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1 I

PREFACE

In parallel processmg, a program is first broken into a set of interdependent

subprograms, tasks, processes, or threads. The program components together with the

dependence relationships among them are generically called a task system. Each task in

the resulting task system is then allocated to an available processing element on a

multiprocessor system by a scheduling algorithm. The purpose of such a scheduling

algorithm is to utilize the parallelism of the task system to minimize the length of time

required for executing all of the tasks, without violating the precedence relations among

the tasks. The computation time of the tasks and the overheads from various sources

constitute the overall execution time of the task system. If any pair of tasks with a

precedence relations between them are allocated to different processors, communication

between the two processors is incurred. Such overhead, which is called inter-processor

communication overhead, is added to the total execution time of the whole program.

The main objective of this thesis was to design and implement a multiprocessor

scheduling algorithm which could reduce the inter-processor communication overhead.

Based on Hu's Algorithm, the algorithm that was designed and implemented as part of

this thesis adopts the approach of replicating selected tasks and allocating the replicated

tasks to appropriate idle processors. Experimentations were conducted using a wide

range of randomly generated task systems of different sizes. The results from these

experimentations displayed a trend of increasing number of savings of inter-processor
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communication realized by the algorithm with the growth of task system sizes. The

trade-offs between the overhead savings and the number of task replications are also

shown.
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CHAPTER I

INTRODUCTION

In computing complicated problems, parallel processing is an important approach

that can be used to reduce the execution time of programs [Hockney and Jesshope 81]

[Hwang and Briggs 84]. In parallel processing, the executions of the instructions of a

program are divided among multiple computing units with the goal of minimizing the

overall processing time of the program. Typically, a program is first partitioned into a

nwnber of subprograms, tasks, processes, or threads that can be processed concurrently

on the different computing units of a multiprocessor system, while staying within the

constraints of the precedence relations or interdependence among the tasks.

The objective of parallel processing is to utilize the inherent parallelism of a

problem to maximum degree with the smallest possible overhead. The overhead comes

from different sources, depending on the nature and characteristics of the task system.

One type of such overhead is the communication overhead.

A task system consists of a number of tasks which have interdependence relations

among them [Fox et al. 88]. The size of a task can be as small as a single statement or as

large as an entire program, depending on the granularity of program decomposition.

Therefore, the communication cost between all pairs of interdependent tasks could add up
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to be considerable. In addition, the communication OV Tn ad b twe n int !I'd pend nt

tasks on different processors could be even more significant.

After the program partitioning or decomposition stage, the resulting tasks are

assigned to different processors for execution by a multiprocessor scheduling algorithm.

When a task system (a set of tasks with precedence relations among them) is assigned to

multiple processors, if any two tasks have an interdependence relation and they are

allocated to different processors, then information needs to be conveyed between the two

processors and thus inter-processor communication is required as overhead. Figure 1

illustrates an example of such a situation. By this schedule, task T3 on processor Pi and

task T4 on processor P3 will need communication :from their predecessor T1 which is on

processor PI. Therefore, two instances ofinteT~processoI communication, PI to P2 for T3

and PI to P3 for T4, are incurred. Similarly, T5 also requires two instances of inter-

processor communication from its predecessors T3 and T4 (P2 to PI and P3 to PI). In this

Processor P1 T1 T2 Ts
Processor P2 0 T3 0
Processor P3 0 T4 0

Figure 1. An Example of a Task System and Its Schedule on Three Processors
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thesis, we focus on the first two instances of inter-processor communication which eouId

be eliminated by task replication.

Excessive overhead, in the fonn of inter-processor communication, can add

considerable extra time to the total execution time. Related research work has been done

to design and implement scheduling algorithms to reduce the inter-processor

communication overhead. One method is to allocate tasks to carefully selected

processors [Bhat 2000]. The objective of this thesis was to utilize another approach to

address this issue. The alternative adopted here is to duplicate, appropriate tasks and

assign them to idle processors, thus potentially curtailing the inter-processor

communication overhead.

The rest of the thesis is organized as follows. Chapter II provides a brief literature

review of the DAG scheduling problem and the inter-processor communication issue.

Chapter III describes the approach of task replication and the proposed algorithm, the

major contribution of the thesis. Chapter IV discusses the implementation issues of the

algorithm. Chapter V contains the report of the experimentations carried out as part of

this thesis. Chapter VI outlines the summary and future work for the thesis.
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CHAPTER II

LITERATURE REVIEW

This chapter reviews DAG (Directed Acyclic Graph, which is the task system

representation used in this thesis), general issues on DAG scheduling, the approach of

Hu's Algorithm which is the basis of the proposed algorithm and the problem of inter

processor communication overhead.

2.1 Task Systems and DAGs

In parallel processing, a problem that has potential parallelism to be extracted and

exploited, is first decomposed into a task system. Various fonnats are available to

represent a task system [Aho et al. 86] [Gurd et al. 85]. Directed Acyclic Graphs (DAG),

data flow graphs, and Petri nets are some examples of commonly used graphical

representations of task systems. We used the DAG fonnat to study scheduling algorithms

in this thesis. The tenn DAG scheduling refers to scheduling a task system in DAG

format.

DAGs are one form of precedence graphs widely used for the study of scheduling

algorithms for parallel programs [Coffman 76]. A DAG can be represented as G = (V,

E), where V is a set of nodes and E is a set of connecting edges (directed arcs). Each

node represents a task which in tum is a set of instructions which must be executed on the
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same processor sequentially without preemption. Each direct d d specifi a

precedence between the incident tasks. FOT each dge the ending node (child node)

cannot start execution before it obtains data from the start node (par nt node). For

example, in the DAG shown in Figure 2, task T2 cannot begin execution before both tasks

T4 and Ts finish execution and send all the required data to task T2. The node weights

could be used to represent task processing times for the corresponding tasks.

Alternatively, the edge weights could be used to represent communication costs between

the pairs of connected tasks. A node with no parent is an entry node and a node with no

child is an exit node. Without less of generality, we will study'DAGs with single exit

nodes.

Figure 2. An Example of a DAG (Directed Acyclic Graph)

5



A rooted tree is a special type of DAG in which each nod can ha: any numb

of predecessors but only one successor at most. This type of a simplifi d nAG is. a majoT

subject for the study of scheduling algorithms. Figure 3 shows a rooted tree.

@ @ @ @

\ / \ /
@ @

Figure 3. An. Example of a Rooted Tree

2.2 DAG Scheduling

After a problem is decomposed and represented as a task system, each task is

assigned to one of a set of processors on a multiprocessor system by a scheduling

algorithm. The scheduling algorithm must not violate the precedence relation or the

precedence graph. The main goal of DAG scheduling is to minimize the total execution

time of a task system, which is known as schedule length.

The scheduling problems fall into two categories: static and dynamic. In static

scheduling, the required information for scheduling a task system is known before
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program execution and the scheduling is done at compile tim [Ghu et aI. 84] [Gajs . and

Peir 85). Such scheduling information include task processing times. communication

costs, and the precedence relation. On the contrary. in dynamic scheduling such

information is not known before program execution. Thus scheduling is done during

program execution and the scheduling overhead is added to the total execution time of the

program [Ahmad and Ghafoor 91] [PaIis et a1. 95]. The subject of this thesis is the static

scheduling problem (hereafter referred to as scheduling).

Scheduling algorithms for DAGs are usually developed based on a number of

assumptions about the structure and characteristics of task systems and the target

machines. These assumptions include uniform task computation costs. zero inter-process

communication costs, and an unlimited number of processors. It has been proven

however that the general scheduling problem is NP-complete except for a number of

special cases [Garey and Johnson 79]. Ullman showed that scheduling a DAG with

uniform computation costs to an arbitrary number of processors is NP-complete [Ullman

75]. Scheduling a DAG with one or two unit computation costs to two processors has

also been shown to be NP-complete [Coffman 76] [Ullman 75]. Garey et al. showed that

scheduling an opposing forest (the disjoint union of an in-forest and an out-forest) with

equal node weight to an arbitrary number of processors is also NP-complete [Garey et a1.

83].

Given that scheduling a DAG is generally an NP-complete problem. optimal

polynomial time algorithms do exist under three special circumstances [Kwok and

Ahmad 99]: 1) scheduling equally weighted rooted trees on unlimited number of

processors [Hu 61]. 2) scheduling arbitrary DAGs with unifonn computation costs on
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two processors [Coffman and Graham 72]. 3) s~heduling interval-ordered, equally

weighted DAGs on arbitrary number of processors [Papadimitriou and Yannakakis 79].

All of the above cases are based on the assumption that the inter-process communications

are zero.

2.3 Hu's Algorithm

In this section, Hu's Algorithm for multiprocessor scheduling as well as some of

its extended versions are discussed.

2.3.1 Algorithm A

Hu [Hu 61] designed a polynomial-time algorithm to provide optimal schedules

for rooted-tree structured DAGs with equally weighted nodes. The critical part of the

algorithm is the labeling process, in which each node is associated with a level number

which is equal to the length of its path to exit node plus one. Thus the tasks in the whole

DAG are partitioned into groups of a number of levels. After that, the tasks in the same

level are assigned to the same time s.lot on different processors. The algorithm is outlined

in Figure 4.
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/* The label of each node in the rooted tree is initialized as follows. */
Each node is assigned a label as follows:

• The label of the root node is set to one.
• The label of any other node is set to one plus the label of its unique

successor node.

L denotes the value of the maximum label among the initialized labels of the
tasks.
Wi denotes the set of tasks with label i.
p denotes the number of processors in the machine.

/* Following the procedure below, the label of each task in the rooted tree is
finalized. */

Ll:
if Iwi! ~ p for i = L, ... ,I then

goto L3;
else if for some i, IWil > p then

n = 1;
L2:

if n :;t L then
find a node from Wn that does not have any predecessors in wn+1;

change the node's label from n to n+ 1;
end
ifn = L then

select any node from the set WL as the victim;
change the node's label from L to L+1;
increase L by 1;

end
goto Ll;

/* Assign the tasks in each group to time units on different processors. */
L3:

/* Fonn the schedule as follows: */
for i = L, L-l, ... ,1 do

execute a task in the set Wi in the (L-i+1)th unit of time on one
of the p processors;

end

Figure 4. Algorithm A: Scheduling a Rooted Tree on p Processors [Hu 61]
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2.3.2 Algorithms Band C

Algorithm A, mentioned above in Subsection 2.3.1, has two important limitations:

first, it can only schedule rooted trees. Second, the rooted tree must have equally

weighted nodes [Mandyam and Samadzadeh 92]. To address these drawbacks,

Algorithms Band C extend and modify Algorithm A to schedule DAGs based on the

the same general approach as Hu's Algorithm.

Algorithm B adds a preprocessing phase that converts an arbitrary, weighted

DAG into an equally weighted rooted tree (see Figure 5 for an example). Then a

procedure similar to Algorithm A is used to schedule the resulting task system (Figure 6).

Algorithm C schedules an equally weighted DAG directly without the conversion stage

as in Algorithm B. Algorithm C follows a modified labeling algorithm based on

Algorithm A (Figure 7).
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(b)

0: a task

D:the weight or cost (e.g.,
processing time) associated
with each task

Figure 5. Converting a Weighted DAG to an Equally Weighted Rooted Tree
[Gonzalez 77]
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Preprocess the arbitrary weighted DAG into an equally weighted rooted tree.

/* The label of each node in the rooted tree is initialized as follows. */
Each node is assigned a label as follows:

• The label of the root node is set to one.
• The label of any other node(including the replicated nodes) is set to one

plus the label of its unique successor node.

L denotes the value of the maximum label among the initialized labels of the
tasks.
Wi denotes the set of tasks with label i.
p denotes the number of processors in the machine.

repeat:
Select at most p tasks from Wi for i = L•...•1 such that:

they are leaf nodes or
all their predecessors have been assigned in an interval previous to the
current time interval;

if the predecessor of a task is a repeated node. then
any counterpart of the repeated node can be considered the
predecessor of the task;

if a repeated node needs to be selected. then
if any of its counterparts has been selected earlier or in the current

interval,
then discard it from the current set Wi;

else select it for the current time interval;
end

if all tasks in the set Wi have been tried for selection.
then examine the next set Wi+l;

Schedule p (or fewer) tasks on p processors during the current interval;
until all tasks have been scheduled;

Figure 6. Algorithm B: Scheduling a Rooted Tree with Repeated Nodes on p
Processors [Bu 61]
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/* The label of each node in the DAG is initialized as follows. */
Each node is assigned a label as follows:

• The label of the root node is set to one.
• The label of any other node is set to one plus the label of its successor

node. If a node has more than one successors, the maximum label is
considered.

L denotes the value of the maximum label among the initialized labels ofthe
tasks.
Wi denotes the set of tasks with label i.
p denotes the number of processors in the machine.

/* Following the procedure below, the label of each task in the rooted tree is
finalized. */

LI:
if Iwi! ~ p for i = L, ... ,1 then

goto L3;
else if for some i, Iwd > p then

n = 1;
L2:

ifn *" L then
find a node from Wn that does not have any predecessors in Wn+l;

if no such node is available in Wn then
n = n+l;
goto L2;

end
change the node's label from n to n+1;

end
ifn =L then

select any node from the set wI. as the victim;
change the node's label from L to L+1;
increase L by 1;

end
goto Ll;

/* Assign the tasks in each group to time units on different processors. */
L3:

/* Form the schedule as follows: */
for i = L, L-l, ... ,1 do

execute a task in the set Wj in the (L-i+l)th unit of time on one
of the p processors;

end

Figure 7. Algorithm C: Scheduling a DAG on p Processors Directly [Hu 61]
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2.4 Reducing Inter-Processor Communication Overhead

This section introduces the problem of inter-processor communication overhead

and reviews a recent research work that addressed this issue.

2.4.1 Inter-Processor Communication

The algorithms mentioned in Section 2.3 provide optimal execution times for the

scheduling of the respective task systems [Mandyam and Samadzadeh 92]. However,

none of these algorithms takes into consideration the issue of inter-processor

communication overhead.

Depending on the degree of interdependence among the tasks, a precedence graph

could be sparsely or densely connected. Naturally, a highly-connected or dense task

system tends to incur more inter-processor communication in multiprocessor scheduling.

The overhead could have significant impact on the overall perfonnance of a program.

2.4.2 Algorithm D

Recently, efforts have been made to study various methods to decrease the inter

processor communication overhead without impairing the optimality of algorithms A, B,

and C mentioned in Section 2.3. A new algorithm, Algorithm D [Bhat 2000] , is put

forward to achieve this goal.

Algorithm D follows the general approach of Hu's Algorithm, except that each

task is assigned to the processor which has the highest number of its predecessors. A

simulation program has shown that in most cases scheduling a DAG by Algorithm D

incurs less inter-processor communication overhead than scheduling a DAG using Hu '5

14



Algoritlun and its variations. The cost of this overhead savings is the time complexity of

computing the processor of each task and the space complexity of maintaining the

infonnation to do so. Figure 8 provides the details ofAlgorithm D.
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/* The label of each node in the DAG is initialized as follows. */
Each node is assigned a label as follows:

• The label of the root node is set to one.
• The label of any other node is set to one plus the label of its successor

node. If a node has more than one successors, the maximum label is
considered.

L denotes the value of the maximum label among the initialized labels of the
tasks.
Wi denotes the set oftasks with label i.
p denotes the number of processors in the machine.

/* Following the procedure below, the label of each task in the rooted tree is
finalized. */

Ll:
if Iwi! ~ p for i = L, ... ,1 then

goto L3;
else if for some i, Iwi! > p then

n = 1;
L2:

ifn;;t:. L then
find a node from W n that does not have any predecessors in Wn+l;

change the node's label from n to n+ 1;
end
ifn = L then

select any node from the set WL as the victim;
change the node's label from L to L+ 1;
increase L by 1;

end
goto L1;

/* Assign the tasks in each group to time units on different processors. */
L3:

/* Form the schedule as follows: */
for i = L, L-1, ... , 1 do

assign a task in the set Wi to one of the p processors which has the
highest number of its predecessors assigned;
if the numbers of predecessors of the task are equally assigned to more
than on processor, select anyone of the processors with predecessors
assigned;
execute a task in the set Wi in the (L-i+ I )th unit of time on its processors;

end

Figure 8. Algorithm D: Scheduling a DAG on p Processors While Reducing Inter
Processor Communication Overhead [Bhat 2000J
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CHAPTER III

TASK REPLICATION APPROACH AND ALGORITHM

In this chapter, task replication as a method of reducing inter-processor

communication overhead is illustrated. The proposed algorithm based on this approach,

which is the main contribution of this thesis work, is also outlined.

3.1 Reducing lnter-Processor Communication by Task Replication

In some cases, inter-processor communication overhead can be reduced by task

replication. Without changing the main method of Hu's Algorithm, the proposed

algorithm realizes overhead savings by replicating some of the tasks in the task system.

Under certain conditions, a task may be replicated and assigned to an idle processor,

thereby making communication unnecessary if one of its successors is on the same

processor.

For example, in Figure 9 task T, is replicated twice and the two replicated tasks

are allocated to processors P2 and P3. As a result, task T3 on P2 and task T4 on P3 now

could get the required data from their respective processors, and no inter-processor

communication would be required. In this case, the inter-processor communication

overhead is reduced by two instances for the cost of two replications oftask T I.

17
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Processor P1 T1 T2 Ts
Processor P2 I1 T3 0
Processor P3 I1 T4 0

Figure 9. Reducing Inter-Processor Communication by Task Replication

Task replication does not reduce inter-processor communication in all situations.

Improper replication does not reduce and it may even increase the inter-processor

communication. The purpose of the proposed algorithm is to discriminate among

different situations and to decide in which cases replication should be done, which tasks

and how many instances are to be replicated, and which processors they should be

allocated to.

3.2 Algorithm

The goal of the proposed algorithm was to realize inter-processor communication

savings by task replication, and to study the trade-off between the overhead savings thus

achieved and the number of task replications. In this algorithm, after scheduling the tasks

by Hu's Algorithm (see Section 2.3 for details), the tasks are replicated when appropriate

and the replicated tasks are assigned to appropriate processors.

18
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The proposed algorithm was designed under two constraints: first, the tasks in the

DAG are assumed to be equally weighted, and second, we assume the availability of a

sufficient number of processors on the target multiprocessor machine, i.e., the number of

processors is equal to the width of the DAG.

Replicating a task and allocating it to an idle processor has two consequences

depending on the in degree and out degree of the node representing the task in the

corresponding precedence graph which represent the number of predecessor and

successor tasks of the given task. The two consequences are an increase in the number of

inter-processor communications on the one hand and a decrease in the number of inter

processor communications on the other hand. All we need to compute is whether a task

replication produces a net reduction on the overhead. This is the basic idea of the

proposed algorithm. If a replication could reduce the overhead ultimately, it is done and

the corresponding overhead savings are calculated. The total overhead savings by the

proposed algorithm are computed by the comparison with basic Hu's Algorithm. The

proposed algorithm is outlined in Figure 10.

The running time for the algorithm can be analyzed as follows (see Figure 10 for

details of the algorithm). A DAG is represented by G = (V, E) where V is the set of

nodes and E is the set 0 f edges. If T j denotes the number of tasks in level i, for 1 ::;; i ::;; L,

and the average number of idle processors in each level is denoted by R, the number of

runs of the innermost loop is obtained by: T1*R + T2*R + ... + TL*R = IVI*R. Since in

each innennost loop the successors and predecessor lists are traversed for each task,

which add up to 2*1£1, the time complexity of the algorithm can be represented as

O(lVI*IEI*R). In tenus of space complexity, each task needs to maintain a list of

19
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Step 1: Schedule and allocate the tasks to p processors following Hu's Algorithm.

L denotes the value of the maximum time unit of the schedule.
Step 2:
/* Following the procedure below, the appropriate tasks are replicated and

allocated to appropriate processors. *1
for i = 2, ..., L do

for each idle processor P do
for each task t in level i do

S denotes the number oft's successors on P.
R denotes the number oft's predecessors.
Rp denotes the number of t's predecessors on P.
ifS > R - Rp
then

duplicate t to P at time unit i;
if t has any predecessor r at level i+ I which has no predecessor

and P is idle at time unit i+1
then

duplicate r to P at time unit i+ 1;
break;

end
else if S > 0 and S = R - Rp

then
if t has any predecessor r at level i+1 which has no

predecessor and P is idle at time unit i+ I
then

duplicate t to P at time unit i;
duplicate r to P at time unit i+ I;
break;

end
end

end
end

end

1* Execute all the tasks including the replicated ones in each time unit. *1
for j = L, L-l, ... , 1 do

execute the tasks including the replicated tasks in the (L-i+ 1)th unit of time;
end

Figure 10. Proposed Algorithm: Scheduling an Equally Weighted DAG on p Processors
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successors in addition to the predecessor list. Therefore, the extra space requirement in

addition to that ofHu's Algorithm is O(IVI+IEI).
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CHAPTER IV

IMPLEMENTATION ISSUES

This chapter addresses the implementation issues of the proposed algorithm,

including the input formats and the structure of the simulation program. The program

was developed in C++ under Solaris 7 (SunOS v5.8).

4.1 Input Fonnats to the Program

The input to the simulation program is a set of randomly generated, equally

weighted DAGs. The sources of the DAGs are two random task system generator

programs: TGFF and TGG.

TGFF (Task Graphs For Free) [Dick et a1. 98] is a pseudo-random task-graph

generator program for use in scheduling and allocation research. Based on the

parameters specified by the user, the program generates DAGs of different types meeting

a user's requirements. The type of DAGs used in this implementation had multiple entry

nodes and a single exit node. TGFF generates a graph file and an equivalent text file

containing the generated DAG. The text file was used as the input to the simulation

program. Figure 11 shows a standard text file containing a DAG generated by the TGFF

program.
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ARC aO 0
ARC aO 1
ARC aO 2
ARC aO 3
ARC aO 4
ARC aO 5
ARC aO 6
ARC aO 7
ARC aO 8
ARC aO 9
ARC aO 10
ARC aO 11
ARC aO 12
ARC aO 13
ARC aO 14
ARC aO 15
ARC aO 16
ARC aO 17
ARC aO 18
ARC aO 19
ARC aO 20
ARC aO 21
ARC aO 22
ARC aO 23
ARC aO 24
ARC aO 25

FROM to 0
FROM to 0
FROM to 1
FROM to 1
FROM to 2
FROM to 0
FROM to 3
FROM to 3
FROM to 3
FROM to 3
FROM to 3
FROM to 8
FROM to 8
FROM to 8
FROM to 8
FROM to 8
FROM to 7
FROM to 6
FROM to 1
FROM to 5
FROM to 4
FROM to 14
FROM to 14
FROM to 14
FROM to 14
FROM to 14

TO to 1
TO to 2
TO to 2
TO to 3
TO to 3
TO to 3
TO to 4
TO to 5
TO to 6
TO to 7
TO to 8
TO to 9
TO to 10
TO to 11
TO to 12
TO to 13
TO to 14
TO to 14
TO to 14
TO to 14
TO to 14
TO to 15
TO to 16
TO to 17
TO to 18
TO to 19

Figure 11. An Example of a DAG generated by TGFF [Dick et al. 98] (the graph is
given as a list of directed edges which contains 20 nodes and 26 edges in this
example.)

TOO, Task Graph Generation [Samadzadeh 91], generates single-entry, single-

exit DAOs in adjacency matrix fonnat. A seed for the random number generator used in

TOG, the desired number ofnodes of the generated DAG, and the number of graphs to be

generated are specified as inputs to the task generation program. Each DAG generated is

an upper triangular adjacency matrix. Figure 12 is a typical output of the generator.
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0111111111111110
001100110001101

0011001 0011010
0111011011001

OIl 101111001
01010010100
0110010111

011011100
01101100
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Figure 12. An Example of a DAG generated by TGG [Samadzadeh 91] (the graph is
given as an adjacency matrix which contains 16 rows and 16 columns in this
example.)

4.2 Algorithm Implementation

First, a randomly generated task system is read from the output file of a random

task system generator program. The task system is in the fonn of a single rooted, equally

weighted DAG. Subsequently, the task system is scheduled to a multiprocessor system

by following both Huls Algorithm and the proposed algorithm, assuming that the target

machine has the same number of processors as the width of the generated DAG. Based

on the allocation by Hu's Algorithm, the proposed algorithm replicates the selected tasks

in the task system and allocates the replicated tasks to the appropriate processors.

Finally, the total number of inter-processor communication overhead instances are

calculated for the schedule generated by each algorithm, showing the savings by the
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proposed algorithm over Hu's Algorithm. The number of task replications IS also

calculated.

The simulation program, designed and implemented as part of this thesis work, is

called Task_System. It was written in e++ and consists of 836 lines of code, 7 methods

and 4 classes.

The major methods of Task_System are as listed below. Read_TGFF_GraphO

and Read_TGG_GraphO are used to read input (the [onnat of DAGs) from the two

random task system generators. Find_Level_WidthO labels the level of each task node

following the labeling process ofHu's Algorithm [Bu 61]. The width of the DAG is also

detennined. Assign_by_HuO follows Hu's Algorithm to schedule the task system to a

multiprocessor system. Assign_by_ProposedO duplicates the appropriate tasks to

appropriate processors following the proposed algorithm. Total_OHO computes the

number of overhead instances for each of the two algorithms.

Four classes were designed to represent the task systems and implement the

algorithm. The Task_Node is the object representing a task in the task system.

Task_List class is a linked list of the Task_Node objects. Task class contains infonnation

about each task including task number, its level number, its assigned processor, and the

lists of its predecessors and successors. Task_System class represents the entire task

system, which consists of Task objects, the number of tasks, DAG width, the number of

levels, and the allocated processors of the scheduled tasks.
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CHAPTER V

EXPERIMENTATION

The experiment conducted usmg the simulation program called Task_System

consists of two sets of runs, each using the two different task system generators described

in Chapter IV as sources of input. In each set of runs, for each different task system size

range, the average savings of inter-processor communication instances by the proposed

algorithm over Hu's Algorithm, and the overhead savings per task replication were

output.

Each pseudo-randomly generated task system was scheduled by Hu's Algorithm

and the proposed algorithm. The inter-processor communication overhead was calculated

based on the schedule generated by each algorithm, on the assumption that each

processor-to-processor communication instance counts as one unit. The number of task

replications done by the proposed algorithm was also counted. Then the average savings

accomplished by the proposed algorithm over Hu's Algorithm, and the savings per task

replication were obtained as the final results.

For the TGFF program, ten distinct task systems of each size range, starting from

10 - 19, were generated using ten different, widely distributed seeds for the pseudo

random number generator. Then the simulation program was run for each generated

DAG. The results were averaged and the value for the DAGs of that size range was
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obtained. Then the size range of the DAGs was incremented by 10 each tim.e and the

corresponding results were obtained and averaged for each size range. The maximum

size range of the task systems is 190 - 199. The maximum in-degree and out-degree of

each DAG are equal to the number oftbe nodes in that DAG.

For the TGG program, the procedure was the same except that the exact size of

the generated task systems can be specified as a parameter to the task system generator

program. The sizes of DAGs generated by TGG range from 10 to 200, incrementing by

10 each time.

To automate the entire process, a few scripts and programs were also written to

work with each DAG generator program and the Task_System simulation program.

These programs generated the input files containing the appropriate parameters to the

DAG generator programs, and wrote the final results to the output file. The results are

plotted in Figures 13 through 16.

Figures 13 and 14 plot the average number of inter-processor communication

instances saved by the proposed algorithm compared with Hu's Algorithm for different

sizes of task systems. Both diagrams show that with the increase of task system size, the

number of overhead savings accomplished by the proposed algorithm tends to increase.

For TGFF, the graph exhibited a tendency for the amount of savings to fluctuate up and

down over a mildly ascending line. For TGG, the number of savings appeared to climb

steadily with the increase of the number of tasks in the DAGs.

Figures 15 and 16 exhibit the behavior of the average overhead savings per task

replication by the proposed algorithm with the increase of task system sizes. For TGFF,

the numbers were between 0.91 and 1.63. For TGG, the numbers were from 1.37 to
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18.38 based on the increase of the number of tasks in the DAGs, displaying a clear

ascending trend.

The substantial differences of the run results from TGFF and TGG can. be

attributed to the different characteristics of the DAGs generated by the two task system

generators. DAGs generated by TGG have a single entry node, which makes the

replication of the entry node very effective since the entry node usually has no

predecessors but many successors. The TGFF-generated DAGs, which have multiple

entry nodes, do not have this privilege and thus replications are not done in them as much

as in the TGG-generated DAGs.
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Range of Task System Sizes
vs

Average Overhead Savings by Task Replication

10- 20- 30- 40- SO- 60· 70- 80- 90- 100- 110- 120- 130- lSO- 170- 180- 190-
19 29 39 49 59 69 79 89 99 109 119 129 139 159 179 189 199

Range of Task System Sizes

Figure 13. Average Inter-Processor Communication Overhead Savings by the Proposed
Algorithm with Increasing Number of Tasks in Task Systems, with Task Systems
Generated Using TGFF (number of task systems in each range is 10).

Task System Size
vs

Average Overhead Savings by Task Replication

10 20 30 40 50 60 70 60 90 100 1'10 120 130 140 150 160 170 160 190 200

Task System Size

figure 14. Average Inter-Processor Communication Overhead Savmgs by the Proposed
Algorithm with Increasing number of Tasks in Task Systems, with Task Systems
Generated Using TGG (number of task systems in each size is 10).
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Figure 15. Average Inter-Processor Communication Overhead Savings Per Task Replication with
Increasing Number of Tasks in Task System, with Task Systems Generated Using
TGFF (number of task systems in each range is 10).
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Replication with Increasing Number of Tasks in Task System, with Task
Systems Generated Using TGG (number of task systems in each size is 10).
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CHAPTER VI

SUMMARY AND FUTURE WORK

In Chapter I, the objective and the main topic of this thesis were presented.

Chapter II reviewed the previous research work on the subject. Chapter III described the

approach adopted by this thesis and outlined the proposed algorithm. In Chapter IV, the

relevant issues on the implementation of the algorithm were covered, and the details of

the algorithm were given. In Chapter V, the experimentation procedure was explained

and the test run results were illustrated and analyzed briefly.

Based on the experiments using the Task_System simulation program, which took

input from two different random task system generators, the proposed algorithm appears

to reduce the inter-processor communication overhead instances for various sizes of task

systems. As generally expected, the larger the task system is, the more overhead savings

the algorithm tends to yield. This tendency is exhibited more consistently and

dramatically by single-entry-node DAGs.

For the same size DAGs, the proposed algorithm saves more inter-processor

communication in the single-entry-node DAGs than the multiple-entry-node DAGs. In

terms of overhead savings per replication, the result was close to one for multiple-entry-

node DAGs (ranging from 0.91 to 1.63). For single-entry-node DAGs, the overhead
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savings per replication grow quickly with the increase of task system sizes, climbing

from 1.37 to 18.38.

There are some limitations on this research work: First, the DAGs in the study

were equally weighted and the target machine was assumed to have same number of

processors as the width of the respective DAGs. Future work in this area could include

removing these constraints and generalizing the algorithm to scheduling arbitrary DAGs

to a multiprocessor system with an arbitrary number of processors. Second, this thesis

did not consider the cost of extra buffer space caused by task replication. The trade-off

study in the future work could include this factor as part of the costs of task replication.

Third, the algorithm uses the first feasible task sequence for replication. Future research

could look into the possibility of using a greedy algorithm to select the most overhead-

saving task for each replication.
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APPENDIX A

GLOSSARY

DAG

In/Out Degree

Directed acyclic graph.

The number ofpredecessors/successors ofa node in a DAG.

Interval-Ordered DAG Every two precedence-related nodes x, y can be mapped to two
intervals on the real number line such that the interval assigned to
x completely precedes the interval assigned to y [Fishburn 85].

Opposing Forest The disjoint union of an in-forest (each task has at most one
immediate successor) and an out-forest (each task has at most one
immediate predecessor) [Garey et a1. 83].

Parallel Processing Utilizing the parallelism of a program to execute the concurrent
tasks in the program on different processing units.

Precedence Graph A graphical representation of a task system depicting the
precedence relation among the tasks.

Rooted Tree A precedence graph in which each node has at most one successor
and any number of predecessors.

J,
i
3••,
I

Schedule

Task

Task System

TGFF

TGG

Allocation of tasks to processing units.

One sequential computation unit of a program or a problem.

A set of tasks with a precedence relation among them.

Task Graphs For Free, a random task system generator software
that generates multiple-entry, single-exit DAGs. Developed by
Dick et al. at Princeton University [Dick et at 98].

Task Graph Generation, a random task system generator software
that generates single-entry, single-exit DAGs. Developed by
Samadzadeh at Oklahoma State University [Samadzadeh 91].
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APPENDIXB

PROGRAM LISTINGS

This appendix consists of two parts. The first part is the simulation program called
Task_System that implements the proposed algorithm and Hu's Algorithm, and
calculates the corresponding inter-processor communication overhead for each algorithm.
The second part consists of the supplementary programs and scripts used to work with the
simulation program and the task system generator programs to automate the
experimentation and outputting of the results.

PART ONE

The first part of Appendix B is the simulation program that implements the proposed
algorithm and Hu's Algorithm, and calculates the corresponding inter-processor
communication overhead for each algorithm.

/~*s~*.**********.************.** •• *•• ******** •• *.*.** *********** ••• /
/* Progr~m: Reducing Inter-Processor Communication Overhead */
/ * By Task Repl icat ion */
/* Author: Jun Su */
/* Advisor: Dr. Mansur H. Samadzadeh */
/* Date: July 2002 */
/************** •• ************.*.****.******************** ••••• ** •• **/

/***************************** •••••• ***********.****** ••••••••••• **** ••
/* The purpose of the program is to implement an algorithm designed
/* to reduce Inter-Processor Communication Overhead by the approach
/* of task replication.
/* First a random generated task system is read from a random task
/* system generator program, in the form of single rooted, equally
/* weighted DAG. Then the task system is scheduled to a multiprocessor
/* system, following Hu's Algorithm and the proposed algorithm,
/* assuming the system has same number of processor as the width of
/* the schedule DAG. Based on the allocation by Hu's Algorithm.The
/* proposed algorithm realizes the Inter-Processor Communications by
/* replicating some tasks in the task system and allocating them to
/* appropriate processors. The proposed algorithm has the same
/* scheduling length as Hu's Algorithm. Finally, the total number of
/* Inter-Processor Communication Overhead is calculated respectively
/* for both algorithm, showing the savings by the proposed algorithm
/* over Hu's Algorithm. The number of replications is also shown.
/* The major methods of Task_System are as follows:
/* Read_TGFF_Graph () a.nd Read_TGG_Graph () are used to input from the

38

...



-

Iw two random task system generator, in the format of DAG.
Iw Find Level Width() finds the level of each task node and the width
Iw in the DAG~ Assign_by_Hu() follows Hu's Algorithm to schedule the
Iw task system to a multiprocessor system. Assign_by_Proposed()
Iw duplicates the appropriate tasks to the calculated processors.
1* Total_OH() shows the number of overhead instance for each of the
Iw two algorithms.
1* Four classes are designed to represent the whole tasK system and
1* implement the algorithms. The TasK_Node is the object representing
1* a task in the task system. The Task_List class is a linked list of
Iw Task_Node objects. The Task class contains the task number, level
1* number, its assigned processor, and the lists of its predecessors
1* and successors. The Task_System class represents the scheduled task
/* system, which holds information including each TaSK objects, the
1* number of tasks,DAG width, maximum level number, and the allocation
1* of the scheduled tasks.
/****~***.****~*****••• ******.*********** ••• **.**.**** *** •• ****** ••• /

#include <cstdlib>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;

/* The class Task Node is used to store the task number of a task in a TaSK List. It
contains the task-number of the task and a pointer to another tasK node. *1
class Task Node
( -

int num; lithe task number
Task_Node *next;
friend class Task_List;

public:
1* constructor *1

Task_Node(int x) { num=x; next=NULL; }

1* return the task number. *1
int get_num() const { return num;}

};

1* The class TaSK List is a linked list holding the numbers of Task Nodes
representing the tasks. The iter pointer is an iterator class used to traverse the list.
*1
class TaSK List
(

Task Node *head; /Ihead pointer
Task Node *iter; Iliterator class
int size; lithe size of the linked list

public:
1* constructors *1
Task List ()

-{
head=iter=NULL;
size=O;

)
Task List(int x)

{
iter=head=new TasK_Node (x) ;

size=l;
}

1* return the size of the list *1
int getsize() const return size;

1* test if the TaSK_List is empty *1
bool is empty() const { return head==NULL;
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1* search for a task number in the list *1
bool search(const int );

1* add a task number to head of the list */
void add(const int);

1* append a task number to the end of the list *1
void append(const int);

1* remove the head node of the list and return the pointer pointing
to it *1

Task Node* dequeue();

1* print the whole list *1
void print();

1* The methods below are used to traverse the Task_List by an
iterator. *1

Ilreturn the task number of task node pointed by the interator
int get_iter() const { return iter->num;}

Iltest if the interator reach the end of the list
bool is_end() const { return iter==NULL;}

II move the iterator to the next node in the list
void iterateO { iter=iter->next;}

II reset the iterator to the head of the list
void reset iter() {iter=head;}

} ;

1* search the Task_List for a particular task by the given task number. *1
bool Task List::search(const int i)
{ -

while (iter!=NULL)
{

if (iter->num==i)
(

reset_iter() ;
return true;

}
iterate() ;

reset iter () ;
return false;

1* Add a task into the head of the Task List. *1
void Task List: : add (const int i)
( -

Task Node *n=new Task_Node (i) ;
if (head==NULL )
{

head=n;
n- >next=NULL;

}
else
{

n->next=head;
head=n;

size++;
iter=head;
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1* Append a task at the end of the Task List. *1
void Task_List::append(const int i) -

Task Node *n=new Task_Node (i) ;
if (is_empty () )
{

head=n;
n->next=NULL;

1
else

(
while (iter->next!=NULL) iterate();
iter->next=n;
n->next=NULL;

reset iter () ;
size++;

1* Remove head task from the Task List and return a pointer to it. *1
Task Node* Task List::dequeue() -
(- -

Task_Node* temp=head;
head=head->next;
size--;
return temp;

1* Print out the Task_List. *1
void Task List: :print()
{ -

while (!is_end(»)
(
cout « iter->num « II II.

iterate() ;

1
reset iter();

1* The class Task store all information about a task, including task number,
its level number, which processor it is assigned and its predecessors and
successors by Task_List class. *1

class Task
(

1* the task number *1
int task_num;

1* the list of predecessors *1
Task_List* Pred;

1* the list of successors *1
Task_List* SUCCi

1* level number by Hu's labeling algorithm *1
int level;

1* the processor the task is assigned to. *1
int processor;

public:
1* constructor *1
Task() {level=O; Pred=NULL; Succ=NULL; };
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1* set the task Dumber *1
void set_task_num(const int j) {tasK_Dum=j;}

/* return the task number */
int get_task_Dum() const { return task_num;}

1* Add a predecessor to the predecessor list. *1
void add_pred(const Task&) ;

1* Add a successor to the successor list. *1
void add_succ(const Task&l;

1* add task t to the predecessor list of the invoking task
and add the invoking task to the successor list of task t.*1

void connect(Task& t) ( add_pred(t); t.add_succ(*this);

/* Return the predecessor list. *1
TasK_List* get_Pred() { return Pred;

1* Return the successor list. */
Task_List* get_SuccI) { return SUCCi

/* Set the level number. *1
void set_level(const int 1) ( level=l;)

1* return the level number. */
int get_level() const { return level;}

1* set the processor number assigned for the task. */
void set-processor(const int p) { processor=p;}

1* return the processor number assigned for the task. "/
int get-processor() const ( return processor;}

1* return the total number of predecessors of the task. "/
int get-pred_num() const;

/" return the total number of successors of the task. */
int get_succ_num() const;

1* return the total number of predecessors. "/
int Task: :get pred num() const
{ --

if (JPred) return 0;
return Pred->getsize();

/* return the total number of successors. */
int Task: :get_succ_num() const

if (!Succ) return 0;
return Succ->getsize();

1* Add a task to the predecessor list. *1
void Task: :add-pred(const Task& t)

if (Pred==NULL)
Pred=new Task_List(t.get_task_num());

else
Pred->add(t.get_task_num()) ;

/* Add a task to the successor list. *1
void Task: :add_succ(const Task& t)
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if (Succ==NULL)
Succ=new Task_List(t.get_task_num());

else

/* The Task_System class represents a task system in DAG format. It consists of a list of
tasks, the root task, the total number of levels, the width of the DAG, an two-dimention
array holding scheduing information including the time-unit/processor combination for
each task. */

class Task_System
(

/* the list of tasks in the DAG */
Task *T;

/* the number of tasks in the system */
int size;

/* the number of the root task */
int root;

/* the width of the DAG */
int width;

/* the number of levels in the DAG */
int L;

/* the allocation of tasks for each time unit and each processor */
into slot;

public:
/* read the task system from the task system generator TGFF */

void Read_TGFF_Graph();

/* read the task system from the task system generator Task Graph
Generator */

void Read_TGG_Graph() ;

/* get the total number of levels and the width of the DAG. */
void Find_Level_Width();

/* get the total number of tasks in the task system. */
int get_total_num() const { return size; }

/*schedule and allocate each task to a processor by Hu's Algorithm.-/
void Assign_by_Hu(ofstream&) ;

/* schedule and allocate each task to a processor by the proposed
algorithm. */
void Assign_by_Proposed(int&, ofstream&);

/* compute the total inter-processor communication overhead for the
task system. * /
int Total OH() const;

} ;

/* Read a task system randomly generated by TGFF program. The task system is
in file "seed.tgff".
The format of DAG is a number of arcs connecting pairs of task nodes. */

void Task_System: :Read_TGFF_Graph()
(

//open the file which contains DAG generated by TGFF program
ifstream ifile("seed.tgff");

Task_List end; lithe end list contains end nodes in arcs
Task List start; / /the start list contains sta,rt nodes in arcs

43

\

I
)

~
5
5
•
~

5
)..
i
),



do
(

)

-
char *input = new char[80] ;
char *task_temp= new char(80);
int max=O;

Ilget start and end node for each arc and add to the Task List start
Iland end accordingly until the end of file

while (true)
{

ifile » input;
while (strcmp(input. "FROM") && strcmp(input, "TO"));

ifile » task_temp;
string task (task_temp) ;
task.erase(O.3) ;
int i=atoi (task. c str () ) ;
if (!strcmp(input~ "FROM")

end. append (i) ;
if (!strcmp(input, "TO")
{

start.append(i);
if (i>max) max=i;
ifile.ignore(80, '\n');
if (ifile.peek()=='\n')

break;
)

)llend while true

size=max+l; lithe size of the task system
T=new Task[sizel; Iiallocate memory for the tasks

Iiset the task number for each task
int j=O;
for ( j=O; j<size; j++)

T[j].set_task_num(j) ;

Iladd precedence relations to each task
for ( j=O; j<start.getsize(); j++)
(

T [end. get_iter () I .connect (T (start .get_iter () J ) ;
start.iterate() ;
end. iterate () ;

)
start.reset_iter() ;
end.reset_iter() ;

root=O;
T(O].set_level(l); Iiset level of root task as one

ifile.close() ;

1* Read a task system generated by task_graph. pas program. The format is an upper
triangular adjacency matrix. *1
void Task System: :Read TGG Graph()
( - - -

1* open the file which contains the generated DAG in adjacency matrix
format *1

ifstream ifile("graphs.out");

Task List end; lithe end list contains end nodes in arcs
Task-List start; lithe start list contains start nodes in arcs

int max=O;
char *input = new char[80];
ifile.seekg(3.ios::beg);

ifile » max; lithe number of tasks specified by the input file

44

,

I
1
~

S
5
•......
)

J
),



-

size=max;
T=new Task[sizel; Iiallocate memory for the tasks

Iiset the task number for each task
int j=O;
for ( j=O; j<:size; j++)

T[jl .set_task_num(j);

Iladd precedence relations to each task
char c;
int i=O;
for ( i=O; i<:size; i++)
{

ifile. ignore (80. '\n');
for (j=O; j<:size; j++)
{

ifile.get(c) ;
if (j<:i) continue;
if (c=='l') T[j).connect(T[i)l;

lilend for j=O

lilend for hO

root=size-l;
T[size-l].set level(l); Iiset root task level as one

1* The method calculate the level number for each task and the width for
the whole task system. A queue of Task Node. implemented by Task List.
is utilized to accomplish the objective-:- The width of the DAG is the
maximum number of task in each level. *1

void Task_System: : Find_Level_Width()

L=o;llnumber of levels

IIQ is a queue to hold each task. starting from root node
Task_List Q;

Q.append(root); Ilappend the root task to the queue

1* Each time task i is dequeued. all its predecessors's level are set
one more than i's level. If any predecessor is not in the Q. append
it. Keep dequeuing until Q is empty. *1
while(!Q.is empty!)
{ -

Task Node* dequeued=Q.dequeue();

Ilget the predecessor of the dequeued node
Task_List* pred=T[dequeued->get_num()] .get_Pred();

while (pred && !p.red->is_end(»
{

Illevel of the dequeued node
int curr_level=T[dequeued->get_num()) .get_level();

1* set the predecessor level as one plus the level of
the dequeued node. *1

if (curr_level+l»T[pred_numl .get_level(»)
T[pred_num) . set_level (curr_Ievel+ll ;

Ilkeep track of the maximum level number L
if (curr level+l»L)

L=curr_level+l;

Ilif the predecessor is not in Q. append it to Q
if (!Q.search(pred_num)

Q.append(pred_num) ;
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pred->iterate () ;

}llend while pred

if (predl pred->reset_iter();

}llend while Q is empty

II find the width of the task system
int *W=new int[L+l1;
int i=O;
for (i=l;i<L+l; i++)

W til =0;

for (i=O; i<size; i++l
W[T[il.get_level()I++;

width=W[II;
for ( i=l; i<L+l;i++)
{

if (width<W [il 1
width=W[il;

)
delete W;

Iiallocate memory for each time unit and each processor
int slot_sum=width*L;
slot=new int[slot_sum];

for (i=O; i<slot_sum; i++) Ilidle processor represented as -1
slot[il=-I;

)llend of Find_Level Width()

1* Allocate each task in the task system in a multiprocessor system, given the number of
processor is width of the task system. The schedule is printed out. *1
void TaSK_System: :Assign_by_Hu(ofstrearn& out) (

int i,j;

int *P=new int[L+l) ;llarray to Keep track of which processor is idle
for (i=l;i<L+l;i++)

P[il=l;

for ( int t=O; t<size; t++)
{

int slot_num=L* (P [T [tl . get_level () I -1) +T [tl .get_Ievel () -1;
slot [slot_nurnl=t;
T [tl . setyrocessor (P [T [tl . get_level () I) ;
P[T[tl.get_level()I++;

}
delete p.

for (i=O; i<width; i++)
{

for (j=L; j>O; j --)
out « setw(3} « slot [i*L+j -1) « " ";

out « endl;

1° The proposed algorithm: replicating selected tasks to calculated idle
processor could reduce communication overhead to certain extent.
Given a task system scheduled by Hu's Algorithm, follow the steps below:
for i=2, ., L do

for each idle processor P
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for each task t in level i {
S denotes the number of t's successors on P;

R denotes the Dumber of t's prdecessors;
Rp denotes the number of t's predecessors on p.
ifS>R-Rp

then {
duplicate t to P at time unit I

if t has any predecessor p at level i+1
which as no predecessor and P is idle
at time unit i+1

then
duplicate p to P at time unit i+1
break

}
else if S>O and S=R-Rp

then {
if t has any predecessor p at level i+1

which as no predecessor and P is idle
at time unit i+1

then { duplicate t to P at time unit i
duplicate p to P at time unit i+1
break }

*1
void Task_System: :Assign_by_Proposed(int& dup. ofstream& out)
{

int i,j;
for (i=2; i<=L; i++) II for each level
{

int num=l;llthe number of tasks in each level, at least one;

lithe number of the idle processors at the beginning,at least two
int p=2;

while (slot[L*(p-1)+i-1] !=-1 && p<=width)
(

num++j
p++;

Illfind the available slot

if (num>=width) continue; Ilif level i has no idle processor

for (; p<=width; p++) Ilfor each available slot
{

for (j=o; j<num; j++l Ilfor each task in that level
(

int t=j*L+i-l;

int S=O;
int Rp=O;

int R=T[slot[t]] .get-pred_num(); Ilget R

Task_List* succ=T[slot[t]] ,get_Succ();
Task_List* pred=T[slot[t]] ,get_Pred();

while (succ && !succ->is_end(» Ilcalculate S
(

int s=succ->get iter();
if (T Is] .getyrocessor () ==p)

S++;
if (suce) succ->iterate();

Illend while

if (succ) succ->reset_iter();

while (pred && !pred->is_end() Ilcalculate Rp
(

int s=pred->get_iter();
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if (T[s] .get-processor()==pl
Rp++;

if (predl pred->iterate();

) I I end while

if (predl pred->reset_iter();

if (S > (R - Rp»
{
Iiduplicate t to the open slot;

slot[L*(p-l)+i-l]=slot[t] ;

dup++;

Task List * pred=T [slot [t II ,get Pred (l ;
for (int m=O; m<width; m++) -
(
if (pred && pred->search(slot[m*L+i]»
(
if (T [slot [m*L+il] .get_Pred () ==NULL

&& slot[(p-l)*L+i]==-l )
(

1* duplicate t's predecessor to
the open slot; *1

slot[L*(p-l)+i]=slot[m*L+iJ;

dup++;
break;

}llend if

}llend if

}llend for m=O

break;
)llend if S>R-Rk

else if (S>O && S-=R-Rp)

Task_List· pred=T[slot[tl] .get_Pred();
for (int m=O; m<width; m++)
{
if (pred && pred->search(slot[m*L+il»
(
if (T (slot [m*L+il ] ,get Pred () --NULL

&& slot[(p-l)*L+i]==-l) -
{

Iiduplicate t to the open slot;
slot[L*(p-l)+i-l]-slot[tl;

1* duplicate t's predecessor to
the open slot;·1

slot[L*(p-l)+i)=slot[m*L+i);

dup=dup+2;
break;

)llend if

}llend if

}llend for m=O

break;
}llend if S>O

else ;

)llend for each task in that level
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)//end for each available slot

}//end for i=O

//print out the schedule
for (i=O; i<width; i++)
{

for (j=L; j>O; j--)
out « setw(3) « slot [i*L+j-l] « " ";

out « endl;

/* The method which computes the total number of communication overhead among
the processors. The calculation is based on the precedence between the
tasks already scheduled on different slot. */

int Task_System::Total_OH() const

int OH=O;

for (int i=O; i<L; i++)

for (int j=O; j<width; j++)
{

int temp=slot[j*L+il;
if (temp==-l) continue;

while (pred && lpred->is_end(»
{

int p=pred->get_iter();
int k=O;
for ( k=i+l; k<L; k++)
(

if (slot [j*L+k]==pl
break;

if (k==L) OH++;
pred->iterate() ;

}/ lend while

if (pred) pred->reset_iter();

}llend inner for

}llend outer for

return OH;

I' The main function to call the methods and display the results. *1
int main(int argc, char' argvl]) (

lithe output file which shows the schedules of two algorithms
of stream outfile("schedule", ios::out I ios::app);

1* the output file which shows the overhead savings vs number of
replications. *1
ofstream ofile("result.txt", ios: :out I ios: :app);

Task_System G;
int Total_Dup=O; Iitotal number of task replications

if (! strcmp (argv [1]. "pascal")
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G.Read_TGG_Graph();

else if (! strcmp (argv [1), "tgff"»
G.Read_TGFF_Graph() ;

else
cout « "Invalid Graph Generation Program!" « endl;
exit (-1) ;

II label the task level number and find the width of the task system
G. Find_Level_Width () ;

1* schedule by Hu's Algor and output the schedule to the output file
accordingly *1
G.Assign by Hu(outfile);
int Hu OH=G~Total OH();
outfil~ « "Total-OH by Hu's Algor is "« Hu OH « "." « endl;

1* schedule by Proposed Algorithm and output the schedule to the output
file accordingly *1
G.Assign_by_Proposed(Total_Dup, outfile);
int Proposed OH=G.Total OH();
outfile « "Total OH by-proposed Algorithm is "« Proposed_OH « "."« endl;

Ilcalculate overhead savings by the proposed algorithm
int Total Savings = Hu OH - Proposed OH;
ofile « G.get_total_Dum() « '\t' <~ Total_Dup « '\t' «

Total_Savings« endl;

outfile.close();
ofile.close() ;
return 0;

50

.
)



...

PART TWO

The second part of Appendix B consists of the supplementary programs and scripts used
to work with the simulation program and the task system generator programs to automate
the experimentation and outputting of the results.

1) Supplementary Programs for Test Runs Using TGFF (Task Graphs For Free) [Dick et
al. 98] as Input.

/ •• ~ •• *********** ••• *•• **.**~*****************.*•••• *. ****.* •••• *.*./
1* Program: Generating Parameter File for TGFF Program *1
I * Author: Jun Su * I
1* Advisor: Dr. Mansur H. Samadzadeh *1
1* Date: July 2002 *1
j ••• ********** •••• ***.*** •• **.******** ••••••• *** ••• *** .*** ••••••• ***/

#include <fstream.h>

int main ()
{

int NUM, count;

Ilseeds for TGFF
int seed()",{O, 5, 36, 99, 162, 381, 747, 1893,6790, 34905};

lithe file which contains the minimum number of tasks and count of runs
ifstream in("run");

lIthe parameter file for TGFF
of stream out("seed.tgffopt");

in » NUM » count;
out « "seed" « seed (count] « endl; Ilseeds
out « "tg_cnt " « 1 «endl; Iinumber of task system in the file
out « "task_cnt " « NUM « " 0" « endl; Ilminimum number of tasks
out « "task_degree" « NUM « " " « NUM « endl; Ilin and out degree

out « endl « "tg_write" « endl;

in. close () ;
out.close();
return 0;

/******************* ••• ** •• ********* •• ****************.* •••• *****.**/
1* Program: outputing Final Data (TGFF) *1
1* Author: Jun Su *1
1* Advisor: Dr. Mansur H. Samadzadeh *1
1* Date: July 2002 *1
/*.***********.***.*** ••••• ************ ••••••••• *** •••• *************/

#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>
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int main ()
{

II the input file which contains the minimum task number and the
II count of runs

ifstream infile("run"};

II intermediate input file which contains the run result for each DAG
ifstream in ("result. txt") ;

lithe output file which contains the final data
of stream out ("result", ios::out I ios::app};

out.setf(ios: : fixed, ios: :floatfield};
out.setf(ios: :showpoint);

Iinumber of replications and total overhead savings
int dup=O, savings=O;
int temp;
int run[20);
int dup_sum[201, savings_sum [20J ;
double avg(20) , savings_avg(20);
int i;

for (i=0;i<20;i++)

dup_sum[i) =0;
savings_sum [i) =0;
run[i)=O;

while (in)

in » temp;
if (temp>=200) {

in. ignore (80, '\n');
continue;

in » dup;
in » savings;
in.ignorel80, '\n');
dup sum[temp/lO]+=dup;
savings_sum[temp/lO)+=savings;
run [temp/lO) ++;

III end while

for (i=O; i<20; i++)
(

Iidiscard the results if the total run count for that DAG size
Ilis smaller than 5

if lrun[i)<5) continue;

if (dup_sum[i) ==0) {
avg[il=O;
savings_avg[i) =0;

I
else
(

avg[i)=(double)savings sum[iJ/(double)dup sum[iJ;
savings_avg(i) = (double)savings_sum[i) I (double) run [i) ;

out «setw(3) « i*lO « " - " « setw(3) « i*10+9 « "\t"
« setprecision(2)« avg[il « "\t" « savings_avg[il
« endl;

Illend for

return 0;
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/**** •• ******.****** •• *** ••••••••••••• * •• ** ••• ***** ••• ** •• *** ••• ** •• ;
I~ Program: Looping (UNIX Shell Script) *1
1* Author: Jun Su *1
I~ Advisor: Dr. Mansur H. Samadzadeh *1
1* Date: July 2002 * I
/ •••• *****.*.****************** ••• ***** ••• *** •••• *.****** •••••• ** ••• /

NUM=5
while (NUM <= 100))

do
count=O

while ((count < 10))
do

print $NUM $count > run
rand
tgff seed
task tgff
«count=count+1) )

done

( (NUM=NUM+5) )
done

output
rm result.txt
rm seed*

2) Supplementary Programs for Test Runs Using TGG (Task Graph Generation)
[Samadzadeh 91] as Input.

/**~*******.*****.**** •• *.*.*.*** ••• *.** •• *.***.****.* •• ** •••• *** •• */
1* Program: Generating Parameter File for TGG Program */
/ * Author: Jun Su *1
1* Advisor: Dr. Mansur H. Samadzadeh *1
1* Date: July 2002 *1,......................................•............................•.............,
#include <fstream.h>
#include <stdlib.h>

int main ()

int NUM,count;

Iiseeds for TGG Program
double seed[I={O.OOOS, 0.12, 2.4, 14.9,89.32,578.01,

1238.3, 9962, 23973.4, 89786S.32};

lithe file containing the minimum number of tasks and count of runs
ifstream in(Urun U);

lithe parameter file for TGG
of stream out(Uinfile U);

in » NUM;
in » count;
out « seed [count} « endl;
out « 1 « endl;
out c< IIEII « endl;
out « NUM « end1;
out « NUM « endl;

out. close ()
return 0;
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/**~*.***** •• ***********.**.** ••••• *** ••• *.*** ••• ~ ••• *••••••••• ****./
1* Program: Dutputing Final Data(TGG) *1
1* Author: Jun Su *1
1* Advisor: Dr. Mansur H. Samadzadeh • I
I * Date: July 2002 */
1-·**····*··_···*··_*-·*···_···················_······ .. *_ ••••• _•••• /

#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>

int main ()

II the input file which contains the minimum task number and the
II count of runs

ifstream infile{"run");

Ilintermediate input file which contains the run result for each DAG
ifstream in("result.txt");

lithe output file which contains the final data
of stream out ("result", ios::out I ios::app);

out.setf(ios: : fixed, ios: :floatfield);
out.setf(ios::showpoint) ;

Ilnumber of replications and total overhead savings
int dup=O, savings=O;
int NUM;
int dup_sum=O, savings_sum=O;

while (in)
(

in » NUM;
in » dup;
in >::0 savings;
in.ignore(80, '\n');
dup_sum+=dup;
savings_sum+=savings;

}
double avg=(double) savings sum/(double)dup sum;
double savings_avg=(double)savings_sum/(do~le)10;

infile » NUM;
out «NUM« "\t"« setprecision(2) « avg « "\t" « savings_avg

« endl;

return 0;

1-········_·_·*·_··_······*-*·_····_············*_···· .•. - _.• _/
1* Program: Looping (UNIX Shell Script) *1
1* Author: Jun Su *1
1* Advisor: Dr. Mansur H. Samadzadeh *1
1* Date: July 2002 °1
/*************.****.** ••• *** ••• ******.*.*.* •• * •••••••• **.**.* •• *.~•• /
NUM=lO
while «NUM <= 200))

do
count=O

while (count < 10))
do

print $NUM $count > run
rand
a.out < infile
task pascal
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((count=count+l) )
done

output
rm result.txt
rm infile
((NUM=NUM+10) )

done

55



APPENDlXC

OUTPUT LISTINGS

This appendix consists of two output listings. The first part shows the experimentation
results, including the data for Average Overhead Savings by Replication and Overhead
Savings per Replication for TGFF and TGG, respectively. The second part includes a
fragment of the schedules by Hu's Algorithm and the proposed algorithm for the DAGs
generated by TGFF and TGG, respectively.

PART ONE

The first part of Appendix C shows the experimentation results, including the data for
Average Overhead Savings by Replication and Overhead Savings per Replication for
TGFF and TGG, respectively.
For each size range, ten task systems are generated randomly by TGG and TGFF. The
data for each size range is obtained by averaging the data for the ten task systems of the
same size range.

Number of
Tasks in the
task systems

10 - 19
20 - 29
30 - 39

40 - 49
50 - 59
60 - 69

70 - 79
80 - 89
90 - 99
100 - 109
110-119

120 - 129
130 - 139
150 - 159
170 - 179
180 - 189
190 - 199

Overhead Savings per
Replicat,ion for all task systems

in the range
1.05
1.00
0.92
1.21
1.00
1.07
0.92
1.31
1.18

1.25
1.63
0.91
1.16
1.20
1.29

1.20
1.53

Average Overhead Savings by
Replication for all task systems

in the range
1.67
3.11
3.92
4.73
0.86

14.00
5.83

13.45
15.56

12.60
12.36

27.60
11.60
59.22
47.70
24.43
62.00

Data Output by the Proposed Algorithm using TGFF Task Systems as Input.
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Number of
Tasks in the
task systems

10
20

30
40
50
60
70
80
90
100
110
120
130

140
150
160
170
180

190
200

Overhead Savings per
Replication for all task systems

in the size
1.37
2.62
4.00
4.64

5.74
6.85
7.72
8.68
9.52
10.85
12.01
11.80
12.52
13.52
14.17
15.61
15.23
16.15
17.92
18.38

Average Overhead Savings by
Replication for all task systems

in the size

2.60
8.90

20.40
34.30

46.50
57.50
89.60
113.70
121.90
175.80
209.00
208.80

246.70
297.50
365.50
388.70
380.70
448.90

498.10
567.90

Data Output by the Proposed Algorithm using TGG Task Systems as Input.

57



PART TWO

The second part of Appendix C includes a fragment of the schedules by Hu's Algorithm
and the proposed algorithm for the DAGs generated by TGFF and TGG, respectively.
Each row represents, a processor.
Each column represents a time unit.
-1 denotes idle on a particular processor during a particular time unit.
OH denotes Inter-Processor Communication Overhead.

1) Schedules by Hu's Algorithm and the Proposed Algorithm using TGFF as input.

16 10 9 8 7 5 3 2 1 0
17 11 -1 -1 -1 6 4 -1 -1 -1
18 12 -1 -1 -1 -1 -1 -1 -1 -1
19 13 -1 -1 -1 -1 -1 -1 -1 -1
20 14 -1 -1 -1 -1 -1 -1 -1 -1
21 15 -1 -1 -1 -1 -1 -1 -1 -1

Total OR by Hu's Algorithm is 18.
16 10 9 8 7 5 3 2 1 0
17 11 -1 8 -1 6 4 -1 -1 -1
18 12 -1 -1 -1 -1 -1 -1 -1 -1
19 13 -1 -1 -1 -1 -1 -1 -1 -1
20 14 -1 -1 -1 -1 -1 -1 -1 -1

21 15 -1 -1 -1 -1 -1 -1 -1 -1

Total OR by Proposed Algorithm is 17.

15 14 12 11 9 1 0
16 -1 13 -1 10 2 -1
17 -1 -1 -1 -1 3 -1
18 -1 -1 -1 -1 4 -1
19 -1 -1 -1 -1 5 -1
20 -1 -1 -1 -1 6 -1
21 -1 -1 -1 -1 7 -1
22 -1 -1 -1 -1 8 -1

Total OH by Hu's Algorithm is 31.
15 14 12 11 9 1 0

16 -1 13 -1 10 2 -1

17 -1 -1 -1 -1 3 -1
18 -1 -1 -1 -1 4 -1

19 -1 -1 -1 -1 5 -1

20 -1 -1 -1 -1 6 -1
21 -1 -1 -1 -1 7 -1

22 -1 -1 -1 -1 8 -1
Total OH by Proposed Algorithm is 31.

7 6 3 2 1 0
8 -1 4 -1 -1 -1
9 -1 5 -1 -1 -1

10 -1 -1 -1 -1 -1
11 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -1
13 -1 -1 -1 -1 -1

Total OR by Ru's Algorithm is 10.
7 6 3 2 1 0
8 -1 4 -1 -1 -1
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9 -1 5 -1 -1 -1
10 -1 -1 -1 -1 -1
11 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -1
13 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 10.

22 16 10 9 1 0
23 17 11 -1 2 -1
24 18 12 -1 3 -1
25 19 13 -1 4 -1
26 20 14 -1 5 -1
27 21 15 -1 6 -1
28 -1 -1 -1 7 -1
29 -1 -1 -1 8 -1
30 -1 -1 -1 -1 -1
31 -1 -1 -1 -1 -1
32 -1 -1 -1 -1 -1
33 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 35.
22 16 10 9 1 0
23 17 11 -1 2 -1
24 18 12 -1 3 -1
25 19 13 -1 4 -1
26 20 14 -1 5 -1
27 21 15 -1 6 -1
28 -1 -1 -1 7 -1
29 -1 -1 -1 8 -1
30 -1 -1 -1 -1 -1
31 -1 -1 -1 -1 -1
32 -1 -1 -1 -1 -1
33 -1 -1 -1 - 1 -1

Total OH by Proposed Algorithm is 35.

19 12 7 2 1 0
20 13 8 3 -1 -1
-1 14 9 4 -1 -1
-1 15 10 5 -1 -1
-1 16 11 6 -1 -1
-1 17 -1 -1 -1 -1
-1 18 -1 -1 -1 -1

Total OH by Hu's Algorithm is 16.
19 12 7 2 1 0

20 13 8 3 -1 -1
-1 14 9 4 -1 -1
-1 15 10 5 -1 -1
-1 16 11 6 -1 -1
19 17 -1 -1 -1 -1
-1 18 -1 -1 -1 -1

Total OH by Proposed Algorithm is 15.

28 27 17 8 7 6 5 1 0

-1 -1 18 9 -1 -1 -1 2 -1
-1 -1 19 10 -1 -1 -1 3 -1
-1 -1 20 11 -1 -1 -1 4 -1
-1 -1 21 12 -1 -1 -1 -1 -1
-1 -1 22 13 -1 -1 -1 -1 -1
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-1 -1 23 14 -1 -1 -1 -1 -1
-1 -1 24 15 -1 -1 -1 -1 -1
-1 -1 25 16 -1 -1 -1 -1 -1
-1 -1 26 -1 -1 -1 -1 -1 -1
-1 -1 29 -1 -1 -1 -1 -1 -1
-1 -1 30 -1 -1 -1 -1 -1 -1
-1 -1 31 -1 -1 -1 -1 -1 -1
-1 -1 32 -1 -1 -1 -1 -1 -1
-1 -1 33 -1 -1 -1 -1 -1 -1
-1 -1 34 -1 -1 -1 -1 -1 -1
-1 -1 35 -1 -1 -1 -1 -1 -1
-1 -1 36 -1 -1 -1 -1 -1 -1
-1 -1 37 -1 -1 -1 -1 -1 -1
-1 -1 38 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 52.
28 27 17 8 7 6 5 1 0
28 -1 18 9 -1 -1 -1 2 -1
28 27 19 10 -1 -1 -1 3 -1
28 27 20 11 -1 -1 -1 4 -1
28 27 21 12 -1 -1 -1 -1 -1
28 -1 22 13 -1 -1 -1 -1 -1
28 -1 23 14 -1 -1 -1 -1 -1
-1 -1 24 15 -1 -1 -1 -1 -1
28 -1 25 16 -1 -1 -1 -1 -1
28 27 26 -1 -1 -1 -1 -1 -1
-1 -1 29 -1 -1 -1 -1 -1 -1
-1 -1 30 -1 -1 -1 -1 -1 -1
-1 -1 31 -1 -1 -1 -1 -1 -1
-1 -1 32 -1 -1 -1 -1 -1 -1
-1 -1 33 -1 -1 -1 -1 -1 -1
-1 -1 34 -1 -1 -1 -1 -1 -1
-1 -1 35 -1 -1 -1 -1 -1 -1
-1 -1 36 -1 -1 -1 -1 -1 -1
-1 -1 37 -1 -1 -1 -1 -1 -1
-1 -1 38 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 39.

9 2 1 0
-1 3 -1 -1
-1 4 -1 -1
-1 5 -1 -1
-1 6 -1 -1
-1 7 -1 -1
-1 8 -1 -1

Total OH by Hu's Algorithm is 12.
9 2 1 0
9 3 -1 -1

9 4 -1 -1
9 5 -1 -1
9 6 -1 -1
9 7 -1 -1
9 8 -1 -1

Total OH by Proposed Algorithm is 6.

27 17 16 15 8 2 1 0
28 18 -1 -1 9 3 -1 -1
29 19 -1 -1 10 4 -1 -1
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30 20 -1 -1 11 5 -1 -1
31 21 -1 -1 12 6 -1 -1
32 22 -1 -1 13 7 -1 -1
33 23 -1 -1 14 -1 -1 -1
34 24 -1 -1 -1 -1 -1 -1
35 25 -1 -1 -1 -1 -1 -1
36 26 -1 -1 -1 -1 -1 -1

Total OH by Hu ' s Algorithm is 45.
27 17 16 15 8 2 1 0
28 18 -1 -1 9 3 -1 -1
29 19 -1 15 10 4 -1 -1
30 20 -1 -1 11 5 -1 -1
31 21 -1 15 12 6 -1 -1
32 22 -1 15 13 7 -1 -1
33 23 -1 -1 14 -1 -1 -1
34 24 -1 -1 -1 -1 -1 -1
35 25 -1 -1 -1 -1 -1 -1
36 26 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 42.

4 3 1 0
5 -1 2 -1
6 -1 -1 -1
7 -1 -1 -1
8 -1 -1 -1
9 -1 -1 -1

Total OH by Hu's Algorithm is 7.
4 3 1 0
5 -1 2 -1
6 -1 -1 -1
7 -1 -1 -1
8 -1 -1 -1
9 -1 -1 -1

Total OH by Proposed Algorithm is 7.

24 23 22 14 11 1 0
-1 -1 25 15 12 2 -1
-1 -1 26 16 13 3 -1
-1 -1 27 17 -1 4 -1
-1 -1 28 18 -1 5 -1
-1 -1 29 19 -1 6 -1
-1 -1 30 20 -1 7 -1
-1 -1 -1 21 -1 8 -1
-1 -1 - 1 -1 -1 9 -1
-1 -1 -1 -1 -1 10 -1

Total OH by Hu's Algorithm is 57.
24 23 22 14 11 1 0
24 -1 25 15 12 2 -1
24 23 26 16 13 3 -1
24 23 27 17 -1 4 -1
24 23 28 18 -1 5 -1
24 23 29 19 -1 6 -1
24 23 30 20 -1 7 -1
24 23 -1 21 -1 8 -1
24 23 -1 -1 -1 9 -1
24 23 -1 -1 -1 10 -1

Total OH by Proposed Algorithm is 36.
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2) Schedules by Hu's Algorithm and the Proposed Algorithm using TGG as input.

0 1 2 4 6 7 8 9
-1 -1 3 5 -1 -1 -1 -1
Total OR by Huts Algorithm is 10.
0 1 2 4 6 7 8 9
0 1 3 5 -1 -1 -1 -1
Total OH by Proposed Algorithm is 7.

0 1 2 4 5 6 7 8 9
-1 -1 3 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 5.
0 1 2 4 5 6 7 8 9
0 1 3 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 3.

0 1 2 5 6 7 8 9
-1 -1 3 -1 -1 -1 -1 -1
-1 -1 4 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 8.
0 1 2 5 6 7 8 9
0 1 3 -1 -1 -1 -1 -1
0 -1 4 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 5.

0 1 2 3 5 6 4 8 9
-1 -1 -1 -1 -1 -1 7 -1 -1

Total OH by Hu's Algorithm is 8.
0 1 2 3 5 6 4 8 9
0 1 -1 -1 -1 -1 7 -1 -1

Total OH by Proposed Algorithm is 6.

0 1 2 3 5 7 8 9
-1 -1 -1 4 6 -1 -1 -1

Total OH by Huts Algorithm is 9.
0 1 2 3 5 7 8 9
0 -1 -1 4 6 -1 -1 -1

Total OR by Proposed Algorithm is 7.

0 1 3 4 5 6 8 9
-1 2 -1 -1 -1 7 -1 -1

Total OR by Huts Algorithm is 10.
0 1 3 4 5 6 8 9
0 2 -1 -1 -1 7 -1 -1

Total OH by Proposed Algorithm is 8.

0 1 3 4 5 7 8 9
-1 2 -1 -1 6 -1 -1 -1

Total OR by Ruts Algorithm is 10.
0 1 3 4 5 7 8 9

0 2 -1 -1 6 -1 -1 -1

Total OR by Proposed Algorithm is 8.

0 1 2 4 7 8 9

-1 -1 3 6 -1 -1 -1
-1 -1 5 -1 -1 -1 -1
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Total OH by Hu's Algorithm is 13.
0 1 2 4 7 8 9
0 1 3 6 -1 -1 -1
0 -1 5 -1 -1 -1 -1

Total OH by Proposed Algorithm is 9.

0 1 4 5 2 7 8 9
-1 3 -1 -1 6 -1 -1 -1

Total OH by Hu's Algorithm is 10.
0 1 4 5 2 7 8 9
0 3 -1 -1 6 -1 -1 -1

Total OH by Proposed Algorithm is 8.

0 1 2 3 4 5 6 7 8 9 11 10 13 14 15 16 18 19
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 -1 -1 -1 17 -1 -1

Total OH by Hu's Algorithm is 23.
0 1 2 3 4 5 6 7 8 9 11 10 13 14 15 16 18 19
0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 -1 -1 -1 17 -1 -1

Total OH by Proposed Algorithm is 20.

0 1 2 3 5 7 9 10 12 13 14 15 16 17 18 19
-1 -1 -1 4 6 8 -1 11 -1 -1 -1 ··1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 32.
0 1 2 3 5 7 9 10 12 13 14 15 16 17 18 19
0 1 -1 4 6 8 -1 11 -1 -1 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 27.

0 1 2 4 5 7 9 13 12 15 16 17 18 19
-1 -1 3 -1 6 8 10 -1 14 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 5l.
0 1 2 4 5 7 9 13 12 15 16 17 18 19
0 1 3 4 6 8 10 -1 14 -1 -1 -1 -1 -1
0 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 39.

0 1 3 4 6 8 10 11 12 13 14 15 16 17 18 19
-1 2 -1 5 7 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 45.
0 1 3 4 6 8 10 11 12 13 14 15 16 17 18 19
0 2 -1 5 7 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 4l.

0 1 4 2 6 8 9 11 12 13 15 16 17 18 19
-1 -1 -1 3 7 -1 10 -1 -1 14 -1 -1 -1 -1 -1
-1 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 47.
0 1 4 2 6 8 9 11 12 13 15 16 17 18 19
0 1 -1 3 7 -1 10 -1 -1 14 -1 -1 -1 -1 -1

0 1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Total OH by Proposed Algorithm is 38.

0 1 3 2 5 9 6 8 13 15 16 17 18 19
-1 -1 -1 4 7 -1 10 12 14 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 4l.
0 1 3 2 5 9 6 8 13 15 16 17 18 19
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0 -1 3 4 7 -1 10 12 14 -1 -1 -1 -1 -1
0 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 32.

0 1 2 4 6 8 9 10 11 12 13 15 16 17 18 19
-1 -1 3 5 7 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 40.
0 1 2 4 6 8 9 10 11 12 13 15 16 17 18 19
0 1 3 5 7 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 33.

0 1 2 4 6 7 8 11 12 14 15 16 17 18 19
-1 -1 3 5 -1 9 10 -1 13 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 46.
0 1 2 4 6 7 8 11 12 14 15 16 17 18 19
0 1 3 5 -1 9 10 -1 13 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 38.

0 1 2 4 3 6 8 9 13 15 16 17 18 19
-1 -1 -1 -1 5 7 -1 10 14 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 12 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 49.
0 1 2 4 3 6 8 9 13 15 16 17 18 19
0 1 -1 4 5 7 -1 10 14 -1 -1 -1 -1 -1
0 1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1
0 -1 -1 -1 -1 -1 -1 12 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 37.

0 1 2 3 5 4 7 8 10 11 12 14 15 16 17 18 19
-1 -1 -1 -1 -1 6 -1 9 -1 -1 13 -1 -1 -1 -1 -1 -1

Total OH by Hu's Algorithm is 33.
0 1 2 3 5 4 7 8 10 11 12 14 15 16 17 18 19
0 1 2 3 -1 6 -1 9 -1 -1 13 -1 -1 -1 -1 -1 -1

Total OH by Proposed Algorithm is 23.

0 1 2 5 8 9 11 13 12 15 17 20 21 22 24 25 26 28
29

-1 3 4 6 -1 10 -1 -1 14 16 18 -1 -1 23 -1 -1 27 -1
-1

-1 -1 -1 7 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1
-1
Total OH by Hu's Algorithm is 128.

0 1 2 5 8 9 11 13 12 15 17 20 21 22 24 25 26 28
29

0 3 4 6 -1 10 -1 -1 14 16 18 --1 -1 23 -1 -1 27 -1
-1

0 1 -1 7 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1
-1
Total OH by Proposed Algorithm is 115.
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