = token.nextToken ();



56

make = token.nextTaken ();
year =

(int)Double.parseDouble(taken.nextTaken(» ;
System. out. print ("TAG: ");
int cost = (int) tagCast (year) ;

System.aut.print ("$" + cost);
tag = tagNumber();

System.aut.print (" " + tag + " ");
System.aut.print (model + " ");

System.aut.print (make + " ");
System.aut.print (year + " ");

System.aut.print ("-- " + token.nextTaken () + " Il);

String name = minimizeWhitespace(taken);
System.aut.println (name + " ");

}
else

if (lic.equalslgnareCase ("license"» {
String DaB = (taken.nextToken(»;
int age = calcAge(DOB);

String licenseNum = licenseNumber();
System.out.print ("LIC: $5 " + licenseNum + " " +

DaB + " " + age + " ");
System.aut .print ("-- " + taken.nextTaken() + "

I.) ;

String name = minimizeWhitespace(taken);
System.out.println (name);
}

if (lic.equalslgnareCase ("tag"»
tags++;

if (lic.equalslgnareCaee ("license"»)
lics++;

inputLine
)

stdin.readLine() ;

if (tags != 0)
Systern.aut.println ("\nNumber of tags issued: " + tags);

else
System.out.println ("\nNumber of tags issued cannot be

calculated.") ;

if (lics != 0)
System.aut .println ("Number of licenses issued: " + lice);

else
System.aut.println ("Number of licenses issued cannot be

calculated.") ;
}



APPENDIXJ

Illustration of Sample Result of Pair-Wise Comparison #3

1000 +-.....,.;.~

600n~.f~

400

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Student 10 Number

-+-Number of Tokens in LCS

__ Number of Tokens in Target Program, S34

Number of Tokens in Candidate Program

57

...



APPENDIXK

Sample Execution Result of Pair-Wise Comparison #3

Each row of the result has the following in order: number of tokens in LCS, directory
name of the target program, directory name of the candidate program being compared,
number of tokens in target token stream file, the file name of the target token stream file,
the number of tokens in candidate token stream file, and the name of the candidate token
stream file being compared.

376 834 81 689 · . /target 723 total

401 834 82 689 · . /target 580 total

353 834 83 689 · . /target 725 total

381 834 84 689 · . /target 685 total

423 834 85 689 · . jtarget 710 total

357 834 86 689 .. /target 667 total

367 834 87 689 · . /target 599 total

423 834 88 689 · . /target 646 total

384 834 89 689 · . /target 674 total

426 834 810 689 · . /target 912 total ...
356 834 811 689 · . /target 603 total

417 834 812 689 · . /target 662 total

477 834 813 689 · . /target 861 total

361 834 814 689 · . /target 568 total

368 834 815 689 · . jtarget 520 total

449 834 816 689 · . /target 841 total

348 834 817 689 · . /target 661 total

391 834 818 689 · . /target 560 total

380 834 819 689 · . /target 946 total

324 834 820 689 · . /target 550 total

397 834 821 689 · . /target 565 total

311 834 822 689 · ./target 435 total

58



59

366 834 823 689 · . /target 669 total

378 834 824 689 · . /target 763 total

312 834 825 689 · . /target 607 total

355 834 826 689 · . /target 547 total

340 834 827 689 · . /target 472 total

370 834 828 689 · . /target 547 total

658 834 829 689 · ./target 702 total

252 834 830 689 · . /target 332 total

399 834 831 689 · . /target 576 total

412 834 832 689 · . /target 586 total

412 834 833 689 · . /target 986 'total

--



APPENDIXL

Program from student 834 that was identified by JPD as being involved in plagiarism
with the program of student 829 which appears in appendix M.
11=====================================================================
II
II Program: Target Program #3
II
II Author: S34
II
11=====================================================================

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;

class pgm04

public static void main (String[] args) throws IOException
BufferedReader stdin = new BufferedReader

(new InputStreamReader(System.in);

GregorianCalendar calendar = new GregorianCalendar();

if (! (s tdin . ready () ») {
system.out.println ("NO input. ");
System.exit (D};}

String input = stdin.readLine();
StringTokenizer t = new StringTokenizer (input);
String aa = "" bb="",cc="", dd="", ee="", ff="",
99 = II II Iii = II U ;

int tagC;
int age=D , a=D, b=D;

while (t.hasMoreTokens()

aa = t.nextToken();

if (aa. equal sIgnoreCase ( "tag" ) }
bb t.nextToken();
cc t.nextToken();
dd t . nextToken () ;
gg minimizeWhitespace(tl;
ee tagNumber();
tagC = (intltagCost (Integer.parselnt (dd»);
System.out.println ( "TAG: $" + tagC + " " + ee +" " +

bb + " " + cc + " " + " - - " + gg);

a++i

else if (aa.equalslgnoreCase("license")) {

60

...



ff = t.nextToken() i

gg = minimizeWhitespace(t)
age = calcAge(ff);
ii = licenseNumber() ;
System.out.println{"LIC: $5 " +ii + II II + ff + II " + age + "

b++i
}

if (! (stdin.ready(») break;

input = stdin.readLine();
t = new StringTokenizer(input)

61

II + gg)

System.out.println ("\nNumber of tags issued:
System.out.println ("Number of licenses issued:

+ a);

" + b) i

11==================================================================
II This method contain the way to generate random numbers.
11==================================================================

public static int dom (int aa, int bb)

Random kl = new Random ()

int cc = bb - aa + 1;
int i = kl.nextlnt{) % cc;

if
{

}

(i < 0

i = -i;

return aa + ii ..

j/=====================================================================
II This method contain the way to generate random letters.
11=====================================================================

public static String randomstring ( int aa, int bb)

final int alphabet = 3;
byte a[1 new byte [alphabet]

for (int i = 0;
i < alphabet;
i++)

{
a [il

}
(byte)dom(aa,bb)

return new String(a)



11==================================================================
II This method contain the tag number
11==================================================================

public static String tagNumber()

DecimalFormat ff = new DecimalFormat ("000")

62

II" .,

final int aa = 0;
final int bb = 999;
int kl = bb - aa + 1;
Random tag_num = new Random()
String alphabetString = randomstring('A'
int tagNumber;
String tagString

tagNumber = tag_num.nextlnt() % kl;

I Z')

if
{

}

(tagNumber < 0)

tagNumber = - tagNumber;

tagString = alphabetString + "-" +

String.valueOf(ff.format(tagNumber»)

return tagString;

//=================================================================
1/ This method contain the license number
//=================================================~===========_ss=

public static String licenseNumber ()

DecimalFormat ff = new DecimalFormat ("000000000")

final long cc = 0;
final long dd = 999999999;
Random license = new Random()
long k2 = dd - cc + 1;
long number ;
String licenseNumberString lilt •,

number = license.nextLong() % k2;

if
{

}

( number < 0)

number = - number;

licenseNumberString = String.valueOf (ff.format (number) )

return licenseNumberString;
}

11=====================================================================



// This method contain the cost of the tag.
//=====================================================================

public static float tagCo9t lint year)

GregorianCalendar calendar = new GregorianCalendar() ;
int year1 = calendar.get(Calendar.YEAR);
int number = yearl - year;
float tag = (float)O.O;

if «number >= 0) && ( number <=3»
tag = (float)B5;

else if «number >=4) && (number <= 7»)
tag = (float)75; }

else if «number >= 8) && (number <= 11»
tag = (float) 55;

else if ({number >= 12) && (number <= 15»
tag = (float)35;

else if (number >= 16)
tag = (float) 15; }

return tag;

//=====================================================================
// This method contain the format that how to retrieves all token from
lithe StringTokenizer parameter, and format them into one string.
//=~============================================================a_=====

public static String minimizeWhitespace (StringTokenizer t)

String num = " ";
int tokenNumber = t.countTokens();

while (tokenNumber > 1)
{
num += t.nextToken() + " ";
tokenNumber --;

}

num += t.nextToken{);

return num;

//=====================================================================
// This method contain the month, day and year.
//=====================================================================

public static int calcAge(String date) {

GregorianCalendar cal = new GregorianCalendar();
StringTokenizer tokenizer = new StringTokenizer (date, "/");

63·



String dateString, monthString, yearString;
int monl, datel, yearl;

monthString = tokenizer.nextToken(};
dateString tokenizer.nextToken();
yearString = tokenizer.nextToken(};

monl = cal.get(Calendar.MONTH) + 1;
datel cal.get{Calendar.DATE);
yearl = cal.get{Calendar.YEAR);

if «monl > Integer.parselnt (monthString» I I
«monl == Integer.parselnt (monthString)) &&
(datel >= Integer.parselnt (dateString)»)}

return (yearl - Integer.parselnt (yearString));

}
else
{

return (yearl - Integer.parselnt(yearString) - 1);
} }

64



APPENDlXM

Program from student S29 that was identified by JPD as being involved in plagiarism
with the previous program ofstudent S34 which appears in Appendix L.
11---------------------------------------------------- ---------------------
II
II Program, Candidate Program with high similarity with Target #3
II
1/ Author: S29
II
11---------------------------------------------------- ---------------------

import java.io.*;
import java.text.*;
import java.util.*;
import java.math.*;

public class pgm04 {

11---------------------------------------------------- ------------------------
IIProgram that will help the OSU tag agency issue license plates and driver's
//licenses.
/1---------------------------------------------------- ------------------------

public static void main(String args[]) throws IOException
{

/Icreate new cal object.
GregorianCalendar eal = new GregorianCalendar();

/IInitialization for following program.
BufferedReader stdin = new BufferedReader

(new InputStreamReader(System.in));

Ilif there is totally no input.
if (! (stdin.ready())) (

System.out.println("No input.");
System.exit (0) ;}llend if.

String input = stdin.readLine();
StringTokenizer t = new StringTokenizer (input);
String fname=" " , mVeh="", vSty="", yVeh="", tagN="", dob="", name=" " ,
lieN="";
int tagC;
int age=O, n=O, m=O;

I/Start doing processing in this loop.
while (t.hasMoreTokens()) { I/Check whether the end of file.

fname = t.nextToken();

I/If it is tag.
if (fname.equalslgnoreCase("tag"))

65



mVeh t.nextToken();
vSty t.nextToken() ;
yVeh t.nextToken();
name minimizeWhitespace(t);
tagN tagNumber();
tagC (int)tagCost(Integer.parseInt(yVeh));
System.out.println( "TAG: $"+tagC+" "+tagN+" "+mVeh+" "+vSty

+ u " +yVeh+ " - - "+name);

66

n++;
}llend if.

IIIf it is license.
else if (fname.equalsIgnoreCase("license"))

dob t.nextToken();
name minimizeWhitespace(t) ;
age cal cAge (dob) ;
licN licenseNumber() ;
System.out.println( uLIC: $5 "+licN+" "+dob+" u+ age+

" -- "+name );
m++;
}llend else

IICheck if there still have input.
if (l(stdin.ready())) break;

IIRead in next input.
input = stdin.readLine();
t = new StringTokenizer (input);

l I lend while

IIPrint out total tags and lincenses issued.
System.out.println() ;
System.out.println("\nNumber of tags issued: U + n);
System.out.println() ;
System.out.println("Number of licenses issued: " + m);

lilend main method

11---------------------------------------------------
Ilgenerate random number between a and b.
11---------------------------------------------------

public static int randomnumber (int a, int b)
{

Random t new Random ( ) ;

int numl b-a+l;
int num2= t.nextInt()%numl;

-num2;num2

if (num2<O)
{

}
return a + num2;

11------------------------------------------------
Ilgenerate a random letter with 3 letters from a t
11------------------------------------------------

public static String randomStr(int a,int b)
{



A[num2] = (byte)randomnumber(a,b);

tagnurn = -tagnurn;

final int Max = 3;

byte A[] = new byte [Max];

for (int num2=0; num2< Max; num2++)
{

}
return new String (A);

//-----------------------------------------
//generate and returns a tagnumber.
//-----------------------------------------

public static String tagNumber()
{

final int MIN = 0;
final int MAX = 999;
int i = MAX - MIN + 1;

Random t = new Random();
String lettersString = randomStr('A', '2');
int tagnum;
String tagstr = II ";

tagnurn = t.nextInt() % i;

if (tagnum<O )
{

}

DecimalFormat fmt = new DecimalFormat ("000");

tagstr = lettersString + "-" + String.valueOf (fmt.format(tagnum»;

return tagstr;

//---------------------------------------------------
//generate and return a license number.
//---------------------------------------------------

public static String licenseNumber()
(

67

final long MIN LIC
final long MAX LIC

0;
999999999;

Random t = new Random();
long num1 = MAX_LIC - MIN_LIC + 1;
long license;
String licenseStr= 1111;

license = t.nextLong() % num!;

if (license < 0)
{

license = -license;



DecimalFormat fmt = new DecimalFormat ("OOOOOOOOO");

licenseStr = String.valueOf (fmt.format(license));

68

return licenseStr;

11----------------------------------------------------
/Icalculates and returns the tag cost.
1/----------------------------------------------------

public static float tagCost (int year)
{

GregorianCalendar cal = new GregorianCalenda.r();
int Cyear = cal.get(Calendar.YEAR);
int Age = Cyear - year;
float tagcost = (float) 0.0;

tagcost = (float) 35;

tagcost = (float)55;

tagcost = (float) 75;

tagcost = (float) 15;

85;tagcost = (float)

if ((Age >= 0) && (Age <=3))
{

}
else if ((Age >= 4) && (Age <= 7))
{

}
else if ((Age >= 8) && (Age <= 11))
{

}
else if ((Age >= 12) && (Age <= 15))
{

}
else if ((Age >=16))
{

}

return tagcost;

//---------------------------------------------------------------------------
//MinimizeWhitespace (StringTokenizer t).
I/Retrieve all tokens from the StringTokenizer parameter, and format them into
I lone string.
1/---------------------------------------------------- -----------------------

public static String minimizeWhitespace (StringTokenizer t)
{

String get = II ";

int token = t.countTokens();

while (token>l)
{



get += t.nextToken() +" ";
token

get += t.nextToken();

return get;

11---------------------------------------------------- -----------------------
lito calculate and return the age (in years) of the person born in that date.
11---------------------------------------------------- -----------------------
public static int calcAge (String date)
{

GregorianCalendar cal = new GregorianCalendar () i

StringTokenizer tokenizer == new StringTokenizer (date, "I");
String monthstr, datestr, yearstr;
int Cmonth, Cdate,Cyear;

monthstr = tokenizer.nextToken();
datestr tokenizer.nextToken();
yearstr = tokenizer.nextToken();

Cmonth = cal.get (Calendar.MONTH) +1;
Cdate cal.get (Calendar.DATE);
Cyear = cal.get (Calendar.YEAR) i

if «Cmonth > Integer.parseInt (monthstr» I I
«(Cmonth == Integer.parselnt (monthstr» &&

(Cdate >= Integer.parselnt (datestr»»

return (Cyear - Integer.paraeInt (yearstr»;

else
{

return (Cyear - Integer.parselnt (yearstr) - 1) i

}

69



APPENDIXN

%{
11========================================================================*
II Program: Scanner *
II Author: Dongchi Wang *
II Advisor: Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
II Programming Languages and tools: Flex and C *
11------------------------------------------------------------------------*
II The source code for JPD consists of two parts: Scanner and TSM *
II (Token Stream Matcher). *
I I Scanner is to recognize all meaningful tokens in a Java program. *
II The input to the Scanner is a Java program without syntax errors. The *
II output from the Scanner is a stream of tokens delimited by a white *
II space. Tokens recognizable to the scanner include Java keywords, *
II meaningful punctuation marks, constant numbers, and operators. Scanner*
II is implemented using Flex and C. *
II The code for Scanner has three phases. *
II Phase I: also called Fpass meaning the first pass is to recognize *
II names of classes defined in the program and names of methods defined *
II in the classes. *
II Phase II: also called Spass meaning the second pass is to tokenize *
II method body and put the token stream as output into a file under the *
II name of the method for each method. *
/1 Phase III: also called Tpass meaning the third pass is to collect *
// and sequence the token stream for the Java program based on the *
/1 calling order, and output the result into a file named "total". *
// TSM is to commit the pair-wise comparison for two token streams, *
// each is output from the Scanner. The algorithm implemented here is *
1/ LCS(Longest Common Stream). Some subtle changes have been done to fit *
// in this project. *
// *
j/========================================================:==~========a.~=*

11=============================================================a========m=*
// Program: Scanner Phase I - Fpass *
// Author: Dongchi Wang *
// Advisor: Dr. Mansur H. Samadzadeh *
/ / Date: February 2001 *
// Programming Languages and tools: Flex and C *
//------------------------------------------------------------------------*
// *
// This phase is to recognize names of classes defined in the program *
// and names of all methods defined in the classes. *
// A data structure, ClassStruc, has been defined in this program to *
// hold class information which includes all method names defined in the *
// class and the counters for left and right curly brakets. If there are *
// more than one class defined in the Java program, class info will be *
// organized into a linked list. Then, all recognized method names will *
// be inserted to Phase II - Spass, a predefined program, and save the *
1/ file Spass as a customized file, SPcust, which is to tokenize each *
// method body and write the token stream of each method to a file by the *
// name of the method. Phase I - Fpass also insert the recognized method *
// names into Phase III - Tpass, another predefined program, and save *
// Tpass as a customized file, TPcust. *
//========================================================================*

70



#include <unistd.h>
#include <stropts.h>
#include <stdio.h>
#include <memory.h>
#include <stddef.h>
typedef
struct MethodsStruc{

char name [15] ;
char *tokenStr[2000];

}MethodsStrucj

1* hold the data member for a method *1
1* method name *1

71

1* the following structure is used to contain a class name and all *1
1* method names defined in the class *1

typedef struct ClassStruc{
char name[l5];
MethodsStruc *methods[15];
struct ClassStruc * nextClass;
int LeftCurly;
int methodInd;

}ClassStruc;

1*--- Globle variables ---*1

ClassStruc *classHead = NULL;
ClassStruc *classTail = NULL;
ClassStruc * temp = NULL;

%}
%pointer
%%

1* class name *1
1* method name array *1
1* pointer to next class *1
1* counter for left curly braket *1
1* the index of current method being processed
*1

1* head of the class linklist *1
1* tail of the class linklist *1
1* temporary pointer to the current class *1
1* being processed *1

U/*l1 1* this block is to skip all comments inside *1
1* and *1

register int c;
fort , , )
(

while«c = input()) != '*' && c 1= EOF)
lido nothing

if ( c
(

'*' )

while« c = input()) '*' )

"II"

class

}
}

{

if ( c == I I I )

break; Ilfound the end of the comments
}
if ( c == EOF
{

printf ( "comment doesn't end correctly. \n");
break;

1* eat up comment line following "II" *1
char c;
while«c = input()) 1= '\n l }

char * tempname (char *)malloc(l5); Iitemperary name holder



temp = (ClassStruc
if (temp == NULL)
{

int i
char c;

O·, /* index for the charactor array above */
/* curren.t char being processed */
/* current class being processed */

*)malloc(sizeof(ClassStruc») ;

72

printf ("Memory allocation Error. \n") ;
exit (1) i

/* get the name of the class */
/* increment the char index */
/* get the next meaningful char */

, \ t ' ) && (c ! = '{') && (c ! = '\ 0 ' ) && (c I=' \n I ) )

tempname[i] = Ci

i++;
c = input () i

}
strcpy(tempname,"") ;
temp->LeftCurly=O;

temp->methodlnd 0;

/* clear the garbage of the place holder */
/* initial the left curly brakets counter */
/* initial the method index currently */
/* being processed */

c = input(); //get the first char
while((c == ' I) I I (c '\t'l) //skip the first wild space char

c = input () ;
while((c != I ')&&(c !=

{

}
tempname[i] = '\0';
unput (c) i

/* end the name string by null char */
/* put the '(, back if applicable */

/* --- to link the class structures ---*/

if (classHead == NULL)
{

strcpy(temp->name, tempname);

classTail = classHead = temp;
classTail->nextClass = NULL;

/* set up the head and tail */
/* pointer */

}
else
{

strcpy{temp->name, tempname);
classTail->nextClass tempi
classTail = temp;
classTail->nextClass NULL;

}
}

[a-zA-Z \tJ+[ \tl*[{] [_\ta-z[:punct:] [:alnum:]l*[)l [[:alpha:]* \t\nl*[{J

/* this block is to locate the method body in a class */

int len=O;
char Ci

char *tempstr = malloc(15);
char *temp2, *temp3;
int j = temp->methodlndi

temp->LeftCurly++;

if (temp->LeftCurly == 2)
{

/* remember the next method index to be */
/* processed */
/* left curly bracket counter is a signof */
/* method body */
/* find a method body */

temp->methods[jJ = (MethodsStruc *)malloc(sizeof(MethodsStruc»;
strcpy(temp->methods[j] ->name, "");
tempstr=(char *)strtok(yytext, "(") ;/* trunk the string before()*/
temp2=(char *)strtok(tempstr, " \t") i /* get the first token */

while(temp2 != NULL)
{



73

temp3 = temp2; /* remember the previous token */
temp2=,(char *)strtok(NULL, " \t");

/* the token right before () would be the name of the method */

strcpy(temp->methods[jl->name, temp3);
temp->methodlnd++;

temp->LeftCurly--;

temp->LeftCurly++;{
{

}
[:alnum: II *

[0
Ol

[ [ : alpha: ] ] + [
[ [ :digit: ] ]
[ [ :punct : ] J
[\nJ

%%
main(int argc, char ** argv)
{

int i;
ClassStruc * tempcl;
FILE *SecPass;
FILE *Customerized;

/* holder for the temporary class */
/*file pointer to the template second pass */
/*file pointer to the customized second pass
*/

FILE *ThirdIn, *ThirdOut;
char *inputS = malloc(80); /*hold a line of input */
char *theKey = malloc(20); /*hold the first token of the line above */

strcpy(inputS, ""); /*clear those strings above */
strcpy (theKey, II ") ;

if(argc != 2)
{ printf("Can't find input file, now use standard input\n");

yyin = stdin;
}
else

yyin fopen(argv[l] , "r"l;
yylex() ;
printf("\n") ;

/*======================================================.===~==

insert the definition of the set of programmer defined
methods in the predefined program, Spa.ss (Second Pass) and
Tpass(Third Pass)

=======================================================~=====*I

if«(SecPass = fopen(" .. / .. /Spass", "r")== NULL)
{

printf("Unable to open input file, Spass. \n");
exit (1);

}
if(Customerized = fopen(" .. / .. /Spcust", "w+"»==NULL)
{

printf ("Unable to open input file, SPcuat. \n");
exit(l);

}
if «ThirdIn = fopen (" .. / .. /Tpass" , "r"») == NULL)
(

printf("Unable to open input file, Tpass. \n");
exit (1) ;

}
if (ThirdOut = fopen (" .. / .. /TPcust", "w+"» ==NULL)



74

printf I "Unable to open input f He, TPeust. \n");
exit(l);

1*============================================================
eopy each line of the file, Spass, and insert the method
names in the form of methodllmethod2Imethod31 ... Imethodn
at the end of the line starting by Methods

===========================================================·1

while (fgets I inputS , 80, SeePasa) !=NULL)
{

sseanf(inputS, "%a", theKey);
if (strcmpltheKey, "Methods") ==0)
{

fputs ("Methods ", Customerized);
for (tempel=elassHead; tempel != NULL; tempel
{

i = Oi
if (tempcl->nextClass==NULL)
{

tempel->nextClass)

while (tempel->methods [++i) !=NULL)
fprintf(Customerized, "%81", tempcl-

>methods[i-l)->name) ;
fprintf(Customerized, "%a", tempel->methods[i-l)-

>name) ;
break;

}
while(tempel->methods[il !=NULL)

fprintflCustomerized, "%sl", tempcl->methods[i++l-
>name) ;

}
fprintf(Customerized, "\n");

}
else

fprintflCustomerized. "%B", inputS) i

}
fcloselSecPass) ;
fcloselCustomerized) ;
strcpy (inputS, "");
strcpy (theKey. "");
while (fgets (inputS, 80, Thirdln) !=NULL)
{

sscanf (inputS, "%s", theKey);
iflstrempltheKey, "Methods")==O)
{

fputs ("Methods ", ThirdOut);
for(tempcl=classHead; tempel != NULLi tempel
(

i = 0;
if (tempel->nextClass==NULL)
{

tempel->nextClasa)

while (tempel->methods [++i] !=NULL)
fprintf(ThirdOut, "%sl ", tempel->methods[i-ll->name);
fprintf(ThirdOut, "%s", tempel->methods{i-l]->name);
break;

}
while (tempel->methods [i] !=NULL)

fprintf(ThirdOut, "%8/ ", tempel->methods[i++]->name)i

}
fprintflThirdOut, "\n");



}
else
fprintf(ThirdOut. "\s", inputS);

}
fclose(Thirdln) ;
fclose(ThirdOut) ;
printf (" \n") ;

75



APPENDIX 0

%-{
11============================================================================*
II Program: Scanner Phase II - Spass *
II Author: Dongchi Wang *
II Advisor, Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
II Programming Languages and Tools: Flex and C •

11----------------------------------------------------------------------------*
II •
II Phase II - Spass •
II This program is to tokenize each method body and write the token stream •
II as output into a file under the name of the method. It processes methods •
II one after another. *
II This is just a template predefined for this process since each program *
II has methods with different names so that the match-pattern for each program·
II varies. At the end of the processing of phase I - Fpass, a file by the name*
II of SPcust(customized second pass) will be opened and written by copying *
II Spass line by line except for inserting a sequence of method names *
II delimited by I to the right of the line of the specification, Methods. *
II *
11============================================================================*

#include <stdio.h>
#include <memory.h>
#include <stddef.h>
/I---globle variables---
FILE *fp; 1* file pointer to the current method-token-stream file *1
int Left; 1* counter for '{ 'f a sign of the end of a method body *1
%-}
%pointer
Methods 1* method names go here once Fpass finishes running *1
lis%-
11/* "

1* This block is to skip comments *1

register int c;
fort
{

while(c = input(») != '*' && c != EOF)
1* skip */

if ( c
(

'*' )

while ( c = input ( ) ) , *' )

if ( c == I I'
break; I· found the end of comment s * I

}
if( c == EOF
{

printf( "comment doesn't end correctly.\n");
break;

76



77

"//"
/* skip the // style comments */

char c;
while (c input ( )) ! = I \n I )

}
{Methods}+[ \tl*[(l [ \t[:punct:l [:alnum:ll*[)l [ \t\nl*[[:alpha:l+[ \t\n]*l*[{l

{

/* this block is to tokenize method body */
char *methodNamei /* hold the method name */

/* recognize the name of the method */
methodName = (char *)strtok(yytext, 11 \t(");

/* open a file to write by the name of the method */
fp = fopen(methodName, "w+");

/* initialize the counter of { to 1 */
Left = 1;

[{J

[} 1

Left++;

Left--;

/* incremented the counter of { */

/* decremented the counter of { */

}
while Ifor

/* in the case of exit from the method body, close the file
pointer */
if (Left == 0)
(

fclose(fp) ;
fp = NULL;

{
/* substitute "while" and "for" control keywords with the same
token */
if(fp != NULL)
fprintf(fp, "While For ");

}
iflelse[ \tl%iflcase {

/* substitute these keywords with the same token */
if(fp != NULL)
fprintflfp, "If_Else Switch Case ");

else!default {
/* substitute "else" and "default" keywords with the same token
*/

if (fp ! = NULL)
fprintf(fp, "Else Default ");

dol switchl return Icontinue Inewl throws! throwlbreakl final lylfinalltrylcatch
/* keep all of these keywords */
if (fp ! = NULL)

fprintf(fp, "%s ", yytext);
}

{Methods} [ \tl*[(] [ \t[:punct:] [:alnum:l]*[)]

/* this block is to recognize method calls no matter if it is */
/* a library method or programmer-defined method, this process */



/* keep them all in order to expend them in the third pass */

78

char *methodName;
char *marray[S];
char *doti
char *dotl;
char *mark;
int i = 0;
methodName = (char
if(fp != NULL)
{

/* array of method names */

/* the back part of a function call after the dot */

/* counter for the current nested method */
*) strtok (yytext, "( H) ;

/* in the case of nested methods, */
/* push them into a stack then pop them into the token stream */

mark = methodName;
while(methodName != NULL)
{

marray[i] = (char *)malloc(20);
strcpy(marray(i], methodName);
methodName = (char *)strtok(NULL, "(H);
if((mark = (char *)strchr(methodName, ') 'll I=NULL)

break;
else if((mark = (char *)strchr(methodName. I.'» I=NULL)

methodName = mark;
i++;

}
while(il=-l)

fprintf(fp, "%s H marray[i--]);

}
[.] [ \t_[:alpha:]]+[(]

char *methodNamei
methodName = (char *)strtok(yytext, " \t(H);
if (fp != NULL)
fprintf (fp, "%s ( H. methodName);
}

[ [ : alpha: ] ] ( [ : alnum:] ] *
[[:digit:]l { -

if (fp ! = NULL)
fprintf (fp, "%s" yytext) i

[[:punct:]]
if (fp ! = NULL)
fprintf (fp, H%S" yytext);

[\nl
%%
main(int argc, char ** argv)
{

if (argc ! = 2)
{ printf("Can't find inputfile.\n H);

yyin = stdin;
}
else

yyin fopen(argv[l], Hr"l;
yylex() ;
printf ("\n") ;



APPENDlXP

%{
11============================================-=============-=============-===.
II Program: Scanner Phase III - Tpass •
II Author: Dongchi Wang *
I I Advisor: Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
II Programming Languages and Tools: Flex and C *

11----------------------------------------------------------------------------*
II *
II This program is to put all tokens in a Java program together based on *
I I the calling order. *
II This is just a template predefined for this process since each program *
II has methods with different names and the match-pattern for each program *
II varies. At the end of the processing of phase I - Fpass, a file by the *
1/ name of TPcust(customized third pass) will be opened and written by *
II copying Tpass line by line except for inserting a sequence of method names *
II delimited by I to the right of the line of the specification, Methods. *
II Starting from the "main II method, TPcust process each token. When it meet a *
II programmer-defined method call, it expands it in place. *
II *
11============================================================================.

1* method names go here once Fpass finishes running *1

{
1* whenever meeting a programmer-defined method *1
1* the file by the name of the method will be opened *1
1* and the token stream in the file will be copied *1
1* into the file main. *1

#include <stdio.h>
#include <memory.h>
#include <stddef.h>
FILE *fp; 1* pointer
F'ILE *totalfp;
%}
%pointer
Methods
U
{Methods}

to the current method-token-stream file *1

char *buffer = malloc(80);
fp = fopen (yytext , "rill;
strcpy(buffer, 1111);

while(fgets(buffer, 80, fp)!= NULL)
fputs(buffer, totalfp);

fclose(fpl;

fputs(yytext, totalfp);

%%
main(int argc, char ** argv)
{

if(argc != 2)
( printf("Can't find inputfile.\n");

yyin = stdin;
}

79



else
yyin = fopen (argv [1], "r");

/* a file, total, has been specified to contain all token streams */

if((totalfp = fopen("total", "wr+"))==NULL)
{

printf("Can't open the file, total\n");
exit(l) ;

}
yylex () ;
fclose(totalfp) ;
printf ( II \n ") ;

80



1* index *1

1* arrays to hold the token streams in order to*1
1* find the LCS among the two token stream files *1
1* file pointers to the token stream files *1

APPENDIXQ

11========================================================================*
II Program: TSM - Token Stream Matcher *
II Author: Dongchi Wang *
II Advisor: Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
I I Programming Language: C *
11------------------------------------------------------------------------*
II *
II This program is to implement the longest common stream (LCS) *
II algorithm to make pair-wise token stream matching. *
II It takes two token stream file as input and outputs the number of *
II tokens in the common longest string of both file. *
II The traditional LCS algorithm has been used with a little change *
II to fit in our need that is adding a integer variable count to keep *
II track of the number of tokens in LCS for the final results. *
II The longest token stream this program can handle has a limit of *
II 1000. In case of longer streams to be compared, a change of the *
II dimension in a global variable Table needs to be made. *
II *
11========================================================================*

#include <stdio.h>
1* data structure for an element in tables band c *1
typedef
struct CBcell {

char arrow;
int number;

}Cell ;
int count = 0; 1* counter for the number of tokens in LCS *1
Cell Table [1000] [1000] ; 1* This number can be customerized * I

1* print the common longest token stream *1
int Print_lcs(Cell t[l [], char *s[], int i, int j);
main(int argc, char * argv[))
(

char fstdlOOO] ;
char fstr2[1000];
FILE fl;
FILE *f2;
int i=O;
int j=O;
int xi = 0;
int yj = 0;
char *bufl;
char *buf2;
if((f1 = fopen(argv[l], "r")==NULL)
{ printf("can't open the target file %8\n", argv[l));

Exit (1); }
bufl = (char *)malloc{80);
buf2 = (char *)malloc(80);
strcpy(bufl," II);

strcpy (buf2, II II);

while(il=lOOO)

81



82

j = 0;
/* initiate the number of common tokens as 0 in Table */
while(jl=lOOO)
(

Table[il [j] .number 0;
j++;

i++;

i
j

1 ;
l',

/* open the two token stream files that need to be compared */
/* and copy them into two token arrays accordingly */

if«f2 = fopen(argv[2), "r"»==NULL)
{ printf("Can't open the candidate file %s\n", argv[2]);

Exit (1); }
for(fscanf(f2, "%s", bufl); strcmp(bufl, "")!=O; fscanf(f2, "%s", bufll)
{

fstr2[i] = (char *)malloc(20);
strcpy(fstr2[i++] ,bufl);
strcpy(bufl,"") ;

xi i-I;
i=l;
for(fscanf(fl, "%s", buf2); strcmp(buf2, "")1=0; fscanf(fl, "%s", buf2)l
{

fstr[i] = (char *)malloc(20);
strcpy(fstr[i++], buf2);
strcpy(buf2,""l;

}
yj i-I;
i=l;
/* to build up the Table which keep track */
/* of the number of the common tokens */
while(i<=xi)
(

Table[i] [j].number = Table[i} [j-lJ . number;
Table [i] [j I .arrow = '-';

if(Table(i-ll [j].number >= Table[iJ [j-ll.numberl
Table[i] [jJ .number = Table[i-l] [jJ . number;
Table[i] [jl.arrow = 'I';

j=l;
while (j<=yj)
{ if (strcmp (fstr2 [iI, fstr [j I) ==0)

{ Table[i] [j] .number = Table[i-l]
Table[il [j] .arrow = '\\';

}
else
{

}
else
{

}

[j-l] .number+l;

j++;
}
fclose (f2) ;
i++j

}
Print_lcs(Table, fstr2, xi, yjl;
printf ("%d", count);

}
/* recursive function to output the LCS among the two token streams */



int Print_Ics (Cell t [] [1000], char *s [], int i, int j)

if (( i==O) II (j == 0))
return;

if(t[i] [j].arrow == '\\')
{

Print_Ics(t, 5, i-I, j-I);
count++;

}
else if(t[i] [j}.arrow == 'I ')

Print_le5(t, s, i-I, j);
else

Print_Ies(t, s, i, j-l);

83



APPENDIXR

*

*

*
*

This shell script is to go into each student directory to run the *
three passes of JPD Scanner. The final output is going to be put into *
a file called total which is a token stream of a Java program.
lex.yy.c is a program generated by flex when flex run each pass. It is *
overwritten every time any pass of the scanner runs.
The Java program being tested here is by the name of pgm04.java, you
may substitute it by any other Java program.

11========================================================================*
II ShellScriptl *
II Author: Dongchi Wang *
II Advisor: Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
II Programming Language: Unix shell script *
11------------------------------------------------------------------------*
II *
II
II
II
II
II
II
II
II *
11========================================================================*

It/bin/csh
cd le/wdongch/thesis/folders
foreach directory(*)

cd $directory
flex .. I .. I Fpass
gcc -g lex.yy.c -0 First -lfl
First pgm04.java
flex .. / . . /SPcust
gcc -g lex.yy.c -0 Second -lf1
Second pgm04.java
flex .. I .. /TPcust
gcc -g lex.yy.c -0 Third -lfl
Third main

cd ..
end

cd ..

84



This shell script is to go into each student directory to copy the *
token stream file total generated by JPD scanner to a file by the name *
of target which is going to be compared to each file total from *
different student directory for similarity by program TSM (Token Stream·
matcher). The number of tokens in LCS (Longest Common Stream) is going *
to be output followed by the target student directory and the candidate*
student directory. Then, the number of tokens in file target and the *
number of tokens in file total is also going to be output. The detailed*
output are in APPENDIX C, G AND K. *

APPENDIXS

11========================================================================.
II ShellScript2 •
II Author: Dongchi Wang *
II Advisor: Dr. Mansur H. Samadzadeh *
II Date: February 2001 *
II Programming Language: Unix shell script *

1/------------------------------------------------------------------------*
II *
II
II
II
II
II
II
II
II
II
II *
11========================================================================*

#/bin/csh
#include<string.h>
#include<stdio.h>
cd le/wdongch/thesis/folders
foreach directory(*)

if($directory != "target") then
cd $directory
cp total . . /target

cd
endif
foreach dire{*)

if ( $dire != $directory ) then
if I $dire != "target") then
cd $dire
.. I .. /TSM .. /target total
echo $directory
echo $dire
wc -w .. Itarget
we -w total
printf "\n"
cd ..
endiE

endif
end

end
cd ..

85



VITA

Dongchi Wang d.,.;

Candidate for the Degree of

Master of Science

Thesis: TOWARD PLAGIARISM DETECTION fN JAVA PROGRAMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Shenyang, P.R. of China, February 19, 1968, daughter of
Taishun Wang and Junjiang Chi.

Education: Received Bachelor of Arts from Liaoning University in July 1990.
Obtained Law degree from Law and Politics University of China in July
1992, Beijing. Completed the requirements for Master of Science in
Computer Science at the Computer Science Department at Oklahoma
State University in May 2002.

Experience: Employed as a CIS (Computer and lnfonnation Services) mainframe
operator from spring] 998 to fall 1999. Employed as a Teaching Assistant
from January 2000 to December 2000.


