
EFFICIENT HARDWARE IMPLEMENTATION

OF FINITE IMPULSE RESPONSE FILTERS

IN FIELD PROGRAMMABLE

GATE ARRAYS

By

KAH-HOWE TAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2000

Submitted to Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2002

EFFICIENT HARDWARE IMPLEMENTATIO

OF FINITE IMPULSE RESPONSE FILTERS

IN FIELD PROGRAMMABLE

GATE ARRAYS

Thesis Approved:

Thesis Adviser

------L-~~ A.~~
~Graduate College

II

Dedication

To
My parents

III

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my advisor, Dr. Michael A.

Soderstrand for giving me guidance in my study. I want to thank Dr. Michael A.

Soderstrand and Department of Electrical and Computer Engineering for providing me

with this research opportunity. I would like to extend my appreciation to Dr. Keith A.

Teague and Dr. Louis G. Johnson for their invaluable knowledge and guidance.

I wish to give my specially appreciation to all of my colleagues in Digital Signal

Processing and Communication (DSP&C) groups. I also want to thanks alJ my friends

for supporting me and encouraging me all the time while I am pursuing my degree.

Lastly, I would like to thank my family who always support and encourage me.

IV

Chapter

TABLE OF CONTENTS

Page

1. Introduction 1

1.1 Introduction 1
1.2 Contribution of thesis 2
1.3 Thesis Organization 3

2. Background 5

2.1 Digital system 5
2.2 Finite Impulse Response Filter 6
2.3 Canonical Signed Digit representation and Dempster-Macleod Technique 8
2.4 Field Programmable Gate Array 12

2.4.1 FPGA background 13
2.4.2 Common types ofFPGAs 14
2.4.3 Xilinx FPGAs 15
2.4.4 Virtex series Architecture 18

3. Procedure for Implementation 21

3.1 Introduction 21
3.2 Running GUI program 23
3.3 Running TCL script in Synplify_Pro 24
3.4 Running Xilinx Design Manager 26
3.5 Implementation in XSV800 board 28

4. Translation of filter parameters 29

4.1 Introduction 29
4.2 The flow of FIR filter parameter translation 31
4.3 Computation of CSD data objects 35
4.4 Computation ofDM data objects 38

S. VHDL coding for FIR filter design 41

5.1 Introduction 41
5.2 Basic HDL Terminology 43

v

Chapter Page

5.3 Behavior coding of FIR filter. 44
5.3.1 Coding on the filter parameters declaration 44
5.3.2 Coding on the filter behavior function file 45
5.3.3 Coding on the top level ofFIR filter 48

6. Implem,entation and comparison 53

6.1 Introduction 53
6.2 Implementation 54

6.2.1 FIR filter implementation example 54
6.2.2 Simulation result 55
6.2.3 Experimental result 56
6.2.4 Hardware costs 58

6.3 Results and Comparisons 60

7. Conclusions and F-uture Work 63

7.1 Conclusions 63
7.2 Future Work 64

Bibliography 66

Appendix A 69

Appendixes B , , ' 74
Appendix B-1 74
Appendix B-2 75
Appendix B-3 77

Appendix C 79

Appendix D ' ' 79

VI

Table

LIST OF TABLES

Page

2.1 Comparison of commercial FPGAs 15
4.1 An example of High-pass FIR filter coefficients 36
6.1 Hardware costs for an example of Low-pass filter 59
6.2 Specification for four different types of FIR filter. 60
6.3 Hardware costs in Xilinx FPGAs for four different types of FIR filter 61
6.4 Comparison of hardware costs 62

VII

Figure

LIST OF FIGURES

Page

2.1 Digital system block diagram 5
2.2 Filter structure: Transpose Direct Fonn 7
2.3 Filter structure: Direct Fonn 8
2.4 Binary representation of number 217 multiplied by input A 9
2.5 CSD representation of number 217 multiplied by input A 10
2.6 OM representation of number 217 multiplied by input A 11
2.7 Symmetrical array, hierarchical PLD, row-based and sea-of-gates 14
2.8 Overview ofVirtex FPGAs series 16
2.9 Virtex architecture overview 19
2.10 Virtex Input/Output Block (lOBs) 19
2.11 Virtex configurable logic block (CLBs) 20
3.1 Overall flow of implementation 22
3.2 Sample Gill program 23
3.3 Sample image ofSynplify_Pro software 25
3.4 Xilinx Design Manager setting windows 26
3.5 Xilinx Design Manager 27
3.6 Xilinx Design Manager Implementation option window 27
4.1 Overall flow of the parameters translation 33
5.1 Top-to-bottom levels ofVHDL files 42
5.2 Flow chart for FIR filter coefficient multiplier. 47
5.3 Top level of FIR filter 48
5.4 Flow chart for top-level of FIR filter 49
5.5 Structure of transpose direct fonn FIR filter with odd number order 50
5.6 Structure of transpose direct form FIR filter with even number order 51
5.7 Basic structure of 1st order FIR fi Iter in transpose direct form 52
6.1 Overall structure of the hardware implementation 55
6.2 Comparison of original specification and simulation resuIL 56
6.3 Interface between testing equipment and Xess XSV800 board 57
6.4 Comparison of Implementation data with original specification 58
7.1 Example of sharing filter coefficient 64

VIII

Chapter 1

1. Introduction

1.1 Introduction

Digital equipment such as mobile phones and audio equipment are widely used in

today's world. However, the purity of signal will be a major consideration for designing

these types of equipment. All of this equipment needs filters for filtering out unnecessary

noise. There are two types of filter available, analog filters and digital filters. Comparing

these, digital filters will have better controUability than analog filters, as analog filters

need passive elements in their design. Passive elements vary in time, which make analog

filters have less performance over time compared to digital filters. However, digital filters

do have the advantage of simple hardware structure as we can represent digital filters

easily by using adders and storage elements.

There are two different types of digital filters. These are Infinite Impulse

Response (UR) filters and Finite Impulse Response filters (FIR). Each type has it own

advantages and disadvantages. FIR filter design is chosen for implementation in this

thesis due to its unique filter characteristics such as linear phase, finite duration and

symmetric filter coefficients. However, FIR filter design has the disadvantage of having

a high filter order, which means the hardware requirement is generally greater. This

becomes the major concern for the designers. This thesis discusses an efficient way to

implement a FIR filter by using less hardware. The hardware saving is achieved by

1

introducing Canonical Sign Digit (CSD) approach and a new implementation approach

based on factoring the CSD that was developed by Dempster and Macleod (the DM

Technique). Field programmable gate arrays (FPGAs) are chosen to be the main

hardware for implementation as FPGAs can be re-configured easily.

1.2 Contribution of thesis

A Matlab CSD and DM FIR filter design Graphic User Interface (OUI) program

is created for FIR filter design targeting for Xilinx FPGAs. This GUI program consists of

two parts; the first part is contributed by Husinga [1] and Leong [2], which is the design

optimization of FIR filter using the Canonical Sign Digit representation (CSD) and the

Dempster-Macleod (DM) technique in Matlab. The second part of this Gill program,

which is addressed in this thesis, is to translate the optimized filter coefficients obtained

using the GUI program into VHSIC (Very High-Speed Integrated Circuits) Hardware

Description Language (VHDL) behavioral codes and further implement these codes in

Xilinx FPGAs.

This thesis consists of three main objectives. The first objective is to translate the

FIR filter parameters obtained from the optimized outputs of Leong's GUI program [2]

into VHDL code that can represent a FIR filter. Chapter 4 in this thesis provides detailed

discussion on the translation of the optimized filter parameters. The second objective of

this thesis is to develop general VHDL codes for describing the specified behavior of a

FIR filter. These VHDL codes are then combined with the parameter file that is translated

from the Matlab program for implementation of FIR filter. These VHDL codes can be

used for different technologies as they are behaviorally written. Chapter 5 includes more

detailed discussion of these VHDL codes. The third objective of this thesis is to

2

implement the FIR filter design into the Xess XSV800 prototyping board to verify the

validity of the design. This thesis mainly concentrates on Virtex XCV800HQ240-4

FPGAs but other Xilinx FPGAs technology can. also be implemented using the same

behavioral VHDL codes for FIR filter design. Chapter 6 discusses implementation of the

FIR filter design into the Xess XSV800 board and comparison of hardware savings

between the CSD representation and the DM technique is included.

1.3 Thesis Organization

Chapter 2 discusses the background material related to FIR filter design and

FPGAs. The first two sections discuss the background of digital systems and FIR filters.

Section 2.3 describes the background of the CSD representation and the DM technique.

Section 2.4 includes the background of FPGAs and Xilinx FPGAs used for this thesis.

Chapter 3 discusses the hardware implementation procedures on Xess XSV800

prototyping board, where this board uses Xihnx Virtex XCV800HQ240-4 chip as its

FPGAs. These implementation procedures include hardware optimization in Leong's

GUI program [2] and the interface between Leong's [2] optimized results with the FIR

filter behavioral VHDL codes contributed in this thesis. Lastly, a bit stream file is

created using implementation option in Xilinx Design Manager. This bit stream file can

be downloaded into Xess XSV800 prototyping board for hardware implementation.

Chapter 4 discusses the translation of the filter parameters. A Matlab routine is created to

translate the parameters of the FIR filter into VHDL codes. Section 4.2 discusses the

overall flow of the routine of how the translations take place. Section 4.3 and 4.4 discuss

about how to translate the parameters into VHDL codes for the CSD representation and

the DM technique respectively. Chapter 5 introduces the behavioral VHDL codes for

3

FIR filter design. A brief idea of basic HDL terminology is introduced in this chapter.

Section 5.3 describes how the behavioral VHDL codes are done for FIR filter design.

Chapter 6 covers an example of implementation as well as the results, which the

implementation obtains from Xess XSV800 prototyping board. Section 6.3 includes a

comparison of the hardware saving using CSD approach and DM approach. Chapter 7

concludes this thesis and future work is discussed in this chapter.

4

Chapter 2

2. Background

2.1 Digital system

Digital systems are sampled data systems that operate in discrete time instead of

continuous time condition. Digital systems use computational processes and algorithms

where a sequence of numbers acting as input signals and the system transforms the input

sequence signals into a sequence of output signals according to the system characteristics

[3]. However, in a real world application, most signals are in analog form. Therefore,

analog to digital converters (ADC) and digital to analog converters (DAC) play an

important role for digital system performance.

X(t) >j Ixln] ¥~Y(t)
ADC >- System DAC

t
T Ts T

Figure 2.1 Digital system block diagram

Figure 2.1 shows the basic block diagram of a digital system. In this block

diagram, continuous signals X(t) are the input of the system. ADC converts the

continuous signal's information into a number of digital sequences x[n]. x[n] are sampled

according to sample period (T) and x[n] are used as the sequence inputs of the digital

system. The digital system samples the signals at period Ts and transforms the input x[n]

5

to y[n] based on the computational processes 'Or algorithms defined for the digital system.

A DAC is required for converting the digital sequence y[n] back toana]og signals yet) so

that the information is useful for the real world application. Also note that y[n] is sampled

at sample period T. ADC and DAC conversion is a complicated process in digital signal

processing. There are several ADC available on the market such as parallel (flash)

converter, successive approximation ADC, voltage-to-frequency ADC and integrating

ADC. 'Delta sigma modulator with one bit DAC' is the most common DAC available. In

this thesis, Xess XSV800 prototyping board is the main hardware that we are targeting.

An audio CODEC chip (AK 4520a) on this board has the ability to perfonn the task of

ADC and DAC conversion. The digital filter is considered as a digital system. FIR. filters

are the main target hardware in this thesis. The following section discusses the general

idea of a FIR filter and filter structure, which we choose for hardware implementation.

2.2 Finite Impulse Response Filter

A digital Filter is one of the most basic blocks required in a digital signal

processing system. A digital filter's impulse response can be either finite duration or

infinite duration. The FIR filter that we focus on is a non-recursive, linear phase, constant

group delay, symmetry and finite duration digital system [4]. Digital FIR filters design is

easier to handle because FIR filters onty have non-recursive property where the current

output does not depend on the previous output. In this case, we can specify the number of

bits we want for the input and output of the filter. The digital filter designer will have

more controllability over the FIR filter design. However, one disadvantage of FIR filters

over IIR filters is that FIR filters require a higher order in order to achieve certain filter

specification. In this case, the higher order FIR filter requires more hardware to

6

implement. However, FlR filter design is often preferable for designers because of its

unique characteristics. We can represent a general FIR filter in the following equation:

N-I

yen) = L)kx(n -k)
k=O

(2.1)

x(n-k) is the input of the signal delay by k samples multiplied by the filter

coefficient bk and the output yen) is the discrete time at instance n. The summation runs

from k=O to k=N-I, where N is the number of taps for the filter [5].

There are many different structures to represent a FIR filter. Two common

structures are the Transpose Direct Form and the Direct Form, both of which can perform

a linear phase characteristic. Figure 2.2 shows a general Transpose Direct Form filter,

where the input X is fed directly to each filter coefficients. The delay elements are

located after filter coefficients. Figure 2.3 shows the Direct Form filter. In this figure, the

X inputs need to pass through delay elements before multiplying the filter coefficients.

Transpose Direct form structure has a higher sampling rate for implementation as

Transpose Direct form structure consists of a shorter critical path compared to Direct

Form structure. Therefore, Transpose Direct form structure is selected as the main filter

structure so that the filter implementation will have a better sampling rate.

X inputs
I------ ------r------..--- ..

b3

+~

Figure 2.2 Filter structure: Transpose Direct Form

7

b3b2

t--~_""Z-l ..

blbO

X inputs

Figure 2.3 Filter structure: Direct Form

2.3 Canonical Sign Digit representation and Dempster-Macleod Technique

We can represent a FIR filter by simply using shifts, addJsubtract arithmetic

operations and delay elements in hardware sense. However, there are different ways to

represent the filter coefficients. The most common way of representation is binary

representation, where the set of representation is bounded under {D,I}. In binary

representation, the main arithmetic required is shift and add. Later, the introduction of

Canonical Sign Digit representation (CSD) gives more freedom in representing a number.

The main contribution of CSO in hardware saving of FIR filter is CSD can represent a

binary number using lesser number of non-zero bits. Signed digit (SO) number system is

introduced to achieve the above purpose. The possible set of codes represented in CSO is

{-I,D, I}. CSD representation assures that there are no two consecutive non-zero bits. In

this case, the coefficient numbers are represented using fewer non-zero digits. The

following example illustrates how the CSO representation works compared to binary

representation. Take number 217 as the filter coefficient. In addition, we assume the filter

coefficient and the filter input are a nine-bit number.

8

In binary, we can represent 217 as 2° + 23 + 24 + 26 + 27 or OIL 0 1 1 0 0 1 for ,a

nine bit number. We need five non-zero bits to represent 217.

Take A = 1 = 0 0 0 000 0 0 1 as the input of the :filter coefficient multiplier. For

binary representation, we start by shifting the input A by 0 time, and add the result by

shifting the input A by 3 and then the output is added by shifting the input A 4 times. The

output will continue adding the shifted input according to this equation: (A«O) +

(A«3) + (A«4) + (A«6) + (A«7), where« represent the left shift. Figure 2.4 shows

how the shifting and adding is done for this example. In this case, four adders are needed

to represent number 217 multiplied by A.

Output = 011011001

Figure 2.4 Binary representation of number 217 multiplied by input A

In CSD representation, we represent 217 as 2° - 23
- 25 +28 or 1 0 0 -1 0 -1 0 0 I

for a nine-bit number. We need only four non-zero bits to represent 217.

Taking the same A as input, for CSD representation, we can represent the

multiplication by using this equation:(A«O) - (A«3) - (A«5) + (A«8), where «

represent the left shift. Figure 2.5 shows how the shifting and adding perform in this

9

CSD representation example. In this case, only one adder and two subtractors are needed

to represent number 217 multiplied by the input A. We can see the major difference

between CSD representation and binary representation is that CSD representation uses a

subtractor. In this thesis, we assume that adder and subtractor requires the same amount

of hardware to generate. Clearly, in this example, CSD representation saves one adder in

hardware over the binary representation.

A shift left 8
=100000000

+~
~

Output = 1 0 0 -I 0 -I 0 0 I

Figure 2.5 CSD representation of number 217 multiplied by Input A

CSD representation has been proven by many researchers regarding its potential

in hardware saving. However, the work of Dempster and Macleod [6][7][8][9] has proven

that some of the CSD number representations can give more hardware savings by using

cascading. We refer to this technique as Dempster-Macleod (DM) technique. Taking the

previous example number 217 as our filter coefficient, we can further illustrate how the

OM technique can perform a better savings compared to the CSD representation. The

first step in using the DM technique is to find the prime factor of the filter coefficient. For

this example, the prime factors for 217 are 7 and 31. Hence, we can represent the nine-bit

number of 7 as 00000100-1 and 31 as 00010000-1. Figure 2.6 shows how the shifting

10

and adding/subtracting is done using DM technique. In this case, only two subtractors are

required to represent number 217 multiplied by the input A. We save one more adder

hardware over the CSD representation.

Output = 100-10-100 I

Figure 2.6 DM representation of number 217 multiplied by input A

In paper [10], we proved that comparing two to the power of eight numbers of

combinations represented in binary, CSO and OM require the average number of adders

3.004, 1.8125 and 1.60156 respectively. The average savings achieved by using the CSD

representation over binary is 39% and the OM technique over binary representation is

46%. There are even more obvious savings for two to the power of sixteen numbers of

combinations. The CSO representation has 36% of savings over binary and the DM

technique has 56% savings over binary. In Leong's [2] DM algorithm used in the GUI

program, the OM technique will always perform an equal or better hardware saving over

the CSD representation. Although the DM technique will always perform an equal or

11

-

better hardware saving then the CSD representation, we still give the user option to

choose the CSD representation in the Gill program. The main reason for allowing the

user to choose whether or not to involve the DM technique is because the DM technique

relies on a cascade structure that can result in increased delay. However, the DM

technique will be the main technique we emphasize in this thesis.

2.4 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) is commonly used nowadays. The

reason for FPGAs being so popular is its re-configurable ability, which gives the designer

more flexibility in prototyping. Comparing Application Specific Integrated Circuit

(ASIC) with FPGAs, FPGAs are easier to be reprogrammed and give the designer more

"freedom" in designing. The "freedom" refers to the fact that the user can implement any

digital system he wants using the basic function in FPGAs. Ahera, Actel, Quicklogic and

Xilinx are several different types of FPGAs available commercially. Each of them has a

different type of architecture, logic block type and programming technology. For

instance, Xilinx FPGAs uses symmetrical array architecture, look-up table type of logic

block and static RAM programming technology where Altera uses hierarchical-PLD

architecture, PLD block type of logic block and EPROM programming technology. In

this thesis, we are using Xilinx FPGAs as our target technology. Xess XSV 800 Virtex

prototyping board (with Xilinx Virtex XCV800 HQ240 chip on board) is the main FPGA

used for testing the design of FIR filter in this thesis. However, similar implementation

can be done for other Xilinx FPGAs by just changing the technology parameters.

12

-

2.4.1 FPGA background

Programmable logic devices are devices that provide the designer the ability to

reprogram the devices repeatedly. Field Programmable Gate Arrays (FPGAs) is a

programmable device with a common purpose set of functions that can be reconfigured

for different applications. Custom logic circuit design needs to be customizing at the

board level using standard components or customizing at gate level using ASIC [11].

However, after the introduction of programmable logic devices, the designer has the

ability to customize his design faster and more reliably. ASIC design may take up a

certain amount of time before the manufacturer can produce the chip for the designer to

test his design. On the other hand, programmable logic devices provide re-configurable

ability that makes the designer customize their design easily by using Computer Aid

Design (CAD) software. This is one of the reasons why FPGAs are commonly used

device nowadays. FPGAs re-configurable ability gives the designer more flexibility in

prototyping. The first programmable device that became popular on the market was

Programmable Read Only Memory (PROM) from Harris and Monolithic Memories

[12]['13]. Later on, Monolithic Memories introduced field programmable PLA (FPLA).

Then, the PAL architecture was developed by Monolithic Memories, which caused a

great impact on the TTL market. There are two version of PROM available; they are

Mask-Programmable Chip and Field! Programmable Chip. Mask Programmable Chips are

used for larger logic circuits and mostly programmed by the manufacturer. Field

Programmable Chips are targeted for the regular user, which are more a cost effective

solution for PLD.

13

The FPGA chip contains a number of identical logic cells that are interconnected

in matrix fonn with wires and programmable switches. Each logic cell can have its own

functionality depending on how the users program the cell. Users can specify the

functionality by selecting the switches that interconnect the cells. One can design

complex logic circuits by using the array of logic cell and interconnected switches.

2.4.2 Common types of FPGAs

Four different types of FPGAs are currently available commercially. Figure 2.7

[12] shows the graphic view of different FPGAs' classes; which are symmetrical arrays,

hierarchical PLD, row based and sea-of-gates FPGAs.

s,vmmptril'RI Arr,.v

DO
DOD
DOD

ogle loc

Figure 2.7 Symmetrical array, hierarchical PLO, row-based and sea-or-gates

Each of them has different kind of way to interconnect as well as the way to

reprogram each block. As shown in Figure 2.7 [12]" each class has a standard block and

interconnection except that hierarchical PLD has only PLD and interconnection. In

addition, there are four different technologies in use for the basic block. They are "static

RAM (SDRAM) cells, anti-fuse, EPROM transistor and EEPROM transistors" [12].

SRAM technology uses pass-transistor, transmission gates or multiplexers for controlling

14

-

the cell. This technology can have a very fast circuit reconfiguration but the size of the

chips is not compatible. On the other hand, anti-fuse technology is less expensive than

SRAM technology but it can only be programmed once. EPROM has the advantage of

reprogramming, which saves a lot in resources. Table 2.1 shows the comparison of four

different commercial FPGAs' architectures, logic block types and programming

technologies [12].

Company Architecture Logic Block Type I ProgrammingI
I

Technology
Actel Row-based Multiplexer-based Anti-fuse
Altera Hierarchical PLD PLD block EPROM

Quick Logic Symmetrical array Multiplexer-based Anti-fuse
Xilinx Symmetrical array Look-Up-Table (LUT) Static RAM

Table 2.1 Comparison of commercial FPGAs

2.4.3 Xilinx FPGAs

"The first Xilinx architecture was designed by Ross Freeman and introduced in a

paper in the 1986 Custom Integrated Circuits Conference" [13]. Currently there are a

great number of devices developed by Xilinx. For example, Virtex II platform FPGAs,

Virtex series, Spartan-II FPGAs, Spartan-XL FPGAs, Spartan FPGAs, XC4000XLlXLA,

XC4000XV and others. Each of the FPGAs has its own specifications, which give the

users more choices to select the devices suitable for their design purpose. In this thesis,

we mainly concentrate on the Virtex series ofXilinx FPGAs.

Virtex Series: Xilinx Company introduced this series in 1998 and it is the first

system with one million gates on the system. The architecture of the system is redefined

to include a set of power features that deal with board level problems for high

performance system design. Virtex E-series is another design introduced by Xilinx in

15

-

1999, which has three millions gates on the system. A Later Virtex EM device was

introduced in 2000, which was the new FPGAs chip that used an advanced copper

process. Figure 2.8 shows an overview of Virtex FPGAs series [14]. There are several

interesting features that Virtex series have. The following is infonnation obtained from

the Xilinx official web page [14] about Virtex series FPGAs.

System Level Clock Management

Distributed RAM

177MHzFJFO

Series FPGA.

Differential
Signaling

20 110 Standards

Virtex

CAM

Serle. FPGA&Virtex

I = I

PCI Backplane

Figure 2.8 Overview of Virtex FPGAs series

The first feature is the System level and clock management, where there are eight

high perfonnance delay lock loops (DLLs) in Virtex series. DLLs are introduced so that

higher bandwidth rate is allowed in this system. By using the DLL circuitry, precise

synchronization of external and internal clocks can be performed. Next is the Static RAM

(SRAM) in Virtex series. Static RAM will retain data bits if power is being supplied. On

the other hand, dynamic RAM (DRAM) stores the data bits in the cells that contain a

capacitor and a transistor. As SRAM does not have to be periodically refreshed, SRAM

can have faster access to data. The drawback is that SRAM is more expensive. SRAMs

are usually used for high perfonnance speed systems. In Virtex, 133MHz of SRAM is

16

-

available. Besides Static RAM, Virtex has ZBT®/NoBLTM SRAM to prevent th.e latency

between read and write data bus operation. ZBT and NoBL are high-speed synchronous

pipeline SRAMs. By using these SRAM, one can maximize the bus bandwidth and data

throughput. In this case, the system perfonnance will be optimized. The main purpose of

using these SRAMs is for networking, telecommunications applications, test equipment,

DSP application, embedded memory, secondary cache and other such high-speed

memory applications. One unique feature in Virtex is the Double Data Rate (DDR)

SDRAM. DDR SDRAM is considered as one ofthe next generation SDRAM. The major

difference between the DDR SDRAM with the regular RAM is that its speed is at least

200 MHz. DDR SDRAM can activate output on both the rising and falling edge of the

system clock rather than on just the rising edge. In this case, there is potential to double

the output speed. DDR has more advanced synchronization circuitry than regular

SDRAM. Block SeJectRAM is another feature available in Virtex series. It is also called

dual-port RAM. Block SelectRAM is considered as one of the effective resources without

sacrificing the existing distributed SelectRAM memory. Block SelectRAM memory is

designed to synchronize with the system to perform accurate timing analysis. Each

dedicated memory is available in 4K blocks and each block is operating as a fully

synchronous true dual-port memory. Each port can read and write on independent clocks

and can be configured differently. That is one of the reasons why RAM can be used as

buffers for high-speed data streams and for funneling data to different width/speed

combinations. Content Addressable Memory (CAM) in Virtex series is defined as "a

storage array designed to quickly find the location of a particular stored value" [14]. The

way CAM functions is CAM uses the input to compare with the data memory, and CAM

17

-

has the ability to find out if an input value matches one or more values stored in the array.

Some features of CAM are described as follow. Firstly, CAM stores words in an array.

The write mode of CAM is comparable, but the read mode is different. CAM input is

looking for data instead of using data address line to pinpoint the storage value. When a

match is found, the output is the address in the array. The distributed RAM of Virtex

series is built on chips. In the early years, the FPGAs from Xilinx were using external

SRAMs and DRAMs instead of on chip RAM. The 20 I/O standards allow system

designers to interface with any device with zero translation delay. It also reduces system

cost by eliminating external translators, and enabling the lowest power design possible.

The FIFOs are used to buffer data on and off chip, or caches for high-speed parallel

searches. Differential Signaling in Virtex is used because of comprehensive bandwidth

requirements for high performance systems that exceed 100 Gbits per second.

Differential signaling can have high bandwidth while reducing power, increasing noise

immunity, and decreasing EMI emissions. Besides that, Virtex also has AID, 01A

conversion, Peripheral Component Interconnect, SelectLink and Backplane features.

2.4.4 Virtex series Architecture

This section is included to further explain the use of Xilinx Virtex series FPGAs.

All this information is based on Xilinx Virtex product data sheets [15]. There are two

major configurable elements in Virtex series; they are configurable logic blocks (CLBs)

and input/output blocks (lOBs). CLBs are the basic elements used to perform basic

functional blocks. lOBs are used for interfacing within the internal CLBs block with the

package pins. Figure 2.9 is the reference figure from Xilinx Virtex product data sheets

about the overview of Virtex architecture. As we can see, the BRAMs are located on two

18

pa

sides of CLBs, where BRAMs provide more memory spaces for Virtex users. Versa ring

is used to provide better routing resources for the devices. There are Delay Look Loops

(DLLs) for better timing management.

Figure 2.10 shows the basic input/output block for Virtex series FPGAs. In basic

lOBs, there are three storage elements, which can be used as a D flip-flops or level

sensitive latches. Each of these storage elements uses the same clock signal but all three

have their own clock enable signals. All of the lOBs pads have protected circuits to

prevent electrostatic discharge or over-voltage transients.

Oll lOB. Oll

ve,.aRtnsI

~ I· !II f

~
iE i i~ ~ elBa ~

E:
CD .. !J

> ..

Var.aRlng

Oll
lOB.

lOLL

Figure 2.9 Virtex arcbitecture overview

10 ~++---l

SA >-++---'
eLK >-+..-----'
CE >-- --'

Figure 2.10 Virtex Input/Output Block (lOBs)

19

-

Configurable logic block (CLB) is the mam element used in Virtex FPGAs.

Figure 2.11 is a CLB in Virtex FPGAs. Each CLB has four logic cells; four carry logics

and four storage elements. Each logic cell is a 4-input function generator. Virtex uses

Look-up tables (LUTs) to implement the function generator. The storage elements can

be used as edge-triggered D flip-flops or as level sensitive latches. Slice in Xilinx Virtex

FPGAs is considered as half of a CLB. In this thesis, we count the hardware costs in

Virtex FPGAs by using slice numbers.

COUT COUI

ex :>-+------'

F3
XO F2

Fl

va

xo

+-------+~X8

r---~x

~----t-~Y8

r---~Y

F4

+-------+~ X8
.-----t-? X

+-------+~ V8
V 04

G3
va G2

G1

F4

FJ

F2

F,

BV>-+------J

G4

GJ

G2

Gl

8X >-i------'

Sileo 1

CIN CIN

Figure 2.11 Virtex configurable logic block (CLBs)

20

-

Chapter 3

3. Procedure for Implementation

3.1 Introduction

Chapter 3 discusses the procedure of the hardware implementation of FIR filters

using the VHDL interface written in thesis and Leong's GUI program [2]. Figure 3.1

shows the overall flow of the implementation. The gray portion in Figure 3.1 is

contributed by Leong [2] and the white portion in Figure 3.1 is contributed in this thesis.

In the white portion of Figure 3.1, params. vhd (Appendix B-1) package file is created in

Matlab by using the optimized results from Leong's GUI program [2]. Details on how to

generate the params.vhd (Appendix B-1) package file are included in Chapter 4. By

combining the params.vhd (Appendix B-1) file with two FIR filter behavioral YHDL

codes (filt. vhd and rdfl. vhd); we can describe a transpose direct form FIR filter. Chapter 5

discusses the FIR filter behavioral VHDL codes. We use Synplify_Pro synthesizer from

Synplicity to synthesize the FIR filter behavioral VHDL codes. After synthesizing, Xilinx

Design Manager software is used for implementation of the FIR filter. This

implementation involves translation, mapping, place and route (PAR), timing simulation

and configuration processes. A bit stream file is created after the implementation

processes. This bit stream file is then downloaded to the Xilinx FPGAs for

implementation. Chapter 6 provides more discussion on the implementation. The

hardware implementation in this thesis is done using Xess XSV800 prototyping board

21

..",
I

-

[16]. This board uses Xilinx FPGAs Virtex XCV800HQ240-4 as the main FPGAs chip.

In the next few sections, we shall see an example of how FIR filter design is done starting

from Leong's Gill program [2] to hardware implementation on XSV800 prototyping

board. Although the hardware implementation in this thesis mainly uses Virtex

XCV800HQ240-4 as the target technology, the user can also implement other Xilinx

FPGAs technology by simply changing the technology module option in the TeL script

and also the pin assignment in the constraints file.

(START

..-
I Get Specification from Users I

Madab GUI Procram ..-
I Optimizing Procedure IScaIiD~, Order Aujtmentation, Adder Extraction..

I Optimized CSOIDM results I Matlab

~
Hardware I CSDIDM parameter file IImplementation Pllrams.vhd

•ITecbnologyl - HOL Synthesis I Synplify_Pro...
library 'I 1....

I Translation I
J..

I Mapping I
J.. Xilinx Design

I PAR I Manager
J.

I Timing simulation I
J..

I Configuration I
I...

I Bit stream file I
Figure 3.1 Overall now of implementation

22

..,
I

-
3.2 Running GUI program

Before starting the implementation, make sure that Leong's GUI program [2) and

the VHDL behavioral coding written in this thesis is in the directory c:\csddm. The

reason for doing this is that the VHDL filter parameters file (params. vhd) will be copied

from the c: Icsddm directory to c: Icsddm IFJRfilter sub-directory. This sub-directory in

c:\csddm directory contains the VHDL behavioral coding of the FIR filter and the VHDL

coding of the Codec circuit, TCL script for running the synthesizer in Synplify_Pro and

the constraints file for assigning the pins for top-level entity of VHDL coding.

The very first step for running Leong's GUI program [2] is to open the Matlab

program. Then, the user has to set the path of the Matlab to c:\csddm. This can be

achieved by typing CD c: Icsddm at the Matlab command window, where CD is the

change directory command in Matlab. Then, the user can run Leong's GUI program by

typing csddesign2 at the command window. A GU~ window, which looks like Figure 3.2

pops up.

\
Fi'lter
Specification

Figure 3.2 Sample GUI program

23

The next step is to enter the desired specification of the filter. The oval in Figure

3.2 shows the location where filter specifications need to be entered. These specifications

include target technology; optimization method, sampling frequency, passband frequency

and ripple, stopband frequency and ripple and input bit size. After entering the desired

specifications, the user can activate the program by simply clicking the DESIGN button

on the Gill program. The GUI program will then go through the CSD representation and

the DM technique algorithm and stores the optimized filter parameters. A summary page

will pop up after the optimization is done. The user can determine the optimized result by

checking the summary page before going on to the hardware implementation. If the user

is satisfied with the optimization result, he can start the hardware implementation by

simply clicking the LAYOUT button on the GUI window. By doing this, Matlab will run

the layout.m (Appendix A) file and create a params.vhd file in the c:\csddmIFIRfilter

directory. The layout.m file contains an algorithm for generating the filter parameters

YHDL file (params. vhd). All the files required for the FIR filter design are stored in the

c:\csddmlFJRfilter directory. These files are three YHDL behavioral codes for FfR filter

structure; the five files for the Codec circuit VHDL and a top-level entity YHDL file for

the overall design. The following section discusses how to synthesize the VHDL codes

using the Synplify_Pro synthesizing tool.

3.3 Running TeL script in Synplify_Pro

Synplify_Pro is a synthesizing tool provided by SynpJicity. A TCL script

(Appendix C) is written in this thesis to simplify the process of synthesizing. This script

is located in the directory c:lcsddmIFJRfilter. The main target technology for this script is

the Xilinx XCY800HQ240, where the user can change the target technology to different

24

Xilinx technology by simply changing the technology module option in the script file.

The user has to open the Synplify_Pro software before running the script. Figure 3.3

shows a general view of the Synplify_Pro GUI.

[ilo tlll ~.. er-t Run IClL tpIlJM~ _ UIfD- -- - --- --

Figure 3.3 Sample image of Synplify_Pro software

The next step is to browse to the Run menu bar and look for the Run TeL script

option in the Run menu. After clicking this option, a window pops up and asks for TCL

script. The user has to browse the c:\csddmIFJRfilter directory and look for a TCL script

file called filter.tel. Select this file and click open to activate the synthesizer. The

synthesizing process may take some time and it all depends on the complexity of the

filter. The synthesizer will create all the necessary files such as '" .ed! and'" .nef files for

implementation in a sub-directory called rev_1 in FJRfilter folder. After synthesizing, a

window containing the infonnation for running the TCL script pops up. The user can just

2S

close this window and go to the next step of the implementation. The next step of the

implementation is to use the Xilinx software called Xilinx Design manager.

3.4 Running Xilinx Design Manager

To make implementation simpler, Synplify_Pro has the option to activate the

Xilinx Design Manager from the Synplify_Pro menu bar. This can be done by simply

browsing through the Options menu bar on Synplify_Pro and selecting the XWnx -->

Start Design Manager option. A window similar to Figure 3.4 will pop up and the user is

asked to enter the implementation information. In this window, select the constraints file

option and choose custom. Another window pops up asking the user for the location of

the constraints file. Browse to the FIRfilter folder and choose the codec_control. ucf file

(Appendix D) as the constraints file. codec_control.ucf file contains the pin assignment

for XSV800 boards. This file is not valid for the implementation on other boards. Then

click ok to save the option of using the constraint file.

New Versiol/ - I:J I

BoIh ... n...w__~_willbe.....-cI

I'e_~" jIIIIII
V.,.ion>;OlMle", '-1---------.

fait fCIIBOO+H024l1 leIecl.

AwIiioion !!Ierne; levI;:.-::::========:
ReIo1lion Comment I

Copy~ll1enlO_---

ConotrUoFile I....No-n.-------~

FIoarplen File(.)" INone

Goodel'lleC.): INon.

OJ(

Figure 3.4 Xilinx Design Manager setting windows

26

I " .

B-~ codec control

e.~~lll11•••

For Help. pr... Fl codltJontrol

Figure 3.5 Xilinx Design Manager

Then go to Design in the menu bar and select Options to choose the

implementation option. This will call up an option window as shown in Figure 3.6.

,. .
Place & Route EffortLevel------------.........----.o.-....:::---~"

Figure 3.6 Xilinx Design Manager Implementation option window

In this window, the user has to set the simulation option to Foundation EDIF and

leave the implementation option and configuration option as Default.

27

-

r

To start the implementation, the user can just select Implement on the Design

menu bar. The Xilinx Design Manager will then run the hardware implementation,

which includes translation, mapping, place and route, time simulation and configuration.

The configuration process in Xilinx Design Manager will create a bit stream file

(codec_control. bit) for implementation.

3.5 Implementation in XSV800 board

To do implementation on XSV800 board, we can use the software provided by

Xess Corp. to load the bit stream file onto the hardware. This software is called Xstools

[17]. The user just needs to load the bit stream called codec_control.bit into the Xstools

software for implementation. After downloading the bit stream file into the board, the

user can start testing the filter by switching the RESET of flip-flop, which is the DIP

switch 8 on board.

28

Chapter 4

4. Translation of filter parameters

4.1 Introduction

This chapter includes explanation of the filter parameters translation from

Leong's GUI program [2] to a VHDL package file called params.vhd (Appendix B-1).

This file provides infonnation for the FIR filter design. By combining params. vhd with

another two FIR filter VHDL behavioral codes (filt. vhd and rdfl. vhd), one can implement

the FIR filter on FPGAs. This section gives a brief introduction to the translation of the

parameters. Section 4.2 discusses the overall flow of the translation. Both section 4.3 and

4.4 provides infonnation on how to compute the data objects needed for the CSD

approach and the DM approach.

In FIR filter design, there are several important parameters, which describes the

behavior of the filter. For instance, the filter coefficients describe the characteristic of the

filter response or pole/zero location of the filter. Therefore, these parameters play an

important role in FIR filter design. In Leong's GUI program [2], optimization in

hardware savmgs is done through order-wordlength trade-off, scaling and adder

extraction.

After optimization, Leong's GUI program [2] provides a list of parameters such

as filter coefficients (QC); filter order (Nmin), the CSD representation coefficient matrix

(newtable), the DM technique coefficient matrix (cdmopt) and input bits (bin) of the

29

-

s

filter. However, this inforrnation needs further processing before it can be implemented.

Users can only use the GUI program to simulate and verify if the filter coefficients meet

the specifications. Therefore, a translati.on of these parameters is necessary to convert this

information into hardware description language and verify that the Matlab simulation is

accurate. In this thesis, the hardware implementation is done in Xilinx FPGAs. VHSIC

Hardware Description Language (VHDL) is chosen for describing the behavior of the

FIR filter. This chapter will mainly discuss how the parameters are translated into a

package file called params. vhd (Appendix B-1) that can be used in the behavioral VHDL

codes for FIR filter design. In the next chapter, more discussion regarding the behavioral

VHDL codes will be included.

The translation of parameters can be done in several ways. Some software

packages such as Xtreme DSP developer's kit from Xilinx has the ability to translate

certain Matlab simulink blocksets in Matlab into hardware description language (HDL)

using Xilinx system generator. These HDL codes can be further synthesized in

Synplify_Pro from Synplicity software or FPGA advantage from Mentor Graphics.

However, hardware implementation in this thesis is specifically targeted for FIR filter

implementation in Xihnx FPGAs. The hardware implementation for FIR filters can be

done easily by only using adder/subtractor and delay elements as the main components.

There are several different choices of multipliers available for multiplication parts of the

FIR filter coefficients. For example, parallel multiplier or booth multiplier can be used

for such a purpose. However, for this thesis's application of FIR filter design, the

coefficient multiplication is done by simply using shift and add/subtract operations. In

30

this chapter, translation of filter parameters using the CSD representation and the DM

technique are described.

Translating the FIR filter parameters into VHDL codes is based on the concept in

Husinga's [1] and Muthya's [18] theses. In their theses, the translations were mainly for

CSD representation. In this thesis, several improvements have been made and the DM

technique translations are included. More data objects such as cascading stage (b_stage),

maximum number of shift (zero_con), maximum size of adder (bshift), number of

extended zeros required for filter output which is less than 20 bits (yex), shared structure

data object (NN) and odd or even order data object (ODD) are added for better

description of FIR filter behavior. Details on the overall translation of the filter

parameters are included in the next section.

4.2 The flow of FIR filter parameter translation

This section includes the description of the translation flow from optimized filter

parameters in Leong's GUI program [2] to parameters that are recognized in hardware.

The parameters' translation is explained briefly in Figure 4.1. The parameters translation

i.s done in the Matlab file called layout.m (Appendix A). The following paragraph

describes how the translation takes place.

After optimization, the GUI program provides certain information such as the

filter coefficients (QC); filter order (Nmin), the CSD representation coefficient matrix

(newlable), the DM technique coefficient matrix (cdmopt) and input bits (bin) for FIR

filter hardware implementation. First, the program will check which techniques the user

wants to use. User has the option of choosing either the CSD representation or the DM

technique before hand. By choosing either of these techniques, the translation procedure

31

is slightly different. However, in both techniques, the subroutine will create a VHDL

package file called params. vhd (Appendix B-1), which can further be used to describe the

behavior of the digital filter. The params. vhd (Appendix B-1) package file is created

using the fopen and fprintf command in Matlab. The fprintf command prints the library

clause and use clause on the params. vhd (Appendix B-1) file. Both techniques'

subroutine include library clause and use clause. These clauses are used to define the

standard library use for the digital filter design. In addition, fprintf command prints

design units such as entity declaration, architecture body, package declaration and

package body inparams.vhd (Appendix B-1) file.

Data object is the object declaration of a specific type with certain value. There

are three different data classes for data object. They are Constant, Variable and Signal

classes [19). However, in params.vhd (Appendix B-1) package file, we only use the

constant class to declare the FIR filter's parameters. Ten constant class data objects are

used in params. vhd (Appendix B-1) package file. These data objects are order of filter

(N), input bits (b), cascading stage (b_stage), number of nonzero bits in each stage

(nyer_row), locations of nonzero bit (coefJ_vec), maximum number of shift (zero_con),

maximum size of adder (bshift), number of extended zeros required for filter output

which is less than 20 bits (yex), shared structure data object (NN) and odd or even order

data object (ODD). All of this information is shared by other design units. The GUI

program must evaluate the optimized parameters before the function is chosen.

Therefore, the order of the filter (N), input bits (b), number of bits required for

representing the multiplier coefficient and filter coefficients are known before the GUI

program runs the /ayout.m (Appendix A) file.

32

--.
.-

START

~
IParameters from GUI program I

rs,n~ DM

1
Find no. of stages in Find no. of stages

each coefficient in each coefficient

[Define libraries and package file I
J, ••

Print order, input bits Find CSD representation of each1
and no. of cascading stage coefficient with adjustment of bit

~..-
Find and locate nonzero bits Find and locate nonzero bits
location in each coefficient location in each coefficient

Print no. of nonzero bits and location r Define libraries and package file
of nonzero bits in each coefficients

1•Find and print max no. of shi ft required
Print order, input bits

for the overall filter coefficients
and no. of cascading stage..

~ Print no. of nonzero bits and location

I Print extra zero for coclec l s IJseci of nonzero bits in each coefficients
y

Find and print max no. ofshift required
for the overall fi Iter coefficients

• IF •
I Print NN and ODD I r Print extra zero for conec's uscci!

y

Print NN and ODD l
"'I Params.vhd I....

Figure 3.1 Overall flow of the parameters translation

Filter order (N) and inputs bits (b) are standard information that can be printed on

params. vhd (Appendix B-1) without any process of translation. However, the layout.m

33

-

-
.-

file contains algorithms for finding the rest of the data objects such as cascading stage

(b_stage) , number of nonzero bits in each stage (nyer_row), locations of nonzero bit

(coeff>ec), maximum number of shift (zero_con), maximum size of adder (bshift) ,

number of extended zeros required for filter output which is less than 20 bits (yex), shared

structure data object (NN) and odd or even order data object (ODD). The next two

sections contain more detailed discussion on how to compute these data objects. After

computing all the data objects, the fprintf command is used to print all of the information

on the params. vhd (Appendix B-1) package file. Lastly, the fdose command in Matlab is

used to close the file printing. Before one can use the fprintf command, fopen command

has to be used to specify where to read the file from or write the file to. The purpose of

layout.m (Appendix A) file is to create a package file for defining the filter parameters.

Therefore, we need to define the fopen command as a write function instead of a read

function. The following line of code is used to ask Matlab to write the character into the

file called params. vhd (Appendix B-1).

fid=fopen('params. vhd','w');

The main command used in the layout.m file is fprintf. The following example is

used to further demonstrate how fprintf command can do the job of printing the

params. vhd (Appendix B-1) package file. This example shows how to print the order of

the filter onto the params. vhd (Appendix B-1) package file. The following line is the

code written in Matlab.

fprintf(fid,'CONST A TN: fNTEG ER:= %2d;\n',Nmin);

In this line, "INTEGER" is used to define "Nmin" as the constant class data object with

integer value. "fid" is the file identifier, "%2d" is the optional subtype specifier for

34

-
.-

-
conversion character and "\n" is the special fonnat in Matlab for linefeed. By using the

above code, the following line will be printed to the file that the user specifies in the

fopen command.

CONSTANT N: INTEGER:= Nmin; (where Nmin is the number of order).

The above discussion gives the basic concept of the flow for translating the

parameters into a package file that can be used for defining the digital FIR filter

parameters.

4.3 Computation of CSD data objects

The main purpose of this section is to show how the computations of data object

for the CSD representation take place. All of these codings are included in a Matlab m-

file called layout.m (Appendix A). Filter order (N) and input bits (b) both data objects do

not need any further computation. Both of these data objects can be directly printed on

the params. vhd (Appendix B-1) package file by usingfprinif command. Cascading stage

(b_stage) is one of the data objects, which needs computation to provide useful

infonnation. Cascading stages for the CSD representation are all value one or zero since

there is no involvement of cascading structure in CSD representation. The value for

b_stage is one when the fiJter coefficient is not a zero value or else b_stage will be zero.

From the optimized filter parameters, we can find the cascading stage by checking the

optimized filter coefficients.

Number of nonzero bits in each stage (nyer_row) is the next data object that

needs certain computation to provide useful infonnation. The table of CSD coefficients

(newtable) is already available before layout. m is activated. Table 4.1 is an example of

the CSD coefficients table.

35

-
.-

2U 2-1 2-2 2-3 24 2-:l 2-0

----. 0 0 0 0 0 -1 0
----. 0 0 0 0 -1 0 1
----. 0 0 0 0 1 0 1
----. 0 0 1 0 0 0 0
----. 0 0 1 0 0 0 0
----. 0 0 0 0 1 0 1
----. 0 0 0 0 -1 0 1
-----. 0 0 0 0 0 -1 0

Coefficient

-0.046875

-0.3125

0.25

O. 25

0.078125

0.078125

-0.3125

-0.046875

Table 4.1 An example of High-pass FIR filter coefficients

By using the infonnation from the CSD coefficients table, we can make a small

routine in Matlab layout.m file to count the number of nonzero bits in each coefficient. -
For example, the first coefficient in the Table 4.1 is -0.3125, which is T 5

, has only one

nonzero bit. To take another example, the second coefficient in Table 4.1 is -0.046875.

-There are two nonzero bits, where one of the nonzero bits has a minus sign, the other has

a plus sign. As the minus sign nonzero bit has a larger value than the plus sign nonzero

bit, the value of this coefficient will be negative. Again, after computation of the number

of nonzero bits in each coefficient, they are printed to the params.vhd (Appendix B-1)

package file usingfprintfcommand.

Next data object is the location of nonzero bit (coeff_vec). The computation for

finding the nonzero bit location is done in the same routine for finding the number of

nonzero bit in each coefficient. In the routine, the sign of the nonzero bit is included to

preserve the original value of the coefficient. Taking the first coefficient in Table 4.1 as

an example, the nonzero bit is located at T 5
, From a hardware point of view, it is only

36

taking the input signal and shifting the signal five times to the right. Therefore, the value

for this coeff_vec will be '-5', where the minus sign indicates this filter coefficient is a

negative coefficient.

Maximum number of shift (zero_con) is the next data object that needs to be

computed. This data object is used to preserve the bits required for the filter adders so

that no data will be lost during the filtering process. This number can be obtained by

finding the maximum number for the coeff_vec plus one, which is the maximum shift

needed in the multiplying process.

The next data object is maximum size of adder (bshift). The way to compute this

data object is to add the value of input bit (b) and maximum number of shift (zero_con).

The reason for having bshift is to make sure the adding operation in the filter has

sufficient adder size. Input data will be lost if the size of the adder in the filter is not big

enough.

The next data object is number of extended zeros required for filter output, which

is less than 20 bits (yex). This data object is used to make sure that the output of the filter

is equal to 20 bits. If the filter output is less than 20 bits, then the zero signals are needed

to concatenate with the filter output signal so that the filter will have 20 bits of output.

The reason for having a 20-bit output is that the Codec on the Xess XSV800 board can

only produces 20 bits of output.

The last two data objects are shared structure data object (NN) and odd or even

order data object (ODD). NN is detennined by the order of the filter structure. If the filter

order (N) is an odd number, this means that the filter has an even number of filter

coefficients. Therefore, NN is as follow:

37

-
.-

NN= (N+l)12 - I (4.1)

On the other hand, if the filter order is an even number, NN will be as follow:

NN=NI2 (4.2)

The odd or even data object (ODD) is determined by the filter order (N) too. ODD

will only equal to one or zero by using the remainder function in Matlab. ODD will be

equal to zero if the filter order is an even number and is equal to one if the filter order is

odd. The fprintf command is used to print all of the above data objects to params. vhd

(Appendix B-1) the package file. Using the fdose command to close the file completes

the whole package.

4.4 Computation of DM data objects

The computation of DM data objects has some similarity to computation of data

objects in CSD representation. The computation is located in the second half of the

layout. m coding (Appendix A). First, the number of filter order (N) and number of input

bits (b) are the same as the CSD representation because the OM technique only causes

change in the way to represent the filter coefficients. The next step is to compute b_stage

of each coefficient. As discussed in Chapter 2, the DM technique emphasizes using

cascading method to save hardware costs. Therefore, infonnation about the number of

stages is important for the OM implementation. As mentioned in the last section,

cascading values for the CSO representation are only one or zero. However, the

cascading values for the DM technique can range from zero up to the number of stages

required for representing the filter coefficients. The only information provided from

Leong's GUI program [2] before running the layout.m program is the decimal form of

cascading coefficients. Therefore, in layout.m program there is a small routine for finding

38

-S-=:.
[)

I)

"-

the number of cascading stages needed for each coefficient. This information is stored

under variable name bstage.

Before finding the rest of the data objects for the DM technique, another new

table is created so that each decimal form cascading coefficients will have its own CSD

representation. The table for the DM technique is call dmtable.

The next data object is number of nonzero bits in each stage (nyer_row). The

calculation of this data object and location of the nonzero bit (coeff>ec) data object are

found under the same routine. By using the information from the previous small routine,

which is dmtable, the location and number of nonzero bits in each stage can be found.

We still need to preserve the maximum bits in each coefficient if the cascading is

more than one stage in each coefficient. The following description shows the way to

adjust the nonzero bit location. First, we need to find the coefficient with more than one

cascading stage. In those coefficients with more than one stage, the routine will check the

maximum number of bits required for each stage. By deducting the maximum number of

bits required for each stage from the maximum number of bits required for each

coefficient, the left over bits will be used in last stage of the coefficient. The following is

one of the examples to further illustrate the adjustment of nonzero bits location.

Assume the value of filter coefficient as 0.34375. We can use (2*11)/i) to get

0.34375. The representation for each number 2 and 11 is 0000010 (which is 2/26
) and

0010-10- 1 (which is 11/26
) respectively. However, if we multiply (2/26

) and (11/26
), we

get 0.00537109375, which is not the same as the actual number (0.34375) that we want.

Therefore, we need to do some adjustments to get the correct CSD representation. First

the number 2 will be divided by power of 2, which is one bit. In this case, first stage

39

-

number 2 will be straight wiring. The left over bits will be 2-5 as the first stage took one

bit away. Therefore, the second stage, which is the last stage in this example, number 11

will be divided by 25
, By converting the results back to CSD representation, we can get

the correct representations for (2*11)/26, which are 1000000 and 010-10-10. If the

cascading stage is more than two, the adjustment of bits will keep on going until the last

stage.

After the adjustment, we can continue to find the rest of the data objects using the

similar technique discussed in the previous section. However, the maximum number of

shift (zero_con) has to count is the maximum shift of each coefficient after adjustment of

bits. The maximum size of adder (bshift) and number of extended zeros required for filter

output which is less than 20 bits (yex), share structure data object (NN) and odd or even

order data obj ect (ODD) will be using the same computation described in the previous

section.

40

II)

.r)....

.)

.).-

:;:.,

-

Chapter 5

5. VHDL coding for FIR filter design

5.1 Introduction

This chapter shows how to convert the optimize filter parameters found in

Leong's GUI program [2] into hardware description coding that can be realized for

Xilinx FPGA chips. The basic hardware components for designing a FIR filter are

adders/subtractor and delay elements. As mentioned in Chapter 2, using shift and

add/subtract arithmetic operation can do the multiplying of the filter coefficient. The

delay elements are simply D flip-flop with asynchronous reset. As discussed in Chapter

2, we are using transposed direct fonn for the FIR filter design to get a better sampling

rate.

The implementation of FIR filter in th~s thesis is done using three VHDL files that

describe the behavior of the filter. These three files are params. vhd, filt. vhd and rdjl. vhd.

The params. vhd (Appendix B-1) VHDL file is the lower level of the overall design

followed by filt. vhd and the top level is rdfl. vhd. Figure 5.1 describes the top-to-bottom

level of the VHDL file for FIR filter design targeted for Xilinx FPGAs.

The params.vhd (Appendix B-1) is the main file that describes the VHDL

representation of the CSD/DM coefficients table, where the FIR filter parameters are

translated into constant declaration. The filt. vhd describes the behavior of the CSD/DM

FIR filter, where several functions are created for manipulation of the FIR filter behavior.

41

11;;'-,
u
5

-)"
::.

;:
3
J.­ ,

=

The top level of the FIR filter files is rdjl. vhd and this file calls function and constant

from both params. vhd (Appendix B-1) and flit. vhd (Appendix B-2) files. The way to

create params. vhd (Appendix B-1) file is already discussed in Chapter 4. In this chapter.

we will only discuss how to use these three files to describe the behavior of the FIR filter.

Package file defining function of filter structure

~--:c--;--Top level of digital FIR filter

params.vhd
Package file declaring filter parameters constant

Figure 5.1 Top-to-bottom levels of VHDL files

VHDL is chosen as the hardware description language for coding because VHDL

is considered as one of the industry standards. VHOL was first introduced in 1980 by the

USA department of Defense (DOD) for having a set of self-documenting circuit designs,

which follows a common methodology, and these designs can be reusable with new

technologies [20]. Discussion on how these VHOL files were created for implementation

purposes is included in this chapter.

There are several advantages of using HDL coding. One of the advantages for

using HOL coding is that the users do not need to enter the gate-level description of the

design manually. Users can use the available standard library cell or custom library cell

defined by themselves to implement their design in HDL multiple times without going

through the necessity of entering the gate-level description each time. This is the reason

why most industries try to use HOL coding instead of gate-level description for their

42

design. The second advantage of using HDL coding is that the user can view the design

at a higher-level structure to reduce the complexity of the design. This will improve the

design quality. The user just needs to deal with his design ideal instead of considering the

gate-level components. However, certain circuit designs may need custom library cells to

meet the specifications and most companies have their own custom library cells provided

for their designers. In addition, HDL is technology independent so users can target their

HDL files in different technologies that provide more freedom in circuit designing. The

following sections describe basic HDL terminology and the behavior coding of the filter.

5.2 Basic HDL Terminology

The most common way of doing design modeling of a digital system in HDL

coding is to make the design into abstract blocks or so called components. Each

component is instantiate as a design entity, where an entity is defined as a hardware

abstraction of a system. Usually each component is separated into small modules and the

whole system is combined together by using design hierarchy and forms a top-level

entity. VHDL entity has five different types of design units. There are entity declaration,

architecture body, package declaration, package body and configuration declaration.

Entity declaration defines the external port infonnation of the component. For example,

the input and output signal names of the component. The architecture body defines the

internal function of the design. One can define several architecture bodies in one design

entity where each architectures has different interconnected components, or a different set

of concurrent or sequential statements to describe the design. Package declaration is

defined as a common declaration that can be globally used by different design units. For

example, constant declaration, subprogram and data types can be included in package

43

;)

5
3
;)

'2
)...
)

r
5,
}

;:.
;:,
)

J-

declaration. Package body is defined as the contents of the subprogram that was declared

in package declaration. Configuration declaration is the main design unit that is used to

bind all associate architecture bodies together [19][20]. In this thesis, the behavior coding

of the FIR. filter is all based on the basic HDL terminology in designing.

5.3 Bebavior coding of FIR filter

5.3.1 Coding on tbe filter parameters declaration

The FIR filter parameters declaration (params. vhd) is generated from the GUI

program as discussed in Chapter 4. In this section, we will discuss the functionality of

each parameter's declaration. Appendix B-1 is a sample of a FIR. filter. As mentioned in

Chapter 4, there are ten constant class data objects used for hardware implementation in

this thesis.

Data object N (filter order) is used to determine the maximum number of filter

coefficients, which is used as a parameter for the size of the array for storing the results

of input multiplied by each filter coefficient. Data object b is used to assign the number

of bits required for the input signal. Data object b_stage (number of cascading stage) is

used as data for controlling how many times looping of stage is necessary in each

coefficient. Data object nyer_row (number of nonzero bits in each stage) and data object

coeff_vec (location of nonzero bits) are used to perform the shift and add/subtract

arithmetic operations in the filter multiplier. Data object zero_con (maximum number of

shift for the whole filter) is used as the constant number for the number of zeros

necessary for concatenation. Data object bshift (sum of maximum number of shift with

input bits) is used to assign the number of bits required for the filter in order to preserve

44

s:
.)
:r
)

3
)

'}
)...
)-r..

r,
)

I

all the data. Data object yex is used for truncating the signal so that we can use the Codec

on Xilinx board for implementation purposes. The last two data objects NN and ODD are

used for sharing the multipliers in the FIR filter. The sharing of multiplier is achievable

as the FIR filter has a symmetric characteristic.

5.3.2 Coding on the filter behavior function file

The filter behavior function file (filt. vhd) is used to describe the general structure

of a FIR filter. Filt. vhd file acts as a package file for top-level entity rdfl. vhd, where

rdfl· vhd describes the overall implementation of FIR filter. Appendix B-2 includes the

VHDL coding of the file filt. vhd. In this section, a detailed description of each function

used to describe the filter structure in jilt. vhd is included. There are three functions used

in file filt. vhd for generating the FIR filter structure. These three functions are snd_shift,

zero_vee and xstage. The snd_shift function is used to perform the shi ft operation of the

filter. This function takes eoeff_vee and the filter input signal as input and performs the

shifting and returns the result of this function with the signal that already shifts based on

the number of shifts indicated in eoeff_vee. The second function zero_vee is used to

generate zero vectors of the maximum bit numbers. This function is required to

accommodate FIR filter with zero coefficients. This function zero_vee takes the number

of maximum size of adder (bshift) as input and returns a zero vector with the size number

indicated in bshift.

The last function xstage is used to perform the overall shift and add/subtract

arithmetic operation of each filter coefficients and return the result in an array. This array

has the row size of NN+ 1 and column size of bshift. Input of xstage is the input of filter

signal concatenates with zero. The number of zero concatenates is the number of

45

:;,.
)

~
)

'1
)..
)-r:.
)

•)
;:.
r,
)

I

zero_con. Zero_con set up in such a way that the shifting operation will not shift any

input signal out as the shifting operation and only shifts the zero signals concatenate at

the end ofthe signal. Figure 5.2 shows how xstage can perfonn the multiplier function of

the FIR filter by using shift and add arithmetic operations.

Xstage takes the FIR filter input signal as input and concatenate zero_con bits of zero.

This signal is called XS, where the size of signal is the size of input bits plus the size of

the maximum shift needed for the FIR filter. The maximum shift is taken from the results

of Leong's GUI program [2]. Xstage will perform the shift and add operation for every

coefficient in the FIR filter. Therefore, the xstage function will loop NN. In the loop, the

program will check to see if b_stage is equal to zero; where b_stage is equal to zero

indicates that the filter coefficient is zero. In this case, zero vectors are generated using

zero_vee function. On the other hand, if the b_stage is greater than zero, the program will

go into a loop where this loop will loop b_stage times.

At each stage, there is an internal loop to perform the shift and add operation. The

number of loops for this internal loop is based on the number of nyer_row. In this

internal loop, the program will first check to see if the eoeff_vee is equal to zero. This

condition is set to fit the DM technique, as some of the DM technique coefficients may

need straight wiring from input instead of shifting. In this case, if coeff_vec is equal to

zero and the b_stage is equal to zero, XSl (internal signal for each shift) is equal to X

(input signal), else XSI equals to XS (internal signal for each stage). On the other hand, if

the eoe.ff>ee is not equal to zero, it will take the positive value of eoeff_vee and call the

function snd_shift for shifting. After the program runs shifting or straight wiring

routines, both routines go to another condition for checking. This condition is to check

46

)'
::r­
)

)
)

?
)

•)

i,
l
to"....
;:
I
)

I

the sign of the coeff_vec. By checking the sign of coeff_vec, we can know whether we are

doing an add/subtract operation. XS_int is the internal signal for each cascading stage.

After processing all the stages in each coefficient, the data is stored in an array for top-

level entity usage.

I XS=Input signal x concatenate with zero I

NO

NO

YES

Store data XS

XS = XS_int, XS_int =zero vector

YES

YES

YES
...

YES

-),..
)

!
)

?
~..
•.....
~
:.

I,
)

;:

NO YES
r
I
I
I
~

Figure 5.2 Flow chart for FIR filter coefficient multiplier

47

5.3.3 Coding on the top level of FIR filter

The top level of the entire structure is called rdjl. vhd. Appendix B-3 shows the

VHDL coding of rdjl.vhd. In this top-level structure, params.vhd (Appendix B-1) and

filt. vhd (Appendix B-2) are used as the package file for FIR filter design. The top-level

ports are as described in Figure 5.3. The input X is the input of the filter, the size of

which depends on the input bin from Leong's ~UI program [2]. The input clock is the

sampling clock for the FIR filter, which in this thesis is set at approximately 48KHz to

match the sampling frequency of the Codec on the XSV800 board. The input RESET is

used to trigger the asynchronous reset of the 0 flip-flops. The output, Ycodec, is set to 20

bit widths as the Codec on the XSV800 board can only handle 20 bits of DAC output.

lnput X

Clock

RESET

......,..
DIGITAL

~

FIR 11'"--..
.... FILTER
-.

Figure 5.3 Top level of FIR filter

Output Y (Ycodec)

"'"r,..
)

J
),..
I
to
I..
j
:.

•I
I
;:

;:
I
I

I
~

Figure 5.4 shows the overall flow of top-level of FIR filter design. The

result_final signal is the input of the fi Iter X pads with zero_con number of zeros. As

discussed in section 5.3.2, the padding of zero is to assure that there is no signal lost after

the shift and add! subtract arithmetic operation. The rdjl. vhd will then call xstage function

in filt. vhd by taking resultJinal as input to find the value after multiplying each filter

coefficient. The result is then stored in XS where XS is an array with row size of NN+ 1

and column size of bshift. The next step is to generate the overall structure of the FIR

filter.

48

Input X, RESET, eLK

Result_final =Pad zero for input X

XS =xstage (Result_final), C(O)=XS(O), A(O)=C(O), g=1, j=1

C(k)= XS(g),B(k-1)=D(k-l)+c(k),A(k)=B(k-l)

NO

j=j+l
g=g-l

NO

Ycodec= Y&yout(O to yex-l)

K=N

YES

YES

j=j+l
g=g+l

j=j+l
g=g

NO

YES

Ycodec = Y(bshift-l downto bshift -1)

­,
)

r
)

J
J

?
I..
I

..
~
;.

I
I
I

;.:

,:
I
I

I
•-

Figure 5.4 Flow chart for top-level of F1R filter

49

Before going into the overall structure of the FIR. filter, it is important to know

that we can save more hardware by sharing the multipliers of the filter. Due to the

symmetrical characteristic of FIR filter, we can save half of the hardware requirements by

sharing the multiplier circuit. Figure 5.5 describes a fifth order FIR filter in transpose

direct form, where the filter coefficient number is even. Therefore, we can share the

multiplier structure as described in Figure 5.5. In this case, the filter order is an odd

number where NN is equal to two and ODD is equal to one based on the equation 4.1

discussed in Chapter 4.

For an even number order filter, we can use the structure described in Figure 5.6,

which is an example of a sixth order FIR filter. The b3 multiplier is a stand-alone filter

coefficient without sharing. In this case, NN is equal to three and ODD equal to zero

based on the equation 4.2 discussed in Chapter 4.

­.-»
r
»
f
•
:>..
I..
I

Output Y

Figure 5.5 Structure of transpose direct form FIR filter with odd number order

50

-

"'"'"

Input X

Output Y

bO

+ ~ Z-I 1.- +

Figure 5.6 Structure of transpose direct form FIR filter with even number order

Although we can save half of the hardware by sharing the multiplier circuit, the

structural adders and delays are still required. Therefore, we need to loop for N+ i times

in generating the structural adders and delays. Figure 5.7 describes a basic structure of a

first order FIR filter. From this figure, the first output signal XS(O) after multiplying with

the first coefficient is connected with internal signal e(O) and this signal is then

connected to A(O). Then the behavior code will go into a loop of N times. [n the loop, the

delay element (zol) will pass zero signals to the n(O) internal signal if the RESET is high.

On the other hand, D(O) internal signal will pass anything from the previous A(O) internal

signal. Internal signal C(l) will be connected to XS(l), which is the output of the second

multiplier. This signal is then added with the n(O) signal to produce B(O) internal signal.

The condition for checking variable j with NN is to determine when to share the filter

multiplier circuit. After looping N times, the output of internal signal B(N-i) will be the

final output (y) of the overall filter. In Figure 5.4, there is one more condition of checking

the constant data object bshift because the Codec can only hold 20 bits of output signal.

51

...
»,.
•I
I

)..

...

­;

Therefore, if the output Y is more than 20 bits, we will have to truncate the output signal

to 20 bits to accommodate the Codec on XSV800 board.

Input X

result final result final

A(I)

Figure 5.7 Basic structure of l't order FIR filter in transpose direct form

52

)­·-•,..
•t
)-

...

f""

Chapter 6

6. Implementation and comparison

6.1 Introduction

This chapter shows that Leong's GUT program [2] using CSD representation and

DM technique is valid in the hardware sense. Therefore, an example of the hardware

implementation in Xilinx FPGAs using the CSD representation and the DM technique is

included for verification purposes.

A Low-pass filter example is included in section 6.2. This section discusses the

simulation in Xilinx Logic simulator and actual implementation in Xilinx FPGAs. Data

are taken from the actual hardware to compare with the original specification. The

hardware implementation costs for both the CSD representation and the DM technique

are included for comparison purposes. The hardware cost is the number of slices required

in Xilinx FPGAs for implementing the FIR filter. This cost includes the hardware

required for the filter multiplier circuits, structural adder /subtractor and delay elements.

In section 6.3, the comparison of hardware costs for the CSD representation and

the DM technique are included. Four different types of FIR filter with specific filter

specifications are used for this comparison purpose. Two different Low-pass filter

specifications are tested for comparison of the standard hardware costs calculated In

Leong's GUT program [2] with the actual hardware costs.

53

)......
I,..
I
I
I

)

:

:

6.2 Implementation

The implementation is done on the Xess XSV800 board, where the main FPGA

used in Xess XSV800 board is Virtex XCV800HQ240-4. The actual implementation of

hardware is done to verify the filter by taking data from the output of the Codec on Xess

XSV800 board.

The following example is used to further illustrate the implementation of the FIR

filter in hardware.

6.2.1 FIR filter implementation example

This section uses a Low-pass FIR filter as an example for illustration. This

example includes simulation results obtained from Xilinx Logic simulator, and actual

experiment data from XSV800 board using the CSD representation. Experiment data are

taken for comparison with the original specification. The specification of the filter is as

follow:

Sampling frequency = 48000KHz
Passband frequency = 11 OOOKHz
Stopband frequency = 13000KHz
Passband ripple = -3dB
Stopband ripple = -30dB

By using the CSD representation option from Leong's GUI program [2], we get

the following filter coefficients.

......
1,..

)

:

.-

b = [-0.015625 -0.015625
-0.015625 0.0078125
0.0078125 0.1757810625

-0.0507810625 0
0.0039060625 0.0234375

0.0078125 0.0234375
0.0351560625 0
0.265625 0.1757810625
0.0351560625 0.0078125
0.0078125 -0.015625

0.003906025
-0.0507810625
0.0078125
-0.015625
-0.015625]

After going through optimization algorithm in Leong's GUI program [2], the filter

order is twenty-four and input bits for the filter is nine. The size of the filter output signal

54

is eighteen bits. Note that we need to feed the output of the filter to the Codec DAC on

XSV800 board. Therefore, the output of the filter is padded with two extra zeros to get

the 20-bit size. Figure 6.1 is the overall RTL view of the hardware implementation of the

Low-pass filter. This RTL view includes the FIR filter circuit, Codec circuit and a control

circuit for Codec. This RTL view is captured from the synthesizing software,

-
elk

codec_intfc
laOc_out_rdy I--
raOC_outJdy r-

control '--- el< adc <MlfTUll adc CMlmln ::>

- a
resel IdaCjnJdy r--

'--- b
r.; l'"saI rmcjnJdy '--

'-------- e
r I'd dac_undemJn dac lrodIm>1 >

L....-.- d w wr mel<

~- sOOul scI< scI<

,.llW- Idacjr(19:0]
Irek

~sdn
controll [I~ rdacjn['9:°1 laOc_outI19 OJ .J1j;!!

~ raOC_outI19:0J ...J1.i

codecin

rdfl
'rasel FESET ,.:11'-- elK Ycodec[19:0]

(.wi- X(O·SI
I

Filler

Figure 6.1 Overall structure of the hardware implementation

6.2.2 Simulation result

By using Xilinx Logic simulator, we can verify the FIR filter design. The

simulation is verified by taking the filter circuit instead of the overall circuit. After

implementation using Xilinx Design Manager, a time_sirn.edn file is created. This file

contains the simulation information for the filter design. This file is loaded into Xilinx

Logic simulator for simulation purposes. The filter design is verified by checking the

impulse response of the filter. Figure 6.2 shows the magnitude plot of the Low-pass filter.

The following steps are used to get this magnitude response plot. First, we take the

55

)..

)

:

:

en -30
:E-
O)

~ -40
'c
Ol

'":E -50

impulse response of the filter using Xilinx Logic Simulator. Then we take two hundred

points Fast Founes Transfonn of this response. Lastly, we take the results and convert

them into magnitude in decibels. Figure 6.2 only takes 100 points of the results where the

other half will be a duplicate image of the first half of the frequency response. As we can

see, the simulation result matches the original specification. Ihis again proved that the

design of this filter works.

Magnitude plot

or-~~--.;;;::~~~-r======::::::::;:;!~:::;:=:;:::::::=;-]
- oriQinal Specification

, , • Simulation Result
-10 ------------r---------·--~-----------: ------ .. -----:

, , ,
, , .

-20 ------------~------------~-----------~------------~-----------
, , ,· .· ." .

::::::::::::>::::::::::::'::::::::~:::~~::~~::::::~::~
. , .

·60 - - - - - - -. - - - - c------------c---- --------:- -- - --------:- -- - ---- - -· ,· ,, ,, ,
-70 - - - - - - - - - - - - ~ - - - - - - - - - - - - ~ - - - - - - - - - - - -~ - - - - - - - - - - - - ~ - - - _. - - - --

I • • I. .. ., ,
-80O~----::':20:-----4L..O----6::-'-:O-------::-8L..O--~-100

Index

Figure 6.2 Comparison of original specification and simulation result

6.2.3 Experimental result

Figure 6.3 shows how the testing of the design takes place. The main equipment

used for testing is Function Generator (HP 3314A), Spectrum Analyzer (HP 3585A),

Digital Oscilloscope (IDS 3052) and Xess XSV800 prototyping board. The Function

Generator will act as the input source for the filter. The output signal from Function

Generator is fed to the Digital Oscilloscope so that we can obtain the input magnitude of

the source signal. The output signal from the Function Generator is also fed to the Codec

on the XSV800 board. The Codec converts the analog signal to digital signal. The

56

)

)

:

digitized signal from the Codec is fed to the FIR. filter, which is already programmed in

the FPGA. The process of filtering the signal takes place in the FPGA. The processed

digital signal from the FPGA is fed to the Codec, which converts the digital signal back

to the analog signal. This signal is then sent through the stereo jack on XSV 800 board to

the Spectrum Analyzer.

• Input stereo jack

Function Generator XSV 800 board o Output stereo jack

HP 3314A I FPGA II
I

V800H0240-4

I

I
Codec

I
Spectrum Analyzer

'If
AKM4S20a HP 3585A

00Digital oscilloscope ~~

TDS 3052

Figure 6.3 Interface between testing equipment and Xess XSV800 board

The way we test the experimental result of the FIR filter on the board is by taking

the output of the Codec to the Spectrum Analyzer and the input source to the Digital

Oscilloscope to measure the input source magnitude. In this experiment, 100 points of

data are taken for verification purposes from DC to 24KHz. This can be achieved by

changing the frequency of Function Generator. In this case, the step size for each data

point is 240Hz to get 100 points between DC to 24KHz. The magnitude plot on Figure

6.4 shows the frequency response of the implementation results. As we can see, the

experiment met the original specifications except that some of the data points are slightly

57

)

off in the Stopband region. This may be due to inaccuracy of readings from the spectrum

analyzer, as the magnitude of the Stopband region is too small to measure.

Magnitude Plot

-20 - r - - - - - - - - - - -. --

)

------------ ------··----r--------- -

, .------------ .. ------------ .. ------------
'".: f:":

-60 ------------~------------~------------}-----------}-------*. -
" ,
" ,
" ,,. .

-70 -·----------~-----·------~------------r------------~--------

ED -30
~
Q)

~ -40
E
Ol
ro
L -50

o r--~~-""""::::;:;Jl"!""""""",------;:=:::::::;:::;=::=.::::!===::;;=:~=il
- Original Specification

-10 ~ ~ ______ _ .- ~. _- _!~p~~'!Ien~~i0.n_~~~ _
· , ,· ,· ,

-80
o 20 40 60 80 100

Index

Figure 6.4 Comparison of Implementation data with original specification
..

6.2.4 Hardware costs

The hardware costs are the main concern of this thesis. The CSD representation

and the DM technique are introduced for saving hardware in the FIR filter. The hardware

costs saving occur mainly on the hardware required for filter multiplier. As discussed in

Chapter 2, we know that the DM technique will have the same or better hardware saving

in filter multiplier compared to the CSD representation. However, the structural

adder/subtractor and delay element will have the same hardware requirement for both the

CSD representation and the DM technique.

In the previous example, the CSD representation and the OM technique have the

following costs for hardware shown in Table 6.1. The hardware costs include the filter

multiplier, structural adder/ subtractor and delay elements. The first part of Table 6.1

shows the overall costs of the fi Iter using the actual bit size of the filter output required

58

instead of 20-bit output. The second part of Table 6.1 shows the overall costs of filter

with the Codec circuit. As we can see the "number of flip flops", which acts as the delay

elements, is the same for both the CSD representation and the OM technique as both

techniques have the same filter order. The number of delay elements required in

transpose direct form structure is equal to the number of filter order. However, the size of

the delay element for each stage is different. The size of delay element depends on the bit

size required for each stage in the filter without truncation. Therefore, the whole filter

may have a different size of delay element at each stage. The "number of slices" in Table

6.1 indicates the total number of slices needed for the overall hardware implementation.

The "number of 4 input LUTs" in Table 6.1 indicates the number of logic cells needed

for the filter implementation. Although each slice has 2 LUTs, the "number of slices"

may not be half of the "number of 4 input LUTs" because more LUTs may be needed for

getting better routing. In the summary page of Leong's GUT program [2], the number of

shared adders for this filter is 33 and 32 adders respectively for the CSD representation

and the DM technique. By looking at the first part of Table 6.1, we can see from the

"number of slices" required for filter implementation, the OM technique has a 5.84% of

savings over the CSD representation.

Technique Number of Number of Total number of
Slices flip nops 4 Input LUTs

Without CSD 274 387 448
Codec
Circuit DM 258 387 423

With Codec CSD 347 490 532
Circuit

OM 329 490 506

Table 6.1 Hardware costs for an example of Low-pass filter

59

:~ I

I~

6.3 Results and Comparisons

Table 6.2 presents the specifications of four FIR filters for Table 6.3. Table 6.3

shows a list of hardware costs comparison for four basic types of FIR filters, namely

Low-pass, High-pass, Band-pass and Band-reject FIR filters. From this table, the savings

of the DM technique compared to the CSD representation ranges from 1.79% to 5.84%

by comparing the "number of slices" required. The number of "average adder size" is

calculated by dividing the "number of 4 input LUTs" by the number of "shared adders".

This average size of adders is the actual size for each adder required for each stage in the

filter as in some stage in the filter may not need larger bit sizes to preserve the signals'

infonnation. We can see from Table 6.3 that the average adder size is smaller in the DM

technique compared to the CSD representation. The average saving of adder size ranges

from 0.08% to 2.65% compared to the DM technique from the CSD representation. The

"average delay size" is calculated by taking the "number of flip flops" divided by the

number of delays required for the filter. The number of delays is equal to the number of

the filter order. The number of "average delay size" is smaller that the output bits of the

filter, which indicates that in some filter stages the actual delay size required is smaller

than the filter output size and sti IJ preserves the signal information.

Low-pass filter: High-pass filter: Band-pass filter: Band-reject filter:
Spec: Spec: Spec: Spec:
Fsamp=48KHz Fsamp=48KHz Fsamp=48KHz Fsamp=48KHz
Fp=llKHz Fp=IlKHz Fsl=5KHz FsI=9KHz
Fs=I3KHz Fs=12KHz Fpl=7KHz Fpl-9.5KHz
Rp~3dB Rp~ldB Fp2=9KHz Fp2=IOKHz
Rs~30dB Rs=-40dB Fs2=IIKHz Fs2=J O.5KHz
Input bits=9 Input bils=J3 Rp=-3dB Rp\=Rfl2=-JdB
Output bit =18 Outflut bit =26 Rsl =Rs2=-4@dB Rsl=-40dB
Filter order=24 Filler order=78 Influt bits=R Input bils=9

Output bit =19 Output bit =18
Filler order=31 Filler order=\ 16

Table 6.2 Specification for four different types of FIR filter

60

)

-

Filter type Technique Total Sbared Number or Number Total Ave. Ave.
Adder Adde.rs Slices orOlp numberor4 delay Adder

naps Input LUTs size size
Low-pass eso 45 33 274 387 448 16.13 13.58

filter OM 43 32 258 387 423 16.13 13.22
High-pass eso 159 118 1284 1921 2265 24.63 19.19

filter I

OM 157 117 1261 1921 2225 24.63 19.02
Band-pass eso 67 41 371 538 527 17.36 12.85

filter OM 63 39 363 538 501 17.36 12.84
Band-reject eso 173 110 1080 1923 1387 16.58 12.61 I

filter I

OM 172 109 1056 1923 1356 16.58 12.44

Table 6.3 Hardware costs in Xilinx FPGA for four different types of FIR filter

Two different Low-pass filter specifications are tested for comparison of the

standard hardware costs calculated in Leong's GUI program [2] with the actual hardware

costs shown in Table 6.4. The hardware costs calculated in Leong's GUI program [2] are

962 and 840 respectively before the DM technique optimization and after the DM

techillque optimization in first specification. There is a 12.68% of hardware saving in this

specification by using DM technique. In the second specification, the hardware costs

calcul.ated in Leong's GUI program [2] are 735 and 342 respectively before the DM

technique optimization and after the DM technique optimization. There is 53.47% of

hardware saving in this specification. The actual hardware costs are calculated using the

"number of slices" needed for implementation. By comparing the "number of slices"

before optimization and after optimization, there are 17.35% and 54.97% of hardware

savings respectively for the specifications in Table 6.4. Therefore, the VHDL interface

itself was responsible for 1.5% to 4.67% additional savings beyond that provided by the

Leong's GUI program [2].

61

Before OM tecbnique optimintion After DM tecbnique optimization

Specification
No. of No.ofOip Total no. Hardware No. of No.ofOip Total no. Hardware
slices flops of" Input costs slices flops of 4 Input C.OSlS

LUTs LUTs

fsamp=20KHz 219 255 373 962 181 257 I 300 840
fp=5KHz
fs=7KHz
Rp=-l.5dB
Rs=-40dB
fsamp=20KHz 191 151 334

,
735 86 108 137 342

fp=5KHz
fs=8KHz
Rp=-3dB
Rs=-40dB

Table 6.4 Comparison of hardware costs

62

Chapter 7

7. Conclusions and Future Work

7.1 Conclusions

The implementation example in Chapter 6 illustrates that we can use the CSD

representation and the DM technique to implement a FIR filter. The implementation

results match the specification of the user. This thesis also included the comparison of

hardware costs by using the CSD representation and the DM technique in FIR filter

design for four different basic types of FIR filters with specific filter specification. The

comparison showed that the savings of hardware range from 1.79% to 5.84% for these

four FIR filters. Besides that, two Low-pass filter examples in Chapter 6 showed that the

VHDL interface itself is responsible for an additional hardware savings of 1.5% to 4.67%

by using the OM technique. Due to no limitation of user specification in Leong's GU[

program [2], there is no comparison included in this thesis of overall hardware savings

for all FIR filters. The behavioral VHDL coding for FIR filter in Chapter 5 is generally

written so that these codes can be used for implementation in other technologies. In

conclusion, the DM technique achieves a better hardware savings than the CSD

representation. However, as mentioned before, speed of filter in the DM technique may

not perform as well as the CSD representation.

63

7.2 Future Work

The implementations m this thesis are mainly targeted for Xilinx Virtex

XCV800HQ240-4 FPGAs. More technologies such as MOSIS or SOl can be considered

in future work. Besides that, the VHDL behavioral coding in this thesis generated the

hardware representation for half of the filter coefficients and shared the other half of the

coefficients due to the symmetrical characteristic of FIR filter. However, there is no

sharing of hardware in between the filter coefficient that may have the similar number of

shifts. For example, the coefficients 0.65625 can share its hardware structure with the

coefficient 0.625, as coefficient 0.65625 is the sum of 2- 1
, T 3 and 2-5 and coefficient

0.625 is just the sum of 2-1 and 2-3
• We can use coefficient 0.625 as the main structure

and add a T 5 to get coefficient 0.65625. Figure 7.1 illustrates this example in hardware

view. In this case, the actual hardware required for implementing these two filter

coefficients is only two adders instead of three adders. Therefore, more sharing of

hardware between the filter coefficients can be achieved if the fi Iter has the characteristic

described above.

Input X

0.625

O.625X
O.65625X

Figure 7.1 Example of sharing filter coefficient

Transpose direct form filter structure is used as the main structure of the FIR filter

in this thesis. However, there may be other structures that may have more hardware

64

savmgs. Future work may consider different structures that have more saVings m

implementing the FIR filter. We did not take the Signal to Noise ratio (SNR) option in

Leong's GUI program [2] into consideration. Future work may consider implementing a

different VHDL interface, which has SNR ability built in.

65

Bibliography

[1] Dannielle L Husinga, " Design of Optimized Filters Using CSD Coefficient

Representation", Master's Thesis, ECE Dept, UC Davis, California, Mar. 1996.

[2] Wen Fung Leong, "Optimizing FIR filters coefficients using CSD representation and

DM technique", Master's Thesis, ECEN Dept, Oklahoma State University,

Oklahoma, May 2002.

[3] Herman 1. Blinchikoff & Anotol 1. Zverev, "Filter m the time and frequency

domains", Robert E. Krieger Pulishing Company, 1987.

[4] Alan V. Oppenheim, Ronald W. Schafer, "Discrete-time signal processing", Prentice

Hall,1999.

[5] Litwin. L. "FIR and IIR digital filter," IEEE Potential, Volume 19, Issue 4,pp. 28-31,

Oct.- Nov. 2000.

[6] Dempster, A.G.; Macleod, M.D, "Use of minimum-adder multiplier blocks in FIR

digital filters", Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on Circuit and System, Vo1.42, Issue: 9, pp.569 -577, Sept., 1995.

[7] Dempster, A.G.; Macleod, MD., "Comments on Minimum number of adders for

implementing a multiplier and its application to the design of multiplierless digital

filters", Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on Circuit and System, Vol.45 Issue: 2, pp.242 -243, Feb. 1998.

66

[8] Dempster, A.G.; Macleod, M.D., "Comparison of fixed-point FIR digital filter design

techniques", Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on Circuit and System, Vol.44 Issue: 7, pp.591-593, July 1997.

[9] Soderstrand, M.A.; Johnson, L.G.; Arichanthiran, H.; Hoque, M.D.; Elangovan, R.,

"Reducing hardware requirement in FIR filter design", Acoustics, Speech, and Signal

Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on,

Vo1.6, pp.3275 -3278, 2000.

[10] Kah-Howe Tan; Wen Fung Leong; Kadam, S., Soderstrand, M.A.; Johnson, L.G.,

"Public-domain MATLAB program to generate highly optimized VHDL for FPGA

implementation", Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE

International Symposium on Circuit and System, Vol. 4, 2001 pp.514 -517, May,

2001.

[11] FPGA general information, http://www.andraka.com/whatisan.htm

[12] FPGA general information, http://www.vcc.com/fpga.html

[13] John V. Oldfield; Richard C. Dorf, "Field-Programmable Gate Arrays: Configurable

Logic for rapid prototyping and implementation of digital systems", John Wiley &

Sons, Inc, 1995.

[14] Xilinx official web page, http://xilinx.com

[15] Xilinx product data sheets, http://xilinx.com/partinfo/ds003.htm

[16] Xess Corp. XSV800 prototyping board manual, http://www.xess.comlmanuals/xsv­

manual-v 1 l.pdf

[17] XSV tools manual, http://www.xess.com/manuals/xstools-v4 O.pdf

67

[18] Muthya S. Patharlanka, "Automatic Generation ofVHDL for Optimized Filters

Using CSD", Master's Thesis, ECE Dept, UC Davis, 1996.

[19] Jayaram Bhasker, "A VHDL Primer," Englewood Cliff, New Jersey, Prentice-Hall,

1992.

[20] Douglas J. Smith, "HDL chip design: A Practical guide for designing, synthesizing

and simulating ASICs and FPGAs using VHDL or verilog", Madison, Doone

Publications, 2000.

68

Appendix A

% This m file is used to generate a parameter package file for FIR filter in VHDL
%--
%Check if user choose for CSO representation or OM technique
if drnval -=2
%Following lines created the params.vhd for CSO technique

%Created stage parameter for CSO representation. In this case, bstage=O if filter
coeff.=O else bstage=1
for i=1:Nmin+1

if QC(i)==o
bstage{i)=O;

else
bat.age (il =1;

end
end

%Print the following lines onto the params.vhd file
fid=fopen('params.vhd', 'w');
fprintf(fid, 'Library IEEE;\n');
fprintf(fid, 'use IEEE.std logic 1164.all;\n');
fprintf(fid, 'use IEEE.std-logic-unsigned.all;\n\n');
fprintf(fid, 'PACKAGE para~s 15\n\n');
fprintf(fid, 'TYPE int arrl IS ARRAY(natural range <» OF INTEGER;\n');
fprintf(fid, 'TYPE int-arr2 IS ARRAY (natural range <» OF INTEGER;\n');
fprintf(fid, 'TYPE int=arr3 IS ARRAY (natural range <» OF INTEGER;\n\n'l;
fprintf(fid, 'CONSTANT N: INTEGER:= %2d;\n',Nmin);
fprintf(fid, 'CONSTANT b: INTEGER:=%2d;\n',bin);

%print b_stage onto the params.vhd file
fprintf(fid, 'CONSTANT b stage: int arr1(O to %3d) :=(' ,Nmin);
for i=1:Nmin+1 - -

if i<=Nmin
fprintf (tid, '%3d. ' ,bstage (i)) ;

else
fprintf(fid,' %3d' ,batage(i»;

end
end
fprintf(fid, ') ;\n');

"Find the number' of nonzero bit in each coefficient and locate the nonzero bit in each
coeffi ient
[M,NJ=size(newtable) ;

g=1; t=1;
for i=1:M

if bstage(i)==O

else
numrow(t) =0;

for j=l:bmin
if newtable(i,j)==-l

numrow(t)=numrow(t) +1;
posi (g) =- (j -1) ;
g=g+l;

elseif newtable(i,j)==1
numrow(t)=numrow(t) +1;
posi (g) = (j -1) ;
g=g+1;

end
end

t=t+1;
end

end

%print n-per_row onto the params.vhd file
fprintf(fid,'CONSTANT n_per_row: int_arr2(O to %3d):= (',t-2);
for i=l:t-l;

if i<t-1
fprintf(fid, '%3d, ',numrow(i»);

69

else
fprintf (fid, '%3d' ,numrow(i);

end
end
fprintf(fid, ');\n');

%print coeff vee onto the params.vhd file
fprintf(fid,7CONSTANT coeff_vec: int_arr3(O to %3d):=(',g-2);
for i=l:g-1;

if i<g-1
fprintf(fid, '%3d.' ,posi(i»;

else
fprintf(fid, '%3d',posi(i»;

end
end
fprintf (fid, ') ; \n') ;

%Check max number of shift needed in the whole filter
s=1; maxb=O;
for i=l:t-l

if numrow(i)-=O
for j=l:numrow(i)

maxbb=abs(posi(s)) ;
s=s+1;

if maxbb :> =maxb
maxb=maxbb;

end
end

end
end

%print zero con,bshift onto the params.~ld file
fprintf(fid-;-'CONSTANT zero con: INTEGER:=%2d;\n' ,maxb+1);
fprintf(fid, 'CONSTANT bshift: INTEGER:= %2d;\n' ,bin+rnaxb+l);

%Pad zero if bshift <20 for codec usage
if (bin+maxb+l)<=20

yextra=20-(bin+rnaxb+l) ;
else

yextra=O;
end
fprintf(fid, 'CONSTANT yex: INTEGER:= %2d;\n',yextra);

ODD=rem(Nmin,2);
if ODD==l

NN=(Nmin+ll!2-1;
else

NN=Nmin!2;
end
fprintf(fid, 'CONSTANT NN: INTEGER:= %2d;\n' ,NN);
fprintf(fid, 'CONSTANT ODD: INTEGER:= %2d;\n\n',OOO);

fprintf(fid, 'END package; 'I;
fclose(3);
%End of generating CSO params.vhd

%--
else
%Following lines created the params.vhd for DM technique
clear bstage cctmoptnew dmtable
cdmoptnew=cdmopt;
[M,N]=size(cdmoptnew);

%Find number of stage in each coefficient
for i=l:M;

t=O;
for j=1:N;

if cdmopt(i,j)-=O
t=t+l;

end
end

70

bstage(i)=t;
end

%Flipping the negative sign of the first section in cdmopt to the end section in cdmopt
for i=l.:M;

if (cdmopt(i,l.)<O) ~ (bstage(i»l.);
if (cdmopt(i,1)-=O) ~ (cdmopt(i,2)-=O);

for j=N:-1:1;
if cdmopt(i,j)-=O;

cdmoptnew(i,l.)=abs{cdmopt(i,1» ;
cdmoptnew(i,j)=-(cdmopt(i,j» ;
break

else
end

end
else
end

end
end

'lscreate dmtable;
tsize=O;
for i=l:M;

for j=l:N;
if cdmoptnew(i,j)==O;

else
tsize=tsize+1;

end
end

end
dmtable=zeros(tsize,bmin) ;

%Finding csd representation for all dm coefficients
t=l;
for i=l.:M

if bstage(iJ==O;

elseif (bstage(i) ==1.) ;
x=cdmoptnew(i,l)/(2 A (bmin-1») ;
dmtable (t, :) =csd (x, 1, (bmin-l) J ;
t=t+1;

elseif (bstage(i)==2) ~ (cdmoptnew(i,2)==O);
x=cdmoptnew(i,l)/(2 A (bmin-l);
dmtable(t, :)=csd(x,l., lbmin-l);
t=t+l;

else
pwl=O;
for j=1:bstage(i);

if j==bstage(i);
x=cdrnoptnew(i,jl/(2 A (brnin-pwl-l» ;
dmtable (t, :) =csd (x, 1, (brnin-1J) ;

else
9=0;
h=O;
while g==O;

if cdrnoptnew(i,j) <=(2 A h) ;
g=1;

end
h=h+l;

end
x=cdmoptnew(i,j)/(2 A (h-l» ;
dmtable (t, :) =csd (x,1, (bmin-1» ;
pwl=pwl+h-1;

end
t=t+l;

end
end

end

71

'Getting position of the nonzero bits also number of nonzero bits in each small section
of cedconstant
[u,y]:sizelnewtable);
g:1; t=1;
for i:1:u
if bstage (i) ==0

else
for e=1:bstage(i)

numrow(t) =0;
for j:1:bmin

if dmtable(t,j)==-1
numrow(t)=numrow(t) +1;
posi(g)=-(j-l) ;
g:g+1;

eleeif dmtable(t,j)==l
numrow(t)=numrow(t) +1;
posi (g) = (j -1) ;
g=g+1;

end
end
t:t+l;

end
end

end

%Print the following lines onto the params.vhd file
fid:fopenl'params.vhd', 'w');
fprintf (tid, 'Library IEEE; \nuse IEEE. std logic 1164. all; \n') ;
fprintf(fid, 'use IEEE.std logic unsigned~all;\~\n');
fprintf(fid, 'PACKAGE para;s IS\n\n');
fprintf(fid, 'TYPE int arr1 IS ARRAY(natural range <» OF INTEGER;\n');
fprintflfid, 'TYPE int=arr2 IS ARRAY(natural range <» OF INTEGER;\n');
fprintflfid, 'TYPE int arr3 IS ARRAY(natural range <>} OF INTEGER;\n\n');
fprintf(fid, 'CONSTANT-N: INTEGER:: %2d;\n',Nmin);
fprintflfid, 'CONSTANT b: INTEGER::%2d;\n',bin);

%print b stage onto the params.vhd file
fprintflfid, 'CONSTANT b stage: int_arr1(0 to %3d) ::(',M-1);
for i=1:M; -

if i<M
fprintf (tid, '%3d. ' ,bstage (i)) ;

else
fprintf(fid, "3d' ,bstage(i»;

end
end
fprintflfid, ') ;\n');

%print nyer_row onto the params.vhd file
fprintf (tid, 'CONSTANT n_per_row: int_arr2 (0 to %3d) : = (' ,t-2);
for i:1:t-1;

if i<t-1
fprint f (fid, ''I<3d, ' ,numrow (i)) ;

else
fprintf(fid, '%3d',numrow(i));

end
end
fprintf (fid, ') ; \n') ;

%print coeff_vec onto the params.vhd file
fprintflfid, 'CONSTANT coeff_vec: int_arr3(0 to %3d) ::(',g-2);
for i=1:g-1;

if i<g-1
fprintf(fid, '%3d.' ,posi(i);

else
fprintf(fid, '%3d',posi(i));

end
end
fprintf (fid, ') ; \n') ;
posinew=posi;

72

\Check max number of shift needed in the whole filter
s=l; maxb=O; y=l;
for i=l:M

if bstage(i)-=O
d=bstage(i) ;
maxbb=O;
for j=l:d

maxn=O;
maxnn=O;
if j >=2

for k=l:numrow(y)
if k>=2

maxnn=abs(posi(s)) ;
else

maxn=abs(posi(s) ;
end
if maxnn>maxn

maxn=maxnn;
end

s=s+l;
end

maxbb=maxbb+maxn;
else

for k=l:numrow(y)
if k>=2

maxnn=abs(posi(s» ;
else

maxn=abs(posi(s)};
end
if maxnn>maxn

maxn=maxnn;
end

s=s+l;
maxbb=maxn;

end
end

if maxbb >=maxb
maxb=maxbb;

end
y=y+1;

end
end

end
fprintf(fid. 'CONSTANT zero_con: INTEGER:=%2d;\n' .maxb+1.);
fprintf(Eid, 'CONSTANT bshift: INTEGER:= %2d;\n' ,bin+maxb+1);

%Pad zero if bshift <20
if (bin+maxb+1)<=20

yextra=20-(bin+maxb+1) ;
else

yextra=O;
end
fprintf(fid. 'CONSTANT yex: INTEGER:= %2d;\n'.yextra};

ODD=rem(Nmin,2};
if 000==1

NN=(Nmin+1)/2-1;
else

NN=Nmin/2;
end
fprintf(fid. 'CONSTANT NN: INTEGER:= %2d;\n' .NN);
fprintf{fid. 'CONSTANT ODD: INTEGER:= %2d;\n\n'.ODD);
fprintf(fid. 'END package; ');
fclose(3)

%End of genel:ating OM params. vlld
end

%Copy file to the directory for hardware implementation
copyfile ('c: \csddm\params. vhd '. 'c: \csddm\FIRfilter\params. vhd')

73

Appendixes B

Appendix B-1

Sample pararns.vhd file:

Library IEEE;
use IEEE.stdJogic_II64.al\;
use rEEE.std_logic_unsigned.all;

PACKAGE params IS

TYPE int_arrl IS ARRAY(natural range <» OF INTEGER;
TYPE int_arr2 IS ARRAY(natural range <» OF INTEGER;
TYPEint_arr3 IS ARRAY(natural range <» OF INTEGER;

CONSTANT N: INTEGER:= 24;
CONSTANT b: INTEGER:= 9;
CONSTANTb_stage: int_arrl{Oto 24):=(1, I, I, I, 1, I, 1, 1,0, 1, 1, 1, 1, 1, I, 1,0, 1, I, I, I, I, I, 1,1);
CONSTANTn-.J>erJow: int_arr2(Oto 22):=(I, I, 1,2, I, J, 1,2,3, 1,4,2,4, 1,3,2, 1, I, 1,2, I, I, I);
CONSTANT coefCvec: int_arr3(O to 37):=(-6, -6, 7, 5, -7, 8, -6, 7, 5, 8, -4, G, -8, 7, 2, -4, -6, 8, 2, 6, 2, -4, -6,
8, 7, -4, 6, -8, 5, 8, 7, -6, 8, 5, -7, 7, -6, -6);
CaNSTANT zero_con: INTEGER:= 9;
CONSTANT bshift: INTEGER:= 18;
CONSTANT yex: INTEGER:= 2;
CONSTANT NN: INTEGER:= 12;
CONSTANT ODD: INTEGER= 0;

END package;

74

Appendix B-2

Sample filt. vhd file:

--This file is used to generate the behavior of the FIR filter. Three functions are used to perform the behavior of the-
--filter.
--(1) snd_shift: use to perform the shift function of the filter.
--(2) zero_vec: use to generate a zero vector that irs size equal to the maximum adder size.
--(3)xstage: use to perform each tap of Ihe filter coefficient multiplication with input X

Library IEEE;
use IEEE.std_logic_II64.all;
use lEEE.Numeric_STD.all;
use IEEE.stdJogic_unsigned.all;
use work.params.alI;

PACKAGE tilt IS

TYPE twod_data_rnat IS ARRAY(natural range <» OF unsigned(O TO bshift-l);

FUNCTION snd_shift (s : INTEGER; v: unsigned(O to bshift-I») RETURN unsigned;
FUNCTION zero_vec (a: INTEGER) RETURN unsigned;
FUNCTION xstage(X: unsigned(O TO bshift-l)) RETURN twoo_data_mat;

END package;

PACKAGE BODY filt IS

FUNCTION snd_shift (s : INTEGER; v: unsigned(O to bshift-l» RETURN unsigned IS
VARIABLE result: unsigned(O to bshift-I);
VARIABLE R.k: INTEGER;

BEGIN
k:=O;
R:=bshift-I;
FOR j IN 0 TO R LOOP

IF i<= s-I THEN
result(i):=v(O);
ELSE
result(i):=v(k);
k:=k+l;
END IF;

END LOOP;
RETURN result;
END snd_shift;

FUNCTION zero_vee (a: INTEGER) RETURN unsigned IS
VARIABLE result: unsigned (0 to bshift-I);

BEGIN

FOR i IN 0 TO bshift-l LOOP
resuIt(i):='O';
END LOOP;
RETURN result;
END zero_vee;

75

FUNCTION xstage(X: unsigned(O TO bshift-I» RETURN twod_data_mat IS
VARIABLE data_mat: twod_data_mat (0 to NN) ;
VARIABLE tot,np,s: INTEGER;
VARIABLE XS, XS I,XS_int: unsigned(O TO bshift-l)-

HEarN
tot:=O;
np:=O;
XS_int:=zero_vec(bshift);
FOR h fN 0 to NN LOOP

IF b_stage(h»= 1 THEN
XS:=X;

FOR i fN 0 to (b_stage(h)-l) LOOP
FOR kIN 0 to (nyer_row(np)-l) LOOP

IF coeff':'-vec(tot) = 0 THEN
XSl:=X;

ELSE
XSI:=XS;

END IF;
ELSE

IF coefevec(tot)<O THEN
s:=abs(coeff_vec(tot»;

ELSE
s:=coeff_vec{tot);

END IF;
XSI:= snd_shift{s,XS);

END IF;
IF (coeff_vec(tot)<O) THEN

XS_int:=XS_int-XS I;
ELSE

XSjnt:=XS_int+XS I;
END IF;
tot :=tot+ I;

END LOOP;
np:=np+l;
XS:=XS_int;

XS_int:=zero_vec(bshift);
END LOOP;

ELSE
XS:= zero_vec(bshift);

END IF;
data_mat(h):=XS;

END LOOP;
RETURN data_mat;
END xstage;

END filt;

76

Appendix B-3

Sample rdfl.vhd file:

-- FIR FILTER DESIGN USING CSDIDM technique.
-- This file is the top level of the overall FIR filter.
-- This file calls the functions and constants from the params.vhd and filt.vhd files. --

Library IEEE;
use lEEE.stdJogic_1164.al1;
use IEEE.Numeric_STD.all;
use IEEE.stdJogic_unsign.ed.all;
use work.params.all;
use work.filt.all;

ENTIlY rdfJ IS

PORTe
X:IN unsigned(O to b-I);
RESET: IN stdJogic;
CLK: TN stdJogic;
Ycodec: OUT unsigned(19 downto 0)

);
END rdtl;

ARCHITECTURE behave OF rdfJ IS
Signal Y:unsigned(bshift-I downto 0);
Signal A,B,C,D:twod_data_mat(O to N);
Signal result: unsigned(O to zero_con -I);
Signal result_final: unsigned(O to bshift-\);
Signal yout: unsigned(O to yex);
BEGIN

name:process(X,RESET,CLK,A,B,C,D)

VARlABLE ZERO: unsigned(O to bshift-J);
VARIABLE XS: twod_data_mat(O to NN);
V ARlABLE j,g: integer;
BEGJN

FOR i IN 0 TO zero_con-I LOOP
resu\t(i) <='0';

END LOOP;

IF yex >0 THEN
FOR i IN 0 TO yex LOOP

yout(i)<='O':
END LOOP;
END IF;
result_final <= (X & result);

ZERO:=zero_vec(bshift);
XS:=xstage(result_final);

C(O) <= XS(O);
A(O) <= C(O);

77

j:=l;
g:=I;
filter: FOR k IN 1 TO N LOOP

IF (RESET = '1 ') THEN
0(1<-1) <= ZERO;
ELSIF rising_edge(CLK) THEN
O(k-l) <= A(k-I);

END IF;
C(k) <= XS(g);
8(1<-1) <= 0(1<-1) + C(k);
A(k) <= 8(k-I);
ifj<NN THEN
j:=j+l;
g:=g+l;
elsif(j=NN AND 000=1) THEN
g:=g;
j:=j+l;
e1sif (j=NN AND 000=0) THEN
g:=g-I;
j:=j+l;
else
g:=g-I;
j:=j+l;
end if;

END LOOP;

Y <= 8(N-1);
IF bshift >= 20 THEN

Ycodec <= Y(bshift-I downto bshift-20);

ELSE
Ycodec <= (Y & yout(O to yex-I));

END IF;
END PROCESS name;

END behave;

78

Appendix C

TCL script for Virtex XCV800HQ240-4 FPGAs (filter.tel)

#!/bin/wish
project -new filter
add_file -vhdl "params.vhd"
add file -vhdl "fUt.vhd"
add file -vhdl "rdfl.vhd"
add file -vhdl"codec.vhd"
add_file -vhdl"clkgen.vhd"
add file -vhdl "channel.vhd"
add file -vhdl "codec intfc.vhd"- -
add file -vhdl "control.vhd"
add file -vhdl "codec control.vhd"- -
set_option -technology Virtex
set_option -part XCV800
set_option -speed_grade -4
set_option -package HQ240
set_option -top_module codec_control
project -save

, project -run

Appendix D

Pin assignment filter implementation in Xess XSV800 prototyping board

#
Assign pin for XSV800 prototyping board from Xess Corp.
#
NET "elk" LaC = "P89";
NET "rnclk" Lac = "P3";
NET "lrck" Lac = "P4";
NET "sdk" Lac = "P5";
NET "sdin" Lac = "p6";
NET "sdout" Lac = "p7";
NET "reset" LaC = "p140";
NET "adc_overrun" Lac = "PI 52";
NET "dac underrun" Lac = "PI54";

79

VITA

Kah-Howe Tan ~

Candidate for the degree of

Master of Science

Thesis: EFFICIENT HARDWARE IM:PLEMENTATION OF FINITE IMPULSE
RESPONSE FILTERS IN FIELD PROGRAMMABLE GATE ARRAYS

Major field: Electrical Engineering

Biographical:

Personal Data: Born in Kuching, Sarawak, Malaysia, on February 1, 1977, the son
of Tan and Chong.

Education: Graduated from Chung Hua Middle School No.1, Kuching, Sarawak,
Malaysia in December 1995; received Bachelor of Science degree in
Electrical Engineering from Oklahoma State University, Stillwater,
Oklahoma in July 2000. Completed the requirements for the Master of
Science degree with a major in Electrical Engineering at Oklahoma
State University in May, 2002.

Experience: Employed by Electrical and Computer Engineering Department at
Oklahoma State University as a graduate research assistant and
teaching assistant, 2000 to present.

Professional Memberships: IEEE society.

