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Abstract 
 
 

Over the past several decades, the Horn of Africa has been ravaged by 

catastrophic droughts and famines. In spite of the devastating frequent droughts 

and occasional floods in the region, our understanding of the region’s weather 

and climate variability is limited. The present study represents the first exhaustive 

investigation of rainfall variability over the Horn of Africa at intraseasonal, 

seasonal, interannual, and multidecadal time-scales, and contributes 

substantially to the fundamental understanding of weather and climate variability 

in the region. 

 

This research involves observational and modeling investigations to explore 

and document the space-time distribution of the major elements of weather and 

climate and their variability in the Horn of Africa. In particular, an exhaustive 

diagnostic examination is performed to identify the dominant modes of rainfall 

variability and the large-scale atmospheric and oceanic features that affect 

rainfall in the region. Building on the results of the diagnostic study, dependable 

short- to long-range prediction models are developed. These models are capable 

of predicting rainfall amounts and anomalies at a specific location or region from 

a few days to seasons in advance. The modeling study has identified the roles of 

sea surface temperatures over the Mediterranean Sea, Atlantic, and Indian 

Oceans in shaping rainfall variability over the Horn of Africa. The impacts of 

depleted vegetation resulting from poor early rains on Horn of Africa summer 

rainfall also are investigated and identified through model sensitivity experiments.  
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CHAPTER 1: INTRODUCTION 
 

 
The Horn of Africa, comprised of Ethiopia, Eritrea, Djibouti, the northern 

parts of Somalia, and portions of Sudan bordering Ethiopia and Eritrea, is one of 

the least developed regions in the world. A relief map of the region is shown in 

Fig. 1.1. The region has a tropical monsoon climate with wide topographic-

induced variations. Its complex orography features high plateaux with soaring 

mountains reaching 4,620 m in the Semien mountain ranges in northern Ethiopia 

and deep valleys descending to 125 m below mean sea level in the Denakil 

Depression in eastern Ethiopia.  

 

 

 

 

 

 

 

 

 

 

FIGURE 1.1. Relief map covering the study region. The base map was 

downloaded from the NASA webpage.  
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Rainfed  agriculture  and  livestock raising are the main sources  of 

livelihood for   the   overwhelming    majority   of   the   population   in   the  

Horn  of  Africa,    which    now   totals    130    million     and   is    growing  

2.44% annually (Source: Website of the U.S. Intelligence Agency, 

https://www.cia.gov/cia/publications/factbook/index.html). These socio-

economic activities are extremely vulnerable to any adverse changes in weather 

and climate. In fact, over the past several decades, the region has been ravaged 

by frequent occurrences of droughts and famines that crippled the region’s 

economy and left millions of people starved to death. 

 

 Most of the droughts and famines that devastated the region were caused by 

the failure of the main (Kiremt) rains that fall during June to September (Segele 

and Lamb 2005). The region’s fragile economy, widespread poverty, high rate of 

population growth, reduction in soil fertility, and the declining crop yields 

combine to exacerbate the adverse impacts of an otherwise manageable 

prolonged dry periods during the main rain season. Topping the list is our 

limited knowledge of the variability of summer rainfall and the lack of the 

understanding of the systems that control it. Such knowledge is essential in order 

to develop accurate prediction models. Only when meteorologists understand 

rainfall variability and its causes will we be able to provide accurate climate 

information that helps alleviate the adverse impacts of the vagaries of weather 

and climate, or assist in the planning and management activities needed to limit 
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the loss of life and property and improve national food security. So far, there 

have not been sufficient comprehensive studies that examined the major regional 

atmospheric systems that control or modulate summer rainfall over the Horn of 

Africa. Nor have there been any reliable physically-based prediction models for 

the region. These needs will be the focus of the present study.   

 

There is considerable intraseasonal and interannual variability in the 

monsoon rainfall across the Horn of Africa. Previous observational studies 

revealed some relationships between the El Niño/Southern Oscillation events 

and monsoonal rainfall (Camberlin 1997; Gisila et al. 2004; Segele and Lamb 

2005). Such observational studies, however, are few in number and limited in 

scope. Likewise, most of the modeling studies that cover the region have dealt 

largely with the effects of land surface exchange processes on a continental scale 

covering Africa and southeast Asia (e.g., Cook 1997; Douville 2002; Vizy and 

Cook 2003).  Consequently, there has not been any attempt to utilize dynamic 

models for weather forecasting or for climate-related studies over the Horn of 

Africa. Numerical climate models are suited to perform sensitivity studies and to 

gain insights into the physical processes that could not be obtained from 

observational studies. The application of dynamical models for weather 

forecasting or climate studies for any specific region, however, requires extensive 

prior tests to establish their validity and usefulness. This will be one of the 

objectives of this study. 
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Accordingly, one of the aims of this study is to assess the ability of a regional 

climate model to reproduce realistic precipitation patterns over the Horn of 

Africa.  Much effort is expended to adapt the model for the region. The model 

then is employed to perform sensitivity studies to investigate how the 

atmosphere responds to different regional forcing. Another major goal of this 

study is to identify the dominant modes of rainfall variability and examine, 

identify, and document the associated large-scale circulation systems that control 

or modulate monsoonal rainfall over the Horn of Africa on different time-scales. 

The study will identify the physical and dynamical characteristics that link the 

large-scale circulation systems with the regional precipitation anomalies. This 

knowledge is the basis for developing reliable physically-based prediction 

models that could be used on intraseasonal to interannual time-scales. This 

research thus aims to contribute to the fundamental understanding of the climate 

system over the Horn of Africa and improve the medium (a week to less than a 

month) and long range (a month to seasons) forecasting capability in the region.  

The major goals of the study can be summarized as follows: 

1. Diagnostic examination of the dominant modes of observed rainfall 

variability;  

2. Identification and characterization of the observed large-scale atmospheric 

systems and oceanic features and their connection to the Horn of Africa 

rainfall on different time-scales; 
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3. Assessment of the predictability of Ethiopian summer rainfall on an 

observational basis and development of medium and long range empirical 

forecasting models;  

4. Evaluation and adaptation of a Regional Climate Model; 

5. Use of the Regional Climate Model to assess (a) the role of the Atlantic 

and Indian Ocean on the summer rainfall over the Horn of Africa and (b) 

the impacts of local land surface characteristics on Ethiopian monsoon. 

 

The results of the above investigation will contribute to our fundamental 

knowledge of the monsoon and its variability over the Horn of Africa. In 

addition, the development of skillful empirical models will have strong societal 

value. The prediction models can help improve the climate information services 

that are needed to monitor and mitigate the adverse impacts of the recurring 

droughts and occasional floods in the region.  

 

This Dissertation is organized as follows. A review of pertinent literature is 

provided in Chapter 2. Chapter 3 identifies and discusses the dominant modes of 

observed variability of summer rainfall and examines the physical and 

dynamical characteristics that link rainfall with the large-scale systems. Chapter 

4 assesses the predictability of Ethiopian summer rainfall on an observational 

basis, and discusses the development, skill, and applicability of medium- and 

long-range empirical prediction models. Chapter 5 describes the latest version of 
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the International Center for Theoretical Physics Regional Climate Model 

(RegCM3) and assesses its performance in reproducing monsoonal rainfall over 

the Horn of Africa. Results of comprehensive experiments are presented. 

Chapter 6 examines the effects of sea surface temperature (SST) over the Atlantic 

and Indian Oceans on the Horn of Africa rainfall using RegCM3 sensitivity 

experiments. The impacts of dry pre-monsoon land cover or depleted vegetation 

on the upcoming monsoon season also are assessed through RegCM3 sensitivity 

studies. A summary and overall conclusions are provided in Chapter 7.    
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CHAPTER 2: OVERVIEW OF PERTINENT STUDIES 
 

2.1  Preamble  

This chapter provides the highlights of the large-scale evolution and 

variability of the greater Indian Ocean monsoon system. The review primarily is 

based on the vast literature available on the South Asian monsoon. It aims at 

developing a background on the current state of knowledge of the monsoon and 

its variability. We then examine the climate variability over the Horn of Africa 

from the perspective of the global monsoon. This is followed by a review of 

climate model applications over the monsoon regions. To facilitate the literature 

review, a brief description of the monsoon systems first will be provided. 

 

2.2  Elements of the Indian Monsoon System  

Krishnamurti and Bhalme (1976) documented the basic characteristics of the 

elements of the Indian Ocean monsoon system and their fluctuations during a 

near normal rainfall year over India. Variations in the intensity of the monsoon 

system in a given year arise from the passage of rain-producing monsoon lows 

and depressions, the interaction of the monsoon system with other circulations, 

or are due to internal monsoon dynamics. The major large-scale elements of the 

monsoon include the monsoon trough, the Mascarene high, the low-level cross-

equatorial jet, the Tibetan high, and the tropical easterly jet. Fig. 2.1 (from 
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Krishnamurti and Bhalme 1976) schematically shows the locations of these 

components of the monsoon system.  

 

 

FIGURE 2.1. Schematic diagram of the elements of the Indian monsoon system. 

From Krishnamurti and Bhalme (1976).  

 

The monsoon trough is a surface and lower tropospheric low-pressure 

trough and is part of the global equatorial trough of the northern summer 

season, which extends from West Africa to the east coast of Indo-China 

(Krishnamurti and Bhalme 1976). Embedded within the near-equatorial surface 

low-pressure trough is the Intertropical Convergence Zone (ITCZ), which is a 

confluence between the northeast trade winds and the cross-equatorial flow from 
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the Southern Hemisphere (Hastenrath 1991, p. 159; Hastenrath 2000a; Grist and 

Nicholson 2001). Vizy and Cook (2003) consider the monsoon trough as a bridge 

that potentially links precipitation co-variability between the Horn of Africa and 

India.  

 

The Mascarene high is a quasi-permanent subtropical cell normally centered 

over the south Indian Ocean near 30ºS and 30ºE. Oscillations in the strength of 

the Mascarene high have been linked to variability of monsoon rainfall over 

India. The quasi-biweekly oscillation in the major monsoon components found 

by Krishnamurti and Bhalme (1976) shows that the Mascarene high reaches 

maximum intensity after a widespread monsoon rainfall event over central India. 

Krishnamurti and Bhalme (1976) suggested that the intensification of the 

Mascarene high is a consequence of the strengthening of a local meridional 

Hadley-type overturning resulting from widespread rainfall and the associated 

latent heating over India. The rising (sinking) branch of the meridional 

circulation is over northeastern India (the Mascarene high).  

 

Associated with the intensification of the Mascarene high, a low-level 

equatorward flow develops and forms a low-level jet (LLJ) that also is known as 

the Somali Jet or Findlater Jet (Findlater 1969). The LLJ is a narrow southwesterly 

surface wind that attains a maximum strength near 1.5 km height (850 hPa), with 

core speeds of 12-15 m s-1 (Krishnamurti and Bhalme 1976; Hastenrath 1991, p. 
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133; Halpern and Woiceshyn 2001).  The jet is known to occasionally have speeds 

of 50 m s-1 around the 1.5 km level near Madagascar and off the Somali coast 

(Krishnamurti and Bhalme 1976). The LLJ transports about half of the total global 

lower-tropospheric mass flow across the Equator (Hastenrath 1991, p. 136), while 

the downstream southwesterlies over the Arabian Sea carry much of the 

moisture that sustains the Indian monsoon rainfall (Rodwell 1997). Large-scale 

monsoon rainfall accumulation over India and Southeast Asia and wind strength 

over Arabia and India are highly positively correlated (Findlater 1969; Ju and 

Slingo 1995).  

 

One of the prominent features of the monsoon system is the Tropical Easterly 

Jet (TEJ), which attains maximum wind strength at 150 hPa with the strongest 

winds (40-50 m s-1) being west of the southern tip of India (Krishnamurti, 1971; 

Krishnamurti and Bhalme 1976; Kanamitsu, and Krishnamurti 1978; Chen and 

van Loon 1987; Hastenrath 1991, p. 129). The TEJ forms in June and stays until 

September (Krishnamurti and Bhalme 1976). It extends from Indo-China to the 

west coast of Africa. The development and maintenance of the TEJ is connected 

with the zonally asymmetric heating due to the east-west land-ocean contrast 

across South Asia and North Africa, as well as the more zonally symmetric 

north-south differential heating of the upper troposphere between the elevated 

Tibetan plateau and the Indian Ocean surface to the south (Krishnamurti and 

Bhalme 1976; Chen and van Loon 1987).  
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It has been shown that intraseasonal-to-interannual variability in these major 

monsoon components modulate Indian monsoon rainfall (e.g., Krishnamurti and 

Bhalme 1976; Vernekar and Ji 1999). For example, on shorter time-scales, 

variations in the intensity of the Mascarene high, the strength of the LLJ, and the 

meridional pressure gradient affect monsoonal rainfall. Shorter time-scale 

fluctuations may be reflections of local instabilities (e.g., Krishnamurti and 

Bhalme 1976) or can arise from chaotic weather systems in the southern 

hemisphere midlatitudes (Rodwell 1997). Longer time-scale fluctuations in the 

monsoon components are caused by variations in global SSTs. In particular, 

Chen and van Loon (1987) found associations between anomalously warm 

surface water over the eastern and central equatorial Pacific and weakening of 

the low-level monsoon circulation and TEJ.  This study examines how these 

major monsoon components relate to the Horn of Africa summer monsoon 

rainfall through comprehensive observational and modeling studies.  In the next 

section, a review of the large-scale monsoon rainfall variability is provided for 

northern hemisphere Africa and India. 

 

2.3  North African and Indian Monsoon Rainfall 

Variability  

Summer rain (June–September) contributes 65-95 percent of the total annual 

rainfall over much of the Horn of Africa (Gissila et al. 2004; Segele and Lamb 
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2005; Korecha and Barnston 2006) and is part of the global broad-scale monsoon 

system (Bhatt 1989; Hastenrath 1991, pp. 182; Qian et al. 2002). The monsoon is 

driven primarily as a result of differential heating by the northern land and more 

southern ocean surfaces (Hastenrath 1991, pp. 183; Ju and Slingo 1995; Webster et 

al. 1998; Clark et al. 2000; Qian et al. 2002; Vizy and Cook 2003) and is most 

developed over the Indian subcontinent (Annamalai and Slingo, 2001; Mohanty 

2005).   

 

Previous studies have shown that there is a strong dynamical link and 

rainfall co-variability between India and east Africa (Bhatt 1989; Camberlin 1997; 

Vizy and Cook 2003). In fact, Camberlin (1997) suggested that the monsoon 

activity over India is a major trigger of rainfall over the Ethiopian highlands. It 

was argued that active/strong Indian monsoon conditions correspond to an 

enhanced west-east pressure gradient near the equator that favors abnormally 

strong westerly winds across equatorial Africa that advect moisture from the 

Congo Basin to Ethiopia, Uganda, and western Kenya. The author found that the 

summer rainfall over India and western parts of East Africa correlate strongly 

with correlation coefficient of +0.74. Vizy and Cook (2003) proposed a more 

direct link involving the monsoon trough that runs through eastern Africa and 

extends eastward to southern Asia, and suggested that the trough regulates the 

connection between East Africa and India and mediates the precipitation co-

variability between the two regions. When the monsoon trough is weak, dry 
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conditions are suggested to prevail over northern Ethiopia and western India, 

while a strong monsoon trough favors wetter conditions over western India and 

drier conditions all over Ethiopia.  This argument, however,  appears to 

contradict the above strong association found between East Africa and Indian 

rainfall, as it would imply that most parts of Ethiopia would remain dry 

regardless of the strength of the monsoon trough and rainfall conditions over 

western India. 

 

On the other hand, both observational and modeling studies show less 

coherence between the East African and West African monsoons (Bhatt 1989; 

Cook 1997), especially during some pronounced wet years (Segele and Lamb 

2005). Bhatt (1989) also found little similarity between West African rainfall 

variability and discharge fluctuations in the Nile basin. In contrast, variations in 

the Nile water discharges show remarkable similarity with Indian rainfall time 

series (Bhatt 1989). It is to be noted that the Blue Nile river of Ethiopia 

contributes 68 percent of the peak flow of the Nile River (Williams et al. 2003). 

Based on results of model simulations, Cook (1997) also suggested different 

rainfall mechanisms in the two regions. In East Africa, low-level convergence is 

almost entirely forced by mid-tropospheric condensational heating, while the 

same mechanism accounts for a little more than half of the convergence in West 

Africa. Noting that the structure of precipitation resembles the low-level 

convergence anomaly, she concluded that different mechanisms govern the 
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precipitation anomalies over western and eastern parts of North Africa.  

However, Segele and Lamb (2005) noted that some of the severe Ethiopian 

droughts are part of a continent-wide failure of the monsoon in the Soudano-

Sahel Zone (10°-18°N) that extends 6000 km eastward from 

Senegal/Gambia/Guinea Bissau/Guinea along the Atlantic coast to Ethiopia and 

Eritrea in the extreme east.  

 

The previous two paragraphs indicate some degree of association between 

the Horn of Africa and Indian monsoons, and less coherence between summer 

rainfall in East and West Africa north of the equator. Capitalizing on the 

similarity established between the Horn of Africa and Indian monsoons and 

noting that the South Asian monsoon system has been studied extensively, 

relevant past studies on the Indian summer monsoon are summarized to provide 

background for investigating the large-scale monsoon variability over the Horn 

of Africa.  

 

Many authors have shown that the South Asian monsoon system exhibits 

large variability on intraseasonal, interannual, and interdecadal timescales 

(Negal et al. 1995; Webster et al. 1998; Vernekar and Ji 1999; Wu et al. 1999; 

Krishnamurthy and Shukla 2000; Clark et al. 2000; Gadgil 2000; Krishnamurthy 

and Goswami 2000; Lawrence and Webster 2002). The prominent features of the 

monsoon variability at different time-scales are summarized next. 
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2.3.1  Intraseasonal variability  

On intraseasonal time-scales, the most dominant fluctuations in the monsoon 

are active/break cycles with quasi periods of 10-20 days and 30-60 days (Sikka 

and Gadgil 1980; Singh et al. 1992; Vernekar and Ji 1999; Wu et al. 1999; Gadgil 

2000; Annamalai and Slingo 2001). These intraseasonal fluctuations have been 

linked to the Madden-Julian Oscillation (Webster et al. 1998; Annamalai and 

Slingo 2001; Lawrence and Webster 2002; Hsu et al. 2004), or are thought to be 

manifestations of the variability in monsoon disturbances and components of the 

monsoon system (Krishnamurti and Ardunai 1980; Krishnamurthy and Shukla 

2000). The Madden-Julian Oscillation (MJO; Madden and Julian 1971) is a low 

frequency (30-60 day period) oscillation in the tropical large-scale circulation, 

which generally is manifest as an eastward propagating, equatorially trapped 

baroclinic oscillation in the upper tropospheric wind and cloud/rainfall fields 

(Webster et al. 1998).  The oscillation appears to have a larger amplitude over the 

Indian and western Pacific Oceans, where it strongly interacts with or modulates 

deep convection and influences the monsoon onset and activity over a large area 

(Chakraborty and Krishnamurti 2003).  

 

Using satellite observations, Sikka and Gadgil (1980) noted a 2-6 week 

oscillation in convection bands associated with the maritime and continental 

ITCZ during the transition seasons as well as the peak of the monsoon season 

and linked these oscillations with the onset, withdrawal, and active/break cycles 
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of the monsoon. Krishnamurti and Bhalme (1976) also noted very pronounced 

quasi-biweekly oscillations in rainfall, surface pressure, the cross-equatorial LLJ, 

and monsoon cloudiness. These oscillations do not change the character of the 

mean monsoon flow, but strengthen or weaken the entire system 

(Krishnamurthy and Shukla 2000). During break monsoon, sea level pressure 

increases over northwest India and the monsoon trough moves northward to the 

foothills of the Himalayas. This creates below normal rainfall over central India 

and above normal rainfall over the foothills of the Himalayas (Vernekar and Ji 

1999), and is accompanied by lower tropospheric weak westerlies (easterlies) 

north (south) of the equator (Krishnamurthy and Shukla 2000).   

 

The active and break cycles of the Indian monsoon also are linked to the 

Southern Hemisphere subtropical anticyclones. Based on results of modeling 

studies, Rodwell (1997) suggested that Southern Hemisphere midlatitude 

weather systems could trigger breaks in the Indian monsoon rainfall by injecting 

dry, high negative potential vorticity air into the low-level monsoon flow. 

Because the Ertel potential vorticity is conserved by air parcel in the absence of 

friction and heat sources, Rodwell (1997) indicated that the Findlater Jet 

transports not only moisture, but also negative potential vorticity from the 

Southern Hemisphere into the Northern Hemisphere. The author further argued 

that as the Southern Hemisphere subtropical anticyclones pass over the eastern 

coast of South Africa, the southeasterly winds from northern Madagascar toward 
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the east coast of Africa and the LLJ across the Arabian Sea are strengthened.  At 

the same time, the air in the eastern flank of the anticyclone crosses the equator 

maintaining its strong negative potential vorticity signature. With substantial 

negative potential vorticity north of the equator, the flow over the Arabian Sea 

becomes more diffluent and turns southward, reducing the low-level inflow into 

India.  Furthermore, the air crossing the equator from the Southern Hemisphere 

is likely to retain its dry characteristics because the air may not have enough time 

for a sustained moistening from the underlying ocean surface. Rodwell (1997) 

concluded that the immediate increase of rainfall over India corresponding to a 

surge in the cross-equatorial LLJ may not be the dominant effect of the passage of 

a ridge in the Southern Hemisphere midlatitudes. The model study indicates that 

the rainfall over central and northeastern India could subsequently fall by as 

much as 40% averaged over an 8-day period in response to a midlatitude 

injection of air into the low-level monsoon inflow, with a corresponding 50% 

increase in rainfall over the southern tip of the Indian Peninsula (Rodwell 1997). 

These rainfall patterns are consistent with the conditions that prevail during 

break monsoon.  

 

2.3.2  Interannual variability  

Monsoon variability is governed by slowly varying surface boundary 

conditions such as SSTs, surface albedo, and soil moisture (e.g., Charney and 

Shukla 1981; Kawamura 1998). The southwest monsoon exhibits biennial and 
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multi-year variability associated with the Tropospheric Biennial Oscillation and 

the El Niño-Southern Oscillation (ENSO) phenomena (Terray 1995; Meehl 1997; 

Webster et al. 1998, Clark et al. 2000). These modes of variability next are 

discussed separately.  

 

(a) Biennial variability 

The Tropospheric Biennial Oscillation (TBO) is the tendency for a strong 

monsoon to be followed by a weak monsoon and vice versa (Meehl et al. 2002), 

and appears to be a fundamental characteristic of the Asian/Australian monsoon 

occurring with an irregular period of 2-3 years (Webster et al. 1998; Chang and Li 

2000). Its existence is explained as arising from coupled interactions in the land-

atmosphere-ocean system over the monsoon regions involving SST-monsoon, 

evaporation-wind, monsoon-Walker circulation, and wind stress-ocean 

thermocline feedbacks (Brier 1978; Meehl 1997; Webster et al. 1998; Chang and Li 

2000; Meehl and Arblaster 2002, Wu and Kirtman 2004). A fundamental element 

of the TBO is the large-scale east–west atmospheric circulation that links 

anomalous convection and precipitation, winds, and ocean dynamics across the 

Indian and Pacific sectors (Chang and Li 2000; Meehl et al. 2003). This circulation 

connects convection over the Asian–Australian monsoon regions both to the 

central and eastern Pacific (the eastern Walker cell), and to the central and 

western Indian Ocean (the western Walker cell), and provides the low-level 

anomalous moisture convergence (divergence) that preconditions the 
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atmosphere for a wet (dry) monsoon (e.g., Meehl et al. 2003; Wu and Kirtman 

2004). Using observed upper-ocean data for the Indian Ocean,  Meehl et al. (2003) 

noted that slowly eastward-propagating equatorial ocean heat content 

anomalies, westward-propagating ocean Rossby waves south of the equator, and 

anomalous cross-equatorial ocean heat transports contribute to the heat content 

anomalies in the Indian Ocean and thus to the ocean memory and consequent 

SST anomalies. Furthermore, a combination of tropical convective heating 

anomalies over East Africa, Southeast Asia, and the western Pacific produces a 

Rossby wave–type response that alters the seasonal midlatitude circulation, and 

subsequently the land-sea meridional tropospheric temperature contrast (Meehl 

1997; Wu and Kirtman 2004). For example, an anomalous ridge over Asia during 

northern winter weakens the midlatitude westerlies, and creates warmer and 

drier conditions that lead to decreased snow cover over Asia. The anomalously 

warm south Asian landmass favors an enhanced land-sea temperature contrast 

and contributes to a strong monsoon.   

 

The specific processes that lead to the biennial oscillation described in the 

literature cited above can be summarized as follows. Warm SST anomalies over 

the Indian Ocean increase lower-tropospheric moisture through enhanced 

surface evaporation.  As the South Asian monsoon develops, the excess moisture 

is advected into South Asia by southwesterly winds. This intensifies the 

convective rainfall there and leads to a strong monsoon. On the other hand, due 



   20  

to the stronger surface winds and enhanced evaporation and mixing, the Indian 

Ocean progressively cools, and by the end of the monsoon season, negative SST 

anomalies are established. The ocean retains the cool conditions until a year later, 

when the convective maximum associated with the seasonal cycle again arrives. 

The convective heating associated with the stronger monsoon also intensifies a 

planetary-scale east-west circulation, leading to anomalous easterlies over the 

western and central Pacific. These anomalous easterly winds raise (deepen) the 

thermocline in the eastern (western) Pacific. The shallow thermocline, 

maintained by westward flowing surface current, deeper eastward undercurrent, 

upwelling, and surface divergence in the eastern Pacific (e.g., Trenberth 1991, p. 

19), sustains cooler SSTs in the east. The east-west SST gradient further intensifies 

the anomalous easterlies over the central Pacific, reinforcing the tilting of the 

thermocline and the warming of the western Pacific waters.  This pattern further 

strengthens the Walker cells and sets up the conditions for stronger Australian 

Monsoon. In addition, the warming of the western Pacific induces a stronger 

local Walker cell and hence a surface westerly anomaly over the Indian Ocean. 

This anomalous westerly wind helps the negative SST anomalies over the Indian 

Ocean to persist through the succeeding seasons, leading to a weaker South 

Asian monsoon the following summer.  Furthermore, a weak (strong) 

tropospheric meridional land-sea temperature contrast contributes to a weak 

(strong) South Asian monsoon. The chain of events in the weak monsoon phase 

is a mirror image of the sequence of developments described above.   
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The temporal asymmetry of the TBO is demonstrated by the lagged 

correlations between the Indian monsoon and SSTs over the western and eastern 

Pacific Ocean (Fig. 2.2, from Yasunari 1990). The lag correlation magnitudes 

gradually  increase  after  the  summer  monsoon  season  and  reach  maxima  in 

the  following  boreal  winter  (Fig. 2.2).  The correlations have the opposite sign 

for the eastern and western Pacific Ocean.  Although the correlation magnitudes 

for western Pacific Ocean of the preceding year are less strong, a similar lag 

  

 
FIGURE 2.2. Lagged correlations between the Indian monsoon rainfall anomaly 

and the SST anomaly in the western Pacific Ocean (0°-8°N, 130°-150°E; solid 

curve) and the eastern Pacific Ocean  (0°-8°N, 170°-150°W; dashed curve). Y(-1) 

and Y(+1)  refer to the year before and after reference year (Y0). The statistical 

significance at the 95% and 99% levels are shown by horizontal lines. From 

Yasunari (1990).  
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correlation pattern was found for East Asian summer monsoon rainfall (Shen 

and Lau 1995; not shown). In both cases, strong (weak) summer monsoon tends 

to lead a La Niña (El Niño) in the equatorial Pacific in the later seasons of the 

year (Webster et al. 1998). This suggests that anomalous convective heating 

associated with the Asian summer monsoon may play an active role in forming 

or triggering anomalous SST in the equatorial Pacific by altering the large-scale 

east-west circulation through processes involving monsoon-SST, evaporation-

wind, and wind stress-ocean thermocline feedbacks (Webster et al. 1998; Chang 

and Li 2000). 

 

(b) The El Niño Southern Oscillation mode  

Most of the interannual variability in the south Asian/Indian monsoon 

system is linked to the lower frequency mode of variability associated with 

ENSO (Terray and Dominiak 1995; Annamalai et al. 2005). The largest SST 

anomalies covering a considerable region occur mainly in the central Pacific 

Ocean associated with the ENSO phenomenon and explain a substantial fraction 

of monsoon rainfall variance (Kawamura 1989; Vernekar and Ji 1999). Modeling 

experiments also provided supporting evidence that ENSO is the dominant 

source of monsoon variability. Based on results from a set of 90-day model 

integrations forced by a variety of specified SSTs, Palmer et al. (1992) asserted 

that the remote effect of El Niño is much more important in determining the 
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interannual variability of the Asian monsoon, while the monsoon system’s 

response to Atlantic and Indian Ocean SST forcing is weak and localized. 

 

  The interaction between ENSO and the Asian summer monsoon, however, is 

complex and long has been the focus of many studies (Ropelewski and Halpert 

1987; Ju and Slingo 1995; Webster et al. 1998; Chakraborty and Krishnamurti 

2003). Ju and Slingo (1995) argued that the main influence of ENSO on the Asian 

summer monsoon appears to be associated with the latitudinal position and 

strength of the tropical convective maximum over Indonesia and the west Pacific 

in the preceding spring, and suggested that changes in large-scale circulation 

patterns associated with the equatorial Pacific SST anomalies in the preceding 

boreal winter or spring could be responsible. These changes are either driven 

remotely through teleconnections or locally by anomalous heating. Developing 

this hypothesis further using additional modeling case studies, Soman and 

Slingo (1997) showed that the modulation of the Walker circulation is the 

dominant mechanism responsible for a weakened Asian monsoon during El 

Niño years. Vernekar and Ji (1999) also noted that positive SST anomalies shift 

the heavy precipitation region from the extreme western Pacific to the central 

Pacific Ocean and create an anomalous heat source in the atmosphere that 

modulates the large-scale circulation and the normal mode of the Walker 

circulation. The shift in the climatological Walker circulation results in enhanced 

low-level convergence over the equatorial Indian Ocean and drives an 
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anomalous Hadley circulation with descent and decreased monsoon rainfall over 

the Indian continent (Krishnamurthy and Goswami 2000; Clark et al. 2000).  

 

On the other hand, Ju and Slingo (1995) noted that the modulation of the 

Walker circulation in La Niña years was not very strong and therefore may not 

be a dominant mechanism for determining the strength of the monsoon over 

South Asia. Through model sensitivity experiments, Soman and Slingo (1997) 

noted that although the Walker circulation is indeed modified for La Niña 

experiments, there is very little modulation of the divergent circulation over the 

monsoon regions compared with the results for El Niño experiments. Soman and 

Slingo (1997) concluded that the modulation of the local Hadley circulation over 

the warm-pool region could be a dominant factor in determining the behavior of 

the tropical convective maximum and therefore the strength of the monsoon over 

India and Southeast Asia during La Niña years.  They further noted that the 

enhancement of the tropical convective maximum over the western Pacific 

during La Niña could arise from an increased zonal SST gradient as well as from 

in situ warm SST anomalies. 

 

2.3.3  Interdecadal variability  

In recent decades the inverse relationship between Indian monsoon rainfall 

and ENSO has considerably changed (Chakraborty and Krishnamurti 2003; Wu 

and Kirtman 2004) probably because of additional forcing associated with 



   25  

monsoon internal variability (Krishnamurthy and Goswami 2000). Kumar (1999) 

noted a weakening in the ENSO-monsoon relationship after the 1976-77 climate 

shift (Nitta and Yamada 1989; Trenberth and Hurrell 1994; Graham 1994), 

following which the amplitude, spatial structure, and temporal evolution of El 

Niño events have changed significantly (Trenberth 1990; Wang 1995; Terray and 

Dominiak 2005). The 1976-77 climate shift, also known as regime change, refers 

to a sudden change associated with the decadal scale variability in atmospheric 

and oceanic states (e.g., Terray and Dominiak 2005). The changes in ENSO 

properties occurred concurrently with the Pacific decadal climate fluctuations 

and are indicative of a strong link between the interdecadal fluctuation in the 

North Pacific climate and the interannual and interdecadal climate variations 

over the tropical Pacific and Indian Ocean (Terray 1995; Zhang et al. 1997). 

Furthermore, Zhang et al. (1997) showed the structure of the interdecadal 

variability of the monsoon to be very similar to the interannual ENSO mode. 

 

Many studies have documented the variability of Indian monsoon and its 

link to the ENSO cycle on the interdecadal timescale (Webster et al. 1998; 

Torrence and Webster 1999; Krishnamurthy and Goswami 2000; Clark et al. 

2000). Using observed and reanalysis data, Krishnamurthy and Goswami (2000) 

found a strong correlation between the Indian monsoon rainfall and ENSO on 

the interdecadal timescale. In addition, they showed that the spatial patterns of 

SST and sea level pressure (SLP) associated with the interdecadal variations of 



   26  

Indian monsoon rainfall are nearly identical to those associated with the 

interdecadal variations of ENSO indices and demonstrated that the interdecadal 

variation of the Indian summer monsoon and that of the tropical SST are parts of 

a tropical coupled ocean-atmosphere mode.  In particular, they showed that the 

regional Hadley circulation and Walker circulation anomalies associated with the 

strong (weak) phases of the interdecadal oscillation are similar to those 

associated with the strong (weak) phases of the interannual variability over a 

considerable part of the equatorial region.  

 

2.3.4  The Indian Ocean and ENSO   

In addition to the Pacific Ocean, the Indian Ocean also experienced a sudden 

surface warming in the mid 1970s (Nitta and Yamada 1989; Clark et al. 2000; 

Terray and Dominiak 2005). Associated with this warming, the correlation 

structure between Indian Ocean SST and the Indian monsoon rainfall and ENSO 

cycle has significantly changed (Clark et al. 2000; Terray and Dominiak 2005). To 

determine the Indian and Pacific Oceans′ SST variability related to ENSO events 

before and after 1976-77 climate shift, Terray and Dominiak (2005) correlated 2-

month average SST over southeast Indian ocean with December-January average 

Niño-3.4 (5S-5N,170-120W) SST time series for the two periods at different lag 

times. The result clearly shows that the ENSO behaves differently before and 

after 1976-77 regime change. One of the salient features of the decadal fluctuation 
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is the notable difference in the evolution of Indian Ocean SST anomalies 

associated with ENSO for the pre- and post-1976-77 periods.   

 

Before the 1976-77 climate shift, significant positive correlations first appear 

over the North Arabian Sea during the late Indian summer monsoon and expand 

through the following seasons. During the mature phase of El Niño (La Niña), 

the whole Indian Ocean became significantly warmer (colder). After the 1976-77 

regime shift, El Niño onsets were preceded by a basin-wide cooling over the 

Indian Ocean with strong negative anomalies over southeastern Indian Ocean 

through early summer. Weaker positive SST anomalies appear over the western 

and northern Arabian Sea late in summer and continue through fall, with an 

emergence of a Tropical Indian Ocean dipole that maximizes in 

October/November. The term dipole is used to describe an east-west SST 

anomaly contrast over the tropical Indian Ocean, and is thought to have caused 

excessive rain and flooding over equatorial eastern Africa and the Nile as early 

as 1961(e.g., Saji et al. 1999).  There is, however, much controversy and 

uncertainty in the scientific community about the nature and development of this 

supposed dipole, and its independence from the ENSO (Webster et al. 1999; 

Hastenrath 2003; Yamagata et al. 2003).  In particular, noting his findings of the 

close association between zonal SST gradient, equatorial westerlies, East African 

Rainfall, and the Southern Oscillation in his earlier studies, Hastenrath (2002, 
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2003) concluded that there is no SST seesaw between the eastern and western 

equatorial Indian Ocean and argued against a misleading use of the term dipole.  

 

Although previous studies (Palmer et al. 1992; Nagai et al. 1995) suggested 

that the role of the Indian Ocean SST in ENSO or the atmospheric response to the 

Indian Ocean SST anomalies forcing is weak, Terray and Dominiak (2005) argued 

that this was true before the 1976-77 climate shift but not afterwards. In 

particular, the evolution of Indian Ocean SST during the initiation and 

development of ENSO led Terray and Dominiak  (2005) to assert  that the Indian 

Ocean plays an active role in the transition phases of ENSO and strengthens the 

seasonal positive wind-evaporation-SST feedback over the southeast Indian 

Ocean. They speculate further that the spatial extension of the Indian Ocean 

warm pool may explain the stronger links between southern Indian Ocean 

variability in boreal winter and the ENSO evolution observed after the 1976-77 

regime shift.   

 

2.3.5  Large-scale variability over the Horn of Africa  

As indicated in previous studies (Camberlin 1997; Vizy and Cook 2003), 

there are many common features in rainfall variability over India and the Horn 

of Africa. In a recent comprehensive observational study on Ethiopia, Segele and 

Lamb (2005) discussed key characteristics of the summer rains of Ethiopia and 

showed that there is considerable variability in the onset and cessation of the 
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June-September rains (Kiremt). On intraseasonal timescales, the Kiremt season is 

interspersed with weak rainfall periods or dry-spells that last from a few days to 

weeks. These “breaks” in the rainfall are excessively frequent and long during 

typical drought years. Based on upper air analysis for Addis Ababa (9.2°N, 

38.5°E), it was shown that long dry spells are characterized by the absence of 

surface southwesterlies, an abnormally warm and dry lower troposphere, and 

weakened 500-100 hPa layer dynamics as evidenced by unusually low 

geopotential heights and a slow TEJ. It was found also that most of the long dry 

spells tend to occur during the last phases of the season.  

  

On the interannual timescale, Segele and Lamb (2005) linked the Ethiopian 

Kiremt to the ENSO phenomenon in some respects. Spatially coherent and 

statistically significant correlation coefficients were identified between Kiremt 

rainfall/onset/growing length and sea surface temperatures over much of the 

equatorial Pacific Ocean. The start of the rain often is delayed during El Niño 

with the magnitude of correlation coefficient between monsoon onset over 

Ethiopia and SSTs over much of central and eastern Pacific Ocean exceeding 0.45. 

The growing length is even more strongly negatively correlated with SSTs over 

the equatorial Pacific, with the magnitude of correlation exceeding 0.55 over the 

central Pacific Ocean, which indicates shorter growing length and drier 

conditions during the warm ENSO phase. Interestingly, the summer rainfall 

retreat is more strongly correlated with Indian Ocean SST, with strong positive 
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correlation values (> +0.45) over the western Indian Ocean. Although not quite 

strong and widespread as the correlation patterns for the equatorial Pacific 

Ocean, Segele and Lamb (2005) also found a moderate (0.35−0.4) positive 

correlation between Kiremt onset and western Indian Ocean SST anomalies.  

 

2.3.6  ENSO, Indian Ocean SSTs, and rainfall variability over the Horn of 

Africa 

The above summary indicates that rainfall variability on the interannual time 

scale over the Horn of Africa is related in part to ENSO variability and SST 

variability over the Indian Ocean. However, the relative importance of ENSO 

and non-ENSO-related SST patterns for eastern Africa rainfall seems to be 

region/season dependent or unclear, and warrants further investigation over the 

Horn of Africa. For instance, Barnston et al. (1996) suggest that non-ENSO-

related SST patterns influence African rainfall anomalies with equal or greater 

strength than ENSO. Other studies (Latif et al. 1999; Sun et al. 1999) also indicate 

that SSTs over Indian Ocean drive east African rainfall and emphasized that 

ENSO-related SST anomalies are not directly involved. Moreover, Goddard and 

Graham (1999) observed the prominent role Indian Ocean SST plays in 

producing an observed African rainfall dipole pattern (rainfall anomalies of 

opposing sign in central-east and southern Africa) and its contribution to rainfall 

variability over eastern and southern Africa. They further stated that “While the 

SST variability of the tropical Pacific exerts some influence over the African 
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region, it is the atmospheric response to the Indian Ocean variability that is 

essential for simulating the correct rainfall response over eastern, central, and 

southern Africa”. (p. 19,099)  

 

The aforementioned studies indicate an apparent contradiction concerning 

the influence of the Indian Ocean on African rainfall. On one hand, Segele and 

Lamb (2005) found only modest effects of Indian Ocean SSTs on Ethiopian 

summer rainfall onset and cessation. On the other hand, many other studies 

reported stronger effects of Indian Ocean SSTs on African rainfall variability 

more generally. This study attempts to identify clearly the effects of Indian 

Ocean SSTs on the Horn of Africa rainfall. Specifically, could the effects of the 

Indian Ocean be more pronounced within the summer, but not during the onset 

and cessation of Ethiopian summer season? Or is it possible that the results of 

Barnston et al. (1996), Latif et al. (1999), Sun et al. (1999), and Goddard and 

Graham (1999) are valid only for other regions of eastern and southern Africa? 

To address these and other pertinent issues, detailed observational analysis and 

modeling studies will be performed for the Horn of Africa.   

 

Most of the studies reviewed earlier in this chapter are related primarily to 

the Indian monsoon rainfall, and quite a few are directly associated with rainfall 

variability over the Horn of Africa. This points to an incomplete understanding 

of the mechanisms associated with (especially) Ethiopian rainfall variability. On 
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the interannual time scale, for example, correlation analyses have indicated a 

strong link between SSTs over the tropical oceans and Ethiopian rainfall (e.g., 

Gissila et al. 2004; Segele and Lamb 2005; Korecha and Barnston 2006). However, 

there have not been studies that attempted to explain the physical mechanisms 

involved in that link other than ascribing it loosely to interactions between the 

equatorial Walker circulation and a regional Hadley circulation (section 2.3.2). 

This situation motivated the present research to address, for the first time, the 

following key questions: 

• How does such interaction manifest in the local circulation to affect 

rainfall over the Horn of Africa?  

• How do remote teleconnections change the regional circulations? 

•  How do the regional circulations during ENSO compare with the 

normal circulation features?  

 

 Segele and Lamb (2005) for the first time examined the tropospheric 

responses associated with the basic characteristics of the main rainy seasons of 

Ethiopia using local upper air data for one station and provided valuable insight 

into the regional circulation changes accompanying selected “wet” and “dry” 

summers. However, to fully address the issues raised above and explore the 

mechanisms involved, detailed analyses of high-resolution local and regional 

scale flows need to be performed. In addition, since ENSO explains up to only 

about 30% of the interannual rainfall variability, the bulk of rainfall variance over 



   33  

the Horn of Africa must be explained by processes linked to other internal and 

external controls.  

 

One of the tools employed in this study is a regional climate model. The 

Abdus Salam International Center for Theoretical Physics (ICTP) REGional 

Climate Model version 3 (RegCM3) will be used to simulate the evolution of the 

Horn of Africa monsoon for 1982-99.  In addition, the RegCM3 will be used to 

investigate the dynamical influence of the Indian Ocean and the effects of local 

surface properties on summer rainfall.  Pertinent regional climate model studies 

and related outstanding issues therefore are discussed in the next section.  

 

2.4  Regional Climate Model 

 2.4.1  Overview  

Regional climate models increasingly have been utilized to study mesoscale 

climate patterns and processes (Small et al. 1999; Pal et al. 2005) and regional 

climate variability (Sun et al. 1999; Wang et al. 2003) over different parts of the 

world. Regional climate models (RCMs) are useful tools for studying regional 

climate variability at different timescales and understanding the role that 

mesoscale and regional scale climate processes play in shaping the atmospheric 

response to external forcing (Diffenbaugh and Sloan 2004).  
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Typically, RCMs are initialized and run over limited-area domains and 

driven at the lateral boundaries by time-dependent large-scale meteorological 

fields obtained either from analyses of observations or general circulation model 

(GCM) simulations (Seth and Giorgi 1998; Giorgi and Bi 2000). Because the 

lateral boundary conditions (LBCs) limit the degrees of freedom of the model, 

the climatology obtained from a properly configured RCM will not strongly 

diverge from the forcing fields (Giorgi and Bi 2000) and thus RCMs can provide 

long simulation results from multi-year to multi-decadal and longer timescales. 

Model solutions in the interior of the domain are determined by a dynamical 

equilibrium resulting from nonlinear interactions among large-scale forcing, 

model generated forcing in the interior of the domain (e.g., topography), and the 

internal model physics and dynamics (Anthes et al. 1989; Seth and Giorgi 1998; 

Giorgi and Bi 2000), and likely capture regional patterns of precipitation, 

temperature and soil hydrology induced by local topography, land-cover 

patterns, and soil hydrology (Semazzi et al. 1993; Lee and Suh 2000).  Thus, 

carefully designed and configured RCMs are capable of describing climate 

feedback mechanisms acting at the regional scale and can provide high 

resolution (10 to 20 km or less) and multi-decadal simulations (Houghton et al. 

2001). 

 

As noted by Houghton et al. (2001), the use of RCMs for climate application 

was pioneered by Dickinson et al. (1989) and Giorgi (1990). In their pioneering 
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works on the use of a nested limited area model (LAM) for climate studies, 

Dickinson et al (1989) and Giorgi et al. (1989) nested a limited area model in a 

General Circulation Model to simulate regional precipitation climatology over 

the mountains of western United Sates. In the nesting procedure, the GCM 

output is used to provide the initial and lateral atmospheric boundary conditions 

necessary to drive/constrain the LAM. The nested model system produced better 

regional climatic details than the large-scale circulation and compared well with 

high resolution observations, particularly in their spatial distribution. Over the 

years, RCMs have been applied to a wide variety of studies ranging from climate 

and surface hydrologic processes and sensitivity studies to simulations of 

present, past, and future climates on the mesoscale and regional scale (Giorgi 

1991; Giorgi and Bi 2000, Pal et al. 2005).  

 

While improvements made over the years lowered the bias between 

modeled and observed precipitation (Giorgi et al. 1993), RCMs tend to 

overestimate precipitation frequency and the number of light precipitation 

events (Mearns 1995; Giorgi and Marinucci 1996) and produce large bias over 

mountainous regions (Giorgi and Shields 1999). Results of a sensitivity study by 

Giorgi and Marinucci (1996) especially show that model sensitivity to convection 

parameterization is of the same order of, or greater than, the sensitivity to 

topography and horizontal resolution during summer even in highly 

mountainous regions. Moreover, Giorgi and Shields (1999) and Pal et al. (2005) 
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stressed that the use of different convection schemes significantly affects 

simulated precipitation and leads to substantially different simulations of lower 

tropospheric circulations.  

 

2.4.2  Simulation of Intraseasonal and Interannual Variability  

Regional climate models have been used to investigate the intraseasonal and 

interannual rainfall variability over Africa (e.g., Semazzi et al. 1993; Sun et al. 

1999a, 1999b), east and south Asia (e.g., Bhaskaran et al. 1998; Small et al. 1999; 

Lee and Suh 2000), Europe (e.g., Giorgi et al. 1993c; Lüthi et al. 1996; Halenka et 

al. 2006), and the continental USA (e.g., Giorgi et al. 1996; Dai et al. 1999; Giorgi 

and Shields 1999). In general, the RCMs are reported to have performed well, 

especially on the intraseasonal and interannual time-scales. However, Dai et al. 

(1999) found a significant discrepancy between the modeled and observed 

diurnal cycles of precipitation over the United Sates when simulating 1993 

summer precipitation using RegCM.  

 

Over the Indian monsoon region, Bhaskaran et al. (1998) showed that the 

leading mode of sub-seasonal variability of the South Asia monsoon, a 30 to 50 

day oscillation of circulation and precipitation anomalies, was more realistically 

captured by an RCM than the driving GCM. The fine-resolution nested RCM 

leads to the identification of important spatial details not present in the GCM 

distributions especially in mountainous regions. For example, the RCM simulates 
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a strong precipitation signal, which appears to represent an orographic 

component of the response to circulation anomalies associated with the 

intraseasonal oscillation, but this precipitation signal largely is absent in the 

GCM simulation. Results of regional model simulations by Vernekar and Ji 

(1999) relate the active and break Indian monsoon conditions to the phase of the 

regional Hadley circulation associated with the strength of the South Asian 

continental ITCZ in the monsoon trough and the oceanic ITCZ in the equatorial 

Indian Ocean. In the positive phase, there is ascending motion in the continental 

ITCZ and descending motion in the oceanic ITCZ. In the negative phase, a 

descending branch over the continent suppresses convective activity. This 

overturning sometimes lasts a few days leading to break and active monsoon 

cycles.  

 

Over Sahelian West Africa, Semazzi et al. (1993) nested a high resolution 

atmospheric model (MM4) within the NCAR Climate Community Model version 

1 (CCM1) to investigate the sensitivity of the climate over the region to large-

scale circulation anomalies corresponding to dry (1984) and wet (1950) summers. 

The authors used observed global SSTs for 1950 and 1984 to prescribe the lower 

boundary conditions. The nested simulation showed significant improvement 

over the GCM results and produced centers of precipitation maxima in good 

agreement with observed patterns for both years. Moreover, Semazzi et al. (1993) 

noted that consistent with the observational diagnostic results of Lamb and 
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Peppler (1991), the southwesterly surface monsoon flow for the simulated dry 

year did not extend as far north along the West African coast as for the simulated 

wet year.  The improvement in the nested model simulation presumably is a 

direct reflection of detailed representation of topography, land-sea contrasts, and 

land surface processes.  

 

For East Africa, comprising Kenya, Tanzania, and parts of the Democratic 

Republic of Congo, Sun et al. (1999a) customized the NCAR Regional Climate 

version 2 (RegCM2)  and investigated the physical mechanisms that govern the 

October-December short rains over the region. The European Center for 

Medium-Range Weather Forecasts (ECMWF) global reanalysis data were used to 

generate the initial and LBC for RegCM2. They reported that the RCM simulated 

the large-scale circulation features, as well as prominent local features like the 

Turkana low-level jet and lake/land breeze circulation. Although the model 

overall showed good agreement with observations in capturing major 

precipitation maxima, areas of negative rainfall bias were identified over the 

tropical forest regions. In addition, the authors found that the large-scale 

circulation anomalies play the most important role in shaping the precipitation 

anomalies.  Sun et al (1999b) later applied the customized RegCM2 to study the 

interannual rainfall variability of the region for 1982-93 and found that the model 

reproduced the interannual variability of precipitation, although there were 

certain discrepancies in some years.  
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2.4.3  Impacts of Land-Surface Characteristics  

Investigation of the impacts of land surface characteristics on the atmosphere 

is relevant to the current study for the Horn of Africa. As indicated earlier, the 

1984 summer was the driest season for Ethiopia since at least 1961 (Segele and 

Lamb 2005). The drought conditions were exacerbated by the total failure of the 

short rains during the preceding spring, especially over northeastern regions. 

The dry conditions likely reduced the vegetation coverage on a large-scale over 

northern Ethiopia. It is, therefore, of great scientific interest to explore the 

relevance of the reduced vegetation coverage on the following summer using a 

regional climate model.  

 

Land surface characteristics such as soil moisture, surface albedo, and 

vegetation cover can have substantial impacts on atmospheric circulations and 

local climate patterns by affecting fluxes of heat, momentum, and water 

substances (Copeland et al. 1996; Small 2001). Based on mesoscale model 

simulation results, Crawford et al. (2001) report that soil moisture and the 

coverage and thickness of green vegetation have large effects on the magnitudes 

of surface sensible and latent heat fluxes. Substantial gradients in sensible 

heating resulting from contrasts in vegetation cover can modify existing 

mesoscale circulations or can result in the onset of thermally induced sea-breeze-

like circulations, also known as land or vegetation breezes, that may trigger 

convection and lead to severe weather (Anthes 1984; Segal et al. 1989; Clark and 
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Arritt 1995). Furthermore, regional contrasts in evapotranspiration and surface 

heating, resulting from differences in land surface characteristics between 

adjacent areas, may also significantly alter regional temperature and rainfall 

patterns (Pielke 1991).  

 

Douville et al. (2001) investigated the relevance of soil moisture for 

simulating the Asian and African monsoons using the Action de Recherche Petit 

Echelle Grande Echelle (ARPEGE) global climate model. The soil moisture 

conditions are specified  over a limited domain that covers 10º-20ºN, 20ºW-40ºE 

for the Asian and 5º-25ºN, 60º-120ºE for the African monsoons. Soil moisture 

conditions vary freely within a predefined domain over Asia or Sudan-Sahel 

region separately, but the soil moisture constraints gradually disappear in a 5º 

buffer zone surrounding the control domain. Sensitivity experiments were 

performed for idealized cases in which soil moisture in each region was limited 

by the value at the wilting point or at the field capacity but relaxed to the free-

running soil moisture values within the buffer zone. The simulations used the 

Global Soil Wetness Project (GSWP) soil moisture climatology for 1987 and 1988. 

These simulation results then were compared with a control simulation with 

free-running soil moisture determined by the Interactions between Soil 

Biosphere and Atmosphere (ISBA) land scheme but relaxed to GSWP soil 

moisture climatology for 1987 and 1988. To detect the soil moisture signal against 

the internal atmospheric variability, ensembles of seasonal simulations using the 
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same climatological SSTs but different initial conditions were analyzed. The 

results of the simulation show different sensitivity for the Indian and Sudan-

Sahel regions. The most important difference is that African rainfall increases 

with increasing soil moisture but Indian subcontinent precipitation does not 

show a clear response. Douville et al. (2001) suggest that this contrast is partly 

related to the more dynamical and chaotic nature of the Asian monsoon, for 

which moisture convergence is about 2 times that found over Sudan-Sahel so 

that water cycling has a weaker influence on seasonal rainfall. 

 

Later, Douville (2002) extended the previous study to investigate the 

relevance of soil moisture for simulating the interannual climate variability for 

1987 and 1988 over the Sudan-Sahel and Asia using realistic SSTs and soil 

moisture. The GCM simulations further indicated that the influence of soil 

moisture was stronger over the Sudan-Sahel region and weak and less coherent 

over Asia. In fact, the simulations showed that the variation of the Asian 

monsoon between 1987 and 1988 were mainly driven by SST anomalies. Thus, 

realistic SST and soil moisture boundary conditions are needed to simulate 

correctly Sahelian rainfall variability.  The positive soil moisture feedback over 

the Sudan-Sahel region compares well with the findings of Small (2001) in which 

wet soil in the North America Monsoon region enhances summer precipitation 

within the area.  
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Based on ground observation, Wendler and Eaton (1983) noted that over 

bare soil, surface temperatures increase when albedo declines but found the 

opposite for vegetated areas. Using results of RCM sensitivity studies, Copeland 

et al. (1996) confirmed that albedo changes lead to changes in net radiation 

available at the surface, but it is the partitioning of this energy between latent 

and sensible flux due to vegetation characteristics like leaf area index and 

fractional vegetation coverage that determine whether a region warms or cools. 

Based on RCM sensitivity results, Giorgi et al. (1996) highlighted the competing 

effects of sensible and latent heat fluxes on summer precipitation. As a positive 

feedback mechanism, simulations with wet soil conditions produced increases in 

evaporation, which provided additional atmospheric moisture favoring 

increased precipitation. On the other hand, simulations with reduced 

evaporation associated with dry soil conditions tend to increase buoyancy that 

dynamically sustains convection. However, Giorgi et al. (1996) noted that large-

scale circulations are more important in determining the overall precipitation 

anomalies than local effects associated with surface evaporation. 

 

In a well known early study on Sahelian drought, Charney (1975) 

hypothesized that the reduction of vegetation increases surface albedo. This, in 

turn, induces subsidence and more radiative cooling of the air, which reduces 

convective activity and precipitation, and consequently vegetation. The 

reduction in precipitation is further enhanced by the decrease in 
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evapotranspiration resulting from the depletion of vegetation. Using GCM 

simulation experiments, Charney et al. (1977) later showed that appreciable 

changes in albedo and evaporation rate significantly affect convective clouds and 

precipitation, especially in the semi-arid zones lying at the boundary between 

major deserts and adjacent monsoonal regions. In the presence of appreciable 

evaporation, the increase of albedo acts to reduce the absorption of solar 

radiation by the ground and therefore the transfer of sensible and latent heat into 

the atmosphere. The reduction in convective clouds allows more solar radiation 

to reach the ground, but it reduces the downward flux of longwave radiation 

more strongly, so the net radiation absorbed by the ground is reduced. Charney 

et al (1977) concluded that with or without evaporation, the increase in albedo 

causes a net decrease of radiative flux into the ground and therefore a net 

decrease of convective clouds and precipitation. Picon (1986) also applied a GCM 

to study the effects of albedo on Sahel climate and obtained lower precipitation 

rates, reduced net solar radiative flux, and decreased evaporation rates when 

surface albedo was increased over the Sahel.  

 

Using a more realistic representation of the changes in land surface 

characteristics, Xue and Shukla (1993, 1996) further explored the link between 

land surface conditions and atmospheric circulation for the Sahel through high-

resolution GCM sensitivity experiments. To represent the current desertification 

in the Sahel, Xue and Shukla (1993) changed model vegetation types for the 
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region 10º-18ºN to reflect desert-like land surface conditions. The authors 

indicated that this representation of land surface changes is more realistic 

compared to most previous sensitivity studies that specify somewhat arbitrary 

values of albedo or soil moisture. The simulation results of Xue and Shukla 

(1993) showed that the Sahel rainfall was reduced due to desertification and the 

rainy season was delayed almost by half a month. The desertification experiment 

also revealed a weak southwesterly moisture flow, reduced moisture 

convergence, decreased evaporation rate, and a southward shift in the axis of 

maximum rainfall.  In their follow-up study, Xue and Shukla (1996) investigated 

the effects of large-scale afforestation on the sub-Saharan region by replacing 

shrubs and bare soils with broadleaf trees in the GCM experiments. The results 

showed that the rainfall is augmented in most afforestation areas but reduced to 

the south of those areas. In contrast to the desertification experiment, the model 

responded much more slowly to the land surface changes in the afforestation 

experiment, indicating nonlinear effects of land surface characteristics. In 

addition, Xue and Shukla (1996)  noted that afforestation has the largest impact 

for a dry-year simulation.  

 

Given the impact of soil moisture, albedo, and vegetation on rainfall 

discussed in this section, it is logical to assume that the failure of the 1984 

Ethiopian spring rainfall and the depleted vegetation that could result from the 

dry conditions can affect the rainfall pattern the following summer. To assess the 
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large-scale effects of the land surface changes in 1984, the basic methods of Xue 

and Shukla (1993, 1996) will be employed in our high-resolution model 

sensitivity investigation.  

   

2.5  Scope of Proposed Work 

A number of issues raised in the background discussion earlier indicate the 

lack of basic research and fundamental understanding on the Horn of Africa 

summer monsoon processes. Of major concern is the role of the Indian Ocean on 

the interannual rainfall variability. To examine the dynamical influence of the 

Indian Ocean and contribute toward the understanding of the physical 

mechanisms that govern the intraseasonal and interannual variability over the 

Horn of Africa monsoon, both observational and modeling studies will be 

conducted.  

 

As a foundation for understanding the climate system over the Horn of 

Africa, a comprehensive observational study first will be conducted. The 

investigation utilizes raingauge and the NOAA Climate Prediction Center (CPC) 

Merged Analysis of Precipitation (CMAP) pentad data to identify the dominant 

modes of rainfall variability in the region. The large-scale circulation features 

corresponding to these modes then will be analyzed using the National Center 

for Environmental Prediction (NCEP) daily average Reanalysis data. The space-

time evolution of the individual physical modes associated with the Horn of 
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Africa rainfall will be examined and the physical and dynamical linkage will be 

identified. This observational study will form the basis for the subsequent 

investigations on the predictability of summer rainfall. It also will help focus 

model sensitivity experiments that will be designed to study the effects of dry 

Ethiopian pre-monsoon seasons and SST variations over the Atlantic and the 

Indian Ocean on the Horn of Africa monsoon rainfall variability.  

 

The domain of the rainfall variability study covers the region from 30-50ºE 

and 5-20ºN (Fig. 1.1). Since Ethiopia accounts for the largest portion of the 

domain and possesses all the climatic characteristics of the surrounding 

countries, Ethiopian raingauge stations can be assumed to represent the climate 

of the region adequately.  While the study focuses on the main rainy season from 

June to September, it also uses daily and 5-day average time series for May-

October, and monthly total rainfall time series for February-May, June-

September, and January-December.   

 

Building upon the results of the diagnostic analysis, the predictability of 

Ethiopian summer rainfall will be examined in detail. Using a novel prediction 

technique that combines wavelet analysis and linear regression, dependable and 

skillful empirical models are developed for forecasting Ethiopian rainfall at 

medium and long range time-scales. The applicability of the statistical prediction 

models will be discussed. 
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For application of the regional climate model, the recently released RegCM3 

will be comprehensively tested to examine its skill and select the best 

configuration and convective scheme that captures the region’s climatic features. 

Although considerable improvements have been made in representing subgrid 

scale processes, recently Wang et al. (2003) reported low performance in 

precipitation simulation over the tropics due to the weak large-scale forcing and 

predominance of convection. Since most previous RCM studies have been 

applied to middle latitude regions (Sun et al. 1999a; Pal et al. 2005), it is 

imperative to perform exhaustive precipitation sensitivity tests to produce 

realistic regional precipitation patterns over tropical regions as convective 

precipitation still remains the most important sources of error in climate 

modeling (Sun et al. 1999a; Wang et al. 2003).   

 

Model performance is evaluated by comparing simulated rainfall for known 

wet and dry summers with raingauge observations and satellite rainfall 

estimates. Once adapted and validated, the RegCM3 then will be applied over a 

sufficiently large domain that encompasses the major large-scale monsoon 

circulation systems to obtain a model simulated rainfall climatology and assess 

the interannual variability. For model initialization and LBCs, SST and the NCEP 

Reanalysis data were obtained from the NOAA-CIRES Climate Diagnostics 

Center (Boulder, Colorado; http://www.cdc.noaa.gov/). 
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The RegCM3 also will be utilized to investigate the impacts of SST variations 

over the Atlantic and the Indian Ocean on rainfall over the Horn of Africa. The 

role of individual ocean basins and their relative importance to the Horn of 

Africa rainfall will be examined. Lastly, model sensitivity studies will be carried 

out to identify the effects of depleted vegetation that could result from weak 

spring rains on the amount and distribution of subsequent monsoonal rainfall 

over the Horn of Africa. 
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CHAPTER 3: LARGE-SCALE CIRCULATION PATTERNS 

ASSOCIATED WITH DOMINANT MODES 0F 

MONSOON RAINFAL VARIABILITY DURING 1970-99:  

OBSERVATIONAL ANALYSES 

  

3.1 Preamble  

Recently, Washington et al. (2006) have highlighted the lack of systematic 

understanding of the basic state of the atmospheric circulation over critical parts 

of Africa. Furthermore, the authors noted that improvements in understanding 

the basic circulation patterns across Africa are essential for improving the 

management of activities affected by climate variability and future climate 

change, not only over Africa but also on a more global scale.  This problem is 

particularly acute over the Horn of Africa, for which there never has been any 

basic research on the large-scale circulation patterns. Although the large-scale 

systems during the southwest Indian monsoon are generally associated with the 

Horn of Africa summer rainfall (e.g., Camberlin 1997; Segele and Lamb 2005), 

only a few comprehensive quantitative studies link those features specifically to 

local weather and climate patterns over the Horn of Africa. Segele and Lamb 

(2005) recently made a positive stride towards identifying the linkage between 

Ethiopian climate variability and the large-scale atmospheric circulation 

anomalies over Africa and the surrounding oceans for selected dry and wet 

Ethiopian monsoon seasons.  
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However, to understand weather and climate variability and develop 

physically based prediction models, it is important to understand the 

mechanisms involved and the large-scale circulation features associated with the 

region’s rainfall variability.  This chapter is dedicated to documenting and 

understanding the major modes of rainfall variability over the Horn of Africa 

and the associated large–scale atmospheric circulation patterns across Africa and 

the tropical Atlantic and Indian Oceans. This work will add to our knowledge of 

the basic regional circulation patterns and their association with/effects on the 

Horn of Africa rainfall. The study also enhances our understanding of the 

impacts of the global atmospheric and oceanic features on the Horn of Africa 

rainfall variability.  In addition, the study lays the foundation for developing 

physically based prediction models on intraseasonal to seasonal time-scales by 

identifying dynamical/thermodynamic atmospheric and oceanic variables 

related to the major modes of rainfall variability during summer.  

 

The first step in this study is identifying the major modes of rainfall 

variability over the Horn of Africa.  This is achieved through the application of 

wavelet analysis to daily, 5-day, and monthly rainfall data. After identifying the 

frequency bands of the dominant modes of rainfall variability, both rainfall and 

several atmospheric and oceanic time series will be filtered identically for each 

frequency band. The filtered time series are subsequently analyzed using 
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different statistical methods including, correlation, regression, and composite 

analyses.  

 

3.2 Data and methodology  

3.2.1  Data  

The study utilizes several data sets. The first data set contains raingauge 

measurements for Ethiopia. Daily rainfall data for 121 Ethiopian stations were 

obtained on hard copy from the National Meteorological Services Agency of 

Ethiopia. As reported in Segele and Lamb (2005), these data were digitized and 

quality controlled to construct the first research quality rainfall data set for 

Ethiopia. Of the 121 stations obtained, 100 were determined to have their main 

rainy season during boreal summer and were used in this study. To supplement 

these raingauge data and to increase the spatial coverage over the Horn of Africa, 

Pentad CMAP rainfall estimates (Xie and Arkin 1997) were used. The CMAP 

data set is produced by a technique that produces pentad and monthly analyses 

of global precipitation in which observations from raingauges are merged with 

precipitation estimates from several satellite-based algorithms (infrared and 

microwave). The analyses are on a 2.5 x 2.5 degree latitude/longitude grid and 

extend back to 1979 (Xie et al. 1997). The data are available at 

ftp://ftpprd.ncep.noaa.gov/pub/precip/cmap. 
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For large-scale atmospheric circulation analyses, daily average products of 

the NCEP-NCAR reanalysis project were obtained from the NOAA-CIRES 

Climate Diagnostics Center (Boulder, Colorado; http://www.cdc.noaa.gov/). 

The daily averages include geopotential height, temperature, horizontal winds, 

vertical velocity, and specific humidity at standard pressure levels, and sea level 

pressure for the period 1970-99. The data are described by Kalnay et al. (1996).  

The period 1970-99 was chosen because a 30-yr analysis was considered 

sufficient to estimate the recent climatic characteristics of a region (e.g., Folland 

et al. 1991). Moreover, there are more reporting stations and fewer missing data 

in the Ethiopian raingauge data set after 1970 (e.g., Segele and Lamb 2005), and 

hence using data before 1970 may not give reliable results. To examine the 

connection between rainfall and sea surface temperature variability, the U.K. 

Meteorological Office Hadley Centre's global sea surface temperature (SST) data 

set, (HadISST1, Rayney et al. 2003) is utilized. The SST data set contains globally 

complete fields on an individual monthly basis for a 1° latitude-longitude grid 

from 1871 to present. For this study, however, only the 1970-99 data period is 

used. 

 

3.2.2  Wavelet analysis  

Wavelet analysis is a common tool for analyzing localized variations of 

power within a time series and reveals the temporal structure of nonstationary 

time series (Wang and Wang 1996; Torrence and Compo 1998). The technique is 
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well suited to the study of multiscale, nonstationary time series that result from 

nonlinear interactions between several physical processes occurring within a 

broad set of temporal and spatial scales (Lau and Weng 1995; Webster and 

Hoyos 2004).  Wavelet analysis is being used increasingly to decompose 

geophysical time series into time-frequency space to develop prediction models 

(e.g., Webster and Hoyos 2004; Mwale and Gan 2005) and detect periodicities 

and trends (e.g., Wang and Wang 1996; Baliunas et al. 1997; Chapa et al. 1998).  

 

Geophysical time series often are nonstationary and contain combinations of 

various frequency regimes with contributions present throughout the entire 

temporal domain (Lau and Wang 1995; Webster and Hoyos 2004). The frequency 

regimes may be localized in time for a short period or may span a large portion 

of the data record. Localized events can be represented by a set of local 

parameters characterizing its frequency, intensity, time position, and duration.  

The time-integrated characteristics of these localized signals provide global 

information, which describes the temporal mean state (Lau and Wang 1995). To 

define a climate signal, both local and global information need to be preserved, 

and wavelet analysis is ideally suited for such a purpose (Lau and Wang 1995; 

Torrence and Compo 1998).   A summary of the mathematical formulation of a 

wavelet transform is given below based on expositions by Lau and Weng (1995) 

and Torrence and Compo (1998).  
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For most geophysical time series, it is suitable to choose a continuous 

wavelet transform with complex valued wavelets (Weng and Lau 2004). The 

wavelet transform of a discrete time series nx  is defined as the convolution of nx  

with a scaled and transformed mother wavelet ψ  
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where the ∗  indicates the complex conjugate, s  is the scale, and tδ and N  are the 

time spacing and length of the time series nx , respectively. The scale s  is a 

dilation parameter that controls the window width and oscillation period of the 

mother wavelet.  

 

The Morlet wavelet is a commonly used daughter (or an analyzing) wavelet 

for signal detection in geophysical data (Chapa et al. 1998). It has a better spectral 

resolution than, for example, the Mexican hat wavelet (Baliunas et al. 1997) and is 

given by 
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where the nondimensional frequency 0ω is taken as to be 6, and η  is a 

nondimensional time parameter. The calculations of the wavelet transform (Eq. 

3.1) are performed in Fourier space 
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 where )(ˆ swψ  is a Fourier transform of )/( stψ , kω  is the angular frequency 

defined by 
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and nx̂ is the discrete Fourier transform of nx   
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To ensure that the wavelet transforms at each scale s  are directly 

comparable to each other and to the transforms of other time series, the wavelet 

function at each scale is normalized to have unit energy (Torrence and Compo 

1998) and is given as 
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where )(ˆ 0 ksωψ  is the Fourier transform of the Morlet wavelet.  

 

The wavelet spectrum )(sWn  in Eq. 3.3 is a matrix of energy coefficients of 

the decomposed time series at each scale and time, and the coefficient 

magnitudes show how well the wavelet matches with the time series (Mwale and 

Gan 2005).  The wavelet power spectrum, defined as 2)(sWn  is a good measure 

of the magnitude of the analyzed time series at each scale.  
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The wavelet transform (Eq. 3.3) is essentially a bandpass filter of uniform 

shape and varying location and width and can be used to reconstruct the original 

time series or to obtain a wavelet-filtered time series between any two scales 1j , 

2j  (Torrence and Compo 1998). For such arbitrary scales 1j , 2j , the filtered time 

series nx′ is given by 
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where the factor )0(0ψ removes the energy scaling, δC is a constant, ℜdenotes 

the real part of the wavelet spectrum, and jδ is a factor for scale averaging.  

 

Finally, for nonorthogonal wavelet analysis, an arbitrary set of scales can 

be used to build up a more complete picture of the spectra. For convenience, the 

scales are taken as fractional powers of two such that 

 Jjss jj
j ,...,2,1,0,20 == δ        (3.8) 
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where 0s is the smallest resolvable scale and usually is taken as 2 tδ , J determines 

the largest scale, and jδ depends on the width in spectral-space of the wavelet 

function. For this study, the wavelet analysis software developed by Torrence 

and Compo (1998) will be used to decompose and filter rainfall into its major 

modes of variability. The software was downloaded from 

http://paos/colorado.edu/research/wavelets. 
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3.3 Large-scale circulation 

3.3.1  Summary of regional climatology  

A brief overview of regional climatology is provided to facilitate the 

discussions and focus on the relevant circulation patterns and synoptic systems. 

Fig. 3.1 presents long-term average climatological patterns for May-October 

1970-99.  At the surface, much of the Horn of Africa is dominated by a 

meridional ridge that forms a wedge of weak high pressure over the highlands of 

Ethiopia. This semi-permanent ridge extends from the Mascarene high through 

the Mozambique Channel and forms a weak high over southern Ethiopia (Fig. 

3.1a).  The St. Helena high over the southern Atlantic Ocean features a weak 

meridional ridge across the Gulf of Guinea (Fig. 3.1a). This high-pressure cell is 

the source of the southeast trades that blow over the tropical Atlantic and enter 

western Africa from the southwest. The moist monsoon winds converge towards 

drier northeast trade winds originating from the Azores high. The ridge 

associated with the Azores high runs across the Mediterranean Sea into northeast 

Africa (Fig. 3.1a).  The equatorial trough of low pressure running through Africa, 

the Arabian Peninsula, and the Indian subcontinent generally lies north of 10ºN 

across the Horn of Africa (Fig. 3.1a). The northward penetration of the semi-

permanent ridge that runs through the Mozambique Channel towards Ethiopia 

appears to limit the monsoon trough to the north of/over northernmost parts of 

Ethiopia.  
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a  
 
FIGURE 3.1a. Long-term May-October average climatological pattern of mean 

sea level pressure (hPa) for 1970-99.  

 

b
 
FIGURE 3.1b. Same as Fig. 3.1a  except  for  resultant  wind speed (contours, 

m s-1) and wind vectors (arrows, wind scale shown at the right corner, m s-1) for 

850 hPa. Contour interval is 5 m s-1.  
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Cross-equatorial southwesterlies west of Ethiopia reach about 15ºN and 

extend vertically from 1000 hPa (not shown) up to 850-hPa (Fig. 3.1b). The 

shallow westerlies across central Africa reaching Ethiopia may sometimes 

originate from central Africa or the Indian Ocean (Folland et al. 1991). However, 

inspection of daily maps shows westerlies originating from the tropical Atlantic 

that cross equatorial Africa to reach the Horn. Other notable circulation features 

at 850 hPa are the diffluent southerlies over southern Ethiopia, the southwesterly 

low-level jet (LLJ) off the Somali coast, the dry northerlies over northeast Africa 

north of 15ºN, and the weak cyclonic center over Yemen extending into eastern 

portions of Ethiopia. 

 

c  

FIGURE 3.1c. Same as Fig. 3.1b except for 700 hPa.  
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With the strengthening of the Saharan and Arabian anticyclones at 700 hPa, 

dry northerlies prevail across much of the Horn of Africa (Fig. 3.1c). A weak 

trough running westward from India reaches coastal parts of eastern Africa and 

marks the disappearance of the LLJ at this level. In the mid to upper troposphere 

(Fig. 3.1d), easterly winds strengthen with height and develop into an easterly jet 

that maximizes at 150 hPa over the Horn of Africa (e.g., Segele and Lamb 2005). 

The core of the jet lies to the south of India and its axis passes across Ethiopia. 

The TEJ is fed by the anticyclonic circulation around the Tibetan high to the 

north and the anticyclone over the Indian Ocean to the south (Chen and van 

Loon 1987). The ridges associated with these highs are evident in Fig. 3.1d along 

22ºN and 12ºS, respectively.  

 

d  

FIGURE 3.1d. Same as Fig. 3.1b except for 150 hPa.  
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The three dimensional structure of the regional circulation is revealed by the 

local-Hadley-like and Walker-like circulations shown in Fig. 3.2. The regional 

Hadley-like (Walker-like) circulation was obtained by averaging the vertical and 

meridional (zonal) winds over 30-50ºE (5-20ºN). Since the pressure velocity 

numerical values are much smaller than the horizontal winds, the wind vectors 

are obtained after dividing the actual values of the horizontal and vertical winds 

by their respective standard deviation for the entire domain. Hence, the 

normalized horizontal winds are given in m s-1 (standard deviation)-1 and 

pressure velocities are in Pa s-1 (standard deviation)-1. 

 

The long-term longitude-height cross section (Fig. 3.2a) shows strong 

ascending motion below 500 hPa for the Horn of Africa. The low- to mid-

tropospheric ascending motion is overlain by descending motion between 400-

200 hPa east of 40ºE, reflecting the desert-like climate in the northern Rift Valley. 

Much of western Ethiopia (west of 40ºE), on the other hand, show less strong but 

deep convection extending to 200 hPa. In both cases, centers of maximum 

convection largely are above the surface between 850-700 hPa. The structure of 

this mean vertical motion over the Horn of Africa is different from the structure 

of the mean ascending motion over India (IN) and (especially) over the Bay of 

Bengal (BB), both of which have deeper and stronger convection reaching to 200 

hPa, with centers of maximum convection below 850 hPa over India and at about 

300 hPa in the Bay of Bengal.   
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a  b
 
FIGURE 3.2. Long-term May-October climatology of regional circulation 

components for 1970-99. (a) Longitude-height section of zonal wind (u) and 

negative vertical velocity (-ω), averaged over 5-20ºN. (b) Latitude-height section 

of meridional wind (v) and negative vertical velocity (-ω), averaged over 30-50ºE. 

Shading depicts actual pressure vertical velocity (-ω; Pa s-1). See text for 

explanation of the wind vectors. Vertical dashed dark lines mark the bounding 

longitudes and latitudes of the Horn of Africa. Red triangle shows the location of 

Addis Ababa (central Ethiopia). Letter marks in (a) show regional locations (see 

text). 

 

Inspection of Fig. 3.2a also reveals noticeable differences in the vertical 

motion fields between the Horn of Africa and West Africa (Guinea-

Bissau/Guinea-Conakry, GN), with the mean vertical ascending motion for the 

latter being deeper. In addition, the maximum ascending motion over West 

Africa occurs at lower levels below 850 hPa. The trans-North African vertical 

structure of the ascending motions is consistent with model simulation results of 

Cook (1997), who found differences between West and East Africa monsoons and 
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noted that, unlike the situation over West Africa, mid-tropospheric 

condensational heating is the primary force for low-level convergence and 

vertical motion over Ethiopia (Section 2.3).  The difference in the level of 

maximum ascending motion between the two regions also is a reflection of the 

fact that much of the Ethiopian surface (excluding the Rift Valley, southern, and 

the extreme western Ethiopia) is above 850 hPa.  

 

The long-term average meridional overturning (Fig. 3.2b) is characterized by 

ascending southerlies at low levels extending to southern Ethiopia, strong 

ascending motions in the equatorial trough region between 15-20ºN, and 

returning northerly currents at upper levels south of 5ºN. The fact that the 

strongest ascending motion lies north of 15ºN is consistent with the ITCZ being 

located north of Ethiopia during the monsoon season. This is in agreement with 

the previous assessment of the equatorial trough position near the Horn of Africa 

sector (Fig. 3.1a). The main rain belt lags a few degrees south of the ITCZ, 

coinciding with areas of weaker but deeper ascending motions west of 40-42ºE  

(west of the upper-level subsiding current in Fig. 3.2a) and south of 10-12ºS. 

Much of the middle to upper troposphere south of 5ºN is characterized by 

sinking motion and coincides with the climatologically dry southern regions of 

Ethiopia. The next section provides quantitative assessment of how this 

climatology relates to the average march of daily rainfall for May-October over 

the Horn of Africa.   
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3.3.2  Diagnostic Analysis of Regional Circulation Associated with May-

October Rainfall 

Correlation analyses are used to identify large-scale circulation patterns that 

are strongly related to rainfall over the Horn of Africa. First, the average daily 

and 5-day (pentad) rainfall for 1970-99 was computed using 100 Ethiopian 

stations, which have their main rainy season during boreal summer (Segele and 

Lamb 2005; present Fig 3.3). This averaging (obtained by adding all available 

station rainfall, including zero, and dividing it by the number of stations for each 

day) produced a time series of 184 (days per year) x 30 (years) daily and 36 

(pentad per year) x 30 (years) pentad rainfall values. In addition, pentad CMAP 

rainfall estimates were averaged for 30-50ºE and 5-20ºN (Fig. 3.3) for 1979-99 

because the CMAP data set is available beginning 1979 on a pentad basis.  

 

 
 

 
FIGURE 3.3. Domains used in the study. (a) Shaded region shows the Ethiopian 

monsoon region for which raingauge data from 100 stations are averaged. The 

rectangle encompasses the Greater Horn of Africa for which pentad CMAP 

average is computed. The large domain covers the region of atmospheric 

circulation analysis. (b) Domain for teleconnection investigation.  

ba 
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The linkage between the daily (based on Ethiopian raingauge)/pentad 

(based on raingauge for Ethiopia and CMAP rainfall estimates for the Greater 

Horn) rainfall averages and grid fields of dynamic and thermodynamic 

atmospheric variables covering 30ºW-90ºE and 40ºS-50ºN (Fig. 3.3a) was 

examined using correlation and regression analyses. To investigate the relative 

importance of teleconnection and regional circulation features on daily and 5-day 

time-scales, correlations between regional rainfall and sea level pressure and 

horizontal winds over the tropical Pacific Ocean also were performed. Fig. 3.3 

shows the different regions used for the data averaging and analyses. Note that 

as indicated in Section 2.5, some of the Ethiopian stations located close to 

Djibouti (raingauge stations in northeastern Rift Valley and eastern Ethiopia), 

Eritrea (stations in northern Rift Valley and northern and northwestern 

Ethiopia), northern Somalia (stations in the extreme eastern Ethiopia), and 

eastern Sudan (stations in the extreme southwestern, western and northwestern 

Ethiopia) possess the climate of the neighboring country/region. In some cases, 

the distance between borderline stations in Ethiopia and stations in bordering 

countries is less than the average distance between nearby stations within 

Ethiopia. Therefore, noting the proximity and orographical similarity between 

borderline stations in Ethiopia and the neighboring regions, the all-Ethiopian 

rainfall (raingauge) can be considered to represent the climate of the Horn of 

Africa. However, the specific data used in subsequent analysis (daily and pentad 
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raingauge data for Ethiopia or pentad CMAP rainfall estimates for the Horn of 

Africa) will be stated explicitly.   

 

Pearson correlation coefficients were computed to examine the relationship 

between daily average rainfall and several daily average time series of 

atmospheric variables for May-October 1970-99 (5520 daily data points). 

Likewise, the correlations between 5-day average Ethiopian rainfall/CMAP and 

several atmospheric variables were calculated for the same period as above. In 

this case, each pair has 1080 pentad data points. Lagged correlations also were 

performed to assess the stability of the correlation analysis and to test the short 

range predictability potential for the region. When computing lagged correlation 

between rainfall and MSLP, the MSLP is shifted backward in time so that rainfall 

leads MSLP by the number of “lag” days. For example, for a lag correlation of 10 

days, the MSLP time series valid for, say July 10, is correlated with the rainfall 

time series valid for July 20. The total data points used for lagged correlations are 

5520 minus “lag” for the daily time series, or 1080 minus “lag” for the pentad 

time series. Because of the large number of degrees of freedom for these data 

pairs, we note that even small correlation values would have high statistical 

significance.  

 

The Mascarene and St. Helena highs generally are considered to be linked to 

rainfall over the Horn of Africa (e.g., Korecha and Barnston 2006). The 
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correlation between daily MSLP and Ethiopian daily average summer rainfall 

shows that the stronger positive correlations (0.42-0.45) are with the meridional 

ridge along the Mozambique Channel and the weak meridional ridge over the 

Gulf of Guinea (Fig. 3.4a), and not with the Mascarene high proper.  These strong 

correlations are manifestations of the positive effects of the 

southerly/southwesterly flow across much of the continent reaching the Horn of 

Africa (Fig. 3.1b). In addition, the importance of the Atlantic Ocean, possibly as a 

moisture source, is evident by the large coverage of statistically significant (0.01% 

level) correlations there.  

 

The strongest negative correlations (-0.60) between Ethiopian rainfall and 

MSLP come from the monsoon trough regions over the Arabian Peninsula, 

especially over the Yemen highlands extending to Oman. This strong negative 

correlation reflects the stronger dynamical effects of the monsoon trough; the 

deeper the monsoon trough, the stronger the low-level convergence. This 

promotes development of strong convective systems over the Yemen highlands, 

which propagate westward and produce wetter conditions over Ethiopia. In 

addition, a deepening of the monsoon trough increases cross equatorial flow, 

which also favors wetter conditions in Ethiopia.  

 

Figure 3.4b shows a 20-day lagged correlation between rainfall and MSLP. 

Correlations generally are strong and follow the same pattern  as  the concurrent  
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FIGURE 3.4. Spatial patterns of concurrent (a) (c) and 20-day lagged (b) 

correlations between May-October Ethiopian daily rainfall (raingauge) and mean 

sea level pressure (MSLP) for 1970-99. Thick solid (dashed) lines enclose 

positive (negative) correlation values significant at the 99.9% confidence level 

according to a two-tailed Student’s t-test. Ethiopia is delineated in top two panels.  

 

correlations. The strong negative correlations over the Arabian Peninsula 

(especially over Oman) and positive correlations over south-central Africa reflect 

the positive roles of the monsoon low pressure systems and the meridional 

pressure gradient formed by the deepening of the monsoon trough to the 

northeast and the intensification of the high pressure cells to the south. Clearly, 

regional MSLP anomalies possess strong predictive potential on short (less than 6 

a b

c 
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days) and medium (a week to less than a month) time-scales. The same 

correlation analyses based on pentad CMAP rainfall show similar correlation 

patterns, but the magnitudes are weaker (not shown).   

 

To examine the possible effects of more remote forces on Ethiopian summer 

rainfall, Fig. 3.4c shows the correlation between tropical Pacific and eastern 

Indian Ocean MSLP and daily average summer rainfall for Ethiopia. The primary 

features of this correlation map are the absence of any connection between 

rainfall and pressure over the equatorial Pacific and, particularly, the 

manifestation of weak all-positive correlations over the southern tropical Pacific 

Ocean. This weak correlation of same polarity over the southern Pacific signifies 

the absence of connection between the Southern Oscillation Index (SOI) and 

summer rainfall, and thus implies that regional circulation anomalies (monsoon 

trough, pressure systems over Indian and Atlantic oceans) are more important 

than teleconnection effects of ENSO on shorter time-scales. There is, however, 

significant association between Ethiopian rainfall and MSLP over northern 

Australia (Fig. 3.4c).    

 

Lower tropospheric geopotential height also shows strong associations with 

Ethiopian rainfall, with positive correlations south of 10ºN and negative 

correlations in the monsoon regions from the Arabian Peninsula to India at low 

levels (Fig. 3.5a). This pattern extends to 850 hPa  and  possesses  nearly  identical  
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FIGURE 3.5. Spatial patterns of concurrent correlations between May-October 

Ethiopian daily rainfall (raingauge) and geopotential height (top) and temperature 

(bottom) for 1970-99. (a) 850 hPa, (b) 150 hPa, (c) 1000 hPa, and (d) 200 hPa. 

Thick solid (dashed) lines enclose positive (negative) correlation values 

significant at the 99.9% confidence level according to a two-tailed Student’s t-

test. 

 

pattern as in Fig. 3.4a. Over the tropical Atlantic Ocean, positive lower 

tropospheric geopotential anomalies enhance monsoon westerlies across western 

a b

c d 
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and central Africa, which tend to increase rainfall over the Horn of Africa. The 

positive   correlations   over   the  Arabian  Peninsula  to  the  north  and  negative 

correlations over the eastern parts of Africa and the Mozambique Channel to the 

south indicate increased Ethiopian rainfall is associated with steep meridional 

height  gradients  resulting  from  the  deepening  of the monsoon trough and the 

intensification of  the  southern  hemisphere subtropical highs. At and above 700 

hPa, the correlations weaken with height in both hemispheres, but strong 

positive correlations again appear over much of the northern hemisphere at 

upper tropospheric levels north of 10ºN (Fig. 3.5b). The associated intensification 

of upper tropospheric subtropical ridge in the northern hemisphere is manifest in 

the strengthening of the TEJ.  Except for areas of statistically significant negative 

correlations at and near the equator, there is no significant association between 

rainfall and southern hemisphere upper tropospheric geopotential heights (Fig. 

3.5b). Generally, rising (falling) heights in the southern hemisphere at lower 

(upper) levels favor increased rainfall activity over the Horn of Africa (Figs. 3.5a, 

b). On the other hand, rising (falling) heights in the northern hemisphere at lower 

(upper) levels reduce rainfall in the region. Thus, the correlation patterns indicate 

that the combined effects of cross-equatorial flow at low-levels and dynamics at 

upper levels determine rainfall anomalies in the Horn of Africa. As with MSLP, 

the correlations between rainfall and geopotential heights are insignificant over 

the tropical Pacific Ocean (not shown). 
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The correlation between regional rainfall and tropospheric temperatures in 

Figs. 3.5c, d show strong (statistically significant at 99.9% level) and horizontally 

and vertically coherent correlations that are consistent with the results obtained 

for geopotential heights. Positive correlations cover much of the northern   

hemisphere   north  of   about  15ºN  while  negative correlations dominate to the 

south, with the exception of positive correlations over the Congo rainforest that 

extend from the surface (Fig. 3.5c) up to 850 hPa (not shown). The northern 

hemisphere positive correlations between rainfall and temperature persist up to 

200 hPa (Fig.3.5d), but unlike for geopotential heights, weaken appreciably at 150 

hPa (not shown). The negative correlations between rainfall and temperature in 

the southern hemisphere generally weaken with height and reverse sign over the 

climatological location of the Mascarene high (Fig. 3.5d).  

 

It is interesting to note the anomalous positive correlations surrounding the 

Congo rainforest region in Fig. 3.5c. Although weaker, noticeable correlation 

contrasts also appear on the correlation maps for MSLP and lower tropospheric 

geopotential heights (especially at 1000 hPa) surrounding the Congo rainforest 

(not shown). This anomalous condition is likely related to the contrasting 

thermal and radiative flux properties of a transpiring extended vegetation cover 

and a relatively dry barren surrounding land (e.g., Anthes 1984).  Examination of 

the regional temperature/height/MSLP patterns shows that temperatures are 

warmer in the Congo rainforest region compared to the surrounding area (not 
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shown). The warm pool extends from the surface up to 850 hPa. Although 

geopotential heights/MSLP over the Congo rainforest tend to be lower than 

geopotential heights/MSLP in the surrounding region from the surface 

(especially) up to 850 hPa, the geopotential height/MSLP differences between 

the rainforest and the surrounding region are not as strong as the difference in 

the temperature field (not shown). This is reflected in the correlation patterns 

around the Congo rainforest in Figs. 3.4a, 3.5a, c. 

 

The dynamical connection between the Horn of Africa rainfall and the 

regional circulation patterns can be seen from the correlation analyses between 

rainfall and horizontal winds (Fig. 3.6). Lower tropospheric zonal winds 

extending from the surface up to 850 hPa over the tropical monsoon regions 

across all of North Africa and South Asia are strongly positively correlated with 

Ethiopian rainfall (Fig. 3.6a). The strongest correlations cover much of the eastern 

portions of the Horn of Africa, most of the Red Sea and the Gulf of Aden, and the 

northern Arabian Sea and the adjoining coastal areas. Thus, stronger westerlies 

across the entire monsoon region indicate enhanced moisture inflow and a 

robust monsoon for the Horn of Africa. The region of maximum correlations 

over the Gulf of Aden/Red Sea and the adjoining areas corresponds to the 

locations of a climatological low-level wind confluence (Fig. 3.1b) and covers the 

regions where initial convective storm development occurs (often, 
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thunderstorms develop over the highlands of Yemen and over the eastern 

lowlands of the Horn of Africa in the afternoon; e.g., Segele and Lamb 2005).  

 

850 hPa 150 hPa 

  

  
 

FIGURE 3.6. Spatial patterns of concurrent correlations between May-October 

Ethiopian daily rainfall (raingauge) and zonal wind (top) and meridional wind 

(bottom) for 1970-99 at 850 hPa (a) (c), and 150 hPa (b) (d). Thick solid 

(dashed) lines enclose positive (negative) correlation values significant at the 

99.9% confidence level according to a two-tailed Student’s t-test.  

a b 

c d 
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Consistent with the equatorward tilt of the ITCZ with height and increasing 

depth of the monsoon flow, the maximum positive correlation over the  monsoon  

region shifts southward between 700-500 hPa (not shown). Farther south (2.5ºS, 

67.5ºE), there is a strong negative low-level correlation over the equatorial Indian 

Ocean buffer zone of anticyclonic signature that forms as the southeasterlies 

recurve after crossing the equator (Fig. 3.6a). This strong negative correlation, 

i.e., strong easterlies leading to wet conditions over Ethiopia, indicates that 

moisture inflow into the Horn of Africa from the Indian Ocean increases when 

the southeasterlies south of the equator are stronger and the westerlies just to the 

north are weaker (less deflection of winds).  This area of negative correlation is 

limited to the lower troposphere (1000-850 hPa). In the subtropical regions north 

of about 15ºN and extending from West Africa to India, negative correlations 

appear at and above 700 hPa and further strengthen with height and become the 

dominant pattern in the tropical upper troposphere (Fig. 3.6b). 

 

The correlation between middle to upper tropospheric zonal winds and 

Ethiopian rainfall becomes very strong at 150 hPa (Fig. 3.6b) where the TEJ also 

locally maximizes over Ethiopia (Segele and Lamb 2005). Strong negative 

correlations with magnitudes exceeding 0.5 cover a broad latitudinal band across 

the monsoon regions, with a maximum negative correlation (-0.54) over northern 

Ethiopia and at a few locations in western and northern Africa. At 200 hPa, the 

maximum negative correlation primarily spans central Ethiopia (8º-12ºN; not 
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shown). The precise process by which the TEJ affects rainfall is not known at this 

stage. Overall, the positive association between the TEJ and Ethiopian rainfall is 

linked to upper level divergence that favors stronger vertical motions, organized 

convective systems, and subsequently enhanced rainfall over the Horn of Africa 

(e.g., Kanamitsu and Krishnamurti 1978; Chen and van Loon 1987, Hastenrath 

2000a).   

 

The correlation between rainfall and meridional wind reveals the critical 

monsoon components that affect rainfall over the Horn of Africa both at low and 

upper levels (Figs. 3.6c, d). In the lower atmosphere extending from the surface 

up to 850 hPa, an area of strong positive correlation covers the northern Arabian 

Sea that coincides with the location of the northern branch of the LLJ, while 

strong negative correlations appear over the monsoon trough regions across the 

Gulf of Aden, Red Sea, Yemen high grounds, and northeastern Ethiopia (Fig. 

3.6c). The fact that the maximum positive correlation coincides with the 

climatological position of the northern branch of the LLJ indicates that a strong 

LLJ surge off the Somali coast is an important ingredient of a strong monsoon 

over the Horn of Africa. These centers of positive and negative correlations tilt 

westwards with height (1000-600 hPa) while weakening (not shown). The 

negative correlations over the monsoon trough regions and positive correlations 

to the south over the Arabian Sea imply stronger low-level convergence in the 

monsoon trough associated with stronger northerlies along the Red Sea and the 
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surrounding regions and strong southerlies over the Arabian Sea, and hence 

stronger monsoon trough and enhanced rainfall over Ethiopia (Fig. 3.6c).  

 

The dominant feature in the upper levels is the strong negative correlations 

over southern India and equatorial Indian Ocean that attain peak values at 150 

hPa and weak positive correlations over northwestern Ethiopia (Fig. 3.6d). These 

correlation patterns indicate that the northerlies (southerlies) that flank the TEJ 

over southern India (northwest Ethiopia) enhance rainfall over the Horn of 

Africa, possibly by increasing upper level divergence associated with the ensuing 

diffluent flow as the easterlies over southern India (northwest Ethiopia) turn 

southward (northward).   

 

As was the case for pressure and height fields, no statistically significant 

association was found between horizontal winds over the Pacific Ocean and 

rainfall over the Horn of Africa (not shown). It is to be noted that the time series 

for the correlation analyses are constructed of daily data containing short-term 

fluctuations. As a result, the overall correlation reflects not only the interannual 

variability but also the intraseasonal and shorter time-scale fluctuations. The 

latter variability would not be present if the time series were constructed of 

monthly rainfall, in which case the time averaging would have purged all short-

term fluctuations, and thus the correlation analyses would have shown primarily 

the large-scale interannual variability linked to the ESNO phenomenon. Because 
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of the absence of statistically meaningful correlations in the equatorial Pacific, it 

is reasonable to infer that at shorter time-scales only regional circulations 

determine the variability of the monsoon in the region.    

 

To identify and quantify the structure of the anomalous regional Walker-

type circulation and the local meridional circulation, the horizontal winds and 

vertical velocity were regressed onto the average Ethiopian daily rainfall for 

standard pressure levels between 1000-100 hPa (i.e., 1000, 925, 850, 700, 600, 500, 

400, 300, 250, 200, 150, and 100 hPa). This method was used by Krishnamurthy 

and Goswami (2000) to establish the linkage between the Indian monsoon and 

the ENSO phenomenon on interdecadal time-scales. In particular, the authors 

investigated the monsoon meridional circulation and the equatorial Walker 

circulation by regressing zonal winds and vertical velocities onto a low-pass 

filtered All-Indian monsoon rainfall.  Following this approach, we linearly 

regressed the above atmospheric fields onto daily average Ethiopian rainfall.  

The least squares regression of Y on X is expressed as 

baXY +=  .                                                                   (3.10) 

where a is the slope and b is the intercept of the linear fit. The equation can be 

simplified if the variables are expressed as departures from the time averages; 

i.e., x=X-mean(X); y=Y-mean(Y), in which case, the regression equation is 

simplified to   

xtcoefficieny *= .        (3.11) 
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In the subsequent regression analysis, Eq. 3.11 is employed using daily 

anomalies of u, v, –ω, and rainfall. These anomalies were calculated at each of the 

2.5º by 2.5º latitude-longitude grid points (Figs. 3.3a, b) and 12 tropospheric 

levels for u, v, and –ω by subtracting the time mean of the respective May-

October 1970-99 time series from the corresponding daily values (184 days per 

year x 30 years daily data points). Hence, each daily three dimensional grid 

anomaly is a departure from the long-term climatology of the corresponding 

grid. The daily anomalies for average Ethiopian rainfall (184 days per year x 30 

years daily data points)/Horn of Africa CMAP pentad rainfall estimates (36 

pentads per year x 30 years pentad data points) were computed in the same way. 

The regression coefficients, signifying a response in the dependent variables (u, 

v, and –ω anomalies) due to a change in the independent variable (rainfall 

anomalies), are then averaged over 5-20ºN to obtain the mean Walker-type 

circulation and over 30-50ºE to get the mean local meridional circulation 

anomalies at 12 tropospheric levels. Figure 3.7 shows the regional circulations 

corresponding to positive anomalies of daily average rainfall (raingauge) for 

Ethiopia. 

 

During active phases of the monsoon over the Horn of Africa, the regional 

mean Walker-type circulation generally is enhanced throughout much of the 

monsoon latitudinal belt between 5-20ºN (Fig. 3.7a). It can be inferred from 

the   strong  anomalous  vertical  motions  in  Fig. 3.7a  corresponding  to positive  
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FIGURE 3.7a. Regional circulations associated with positive anomalies of 

average Ethiopian daily rainfall (raingauge) showing a longitude-height section of 

regression of zonal wind (u) and negative vertical velocity (-ω) on regional rainfall 

averaged over 5-20ºN. Wind vector anomalies are constructed in the same way 

as Fig. 3.2; horizontal wind anomalies are in m s-1 (standard deviation)-1, and 

vertical velocity anomalies are given in Pa s-1 (standard deviation)-1. Shading 

depicts actual regression coefficients for vertical velocity anomalies (-ω; Pa s-1). 

Vertical dashed dark lines mark the bounding longitudes for Ethiopia. White 

triangle shows the longitude and elevation of Addis Ababa (central Ethiopia). 

Letter symbols at top show regional locations (see text).  

 

Ethiopian rainfall anomalies that there is strong connection between the 

monsoon phases over Ethiopia and over Guinea-Bissau/Guinea-Conakry (GN), 

eastern Chad/western Sudan (CS), India (IN), and the Bay of Bengal (BB). The 
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strongest  anomalous  ascending  motion  over  the  Horn  of  Africa occurs in the 

middle to upper troposphere and favors wetter conditions especially over 

western Ethiopia. In addition, this anomalous ascent acts to weaken the 

descending motions that appear from mid- to upper-levels in the mean regional 

circulation east of 40ºE (Fig. 3.2a), and therefore enhances wetter conditions in 

the climatologically dry areas of the eastern and northeastern Ethiopia.  

 

However, strong anomalous descending motions develop at lower levels 

between 40º-55ºE (Fig. 3.7a) where climatologically weak descending motions 

(Fig. 3.2a) exist, thereby acting to intensify the subsiding current there. Clearly, 

the performance of the monsoon over the dry regions of the Horn of Africa is 

determined by the interaction of the lower and upper level local ascending 

motions. In general, the regional anomalous Walker-type circulation associated 

with the positive phase of the Horn of Africa monsoon (i.e., above average 

rainfall) is characterized by stronger low-level westerlies (upper level easterlies) 

below 700 hPa (above 300 hPa), stronger low-level descending motion east of 

40ºE, and stronger ascending motion over the major monsoon regions.  

 

Note that the area average daily rainfall is likely to be biased towards the 

wetter regions (western/southwestern Ethiopia) that receive higher intensity 

rainfall. As a result, area average rainfall totals reflect the dominant variability 

but may not represent regional variations correctly. However, our aim here is to 
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understand the overall performance of the monsoon (irrespective of the 

variations within the region) for which this use of non-standardized rainfall is 

recommended (e.g., Folland et al. 1991). Standardized data will be used in due 

course when the relative variations of rainfall over the Horn of Africa are 

important.  

 

The local anomalous meridional circulation corresponding to a stronger 

monsoon over Ethiopia is enhanced by the strengthening of the southerlies from 

surface up to 700 hPa and the returning northerlies above 300 hPa (Fig. 3.7b). The 

strongest  ascending  anomalies  are  co-located  with the  climatological center of 

maximum ascent between 850-700 hPa north of 15ºN (Fig. 3.2b), which indicates 

the  occurrence of a  more  active  monsoon over the Horn of Africa in association 

with a stronger ITCZ north of Ethiopia. This anomalous ascent extends farther 

north (~ 22ºN) and weakens the climatological northern hemisphere descending 

motion (Fig. 3.2b) there. Concurrently, a broad anomalous descending motion 

prevails south of about 5ºN and intensifies the mean meridional circulation in the 

southern hemisphere (Fig. 3.2b). Part of this anomalous descending motion 

extends farther to the north at low levels and intensifies the climatologically 

weak descent north of 10ºN (Figs. 3.2b, 3.7b).     

 

Similar zonal and meridional circulations are observed when pentad  

CMAP rainfall (averaged over 30-50ºE and 5-20ºN) is used (Fig. 3.8). The primary  
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FIGURE 3.7b. Same as Fig. 3.7a except for latitude-height section of regression 

of meridional wind (v) and negative vertical velocity (-ω), on rainfall averaged 

over 30-50ºE. Vertical dashed dark lines mark the bounding latitudes for Ethiopia. 

White triangle shows the latitude and elevation of Addis Ababa (central Ethiopia). 

 

differences in this case are the stronger lower to middle tropospheric anomalous 

ascent over eastern Chad/western Sudan(CS) and  the stronger mid- to upper 

tropospheric  ascent  and  lower  tropospheric  descent  over  the  Horn  of  Africa 

corresponding to positive CMAP pentad rainfall anomalies over the Horn (Fig. 

3.8a). The structure of the local meridional circulation is close to the one obtained 

using Ethiopian raingauge data, except that the circulation magnitudes are 

stronger (Fig. 3.8b). 
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FIGURE 3.8a. Same as Fig. 3.7a except for Pentad CMAP rainfall estimates for 

the Horn of Africa (5-20ºN, 30-50ºE).   

 

 
FIGURE 3.8b. Same as Fig. 3.7b except for Pentad CMAP rainfall estimates for 

the Horn of Africa (5-20ºN, 30-50ºE). Vertical dashed dark lines mark the 

bounding latitudes for the Horn of Africa. 
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3.3.3  Summary of Diagnostic Analysis 

The correlation and regression analyses discussed in the above section provided 

a three-dimensional picture of the regional circulation patterns directly linked to 

rainfall variability over the Horn of Africa. In general, the strength of the 

monsoon in the region is characterized by a stronger meridional pressure 

gradient east of about 30ºE associated with the intensification of the Mascarene 

high over the southern Indian Ocean and deepening of the monsoon trough 

across the Arabian Peninsula. This northward-directed gradient extends up to 

850 hPa but weakens appreciably above 700 hPa. The primary domain of 

influence of the subtropical highs is limited to the west of about 70ºE, and is 

manifest by a meridional ridge that runs along the eastern coastal regions of 

Africa and by the intensification of pressure over the Gulf of Guinea. In 

particular, it is interesting to note that the Mascarene high east of 70ºE exerts 

little influence on the Horn of Africa weather. On the other hand, the 

intensification of pressure over the Atlantic basin enhances 

westerly/southwesterly flow across much of western and central parts of the 

continent and creates wetter conditions over the Horn of Africa. Other important 

factors associated with the Horn of Africa rainfall are the LLJ off the coast of 

Somalia and the northerlies over the Red Sea and the surrounding regions. 

Generally, strong and deep southerlies over the northwestern Arabian Sea and 

strong northerlies over and to the north of the monsoon trough are associated 

with a strong monsoon over the Horn of Africa.  
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The impacts of southern hemisphere atmospheric conditions generally 

weaken above 700 hPa, but the northern hemisphere systems above 700 hPa 

exert a stronger influence on the Horn of Africa rainfall. Generally, higher 

geopotential heights and warmer temperatures north of about 20ºN and above 

500 hPa enhance wet conditions over the Horn of Africa. The maximum forcing 

comes from regions of largest gradients in geopotential heights just north of the 

subtropical ridge at 150 hPa, at which level the equatorward meridional 

temperature gradient associated with the Tibetan high collapses, with 

temperatures at that level gradually increasing polewards into midlatitude 

regions in both hemispheres. Associated with the collapse of this temperature 

gradient, no statistically significant association between Ethiopian rainfall and 

tropospheric temperature is found at and above 150 hPa. One of the most 

important tropical forcings at upper levels comes from the TEJ, with the 

strongest association occurring at 150 hPa. Generally, a stronger TEJ over a broad 

latitudinal belt of the monsoon region with strong northerlies over southern 

India enhances rainfall over the Horn of Africa. This work has further associated 

TEJ and monsoon rainfall variability over Ethiopia.  

 

The analysis has provided a substantial number of specific parameters and 

their locations that could be used as predictors in statistical models. The strong 

degree of coherent variability of the monsoon over the Horn of Africa and the 

various regional atmospheric parameters suggests a high predictability potential 
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for the region at short and medium range time-scales. However, because 

atmospheric processes are nonlinear, the overall rainfall variability is determined 

by nonlinear interactions of the different atmospheric processes that occur at 

different time and spatial scales (Barnston et al. 1994; Webster and Hoyos 2004). 

Thus, although each of the above identified processes/synoptic conditions 

linearly correlate with rainfall, their utility in predicting low frequency events 

might be impacted by the atmosphere’s chaotic tendencies (Barnston et al. 1994). 

One approach to this problem is to isolate the different modes of variability in 

the time series and treat each mode separately, thereby eliminating the impacts 

of the nonlinear interactions (Webster and Hoyos 2004).  This approach will be 

employed next in the current study. First, a diagnostic study will be made to 

identify regional circulation features associated with the dominant modes of 

rainfall variability in the region.  This diagnostic study is crucial for developing 

improved medium and longer (a month to seasons) range forecasting tools for 

the region. The discussion in this section provides the essential background for 

the time-scale separation approach used in the next section. 

 
3.3.4  Dominant Modes of May-October Rainfall Variability 

Most naturally occurring phenomena in the earth’s weather and climate 

system exhibit variability on multiple time-scales (Weng and Lau 1994). The 

Horn of Africa monsoon rainfall is one such climatic element that possesses 

variability ranging from intraseasonal to interannual to decadal and longer time-
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scales (e.g., Gissila et al. 2004; Segele and Lamb 2005; Korecha and Barnston 

2006). A number of studies have documented the interannual variability of 

rainfall, but studies of the intraseasonal variability for Ethiopia have begun only 

recently (e.g., Segele and Lamb 2005) and, to date, none have comprehensively 

identified all modes of such variability. As indicated earlier, isolating the 

different modes of rainfall variability is essential to understand the interactions 

among the different time-scales and assess the predictability of monsoonal 

rainfall for the region. This is the main motivation for this section.  

 

Over the past several decades, the Horn of Africa experienced few flood 

years, but many drought years. The irregularity in flood and drought events and 

the magnitude of variability with time constitutes nonstationarity (e.g., Mwale 

and Gan 2005). Nonstationarity hampers the use of Fourier transform, the most 

commonly used tool for power-frequency spectrum analysis, which assumes 

homogeneity and stationarity in the time series (e.g., Weng and Lau 1994; 

Baliunas 1997; Torrence and Compo 1998). The Fourier transform maps a signal 

from time to frequency domain and provides the distribution of total variance in 

the data as a function of frequency, but does not reveal possible changes of the 

oscillation characteristics with time (e.g., Wang and Wang 1996). An appropriate 

and relatively new tool to analyze time series that contain nonstationarity/weak 

power at many different frequencies is the wavelet transform (Weng and Lau 

1994; Torrence and Compo 1998). Unlike the Fourier transform, the wavelet 



 89

transform localizes a signal in both frequency and time domains. It uses 

generalized base functions (wavelets) that can be stretched and translated with a 

flexible resolution (e.g., Weng and Lau 1994; Torrence and Compo 1998). Thus, 

using wavelet analysis, we will be able to isolate and examine the temporal 

characteristics of the dominant modes of rainfall variability over the Horn of 

Africa.  We will employ one of the most commonly utilized wavelet functions, 

the complex Morlet wavelet, which is known to have a better spectral resolution 

than, for example, the Mexican hat wavelet (Baliunas 1997). 

 

Local and global wavelet spectra were computed for daily, 5-day, and 

monthly raingauge data for Ethiopia, and pentad CMAP rainfall estimates for the 

Horn of Africa between 5-20ºN and 30-50ºE. Figure 3.9 shows a result of such 

wavelet analysis of average daily Ethiopian rainfall for 1970-99. The daily 

average all-Ethiopian rainfall time series (Fig. 3.9a) is aligned (vertically) with a 

time-frequency plot of the power associated with daily rainfall variability (Fig. 

3.9b). The time frequency plot (Fig. 3.9b) shows the distribution of the rainfall 

variance in time (abscissa) for all Fourier periods (ordinate). The statistical 

significance of the local power is assessed by comparison with a red noise 

background spectrum. Following Torrence and Compo (1998), the red noise is 

estimated from a lag autocorrelation coefficient of 0.75 determined from the 

relation ( )
2

21 αα + , where α1 and α2 are lag-1 and lag-2 autocorrelations of  

the rainfall time series. The  thick  dashed  line  in Fig. 3.9b delineates the Cone of 
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FIGURE 3.9. (a) Time series of mean daily all-Ethiopian May-October rainfall 

(raingauge) for 1970-99. (b) Local wavelet spectra of time series in (a) (mm2), 

where the thick dashed line is the Cone of Influence (COI) (described in the text). 

(c) Global wavelet spectra (local power averaged over the period 1970-99) 

expressed as percentage of total variance; the annual cycle explains about 20% 

of the total variance. (a) and (b) use the same abscissa for easy identification of 

the power at any given time. (b) and (c) share the same ordinate for easy 

comparison of the local and global power. The black solid contour in (b) encloses 

areas of greater than 95% confidence for a red noise process with a lag 

correlation coefficient of 0.75, determined from ( ) 2/21 αα + , where α1 and α2 are 

lag-1 and lag-2 autocorrelations of the rainfall time series (Torrence and Compo 

1998). 
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Influence  (COI),  the  region  of  the  wavelet  spectrum  (below  the COI  line)  in 

which edge effects become important. Because of the finite length of the data, 

errors will occur at the beginning and end of the wavelet power spectrum. One 

solution is to “pad” the end of the time series with zeroes before doing the 

wavelet transform and remove them afterwards. Padding with zeroes, however, 

introduces discontinuities, and as one goes to larger scales, the amplitude near 

the edge decreases as more zeroes enter the analysis (e.g., Torrence and Compo 

1998; Mwale and Gan 2005). The global wavelet spectrum (Fig. 3.9c) is the time 

average of the local power in (b) for each Fourier period and uses the same 

ordinate as (Fig. 3.9b). Unlike the local wavelet spectrum, which is expressed in 

absolute value (mm2), the global power at a given frequency is expressed as a 

percentage of the total global power summed over all frequencies.  

 

The variance associated with the annual cycle is the dominant power in the 

wavelet spectra (Fig. 3.9b, c) accounting for about 20% of the total average global 

variance. It is clear from the local wavelet spectra (Fig. 3.9b) that the variability of 

rainfall at the annual scale shows very little fluctuation as there are few 

variations in the magnitudes of the power in most years. The power associated 

with rainfall variability at shorter time-scales (less than 10 days) is small, but it 

shows more fluctuations in the 1990s (Fig. 3.9c). There are relatively strong 

variances at a period of 45 days in the late 1970s.   Isolated but significant energy 

can also be observed at seasonal, biennial, and ENSO time-scales. For time-scales 
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between 90-180 days, isolated but strong energies in the late 1970s and mid 1980s 

(Fig. 3.9b) cause a noticeable peak in the global power (Fig. 3.9c). The most 

significant power is that occurring in 1987, where there is large variability in the 

daily rainfall. That year was one of the driest years for Ethiopia since the early 

1960s.  

 

At the biennial time-scale (with a period of about 2-yr or 730 days), large 

energies are evident in both the local spectrum (Fig. 3.9b, note the strong power 

in mid 1970s, 1980s, and 1990s), and the global power spectra (Fig. 3.9c). Also, 

there are significant energy spikes in both the local and global power spectra at a 

period of about 4 years (1460 days). This is linked to large variances during the 

late 1970s and 1990s (Fig. 3.9b) associated with ENSO in the 3-7-yr band (1090-

2550 days). On the other hand, during the 1980s, spikes of energy cluster on the 

seasonal to biennial time-scales and are conspicuously absent on the 3-7-yr band.  

 

To examine how the power spectrum for the CMAP data compares with the 

observed Ethiopian raingauge data, wavelet analysis was performed on pentad 

CMAP rainfall estimates, which are generally of smaller magnitude (Fig. 3.10).  

The layout/construction of Fig. 3.10 is identical to Fig. 3.9 as just discussed.  

Although the time spans for the two data sets are different, there are noticeable 

differences as well as a degree of similarity in the temporal structure of the local 

(Figs. 3.9b, 3.10b)  and  global  (Figs. 3.9c, 3.10c)  power  spectra  for  the two time  
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FIGURE 3.10. Same as FIG. 3.9 except for pentad CMAP rainfall estimates for 

the period 1979-99. Regional average of pentad CMAP rainfall estimate was 

computed over 30-50ºE and 5-20ºN.  

 

series. One of the main differences between the two data sets is the absence of a 

broadly distributed variance on the annual time-scale (Fig. 3.10b) compared to 

Fig. 3.9b.  As a result, for the CMAP time series, the power associated with the 

annual cycle accounts for substantially smaller portions of the total global 

variance for the entire frequencies. Thus, for the CMAP data, the percentage of 

the global variance at the 1-yr period compared to the total global variance for 

the entire period is only 7.7%, while for the daily Ethiopian rainfall, this 

percentage is about 20% (Figs. 3.9c, 3.10c). This power is primarily associated 
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with spikes of energies in the mid to late 1980s and mid 1990s (Fig. 3.10b).  

Another significant difference is in the strength of rainfall variability associated 

with the biennial and ENSO modes. For the daily Ethiopian data, the variances 

associated with the biennial and ENSO modes are weak in the 1980s (Fig. 3.9b), 

but the local spectra for the CMAP data features strong energies in these two 

modes (Fig. 3.10b). The large variance in 1987 centered at the 730-day period in 

Fig. 3.10b is noteworthy. The difference in the power spectra between the 

raingauge and CMAP data sets probably is due to the fact that (1) the CMAP 

data generally underestimate rainfall and (2) the Horn of Africa domain (30º-

50ºE, 5º-20ºN) over which the CMAP data are averaged includes desert areas 

north of Eritrea. Hence, the 5-day rainfall average and the interannual rainfall 

variability for the entire domain may be significantly reduced.   

 

One of the similarities in the power spectra for the CMAP and Ethiopian 

raingauge data is the frequency distribution pattern of the global wavelet spectra 

(Figs. 3.9c, 3.10c); both show peaks at the seasonal, annual, biannual, and ENSO 

time-scales. The temporal structures of the local wavelet spectra for the two time 

series also reveal similarity at the intraseasonal and seasonal time-scales (Figs. 

3.9b, 3.10b), both of which show isolated spikes of high energy in 1987 at the 45-

180 days band.  An interesting feature to note is the relatively large variability of 

the rainfall rates in 1987 (Fig. 3.10a). This large variability is associated primarily 
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with heightened activities at intraseasonal (20-90-day) and seasonal (160-200-

day) time-scales as evidenced by the high power at these bands in Fig. 3.10b.  

 

The differences between the CMAP and raingauge data still exist when 

compared with the wavelet spectra for 5-day average all-Ethiopian rainfall (Fig. 

3.11). This may not be surprising when we note the substantial differences 

between the two time series (e.g., Figs. 3.10a, 3.11a). There are, however, 

similarities in both the local and global power spectra for the two time series. 

Excluding the differences in the magnitude of the variance, especially at the 

annual time-scale, both time series exhibit relatively large variances at the 

intraseasonal, seasonal, biennial, and ENSO time-scales (Figs. 3.10b, 3.11b).  The 

similarity is more visible on the global wavelet spectra (Figs. 3.10c, 3.11c). 

Notwithstanding the magnitude differences, the two power spectra bear strong 

resemblance in the frequency distribution of the global power.   

 

The wavelet analyses for daily and 5-day average all-Ethiopia rainfall reveal 

strong pattern similarity between the two local spectra (Fig. 3.9b, 3.11b). The 

major difference is in the magnitudes of the power and its frequency structure, 

which occurred due primarily to the temporal averaging. Note especially that the 

disappearance of short time (less than 15-20 days) fluctuations in the power of 

the 5-day averaged time series as expected (Fig. 3.11b). As a result, the annual 

cycle for the 5-day  spectra accounts for ~ 15% of  the total global variance, which  
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FIGURE 3.11. (a) (b) Same as Fig. 3.9a, b except for 5-day average all-Ethiopian 

rainfall (raingauge). (c) Global wavelet spectra of 5-day average all-Ethiopian 

May-October rainfall for 1970-99. The amplitude is normalized by total variance 

over the entire time-scales. Insets magnify the major peaks at indicated time-

scales. 
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is less than the case for the daily data (Figs. 3.9c, 3.11c). Other than these small 

differences, the two time series show a very high degree of similarity in the 

global power spectra (Figs. 3.9c, 3.11c).   Because  one  of the goals of this study is 

to develop prediction models at intraseasonal and seasonal time-scales, and since 

the 5-day averaging helps in smoothing out very high frequency variability while 

retaining the details at the intraseasonal, interannual, and longer time-scales, we 

chose to use 5-day average all-Ethiopian rainfall (raingauge) for subsequent 

analyses. Despite the better spatial coverage provided by the CMAP data, we 

chose to use the Ethiopian raingauge data because the CMAP data significantly 

underestimate the amount of rainfall and its variability (cf. Figs. 3.10a, c 3.11a, c). 

In addition, the CMAP data are available beginning from only 1979, and hence 

the number of years that could be used for interannual variability study would 

be substantial reduced. Thus in the subsequent sections of this Chapter, the 

Ethiopian raingauge data will be used. 

  

The peaks in the 5-day rainfall (raingauge) global wavelet spectrum are used 

to identify temporal domains of coherent modes of variability. The primary 

modes of variability are highlighted and magnified in Fig. 3.11c (insets). At 

intraseasonal to seasonal time-scales, three peaks can be identified with wavelet 

bands of 10-50, 50-135, and 135-220 days. On the annual time-scale, there is a 

prominent band spanning 0.6-1.5 years. There are two peaks on the biennial-

ENSO time-scale in the bands 1.5-2.1 and 2.1-3.1 years, which are not sufficiently 
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separated. Finally, on longer time-scale a prominent energy is localized in 3.1-6.8-

yr band. This is termed the ENSO/Low-frequency mode. Although there are 

other small peaks at longer time-scales, their variances likely are affected by the 

aforementioned zero padding and will not be considered here.  

 

The above association of the 1.5-3.1 and 3.1-6.8 yr bands as biennial-ENSO 

and ENSO/Low-frequency modes, respectively, is consistent with the fact that 

the fundamental modes of variability in global sea level pressure (SLP) and sea 

surface temperatures (SST) fields at the 1.5-3-yr and 3-7-yr bands are represented 

as the biennial and ENSO modes, respectively (e.g., Barnett 1991; Shen and Lau 

1995; Webster et al. 1998; Chang and Li 2000). However, there are differences in 

the frequency ranges associated with these modes. For example, Torrence and 

Webster (1999) identified the 2-8-yr band in wavelet spectra of SST and SOI as 

the ENSO mode. In addition, the dominant modes differ from location to 

location. Shen and Lau (1995) noted that the dominant mode for the southeast 

Asian monsoon regions, eastern Indian Ocean, and western, northern, and 

southern Pacific Ocean occurs on a biennial time-scale, while much of central and 

eastern Pacific and northern Indian oceans show spectral peaks on 3-6-yr band. 

Recently, Lau and Wu (2001) found that the strong monsoon–ENSO connection 

tends to occur with a pronounced 2-yr polarity switch in basin-scale SST 

anomalies, and recommended that the monsoon–ENSO relationship be 

considered in pairs of years.  
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For our case, the 1.5-3.1-yr band is taken as the biennial-ENSO mode. The 

first reason is the absence of clear separation in the spectral peaks at the 1.5-2.1-

yr and 2.1-3.1 bands. Second, as will be noted later, the 2.1-3.1-yr band most 

likely represents the ENSO effects on Ethiopian May-October rainfall better than 

the 3.1-6.8-yr band. Although the spectral separations slightly differ when 5-day 

average all-Ethiopian June-September rainfall (raingauge) was used, the 

amplitude of the anomalies associated with the longer time-scale ENSO mode is 

small. The variability with periods of 3.1-6.8 years is hereafter referred to as the 

ENSO/low frequency variability. 

 

After the frequency bands of coherent variability are identified, the next step 

is to filter the corresponding time series using Eq. 3.7 but on finer resolutions for 

accurate reconstruction/filtering. For the 5-day average May-October rainfall 

time series, N=1080, tδ =1/36 yr, 0s = tδ , jδ =0.1, and J=500. For these sets of 

values, the reconstruction of the time series from the wavelet transform has a 

mean square error of 0.041 mm. The same sets of values are used to construct the 

filtered time series shown in Fig. 3.12. More than 97% of the total variance is 

explained by the first four filtered series (10 days to 1.5 years). 

 

To identify regional circulation patterns that are directly related to the above 

modes of rainfall variability, all atmospheric variables discussed in Sections 3.3.1 
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and 3.3.2 were identically bandpass filtered using the wavelet bands identified 

for rainfall. The results are discussed in the next section. 
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FIGURE 3.12. Filtered time series of 5-day average all-Ethiopian rainfall data for 

selected wave bands shown in Fig. 3.11.  

 

3.3.5  Regional Circulations Associated with the Dominant Modes of 

May-October Rainfall Variability  

Wavelet analysis was performed on MSLP, and on horizontal and vertical 

winds, vertical velocity, geopotential height, temperature, relative humidity 

(RH), and specific humidity  at  all  standard  pressure levels  from 1000-100 hPa  

(1000-300hPa for RH and specific humidity) over the region covering 30ºW-90ºE 
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and 40ºS-50ºN depicted in Fig. 3.3.  In addition, derived quantities such as 

horizontal wind divergence, vertically integrated moisture, and moisture and 

temperature advection were analyzed. The wavelet banding of the atmospheric 

variables uses the frequency bands obtained for the 5-day all-Ethiopian rainfall 

(raingauge) time series (Section 3.3.4). Correlation and regression analyses were 

then performed on the filtered 5-day average rainfall and identically filtered 

pentad time series of gridded atmospheric variables (1080 data points) to identify 

atmospheric conditions and regional circulation features that are associated with 

rainfall variability at each time-scale. To avoid repetitiveness, only regional 

features with the highest correlations will be discussed. 

 

3.3.5.1  Variability on Intraseasonal Time-Scale (10-50 days) 

There are few statistically significant associations between 10-50 day banded 

Ethiopian rainfall and the regional atmospheric variables in the domain. The 

primary elements that show significant correlations with rainfall are local 

moisture (RH and specific humidity) and low-level horizontal winds. Figure 3.13 

shows the spatial patterns of concurrent correlations between identically 10-50 

day banded rainfall and specific humidity at 1000 hPa and vertically integrated 

moisture from the surface to 300 hPa. Enhanced rainfall in the 10-50 day band 

occurs in association with increased moisture in the lower to middle troposphere 

in the region. Similar correlation patterns were also found for RH (not shown).  
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FIGURE 3.13. Spatial patterns of concurrent correlations between reanalysis 

fields and Ethiopian rainfall (raingauge) that are identically wave banded for the 

10-50 day period. (a) Specific humidity at 1000 hPa. (b) Vertically integrated 

water vapor dpq
g

sP

∫
300

1 , where q is specific humidity (kg kg-1), g is the acceleration 

due to gravity (m s-2), and the integral is from surface (Ps) to 300 hPa. Thick solid 

red line encloses correlation values significant at the 99.9% confidence level 

according to a two-tailed Student’s t-test.  

 

The importance of deep moisture at the intraseasonal time-scale is reflected 

by the strong positive correlation between rainfall and vertically integrated 

moisture (maximum correlation of +0.5) shown in Fig 3.13b. Next to atmospheric 

moisture, local circulations exert noticeable influence on rainfall. This is reflected 

in a weak positive but statistically significant correlation (maximum correlation 

magnitude of +0.3) between 10-50 day wave banded Ethiopian rainfall and low-

level horizontal wind components over the Horn of Africa (not shown). Derived 

a b
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local and regional atmospheric quantities (e.g., horizontal wind convergence and 

advection of moisture and temperature) were examined for possible links with 

the 10-50 day wave banded rainfall, and moderate correlations of about +0.3 

(significant at 99.9% level) with moisture advection and horizontal wind 

convergence at 700 hPa were found.   

 

In addition, a possible link between MJO and 10-50 day wave banded rainfall 

was examined. The MJO was identified by applying a wavenumber-frequency 

spectral analysis of satellite observed outgoing long-wave radiation (OLR) over 

the tropical latitude (15ºS-15ºN) as discussed in Wheeler and Kiladis (1999; the 

code was graciously provided by Dr. George Kiladis, NOAA/OAR Earth System 

Research Laboratory, Boulder, Colorado).  However, no connection (r ~ 0) was 

found between the MJO and rainfall over the Horn of Africa at intraseasonal 

time-scale. This finding of the absence of MJO link with Ethiopian rainfall 

demonstrates the clear difference between the Horn of Africa and South Asian 

monsoons for which MJO plays a dominant role at the intraseasonal time-scale 

(e.g., Madden and Julian 1971; Webster et al. 1998; Krishnamurthy and Shukla 

2000; Annamalai and Slingo 2001; Lawrence and Webster 2002). Thus, moisture 

(e.g., Fig. 3.13) and local dynamics (low-level horizontal winds and convergence) 

appear to be the primary factors that affect rainfall over the Horn of Africa at 

intraseasonal time-scale.  
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3.3.5.2  Variability on Sub-Seasonal Time-Scale (50-135 days) 

The larger-scale regional atmospheric conditions reflected in the reanalysis data 

become more relevant and exert stronger influence on rainfall variability at 

longer time-scales. However, local features, especially moisture and low level-

convergence and upper level divergence, still play an important role in affecting 

rainfall. Figure 3.14 shows correlation maps for selected parameters that exhibit 

the largest connection. Locally, rainfall variability at the 50-135 day periodicity 

is  related  to  low-level  convergence (Fig. 3.14a) and upper level divergence (not 

shown). A strong regional effect is identified over the Arabian Sea, where strong 

northerly components in the TEJ enhance rainfall over the Horn of Africa (Fig. 

3.14b). Vertically integrated water vapor, especially over Ethiopia, Djibouti, 

northern Somalia, and Yemen highlands profoundly influences Ethiopian rainfall 

at 50-135 day period (Fig. 3.14c).  

 

Lower tropospheric moisture (surface to 925 hPa; not shown) over the 

tropical Atlantic Ocean south of the equator exhibits weak to moderate positive 

association with Ethiopian rainfall (r ~+0.3), indicating that the tropical Atlantic 

Ocean serves as a moisture source for the Horn of Africa. This is consistent with 

our earlier findings of strong positive climatological correlations between rainfall 

and lower tropospheric westerly flow across western and central Africa.  

Additional evidence of the effects of tropical Atlantic Ocean is the positive 

correlation between rainfall and lower tropospheric temperatures  in the Atlantic 
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FIGURE 3.14. Spatial patterns of concurrent correlations between reanalysis 

fields and Ethiopian rainfall (raingauge) that are identically wave band filtered for 

the 50-135 day period. (a) Horizontal wind convergence at 700 hPa; (b) 
meridional wind at 200 hPa; (c) same as Fig. 3.13b except for the 50-135-day 

band; and (d) temperature at 1000 hPa.. Thick solid (dashed) lines enclose 

positive (negative) correlation values significant at the 99.9% confidence level 

according to a two-tailed Student’s t-test.  

 

a b

c d
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Ocean, with the strongest correlation at 1000 hPa (Fig. 3.14d). Increased near-

surface temperature closely reflects SST and implies increased evaporation as 

well as large water holding capacity of the air, both of which increase the low-

level tropospheric water content. Advected by the low-level westerly flow, the 

moist and warm air could enhance rainfall over the Horn of Africa. However, 

this correlation is the opposite of the overall correlation pattern in Fig.3.5c, which 

shows strong negative correlation between rainfall and temperature over the 

Gulf of Guinea at the same level.  To examine the thermodynamic and dynamic 

tropospheric features leading to enhanced/deficient rainfall over Ethiopia, 

composite maps were constructed by stratifying the filtered large-scale flow 

patterns according to the magnitudes of the filtered rainfall anomalies shown in 

Fig. 3.12 (top row, second column). 

 

To construct composite maps, 9 cases of negative anomalies less than -2.5 

mm d-1 and 11 cases of positive anomalies greater than 2.5 mm d-1 were selected 

from the filtered rainfall time series.  All these extreme cases occurred in the 

beginning and towards the end of the season (i.e., in May and October), during 

which time midlatitude frontal systems affect the weather in the Horn of Africa. 

Horizontal winds and temperatures were extracted from the 50-135 day filtered 

reanalysis fields for the same calendar dates of the above identified cases and 

averaged appropriately. Fig. 3.15 depicts the anomalous flows and temperatures 

associated with positive/negative Ethiopian rainfall departures at this time-scale.  



 107

 DRY WET 
 

 

 
850 mb 

 
 

 

 
150 mb 

 
 
FIGURE 3.15. Large-scale anomalous flow (vectors; m s-1) and temperature 

anomalies (shading; K) associated with the negative (left; a, c) and positive 

(right; b, d) phases of Ethiopian rainfall (raingauge) anomalies at sub-seasonal 

time-scale (50-135 days). Top panel is for 850 hPa (a, b) and the bottom panel is 

for 150 hPa (level of easterly jet maximum; c, d). Rainfall anomaly thresholds are 

± 2.5 mm d-1 and correspond to about the top/bottom 1% of the filtered rainfall 

time series in Fig. 3.12 (upper right panel). 
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During the negative phase (i.e., dry conditions over Ethiopia), anomalous 

dry northeasterly trades prevailed over much of the Horn of Africa (Fig. 3.15a). 

This indicates weak monsoon conditions for the Horn of Africa. At upper levels, 

anomalous easterlies/southeasterlies over the tropical Indian Ocean appear to 

have strengthened the TEJ (Fig. 3.15c). However, with the anomalous low-level 

northerlies and hence drier atmosphere, the upper  level dynamics by itself  were 

not sufficient to produce wet conditions. On the other hand, the positive phase 

(i.e., wet conditions over Ethiopia), exhibited weakened low-level monsoon flow, 

with anomalous easterlies (westerlies) at low (upper) levels over the Arabian 

Sea/northern Indian Ocean (Fig. 3.15b,d). The low-level anomalous easterlies 

were associated with anomalous anticyclone over the Arabian Sea, a feature that 

serves as the main moisture source for the spring rains (short rains) in Ethiopia 

during February/March-May. The upper level westerly anomalies result from 

southward intrusions of Mediterranean frontal system, consistent with the strong 

cold temperature anomalies to the northeast of Ethiopia. These features are 

frequently observed during the short season. 

 

The Atlantic Ocean provided additional support for increased wet conditions 

during the positive phase. From the surface up to 850 hPa, anomalous warm 

moisture laden westerlies streamed from the Atlantic Ocean into the Horn of 

Africa (Fig. 3.15b). In addition to advecting moisture, the westerlies appeared to 

have increased the low-level convergence over Ethiopia. Thus, positive 
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temperature anomalies over the Atlantic Ocean tend to increase moisture 

incursions and enhance rainfall over the Horn of Africa at sub-seasonal time-

scale. However, much of the large-scale circulation features that favored the wet 

conditions are “non-monsoon” origin.    

 

It is clear from Fig. 3.15b that the westerlies are associated with the 

anomalous cyclonic flow over southern Atlantic while the positive temperature 

anomalies appear to be linked to the northern hemisphere center of maximum 

positive temperature anomaly. In contrast, the climatological westerlies in Figs. 

3.1b are associated with the St. Helena high and the weak meridional ridge 

across the equatorial Atlantic. Likewise, the correlation patterns of Fig. 3.5c link 

temperatures hydrostatically to local pressure. Hence, the origins of wind and 

temperature anomalies are different for the raw time series containing all 

temporal components and the wave band filtered sub-seasonal time series of 50-

135 day periodicity.  

 

3.3.5.3  Variability on Seasonal Time-Scale (135-220 days) 

The circulations associated with the seasonal cycle exhibit stronger 

connections between Ethiopian rainfall and large-scale atmospheric systems. 

However, most of the correlations found are opposite to the correlation patterns 

previously obtained for all time-scales combined, as discussed in Section 3.3.2.  

This  opposite  relationship  is  illustrated  in  Fig.  3.16, which shows correlations  



 110

  

  

 
FIGURE 3.16. Spatial patterns of concurrent correlations between Ethiopian 

rainfall (raingauge) and regional reanalysis fields for time series identically 

banded at 135-220 days period: (a) Mean sea level pressure (shading) and 

horizontal winds at 1000 hPa (vector); (b) temperature (shading) and horizontal 

winds (vector) at 700 hPa; (c) same as (b) except for 500 hPa; and (d) zonal 

wind (shading) and horizontal winds (vector) at 150 hPa. Thick solid red (dashed) 

lines enclose positive (negative) correlation values significant at the 99.9% 

confidence level according to a two-tailed Student’s t-test for the shaded fields. 

Correlations between rainfall and horizontal winds are shown as vectors, with unit 

vector (bottom right inset in each panel) representing a correlation magnitude of 

1.0.  

a b

c d
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between wave band filtered Ethiopian rainfall and regional pressure, 

temperature, and horizontal winds for different levels. Negative anomalies of 

mean sea level pressure are generally associated with enhanced Ethiopian 

rainfall on seasonal time-scale (Fig. 3.16a). The location of the strongest negative 

correlation over the eastern Mediterranean Sea suggests extratropical forcing 

associated with the southward intrusion of Mediterranean frontal lows. 

Corresponding  to  the surface  pressure  patterns, westerly/southwesterly  wind 

anomalies at 1000 hPa over western Africa and anomalous northeasterlies 

(northwesterlies) north (south) of the equator over the Indian Ocean (i.e., anti-

monsoon anomalous flow) act to increase Ethiopian rainfall.  Throughout the 

lower- to mid-troposphere, temperature anomalies over the Atlantic and Indian 

oceans exhibit positive correlations with Ethiopian rainfall at the seasonal time-

scale (Fig. 3.16b, c).  

 

At the level of the TEJ (Fig. 3.16d), the strong positive correlations across 

much of India and Arabian Peninsula indicate that upper level 

westerlies/northwesterlies enhance rainfall over Ethiopia. This, again, is in stark 

contrast to the climatological correlation map of Fig. 3.6b. In general, the lack of 

hemispheric contrasts in the correlation patterns for MSLP and temperature, the 

absence of statistically significant correlations over much of the monsoon regions 

east and north of Ethiopia in the MSLP chart, the existence of anti-monsoon 

anomalous correlations at low-levels, and the prevalence of westerlies at upper 
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levels indicate that the seasonal mode of variability is primarily composed of 

non-monsoon signatures and greatly affected by extra-tropical systems.  

 

Composite analysis of the 135-220 day band filtered time series indicated that 

during the positive phase corresponding to positive rainfall anomalies over 

Ethiopia, surface pressure tends to be low over much of the domain except over 

India and the Arabian Sea (not shown). On the other hand, during the negative 

phase, positive surface pressure anomalies prevail. These pressure anomalies are 

primarily associated with the strength and southward penetration of northern 

hemisphere midlatitude systems. The filtered time series for wind also shows the 

prevalence of upper level westerlies (not shown) over much of the monsoon 

region. Further examination of the data revealed that nearly all the extreme 

positive/negative anomalies occurred primarily during May and October, rather 

than during the peak of the monsoon season. This confirms that most of the 

variance in the seasonal cycle is associated with westerly systems that affect the 

region during May and October. Note that although the monsoon rain starts 

early in May and ceases late in October over the wetter regions of Ethiopia (e.g., 

Segele and Lamb 2005), the monsoon flow is fully established only during June-

September when the monsoon rain covers most of northern and eastern parts of 

the Horn of Africa.  The effects of including May and October rainfall in the 

analysis will be investigated later in this chapter. 
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3.3.5.4  Variability on Annual Time-Scale (0.6-1.5 years)  

The dominant variability in the Horn of Africa monsoon rainfall primarily is 

associated with the annual cycle. This variability largely is composed of 

fluctuations in the major elements of the monsoon systems that modulate 

monsoonal rainfall over the Horn of Africa. This is reflected in exceptionally 

strong correlations between the filtered rainfall time series and the different 

atmospheric fields. The correlation maps exhibit very similar spatial patterns as 

the overall correlation maps of Section 3.3.2, except that in this case the 

correlation values are strong in nearly all atmospheric variables considered (r > 

|0.9|). Figure 3.17 shows the spatial correlation patterns for 0.6-1.5-yr band.  

 

Enhanced rainfall over the Horn of Africa is associated with negative 

pressure anomalies in the equatorial trough and positive anomalies over 

southwestern Indian Ocean and large portions of the Atlantic (Fig. 3.17a). The 

correlations are exceptionally strong (r > |0.93|) in the monsoon trough over the 

Arabian Peninsula, across the subtropical ridge over the Gulf of 

Guinea/southern Atlantic basin, and along the meridional ridge that runs 

through the Mozambique Channel. The region of weakest correlation over Africa 

parallels the ITCZ located a few degrees to the north.  

 

The position of the ITCZ over Africa and the monsoon trough over the 

Arabian  Peninsula  and India are best represented by the convergence/trough in  
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FIGURE 3.17. Same as Fig. 3.16 except for time series identically wave band 

filtered at the 0.6-1.5 year band.  

 

the correlation vectors, which parallel the mean flow at the same level, especially 

over the eastern sector. The correlation magnitude between rainfall and the 

horizontal winds is very strong (maximum correlation > |0.94|) at low levels 

(Fig. 3.17a).  These vectors display a well-established cross-equatorial  

a b

c d
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flow over the Indian Ocean/Arabian Sea and strong northerlies over the Arabian  

Peninsula/northeast  Africa,  indicating  a   high  degree  of  correlation  between 

Ethiopian  rainfall  and  regional  monsoonal  winds.  The  similarity between the 

correlation vectors and the mean flow over the Atlantic Ocean and over parts of 

West Africa weakens compared to the strong resemblance between the 

correlation vectors and the mean flow over the Indian Ocean because only the 

zonal winds show strong connection with Ethiopian rainfall. 

 

Wave band filtered (0.6-1.5 yr) tropospheric temperatures from 1000-200 hPa 

also exhibit strong associations with filtered summer rainfall (e.g., Fig. 3.17b, c 

shading). Strong positive correlations (> +0.9) north of about 20ºN dominate the 

upper troposphere up to 200 hPa, but weaken appreciably at and above 150 hPa 

(not shown). The hemispheric correlation contrasts in Fig. 3.17b, c are  similar to 

the overall correlation pattern for the unfiltered time series (e.g., Fig. 3.5c, d) 

except that the present correlations for the time series filtered at the annual 

frequency bands are exceptionally strong (maximum positive correlation ~ 0.96).   

 

At 700 hPa, the strongest signals in the correlation vectors occur primarily in 

the Northern Hemisphere associated with the monsoon trough in the east and 

the Azores anticyclone to the west, with correlation magnitudes exceeding +0.95 

(Fig. 3.17b).  The intensification of the Azores anticyclone creates strong 

northerly/northeasterly winds over central Sahara and the Arabian Peninsula 
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that strongly negatively correlate with Ethiopian rainfall, i.e., northerlies enhance 

rainfall. Southwesterly winds over the Gulf of Guinea and equatorial Africa 

positively correlate with Ethiopian rainfall, but the climatological wind pattern at 

700 hPa is dominated by easterly/northerly winds, which partly originate in 

northern hemisphere subtropical regions. Hence, the weakening of the 

Sahara/Arabian anticyclone reduces the monsoon over the Horn of Africa by 

weakening the northerlies north of the ITCZ/monsoon trough, but 

simultaneously enhances rainfall by diminishing the easterlies/northerlies in the 

Atlantic and equatorial Africa.   

 

The correlation vectors at 500 hPa (Fig. 3.17c) depict similar correlation 

patterns except that the zonal (meridional) components over the subtropical 

regions are stronger (weaker), signifying the growing influence of easterlies 

beginning in the mid-troposphere. The zonal wind correlation at this level is 

strong negative (> |0.9|) north of 10ºN (20ºN) over Africa (India) and strong 

positive (> +0.9) to the south. The region of strong negative correlation (>|0.9|) 

between waveband filtered Ethiopian rainfall and zonal winds expands 

southward with height and covers a broad latitudinal belt between the Equator 

and 25ºN at 200 hPa (not shown). The strong signature of the easterly jet at upper 

levels is marked by the prevalence of easterlies in the correlation vectors over 

much of the tropics (Fig. 3.17d). The magnitude of the highest correlation 
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between wave band filtered (0.6-1.5-yr) Ethiopian rainfall and zonal winds 

(shading) is about 0.97. 

 

The correlation between wave band filtered (0.6-1.5-yr) Ethiopian rainfall 

and meridional wind undergoes significant changes from the middle to upper 

troposphere. The strong negative (positive) correlations between filtered 

Ethiopian rainfall and northerlies over northern Africa/Libya (southerlies over 

the northern Indian Ocean and Indian Peninsula) at 500 hPa (Fig. 3.17c) weaken 

with height and reverse sign, and develop into a region of strong positive 

(negative) correlation at and above 200 hPa (not shown) to the west (east) of 

Ethiopia at 150 hPa (Fig. 3.17d). This reversal reflects the increasing effects of the 

upper tropospheric subtropical anticyclone over the Middle 

East/Pakistan/India. The region of maximum positive correlations between the 

filtered Ethiopian rainfall and upper tropospheric northerlies lies to the 

west/northwest of the Tibetan anticyclone/ridge and extends from northwestern 

Ethiopia to Libya and southern Europe at 150 hPa, while the region of maximum 

negative correlations lies to the south/southeast of the upper tropospheric 

anticyclone over the Indian Ocean/Indian Peninsula (Fig. 3.17d).   In general, the 

annual cycle predominantly reflects the variability associated with the southwest 

monsoon. Consistent with Section 3.3.2, this annul time-scale analysis also 

identified/confirmed the strong links between the large-scale features/flow 

patterns and rainfall over Ethiopia.   
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The regional meridional and Walker circulations associated with the annual 

cycle are almost identical in pattern to the climatological circulation features 

discussed in Section 3.3.1, and will not be presented here. Instead, we focus again 

on the characteristic flow patterns associated with the extreme cases of positive 

and negative phases of rainfall over Ethiopia. The stratification was performed 

by selecting the top and bottom 1 percent of the filtered rainfall time series 

(rainfall anomaly threshold of ±3.0 mm d-1).  The composite results for selected 

atmospheric variables at 850 and 200 hPa are shown in Figure 3.18. 

 

The negative phase of the annual cycle is characterized by strong negative 

temperature anomalies (< -5K) through much of the troposphere over 

subtropical/midlatitude regions north of 30ºN (Fig. 3.18a, c). Concurrently, most 

of the monsoon region experiences mild warm temperature anomalies (~ 1K) in 

the lower troposphere. Associated with the extratropical cold air anomalies, 

large-amplitude temperature trough runs southward into the monsoon system 

along about 50ºE at low levels, and appears to weaken the monsoon trough over 

the Arabian Peninsula. Note the anomalous northeasterlies (northwesterlies) 

north (south) of the equator over the Indian Ocean (i.e., anti-monsoon anomalous 

flow) over the Arabian Sea and western Indian Ocean (Fig. 3.18a). At 200 hPa 

(Fig. 3.18c), the strong negative temperature anomalies to the east of the Caspian 

Sea indicate weakened meridional upper tropospheric temperature gradient 

between  the warm elevated Tibetan  Plateau  to  the  north  and the cooler upper   
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FIGURE 3.18. Large-scale anomalous flow (vectors; m s-1) and temperature 

anomalies (shading; K) associated with the negative (left) and positive (right) 

phases of Ethiopian rainfall (raingauge) anomalies for time series wave band 

filtered for the 0.6-1.5 year cycle. Top panel is for 850 hPa and the bottom panels 

is for 200 hPa. Rainfall anomaly thresholds are ± 3.1 mm d-1 and correspond to 

about the top/bottom 1% of the filtered rainfall time series. 
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tropospheric temperatures to the south over the Indian Ocean (especially). The 

negative temperature anomalies also weaken the warm core Tibetan high, and 

hence the TEJ, all of which are consistent with the weaker monsoon observed. 

 

On the other hand, during the positive phase (Fig. 3.18b, d), the influence of 

extratropical  frontal  systems  is weak (temperature anomalies of ~ -1K),  leaving 

anomalous anticyclonic patterns over the Mediterranean region. Both the 

northeasterly/northerly trades north of the monsoon trough and the 

southwesterly monsoon over the Indian Ocean in the south are strengthened 

(Fig. 3.18b). Additionally, the anomalous low-level westerly flow across western 

and central Africa further supports an active monsoon over Ethiopia. At upper 

levels (Fig. 3.18d), strong easterly anomalies enhance the TEJ. Thus, enhanced 

low-level southwesterly flow over the Indian Ocean, strengthened low-level 

westerly flow reaching Ethiopia from western Africa, and a strong TEJ are the 

main characteristics of strong monsoon rainfall over Ethiopia at the annual time-

scale.  It is interesting to note the presence of anticyclonic ridge over northern 

parts of the Horn of Africa during the active phase (Fig. 3.18b). It is observed by 

the Ethiopian NMSA that occasionally moist southwesterlies recurve and form 

anticyclonic inflow over northern Ethiopia, and often result in active monsoon 

locally. These events are not yet quantitatively studied, but may have high 

predictive potential and scientific value.  
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3.3.5.5  Variability on Biennial-ENSO Time-Scale (1.5-3.1 years)  

The spectral analysis of 5-day average Ethiopian rainfall (raingauge) shown 

in Fig.3.11c reveals two variance peaks between 1.5-3.1 years: a smaller peak at 

1.84 years, which is associated with the biennial cycle, and a larger one at 2.38 

years that is linked to the ENSO variability (Section 3.3.4). However, since there 

is no clear temporal separation in the power spectrum structure between the two 

peaks, we consider the power in the 1.5-3.1 years band as joint biennial-ENSO-

related variability.    

 

At this time-scale, variations in the monsoon and subtropical regions of both 

hemispheres exert a strong influence on Ethiopian rainfall (Fig. 3.19). Shading in 

Fig. 3.19 shows the spatial patterns of the correlations between rainfall and 

MSLP/geopotential heights. The vectors in the figure are the regression of 

horizontal wind anomalies onto rainfall. Following the discussion in Section 

3.3.2, the horizontal wind anomalies, wave band filtered at the 1.5-3.1 year band, 

are linearly regressed onto identically filtered Ethiopian rainfall (raingauge) 

time-series. The regression coefficients for the zonal and meridional winds 

regression equations then are the response of the dependent variables (u and v) 

due to a change in the independent variable (filtered rainfall anomalies). In the 

northern hemisphere, the strengthening of the Azores/Saharan high produces 

strong northerlies along the Red Sea that intensify the monsoon trough over the 

Arabian  Peninsula  (Fig. 3.19a).  Concurrently,  the  heat  low  over  the  Arabian  
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FIGURE 3.19. Results of regression (vector) and correlation (shading) analyses 

of time series wave band filtered for the 1.5-3.1 year period.  (a) Correlation 

between MSLP and rainfall (shading) and regression of horizontal winds onto 

rainfall (vector) at 1000 hPa. (b) Correlation between geopotential height and 

rainfall (shading) and regression of horizontal winds onto rainfall (vector) at 150 

hPa. (c) Same as (a) but the analysis is extended eastward into the tropical 

Indian and Pacific oceans. (d) Same as (c) except for 200 hPa. Thick solid 

(dashed) lines enclose positive (negative) correlation values significant at the 

99.9% confidence level according to a two-tailed Student’s t-test for the shaded 

fields. The reference vector is in m s-1 (bottom right corner of each panel). 
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Peninsula deepens and creates anomalous cyclonic circulation that invigorates 

the southwesterlies across much of the Horn of Africa. These conditions produce 

strong wind confluence along the Yemen highlands. The strong correlations 

associated with the Azores/Saharan high persist through the troposphere (e.g., 

Fig. 3.19b). At 150 hPa, the highest correlation is linked to the anomalous 

anticyclone  over  the  Middle  East, which acts to strengthen the easterly jet to its  

south during the positive phase (Fig. 3.19b). The moderate negative correlation 

over the equatorial Indian Ocean off the coast of Kenya is likely connected to the 

upper  branch  of  the Walker  circulation, with strong easterlies corresponding to 

wetter conditions over Ethiopia. This feature is, does not contradict the 

observational analysis results of Hastenrath (2000b) that, climatologically, a 

closed equatorial zonal circulation during summer is limited to the western 

Indian Ocean and only in the middle to upper troposphere. 

 

Unlike for the seasonal/annual time-scales, rainfall variations at the biennial-

ENSO time-scale show pronounced links to atmospheric variability over the 

Pacific Ocean (Fig. 3.19c, d).  Figure 3.19c shows that the deepening of the 

monsoon trough over the Arabian Peninsula during high rainfall event over 

Ethiopia is linked to lower tropospheric negative pressure anomalies in the 

southern Indian and western Pacific oceans. The strongest signal in the mean sea 

level pressure field is found in the equatorial western Pacific between 100-140ºE 

(Fig. 3.19c).  Farther east, the correlation between rainfall and MSLP reverses sign 
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and intensifies eastward, with positive correlations (>0.84) occurring just east of 

Tahiti (17.6ºS, 149.6ºW) in the southern tropical Pacific Ocean. This creates a clear 

dipolar correlation pattern east and west of about 160ºE (Fig. 3.19c). 

 

The low-level horizontal winds regressed upon rainfall (Fig. 3.19c) exhibit 

strong easterly anomalies over equatorial central and eastern Pacific and 

westerly anomalies over eastern Indian Ocean, creating a strong region of 

convergent flow over the Maritime Continent. This flow has been associated with 

the lower branch of the Walker circulation during the cold ENSO phase (e.g., Lau 

and Wu 2001). The anomalous southwesterlies off the coast of Somalia are 

characteristics of strong monsoon.  

 

At upper levels (Fig. 3.19d), the correlation between Ethiopian rainfall and 

geopotential heights is less strong, but two centers (10ºN, 140ºW and 15ºS, 

140ºW) of maximum negative correlations coincide with the anomalous 

anticyclonic circulation in the regression wind vectors. For high Ethiopian 

rainfall event, much of the amplitude of the regression of the 200 hPa horizontal 

winds onto rainfall is concentrated along the equator over the central and eastern 

Pacific (east of 150ºE) and over much of the Indian Ocean west of about 80ºE. 

These easterly anomalies indicate a strengthened TEJ. The upper-level cyclonic 

circulations centered about 10ºN,140ºW and 15ºS,140ºW straddling the 

converging westerlies over the equatorial western-central Pacific, and the upper 



 125

level divergence over the Maritime Continent reveal the signature of the 

anomalous Walker circulation with large-scale ascent over the Maritime 

Continent and descent over the central-eastern Pacific. These wind patterns are 

consistent with the regression analysis of Lau and Wu (2001) for the Asian 

Summer Monsoon and the composite analysis results of Webster et al. (1998) for 

South Asian and Australian monsoons. In general, positive (negative) pressure 

and stronger easterly (westerly) wind anomalies over much of the 

eastern/central Pacific (Indian) ocean at the surface, and enhanced upper level 

easterly (westerly) anomalies over the Indian Ocean (equatorial Pacific), tend to 

enhance rainfall over Ethiopia.  

 

The flow structure associated with the extreme positive and negative rainfall 

phases over Ethiopia further illustrates the regional and teleconnection patterns 

that affect the rainfall. The stratification of the atmospheric fields is done by 

selecting rainfall threshold anomalies of ±0.75 mm d-1 for the extreme positive 

and negative phases of rainfall. For these thresholds, 11 cases of negative 

anomalies less than -0.75 mm d-1 and 15 cases of positive anomalies greater than 

0.75 mm d-1 were identified. Geopotential heights and horizontal winds for 1000 

and 200 hPa were extracted for the same dates and averaged appropriately to 

form composite fields corresponding to the extreme filtered Ethiopian rainfall 

anomaly cases. Fig. 3.20 depicts difference fields of the composites for 

geopotential  and  horizontal  winds  at  1000 and 200 hPa (corresponding to high  



 126

   

 

 
 
FIGURE 3.20. Distributions of the differences (corresponding to high minus low 

rainfall phases) between the composites of large-scale flow (vectors; 

m s-1)/height (shading; gpm) anomalies corresponding to about the top/bottom 

1% (positive/negative phases) of the rainfall time series filtered at the biennial-

ENSO time-scale (1.5-3.1 years). (a) 1000 hPa, (b) 200 hPa, (c) same as (a) but 

extended eastward across the tropical Indian and Pacific oceans, and (d) same 

as (b) but extended eastward across the tropical Indian and Pacific oceans. 

Rainfall anomaly thresholds are ± 0.75 mm d-1.  
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minus low rainfall phases). There is a striking similarity in the flow patterns 

between the composite difference charts in Fig. 3.20 and the 

correlation/regression analysis of Fig. 3.19. At or near the surface, strong 

Ethiopian monsoon events at the biennial-ENSO time-scale coincide with a 

deeper monsoon low over the Arabian Peninsula, intensified Azores/Sahara 

high, and higher geopotential heights over the Mediterranean Sea (Fig. 3.20a). In 

addition, southwesterlies across Ethiopia and off the coast of Somalia become 

stronger. Furthermore, the anticyclonic anomalous circulation at the upper levels 

indicates the intensification of the regional subtropical ridge/high and the 

strengthening of the TEJ (Fig. 3.20b). The spatial structure of the anomalous 

anticyclone over eastern Mediterranean Sea (Fig. 3.20b) indicates the presence of 

southerly components in the TEJ over northwestern Ethiopia and northerly 

components east of Ethiopia that enhance upper level divergence during wet 

years. This assessment is consistent with the strong upper tropospheric 

correlations found between rainfall and meridional winds for the annual mode 

(Section 3.3.5.4).   

 

The influence of Mediterranean Sea pressure systems on Ethiopian rainfall 

(i.e., high geopotential height corresponding to enhanced Ethiopian rainfall in 

Fig. 3.20a)  is consistent with previous observational results that indicated strong 

link between sea level pressure and sea surface temperature over the 

Mediterranean region and monsoonal rainfall over Africa and India at 
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interannual time-scales (e.g., Ward 1998; Raicich et al. 2003; Rowell 2003). In 

particular, Raicich et al. (2003) found that Sahel wetness often is associated with 

higher atmospheric pressure in the western Mediterranean Sea and suggested a 

local Hadley circulation and its seasonal shifts as basic large-scale physical 

processes that link the two regions. 

 

The large-scale anomaly structure associated with strong monsoons over the 

Horn of Africa exhibits large amplitude signatures in horizontal winds over the 

eastern Indian and the Pacific oceans (Figs. 3.20c, d), further confirming the 

linkage between the Horn of Africa and ENSO at the biennial-ENSO time-scale. 

Of particular interest are the anomalous near surface westerlies/northwesterlies 

over the equatorial Indian Ocean and anomalous easterlies over the equatorial 

Pacific (Fig. 3.20c). These wind anomaly patterns suggest strong convection over 

the Maritime Continent that feeds into the ascending branch of the Walker 

circulation.  

 

At the upper levels, the easterly (westerly) anomalies imply stronger easterly 

(westerly) jet over the Indian (Pacific) Ocean (Fig. 3.20d). The net effect of strong 

low-level easterlies and upper-level westerlies over the equatorial Pacific is to 

enhance the Walker circulation over the equatorial Pacific (Kirtman and Shukla 

2000). These anomalous flow patterns (Figs. 3.20c, d) compare well with the 

circulations associated with strong and weak Indian monsoon composites (e.g., 
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Kuwamura 1998, their Figs. 13c, f; Webster et al. 1998, their Fig. 20). There is also 

strong qualitative agreement between Figs. 3.19c, d and results of model 

experiments that simulated atmospheric response during ENSO phases (e.g., Lau 

and Nath 2000, their Fig. 7). In general, the east-west dipolar patterns in the 

southern tropical Pacific and parts of the Indian Ocean in pressure/height fields, 

as well as the overall large-scale flow structure associated with the positive 

(negative) phases of Ethiopian rainfall, are characteristics of a cold (warm) ENSO 

phase (e.g., Rasmusson and Carpenter 1982, Webster et al. 1998;  Garreaud and 

Battisti 1999; Kirtman and Shukla 2000). 

 

To examine the local effects associated with regional and remote large-scale 

processes at the biennial-ENSO scale, the local meridional and Walker-like 

circulations are constructed by regressing the horizontal winds and negative 

pressure vertical velocity onto 5-day average filtered Ethiopian rainfall time 

series for standard pressure levels between 1000-100 hPa (Fig. 3.21).  Because we 

are interested in the local (Horn of Africa) response to ENSO, the zonal 

circulation was obtained by averaging the regression coefficients over 5-20ºN 

(Fig. 3.21a), and not on the equatorial plane. When the zonal vertical circulation 

was constructed for the equatorial plane (10ºS-10ºN), the amplitude of the 

circulation was very weak across the Horn of Africa longitudes. It was decided 

that the zonal circulation patterns averaged over the Horn of Africa latitudes 

give a good representation of the local overturning. The local meridional 
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circulation was similarly constructed for the Horn of Africa longitudes between 

30-50ºE (Fig. 3.21b).   

 

 

 
 
FIGURE 3.21a. Longitude-height section of regression of zonal wind (u) and 

negative vertical velocity (-ω) on Ethiopian rainfall (raingauge) averaged over 5-

20ºN. Wind vector anomalies are constructed similar to those in Fig. 3.2; 

horizontal wind anomalies are in m s-1 (standard deviation)-1, and pressure 

velocity anomalies are given in Pa s-1 (standard deviation)-1. Shading depicts 

actual regression coefficient for pressure vertical velocity anomalies (-ω; Pa s-1). 

Vertical dashed dark lines mark the bounding longitudes for Ethiopia. White 

triangle shows the longitude and elevation of Addis Ababa (central Ethiopia). 

Letter marks in (a) show regional locations (see text). 
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The regional zonal circulation corresponding to a unit positive Ethiopian 

rainfall anomaly at the biennial-ENSO time-scale shows ascending motions that 

appear to tilt eastwards with height (Fig. 3.21a). The maximum ascent is located 

in the lower to middle troposphere, with weaker ascending motion at  the  upper 

levels (Fig. 3.21a). This indicates that during high Ethiopian rainfall event, the 

large-scale flow acts to enhance the mean vertical ascent in the region and 

weaken the climatological upper level descent east of 40ºE (Fig. 3.2).  The overall 

effect thus is to enhance rainfall in the region.  

 

There is strong upper level descent (Fig. 3.21a) just to the west of Ethiopian 

longitudes and general descent over much of western/central Africa, especially 

over the longitudes of Guinea-Bissau/Guinea-Conakry (GN) and eastern 

Chad/western Sudan (CS). This descent may be an indication that the 

western/central parts of the North African continent and Ethiopia are differently 

affected at this time-scale. It may also be a result of the location of the latitudinal 

averaging. For example, the structure of the vertical circulation over West Africa 

changes substantially when the Walker-type circulation is constructed on the 

equatorial plane (10ºS-10ºN). On the other hand, there is coherent variability 

between the Horn of Africa and South Asia, especially with the monsoon region 

in the Bay of Bengal (BB) longitudes (Fig. 3.2a). 
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The meridional circulation also shows strong ascending motion over 

northern parts of Ethiopia (3.21b). The ascending motion exhibits strong 

southward tilt with height, bringing much of the Horn of Africa under middle to 

upper tropospheric ascending motion regime. The primary descending motion is 

located near the equator in the mid-to-upper troposphere. Thus, during the high 

Ethiopian rainfall phase at the biennial-ENSO time-scale, the large-scale 

meridional flow intensifies the ascending motion over the Horn of Africa and the  

 

 
 
FIGURE 3.21b. Same as Fig. 3.21a except for latitude-height section of 

regression of meridional wind (v) and negative vertical velocity (-ω), on regional 

rainfall averaged over 30-50ºE. Vertical dashed dark lines mark the bounding 

latitudes for Ethiopia. White triangle shows the latitude and elevation of Addis 

Ababa (central Ethiopia). 
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descending motion near the equator (Fig. 3.21b). The regional circulation for the 

low Ethiopian rainfall phase is opposite to the circulation in Fig. 3.21 and is 

obtained by multiplying the regression vectors by -1.0. Thus, during the low 

Ethiopian rainfall phase, the shift in the Walker-type circulation eastward in the 

Pacific forces the ascending motion in the regional meridional circulation to shift 

to the equatorial regions. This shift brings descending motions over much of the 

Horn of Africa, thereby weakening the climatological ascending motions and 

consequently rainfall in the region. 

 

To this point, because there is no distinct frequency separation between the 

biennial and ENSO modes for the 5-day May-October rainfall time series, we 

have combined the variability associated with the biennial- and ENSO-related 

modes to identify the large-scale systems involved in modulating Ethiopian 

rainfall. Before concluding this section, it is necessary to address some related 

questions. Are the two cycles actually distinct? Could the biennial cycle be a part 

of the ENSO cycle? How would each modulate the large-scale systems and 

regional rainfall independently? To address the above issues, it suffices to 

evaluate the effects of the two modes on rainfall separately.  Since the biennial 

and ENSO modes have clear signals at lower levels (e.g., Fig. 3.19c), the 

correlations between rainfall and MSLP are computed for the two modes.  
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Figure 3.22 depicts the correlation between rainfall and MSLP for the 

biennial and ENSO modes separately. Both modes exhibit strong correlations 

over the Pacific and eastern Indian Ocean, although the magnitudes are weaker 

for the biennial time-scale (Fig. 3.22 top). The large dipole in the correlation 

pattern for the 2.1-3.1-yr band between the Indo-western Pacific region and the 

southeast Pacific (Fig. 3.22 bottom) is the classical southern oscillation signal 

(e.g., Barnett 1991).   

 

 

 

 
FIGURE 3.22. Spatial patterns of simultaneous correlations between rainfall and 

mean sea level pressure for the 1.5-2.1-yr (top) and 2.1-3.1-yr bands (bottom) 

over the Pacific and eastern Indian oceans. Thick solid (dashed) lines enclose 

positive (negative) significant values at the 99.9% confidence level according to a 

two-tailed Student’s t-test for the shaded fields. 
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Inspection of the filtered data for each time-scale revealed that the two 

modes show a high degree of similarity over subtropical/monsoon regions 

where the largest regional anomalies occur. Thus, although the dominant 

variance in the 1.5-3.1-year time-scale is associated with the ENSO cycle, both the 

biennial and ENSO modes act in harmony to enhance or suppress rainfall over 

the Horn of Africa. This finding is consistent with Barnett (1991), who noted that 

the space-time evolution of the SLP/SST field at the biennial band looks much 

like the traditional ENSO event.   

 

The analysis in this section has identified the regional and remote circulation 

features that affect the Horn of Africa rainfall variability at the biennial-ENSO 

time-scale. The primary regional circulation systems that strongly impact 

regional rainfall at this scale are the Azores high and the associated ridge system 

along the Mediterranean Sea, the heat low over the Arabian Peninsula, the low 

level southerlies over Ethiopia and off the coast of Somalia, the low level 

northerlies along the Red Sea, and the subtropical upper-tropospheric wind 

patterns over eastern Mediterranean and northeast Africa along 30-35ºN that 

affect the TEJ.  

 

The high degree of association between Ethiopian rainfall and the large-scale 

circulation features over the Pacific and Indian Ocean is a reflection of the effects 

of ENSO. The ENSO cycle modulates the regional monsoon through the 
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interaction of the Walker-type and regional meridional circulations. In addition, 

surface pressure variations in the southern Indian Ocean associated with ENSO 

appear to affect the southerly flow into the Horn of Africa. It is interesting to note 

that although atmospheric variability in the Atlantic basin/Gulf of Guinea are 

highly associated with the sub-seasonal and annual modes, no significant 

association is found at the biennial-ENSO time-scale.  

 

3.3.5.6  ENSO/Low-Frequency Variability (3.1-6.8 years)  

The wavelet spectrum for Ethiopian summer rainfall shows a significant 

variance peak across the 3.1-6.8-year band, with the maximum variance 

occurring at about 5 years. Since the wavelet power spectra for Niño-3 SST and 

SOI show broadly distributed power with peaks in the 2-8 year ENSO band (e.g., 

Torrence and Compo 1998; Torrence and Webster 1999), one could expect a 

strong degree of association between Ethiopian rainfall and ENSO at the 3.1-6.8-

year band. This section examines the variability of Ethiopian rainfall at this time-

scale.  

 

The regional surface circulation systems that show stronger correlations with 

Ethiopian rainfall at this low frequency time-scale are the Mediterranean frontal 

systems, the ridge associated with the subtropical high, surface pressure over the 

Congo rainforest, the Mascarene high (especially south of Madagascar), and 

marginally the St. Helena high (Fig. 3.23a, b). Except for surface pressure over the  
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FIGURE 3.23. Maps of regression and correlation analyses of time series filtered 

for the 3.1-6.8-yr cycle. (a) Correlation between MSLP and rainfall (shading) and 

regression of horizontal winds onto rainfall (vector) at 1000 hPa. (b) Correlation 

between geopotential height and rainfall (shading) and regression of horizontal 

winds onto rainfall (vectors) at 200 hPa. (c) Same as (a) but the analysis is 

extended eastward into the tropical Indian and Pacific oceans. Thick solid 

(dashed) lines enclose positive (negative) correlation values significant at the 

99.9% confidence level according to a two-tailed Student’s t-test for the shaded 

fields. The reference vector is in m s-1 (bottom right corner of each panel). 

 

Congo rainforest area, which shows a limited vertical extent, the effects of the 

above listed regional systems extend to at least 500 hPa (not shown). In general, 

a b

c 
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the deepening of pressure systems over western Mediterranean Sea and the 

intensification of the Mascarene high tend to increase rainfall over Ethiopia. 

 

Comparisons of the regional circulation systems associated with the biennial-

ENSO   and   the   ENSO/low   frequency   modes   (Figs. 3.19,  3.23)  disclose  the 

difference and relative importance of the two modes. For the biennial-ENSO 

mode, the strongest correlation signals, and hence the highest impact, come from 

the monsoon trough, the LLJ and the upper level easterlies (Fig. 3.19a, b), all of 

which are directly connected with the summer monsoon over the Horn of Africa 

(Section 3.3.2). On the other hand, for the ENSO/low frequency mode (Fig. 3.23a, 

b), none of the strongest correlation/regression signals corresponds to the 

primary monsoon rain producing systems, except probably for the anomalous 

anticyclone south of Madagascar (Fig. 3.4a).  

 

Furthermore, some of the correlations indicate a weakened monsoon flow 

corresponding to enhanced Ethiopian rainfall (e.g., northeasterly correlation 

vectors over northern Indian Ocean in Fig. 3.23a). Note also the absence of 

statistically significant correlations between rainfall and the zonal wind in the 

upper troposphere (one of the primary components of the monsoon, Fig. 3.6b) for 

the ENSO/low frequency mode (Fig. 3.23b). If the ENSO phenomena were to 

influence the summer rains as severely as experienced in Ethiopia, we expect the 

3.1-6.8-yr ENSO effects to be reflected in the primary monsoon systems that 
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directly affect   rainfall.  As will be made clear in later sections, the weak 

connection between rainfall and atmospheric variables at the 3.1-6.8-yr band is 

largely a result of including May and October rainfall in the seasonal time series. 

It suffices to state here that the effect of ENSO on June-September rainfall is 

opposite to its effect during February-May and October-November. As a result, 

the opposing ENSO effects over the different portions of the time series may 

cancel out and flatten the correlation signals when May and October rainfall are 

included in the time series. This issue will be discussed in subsequent sections.  

 

Remotely, the correlation between Ethiopian rainfall and the large-scale 

circulation over the eastern Indian Ocean and the Pacific at the 3.1-6.8-yr time-

scale (Fig. 3.23) does not reflect the major ENSO characteristics identified for the 

biennial-ENSO mode (Fig. 3.19).  In contrast to Fig. 3.19c and contrary to what is 

expected of a typical ENSO response, the correlations between rainfall and MSLP 

in Fig. 3.23c are weaker than the correlation values at the biennial-ENSO time-

scale, and exhibit the same polarity over the eastern Pacific and southeastern 

Indian Ocean. In addition, the correlation vectors at the ENSO/low frequency 

time-scale (Fig. 3.23c) lack the typical ENSO signatures in the horizontal winds 

(strong easterly anomalies over equatorial central and eastern Pacific and 

westerly anomalies over eastern Indian Ocean corresponding to high rainfall 

events over Ethiopia)  found for the biennial-ENSO mode (Fig. 3.19c). Note the 

strong northerlies west of the date line, the presence of westerly components in 
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the east of the date line, and the collapse of the anomalous anticyclone in the 

southern subtropical Pacific (Fig. 3.23c). As will be shown later in this chapter, 

these differences are the result of including May and October rainfall in the 5-day 

Ethiopian seasonal time series.  

 

Analysis of the differences of composites of large-scale flow patterns 

associated with high and low rainfall phases shows that extratropical lows over 

western Europe/Mediterranean Sea and southern Atlantic Ocean positively 

affect rainfall (Figs. 3.24a). The northern hemisphere influence is noticeable in the 

negative geopotential height anomalies along the Red Sea and northern Arabian 

Sea.  On the other hand, enhanced Ethiopian rainfall events are linked to the 

intensification of the Mascarene high southeast of Madagascar, where anomalous 

anticyclone and higher geopotential heights develop. At upper levels, the effect 

of extratropical westerlies is reflected in the cellular nature of the subtropical 

anticyclones and by the wedges of anomalous westerly troughs to the west and 

east of the Mediterranean (Fig. 3.24b).  

 

3.3.6  Comparison of June-September and May-October Wavelet 

Spectra  

The wavelet power spectrum for June-September 5-day average all- 

Ethiopian rainfall exhibits the primary features of the May-October spectrum 

discussed   earlier.  However,  some  additional   features   appear   in   the   June-  
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Figure 3.24 Distributions of difference fields (corresponding to high minus low 

rainfall phases) between the composites of large-scale flow (vectors; 

m s-1)/height (shading; gpm) for time series wave band filtered at the 3.1-6.8-yr 

period: (a) 1000 hPa, and (b) 200 hPa. Rainfall anomaly thresholds are ± 0.5 

mm d-1 and correspond to about the top/bottom 1% of the time series. The 

reference vector is in m s-1 (bottom right corner of each panel). 

 

September spectrum (Fig. 3.25). First, a prominent and distinct peak appears in 

the 15-75-day band.  Second, the separation of the variances at about 135 days 

becomes less distinct, leaving broadly distributed variance at sub-seasonal to 

seasonal bands. Third, only one dominant power emerges at the biennial-ENSO 

time-scale in the 1.4-3.1-year band. With the appearance of these distinct energy 

spikes, the variance associated with the annual cycle has decreased, contributing 

only about 13% of the total global variance at its peak. In addition to the 1.4-3.1-

yr band, another 3.1-4.6-yr band appears in the June-September rainfall 

spectrum. Although the variance associated with this 3.1-4.6 year band is small, 

a b
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the correlation patterns indicate clear ENSO signatures. This section reports the 

main results that emerged by restricting the analysis to June-September 

Ethiopian rainfall time series and highlights the effects of May and October in the 

seasonal time series.   

 

In spite of the presence of a distinct sharp variance at short time-scales (Fig. 

3.25 inset), rainfall variation in the 15-75-day band shows only a weak correlation 

with local moisture over Ethiopia, and no connection was found with the large-

scale systems in the domain of analysis (not shown).  In addition to the standard 

atmospheric variables (e.g., u, v, T, h, and p), a possible connection of rainfall 

variability at this mode with that of the MJO, local vertical wind shears, and 

vertical temperature lapse rates were investigated, but no satisfactory result was 

found. Hopefully, future research employing high resolution temporal and 

spatial scales would shed light on the physical processes associated with the June 

to September Horn of Africa rainfall variability at this time-scale.   

 

In contrast to Sections 3.3.5.2 and 3.3.5.3, physically consistent and spatially 

coherent moderate-to-strong correlations were found between 5-day June-

September Ethiopian rainfall and large-scale circulation patterns on the 

intraseasonal-to-seasonal time-scales (75-210 days). This difference is due entirely 

to the effects of including May and October in the previous analysis (Section 

3.3.5).  Figure  3.26  shows  the  correlation  patterns  for selected reanalysis fields  
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FIGURE 3.25. Global wavelet spectra of 5-day all-Ethiopian June-September 

rainfall (raingauge) for 1970-99. The amplitude is normalized by the total 

variance for the entire period. Insets magnify the major peaks at indicated time-

scales. 

 

and levels. Wet monsoon conditions are characterized by a southwest-northeast 

directed pressure gradient associated with a general pressure fall over the 

Arabian Peninsula and pressure rise over the Gulf of Guinea (Fig. 3.26a). 

 

Consistent with this pressure gradient, westerly flow from the Atlantic 

increases the atmospheric moisture over the Horn of Africa and (Fig. 3.26b, c). 

This flow pattern becomes especially strong at 700 hPa (Fig. 3.26b). Inspection of 

the actual flow during wet events  reveals  enhanced  wind  confluence  between  

westerlies  and   northerlies  along  the  Red  Sea  and  over Ethiopia (not shown),  
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FIGURE 3.26. Spatial patterns of simultaneous correlations between 5-day June-

September Ethiopian rainfall (raingauge) and reanalysis fields for time series 

waveband filtered at 75-210 day period. (a) MSLP (shading) and horizontal winds 

at 1000 hPa (vector); (b) zonal wind (shading) and horizontal winds at 700 hPa 

(vectors); (c) vertically integrated water vapor (shading) and  horizontal winds at 

600 hPa (vectors); and (d) geopotential height (shading) and horizontal winds at 

150 hPa (vectors). Thick solid (dashed) lines enclose positive (negative) 

correlation values significant at the 99.9% confidence level according to a two-

tailed Student’s t-test for the shaded fields. Correlations between rainfall and 

horizontal winds are shown as vectors, with unit vector (bottom right inset in each 

panel) representing a correlation magnitude of 1.0.  

a b

c d
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where rainfall is maximally correlated with vertically integrated moisture and 

substantially correlated with the easterly jet (Fig. 3.26c, d). In addition to the 

deepening of the heat low over the Arabian Peninsula, strong anticyclones that 

develop over the Mediterranean/north Africa and southern Indian Ocean (south 

of Madagascar) appear to enhance inter-hemispheric meridional flows and 

convergence (not shown).    

 

On the 1.4-3.1 year time-scale, the atmospheric forcing associated with 

Ethiopian June-September rainfall is stronger than that of May-October rainfall. 

In agreement with the 1.4-3.1-yr mode of May-October rainfall, the largest 

circulation anomalies occur over the monsoon and subtropical regions (Fig. 3.27). 

In general, wet June-September events are associated with the development of 

anomalous cyclonic (anticyclonic) circulation over the southeastern Indian Ocean 

(northeastern Atlantic/western Mediterranean) and negative pressure anomalies 

over the Arabian Peninsula at low levels (Fig. 3.27a). At upper levels, the 

intrusion of anomalous westerly trough appears to split the subtropical 

anticyclone into two centers over the central Mediterranean and Pakistan, where 

geopotential height maximally positively correlates with rainfall at the biennial 

time-scale (Fig. 3.27b). The overall 150 hPa atmospheric flow for the 1.5-3.1 year 

cycle is very similar for the May-October and June-September time series—both 

time series feature anomalous subtropical anticyclones across the Mediterranean 

latitude  and  strong easterlies  over  the equatorial belt (Figs. 3.19b, 3.27b).  Note,  
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FIGURE 3.27. Results of regression (vector) and correlation (shading) analyses 

of 5-day June-September time series wave band filtered for the 1.5-3.1 year 

period.  (a) Correlation between MSLP and rainfall (shading) and regression of 

horizontal winds onto rainfall (vector) at 1000 hPa. (b) Correlation between 

geopotential height and rainfall (shading) and regression of horizontal winds onto 

rainfall (vector) at 150 hPa. Thick solid (dashed) lines enclose positive (negative) 

correlation values significant at the 99.9% confidence level according to a two-

tailed Student’s t-test for the shaded fields. The reference vector is in m s-1 

(bottom right corner of each panel). 

 

however, the strong atmospheric forcing for the June-September time series, as 

reflected in the magnitudes of the correlation values and regression vectors (Fig. 

3.27).   

 

Moreover, unlike the case of May-October wavelet analysis, where many of 

the strongest rainfall anomalies for the biennial mode occur mainly in the 

beginning or ending months of the season (i.e., May and October, respectively), 

a b
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the strongest anomalies for the June-September wavelet analysis occur primarily 

during the peak of the season in July-August. The strongest negative (positive) 

anomalous July-August signals occurred in 1984, 1987, and 1997 (1988 and 1996), 

which clearly correspond to the dry and wet Ethiopian years, respectively.  

 

The most pronounced difference between the May-October and June-

September time series is observed at the ENSO time-scale. It was noted that at 

the 3.1-6.8-yr time-scale the May-October time series does not show the major 

ENSO characteristics (Fig. 3.23) in the wind and pressure fields because of the 

inclusion of May and October rainfall. In contrast to the May-October time series, 

the wavelet analysis for June-September reveals the classical ENSO signals in the 

Pacific and eastern Indian Ocean circulation patterns corresponding to the 3.1-4.6 

year ENSO mode (Fig. 3.28). At the ENSO time-scale, June-September Ethiopian 

rainfall is negatively correlated with MSLP over Ethiopia, the Red Sea, and the 

Arabian Peninsula (Fig. 3.28a). The positive correlations between rainfall and 

MSLP over the southwestern Indian Ocean, northern Atlantic, and northern 

Africa indicate that the intensification of the Mascarene high in the south and the 

Azores/Saharan high in the north enhance Ethiopian rainfall (Fig. 3.28a). In the 

upper troposphere, the regression vectors depict strong easterlies across much of 

the tropics, where geopotential height correlates strongly negatively with rainfall 

(Fig. 3.28b).  
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FIGURE 3.28. Maps of regression and correlation analyses of 5-day June-

September time series filtered for the 3.1-4.6-yr cycle. (a) Correlation between 

MSLP and rainfall (shading) and regression of horizontal winds onto rainfall 

(vector) at 1000 hPa. (b) Correlation between geopotential height and rainfall 

(shading) and regression of horizontal winds onto rainfall (vectors) at 150 hPa. 

(c) Same as (a) but the analysis is extended eastward into the tropical Indian and 

Pacific oceans. Thick solid (dashed) lines enclose positive (negative) correlation 

values significant at the 99.9% confidence level according to a two-tailed 

Student’s t-test for the shaded fields. The reference vector is in m s-1 (bottom 

right corner of each panel). 

 

In the Pacific and the Indian Ocean, the regression vectors and the 

correlation between rainfall and MSLP exhibit the major ENSO signatures in  the  

a b
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wind and pressure fields, featuring the dipole pattern of the SOI (in the MSLP 

correlation field), and the anomalous westerlies in the eastern Indian Ocean and 

anomalous easterlies in the central and eastern Pacific at low levels (Fig. 3.28c).  

Note the clear differences between the flow patterns for June-September (Fig. 

3.23) and those found for the May-October time series (Fig. 3.19c). Thus, ENSO 

affects Ethiopian rainfall by modulating the major monsoon systems during 

June-September. The lack of strong correlations between May-October Ethiopian 

rainfall and the major large-scale monsoon systems at the ENSO time-scale in 

Section 3.3.5.6 is due to the inclusion of May and October rainfall in the seasonal 

time series.  

 

In summary, the dominant modes of variability associated with the June-

September rainfall bear strong resemblance to that associated with the May-

October rainfall, but the modes corresponding to June-September rainfall more 

strongly reflect the variability associated with core monsoon features.  Except for 

the shorter scale mode of variability (<75 days), the filtered time series strongly 

correlates with identically filtered large-scale systems for all the other modes of 

variability. In particular, the variability of the annual cycle can be predicted to a 

very high degree of certainty.  

 

On the other hand, there is no strong statistical connection between rainfall 

variability and the large-scale systems in the 15-75-day band. The variability 
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appears to be random for many of the atmospheric state variables and for some 

derived quantities that reflect atmospheric instabilities. Fortunately, except for 

few instances, the amplitudes of the 15-75 day filtered time series are not very 

large, and in most cases are smaller than those filtered on the annual cycle. It is 

likely that improving the spatial and temporal resolutions of the data used (e.g., 

using daily average rainfall for highly correlated neighboring stations and daily 

high-resolution atmospheric data) will help to identify the atmospheric forcing 

that affects June-September rainfall variability at the 15-75 day time-scale. 

Because the procedure is computationally very expensive, this may require 

reducing the domain of the large-scale systems. 

 

All the discussion in the above sections considered the association of rainfall 

with atmospheric variables. However, to understand climate fluctuations and 

develop prediction models with long lead-time, the association of rainfall with 

slowly evolving boundary conditions needs to be studied. Because SST forcing is 

one of the most important boundary conditions influencing atmospheric seasonal 

variability (e.g., Charney and Shukla 1981; Kawamura 1998; Barnston et al. 2005), 

the connection between rainfall and global SST will be examined in the next 

section.  
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3.4 Rainfall and Global Sea Surface Temperature  

Variations in SSTs are linked to rainfall variability over many parts of Africa 

(e.g., Lamb 1978; Folland et al. 1991; Ward 1998; Hastenrath et al. 1995). Barnston 

et al. (1996) demonstrated that the time–space behavior of the SST field alone 

influences the seasonal precipitation in certain seasons/regions of Africa, both on 

interannual and interdecadal time-scales. For Ethiopia, Segele and Lamb (2005) 

examined the possible associations of the onset, cessation, and growing length of 

the main rainy season for the most drought-prone region of Ethiopia with ENSO 

and global SST and found strong links between the commencement of the season 

and its duration with Indian Ocean and equatorial Pacific SSTs (r ~ +0.45 to 

+0.55). Gissila et al. (2004) also used global SSTs to predict June-September 

Ethiopian rainfall and found significant associations between Indian and Pacific 

SSTs and summer Ethiopian rainfall (r ~ +0.6). Here, we will examine the link 

between Ethiopian rainfall and global SST in detail using wavelet analysis. The 

analysis will be performed on a monthly basis to match the temporal resolution 

of the HadISST1 global SSTs that were used. To clarify further the differences 

regarding the effects of ENSO on May-October and June-September rainfall 

noted in Sections 3.3.5.5 and 3.3.5.6, the analysis in this section will include the 

spring season. Thus, February-May, June-September, and January-December 

rainfall time series will be analyzed.  
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June-September (JJAS) is the primary rainy season (“Kiremt”) for about two-

thirds of Ethiopia and accounts for more than 60% of the annual total rainfall 

(e.g., Fig. 1a of Segele and Lamb 2005). On the other hand, mid-February to mid-

May, the main rainy season for southern Ethiopia, is a secondary rainy season 

(“Belg”) for the Main Rift Valley and the surrounding regions, including 

southwestern, central, eastern, and northeastern Ethiopia. Although the 

contribution of the Belg rains to the annual rainfall total is small, it is crucial for 

some of northern Ethiopian highlands that largely depend on the short rains for 

cultivation (e.g., Broad and Agrawala 2000). Figure 3 of Segele and Lamb (2005) 

provides examples of the temporal distributions of the two seasons for different 

parts of Ethiopia. The current approach employed in this section builds on earlier 

study of Segele and Lamb (2005) and offers further evidence linking SST and 

Ethiopian rainfall at different time-scales.  

 

Figure 3.29 shows the average wavelet spectra for the annual and boreal 

spring and summer monthly rainfall totals for 1970-99.  The major differences 

among the three time series are the relative importance of the annual cycle, the 

absence of significant power at the seasonal time-scale in the summer wavelet 

spectrum, and the large distinct peaks in the seasonal and biennial modes for the 

February-May (FMAM) time series. Clearly, the seasonal and biennial peaks in 

the spring rains must have modulated the power distribution for the May-
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October rainfall (Fig. 3.11c); note the weak seasonal peak and the shift in the 

biennial power for JJAS time series (Figs. 3.25, 3.29).  
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FIGURE 3.29. Average wavelet spectra of monthly total all-Ethiopian rainfall 

(raingauge) for 1970-99. The wavelet analysis was performed on spatially 

averaged monthly rainfall totals for February-May (blue), June-September 

(green), and January-December (red). The amplitude is normalized by the total 

variance for the entire period for each spectrum.  

 

The frequency (period) limits of the spectral bands for the three time series in 

Fig. 3.29 slightly differ from each other, but each time series will be divided into 

5 spectral bands—seasonal, annual, biennial, ENSO, and low frequency modes 

(Table 3.1). Note that we have separated the biennial and ENSO modes because 

they are distinct here. Note also that because of the monthly temporal resolution 
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of the data, the power at the intraseasonal time-scale is very small. Thus, the 

lowest time-scale identified is seasonal. In the following sections, the linkage 

between global SST and rainfall will be explored using February-May, June-

September, and January-December monthly rainfall time series. 

 

Table 3.1. Spectral bands used for the decomposition of rainfall and SST time series.  

Period  

Mode 
Feb.-May Jun.-Sept. Jan.-Dec. 

Seasonal < 250 days < 235 days < 235 days 

Annual 250 days-1.46yrs 235 days-1.46 yrs 235 days-1.47 yrs 
Biennial 1.46-2.92 yrs 1.46-3.1 yrs 1.47-2.57 yrs 
ENSO 2.92-4.43yrs 3.1-4.43yrs 2.57-4.47 yrs 

Low-frequency > 4.43 yrs > 4.43 yrs > 4.47 yrs 

 

 
3.4.1  Seasonal Variability 

The short rains exhibit strong associations with global SST with distinct 

hemispheric contrasts on seasonal time-scale (Fig. 3.30a). Warm (cold) SST 

anomalies in the northern (southern) hemisphere enhance (weaken) FMAM 

rains. The strength of the association is remarkably high, with strong positive 

correlation of about 0.87 over the northern Arabian Sea and South China Sea, and 

negative correlation of -0.89 over southeastern Indian Ocean and southern 

Pacific. The spatial homogeneity of the strong correlations also is very high. 

Clearly, these strong correlations indicate a high predictability potential for 

FMAM seasonal rainfall. 
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FIGURE 3.30. Spatial patterns of February-May concurrent correlations between 

all-Ethiopian rainfall and SST waveband filtered at the seasonal time-scale (30-

250 day) for 1970-99. The correlation analysis was performed on monthly rainfall 

totals for February-May, and uses 120 data pairs at each grid point. Thick solid 

(dashed) lines enclose positive (negative) correlation values significant at the 

99.9% confidence level according to a two-tailed Student’s t-test. (b) Same as (a) 

except for June-September. (c) Same as (a) except for January-December. The 

correlation map in (c) is constructed based on 360 data pairs at each grid point.   

 

a 

b 

c 



 156

For JJAS (Fig. 3.30b), the correlation magnitudes are not as strong as for the 

FMAM rains, consistent with the weak and less distinct peak in the wavelet 

power spectrum at the seasonal time-scale (Fig. 3.29).  The polarities of the 

correlations are the same as for FMAM over much of the Southern Hemisphere, 

the northern Atlantic and northern Pacific. SSTs in the Mediterranean Sea also 

correlate positively with JJAS rainfall. However, JJAS rainfall correlates weakly 

negatively with SST over the Arabian Sea, which is a marked charge from 

FMAM (Fig. 3.30a, b). The southern Indian Ocean and the southeastern Pacific, 

on the other hand, show relatively strong negative correlations (-0.3 to -0.6) 

between Ethiopian rainfall and SST over a large area (Fig. 3.30b). 

 

The correlation patterns for the annual time series (Fig. 3.30c) exhibit many 

of the features of the FMAM patterns but appear to be affected by variability in 

October-December. The strong negative correlations over the Arabian Sea and 

over south China/Philippine Sea are opposite to the strong positive correlations 

that exist for the FMAM time series. SST variations in the equatorial Atlantic 

(10ºS-10Nº) also strongly negatively correlate with the annual Ethiopian rainfall 

time series. The negative correlations over the southern hemisphere oceans, 

present in both FMAM and JJAS correlation maps, are replaced by weak positive 

correlations in the January-December map. The annual correlation map also 

exhibits stronger positive correlations in the North Pacific and North Atlantic 

than in Fig. 3.30b.   
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3.4.2  Annual Variability 

The above correlation patterns observed for the seasonal cycle persist in the 

annual cycle, although the magnitudes of the correlation slightly weaken for the 

short rains (FMAM). During FMAM, the strongest positive correlations are 

located over the Arabian Sea and the South China Sea while strong negative 

correlation values cover much of the southern hemisphere oceans (Fig. 3.31a).  

 

The strong positive correlations over the northern Arabian Sea at both the 

seasonal and annual cycles in FMAM are likely indications of the positive 

contribution of a warm moisture flux into the Horn of Africa and, at times, the 

positive influence of westward propagating tropical disturbances/storms. The 

warm waters over the Arabian Sea serve as the main moisture source for the 

spring  rains  over  the  Horn  of  Africa. As the Arabian anticyclone/ridge moves 

into the water (e.g., Ju and Slingo 1995), the easterly/northeasterly trades cross a 

long trajectory across the warm waters and increase moisture over Ethiopia. 

Climatologically, the eastward shift of the Arabian anticyclone usually follows 

the passage of midlatitude frontal systems across the Mediterranean Sea. These 

frontal lows extend upper level troughs southward into the Horn of Africa as 

they cross the eastern Mediterranean, and interact with the nearby ITCZ in 

southern Ethiopia during FMAM. This interaction creates extended southwest-

northeast oriented cloud mass along the Main Rift Valley in the presence of 

warm moist air from the Arabian Sea.  



 158

 
FIGURE 3.31. Same as Fig. 3.30 except for the annual time-scale. 

 

Compared to the seasonal cycle, the correlation patterns at the annual time-

scale show strong correlation fields and high spatial homogeneity for JJAS (Fig. 

3.31b). The strongest and more coherent correlation signals between rainfall and 

SST occur over the northern Pacific, northern Atlantic, and over western Indian 
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Ocean. The negative correlation over the western Indian Ocean, which also is 

present for the seasonal cycle, suggests that stronger monsoons are favored by 

cold waters off the coast of Somalia and over northern Arabian Sea. A similar 

negative correlation pattern has been found between Indian rainfall and SSTs 

over western Indian Ocean in JJAS (e.g., Rao and Goswami 1988), and its 

existence is ascribed to dynamic response of the ocean to wind forcing and/or 

surface heat exchanges (e.g., Ju and Slingo 1995; Kawamura 1998).   

 

The correlation patterns for the January-December time series appear largely 

to be a linear combination of the spring and summer conditions, and involve 

sharp hemispheric correlation contrasts and strong positive correlations over 

South China Sea (Fig. 3.31c).  In general, the correlation maps exhibit robust 

temporal and spatial consistency in the three correlation maps for the annual 

cycle. In particular, the positive (negative) correlations over the northern 

(southern) Pacific and the northern (southern) Atlantic persist in the seasonal 

and annual correlation maps, and remain strong especially for the FMAM and 

January-December time series.  

 

3.4.3  Biennial Variability 

Differences between the correlation patterns for the spring and summer rains 

begin to show at the longer time-scales. For the biennial mode (Fig. 3.32a), a 

sharp difference in correlation patterns appears over the equatorial Pacific. The  
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FIGURE 3.32. Same as Fig. 3.30 except for the biennial variability. 

 

short rains (FMAM) exhibit modest positive correlations over eastern equatorial 

Pacific and negative correlations over the western portions. In contrast, JJAS 

rainfall correlates strongly negatively with SSTs over eastern and central 

equatorial Pacific, with positive correlations covering parts of equatorial western 
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Pacific (Fig. 3.32b).   In both cases, the correlation patterns possess clear ENSO 

signatures, with a region of strong correlation coinciding with the tongue of 

anomalous SST in the eastern Pacific that typically occurs during ENSO events, 

and a region of the opposite correlation over the western Pacific forming a 

horseshoe pattern that extends into both hemispheres. Although not as distinct, 

another difference between the FMAM and JJAS occurs over the Indian Ocean, 

with positive (negative) correlations between FMAM (JJAS) rainfall and SSTs 

over southeast Indian Ocean/western Indian Ocean. It is clear that a warm 

tropical Pacific tends to enhance (weaken) the spring (summer) rains over 

Ethiopia at the biennial time-scale. 

 

Because of the opposite effects of SSTs on the spring and summer rains, there 

are no significant correlation signals in the annual correlation map over the 

Pacific (Fig. 3.32c).  The positive correlations over the western Indian Ocean for 

the annual time series are partially the result of the positive association of the 

spring rains with SST over the western Indian Ocean (Fig. 3.32a), as well as the 

positive correlation of the summer rains with SST over the central Indian Ocean 

(Fig. 3.32b) at the biennial time-scale. However, an additional contribution must 

have come from the October-December rains, possibly through a positive 

contribution arising from warmer SSTs and enhanced tropical disturbances over 

the northern Indian Ocean. Climatologically, tropical disturbances form over the 

warm seasonal waters in the Indian Ocean in October-November, and in some 
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years, move into the Horn of Africa and prolong the monsoon season there (e.g., 

Segele and Lamb 2005). This may offset the negative correlations over western 

Indian Ocean in summer.  

 

3.4.4  Variability on ENSO Time-Scale 

Clear ENSO signatures appear in the correlation maps for the 3-4-year 

waveband filtered time series (Fig. 3.33), especially for JJAS. Although no 

statistically significant correlation exists over the eastern equatorial Pacific, the 

short rains exhibit isolated positive correlations with SSTs over the central 

equatorial Pacific, which appear to extend from a region of strong positive 

correlation over northeastern Pacific (Fig. 3.33a). In contrast to the correlation 

patterns for the biennial mode, SSTs over much of northern and southeastern 

Indian Ocean correlate strongly negatively with the short rains, whereas the 

southwestern Indian Ocean strongly positively correlate with FMAM rainfall. 

Thus, the effects of the equatorial Pacific on the short rains are stronger at the 

biennial time-scale while the Indian Ocean appears to be important during ENSO 

episodes.  

 

During JJAS, SSTs over the Pacific correlate strongly with JJAS rainfall. 

Strong negative correlations cover a large region of the central and eastern 

equatorial Pacific and bands of positive correlations oriented southeast-

northwest   and   southwest-northeast  span  the  southern  and  northern  Pacific,  
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FIGURE 3.33. Same as Fig. 3.30 except for the ENSO mode. 

 

respectively. The spatial structure of the correlation field bears a close 

resemblance to SST anomalous composite structure during the mature and 

transition phases of El Niño (e.g., Rasmusson and Carpenter 1982; Wang 1995). 

Equally strong association is found for the Indian Ocean where SSTs correlate 
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negatively with rainfall, with the strongest correlation over the northern Indian 

Ocean. Inspection of the filtered data revealed that SST anomalies over the 

northern Indian Ocean and central and eastern equatorial Pacific have the same 

polarity (not shown). The correlation between the two attains a maximum of +0.8 

at 3 months lag. This is consistent with previous studies, which indicated that a 

significant fraction of SST variability over the Indian Ocean is related to ENSO 

and, in particular, that SST anomalies over Indian Ocean tend to be in phase with 

those in the central and eastern Pacific (e.g., Kawamura 1998; Baquero-Bernal et 

al. 2002; Lau et al. 2005; Terray and Dominiak 2005). Klein et al. (1999) noted that 

SST anomalies in the Indian Ocean lag those in the Pacific by about 3 months. 

Furthermore, Ju and Slingo (1995), Meehl (1997), and Kuwamura (1998), among 

others, have shown that the Indian Ocean SST anomalies tend to become positive 

when the Asian summer monsoon is weak.  

 

The annual correlation map primarily reflects the correlation patterns for 

FMAM and JJAS or a combination of them (Fig. 3.33c) over most ocean basins. 

However, strong negative correlations appear over the southeastern Indian 

Ocean west of Australia. These correlation values are stronger than the seasonal 

correlations for the FMAM and JJAS time series. The southwestern Indian Ocean 

also features strong positive correlation signals. It is not clear at this time if and 

how the SST distribution over the southern Indian Ocean is related to the 

October-November rainfall time series. 
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3.4.5  Low-Frequency Variability 

The strongest signals for low frequency variability are associated with the 

short rains (Fig. 3.34). The northern Pacific and the Indian Ocean exhibit strong 

and spatially homogeneous correlations during FMAM (Fig. 3.34a). While 

positive correlations dominate the Indian Ocean, opposite polarities of very 

strong correlations cover the northern Pacific, especially east of the dateline in 

FMAM. The well-defined correlation structure in the northeastern Pacific 

suggests the presence of longer time-scale variability, but a thorough 

investigation of the link between Ethiopian short rains and SST variability in the 

northern Pacific on decadal and longer time-scales is left for future studies. 

 

During summer, low-frequency variability over isolated areas in the Pacific 

and western Indian Ocean appears to affect Ethiopian rainfall variability (Fig. 

3.34b), but the magnitudes and spatial extent of the correlations are much more 

reduced compared to the corresponding signals for FMAM. In addition, most of 

the strong low-frequency associations between summer rainfall and SST come 

from the subtropical and higher latitude oceans. The correlation patterns for the 

annual time series resemble those for FMAM, but the strong correlations over the 

northern Pacific for FMAM have diminished substantially for the annual time 

series (Fig. 3.34c). In contrast, the correlation signals over the Indian Ocean, the 

equatorial Pacific, and the northern Atlantic have markedly increased for the 

annual time series compared to the correlations for FMAM in Fig. 3.34a. In 
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general, low frequency variability associated with SST variations over the Indian 

Ocean, as well as over the subtropical ocean basins in the Pacific and the Atlantic 

appear to exert strong influence on (especially) the non-monsoon Ethiopian 

rains.   

 

 

 

 

 
FIGURE 3.34. Same as Fig. 3.30 except for the low-frequency variability. 
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3.5 Summary  

This chapter investigated the physical characteristics of monsoon 

variability over the Horn of Africa and identified the atmospheric and oceanic 

features associated with rainfall variability on several key time-scales. At the 

intraseasonal time-scale, Ethiopian rainfall variability largely is determined by 

local moisture availability and dynamics. For May-October rainfall time series, 

atmospheric circulation patterns occurring at time-scales shorter than a season 

appear to weaken the major monsoon features. On seasonal and longer time-

scales, regional and remote large-scale circulation features and global SST forcing 

become important. At the seasonal time-scale, circulation patterns over the 

Arabian Peninsula, the Atlantic Ocean, and the Mediterranean Sea are the major 

atmospheric monsoon components that affect Horn of Africa summer rainfall. In 

addition, a strong oceanic forcing is observed over the southern Indian Ocean, in 

which cooler SSTs favor enhanced Ethiopian JJAS rainfall. Very strong 

correlations of opposite polarity covering the Northern and Southern 

hemispheres intimately link global SST and Ethiopian short rains at the seasonal 

time-scale. The presence of very strong seasonal to annual correlation signals in 

wave banded global SST and rainfall indicates a high predictability potential for 

the Ethiopian short rains.  

 

The annual cycle reflects the long-term climatological characteristics of the 

monsoon, and features the classical monsoon components that maximally affect 
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Horn of Africa rainfall. This mode is strongly affected by oceanic forcing over the 

western Indian, northern Atlantic, and tropical Pacific Oceans, where cooler 

waters off the eastern coasts of Africa and the Arabian Peninsula and warmer 

waters in the East China Sea and off the southeastern coasts of North America 

enhance Ethiopian rainfall. On the biennial-to-ENSO time-scales, the equatorial 

Pacific and the Indian Ocean exert strong influence on rainfall by modulating 

regional circulation systems. Strong anomalies associated with the biennial-to-

ENSO variability appear in the monsoon trough, the Mascarene high, the 

Azores/Saharan high, and the TEJ and the associated upper tropospheric 

systems, but only weakly affect the St. Helena high. It is especially interesting to 

note that SST variations in the equatorial and eastern portions of the southern 

tropical Atlantic are correlated positively, albeit weakly, with Ethiopian JJAS 

rainfall at the ENSO time-scale. This indicates that SST variations in the above 

areas of the Atlantic tend to counteract the effects of ENSO-related SST variations 

in the equatorial Pacific on Ethiopian JJAS rainfall.  

 

On the decadal and longer time-scales, SST variations in the western 

Indian, northeastern Pacific, and southern Atlantic Oceans tend to have strong 

influence on summer rainfall. However, longer time-scale SST fluctuations over 

the Indian Ocean and especially over the northeastern Pacific appear to affect the 

short rains more strongly than Ethiopian monsoonal rainfall. The presence of 

such strong correlations between FMAM rainfall and global SST nearly for all 
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time-scales indicates a high predictability potential for the Ethiopian short rains. 

In general, this study has enormously enhanced our knowledge of the regional 

and local circulation features and mechanisms that produce the rainfall 

variability.  How this improved knowledge base can be translated into the 

development of a reliable and accurate statistical prediction model is the focus of 

the next chapter.   
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CHAPTER 4: PREDICTABILITY OF ETHIOPIAN 

RAINFALL  

  

4.1 Preamble  

Rainfall is one of the most important climate elements that affects the 

livelihood and wellbeing of the majority of Ethiopians. In addition to the 

inherent large spatial and temporal rainfall variability arising from the tropical 

location, the complex rugged Ethiopian mountains further complicate the space-

time distribution. Due to the geographic location, latitudinal range, and complex 

orography, most parts of the country (approximately the northern two-thirds) 

experience one dry season from October to January (locally known as Bega), and 

two nearly consecutive wet seasons separated only by a few weeks—one from 

mid-February to mid-May (locally known as Belg), and the other from June to 

September, which is locally known as Kiremt (e.g., Degefu 1987). Although June-

September usually is taken as the period of the main rainy season, this 

categorization is most valid for central and parts of northern Ethiopia. Segele and 

Lamb (2005) have shown that the main rains start early in March over 

southwestern Ethiopia, in May over the western and northwestern regions, and 

in July over northern/northeastern Ethiopia. However, the southern one-third of 

the nation, which covers the southern and southeastern lowlands, has the typical 

equatorial East African dry-wet seasons, with the long intermittent rains 
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concentrating during March-May and the short rains occurring during 

September or October-November.  

 

The timing and spatial distribution of the agriculturally and hydrologically 

important Belg and Kiremt rains, which are caused by different atmospheric 

circulation mechanisms, overlap in parts of the country. For example, while the 

Belg rains are winding down over the central and northeastern Ethiopia, the 

Kiremt rains pick up in intensity and widen their spatial coverage over 

southwestern, western, and northwestern Ethiopia (e.g., Segele and Lamb 2005). 

This situation further complicates the understanding of rainfall variability in the 

region. Because Kiremt is the main rainy season in which about 85-95% of the 

country’s food crop is produced (e.g., Degefu 1987), the entire agricultural 

activities and production of the nation hinge on the amount and distribution of 

rainfall during that season. 

 

Over the years, the need for the understanding and skillful predictions of 

weather and climate have heightened in Ethiopia, due primarily to the frequent 

droughts and floods that hit the nation. However, only a few studies have 

attempted to develop quantitative rainfall forecasting models for Ethiopia on 

seasonal time-scales (e.g., Gissila et al. 2004; Korecha and Barnston 2006). Also, to 

our knowledge, as yet there has not been an attempt to develop statistical models 

for medium-range weather forecasting. To date, the use of empirical prediction 



 172

models for short to long range rainfall forecasting in Ethiopia is in its infancy.  To 

understand better and predict the Ethiopian rainfall variability from days to 

months in advance, a detailed and physically based approach will be employed 

in this study.  

 

For empirical predictions of the Indian monsoon, Hastenrath et al. (1995) 

underlined the importance of diagnostic studies of the atmospheric circulation 

for the identification of potential predictors (climate system variables) for 

prognostic applications. Webster and Hoyos (2004) also noted that a key aspect 

of a physically based empirical regression scheme is the choice of a set of 

predictors. Such predictors then are utilized to develop a regression model for 

the so-called “training period”, which usually coincides with the early portions 

of the data records. A critical part of the regression scheme is the subsequent 

evaluation of the predictions using independent data (Hastenrath et al. 1995; 

Webster et al. 1998). Hastenrath (1986) suggested considerable prospects for 

rainfall prediction by such forecasting schemes because they combine extensive 

diagnostic investigations into the interannual circulation and climate variability 

with statistical methods.  

 

Webster and Hoyos (2004) used a new type of statistical model for the 

prediction of intraseasonal oscillations of the south Asian monsoon. The 

technique combines wavelet analysis and linear regression. This novel approach 



 173

will be utilized here to develop empirical models to forecast rainfall over 

Ethiopia at medium (a week to less than a month) and long range (a month to 

seasons) time-scales. In the spirit of Hastenrath (Hastenrath et al. 1995), the 

comprehensive investigation of Chapter 3 already has provided many potential 

predictors that are physically and statistically linked to rainfall variability over 

the Horn of Africa.  

 

4.2 Data and Methodology  

4.2.1  Data  

To develop medium and long range rainfall prediction models, several sets 

of rainfall data will be used--spatially averaged 5-day June-September all-

Ethiopian rainfall, monthly January-December all-Ethiopian rainfall, and 

monthly rainfall for individual selected stations. In addition, the model 

development employs the NCEP-NCAR reanalysis and the UK Meteorological 

Office Hadley Centre's sea surface temperature (SST) data sets.  These data sets 

were already described in previous chapters. 

 

4.2.2  Methodology   

The wavelet banding technique of Webster and Hoyos (2004) combines 

wavelet analysis and linear regression. The details of the wavelet analysis 

technique were provided in Section 3.2. Before performing linear regression, a 

common wavelet banding technique is applied to the predictand (rainfall) and to 



 174

the predictors that are chosen from detailed diagnostic studies. As shown in 

Section 3.2, wavelet banding sorts the time series into specific spectral bands. 

Webster and Hoyos (2004) noted that the isolation of spectral bands is the key 

factor in the wavelet banding statistical scheme because it allows the regression 

tool to identify, independently in each band, the existing relationship between 

the predictand and predictors.  To forecast the predictand at a future time, the 

regression scheme will be applied for each spectral band using only the state of 

the system available at the time of the forecast.  At the end of the process, the 

bands are combined to provide the total forecast values of the predictand.  

 

As an alternative to traditional linear regression analysis, artificial neural 

networks have been used for rainfall predictions. A neural network (NN) is a 

powerful nonparametric statistical tool that can model physical relationships 

with any degree of nonlinearity (e.g., Hastenrath et al. 1995; Hall et al. 1999; 

McClelland and Rumelhart 1988, pp. 128-137; Robinson 1991). A neural network 

is trained with a large representative data set, which then is used to predict 

output values from a new set of input variables. For this study, neural network 

freeware developed by Dr. B. Fiedler (University of Oklahoma, Norman), 

downloaded from the website http://mensch.org/neural/nnet.tar.gz) was 

utilized. This NN is a popular feedforward network in which the free parameters 

gradually are adjusted by a back propagation algorithm.  Details of the network 

are discussed in Dean and Fiedler (2002).  
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To identify the coherent modes of variability associated with Horn of Africa 

rainfall, wavelet analysis was performed on several atmospheric variables over a 

large domain. Using that analysis, we were able to identify atmospheric and 

oceanic conditions that modulate rainfall in the region. In addition to selecting 

predictors through descriptive statistical analysis and physical reasoning, it was 

found valuable to use predictors covering the entire domain of interest. By 

applying a Singular Value Decomposition (SVD) technique as a data 

compression tool, the large number of original variables can be reduced to few 

essential variables that contain much of the large-scale variability. SVD expresses 

any matrix X as a product of three other matrices (e.g., Green and Carroll 1978, 

pp. 348): 

'rxnrxrmxrmxn VDUX =        (4.1) 

where the '  denotes transpose, mxnX  is a general matrix of m rows of 

observations (time) by n columns of, say, spatial locations of variable X , U  is 

the matrix of eigenvectors of 'XX , V is the matrix of eigenvectors of XX ' , and D 

is a diagonal matrix of singular values. The rank of X  is determined by the 

number of positive singular values, with r( X ) ≤ min(m, n). The SVD 

representation can be applied to any type of matrix—singular or nonsingular, 

square or rectangular.  Note that when the spatial locations are represented by 

the columns, the matrix operation XX ' eliminates the temporal dimension, 
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leaving a measure of the dispersion of the spatial structures across the sampling 

dimension. Under this representation, the matrix of Principal Component (PC) 

scores is XVUDF ==  and a geographical plot of the columns of V  gives a map 

of the PC loadings as distributed over the spatial extent of the data X (Richman 

1986). The SVD technique is applied on wave band filtered atmospheric and 

oceanic variables, with the temporal means removed, to obtain the PCs. Because 

the PCs are uncorrelated, they are well-suited for regression analysis.  

 

 The spatial eigenvectors of the SVD technique applied to a data matrix 

X are identical to the eigenvectors obtained from the standard Empirical 

Orthogonal Function (EOF) analysis performed on correlation or covariance 

matrices of X . To illustrate the connection between the EOF and SVD technique, 

we can apply the EOF method on the correlation matrix ss XX
m

R '
1

1
−

=   of a 

standardized variable sX  as: 

   'CCR Λ= ,         (4.2) 

where C  and Λ  are the eigenvalues and eigenvectors of the correlation matrix. 

Using Eqn. (4.1)  for  sX , the correlation matrix can be expressed as 

   ''''''''
1

)(
1

1)()(
1

1 V
m

DDVDVUUVD
m

UDVUDV
m

R
−

=
−

=
−

= ,             (4.3) 
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where we invoked the symmetry of the correlation matrix and used the identity 

UUI '= . Comparing Eqns. (4.2) and (4.3), we note that VC =  and 
1

'
−

=Λ
m

DD . 

Thus, the eigenvectors are identical, but there is a factor of the “length of the time 

series minus one” between the eigenvalues of the correlation matrix and the 

singular values of the original data matrix (e.g., Green and Carroll 1978, pp. 359). 

In this study, we apply the term “EOF” to the spatial eigenvectors of a single 

field obtained through the SVD technique.  

 

4.3 Prediction on Intraseasonal Time-Scales  

In addition to monthly and seasonal climate forecasts, medium-range 

weather forecasts have significant societal importance. At the National 

Meteorological Services Agency of Ethiopia (NMSA), 10-day forecasts are issued 

to supplement the generalized monthly and seasonal outlooks that are 

disseminated every month and season. The user community requires these 

forecasts to be detailed, timely, and accurate. However, NMSA primarily relies 

on subjective assessments of numerical weather prediction (NWP) model output 

charts, obtained via the Global Telecommunication System (GTS), to provide 10-

day forecasts. Because these NWP outputs usually are valid for 5-8 days, the 

forecasters’ personal judgments again play a central role in preparing 10-day 

forecasts.  Such forecasts are not accurate and detailed enough to meet the needs 

of the user community. This section addresses these issues and develops a highly 
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dependable medium-range prediction model that can be used to forecast rainfall 

from 5 to 25 days in advance.  

 

For medium-range predictions, the diagnostic results of Chapter 3 were 

used. The spectrally filtered data were for the 5-day (pentad) average all-

Ethiopian June-September rainfall time series for 1970-99 (Section 3.3.6). From 

the average wavelet spectra, seven wavelet bands were identified. These bands 

correspond to periods of less than 25 days, 25-75, 75-210 days, 210 days to 1.4 

years, 1.4-3.1, 3.1-4.6, and > 4.6 years. To improve the statistical connection 

between rainfall and the various atmospheric variables at a shorter time-scale, 

we chose to divide the 15-75-day variability into two bands—15-25 days and 25-

75 day periods. This categorization appears to have helped slightly in improving 

the forecast by preventing the high frequency variability from severely affecting 

the predictability of rainfall at longer intraseasonal periods. Various atmospheric 

variables from the surface to 100-hPa and covering Africa, the Mediterranean 

Sea, and parts of the Atlantic and Indian Oceans were identically wave banded 

for the analysis domain shown in Fig. 3.3a. Through extensive examination of the 

evolution of the atmospheric state variables and rainfall, time series of different 

predictors were extracted for each band that exhibit strong statistical and 

physical linkage with Ethiopian rainfall. Table 4.1 lists the selected predictors 

along with their levels and geographic locations.  
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Table 4.1. Predictors used for intraseasonal prediction of all-Ethiopian June-September 
rainfall. 

No.  Period Field Region 
1 Vertically integrated moisture  

(Horn of Africa) 
12.5º–20ºN, 32.5º–40ºE  

2 Zonal wind at 700 hPa (West  Africa) 10º–15ºN, 10Wº–10ºE  
3 Geopotential height at 850 hPa (West 

Africa) 
20º–30ºN, 10ºW–0ºE 

4 

 
 

Less than 
25 days 

Vertical velocity at 500 hPa (Horn of 
Africa) 

5º–10ºN, 37.5º–45ºE 

5 Vertically integrated moisture  
(Horn of Africa) 

7.5º–12.5ºN, 32.5º–45ºE  

6 Geopotential height  at 700 hPa (West 
Africa) 

5ºS–10ºN, 10ºW–0ºE 

7 Zonal wind at 700 hPa (Horn of Africa) 2.5º–7.5ºN, 30º–40ºE  
8 

 
 
 
25-75 days 
 

Meridional wind at 1000 hPa (Sudan) 5º–10ºN, 20º–30ºE 
9 Vertically integrated moisture  

(Horn of Africa) 
7.5º–17.5ºN, 40º–55ºE  

10 Geopotential height at 700 hPa (Horn of 
Africa) 

10º–20ºN, 40º–60ºE  

11 Zonal wind at 700 hPa (East Africa) 0º–5ºN, 30º–50ºE  
12 Meridional wind at 700 hPa (Horn of 

Africa) 
10º–17.5ºN, 37.5º–42.5ºE 

13 

 
 
 
 

75-210 
days 

Vertical velocity at 500 hPa (Horn of 
Africa) 

5º–10ºN, 37.5º–42.5ºE  

14 Vertically integrated moisture (Northern 
Africa) 

12.5º–17.5ºN, 10Wº–40ºE

15 Surface pressure (Northeast 
Africa/Eastern Mediterranean) 

25º–37.5ºN, 25º–40ºE 

16 Zonal wind at 1000 hPa (Red Sea) 10º–20ºN, 37.5º–50ºE  
17 Zonal wind at 150 hPa (Northern 

Atlantic) 
15º–20ºN, 15º–25ºW  

18 Meridional wind at 850 hPa (northern 
Arabian Sea) 

5º–12.5ºN, 47.5º–60ºE  

19 

 
 
 
 
210 days 
    to 
1.4 yrs 

Vertical velocity at 500 hPa 
(northeastern Ethiopia/Red Sea) 

10º–20ºN, 40º–45ºE  
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Table 4.1. Contd. 
20 Surface pressure (Arabian Peninsula) 20º–30ºN, 42.5º–50ºE  
21 Surface pressure (southeastern Indian 

Ocean) 
27.5º–32.5ºS, 85º–95ºE  

22 Zonal wind at 700 hPa (eastern 
equatorial Africa)  

0º–5ºN, 35º–50ºE  

23 Zonal wind at 150 hPa (easterly jet) 5º–12.5ºN, 50º–70ºE  
24 Meridional wind at 150 hPa (easterly 

jet) 
5º–15ºN, 70º–80ºE  

25 Temperature at 500 hPa (northeast 
Africa) 

27.5º–32.5ºN, 20º–30ºE  

26 

 
 
 
 
 

1.4-3.1 
yrs 

Geopotential height at 700 hPa 
(Yemen) 

10º–15ºN, 45º–55ºE  

27 Surface pressure (Bay of Bengal) 10º–17.5ºN, 85º–97.5ºE  
28 Geopotential height at 700 hPa (Gulf 

of Eden) 
10º–15ºN, 40º–50ºE  

29 Zonal wind at 500 hPa (Oman) 20º–25ºS, 47.5º–60ºE,  
30 Meridional wind at 500 hPa (southeast 

Atlantic) 
32.5º–37.5ºS, 10º–25ºE  

31 

 
 
 

3.1-4.6 
yrs 

Temperature at 200 hPa (Gulf of 
Guinea) 

10ºS–10ºN, 20ºW–10ºE  

32 Surface pressure (Southern Atlantic 
Ocean) 

22.5º–30ºS,  15ºW–0º  

33 Temperature at 150 hPa (Pakistan) 30º–35ºN, 55º–70ºE 
34 Temperature at 200 hPa (southeast 

Indian Ocean) 
22.5º–27.5ºS, 72.5º–85ºE 

35 Zonal wind at 700 hPa (northern 
Arabian Sea) 

10º–15ºN, 65º–80ºE  

36 

 
 
 

> 4.6 yrs 

Meridional wind at 500 hPa (Gulf of 
Guinea) 

5ºS–0º, 10ºW–0º  

 

 

4.3.1  Least Squares Linear Regression Prediction 

For each wave band, a linear regression equation was developed for different 

lags. For example, beginning at the current time t, to forecast the future value of 

rainfall (R) n pentads after the current time R(t+n), the predictors Xj are lagged 

by n positions in time, where the subscript j denotes the various predictors for 

each band (Table 4.1). Thus, the data used to fit the predictand are from R(n+1), 
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R(n+2),…, R(t), and Xj(1), Xj(2),…, Xj(t-n). For each wave band a regression 

equation of the form: 

jj XbXbXbR +++= ...2211 ,             (4.4) 

was fitted. Note that because the wavelet analysis removes the mean of the time 

series, there is no need to add an intercept. Although, the predictors were 

selected based on their strong statistical and physical connections with rainfall, 

for each band only those predictors that showed large F values (significant at 1% 

level) were retained in the final regression equation.  The performance of the 

model was tested using the cross-validation method (e.g., Wilks 1995, pp. 194) 

and also by splitting the time series into two subsets and reserving one subset for 

verification (e.g., Hastenrath et al. 1995; Webster et al. 1998). For the cross 

validation method, the model was fitted on all years excluding a moving single 

year that was used to validate the model. The procedure was repeated until each 

year was used once as the validation data. For the second method, also known as 

retroactive validation method (e.g., Barnston et al. 1994), throughout this study 

we used 1970-89 for model development and 1990-99 for verification. 

 

For both cases, the regression equations do not perform well on the 

intraseasonal and seasonal time-scales, yielding very low correlations between 

predicted and observed rainfall; even for the training period, the correlation 

magnitudes are modest and range from 0.2-0.35. Fortunately, the amplitudes of 
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the time series in these bands are not very large and thus do not significantly 

affect the overall rainfall forecasts.  

 

On the other hand, all wave banded time series at longer time-scales (annual 

and longer) exhibit exceptionally strong correlations between observed and 

predicted rainfall. A sample of the model performance is given in Table 4.2.  

Note the very high degree of correlation between the modeled and observed 

rainfall as indicated by R2. The adjusted R2, adjusted for the number of predictor 

variables, is also very high. As can be seen from the table, only the predictors 

with near zero probability of F-Values were retained. Thus, the probability that 

all the regression coefficients are zero is extremely small (~0). A two-sided t-test 

also gave negligible probability of obtaining the estimated values of the 

coefficients if the actual parameter values are zero.  

 

Figure 4.1a shows the observed and predicted time series for a 10-day 

forecast for the retroactive validation method. The correlation between the two 

time series is high (0.79, significant at 1% level).  The evolution of the predicted 

values generally agrees with the observed patterns; the peaks and valleys are 

forecast with high degree of accuracy. Although the model clearly reproduces 

the longer time-scale variability (annual and above) to a very considerable 

degree of accuracy, the high frequency variability is still not very well 

represented. The magnitudes of the peaks also are  underestimated,  especially in  
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Table 4.2. Analysis of variance and regression summary for selected wave bands with 

very high degree of model fitness for a 10-day forecast based on 1970-99. The column 

headings df, SS, MS, and SE stand for degrees of freedom, sum of squares, mean square, 

and standard error, respectively. R2 is the coefficient of multiple determination and 

measures the proportion of the variation in rainfall that is accounted for by the best linear 

composites of the predictors. The number entries under the Source/Variable column refer 

to the predictor numbers in Table 4.1. 
a. Annual time-scale 

Source 
 

df  
 

SS MS F-Value Pr.(F) R2 

(adjusted R2) 
P. 15 1 1183.6 1183.6 8058.2 < 0.000001 
P. 16 1 9.4 9.3 63.9 <0.000001 
Residual 496 72.8   0.147   

Variable Coefficient SE t-ratio Pr(>|t|)  
P. 15 -0.6030 0.0386 -15.6 0.00000  
P. 16 0.4543 0.0568  7.9   0.00000  

 
 
 

0.9424 
(0.9421) 

b. Biennial time-scale  
Source 

 
df  
 

SS MS F-Value Pr(F) R2 

(adjusted R2) 
P. 20 1 57.82882 57.82882 2007.258 <0.000001 
P. 21 1 3.87963  3.87963  134.663 <0.000001 
P. 22  1 5.18835  5.18835  180.089 <0.000001 
P. 23 1 0.45037  0.45037   15.633 0.000088 
P. 25 1 2.10140  2.10140   72.940 <0.000001 
P. 26 1 0.59243  0.59243   20.563 0.000007 
Residuals 492 14.17445  0.02881   

Variable Coefficient SE t-value Pr(>|t|)  
P. 20 -0.4432   0.0877   -5.0533   0.00000  
P. 21 -0.2247   0.0136   -16.5077   0.00000  
P. 22  0.6328   0.0393   16.1192   0.00000  
P. 23 0.1609   0.0173   9.2915   0.00000  
P. 25 0.3890   0.0538   7.2346   0.00000  
P. 26 0.0391   0.0086  4.5347   0.00000  

 
 
 
 
 
 
 

0.8317 
(8296) 

c. ENSO  
Source 

 
df  
 

SS MS F-Value Pr(F) R2 

(adjusted R2) 
P. 27 1 11.86428 11.86428 5261.259 <0.000001 
P. 28 1 0.33184  0.33184  147.156 <0.000001 
P. 29 1 0.13563  0.13563   60.147 <0.000001 
P. 30 1 0.40353  0.40353  178.945 <0.000001 
P. 31 1 1.96307  1.96307  870.532 <0.000001 
Residuals     493 1.11173  0.00226   

Variable Coefficient SE t-value Pr(>|t|)  
P. 27 0.4111   0.0605   6.7902   0.0000  
P. 28 -0.0521   0.0069  -7.5973   0.0000  
P. 29 -0.3924   0.0673   -5.8327   0.0000  
P. 30 0.1726   0.0138   12.5518   0.0000  
P. 31 -0.4527   0.0153   29.5048   0.0000  

 
 
 
 
 
 

0.9297 
(0.9289) 
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1992, 1994, 1998, and 1999. In addition, the model does not perform well during 

the onset period, especially in 1996. However, this can be improved by including 

pre-monsoon months  in  the analysis.  Inspection of the 1996 rainfall revealed 

increased   wet   conditions   across   much  of   the   country   early   in  May. This 

premonsoon activity continued through June. A model trained with data for June 

would most certainly fail to detect such signals that occasionally occur in June. 

Thus, training the regression model on data that include pre-monsoon months 

(e.g., time series for February-June) could help to forecast the onset of the season 

better.  

 

The model still performs well for a 20-day (4 pentads) forecast, but the 

correlation between predicted and observed time series slightly decreases 

(r=0.67, significant at 98% probability level for a two-tailed Student’s t-test). As 

can be seen from Fig. 4.1b, the differences between 10-day and 20-day forecasts 

are small. In general, the amplitudes of the forecasts diminish and the peaks and 

valleys shift as the forecast period increases. The forecast deteriorates for 

predictions further out to 6 pentads and longer (r~0.5). Thus, the model captures 

the low frequency variability quite accurately, and since this variability 

determines the overall rainfall performance, the model provides a usable 

prediction skill in forecasting rainfall 5-25 days in advance.  
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FIGURE 4.1. (a) 10-day rainfall forecast of all-Ethiopian 5-day average June-

September rainfall using the wave banding technique  of Webster and Hoyos 

(2004). (b) Comparison of 10-day and 20-day forecasts of all-Ethiopian 5-day 

average June-September rainfall. Pentad 1 represents the period 31 May-4 June 

and Pentad 25 is 27 September – 4 October.  

 

a 

b 



 186

There is stronger correspondence between observed and predicted values 

(Fig. 4.2a,b) when a cross validation method is employed (e.g., Wilks 1995, pp. 

194), as reflected in a higher overall correlation between the two time series 

(r=0.81, significant at 1% level). For a 20-day forecast, the correlation between 

observed and predicted values decreases but remains strong (r=0.70, significant 

at 1% level). The scatter plot (Fig.4.2b) indicates a good prediction skill, except 

for a single outlier in 1996, which the model severely underestimated.   

 

The forecasting skill obtained for Ethiopia is comparable to, but less than, the 

forecasting skill of the intraseasonal variability of the monsoon over Central 

India obtained by Webster and Hoyos (2004). For example, based on 1992-2003 

hindcasts, the anomaly correlations for 10 and 20 days Indian rainfall predictions 

are +0.88 and +0.73, respectively. The high degree of predictability for the Indian 

monsoon is linked to the presence of well-identified effects of the monsoon 

intraseasonal oscillations that are manifestations of the MJO (Webster and 

Hoyos, 2004). As indicated in Chapter 3, for Ethiopia no connection was found 

between rainfall and the MJO. Despite this absence, a usable prediction skill is 

obtained.  

 

Overall, the hindcast verifications show that the wave banding technique 

manages to forecast rainfall variability with significant skill.  Based on 10 years of  
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FIGURE 4.2. 10-day rainfall forecast of all-Ethiopian 5-day average June-

September rainfall using the wave banding technique of Webster and Hoyos 

(2004). (a) Time series of observed (blue line) and predicted (red line) pentad 

rainfall using the cross validation method. (b) Scatter plot of observed and 

predicted rainfall. The year labels in (a) are centered at the middle of the time 

series for every other year. The vertical dashed lines are drawn at the beginning 

of the time series every five years. 

a 

b 
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hindcasts, the wave banding scheme explained about 63% of the variance of 

Ethiopian summer rainfall. Although this represents a significant step in the 

right direction, improvements still are needed to forecast the high frequency 

variability with better accuracy.  

 

4.3.2  Artificial Neural Network Prediction 

A neural network was trained on data for 1970-89 and used as prediction 

model on independent data for 1990-99. The inputs are appropriately lagged 

pairs of predictors (Table 4.1) and rainfall for each wave band.  The neural 

network has one hidden layer with a size twice the number of predictors, which 

differs for the different bands. Figure 4.3 gives the predicted and observed 

rainfall time series for a 10-day forecast using the NN.  Although numerous trials 

were made, we did not succeed in increasing the correlation between predicted 

and observed values for the verification period. The overall correlation between 

observed and predicted for the 1990-99 verification period was about 0.6, which 

is much lower than the result obtained by the least square regression technique 

(Section 4.3.1). Substantial effort was made to train the neural network on the 

annual wave band, for which the regression technique produced near-perfect 

forecasts with the correlation between observed and predicted being more than 

+0.95. This relationship could not be reproduced by changing the neural network 

parameters (the size of the hidden layer, the learning rate, and the number of 

epochs, etc.) as discussed in Dean and Fiedler (2002).  The maximum correlation 
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between observed and predicted values obtained from the neural network for the 

annual band was +0.87, which is less than the result obtained when a linear 

regression technique is used. Hence, in the next section, we will only consider a 

linear regression technique to develop prediction models for long-range 

forecasts.  
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FIGURE 4.3. A neural network 10-day rainfall forecast of all-Ethiopian 5-day 

average June-September rainfall using the wave banding technique of Webster 

and Hoyos (2004). The figure shows time series of observed (blue line) and 

predicted (red line) pentad rainfall for a neural network trained on 1970-89 data. 
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4.4 Long-Range Prediction  

4.4.1  Review of Previous Studies 

Hastenrath (1986) noted that climate prediction is of far greater practical 

importance than daily weather forecasting in a large part of the tropics where the 

interannual variability of rainfall is of primary concern. In Ethiopia, the provision 

of long-range forecasts is one of the primary tasks of NMSA. Experimental 

seasonal forecasting in Ethiopia started in 1987 in response to the massive 

catastrophic droughts in the 1980s (e.g., Gissila et al. 2004; Korecha and Barnston 

2006).  In the beginning, the forecasts were based on analogue and semi-

statistical methods. The analogue method attempts to identify regional synoptic 

patterns in the premonsoon seasons (e.g., atmospheric conditions in May for 

summer rainfall forecast) that closely match the synoptic patterns of the year for 

which the forecast is prepared (e.g., Nicholls and Katz 1991, p. 515).  The process 

of finding analogue charts is labor-intensive, as historical synoptic charts are not 

properly archived. The analogue method suffers from subjectivity and scarcity of 

data, especially in earlier years when synoptic stations in the tropics that report 

internationally were few. Communication problems also limit available data. 

Due to the above problems, analogue years were selected primarily based on the 

state of the ENSO phenomenon. 

 

Once the analogue years were selected, the rainfall amount and patterns in 

the different regions are analyzed and compared with the climatological 
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averages. The probabilities of above normal, near normal, and below normal 

rainfall are computed. This is done through frequency analysis or by ranking the 

regional monthly/seasonal rainfall amounts and computing their percentiles. 

The primary advantage of this approach is the regional detail obtained by 

including all observing stations in the probability analysis. However, due to the 

limited number of observation years, the stability of the statistical analysis is 

questionable. Moreover, such seasonal outlooks are simply historical analyses of 

probabilities of rainfall rather than predictions. Additionally, the approach only 

considers the overall ENSO categorization into El Niño, La Niña, and Neutral 

years in preparing monthly/seasonal outlooks. There are, however, clear 

indications that other parts of the tropical oceans, especially, the Indian Ocean, 

impacts summer rainfall over Ethiopia (Chapter 3). While there have been 

commendable successes using the above traditional approach (e.g., e.g., Nicholls 

and Katz 1991, p. 515), much more needs to be done to improve NMSA’s 

forecasting capability on monthly and seasonal time-scales.  

 

There are only a handful of published studies on long range forecasting on 

Ethiopia. Wood and Lovett (1974) performed arguably the earliest study on 

Ethiopian climate variations and forecasting. They compared the variations of 72 

years (1903-74) of annual rainfall records at the Addis Ababa Geophysical 

Observatory with the Zurich sunspot number. Their study indicated that the 11-

yr solar cycle exerts strong influence on Addis Ababa rainfall, with rainfall peaks 
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and troughs preceding sunspot peaks and troughs by a few years. The maximum 

correlation between annual rainfall and sunspot numbers of +0.33 (significant at 

1% level) occurs at 2 years lag. Based on this relation, the authors expected the 

rainfall at Addis Ababa to increase until about 1976-77 and to decline to a 

minimum about 5-yr later. Although we do not have records before 1951, the 

standardized anomalies for Addis Ababa for 1951-1999 indicate significantly 

reduced annual rainfall in much of the first half of the 1970s, and increased 

rainfall during 1977-1990 (excluding 1978 and 1984 during which rainfall 

anomalies were negative). Clearly, Wood and Lovett’s (1974) prediction did not 

hold because of the low correlations. Of further interest in this study, however, is 

the historical distribution of Ethiopian droughts (recorded by travelers and 

historians) from 1540-1974 relative to sunspot minima. From their Figure 3, about 

41 percent of the known Ethiopian droughts occurred 1-2 years before and about 

26 percent 1-2 years after sunspot minima, indicating that about two-thirds of 

Ethiopian droughts (18 out of 27) tend to concentrate in the 4 years centered on 

sunspot minimum. However, the statistical significance of this distribution and 

the quality of the historical records of droughts and drought related famines in 

Ethiopia are unclear. We will assess the potential predictability of all-Ethiopian 

rainfall based on variations in sunspot numbers in the next section. 

 

A more comprehensive empirical seasonal rainfall prediction model for 

Ethiopia was developed by Gissila et al. (2004). They used SSTs over the tropical 
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oceans for March, April, and May to forecast June–September rainfall using 

linear regression. The authors addressed basic issues such as the implications of 

spatial rainfall variability and variations in the predictability of rainfall within 

the country.  However, the study used widely scattered synoptic station data in 

developing the model. Although the model is a huge improvement for 

forecasting seasonal rainfall, it does not address intraseasonal variability within 

the monsoon, as it does not have a provision to forecast monthly rainfall. The 

prediction skill of their model also is moderate— for a one-month lead time, the 

correlation between observed and predicted rainfall is 0.6.  

 

Recently, Korecha and Barnston (2006) developed a statistical seasonal 

forecasting model for Ethiopia using linear regression. They used March-April 

SSTs and their trends over the Atlantic and Pacific Oceans and model forecasts of 

SSTs for the Niño-3 region for the summer months to predict June-September 

rainfall. They found usable skill to forecast the Ethiopian rainfall anomaly within 

a short lead time of the summer season. The skill of their model is better than 

that of Gissila et al. (2004). Based on the cross validation method, they found a 

correlation of +0.64 between observed and predicted rainfall anomalies. The skill 

of the forecast, however, drops when tested on independent data (retroactive 

validation), the correlation between observed and predicted rainfall anomalies 

being +0.51. As will be shown in Section 4.4.3, the technique we employ provides 

higher skill and for longer lead times. 
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4.4.2  Sunspot Numbers and Ethiopian Rainfall 

With a view to assessing the predictive potential of the 11-year  

solar cycle, we have examined the relation between rainfall and sunspot  

numbers for the recent observational rainfall records for Ethiopia for  

1970-99. all-Ethiopian monthly rainfall totals are computed by  

averaging monthly rainfall totals over 100 stations across the monsoon  

regions of Ethiopia for each month for January-December. Monthly  

sunspot numbers for the corresponding period are obtained from the NASA 

website at   http://science.nasa.gov/ssl/pad/solar/greenwch/spot_num.txt. 

The monthly averages show the number of sunspots visible on the sun  

as they wax and wane with an approximate 11-year cycle 

(http://science.nasa.gov/ssl/pad/solar/sunspots.htm).  

 

Figure 4.4a shows the time series of monthly sunspot numbers and all-

Ethiopian monthly rainfall totals for 1970-99. The correlation between the two 

time series is near zero (+0.04) and remains negligible for different lags. The 

maximum correlation obtained when rainfall leads/trails the sunspot numbers 

by up to 36 months is +0.13. This clearly indicates that the high frequency 

variability in all-Ethiopian monthly rainfall is not reflected in the sunspot 

number variations on monthly time-scale. However, when the monthly rainfall 

totals are smoothed by a 3-yr running mean,  there  is  a modest  correlation  of  

+0.42 when each year’s  sunspot  number  is  correlated  with  the previous year’s  
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FIGURE 4.4. Time series of sunspot numbers and all-Ethiopian rainfall totals for 

1970-99.  (a) Monthly all-Ethiopian rainfall totals (red line) and sunspot numbers 

(blue line). (b) Same as (a) except for standardized time series. The all-Ethiopian 

standardized monthly rainfall in (b) is smoothed by a 3-yr running mean.  

a 

b 
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rainfall. Figure 4.4b   shows   standardized   all-Ethiopian   monthly   rainfall   

totals and monthly sunspot numbers. The rainfall time series is smoothed by a 

36-month running mean, and thus 18 months of data are lost at the ends of the 

rainfall   time   series.  Inspection   of the  figure   indicates   a  modest  degree  of 

correspondence between the two time series. However, both the loss of data at 

the end of the rainfall time series as well as the modest correlation value reduces 

the usability of a sunspot-based prediction model on monthly bases. In addition, 

even after the smoothing, there still remains strong seasonal variability that 

overshadows the interannual and interdecadal variability reflected in both 

rainfall and sunspot number time series.  

 

The sunspot number is better related with the annual all-Ethiopian rainfall 

totals (Fig. 4.5). The correlation between rainfall and sunspot numbers is +0.41 at 

1-year lag when rainfall precedes sunspot numbers. Although removing the 

seasonality increased the correlation value, the strong interannual rainfall 

variability appears to diminish the good correspondence between the 

interdecadal rainfall variability and the 11-yr solar cycle (Fig. 4.5). Overall, the 

quality of annual rainfall on a national scale can be inferred from variations in 

sunspot numbers. Thus, reduced all-Ethiopian annual rainfall is likely to lead 

reduced sunspot activity and vice versa.  

 

 



 197

1970 1975 1980 1985 1990 1995

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Year

R
ai

nf
al

l (
σ)

1970 1975 1980 1985 1990 1995

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

S
un

sp
ot

 n
um

be
r (
σ)

SunspotRainfall

 

FIGURE 4.5. Time series of standardized annual all-Ethiopian rainfall totals (red 

line) and sunspot numbers (blue line) for 1970-99.  

 

4.4.3  SST-Based Predictions of Monthly and Seasonal Rainfall  

Sea surface temperature strongly influences seasonal rainfall anomalies 

around the tropics and has been widely used as predictor in long-range statistical 

rainfall forecasts in Africa (e.g., Folland et al. 1991; Barnston et al. 1996; Gissila et 

al. 2004; Korecha and Barnston 2006). Many studies suggest a strong influence of  

Indian Ocean SST on African rainfall (Hastenrath et al. 1995; Goddard and 

Graham 1999, Latif et al. 1999). For Ethiopia, Gissila et al. (2004) and Korecha and 

Barnston (2006) have highlighted the predictability of summer rainfall using 

SSTs over different ocean basins. In this study, we develop physically consistent 
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prediction model of high temporal resolution, strong skill, and long lead times 

using global SSTs. We use the wave banding technique of Webster and Hoyos 

(2004) to predict monthly rainfall totals and standardized June-September 

rainfall anomalies over the monsoon regions of Ethiopia. To test the usability of 

this approach on finer spatial scales, the predictability of rainfall anomalies is 

examined for a single station over the drought-prone regions of northeastern 

Ethiopia for the peak month (August) of the monsoon season.   

 

4.4.3.1  Monthly Rainfall Prediction through Judicious Selection of Predictors 

In this section, we make use of the results of Section 3.4 in identifying regions 

of large-scale SST variations that strongly influence Ethiopian rainfall. Since we 

primarily are concerned with the monsoon season, we use monthly rainfall  

totals averaged over all monsoon regions of Ethiopia. However, rather than 

limiting the time series to the monsoon months, we took the entire January-

December time series. For each of the 5 wave bands discussed in Section 3.4, 8-14 

regions of large-scale SST variability that show strong association with 

identically wave banded rainfall have been identified. These regions include the 

Arabian Sea, the Mediterranean Sea, the Gulf of Guinea, the Mozambique 

Channel, South and East China Sea, the Philippines Sea, and many regions of the 

Atlantic, Pacific, and Indian oceans. Using the stepwise regression technique, 

only those predictors with F-ratio significant at 1% level were retained for each 

band. Table 4.3 lists the predictors retained in the regression model.  
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Table 4.3. Predictors chosen by stepwise regression model with the F-ratio significant at 

the 1% level.  

Predictor 
No. 

Period Region Location 

1 Arabian Sea 7.5º–25.0ºN, 50.0º–75.0ºE 
2 Southern Indian Ocean 27.5º–37.5ºS, 60.0º–90.0ºE 
3 

Seasonal 
Less than 
235 days Philippines Sea 10.0-22.5ºN, 140.0º–145.0ºE 

4 Arabian Sea 5.0º–22.5ºN, 52.5º–67.5ºE 
5 Southern Indian Ocean 27.5º–37.5ºS, 60.0º–90.0ºE 
6 South Atlantic 27.5º–37.5ºS, 10.0º–40.0ºW 
7 North Atlantic 12.5º–25.0ºN, 20.0º–50.0ºW 
8 South China Sea 2.5º–22.5ºN, 100.0º–125.0ºE 
9 

Annual 
235days 

to 
1.47 yrs 

 
Philippines Sea 20.0º–32.5ºN, 120.0º–140.0ºE

10 Southeastern Indian Ocean 37.5º–42.5ºS, 85.0º–100.0ºE 
11 Western equatorial Indian Ocean 5.0ºS–5.0ºN, 42.5º–52.5ºE 
12 Northern tropical Atlantic 35.0º–45.0ºN, 35.0º–50.0ºW 
13 Eastern equatorial Pacific 0º–5.0ºS,80.0-102.5ºW 
14 Southwestern topical Pacific 10.0º–17.5ºS, 155.0º–170.0ºW
15 

Biennial 
1.47 
to 

2.57 yrs 

East China Sea 25.0º–35.0ºN, 122.5º–132.5ºE
16 Central Indian Ocean       0º–7.5ºS, 75.0º–80.0ºE 
17 Southwestern Indian Ocean 40.0º–45.0ºS, 55.0º–65.0ºE 
18 Southern Indian Ocean 52.5º–57.5ºS, 82.5º–90.0ºE 
19 Western tropical Pacific 5.0º–10.0ºS, 122.5º–137.5ºE 
20 

ENSO 
2.57 
to 

4.47 yrs 
 Northern Pacific 27.5º–32.5ºN, 170.0º–190.0ºE

21 Western Indian Ocean 2.5º–7.5ºN, 50.0º–57.5ºE 
22 Southern  Indian Ocean 5.0º–15.0ºS, 70.0º–75.0ºE 
23 Western Mediterranean Sea 32.5º–40.0ºN, 2.5º–12.5ºE 
24 

Low-
frequency 

> 4.47 
yrs Northern Pacific 27.5º–32.5ºN, 155.0º–

167.5ºW 
 
 

Inspection of the predictors retained by the stepwise regression indicates that 

large-scale SST variability over many parts of the Indian Ocean is critically 

important in explaining the variability of Ethiopian rainfall. On the seasonal to 

annual time-scales, the Arabian Sea exerts strong influence. For the biennial and 

ENSO modes, SST variability over the equatorial and tropical Pacific and the 
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Indian Ocean are important. In agreement with our previous findings, the 

Atlantic Ocean possesses strong predictive signals for Ethiopian rainfall. These 

findings are consistent with results of Gissila et al. (2004).  

 

Figure 4.6 shows predicted and observed monthly rainfall values for a 3-

month lead forecast for retroactive (Fig. 4.6a) and cross validation (Fig. 4.6b) 

approaches. Overall, the model performs very well for both verification methods. 

The annual cycle is very well represented; the valleys and peaks of the forecasts 

match the observed with a high degree of accuracy. On the other hand, 

inspection of the figure indicates that the model shows weakness in predicting 

spring rainfall. However, since the monthly averages were computed over the 

entire monsoon region, including the regions that do not normally receive spring 

rains, the predictand itself does not consistently exhibit the short rains 

variability. Hence, the model weakness during the spring season is due primarily 

to the problem of the averaging.  

 

The correlations between predicted and observed rainfall for the retroactive 

and cross-validation methods are 0.897 and 0.906, respectively. The linear 

regression model developed through the wave banding technique explained 

more than 80% of the variance of Ethiopian annual rainfall cycle. The fact that the 

model explains such large proportion of the total rainfall variability when tested 

on  independent  data  makes  the  model  very dependable, practical, and usable.  
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FIGURE 4.6. Three-month lead time forecasts of all-Ethiopian monthly total 

rainfall using the wave banding technique of Webster and Hoyos (2004). (a) Time 

series of observed (blue line) and predicted (red line) monthly rainfall. Predicted 

values are obtained by applying the model developed for 1970-89 on the 

independent data for 1990-99. (b) Same as (a) except for cross validation 

method in which the model is developed using data for all years except for the 

one year on which the model is validated. The year labels in (b) are centered at 

the middle of each year’s time series.  
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Although the time  scales  are  different,  the  skill of  the long range forecasts is 

higher than the results obtained for medium range (5-25 days) forecasts for both 

Ethiopia  (Section 4.3),   and   India  (Webster  and  Hoyos   2004). Our  model is 

superior to the model developed by Gissila et al. (2004) and Korecha and 

Barnston (2006) for June-September rainfall forecasts for Ethiopia. As discussed 

in Section 4.4.1, for a 3-4 month lead time the maximum correlation between 

observed and predicted time series that Gissila et al. (2004) and Korecha and 

Barnston (2006) obtained were 0.6 and 0.64, respectively.   

 

 Additional indication of the model superiority is its ability to forecast 

monthly rainfall at very long lead times. Figure 4.7 shows the correlation 

between predicted and observed rainfall for different lead times using the 

retroactive and cross validation methods. The cross validation method shows 

higher skill than the retroactive method because of the larger number of years 

used to train the model and due also to the presence of serial correlation in the 

monthly data. To examine whether the serial correlation affects the statistical 

significance, the number of independent data is determined using the relation 

(e.g., Wilks 1995, pp. 315-316) 

1
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e ρ                        (4.5) 

where, eN  is the effective degrees of freedom, N  is the length of the original 

time  series,  and  )(kρ  is the autocorrelation  of  the  time  series  at  lag k .  After  
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FIGURE 4.7. Correlation between observed and predicted monthly all-Ethiopian 

rainfall for different lead times for cross validation (red line) and retroactive 

validation (blue line). For the cross validation method, the model is developed 

using data for all years except the one year on which the model is validated. For 

the retroactive verification method, the model is developed for 1970-89 and 

verified on the independent data for 1990-99.  

 

taking into account the reduction in the independent degrees of freedom due to 

the serial correlation, the correlation between observed and predicted rainfall 

remains significant at 1% level.  

 

4.4.3.2  Prediction of Monthly Rainfall Totals Using EOF Analysis  

Eigentechniques have been used as pure data reduction tool to aid in 

forecasting (e.g., Richman 1986; Barnston et al. 1996). EOF analyses reduce a 
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large number of original variables to fewer essential variables that contain much 

of the large-scale variability (e.g., Folland et al. 1991; Barnston et al. 1996). As an 

alternative to the subjective selection of predictors (based on correlation analysis 

assessment) as done in previous sections, here the SVD analysis of wave banded 

global SST is applied to obtain the PC time coefficients of the dominant modes of 

SST variability for each of the 5 wave bands discussed in Section 3.4 and Section 

4.4.3.1. These time series then are fed into a stepwise regression to develop a 

parsimonious prediction model. The temporal orthogonality of the PCs makes 

them suitable to be used for regression (Richman 1986).  Because the main 

purpose of the analyses is data reduction, rotation of the EOFs is unnecessary 

(Richman 1986; Barnston et al. 1996). 

 

The SVD analysis was performed on 1º x 1º SST filtered anomalies covering 

the region from 60ºS to 60ºN. For each wave band, the first 10 PCs were retained. 

Various tests can be made to determine the number of PCs to retain (e.g., scree, 

LEV, Preisendorfer and Barnett tests; e.g., Richman 1986). A plot of the 

eigenvalues against the mode number suggests retaining 15-20 PCs for the first 

two wave bands (period less than 1.47 years) and about 10 to 15 PCs for the 

remaining 3 modes (not shown). Here, 10 PCs were retained for each mode.  

 

For the wave band with period less than 235 days, the first 10 unrotated PCs 

account for only 17% of the total SST variability. For the annual and biennial 
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modes, the first 10 PCs explain 60 and 67% of the total SST variability for each 

mode, respectively. For the remaining two larger period wave bands, the 

unrotated 10 PCs explain 83-89% of the total SST variability. After stepwise 

regression, 4 PCs were retained for each of the modes with periods less than 1.47 

years, and 7-9 PCs were retained for the remaining bands. A summary of the 

model performance is shown in Table 4.4. For wave band I (period < 235 days), 

the model performance is good and accounts for 46% of rainfall variability in that 

mode. The models perform very well for the other four modes. In particular, for 

the annual, ENSO, and low-frequency modes, the models explain more than 96% 

of the variability of the respective modes. This reflects an exceptional model 

performance.  

 

Table 4.4. Summary of stepwise regression results. The R-squared is for the models 

developed for 1970-89. 

Wave band   
I 

< 235 
days 

II 
235 days- 
1.47 yrs 

III 
1.47-2.57 

yrs 

IV 
2.57-4.47 

yrs 
 

V 
> 4.47yrs 

Number of PC 
predictors  

4 4 7 9 9 

R-Squared 0.4645 0.9722 0.6786 0.9777 0.9684 
P-value of  
model F-statistic 

<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 
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Figure 4.8 shows the spatial patterns of the primary EOF modes that have the 

lowest standard error and highest F-ratio in the model and the strongest 

correlation with rainfall for each wave band. For the first wave band, EOF1 has 

the highest F-ratio, and exhibits the highest amplitude over the Arabian Sea (Fig. 

4.8a). SST variation  over  the  Arabian Sea was also one of the primary predictors 

used for the model developed in Section 4.4.3.1 (Table 4.3). Thus, consistent with 

our earlier discussion in Section 3.4, the seasonal rainfall variability is 

prominently affected by SST variation over the Arabian Sea.  

 

On the annual time-scale, both EOF1 and EOF2 show substantial F-values 

and small standard errors.  EOF1 exhibits strong amplitudes over western parts 

of the northern hemisphere oceans (Fig. 4.8b). It thus appears that SST variations 

over the subtropical/midlatitude oceans exert strong influence on Ethiopia’s 

annual rainfall cycle. For the biennial mode, EOF7 shows the highest F-value in 

the model, but interpretation is difficult owing to the complex patterns in the 

amplitudes (Fig. 4.8c). However, at this time-scale, rainfall variations appear to 

be associated with SST variations over the southern Indian Ocean, southwestern 

Atlantic, and northern Pacific.  For the ENSO and the low-frequency modes, 

EOF1 SST variations in the equatorial Pacific exhibit strong amplitudes (Figs. 

4.8d, e). The classical ENSO pattern with extensive area of positive PC loadings 

corresponding to a positive SST anomaly over the eastern equatorial Pacific in 

Fig. 4.8d is noteworthy. Significant  amplitudes  of  same polarity as in the Pacific  
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FIGURE 4.8. Spatial patterns of EOFs for wave band filtered global SST. (a) 

EOF1 for SST filtered for periods less than 235 days. (b) EOF1 for SST filtered 

from 235 days-1.47 years. (c) EOF7 for SST filtered from 1.47-2.57 years. (d) 

EOF1 for SST filtered from 2.57-4.47 years. (e) EOF1 for SST filtered for periods 

greater than 4.47 years.  
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are also evident over the Indian Ocean. For the low-frequency mode, SST 

variations over the Indian Ocean and northeast Pacific affect rainfall over 

Ethiopia. 

 

The overall performance of the model is tested using cross-validation and 

retroactive validation methods, as discussed in Section 4.3.1. Figure 4.9 shows a 

3-month lead time forecast. For the retroactive validation method (Fig. 4.9a), the 

performance of the model is essentially the same as that in Section 4.4.3.1. The 

correlation between observed and predicted values for the retroactive 

verification method is +0.896. Again, the major peaks and valley are reproduced, 

although their absolute values are underestimated. Noticeable departures from 

the observed patterns are evident, especially in 1992 and 1998. For the cross 

validation method, the skill slightly increases with a correlation value of 0.916 

(Fig. 4.9b). Other than underestimating the peaks, the model performs 

exceptionally well. 

 

4.4.3.3  Predicting Standardized Seasonal Rainfall Anomalies  

Another seasonal rainfall prediction model was developed for the monsoon 

region of Ethiopia, this time using standardized all-Ethiopian June-September 

rainfall values. The standardized index was constructed using 100 raingauge 

stations for 1970-99. Standardized anomalies were obtained by dividing the 

seasonal rainfall anomalies by the standard deviation for each year and station, 

and then averaging across stations for individual years. Wavelet analysis was  
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FIGURE 4.9. Same as Figure 4.6 except for EOF-based predictors.  

 

then performed on this index time series (30 data points). The global wavelet 

spectrum is shown in Fig. 4.10. The dominant power is concentrated on the 

biennial (1-3 years), ENSO (3-9 years), decadal (9-19 years), and multidecadal 
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(>19 years) time-scales. The variance at the multidecadal time-scale, however, is 

corrupted by padding zeros to the end of the time series.  
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FIGURE 4.10. Global wavelet spectra of standardized June-September all-

Ethiopian rainfall index for 1970-99. The amplitude is normalized by the total 

variance for the entire period at each frequency. 

 

We used global 1º x 1º SSTs for March as predictors. This gives sufficient lead 

time for the prediction of June-September rainfall anomalies before the onset of 

the season. Both the seasonal standardized rainfall index and global SSTs for 

March were identically bandpass filtered on the above four time-scales. As in 

Section 4.4.3.2, SVD analysis was performed on filtered SST anomalies covering 

60ºS to 60ºN. A scree test suggests retaining 15-18 PCs for the first two wave 
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bands, and 3-5 PCs for the decadal and multidecadal time-scales. The retained 

PCs explain more than 96% of the total variance for each wave band.  

 

Using a stepwise least squares linear regression technique, the best 

predictors with F-values significant at the 1% level were selected for each wave 

band. Table 4.5 gives a summary of the model performance and the number of 

PCs retained in the final regression models. For each mode, the model explains 

more than 98% of the total variance. However, a relatively large number of PCs 

had to be retained for the biennial and ENSO modes in order for the model to 

capture a large percentage of the total variance.  

 

Table 4.5. Summary of stepwise regression results. For cross validation, the R-squared 

value is the average for 30 regression models that are constructed for all years excluding 

each of the 30 years in turn. The R-squared for the retroactive validation is for the model 

developed for 1970-89. 

Wave band   

I 

1-3 yrs  

II 

3-9 yrs  

III 

9-19 yrs 

IV 

>19 yrs 

Number of PC predictors  9 12 6 3 

Cross validation 0.981 0.973 0.999 0.999 
R-Squared 

Retroactive 0.991 0.997 0.999 0.999 
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Figure 4.11 shows the spatial patterns of the primary EOF modes for biennial, 

ENSO, and decadal modes. For the biennial mode, EOF1 has the largest F value. 

This mode exhibits the highest positive amplitudes over the southern Indian 

Ocean, northern and southern subtropical Pacific, and negative loadings over 

northern Arabian Sea, northeastern and southeastern Pacific (Fig. 4.11a). Thus, 

SSTs in these regions exert the strongest influence on the forecast skill. EOF1 for 

the ENSO mode exhibits large positive amplitudes over the Indian Ocean, the 

equatorial Pacific and negative amplitudes over the subtropical and western 

Pacific (Fig. 4.11b). The EOF patterns over the equatorial Pacific clearly indicate 

an ENSO signature, but  SSTs  over  the  Indian  Ocean  are  equally  important  

in  explaining  rainfall variations over Ethiopia at this time-scale. In fact, the 

highest contribution to the forecast comes from EOF6, which shows strong 

amplitudes over eastern Indian Ocean, southern Atlantic, and the equatorial 

Pacific (not shown). On the decadal time-scale (Fig. 4.11c), SSTs over the Indian, 

Pacific, and Atlantic oceans exert strong influence on Ethiopian rainfall, with the 

strongest EOF amplitudes occurring over the northern subtropical Pacific and 

Atlantic oceans.    

 

To skill of the model again is assessed using retroactive and cross validation 

techniques. For the retroactive approach (Fig. 4.12a), the correlation between 

observed and predicted standardized rainfall anomalies is 0.88 (statistically 

significant  at 99.9% level).  The   model   accurately   identifies   the   sign   of  the  
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FIGURE 4.11. Spatial patterns of the first EOFs for global March SSTs wave 

band filtered for periods of (a) 1-3 years, (b) 3-9 years, and (c) 9-19 years.  

 

standardized anomalies for all years except for 1992, for which the observed 

anomaly is less than 0.2σ. The performance of the model is exceptional for the 

cross validation method in which each of the 30 years  is  held out in turn and the  
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FIGURE 4.12. Predictions of all-Ethiopian standardized June-September rainfall 

anomalies using the wave banding technique of Webster and Hoyos (2004). (a) 

Time series of observed (red) and predicted (green) anomalies. Predicted values 

are obtained by applying the model developed for 1970-89 to the independent 

data for 1990-99. (b) Same as (a) except for cross validation method in which the 

model is developed using data for all years except the one year for which the 

model is validated. EOFs of March SSTs were used as predictors. 
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model is developed using the remaining 29 years (Fig. 4.12b). The correlation 

between observed and predicted is 0.98. Again, the model accurately identified 

the sign of the anomalies for all years except for 1976-77, during which the 

observed anomalies were near zero. The skills obtained through cross validation 

method by Gissila et al. (2004) and Korecha and Barnston (2006) in forecasting 

seasonal rainfall anomalies for Ethiopia are much lower than what our study 

finds on independent data (1990-99). 

 

In general, the wave banding technique has provided a dependable 

prediction model for Ethiopia in forecasting seasonal rainfall anomalies with 

accuracy  that  has  never  been  achieved  before. In addition to the exceptionally 

strong skill computed through the cross validation hindcasts, the prediction 

model explains about 78% of the total seasonal rainfall variability when applied 

on independent data (1990-99). Our success to forecast both monthly total rainfall 

and seasonal anomalies with such accuracy would play a key role in combating 

the damaging effects of the recurring droughts in Ethiopia. In the next section, 

we examine the applicability and utility of the wave banding technique for 

forecasting rainfall anomalies at the peak of Kiremt at a specific representative 

drought-prone location. 

 
4.4.3.4  Localized Prediction  

To examine the value of the wave banding technique in predicting rainfall on 

finer spatial and temporal scales, the technique was applied to predict August 
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rainfall anomalies for a synoptic station in Combolcha (Fig. 4.13). The location 

lies at the center of one of the most drought-prone regions of northeastern 

Ethiopia. The standardized August rainfall anomalies were computed using 

station mean and standard deviation for 1970-99 time series, during which there 

was no missing observations. The global wavelet spectrum for Combolcha (Fig. 

4.13) shows that the dominant variability occurs at the ENSO time-scale (3.6-7.7 

years) with a peak at 5.8 years. The second most dominant power comes from the 

decadal variability (7.7-20 years) with a peak at 10 years, followed by the biennial 

variability in the 1-3.5 years band with a peak at 2.4 years.  Unlike the case for the 

all-Ethiopian standardized June-September anomalies, the power at the multi-

decadal time-scale (> 20 years; peak at 30 years) is very small, accounting for 

only 1.2% of the total power at its peak.  
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FIGURE 4.13. Same as Fig. 4.10 except for Combolcha for August.  

Combolcha 
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To predict August rainfall anomalies, we used global SSTs for April as 

predictor, allowing a 3-month lead time for prediction. Both SSTs and rainfall 

were wave band filtered for the above four dominant modes (biennial, ENSO, 

decadal, and multidecadal). The SSTs then were orthogonalized using the SVD 

techniques. A plot of the singular values suggests retaining 18, 15, 8, and 2 PCs 

for the biennial, ENSO, decadal, and multidecadal modes, respectively. These 

PCs explain more than 99% of the total variance of the filtered SSTs for each 

mode.  

 

For each mode, these predictors were fed into a stepwise least squares linear 

regression model and the best predictors with F-values significant at 98% level 

were selected. Table 4.6 gives the number of PC predictors used in the final 

regression models and summarizes the model performance. For the biennial 

mode (Wave band I), the variance explained by the model is relatively low due to 

the small number of predictors retained. While increasing the number of 

predictors gave very high R-squared for the cross-validation technique, the same 

predictors fail to capture the variability when applied on independent data (i.e., 

on data for the same station but for 1990-99), rendering the regression coefficients 

statistically not significant. Hence, we chose to limit the number of PCs used for 

the biennial mode to 4.  For the ENSO mode, all the predictors used give very 

high F-ratios and stable coefficients for both approaches. The models for the 
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other two modes capture rainfall variability with a high degree of accuracy with 

a relatively small number of predictors. 

 

Table 4.6. Same as Table 4.5 except for Combolcha for August.  

Wave band   

I 

1-3.5 yrs  

II 

3.5-7.7 yrs  

III 

7.7-20 yrs 

IV 

>20 yrs 

Number of PC predictors  4 8 5 2 

Cross-validation 0.657 0.998 0.989 0.999 
R-Squared 

Retroactive 0.761 0.993 0.997 1.000 

 
 

The overall excellent performance of the scheme is demonstrated in Fig. 4.14. 

The correlations between observed and predicted standardized anomalies for the 

retroactive and cross-validation techniques are 0.89 and 0.84, respectively, which 

are quite high for such unsmoothed station data. Moreover, the model correctly 

identifies the signs of the standardized anomalies except in few cases (1993 for 

retroactive; 1971, 1988, and 1993 for the cross-validation). However, except for 

1993, the observed anomalies in 1971 and 1988 are very small. The few cases in 

which the model failed to capture the correct signs of the anomalies can be 

utilized to gauge the usability of the forecasts by constructing a simple 

climatological probability of success/failure. The most important and societally 

relevant quality of this model is its ability to forecast the most extreme years 

(e.g., 1984).  
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FIGURE 4.14. Same as Fig. 4.12 except for Combolcha for August.  
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Comparison of Figs. 4.12 and 4.14 highlights the importance of forecasts with 

high spatial and temporal resolution. While the observed (and also predicted) 

anomalies for Combolcha largely are reflected in the all-Ethiopian standardized 

June-Sept anomalies (e.g., wetter conditions in 1975 and 1996, and drier 

conditions in 1972 and 1984), the extreme 1987 seasonal deficit in all-Ethiopian 

rainfall does not appear in the August 1987 rainfall anomalies for Combolcha, 

which actually received excess rainfall in that month. However, this station 

experienced deficient rainfall for part of the 1987 season. Inspections of the   

monthly and seasonal rainfall anomalies for Combolcha show that a large rainfall 

deficit in July contributed to an overall dry condition of June-September 1987. 

Thus, in addition to an overall nationwide seasonal forecast, the ability to 

forecast monthly rainfall distribution for a specific site could help to effectively 

utilize resources and manage droughts.  

 

4.5 Summary  

The statistical prediction models developed in this study have shown 

excellent predictive skill, especially on monthly and longer time-scales. Although 

the intraseasonal (less than a month) forecast skill is not as good as the monthly 

and seasonal empirical prediction skill, the intraseasonal empirical model has 

provided very good forecasts that compare well with observations for Ethiopia. 

The performance of the intraseasonal model for Ethiopia also compares well with 

the statistical forecast skill found by Webster and Hoyos (2004) for Indian 
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monsoon rainfall prediction on 10-30-day time range, especially considering the 

absence of any MJO-rainfall link for Ethiopia. For monthly to seasonal 

predictions, our models perform exceptionally well and are superior to previous 

linear regression models developed for Ethiopia (Gissila et al. 2004; Korecha and 

Barnston 2006). Note that we could not compare the quality of our monthly to 

seasonal forecasts with the results of Webster and Hoyos (2004) since their 

predictions were for shorter time-scales (10-30 days).  

 

In general, the banded-wavelet scheme has great potential for predicting 

rainfall at different time-scales. The results of this part of the study make it clear 

that Ethiopian rainfall is highly predictable on longer time-scales (> 30 days). 

Although further improvements to the long-range forecast model possibly could 

be achieved by including atmospheric predictors, especially where SST 

predictors alone perform only moderately for the shorter time-scale modes, the 

results demonstrate the enormous predictive value of global SST for long-range 

rainfall prediction in the tropics. One of the weaknesses of the wave banding 

technique is the reduction of the amplitudes of the forecasts. However, a study of 

the model climatology can help to rectify the problem by adding a known bias to 

the forecast. Likewise, the climatology of prediction quality expressed as 

probability of success/failure can be incorporated into the forecasts to enhance 

users’ confidence in the prediction.   
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However, the usability of such skillful predictions largely depends on 

whether the forecasts are target oriented. Seasonal forecasts should be based on a 

clear understanding of societal needs (e.g., Broad and Agrawala 2000). Lamb 

(1981) and Sonka et al. (1982) suggest that the practical applicability of climate 

forecasts requires (1) identifying human activities most severely affected by 

climate fluctuations in geographic regions, (2) determining the most affected 

regional economic sectors that possess the flexibility to adjust and benefit 

substantially from climate forecasts, and (3) developing skillful climate 

prediction schemes geared towards reducing the stresses climate variability 

imposes on society in such regions. These requirements entail testing, validation, 

and adaptation of research findings for practical application under local 

conditions, as well as an intensive and continuous interaction among climate 

scientists, decision makers, and climate information users (e.g., Broad and 

Agrawala 2000; Tarhule and Lamb 2003). The apparent strong capability of the 

wave banding technique allows us to tailor forecasts to achieve a desired goal for 

a specific targeted economic sector as suggested by Lamb (1981).  

 

Agriculture is one of the most severely affected economic sectors in Ethiopia. 

Through active cooperation with the social and agricultural scientists, 

economists, and other planners, regions of significant agricultural interests can 

be identified and the specific agricultural activities and cropping patterns can be 

assessed. In addition, the necessary lead time and the required precision of the 
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forecasts can be known. With this knowledge, target oriented predictions can be 

designed. Thus, seasonal forecasts of total rainfall and anomalies can be prepared 

to assess the overall quality of a season, which could help, for example, in 

deciding the types of crops or the variety of seeds to plant. A skillful monthly 

forecast can then be designed to predict rainfall anomalies/total amounts. Such 

forecasts could help in deciding the use of agricultural inputs (e.g., pesticides or 

fertilizers) thereby avoiding the waste of resources (Ethiopian farmers get such 

agricultural inputs in advance of the main rainy season on government loan, but 

struggle to pay their loan in full even in a good harvest year). The forecasts can 

also be of potential use during harvesting. A skillful prediction scheme can also 

be designed for water management purposes at a specific dam. Hydrological 

forecasts are important for dam safety as well as for efficient utilization of 

available water for energy production.  Supported by a knowledge of the 

requirements of the user community and decision makers, we believe that this 

study can make a difference in reducing the adverse socioeconomic impacts of 

climate variability in Ethiopia.   
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CHAPTER 5: APLICATION OF REGIONAL CLIMATE 

MODEL TO THE HORN OF AFRICA 

  

5.1 Overview  

5.1.1  Motivation 

Regional Climate Models (RCMs) are widely utilized to investigate the basic 

state of regional climates and the physical mechanisms underlying regional 

climate anomalies. The National Center for Atmospheric Research (NCAR) 

REGional Climate Model (RegCM) has been extensively utilized for midlatitude 

regions (e.g., Giorgi 1991; Giorgi et al. 1993c; Giorgi and Marinucci 1996; Giorgi 

and Shields 1999; Small et al. 1999). However, its application in Africa has been 

relatively limited to East Africa (e.g., Sun et al. 1999a) and West Africa (e.g., 

Afiesimama et al. 2006). Prior to applying regional models for climate variability 

studies, the accuracy of the models in reproducing the observed climates should 

be assessed (e.g., Sun et al. 1999a; Lee and Suh 2000; Afiesimama et al. 2006) and 

their performance evaluated to establish more fully their strengths and 

weaknesses (Small et al. 1999).  

 

The primary goal of this chapter is the evaluation and validation of The 

Abdus Salam International Center for Theoretical Physics (ICTP) version 3 RCM 

(RegCM3) in simulating the climate over the monsoon regions of the Horn of 

Africa, for which no previous modeling has been conducted. This validation 
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exercise is a lead in to Chapter 6, which uses the model to investigate the effects 

of SST variations across several ocean basins in the Atlantic and the Indian Ocean 

and the impacts of local vegetation coverage on monsoonal rainfall over the 

Horn of Africa. Because rainfall is the most important climate element for 

agriculture and water resources over much of the Horn of Africa, emphasis is 

placed on evaluating the performance of the model in producing observed 

rainfall amounts, distribution, and interannual variability.  

 

5.1.2  The ICTP Regional Climate Model 

RegCM3 is the latest version in a series of RCMs that evolved from the 

NCAR-Pennsylvania State University (PSU) Mesoscale Model version 4 (MM4). 

In the development of the earliest RCM version (Dickinson et al. 1989; Giorgi and 

Bates 1989), several MM4 physics parameterizations were modified to adapt it to 

longer-term climate simulations. In particular, the radiative transfer scheme of 

Kiehl et al. (1987) and the Biosphere Atmosphere Transfer Scheme (BATS; 

Dickinson et al. 1986) were added and existing planetary boundary layer (PBL) 

and convective precipitation schemes modified (Giorgi et al. 1993a; Pal et al. 

2005). The earlier versions of the model have been used for a wide variety of 

applications including paleoclimate, climate change, aerosol climatic effects, 

water resources, land cover change, biosphere-atmosphere and ocean-

atmosphere interactions, and seasonal predictions (Reviewed in Pal et al. 2005). 
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The third generation RegCM integrates almost two decades of improvements 

made in earlier versions in the representation of precipitation physics, surface 

physics, atmospheric chemistry and aerosols, PBL parameterizations, radiative 

transfer, and BATS (Pal et al. 2005). The dynamical core of RegCM3 is based on 

the NCAR/PSU Mesoscale Model version 5 (MM5; Grell et al. 1994), and is a 

compressible, primitive equation, sigma vertical coordinate, grid point limited-

area model with hydrostatic balance (Giorgi and Marinucci 1996; Giorgi and 

Shields 1999, Pal et al. 2005).   

 

In RegCM3, a non-local formulation of Holstang et al. (1990) is used to 

represent PBL processes. In this formulation, the vertical eddy flux within the 

PBL is given by an eddy diffusion term and a “countergradient” term that 

describes the nonlocal vertical transport due to dry convection (Georgi and 

Marinucci 1996; Pal et al. 2005). Details of its implementation in RegCM3 are 

described in Giorgi et al. (1993c). The radiative transfer scheme is from the 

Community Climate Model version 3 (Kiehl et al. 1996). This scheme treats the 

radiative effects of water vapor, ozone, carbon dioxide, oxygen, atmospheric 

aerosols, cloud water, cloud ice, and some greenhouse gasses such as NO2, CH4 

and CFCs using the delta-Eddington approximation over 18 discrete spectral 

intervals (e.g., Giorgi and Marinucci 1996; Pal et al. 2005); 

http://www.ictp.trieste.it/~pubregcm/RegCM3/regcm.pdf).  
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BATS describes the surface processes and represents the role of vegetation 

and soil moisture in modifying the surface-atmosphere exchanges of momentum, 

energy, and water vapor (Giorgi and Marunucci 1996). BATS contains a 

vegetation layer with 19 land cover types, a snow layer, and a three-layer soil 

water model (a 10 cm surface soil layer, a 1 to 2 m root zone, and a 3 m deep soil 

layer). Prognostic equations are solved for soil layer temperature, water content 

and, in the presence of vegetation, canopy air and foliage temperature (Giorgi 

and Marunucci 1996; Pal et al. 2005). Recent additional modifications in BATS 

dealing with subgrid variability of topography and land cover showed marked 

improvement in the representation of the surface hydrological cycle in RegCM3 

(Pal et al. 2005).  

 

Large-scale (resolvable) precipitation is represented via the SUB-grid Explicit 

moisture scheme (SUBEX; Pal et al. 2000). There are three schemes for handling 

convective precipitation in RegCM3 (Pal et al. 2005). As the evaluation of model 

precipitation is at the core of this study, the details of the precipitation schemes 

will be presented in Section 5.3.  

 

5.2  Regional Climate Model Technical Issues  

Giorgi and Mearns (1999), Giorgi et al. (2001), and others discuss many 

issues related to the functioning, potentials, and limitations of the “nested” 

regional climate modeling technique that a growing number of RCMs users need 
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to consider. This nesting involves a one way nesting in which the circulations 

produced by the nested RCM do not feed back into the global model. Giorgi and 

Mearns (1999) noted that although regional models can be run with two way 

interacting nested subdomains, two way interacting experiments between global 

and regional models have not been attempted. The primary technical issues 

summarized below are spin-up, lateral boundary conditions, domain size and 

resolution, and model physics.   

 

(a) Spin-up 

As the climatology of a RCM essentially involves dynamical equilibrium 

between large-scale external forcing and internal model forcing (e.g., forcing 

from topography and model physics), a significant amount of time may be 

required for the lateral boundary information to permeate the model domain 

before dynamic equilibrium is reached. This atmospheric spin-up time depends 

on domain size and circulation features and typically is a few days in length 

(Seth and Giorgi 1998; Giorgi and Mearns 1999), but can be as long as a month 

(e.g., Sun et al. 1999a). On the other hand, the equilibrium time for simulations 

with soil moisture and soil temperature initializations can be quite long and 

depends on the mean climate and soil depth (Qian et al. 2003). For example, to 

attain dynamic equilibrium, it may require a few seasons for the rooting zone 

(about 1 m depth) and years for the deep soils (Christensen, 1999). Generally, 
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simulation outputs for the duration of the spin-up are discarded for model 

output analysis.   

 

(b) Lateral Boundary Conditions  

The lateral boundary condition (LBC) issue relates to the frequency, extent, 

and manner in which the external large-scale forcing affects the regional model. 

If the lateral boundary conditions are applied over a large buffer zone, internal 

model process may not evolve sufficiently to capture the regional-scale 

characteristics.  On the other hand, abrupt changes at lateral boundaries (e.g., 

severe resolution mismatch between RCM and large-scale forcing) produce noise 

that contaminates model solutions.  

 

Giorgi et al. (1993) noted that a sharp transition at the lateral boundary 

generates noise when model solutions are linearly relaxed toward the large scale 

driving fields in a narrow buffer zone, and showed that the noise is substantially 

reduced by using exponentially varying weighting functions over a broader 

buffer zone that is wider in the upper troposphere than the middle and lower 

troposphere.  The frequency at which the lateral boundary conditions are applied 

depends on the season. During summer, when strong differential heating 

associated with the diurnal cycle may cause overturning of mesoscale 

circulations over land, the forcing needs to include approximate representation 
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of the diurnal cycle. Giorgi et al. (1993) recommended that the interval of LBC 

update be at least 6 hours. 

  

(c) Domain and Resolution 

The size and location of the domain and model resolution can significantly 

affect model solutions. The choice of domain and resolution is determined by a 

compromise between physical and computational considerations. Seth and 

Giorgi (1998) suggested that domains much larger than the area of interest may 

be needed for sensitivity studies, but noted that applying the lateral boundary 

forcing on a small domain may force the regional model to capture observed 

precipitation better.  

 

While there is no universally applicable “rule of thumb”, Giorgi and Mearns 

(1999) recommend that the domain be large enough to allow full development of 

internal model dynamics and include relevant regional forcing while requiring 

the optimal computational resources. In addition, locating boundaries over areas 

with significant topography may lead to inconsistencies and noise generation 

(e.g., Hong and Juang, 1998). The model resolution also must be fine enough to 

resolve adequately the scales and effects of the local forcing and must be 

consistent with the physical and dynamical parameterization scales in the model.  

At the same time, to avoid the generation of spurious circulations arising from 
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abrupt changes near the lateral boundaries, it should not be too small compared 

to the resolution of the driving large-scale circulation (Giorgi and Mearns 1999). 

 

(d) Model Physics 

RCM physics issues revolve around the adequacy of the representation of  

physical processes relevant to climate applications and its compatibility with the 

GCM physics that produce the large-scale driving conditions (Giorgi and Mearns 

1999; Giorgi and Shields 1999). The physics adequacy issue is addressed 

satisfactorily through capitalizing on the scientific advances made in RCMs over 

the years (Giorgi and Mearns 1999).  With regards to GCM compatibility, Giorgi 

and Mearns (1999) noted that RCM model physics configurations are either (a) 

derived from a pre-existing and well tested limited area model that is suitably 

customized for climate applications (e.g., the NCAR Regional Climate Model, 

RegCM; Georgi et al. 1993b), or (b) the full physics of a GCM is implemented 

within a regional dynamical framework (e.g., the United Kingdom 

Meteorological Office unified model; Jones et al. 1995). The disadvantage in for 

(a) is that different model physics may result in inconsistencies near the 

boundary or spurious circulations may develop in the interior of the domain, 

while the major disadvantage of (b) is that model physics developed for a GCM 

may not be adequate for the high resolutions used in nested regional models 

(Giorgi and Mearns 1999). It has been noted that multiyear RCM experiments 

driven by analyses of observations (e.g., reanalysis data) show better 
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performance than GCM driven simulations (Giorgi et al. 1993b; Small et al. 1999; 

Qian et al. 2003). Thus, both approaches can lead to good quality simulations 

when driven by quality lateral boundary conditions (Giorgi and Mearns 1999; 

Small et al. 1999).   

 

In customizing the RegCM3 for climate studies over the Horn of Africa, the 

above major issues were taken into consideration. In particular, we have applied 

the recommendations and utilized the results of past studies (e.g., Giorgi et al. 

1993; Giorgi and Mearns 1999; Sun et al. 1999a) on the selection of the model 

physical characteristics—model domain size, location, resolution, frequency of 

LBC update, size of buffer zone, and spin up time.  Details are presented in 

Section 5.4. One of the most important components of the model physics is the 

formulation of precipitation processes. Because of its importance, the theoretical 

details of the precipitation schemes available for use in RegCM3 now are 

discussed. 

 

5.3 Precipitation Schemes in RegCM3 

The inadequate treatment of cumulus convection is one of the major sources 

of errors in climate models (Pal et al. 2005), especially during summer when 

convective processes are important (Giorgi and Marinucci 1996), and the 

influence of subgrid scale processes on precipitation is greater (Small et al. 1999). 

In addition, Giorgi and Bates (1989) and Giorgi et al. (1993a) showed that the 
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biases of simulated precipitation from observed tend to be large in mountainous 

regions. In fact, in the early stages of regional climate modeling, all convective 

schemes produced low simulated precipitation skill during summer, with 

excessive amounts especially over mountainous regions (Giorgi 1991). For 

example, the Kuo-type parameterization (Anthes et al. 1977), in which 

precipitation is initiated when moist convergence in a column exceeds a certain 

threshold and the column is convectively unstable, produced excessive rainfall 

with the total bias exceeding 176% over western United States (Giorgi 1991).  

 

The performance of a RCM thus depends on the particular convective 

scheme utilized. Therefore, it is important to examine the performance of a 

regional model for the different available cumulus parameterization schemes 

before applying it to simulate the past, current, and future climate of a tropical 

mountainous region like the Horn of Africa. 

 

As noted above, RegCM3 precipitation is produced in two different forms: 

resolvable (large-scale) and convective (subgrid). The resolvable precipitation is 

associated with large-scale systems, and is represented via the SUB-grid Explicit 

moisture scheme (SUBEX; Pal et al. 2000). Convective precipitation typically 

occurs in the tropics in summer at scale finer than 1-km (Pal et al. 2005). Three 

physics options were available to treat convective precipitation: (1) the modified 

Anthes-Kuo scheme (Anthes, 1977, Giorgi 1991; Giorgi et al. 1993b); (2) the Grell 
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scheme (Grell 1993); and (3) the Massachusetts Institute of Technology (MIT) 

scheme (Emanuel 1991; Emanuel and Živković-Rothman 1999). These resolvable 

and convective precipitation schemes now are described. 

 

5.3.1 Resolvable-Scale Precipitation Scheme 

Resolvable precipitation can be represented by an implicit or explicit scheme. 

In the implicit scheme, supersaturated water immediately precipitates when 

relative humidity of 100% is exceeded at a grid point (Giorgi and Marunucci 

1996; Sin et al. 1999a). The explicit scheme is used in numerical weather 

predictions (NWP) and consists of prognostic equations for cloud water and rain 

water mixing ratio that represent processes including advection by large-scale 

wind, diffusion by subgrid-scale motions, condensation/evaporation of cloud 

water and rain water, aggregation of cloud water by rainwater, and gravitational 

settling of rainwater (Giorgi 1991; Giorgi and Marunucci 1996).  Instead, the full 

explicit scheme is computationally too expensive to be used in climate models 

because it adds about 30%-50% of computation time to RegCM (Giorgi and 

Marunucci 1996). The computationally inexpensive scheme, SUBEX, is utilized. 

This scheme accounts for the subgrid-scale variability of clouds and includes 

formulations for the autoconversion of cloud water into rainwater, the accretion 

of cloud droplets by falling raindrops, and the evaporation of falling raindrops 

(Pal et al. 2005).   
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Subgrid variability of clouds is accounted for by linking the average grid cell 

relative humidity to the cloud fraction and cloud water in the grid cell (Pal et al. 

2000). The fractional cloud cover is expressed in terms of relative humidity RH as 

minmax

min

RHRH
RHRHFC
−

−
= ,        (5.1) 

where RHmin  is the relative humidity threshold at which clouds begin to form, 

and RHmax  is the relative humidity where FC reaches unity. FC is assumed zero 

when RH is less than RHmin (80% for land and 90% for ocean) and unity when 

RH is greater than RHmax (101%). 

 

The formation for the autoconversion of cloud water, Qc, into precipitation, 

P, is given by  

FCQ
FC
QCP th

c
c

ppt )( −= ,         (5.2) 

where, th
cQ is the autoconversion threshold and is a function of temperature, and 

Cppt is the autoconversion rate.   

 

When precipitation is initiated, rain droplets falling through clouds collect 

and remove a portion of the cloud droplets through accretion. In addition, 

raindrops may evaporate as they fall through cloud-free air, especially in tropical 

and subtropical arid regions. To account for these processes, SUBEX includes 

simple formulations given by 

sumcaccacc PQCP = ,  and        (5.3) 
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2/1)1( sumevapevap PRHCP −= ,        (5.4) 

where Cacc and Cevap are coefficients of accretion and evaporation, respectively, 

while Pacc, Pevap, and Psum are the amount of accreted cloud water, evaporated 

precipitation, and accumulated precipitation from above falling through the air, 

respectively.  The implementation of this scheme in RegCM has been shown to 

improve substantially the simulation of precipitation, temperature, and other 

cloud-related variables over continental United States in summer (Pal. et al. 

2000).  

 

5.3.2 Convective Precipitation Schemes   

This section provides a detailed description of the three convective schemes 

currently available for use in RegCM3. 

 

5.3.2.1  Modified Anthes-Kuo Scheme   

In the modified Anthes-Kuo scheme, precipitation is initiated when the 

moisture convergence, M, in a column exceeds a given threshold and the column 

is convectively unstable. A fraction of the total moisture convergence 

precipitates, depending on the mean columnar relative humidity, while the 

remaining fraction (β) is redistributed throughout the column in proportion to 

the dryness at each vertical grid point in column. Latent heat of condensation is 

redistributed between cloud top and cloud bottom following a specified 

parabolic vertical heating profile, which yields maximum heating in the upper 
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half of the cloud layer (Anthes, 1977; Giorgi 1991; Giorgi et al. 1993b; Giorgi and 

Marunucci 1996).  

 

In the standard scheme, moisture redistribution and condensation heat 

release occur instantaneously and produce excessively strong grid-point 

precipitation events. To suppress this numerical effect, Giorgi (1991) introduced 

a modification in which the latent heat of condensation and liquid water 

produced by cumulus convection are first accumulated and then released with a 

time constant on the order of the full lifetime of the cumulus cloud system.  The 

precipitation amount produced by the modified Anthes-Kuo scheme is given by 

)1( β−= MP , where        (5.5) 

⎩
⎨
⎧ ≥−

=
otherwise

RHwhenRH
1

5.0)1(2
β       (5.6) 

where RH is the average relative humidity of the sounding.  

 

5.3.2.2  Grell Scheme   

Implementation of the Grell scheme (Grell 1993) is described in Giorgi et al. 

(1993c). The main points are highlighted below. In this scheme, clouds are 

pictured as two steady-state circulations caused by an updraft and a downdraft 

with no direct mixing between cloudy air and environmental air except at the top 

and bottom of the circulations. The mass flux in the updraft and downdraft (mb 

and mo, respectively) is assumed constant and the originating levels of the 
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updraft and downdraft are given by the levels of maximum and minimum moist 

static energy, respectively. The scheme is activated when a lifted parcel attains 

moist convection. Condensation in the updraft is calculated by lifting a saturated 

parcel. The downdraft mass flux (mo) depends on the updraft mass flux (mb) 

according to the following relation 

bo m
I
Im
2

1β
=          (5.7) 

where I1 is the amount of condensation integrated over the whole depth 

normalized  by the updraft mass flux,  I2 is the evaporation in the downdraft 

normalized by the downdraft mass flux, and β is the fraction of updraft 

condensate that reevaporates in the downdraft.  Rainfall, P, is given by 

)1(1 β−= bmIP .         (5.8) 

 

Due to the simplistic nature of the Grell scheme, several closure assumptions 

can be adopted to relate the mass flux at the bottom of the updraft to the large-

scale forcing. RegCM3's default version directly implements the quasi-

equilibrium assumption of Arakawa and Schubert (1974). It assumes that 

convective clouds stabilize the environment as fast as nonconvective processes 

destabilize it. For the Arakawa and Schubert (1974) closure, the updraft mass flux 

is given by 

tNA
ABEABEmb Δ

−
=

"         (5.9) 
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where "ABE  is the production of available buoyant energy by the large-scale 

motions during the time step tΔ , ABE  is the amount of buoyant energy 

available to a cloud, and NA  is the rate of change of available buoyant energy per 

unit bm . The difference ABEABE −" can be thought as the rate of destabilization 

over time tΔ .  

 

Another stability based closure assumption used in RegCM3 is similar to that 

implemented by Fritsch and Chappell (e.g., Giorgi et al. 1993a). This closure 

assumes that clouds remove the available buoyant energy in a given time scale, 

yielding the updraft mass flux 

NA
ABEmb τ

=          (5.10) 

where τ is the ABE  removal timescale.  

 

5.3.2.3  MIT Scheme   

The MIT scheme (Emanuel 1991; Emanuel and Živković-Rothman 1999) is 

the newest cumulus convection option available in the RegCM3 (Pal et al. 2005).  

The scheme attempts to reflect the inhomogeneity of convective clouds by 

considering convective fluxes based on an idealized model of subcloud-scale 

updrafts and downdrafts. It attempts to represent the collective effects of an 

ensemble of individual O(100 m)-scale drafts, which accomplish much of the 

vertical transport in convective clouds, as opposed to ensembles of O( 1km)-scale 



 240

clouds. It assumes that mixing in clouds is highly episodic and inhomogeneous, 

rather than continuous as in the entraining plume model.  

 

Convection is triggered when the first level of neutral buoyancy for 

undiluted, reversible ascent of near-surface air is greater than the level of cloud 

base. Between these two levels, air is lifted and a fraction of the condensed 

moisture forms precipitation while the remaining fraction forms the cloud 

ac ll )1( ε−= ,         (5.11) 

where cl  is the cloud water mixing ratio and al  is the adiabatic liquid water 

content, and ε is the fraction of the condensed water converted to precipitation.  

 

Air that is mixed into a cloud from the environment is assumed to form a 

spectrum of mixtures of differing mixing fraction, which then ascend or descend 

to their respective levels of neutral buoyancy.  The fraction of the total cloud base 

mass flux, bM , that mixes with its environment at any level is set to be 

proportional to the rate of change with altitude of the undiluted buoyancy 

( )∑
=

Λ+

Λ+
= N

i

b PB
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M
M

1

δδ

δδδ ,        (5.12)  

where Mδ is the rate of mixing of undilute cloud air, bM  is the net upward mass 

flux through cloud base, Λ is a mixing parameter, B is the buoyancy of undiluted 

cloud air, Bδ is the change in undilute buoyancy over a pressure interval Pδ , and 

N is the number of model levels.  
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The net upward mass flux bM  of undiluted air through cloud base is 

obtained from  

( ) bLCLkp
b M

t
DTTT

tt
M

Δ
−Δ+−

Δ
=

∂
∂

ρρ
α ,     (5.13) 

where α  is a fixed parameter, pTρ  is the density temperature of a parcel lifted 

adiabatically from the subcloud layer, ρT is the environmental density 

temperature, D  is mass flux damping rate, and tΔ  is the time step, which is used 

to normalize α and D . In the equation, kTΔ  is a specified temperature deficit at 

the Lifting Condensation Level (LCL), which accounts for the ability of boundary 

layer turbulence to overcome negative buoyancy at the LCL.  

 

The fraction of condensed water that is converted to precipitation is 

determined by converting to precipitation all cloud water in excess of a threshold 

water content within each sample of cloud air. Ice processes are crudely 

accounted for by allowing this threshold water content ( thl ) to be temperature 

dependent, such that 
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where ol  is a warm cloud autoconversion threshold and critT  is a critical 

temperature ( Co ) below which all cloud water is converted to precipitation. The 

surface precipitation rate, P , is given by 

dpT lgP σω1−=          (5.15) 

where g  is the acceleration due to gravity, Tω  is the terminal velocity, pl  is the 

precipitation mixing ratio, and dσ  is the fractional area occupied by unsaturated 

downdraft.   

 

The precipitation mixing ratio is determined from a conservation equation 

involving the rate of detrainment of precipitation from the updraft and the loss 

of precipitation by evaporation for each model layer. The fixed parameters used 

by the scheme have been optimized to produce the best possible forecasts of 

tropospheric relative humidity and temperature using a Single-Column Model 

(SCM). The SCM was driven by data from the intensive flux array operated in 

the western equatorial Pacific from 1 November 1992 to 28 February 1993 as part 

of the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Research 

Experiment (TOGA COARE) (Emanuel and Živković-Rothman 1999). 

 

Pal et al. (2005) ascribe several advantages to the MIT scheme compared to 

other RegCM3 convection schemes. They note that in addition to the more 

physical representation of convection, it includes a formulation of the auto-

conversion of cloud water into precipitation inside cumulus clouds and involves 
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ice processes by allowing the auto-conversion threshold water content to be 

temperature dependent. Another advantage is that the precipitation is added to a 

single, hydrostatic, unsaturated downdraft of assumed constant horizontal cross 

section. This downdraft transports heat and water substance, and precipitation 

evaporates according to a standard rate equation.  

 

5.4 Sensitivity Experiments 

The first goal of this study is to customize the RegCM3 to reproduce realistic 

amounts and spatial patterns of observed precipitation for the Horn of Africa. 

The customization focuses on testing and tuning the convection schemes as 

convection not only affects precipitation but also exerts significant influence on 

the evolution of mesoscale and even synoptic-scale circulation systems by 

distributing latent and sensible heat in the vertical (Anthes 1977).  In addition, 

since one of the major purposes of the study is to enhance our knowledge of the 

causes of droughts and occasional floods the region experiences, the 

customization must also reasonably capture the observed interannual rainfall 

variability. For all model sensitivity experiments in this section, the RegCM3 

available before the recent release (May 2006) was used because most of the 

sensitivity experiments were performed prior to May 2006. However, the 

RegCM3 released in May 2006 is used to examine the ability of the model to 

capture the observed interannual rainfall variability in Section 5.5 and to 

investigate the effects of SST and local vegetation coverage on the Horn of Africa 
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rainfall in Chapter 6.  The changes in the new release were geared towards 

improving RegCM3’s capabilities and user-friendliness. In this regard,  

the dynamical code was modified for parallel computing and new interfaces 

were added for a variety of reanalysis and GCM boundary conditions. The 

RegCM3 also now operates on different computer platforms 

(http://www.ictp.trieste.it/RegCNET/regcmbeta.pdf).  

 

5.4.1 Experimental Design and Model Physical Characteristics 

Following the discussion in Section 5.2, the model physical characteristics 

were selected carefully. The model domain is centered on the Horn of Africa and 

is chosen to cover most of Africa and the western Indian Ocean (Fig. 5.1). It 

encompasses the main monsoon systems that affect Horn of Africa weather. The 

model is based on a Mercator conformal projection with a domain size that 

extends 7080 km in the zonal direction and 6960 km in the meridional direction. 

The choice of the domain with boundaries far from the study region and largely 

over ocean areas ensures that relevant atmospheric and oceanic forcings are 

included. It also avoids problems arising from the mismatch between the 

resolution of the model and the forcing data near the boundaries (Giorgi et al. 

1996), as described in Section 5.2.    

 

The model includes 18 levels in the vertical. The vertical levels are spaced 

such that the highest concentration is near the surface. A 3-minute time step is 
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used for model integration. For model resolution, Sun et al. (1999) ran RegCM2 

over a large domain over East Africa using horizontal resolutions ranging from 

50 to 100 km and found acceptable results for all experiments. For our 

experiments, the default 60-km horizontal resolution therefore is used.  

 

 
FIGURE 5.1. Region shown is the total domain, with surface elevation shaded 

(m).  

 

For climate studies, a long simulation period is appropriate instead of 

individual short durations that are relevant for studying weather events (e.g., 

Giorgi 1991). To test the performance of RegCM3 for the Horn of Africa during 

the monsoon season, the model was integrated from 25 June to 31 August. The 

model was initialized and driven by the NCEP/NCAR Reanalysis version 1 data 

set (Kalnay et al. 1995) and the NOAA Optimum Interpolation (OI) SST (OISST) 
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monthly data (Reynolds et al. 2002). The atmospheric lateral boundary 

conditions, which include horizontal winds, temperature, surface pressure, and 

water vapor were supplied at 6 hr intervals over a 720 km buffer zone. The first 

five days of the simulation were considered model spin up and discarded, and 

the simulations for July and August were used for model evaluation. 

 

 The default model configuration was run with the four convective schemes 

discussed in Section 5.3—the modified Anthes-Kuo scheme (Kuo), the MIT 

scheme (MIT), the Grell scheme with the Arakawa-Schubert closure (GrAS), and 

the Grell scheme with Fritsch-Chappell closure (GrFC). For each convective 

scheme, two simulations were performed for contrasting summer seasons over 

the Horn of Africa.  

 

The two prominent contrasting summers previously investigated for 

Ethiopia are the recent wet season of 1996 and one of the driest seasons of 1984 

(Segele and Lamb 2005). Simulated rainfall rates for these years were compared 

with Ethiopian raingauge data (Segele and Lamb 2005; Chapter 3), the Climate 

Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data (Xie et 

al. 1997), and the Climate Research Unit (CRU) data set (New et al. 2000). The 

CRU data set contains historical monthly precipitation for global land areas from 

1901 to 2000, gridded at 0.5º resolution. The data was obtained from the ICTP 

website at http://www.ictp.trieste.it/~pubregcm/RegCM3/globedat.htm.  
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5.4.2  Spatial Patterns of Simulated Precipitation 

The model performance is evaluated by comparing July-August simulated 

precipitation with the corresponding observed pattern shown in Fig. 5.2. The 

main reason for choosing July and August is that much of the summer rain over 

the Horn of Africa occurs during these peak-season months. Moreover, the 

overall quality of the Kiremt season depends largely on the amount of rainfall 

and  its  distribution  during  July-August.  For example,  Segele and Lamb (2005) 

noted that the largest rainfall deficiencies/excesses in 1984/1996 typically 

occurred   during   August    over   many   areas.   Thus,   evaluating   the   model 

performance for July-August for the extreme 1984 and 1996 seasons is sufficient 

to assess the accuracy of the simulations and the ability of the model to capture 

the interannual rainfall variations.  

 

In addition, because rainfall is the major climate element of significant 

socioeconomic impact and because one of the most important sources of errors in  

RCMs is associated with precipitation schemes (Pal et al. 2005), the performance 

of the model is evaluated by assessing only the ultimate outcome of the 

simulated precipitation. In this section, the spatial distributions of the simulated 

rainfall rates and differences between simulated rainfall rates for dry and wet 

years are compared qualitatively with the respective observed/satellite 

estimated data sets. A thorough quantitative evaluation follows in Section 5.4.3.    
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FIGURE 5.2.  Maps of observed July-August rainfall rates (mm d-1) for 1984 (left) 

and 1996 (right) based on the Climate Research Unit (CRU) data set (top) and 

CMAP analysis (bottom). Insets in the top panel show observed station rainfall 

rates for northern two-thirds of Ethiopia computed by dividing July-August total 

rainfall amount by 62 days. The southern and southeastern regions of Ethiopia, 

which do not receive rainfall during the peak of the summer season, are 

unshaded in the insets. Contours are drawn at intervals of 5 mm d-1.  

 

5.4.2.1   Observed Rainfall Patterns 

Figure 5.2 shows the observed July-August rainfall rates for 1984 and 1996 

for the CRU, CMAP, and Ethiopian raingauge data sets. The CRU and CMAP 
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data sets locate the major centers of rainfall maxima over Ethiopia, Central 

Africa, and Nigeria. Except over Nigeria, where the CRU data indicate wetter 

conditions in 1984, both the CRU and CMAP data sets show wetter conditions in 

1996 than 1984 over most areas. Note the expansion of the 5 mm d-1 contour into 

eastern Ethiopia, southern Sudan and Chad, and northern Nigeria in 1996.  

 

Over Ethiopia, both the CRU and CMAP data sets underestimate the hgh 

resolution raingauge-based pattern in both 1984 and 1996, especially over 

western Ethiopia. The underestimation is higher for CMAP data in 1984. 

Considering the low resolution of the CMAP data and the limited number of 

stations employed in the CRU analysis, these differences between Ethiopian 

raingauge and the CRU and CMAP analyses is to be expected. On a large-scale, 

both the CRU and CMAP data sets can be considered to represent the observed 

rainfall patterns adequately.  Although all three data sets will be used to evaluate 

simulated precipitation, only departures from CMAP are shown in Figs. 5.3-5.7 

due to the oceanic coverage the CMAP data provide. 

 

5.4.2.2   Simulated Rainfall Based on the Modified Anthes-Kuo Convective 

Scheme  

The simulation with the modified Anthes-Kuo scheme (Fig. 5.3) showed 

rainfall maxima only over the Horn of Africa and failed to reproduce the heavy 

observed  rainfall  over  southern  Nigeria  and  central Indian Ocean in 1984. For  
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1984 (Dry) 1996 (Wet)

 

  

FIGURE 5.3. July-August simulated rainfall rates (top) and departures from the 

Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data 

(bottom) for Dry 1984 (left) and Wet 1996 (right) for default model configuration 

with the modified Anthes-Kuo scheme. Units are mm d-1. 

 

that season, it greatly underestimated rainfall in most regions, especially over the 

Gulf of Guinea, the Congo basin, and over central Indian Ocean, and also 

overestimated rainfall over Ethiopia and Yemen highlands. For 1996, the scheme 

 



 251

produced weak rainfall maxima over Nigeria and Sudan. Farther east, the 

scheme simulated widespread rainfall across the highlands of Ethiopia and 

Yemen. Except in a few localities, simulated rainfall rate departures from CMAP 

and CRU were relatively small over Ethiopia during the summer of 1996. 

 

In general, the modified Anthes-Kuo scheme tends to underestimate rainfall 

rates for most places, with significant deficiencies especially over the Gulf of 

Guinea, the Congo basin, and the central equatorial Indian Ocean, but produces 

widespread and heavy rainfall over the mountainous regions. The failure of the 

model to reproduce correctly the rainfall over the Gulf of Guinea regions 

(especially Nigeria) and central Indian Ocean may be related to their location 

near the boundaries of the model domain (Section 5.2). 

 

The large errors in the interior of the domain, especially over the Central 

African   Republic/the  Democratic  Republic  of  the  Congo  and,  in  1996,  over 

eastern Sudan/southwestern Ethiopia, may be related to the scheme’s deficiency 

in representing convection. For example, the scheme does not capture important 

stabilizing mechanisms such as low-level drying by downdrafts and cooling by 

rain and cloud evaporation. In addition, the specified parabolic vertical heating 

profile and moisture convergence parameter may not be realistic (Giorgi 1991). 

Despite its weakness over central and western Africa, the modified Anthes-Kuo 

scheme produces reasonable rainfall rates over most parts of Ethiopia. 
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5.4.2.3   Simulated Rainfall Based on the MIT Convective Scheme  

The simulation with the MIT scheme produced excessive rainfall rates 

everywhere in the model domain except over the Gulf of Guinea, the central 

equatorial Indian Ocean and at few localities over southern Sudan (Fig. 5.4). In 

1984, the simulation failed to reproduce the heavy rainfall center over southern 

Nigeria (Fig. 5.2) and produced rainfall rates exceeding 15 mm d-1 over a large 

area over Central Africa, Ethiopia, and the Yemen highlands.  In 1996, the model 

reproduced observed centers of precipitation maxima and patterns over Nigeria, 

Chad, Sudan, and Ethiopia, but greatly exceeded observed rainfall rates almost 

everywhere.  

 

Leaving aside problems of spurious precipitation occurring near model 

boundaries, the major deficiency of the scheme appears to be the production of 

excessive rainfall over most regions. Pal et al. (2005) also noted that the MIT 

scheme tends to generate excessive precipitation over particularly wet areas. In 

addition, although meager in amount, it produced rainfall over regions that 

receive no rain during the peak of the summer season (e.g., southern and 

southeastern Ethiopia). On the positive side, and in contrast to the simulation 

results of the modified Anthes-Kuo scheme, the MIT scheme better locates the 

major precipitation centers.  
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1984 (Dry) 1996 (Wet) 

  
 
FIGURE 5.4. Same as Fig. 5.3 except for the MIT scheme. 

 

The excessive rainfall rate the MIT scheme produces might be related to the 

fact that the scheme was tuned over oceanic areas. As indicated earlier, the 

overall performance of the scheme was evaluated using the TOGA COARE data 

over the western equatorial Pacific Ocean. The parameters were optimized to 
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produce the smallest root mean square error between observed and predicted 

tropospheric relative humidity (Emanuel and Živković-Rothman 1999).    

 

5.4.2.4   Simulated Rainfall Based on the Grell Convective Scheme  

The simulations with the Grell scheme produce centers of precipitation 

maxima and surrounding spatial patterns reasonably well for both closure 

assumptions, with isolated areas of overestimation scattered over the continent. 

However, there are large and contiguous regions where the model significantly 

overestimates rainfall, especially over the margins of the tropical rainbelt in both 

1984 and 1996 (Figs. 5.5, 5.6). The main convection belt also is located slightly 

north its observed position in Fig. 5.2. 

 

 The GrAS simulation (Fig. 5.5) produced rainfall rates that compare well 

with observations over the eastern domain extending from Sudan to Ethiopia in 

1984, although there are pockets of excessive rainfall rates over mountainous 

locations in Ethiopia and Yemen. Simulated rainfall rates are much lower than 

observed over the western domain extending from the Central African Republic 

to the Congo basin, and like most of the other simulations, near the peripheries 

of the model domain.  

 

In 1996, the GrAS scheme correctly simulated the major centers of rainfall 

maxima over Ethiopia, Central Africa, and Nigeria. Rainfall rate departures from 

CMAP patterns are relatively low over most areas, but larger rainfall rates were 
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simulated over Nigeria, the Yemen highlands, and a large expanse across the 

western Indian Ocean. Lower rainfall rates are simulated primarily on the 

southern edge of the monsoon rain belt, especially over the Congo basin. 

 

1984 (Dry) 1996 (Wet) 

 
 
FIGURE 5.5. Same as Fig. 5.3 except for the Grell scheme with the Arakawa-

Schubert (GrAS) closure. 
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The GrFC simulation (Figs. 5.6) produced heavy rainfall especially over 

Central Africa and the Gulf of Guinea, but simulated well-defined centers of 

rainfall maxima. In 1984, the GrFC scheme overestimated rainfall over the 

northern parts of the monsoon rain belt with rainfall rate departures in excess of 

10 mm d-1 over southern Sudan and the highlands of Ethiopia and Yemen, and 

underestimated rainfall over the Congo basin. In 1996, the scheme produced 

excessive rainfall rates over the Gulf of Guinea, southern Chad, western Ethiopia, 

and the Yemen highlands, and over the western Indian Ocean. Except near the 

edges of the domain, negative departures are generally small. 

 

Comparison of Figs. 5.5 and 5.6 shows that the GrAS simulation produces 

lower rainfall rates and more widespread and larger negative departures than 

the GrFC simulation. The Arakawa-Schubert closure minimizes convective 

activity since it forces dissipation of large-scale buoyant energy production 

within a single model time step, while the Fritsch-Chappell-type closure 

accumulates the buoyant energy for a specified time before removing it and so 

tends to increase the amount of convective rain (Giorgi and Shields 1999). 

Although we chose to show model departures from CMAP estimates due to their 

oceanic coverage, the overall assessment remains the same when simulated 

precipitation is compared with the CRU data. The differences and similarities of 

the CRU, CMAP, and the Ethiopian raingauge data sets were summarized in 

Section 5.4.2.1.  
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1984 (Dry) 1996 (Wet) 

 
 

FIGURE 5.6. Same as Fig. 5.3 except for the Grell scheme with Fritsch-Chappell 

(GrFC) closure. 

 

5.4.2.5   Interannual Variations  

To document further how well the various schemes reproduce the 

interannual variation between the two years, the observed difference between 

the rainfall for the two years (1996 minus 1984, Figs 5.7, 5.8) is used as 
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benchmark against which to compare counterpart differences from the 

simulations (Fig. 5.9). The observed rainfall difference for July-August (Fig. 5.7) 

shows that 1996 was much wetter than 1984 over the Horn of Africa, Chad, 

Central African Republic, and northern Nigeria.  Examination of the CRU and 

CMAP analyses shows that the excess rainfall in 1996 was primarily on the 

northern parts of the summer tropical rain belt while drier conditions border the 

southern edge. This also is reflected in Ethiopian raingauge analysis, which 

reveals wetter conditions over southwestern Ethiopia in 1984.  

 

FIGURE 5.7.  Difference in observed rainfall rate (1996 minus 1984) for July-

August. (a) CRU data set and raingauge data (inset) for the northern two-thirds of 

Ethiopia. White shading in the inset (for rainfall rate difference between -1 and +1 

mm d-1) is valid only for the non-hatched region. (b) CMAP analysis. Units are 

mm d-1. 

 

There are some discrepancies between the CRU and CMAP analyses as well 

as between the Ethiopian raingauge (Fig. 5.7, inset) and the CRU data. Compared 

   
a b
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to both the CRU and Ethiopian raingauge analyses, the CMAP data overestimate 

rainfall over western and northern Ethiopia and locate the center of the 

maximum difference much to the north in Ethiopia. A noticeable discrepancy 

between the CRU and CMAP data also appears over southern Sudan and parts 

of Chad, where the CRU data show negative or isolated areas of positive 

differences, but the CMAP analysis exhibits extended wetter conditions in 1996. 

The CRU data capture the center of maximum difference over central Ethiopia, 

although they diminish the magnitude of the rainfall difference between the two 

years. The CRU data also do not reflect the isolated weak negative (positive) 

difference over southwestern (eastern) Ethiopia. Clearly, this is a result of the 

large number of stations used in the Ethiopian raingauge data analysis. In 

general, however, there is good agreement among the three precipitation data 

sets in terms of spatial patterns and locations of rainfall maxima in 1984 and 

1996.   

 

The difference between the two seasons is seen most clearly on a monthly 

basis, with August being exceedingly dry/wet in 1984/1996 (Fig. 5.8) compared 

to the corresponding July (not shown). In fact, August 1984 was so dry that there 

were massive crop failures over much of northern and northeastern Ethiopia. In 

contrast, in August 1996, heavy monsoon rainfall caused large-scale floods over 

much of central Ethiopia.  These situations are reflected in the CRU data (not 

shown), but more so in the CMAP monthly analysis (Fig. 5.8). In August 1996, 
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the 5 mm d-1 contour covers western and central Eritrea and almost the entire 

Kiremt regions of Ethiopia except the far east areas bordering Djibouti. In August 

1984, on the other hand, the 5 mm d-1 contour is limited to an isolated area over 

western Ethiopia, leaving substantial portions of Ethiopia under dry conditions 

(1-2 mm d-1).  Whether the RegCM3 is capable of identifying such extreme 

contrasts between these two summers is qualitatively assessed below.  

 

 
FIGURE 5.8.  Analysis of CMAP estimates for August for Dry 1984 (left) and Wet 

1996 (right). Units are mm d-1. 

 

The wetter conditions over the northern parts of the monsoon rain belt in 

1996 (Fig. 5.7) are reflected in all simulations, especially when the modified 

Anthes-Kuo and the MIT convection schemes are used (Fig. 5.9a, b). The 

modified Anthes-Kuo scheme simulated wetter conditions in 1996 throughout  

1984 (Dry) 1996 (Wet) 
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FIGURE 5.9. Difference in simulated rainfall rate (1996 minus 1984) for July-

August. (a) Modified Anthes-Kuo scheme. (b) MIT scheme. (c) Grell scheme with 

the Arakawa-Schubert (GrAS) closure. (d) Grell scheme with Fritsch-Chappell 

(GrFC) closure. Units are mm d-1. 

 

the domain except over a few areas in central Ethiopia, the Central African 

Republic, and the Indian Ocean.  However, except over western Eritrea and 

isolated areas of Ethiopia, the simulation with the Anthes-Kuo scheme did not 

a b

c d
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produce the correct interannual rainfall variability over much of the Horn of 

Africa, southern Chad, Central African Republic, and the Gulf of Guinea (Figs. 

5.7, 5.9a).  

 

The simulation with the MIT scheme, on the other hand, shows extensive 

areas of wetter conditions over northern regions of the monsoon rainbelt and 

drier conditions over parts of the coastal regions of the Gulf of Guinea and 

southern Sudan in 1996. Although not a perfect match to the observed difference, 

only the MIT scheme produced drier conditions over parts of the coastal regions 

of the Gulf of Guinea and significant excesses over parts of Ethiopia in 1996.  The 

scheme also produced drier conditions over southwestern Ethiopia in 1996 (Fig. 

5.9b) in good agreement with station-based analysis (Fig. 5.7, inset). The major 

weaknesses as in the MIT scheme are the deficient (excessive) simulated rainfall 

in 1996 (1984) over the Central African Republic, where both CMAP and CRU 

indicate positive rainfall differences. However, this scheme has correctly 

identified the negative difference over southern Sudan and northern portions of 

the Democratic Republic of the Congo (Figs. 5.7a, 5.9b). 

 

The GrAS simulation produced wetter conditions over large parts of the 

monsoon rainbelt from about 5º-10ºN in 1984 than 1996, with isolated pockets of 

positive difference over the northern parts of the monsoon rain belt (Fig. 5.9c). In 

particular, except for a few locations in Eritrea and northeastern Ethiopia, the 
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scheme failed to show the correct interannual variability over most parts of the 

Horn of Africa and the coastal regions of the Gulf of Guinea (Fig. 5.7a, b). In 

contrast to observations (Fig. 5.7a, b), the GrAS simulation difference indicates 

wetter conditions in 1984 and drier conditions in 1996 over much of central and 

western Ethiopia. The scheme also does not identify the observed dry (wet) 

conditions in 1996 (1984) over Cameroon and Gabon (Figs. 5.7, 5.9c).  

 

The GrFC scheme simulates the interannual variability over northern 

Ethiopia better than GrAS (Fig. 5.9d), but fails to reproduce the large positive 

difference over the Horn of Africa as indicated by CRU and CMAP data (Fig. 

5.7). In particular, the scheme simulated drier (wetter) conditions in 1996 (1984) 

over parts of south-central Ethiopia, in direct contradiction to the observed 

wetter (drier) conditions in 1996 (1984). It also fails to show the correct sign of 

interannual variability over southern Sudan and the Gulf of Guinea regions (Fig. 

5.9d).  

 

Over the equatorial Indian Ocean, all schemes (Fig. 5.9) indicate drier 

(wetter) conditions in 1984 (1996). The CMAP analysis, however, shows wetter 

conditions in 1996 than in 1984 over much of the Indian Ocean (Fig. 5.7b). In 

addition, unlike the CMAP analysis (Fig. 5.7b), all schemes indicate excessive 

rainfall over Nigeria and the Gulf of Guinea in 1996. 
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In summary, RegCM3 produces wide-ranging precipitation distributions and 

amounts when the different convective schemes are used. The Anthes-Kuo 

scheme captures the rainfall maxima over Ethiopian highlands but greatly 

underestimates rainfall elsewhere. The MIT scheme captures the rainfall patterns 

and centers of precipitation maxima over continental Africa but substantially 

overestimates the rainfall rates over most areas. On the positive side, the MIT 

scheme captures the interannual variability better than the other schemes. The 

Grell scheme fails to identify the correct signs of the interannual variations, 

producing wetter conditions when it was dry and vice versa. Thus, the 

simulations performed using all schemes employed in the RegCM3 show several 

deficiencies. These weaknesses include producing either excessively abundant or 

deficient rainfall amounts, failing to identify the correct signs of the interannual 

variations, and mislocating the major centers of rainfall maxima, thus failing to 

produce the correct rainfall distributions. As it stands, the model cannot 

reasonably be used with the above deficiencies for quality climate studies over 

the Horn of Africa. The above qualitative assessments are further supported by 

quantitative error analyses discussed in the next section.  

 

5.4.3  Regional Performance of RegCM3 for the Default Configuration  

The performance of RegCM3 over different monsoon regions (Fig. 5.10) for 1984 

and 1996 now is examined quantitatively by analyzing the bias, root mean  

square  error,  and  threat  scores  of  the  simulations relative to observations. For 
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Figure 5.10. Map showing model domain and the areas for which error analyses 

are performed. The large domain resides 20 grid points (1200 km) inside the 

model boundary to capture interior model features.  
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where the summation is carried out over N  grid points in a predefined region 

and the superscripts M  and O  refer  to  model and observation.  For  verification 

of the model performance in reproducing spatial precipitation patterns, the 

threat score ptT  is used (e.g., Giorgi and Marinucci 1996). For precipitation 

threshold pt , the threat score is defined as   

ptptpt

pt
pt CFO

C
T

−+
= ,        (5.18) 

where, ptO  is number of grid points with observed precipitation in excess of 

precipitation threshold pt , ptF  is the corresponding number for model 

precipitation, and ptC  is number of grid points with both observed and model 

precipitation exceeding pt . The threat score measures the accuracy of the model 

in forecasting the area that receives an amount of precipitation above a given 

threshold. It varies from 0 for no skill to 1 for a perfect forecast. 

 

These statistical measures are applied over the different regions shown in 

Fig. 5.10 to evaluate model performance using July-August rainfall rates.  The 

RMS error and threat scores are averaged over 1984 and 1996 to show the overall 

model performance, but the bias values are given for 1984 and 1996 separately. 

Although the CMAP, CRU, and Ethiopian station data are used for verification, 

only results obtained from the CMAP and Ethiopian station data are shown in 

Tables 5.1 and 5.2. Ethiopian station data are used for the innermost domain that 

encompasses all observation sites in Ethiopia that are used in this study, while 
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CMAP and CRU data are used for all areas selected for error analyses (Fig. 5.10). 

Comparison of model and observed precipitation indicates that all four 

simulations give large RMSE and bias values (Table 5.1) relative to the observed 

rainfall amounts (e.g., Fig. 5.2). The RMS and bias error values generally decrease 

as the region of interest increases in size; they are large for Ethiopia and small for 

the large domain interior.  

 

 

Table 5.1. Root mean square (RMS) error and bias values (mm d-1) for 

simulations calculated by comparison with Ethiopian station observations and 

CMAP analysis for regions defined in Fig. 5.10. The RMS error values are 

averages of 1984 and 1996 peak seasons (July-August). Bias values are shown 

separately for July-August 1984 and 1996. Except for column 1 (Ethiopia, 

stations), for which model rainfall rate was interpolated to station locations, the 

other statistics were computed after interpolating CMAP data onto model grids.  

Region 
Ethiopia 
(Stations) 

Ethiopia 
(CMAP) 

East 
Africa 

(CMAP) 

Central 
Africa 

(CMAP) 

Large 
Domain 
(CMAP) 

Bias Bias Bias Bias Bias 

 
Convection 

scheme 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Mod. Anthes- 
 Kuo 

3.2 0.8 -1.3 2.4 1.4 -1.4 2.5 0.7 -1.3 2.5 -1.1 -2.2 1.7 -0.3 -0.3

MIT 9.4 7.8 7.1 8.7 6.8 4.4 7.0 5.3 3.1 7.3 6.8 5.8 3.5 1.5 1.5 

Grell (AS ) 3.8 2.6 -0.9 3.4 2.3 -0.9 3.2 1.8 -0.8 2.3 0.3 -1.4 1.8 0.1 -0.1

Grell (FC) 5.1 4.1 2.7 5.4 4.6 2.3 4.8 3.6 2.0 5.6 4.0 3.3 2.5 0.7 0.5 
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 Statistically, the simulation with the modified Anthes-Kuo scheme performs 

very well, having  the lowest RMS error values and relatively low departures, 

but  largely  overestimates  rainfall  over  Ethiopia  and  East Africa  in  1984  and 

underpredicts precipitation over all regions in 1996 (Table 5.1). This is consistent 

with the qualitative assessment of the spatial rainfall patterns discussed in 

Section 5.4.2.2 (Fig. 5.3). However, the low RMS and bias error values of the 

modified Anthes-Kuo scheme compared to the other schemes should not conceal 

its deficiency in reproducing the observed rainfall distributions and its 

inadequacy in identifying the correct sign of the interannual variability, 

especially over the Horn of Africa and central and western Africa.  

 

The MIT scheme gives the highest RMS errors and largest positive bias for all 

regions and thus excessively overestimates rainfall (Table 5.1). For Ethiopia, both 

the RMS and bias are large compared to the other domains. One reason for this 

anomaly is the small domain size for Ethiopia. It might also be linked to the 

model’s overestimation of orographic effects (Pal et al. 2005). The RMS computed 

relative to Ethiopian raingauge data is even larger and exceeds the average 

rainfall rate, especially over eastern regions. The large RMS and bias values are 

consistent with the qualitative discussion in Section 5.4.2.3. However, these 

statistics should be weighed against the advantage the MIT scheme offers. It was 

noted that the MIT scheme captures the correct sign of the interannual variability 

over much of the model domain better than any of the other schemes do. This 
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important quality should be considered when customizing the model for the 

Horn of Africa.  

 

The GrAS scheme produces precipitation with the lowest bias in 1996 over 

the selected regions, but overestimates rainfall in 1984 especially over Ethiopia 

(Table 5.1). Compared to the modified Anthes-Kuo scheme, the GrAS scheme has 

larger RMSEs over all domains, but shows little bias over the Large Domain. But, 

note that the GrAS scheme did not adequately produce the observed rainfall 

distributions and amounts in both 1984 and 1996, and it greatly underestimated 

rainfall over much of the domain (Fig. 5.5). The GrAS scheme also failed to 

identify the correct sign of the interannual variability over most areas (Fig. 5.9c).  

 

Next to the MIT scheme, the GrFC possesses the largest RMSE and bias 

values. The scheme highly overestimates rainfall over all selected domains in 

1984 (Fig. 5.1). The largest average error of the scheme occurs over Central 

Africa, in contrast to the other schemes which give the largest errors over 

Ethiopia. However, the GrFC still exhibits the largest bias over Ethiopia in 1984. 

Furthermore, examination of the errors reveals that the GrFC performs worse 

than the GrAS. Noting further that the GrFC was unsuccessful in reproducing 

the observed rainfall amounts and distributions and identifying the correct sign 

of the interannual variations over Ethiopia (Fig. 5.9d), the scheme appears 
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incapable of producing quality simulations appropriate for climate studies over 

the Horn of Africa. 

 

Model bias and RMSE values are larger for Ethiopia for the Kuo, GrAS, and 

MIT schemes when station data are used for the verification, but are relatively 

small when compared to the CMAP data for that country. The large model bias 

and RMSE for station data may be due to the large spatial inhomogeneity of 

Ethiopian rainfall and the inability of a regional climate model to capture small-

scale details. The bias and RMSE of CMAP/CRU relative to the Ethiopian 

raingauge data also are relatively large. For example, the average RMSE between 

CMAP (CRU) and Ethiopian station rainfall is 2.5 (2.4) mm d-1. In addition, both 

the CRU and CMAP data show negative biases when compared to observed 

station data for Ethiopia, which likely is a reflection of the large amount of 

smoothing in the CMAP and CRU analyses, the low resolution of CMAP, and the 

limited number of observing stations used in CRU. However, since the Ethiopian 

raingauge data give the best estimate of “truth” in representing the local rainfall 

amounts and distributions, it should be used to assess the quality of the 

simulations.  

 

The RegCM3 generally does well in reproducing the observed spatial 

patterns for very low rainfall rates (0.1-2 mm d-1), with threat scores exceeding 

0.8 for all convective schemes relative to Ethiopian raingauge data (not shown). 
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The threat scores for rainfall exceeding 2.0 and 3.0 mm d-1 are shown in Table 5.2. 

The high threat scores for these small rainfall thresholds indicate that in both the 

model and observations most places received some precipitation during the 

simulated months. The scores generally decrease as the threshold increases.  

These scores are relatively large for Ethiopia due to the small number of stations 

(100), but become smaller as the size of the computational area increases. All the 

convective schemes produce comparable threat scores, but the MIT scheme 

performs better over the large domain. The threat scores drop significantly for 

thresholds exceeding 5.0 mm d-1 (not shown).  All computed threat scores are 

much higher than the monthly threat scores calculated for application of RegCM 

to Europe for January and July conditions (e.g., Giorgi and Marinucci 1996), but 

this may be a result of the longer integrations (two months) in our study.   

 

In general, the modified Anthes-Kuo and GrAS schemes outperform both the 

GrFC and MIT schemes statistically, but have serious shortcomings in 

identifying the interannual variations and in reproducing the observed spatial 

rainfall distributions. The GrFC simulations also share these shortcomings. The 

excessive rainfall the MIT scheme produces is the main cause for the large RMSE 

and bias values. In fact, the RMSE of the MIT scheme is larger than the average 

observed rainfall rate for Ethiopia. However, in spite of the excess rainfall the 

MIT scheme produces, it outperforms the other schemes by reasonably 

reproducing the centers of rainfall maxima and by identifying the correct signs of 
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the interannual rainfall variations over large portions of model domain.  The 

large threat scores of the MIT scheme, especially for Ethiopia and the Large 

Domain (Table 5.2), also demonstrate the higher skills of the scheme.  

 

Table 5.2. Threat scores for July-August simulated rainfall for the different 

convective schemes relative to Ethiopian raingauge and CMAP data. The threat 

scores are computed for regions defined in Fig. 5.10 for rainfall amounts 

exceeding a given threshold value. The scores shown here are for 2 and 3  mm 

d-1 thresholds (i.e., threat scores are for rainfall > 2 mm d-1 and > 3 mm d-1, 

respectively). The values shown are averages of 1984 and 1996 peak seasons 

(July-August). Except for column 1 (Ethiopia, stations), for which model rainfall 

rate was interpolated to station locations, the other statistics were computed after 

interpolating CMAP data onto model grids. 

Region 
Ethiopia 
(Stations)

Ethiopia 
(CMAP) 

East 
Africa 

(CMAP) 

Central 
Africa 

(CMAP) 

Large 
Domain 
(CMAP) 

Thresholds (mm) 

 
 
Convection 
scheme 

2 3 2 3 2 3 2 3 2 3
Modified Anthes-Kuo 0.93 0.80 0.89 0.81 0.75 0.54 0.88 0.48 0.48 0.30
MIT 0.94 0.82 0.87 0.79 0.76 0.67 0.89 0.76 0.59 0.62 
Grell (AS ) 0.95 0.82 0.84 0.76 0.78 0.66 0.91 0.74 0.48 0.43 
Grell (FC) 0.94 0.82 0.86 0.78 0.80 0.69 0.89 0.79 0.55 0.56 

 

Combining the positive aspects of the schemes reflected in the qualitative 

evaluation described in the previous section and to some extent in quantitative 

evaluation above (threat scores), the MIT scheme was chosen for further 
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application of RegCM3 over the Horn of Africa. The modified Anthes-Kuo 

scheme was excluded, despite its strong statistical qualities, because of the 

serious shortcomings discussed above. On the other hand, in spite of its poor 

statistical performance, the MIT scheme was selected for its ability to identify 

interannual rainfall variations and spatial patterns. In addition, the large bias and 

RMSE values of the MIT scheme easily can be corrected through model 

sensitivity experiments. The next section focuses on reducing the excessive 

bias/RMSE values that simulations with the MIT scheme produce.  

 

5.4.4  Adaptation of RegCM3 to Horn of Africa  

Despite the excessive precipitation the MIT scheme produces, it captures the 

interannual rainfall variability over Ethiopia better than the other convective 

schemes. The MIT scheme also produces the spatial precipitation patterns well, 

especially for Ethiopia and the Large Domain shown in Fig. 5.10. Since capturing 

the correct sign of the interannual rainfall variations is critical for climate studies, 

the MIT scheme is chosen for further application and adaptation in the current 

research. Henceforth, efforts are made to reduce the excessive precipitation it 

produces without impacting the spatial distributions and interannual variability. 

 

For MIT scheme, as noted in Section 5.3.2.3, the precipitation amount and the 

characteristics of the heating profile and moistening produced by the scheme are 

determined by (a) the relaxation rate α (Eq. 5.13), (b) the warm cloud 
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autoconversion threshold lo (Eq. 5.14), (c) the fraction of precipitation that falls 

outside of cloud sσ , and (d) the fractional area occupied by unsaturated 

downdraft dσ (Eq. 5.16). Each of these parameters now is reviewed briefly. 

 

The parameter α determines the rate of approach to statistical equilibrium. 

When α is too small, convection may be underactive; when it is too large, the 

precipitation patterns may become noisy. Its default value is 0.2.  

 

The fraction of condensed water converted to precipitation in an ascending 

updraft is a function of the total amount of condensate produced, the air 

temperature, the actual updraft velocity, and the type of precipitation falling 

through the updraft.  In the scheme, the warm cloud autoconversion threshold lo 

(Eq. 5.14) determines the amount of cloud water available for precipitation 

conversion. Its default value is 0.0011 gm gm-1.  

 

The main effect of sσ  is moistening the troposphere by evaporation, thereby 

increasing the moisture available for precipitation. However, its specification 

requires knowledge of the exact configuration of the cloud and presence of anvil.  

In the scheme, it is set to 0.12 at and above cloud base and 1.0 below it.  The 

parameter dσ appears in the conservation equation for precipitation and varies 

nearly inversely with the precipitation content. It also affects evaporation 

although weakly. Its default value is 0.05.  
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To obtain an improved simulated precipitation over the Horn of Africa, each 

of the above parameters was varied and the resulting simulated precipitation 

compared with observations. As summarized in Table 5.3, four sets of 

experiments were performed. In Experiment I, the combined effects of dσ  and 

sσ  were examined. For Experiments II and III, the parameter α and the 

autoconversion threshold ( ol ), respectively, were varied while holding all the 

other parameters to their default values.  In Experiment IV, the combined effects 

of α and lo were examined.  For all experiments, the same model setup discussed 

in Section 5.4 was used. Table 5.3 gives the default and specified sets of values 

for each experiment. 

 

The performance of the model for each experiment was evaluated 

quantitatively for the different regions shown in Fig. 5.10. The results for 

Experiments III and IV, which revealed clear advantage over the default 

simulations, are given in Table 5.4 and 5.5. All four simulations of Experiment I 

(not shown) affected the precipitation amount very little. Both model bias and 

RMSE are high especially for the Ethiopia, East Africa, and Central Africa 

domains (Fig. 5.10) when compared with both raingauge data and CMAP 

analysis.  For these regions, the RMSE values vary from 6.7 to 9.1 mm d-1 and the 

model bias becomes as large as 6.8 mm d-1. There generally is little advantage  

in these simulations compared to the default run. Experiment II also did 

not give  satisfactory  results (not shown). RMSE values were large, ranging from  
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Table 5.3. Summary of sensitivity experiments and specified values of model 

parameters for the MIT scheme.  

 Experiment I Experiment 
II 

Experiment 
III 

Experiment IV 

Default 
values 

dσ  (0.05)  

sσ (0.12)  
α (0.2) lo (0.0011) α (0.2)        lo(0.0011) 

Run 1 0.05       0.15 0.0002 0.0001         0.02         0.008 

Run 2 0.01       0.15 0.002 0.002        0.02         0.010 

Run 3 0.05       0.10 0.02 0.004        0.06         0.004 

Run 4 0.01      0.10 0.06 0.008        0.06         0.008 

Run 5 –            –  0.8 0.01        0.10         0.010 

Run 6     –           –  –            0.05        0.30         0.010 

 
 

5.5 mm d-1 for Central Africa to 10.5 mm d-1 for Ethiopia. The bias values 

generally were relatively small, especially for the large domain (0.2-1.1 mm d-1), 

but were large for Ethiopia (3.1-6.1 mm d-1). The effect of α is more evident over 

the ocean, where high rainfall rates were simulated for low α values. In addition, 

the spatial coverage of simulated precipitation significantly shrinks as α 

decreases, especially over central parts of Africa. For large α values, the model 

produces excessive rainfall and large RMSE and bias values. 

 

Not surprisingly, the warm cloud autoconversion threshold ( ol ) has the most 

significant impact on precipitation amount, since it determines the cloud water 

content available for precipitation conversion. For Run 1 of Experiment III (Table 

5.3), the RMSE (bias) values are excessively high varying from 8.5-11.4 mm d-1 
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(5.3-8.0 mm d-1) for Ethiopia, East Africa, and Central Africa, and are larger than 

the   default-run   error  values  (Table 5.4).  These  errors   similarly  are  high  for 

Experiment IV. For both Experiments III and IV, bias values for 1984 are 

generally larger than those for 1996. Inspection of the simulated rainfall rate also 

confirms that the model produced excessive rainfall rate (> 20 mm d-1) over most 

regions for both 1984 and 1996. On the other hand, the threat scores are large for 

low rainfall thresholds for many of the runs (Table 5.5).    

 

At the other extreme, Run 6 of Experiment III (Tables 5.3, 5.4) produced the 

lowest RMSE and bias, but significantly underestimated rainfall everywhere 

except over Ethiopia. The negative bias values, especially for 1996, are 

indications of this underestimation. This run produced similar rainfall spatial 

patterns as the modified Anthes-Kuo scheme (Fig. 5.2), with a major center of 

rainfall maxima over the highlands of Ethiopia and another weak center over 

Nigeria/Cameroon (not shown). Run 6 of Experiment IV also produced the 

lowest RMSE and bias in the set (Experiment IV), but overestimated rainfall over 

much of Ethiopia while underestimating rainfall elsewhere in the model domain. 

Runs 2 and 3 of Experiment III and IV also produced excessive rainfall rates over 

most parts of the domain; the magnitudes of the errors, however, are smaller 

than the errors for the default run. The threat scores generally are large, 

especially for Central Africa for Runs 2, 3, and 6.    
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Table 5.4 Root mean square (RMS) error and bias (mm d-1) for simulations 

calculated by comparison with Ethiopian station observations and CMAP analysis 

for regions defined in Fig. 5.10 for Experiments III (E III) and IV (E IV). The RMS 

error values are averages of 1984 and 1996 peak seasons (July-August). Bias 

values are shown separately for July-August 1984 and 1996. Except for column 1 

(Ethiopia, stations), for which model rainfall rate was interpolated to station 

locations, the other statistics were computed after interpolating CMAP data onto 

model grids. Run 5 of Experiment III (highlighted) is selected for further 

application of RegCM3 over the Horn of Africa because of its best qualities.  

Region 
Ethiopia 
(Stations) 

Ethiopia 
(CMAP) 

East 
Africa 

(CMAP) 

Central 
Africa 

(CMAP) 

Large 
Domain 
(CMAP) 

Bias Bias Bias Bias Bias 

 
MIT 

 scheme 
Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Ave. 
RMS 84 96 

Run 1 (E III) 11.4 10.2 9.0 10.5 8.6 6.4 8.9 6.8 5.3 8.5 8.1 6.5 4.3 2.0 2.0 
Run 1 (E IV) 9.6 6.4 5.8 10.9 5.3 2.8 7.6 2.1 1.3 6.0 4.0 2.5 3.1 0.2 0.0 
Run 2 (E III) 6.9 5.4 4.3 6.9 4.6 2.6 5.6 3.4 2.0 6.1 5.9 3.6 2.8 1.0 0.8 
Run 2 (E IV) 9.8 7.6 6.3 9.2 5.4 2.5 6.9 2.4 1.1 6.4 3.3 3.4 3.1 0.1 0.0 
Run 3 (E III) 5.9 4.1 4.1 5.6 3.3 1.7 4.4 2.2 0.8 5.2 4.5 3.4 2.3 0.5 0.3 
Run 3 (E IV) 8.6 6.7 5.9 8.0 4.6 1.6 6.7 2.5 1.4 6.9 6.0 4.3 3.1 0.6 0.4 
Run 4 (E III) 4.9 2.9 3.6 4.4 2.1 0.8 3.6 1.3 -0.1 3.8 2.3 1.8 1.8 0.0 -0.1
Run 4 (E IV) 7.4 5.0 4.5 7.1 3.3 1.0 5.5 1.4 0.2 5.4 3.8 2.6 2.6 0.2 0.1 
Run 5 (E III) 5.1 3.2 3.0 4.1 1.9 0.1 3.3 1.1 -0.5 3.1 1.7 1.0 1.6 -0.1 -0.2
Run 5 (E IV) 5.7 3.3 4.0 4.8 2.5 0.7 3.8 1.5 0.0 3.9 2.2 2.0 1.9 0.0 -0.1
Run 6 (E III) 4.7 2.9 2.8 4.0 1.6 -0.2 3.4 0.7 -0.8 2.3 -1.8 -1.7 1.7 -0.7 -0.7
Run 6 (E IV) 4.4 3.0 2.2 3.8 2.1 0.3 3.4 1.1 -0.2 2.8 1.5 0.3 1.7 -0.1 -0.3
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Table 5.5. Threat scores for July-August simulated rainfall calculated by 

comparison with Ethiopian raingauge and CMAP analysis for Experiments III (E 

III) and IV (E IV). The threat scores are computed for regions defined in Fig. 5.10 

for rainfall exceeding 2 and 3 mm d-1 (i.e., threat scores are for rainfall > 2 mm d-1 

and > 3 mm d-1, respectively). The values shown are averages of 1984 and 1996 

peak seasons (July-August). Except for column 1 (Ethiopia, stations), for which 

model rainfall rate was interpolated to station locations, the other statistics were 

computed after interpolating CMAP data onto model grids. Run 5 of Experiment 

III (highlighted) is selected for further application of RegCM3 over the Horn of 

Africa because of its best qualities.  

Region 
Ethiopia 
(Stations)

Ethiopia 
(CMAP) 

East 
Africa 

(CMAP) 

Central 
Africa 

(CMAP) 

Large 
Domain 
(CMAP) 

Thresholds (mm) 

 
 

MIT 
scheme 

2 3 2 3 2 3 2 3 2 3
Run 1(E III) 0.94 0.81 0.88 0.78 0.77 0.65 0.89 0.77 0.52 0.57
Run 1(E IV) 0.95 0.85 0.75 0.74 0.68 0.58 0.89 0.90 0.60 0.63
Run 2 (E III) 0.93 0.82 0.87 0.79 0.79 0.70 0.89 0.79 0.66 0.69
Run 2 (E IV) 0.92 0.84 0.79 0.80 0.69 0.62 0.91 0.82 0.61 0.60
Run 3 (E III) 0.93 0.84 0.88 0.79 0.83 0.72 0.90 0.81 0.70 0.72
Run 3 (E IV) 0.94 0.85 0.83 0.78 0.77 0.66 0.90 0.80 0.71 0.72
Run 4 (E III) 0.93 0.84 0.81 0.74 0.73 0.62 0.91 0.85 0.67 0.68
Run 4 (E IV) 0.94 0.84 0.78 0.78 0.73 0.65 0.92 0.84 0.71 0.73
Run 5 (E III) 0.93 0.84 0.81 0.75 0.73 0.63 0.91 0.86 0.67 0.68
Run 5 (E IV) 0.94 0.83 0.80 0.74 0.73 0.65 0.92 0.87 0.66 0.70
Run 6(E III) 0.93 0.85 0.76 0.72 0.63 0.53 0.68 0.41 0.48 0.38
Run 6 (E IV) 0.93 0.83 0.82 0.76 0.72 0.63 0.93 0.83 0.68 0.68

 

For Runs 4 and 5 of Experiment III, the errors are comparable, but Run 5 

performs better than Run 4, having smaller RMSE and bias values for all 
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domains of error analyses (Table 5.4, Fig. 5.10). Inspection of the simulated 

precipitation for the two runs also shows that Run 4 significantly underestimated 

rainfall over eastern Ethiopia in 1996 and missed the sign of the interannual 

rainfall variation there (not shown). However, no significant advantage emerges 

when comparing the threat scores for the two runs; in all instances, the threat 

scores   are  large (Table 5.5). Run   5   of   Experiment    III    also    shows     clear 

advantage   over   Run  5   of Experiment IV, since it significantly reduces both 

the RMS and bias errors over the different regions. Overall, the RMSE and bias 

values for Run 5 of Experiment III are better than the errors for the default runs 

and the other experiment simulations discussed above.  

 

To highlight further the improvements obtained from Run 5 of Experiment 

III, Fig. 5.11 presents the spatial patterns of simulated and observed precipitation 

for 1984 and 1996 and the difference between the two simulated years. The most 

visible difference between the modified and default MIT simulations (cf. Figs. 5.4 

top, 5.11a, b, c) is the reduction of simulated rainfall rates across much of the 

model domain in the modified simulations, especially over Ethiopia and Central 

Africa. Although this reduction also occurs over Nigeria, the model still 

produces excessive rainfall near the model domain boundaries in 1996. 

Consistent with the observed rainfall (Fig. 5.11d, e), the excessive simulated 

rainfall (Fig. 5.4 top) over southern Sudan in both 1984 and 1996 now is absent 

(Fig. 5.11a, b). Instead, the maximum convection is centered over Ethiopia and 
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eastern portions of the Central African Republic in 1984 and, in agreement with 

the observed rainfall patterns, the maximum convection over the Central African 

Republic extends west into southern Chad and eastern Cameroon in 1996.  

 

In the interior areas far from the model boundaries, there is a good degree of 

similarity  between  simulated  and  observed  rainfall  rates (Fig. 5.11), especially 

over Ethiopia and Central Africa. The ability of the simulation to identify the 

interannual variability is strong. The modified MIT simulation clearly reflects the 

dry (wet) conditions in 1984 (1996) as observed (Fig. 5.11c, f). The simulated 

difference map (Fig. 5.11c) shows the observed (Fig. 5.11f) excess rainfall in 1996 

over central Ethiopia and the Central African Republic/southern Chad, and the 

negative difference in southwestern Ethiopia (Fig. 5.11f, inset) and the 

Democratic Republic of the Congo. Substantial improvements have also been 

made over the Indian Ocean where the modified MIT scheme reproduced the 

observed positive departure (wetter 1996) well (Figs. 5.7b, 5.9b, 5.11c). 

 

In general, the simulation obtained by combining the effects of α and lo 

primarily responded to the effects of the warm cloud autoconversion threshold 

and yielded good results for large values of lo. It is clear that the modified MIT 

scheme (Run 5 of Experiment III) has shown considerable improvement in 

reproducing the actual rainfall patterns and identifying the observed interannual 

variations in 1984 and 1996.  To test how well the modified MIT scheme performs 
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under independent forcing, the next section examines the ability of the scheme to 

simulate the long-term mean state and observed interannual variability. 

 

   

 

 

 
FIGURE 5.11. Spatial patterns of July-August simulated (top) and observed 

(bottom) precipitation for 1984 (left), 1996 (middle), and their difference (right). 

(a) Model precipitation for 1984 using the modified MIT scheme for Run 5 of 

Experiment IIII (Section 5.4.4, Tables 5.4, 5.5). (b) Same as (a) except for 1996. 

(c) Difference (1996 minus 1994) in simulated rainfall rates of the modified MIT 

scheme. (d) Observed precipitation using the CRU data. Inset shows observed 

station rainfall rates for the northern two-thirds of Ethiopia, with hatching covering 

non monsoon regions. (e) Same as (d) except for 1996. (f) Observed rainfall 

difference (1996 minus 1984). Units are mm d-1. 
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5.5 Model Climatology and Interannual Variability 

This section assesses the ability of the RegCM3 to capture the observed Horn 

of Africa rainfall amounts and distribution and to reproduce the observed 

interannual rainfall variability over a long period. This is accomplished by 

performing multiyear simulations and evaluating how well the model simulates 

(1) the mean precipitation over the Horn of Africa and (2) the year-to-year 

rainfall variability over the monsoon regions of Ethiopia. The degree of similarity 

between modeled and observed interannual precipitation variability is a valuable 

model diagnostic that measures the sensitivity of the model to a range of 

synoptic scale atmospheric forcings (e.g., Small et al. 1999).   

 

For this evaluation, the latest RegCM3 release (May 2006) was run using the 

modified MIT scheme (Run 5 of Experiment III) for 18 years from 1982-1999.  The 

simulation was started in 1982 because the OISST data we used to drive the 

model are available from December 1981 (Reynolds et al. 2002). The 

NCEP/NCAR Reanalysis version 1 (Kalnay et al. 1996) was used for the initial 

and time-dependent atmospheric lateral boundary conditions at 6-hr intervals. 

The model physical characteristics were discussed in Section 5.4. Simulations 

were performed only for summer seasons. Thus, for each year, the model was 

initialized on 25 May and run until 30 September. The first six days of the 

simulations were considered model spin up and discarded.  
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Figure 5.12 shows the simulated and observed rainfall climatology for June-

September 1982-99.  For the observed average rainfall map for the entire Horn of 

Africa (Fig. 5.12b), CRU data were used over land and CMAP reanalysis data 

over the ocean. For Ethiopia (Fig. 5.12d), 121 raingauge stations distributed 

across the entire country were used, although most stations in southern and 

southeastern Ethiopia do not contribute to the June-September rainfall. The 

RegCM3 reproduced the mean seasonal rainfall distribution quite well. In 

addition, the northern and southern limits of the rainfall belt are reasonably 

represented (Fig. 5.12a, b). Other than the fine details in the model rainfall 

patterns, there is a striking similarity between simulated (Fig. 5.12a) and 

observed (Fig. 5.12b) rainfall rates in the interior of the domain far from model 

boundaries (note the similarity in the 4 mm d-1 contour). The details in simulated 

rainfall patterns over Ethiopia closely match the observed raingauge analysis 

(Fig. 5.12b, d). Note the close similarity in the extended 4 mm d-1 contour across 

the southern/eastern highlands in the simulated and station rainfall analyses. 

This pattern is not apparent in the CRU analysis. The rainfall maximum over 

western Ethiopia also is well represented, although the model amplifies the 

magnitude at a few places. Overall, the observed and simulated rainfall 

climatologies compare well over the Horn of Africa.  

 

However, there are differences in rainfall rates between the modeled and 

observed patterns, with  higher  modeled rates in western and southern Ethiopia, 
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FIGURE 5.12. Spatial patterns of rainfall climatology for June-September for 

1982-99. (a) Modeled, using the modified MIT scheme for Run 5 of Experiment III 

(Section 5.4.4, Tables 5.4, 5.5). (b) Observed, using CRU over land and CMAP 

over the ocean.  (c) Same as (a) but magnified for Ethiopia. (d) Ethiopian 

raingauge data for 121 stations covering entire country.  Black contours are 

drawn every 4 mm d-1. 

 

the Yemen highlands, the Central African Republic, and Nigeria/Cameroon. One 

reason for the difference between modeled and observed rainfall rates may be 

related to the CRU data. For example, Afiesimama et al. (2006) suggested that the 

a  b

c d



 286

CRU climatology may underestimate the observed values over mountainous 

regions in Africa due to the sparse data density. The major discrepancy between 

simulated and observed rainfall is over the Indian Ocean, where the CMAP 

analysis indicates rainfall exceeding 4 mm d-1 over a large area (Fig. 5.12a, b). The 

maximum simulated rainfall, on the other hand, is less than 4 mm d-1 and is 

limited to a small area in the equatorial Indian Ocean.  

 

The model’s ability to capture the observed interannual variability is 

examined using Ethiopian raingauge data (100 stations across the monsoon 

regions of Ethiopia) for the 1982-99 period of model integration. First, the 

modeled, CRU, and CMAP June-September rainfall rates were interpolated using 

a bilinear interpolation to 100 raingauge locations and spatially averaged for 

each year to get June-September average rainfall rate time series (1982-99) of 

modeled, CRU, and CMAP data for Ethiopia. To contrast the performance of the 

customized MIT convective scheme, the model also was run for the default 

convective scheme (Grell with Fritsch-Chappell closure, GrFC).  Figure 5.13 

shows the average Ethiopian rainfall rates computed using model and raingauge 

stations for 1982-1999.  

 

The default RegCM3 GrFC convective scheme excessively overestimates 

rainfall (Fig. 5.13). The mean rainfall rate for 1982-99 for the default convective 

scheme is 9.1 mm d-1, which surpasses the observed rainfall rate (6 mm d-1) by 
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more than 50%. Although the modified MIT scheme still produces higher than 

observed rainfall rates (1982-99 average of 7.6 mm d-1), clearly it performs much 

better than the default convective scheme.  
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FIGURE 5.13. Interannual variations of Ethiopian June-September average 

rainfall rates for 1982-99 for raingauge (red), modeled with the modified MIT 

convective scheme (Run 5 of Experiment III; black), and modeled with the default 

Grell convective scheme with the Fritsch-Chappell closure (blue).  Units are     

mm d-1. 

 
 

Figure 5.14 illustrates the poor (strong) performance of the default (modified 

MIT) scheme in capturing the interannual rainfall variability. To facilitate 

comparison, each time series was centered and scaled by the respective mean 

and standard deviation. RegCM3’s default convective scheme (GrFC) not only 

excessively overestimates rainfall, but also fails to capture the interannual 

variability  (Fig. 5.14a),   with    correlation   between   observed  (raingauge)  and  
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FIGURE 5.14. Interannual variations of Ethiopian June-September standardized 

rainfall rate anomalies (σ) for 1982-99.  (a) Modeled with the default convective 

scheme (GrFC; blue) and raingauge (red). (b) Raingauge (red), CRU (blue), 

CMAP (green), and modeled with the modified MIT convective scheme (black).  
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modeled rainfall being close to zero (-0.05). This poor model performance is 

especially evident in 1983, 1988, 1996, where the phases of the simulated rainfall 

anomalies are opposite and their magnitude very large compared to the 

observed. On the other hand, the modified MIT convective scheme captures the 

observed rainfall variability well (Fig. 5.14b). The correlation between the 

raingauge and modified MIT simulated rainfall is +0.66, which is significant at 

1% level according to a two-tailed t-test. The correspondence between simulated 

and CRU (CMAP) rainfall also is substantial (Fig. 5.14b), with correlation values 

of 0.59 (0.55), both of which are significant at 1% level according to a two-tailed 

test. Pronounced differences between observed and simulated rainfall occurs 

only in a few cases, the notable ones being 1983, 1993, and 1998. Thus, the model 

misidentified the sign of the observed anomalies by either excessively 

overestimating (e.g., 1983) or significantly underestimating (e.g., 1993, 1998) 

rainfall for these years. In general, however, simulation results of the modified 

MIT convective scheme agree well with observations for both rainfall amount 

(albeit with small positive bias) and interannual variability.  

 

It is interesting to note that while the GrFC scheme gave poor results for 

Ethiopia, the scheme appears to work substantially better for West Africa 

(Afiesimama et al.  2006). In fact, Afiesimama et al.  (2006) noted that the GrFC 

mass flux based convective scheme gives a superior reproduction of the observed 

magnitude and distribution of rainfall over West Africa. Based on 1981-1990 
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RegCM3 simulations, they found a correlation value of +0.72 between observed 

and modeled June-September rainfall for the entire West Africa. For the same 

period, the correlation between modeled and observed rainfall for the Guinea 

Coast, West Soudano-Sahel, and Central Soudano-Sahel sub-regions of West 

Africa were +0.51, +0.62, and +0.65, respectively. Although the small number of 

years used reduce the statistical significance of the above correlation values, 

there is a clear contrast between the results of Afiesimama et al. (2006) for West 

Africa and the negligible correlation we found for Ethiopia when the GrFC 

scheme was used. To compare our result for the modified MIT scheme with the 

results of Afiesimama et al. (2006), the correlation between modeled and 

observed rainfall was re-computed for the first 10 years of our simulation, and 

found that the correlation between Ethiopian raingauge and modeled (with the 

modified MIT convective scheme) rainfall strengthen further to +0.75  (significant 

at 2% level according to a two-tailed t-test) for 1982-91. Clearly, the modified 

MIT scheme is superior in reproducing both the amount and interannual 

variability of the Ethiopian rainfall.  

 

5.6 Summary  

The ability of the RegCM3 to reproduce the observed rainfall amounts and 

distribution for the Horn of Africa was examined. The default MIT convective 

scheme produced the observed interannual variations, but it excessively 

overestimated rainfall over much of the model domain. The modified Anthes-
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Kuo and Grell schemes perform poorly for the Horn of Africa, both of which fail 

to capture the observed interannual rainfall variability.  

 

Through exhaustive sensitivity experiments, we reduced the excessive 

rainfall produced by the MIT scheme. Both qualitative and quantitative 

evaluations of the model performance have shown that the modified MIT 

scheme (Run 5 of Experiment III) substantially outperforms the default MIT 

simulations. The RMSEs for the modified MIT scheme decreased by 46-58% 

compared to the errors for the default MIT simulation over Ethiopia, East Africa, 

and Central Africa. The model bias values also have been reduced by 58-83% of 

the default bias values over those regions. The modified MIT convective scheme 

also succeeded in capturing the interannual variation over most areas away from 

the model domain boundaries. Notable among these improvements is the 

model’s success over the Indian Ocean, where the observed wetter conditions in 

1996 were successfully simulated.  

 

The evaluation of an 18-year RegCM3 simulation also showed that the 

modified MIT scheme not only produces the rainfall climatology realistically, but 

also captures the interannual variability adequately. Thus, the modified MIT 

scheme will be employed for further application in the current research on the 

effects of SST variations in the Atlantic and Indian Oceans. The customized 

model also will be used to assess the impacts of changes in vegetation coverage 
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on Horn of Africa rainfall. Clearly, the overall improvements made in the model 

will add to the validity of our study in Chapter 6 that examines the effects of 

surface boundary conditions on Horn of Africa rainfall and assesses the large-

scale atmospheric circulation changes associated with prescribed SST forcings 

over the Indian Ocean.   
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CHAPTER 6: EFFECTS OF SST AND VEGETATION 

COVER ON RAINFALL: OBSERVATIONAL AND 

MODELING INVESTIGATIONS 

 

6.1  Preamble 

Major features of the tropical atmospheric circulation, averaged over time-

scales longer than a month or two, are largely determined by slowly varying SST 

variations (e.g. Shukla and Paolino 1983; Neelin et al. 1998). Numerous 

observational and modeling studies have documented the fact that SST 

variations affect the interannual and decadal fluctuations of seasonal rainfall 

over different parts of Africa (e.g., Lamb 1978; Folland et al. 1991; Lamb and 

Peppler 1992; Druyan and Hastenrath 1994; Hastenrath et al. 1995; Semazzi et al. 

1996; Ward 1998; Rowell 2003). However, in general, the role of the Atlantic and 

Indian Oceans in forcing climate anomalies is less well examined and understood 

than the effects of ENSO-related forcing (Latif et al. 1999).  

 

In this chapter, the effects of SSTs across the Atlantic and Indian Oceans on 

the Horn of Africa rainfall are explored through observational analysis and 

modeling studies. Through model experiments, the roles of individual ocean 

basins in shaping June-September rainfall are examined and documented. In 

addition, the impact of changes in vegetation cover on rainfall is assessed 
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through model experiments. The observational evidence of SST-rainfall 

relationships is presented in the next section.   

 

6.2  Observational Analysis  

To provide an observational background for the modeling experiments in the 

next section, the effects of SST variations in different ocean basins on Ethiopian 

rainfall are explored. Specifically, SST anomalies in the Atlantic, Indian, and 

Pacific Oceans were evaluated in relation to the interannual variability of June-

September rainfall averaged over the monsoon regions of Ethiopia (100 stations) 

for 1970-99. The Ethiopian rainfall data were discussed in detail in Chapter 3. The 

SST fields were obtained from the NOAA-CIRES Climate Diagnostics Center 

(Boulder, Colorado; http://www.cdc.noaa.gov/). The data set (the NOAA 

Extended Reconstructed SST, ERSST) is for a 2 degree latitude by 2 degree 

longitude global grid constructed using SST data from the most recently 

available International Comprehensive Ocean-Atmosphere Data Set (ICOADS). 

The construction involved application of improved statistical methods that allow 

stable reconstruction using sparse data (Smith and Reynolds 2003).  Unlike the 

monthly OISST data, which are available from 1981 to present (Reynolds et al. 

2002; http://www.cdc.noaa.gov/cdc/data.noaa.oisst.v2.html), ERSST data are 

available from 1854 to present. Because the time span of the ERSST data covers 

our study period (1970-99), we chose this data to examine the observational link 

between Ethiopian rainfall and SSTs in different ocean basins.  
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The ocean basins examined here are the Arabian Sea/northern Indian Ocean 

(10°-30°N, 40°-80°E), equatorial Indian Ocean (10ºS-10ºN, 40°-110ºE), southern 

Indian Ocean (10°S-40°S, 50°-110°E), northern tropical Atlantic (10ºN-35ºN, 

22°W-10ºW), equatorial Atlantic (10°S-10°N, 22°W-15°E), southern tropical 

Atlantic (0º-20ºS, 22°W-15ºE), western equatorial Pacific (10ºS-10ºN, 130º-150ºE), 

and eastern equatorial Pacific (10ºS-10ºN, 150º-170ºW).  Except for the equatorial 

Pacific, SST variations for the Atlantic and Indian Ocean basins also are 

investigated in the model experiment section.  This research builds on the earlier 

study of Segele and Lamb (2005) to further identify the temporal evolution of 

SST-rainfall relationships for Ethiopia. Thus, in addition to providing a 

background to the modeling study in the next section, this analysis will offer 

additional evidence supporting the major findings of Segele and Lamb (2005) 

that relate global SSTs to Ethiopian Kiremt onset, cessation, and growing length.   

 

The correlation analyses (Fig. 6.1a) show that the eastern equatorial Pacific 

exhibits the strongest connection with June-September Ethiopian rainfall during 

the concurrent (reference) monsoon season Y(0). Correlation values for the 

eastern equatorial Pacific range from -0.58 to -0.68 for June to October, with 

strongest negative correlation occurring during October. All correlation values 

for these months are statistically significant at the 1% level. After the end of the 

monsoon season, especially in Y(0), the maximum correlation magnitude 

abruptly  drops  and  the relationship between Ethiopian rainfall and eastern and  
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FIGURE 6.1. (a) Lagged and concurrent correlations between standardized all-

Ethiopian June-September rainfall and SST anomalies in the western equatorial 

Pacific (10°S-10°N, 130°-150°E, solid curve) and eastern equatorial Pacific 

(10°S-10°N, 150°-170°W, dashed curve). Y(-1) and Y(+1)  refer to the years 

before and after the reference year Y(0). The statistical significance at the 95% 

and 99% levels according to a two-tailed Student’s t-test are shown by thin 

horizontal lines. (b) Same as (a) except for September all-Ethiopian rainfall 

anomalies.  
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western equatorial Pacific SSTs  collapses  around the boreal spring the following 

year. This phase change in correlation sign is due to the fact that an anomalous 

state of the ocean-atmosphere system in the equatorial Pacific Ocean basin tends 

to decay in boreal spring of the following year in which another state with 

opposite sign tends to develop (Webster et al. 1998). Such a correlation pattern 

showing strong biennial variability also is observed for the Indian monsoon 

rainfall. This is reflected in the striking similarity between Fig. 6.1a and Fig. 2.2, 

which shows the temporal evolution of the correlation between Indian monsoon 

rainfall and SST across the equatorial Pacific (Chapter 2). In addition, the 

correlation patterns in Fig. 6.1 bear a strong resemblance to Nicholls’ famous 

diagram (e.g., Fig. 1 of Nicholls 1988), which depicts the temporal evolution of 

correlations between Australian Sorghum yield and monthly means of Darwin 

station-level atmospheric pressure during and before the sorghum growing 

season. Although different parameters were correlated in Fig 6.1 and Fig. 1 of 

Nicholls (1988), the timing of the phase change in boreal spring and the 

persistence of ENSO during July-December for Ethiopia agree well with the 

corresponding features for Australia. However, the phase change in Y(0) for 

Ethiopia is not as sharp and abrupt and the persistence of ENSO as long as the 

corresponding features for Australia.  

 

The seasonal progression of the correlation in Fig. 6.1a further indicates that 

the eastern equatorial Pacific exhibits a strong predictive signal for June-
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September Ethiopian Y(0) rainfall in January of Y(-1), where the correlation 

reaches -0.59. No statistically significant correlations are evident in Y(+1).  On the 

other hand, the temporal evolution of the correlation between rainfall and SST 

over the western equatorial Pacific shows opposite correlation patterns that 

maximize during Y(0), with a maximum correlation value of +0.47 in September. 

The correlation magnitudes are slightly smaller than those for the eastern 

equatorial Pacific. In general, the correlation patterns clearly indicate suppressed 

all-Ethiopian rainfall during El Niño and enhanced rainfall during La Niña, 

demonstrating a strong teleconnective relationship between the monsoonal 

Ethiopian rainfall and ENSO.  

 

For individual months, the teleconnection between standardized all-

Ethiopian monthly rainfall anomalies and equatorial Pacific SSTs is weak in June, 

but the relationship strengthens in July, August, and September.  The highest 

correlation between SST and rainfall is attained for all-Ethiopian September 

rainfall anomalies (Fig. 6.1b). Because the relationship between Pacific SST and 

Ethiopian monsoon rainfall maximizes towards the end of the season, the 

resemblance between Fig. 6.1a and 6.1b is very high. 

 

Fig. 6.2a shows the temporal evolution of the correlation between all-

Ethiopian June-September rainfall anomalies and SSTs over the Arabian Sea/ 

northern  Indian  Ocean  and  southern Indian  Ocean. These ocean basins exhibit  
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FIGURE 6.2. (a) Same as Fig. 6.1a except for the Arabian Sea/northern Indian 

Ocean (10°-30°N, 45°-80°E, solid line) and the southern Indian Ocean (10°S-

40°S, 50°-110°E, dashed line). (b) Same as (a) except for August all-Ethiopian 

standardized rainfall anomalies.  
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the secondmost  strong  concurrent  correlation  signals in the reference monsoon 

season (r~ -0.58) next to the eastern equatorial Pacific. The lagged correlations for 

the Arabian Sea/northern Indian Ocean show strong biennial variability. A 

strong positive correlation between rainfall and Arabian Sea/northern Indian 

Ocean SSTs occurs in January of Y(0). The correlation decreases through the 

spring and becomes strongly negative during the monsoon months, reaching 

statistical significance in August and September. After the end of the reference 

monsoon season, the lagged correlation magnitude gradually decreases in 

October-November but abruptly decreases to near zero by the end of Y(0). The 

correlation remains negative until May of Y(+1), after which it generally 

increases and remains strongly positive by the end of Y(+1). 

 

The lagged correlation for the Arabian Sea/northern Indian Ocean (Fig. 6.2a) 

remains negative from January to October of Y(-1) and features a strong negative 

correlation (r~-0.65) in May of Y(-1). This correlation surpasses the strong 

negative correlation noted above for eastern equatorial Pacific in Y(-1), and is 

only slightly less than the magnitude of the concurrent correlation between all-

Ethiopian June-September rainfall anomalies and eastern equatorial Pacific SST 

in August/September (r~-0.67). Clearly, SST over the Arabian Sea/northern 

Indian Ocean appears to be a strong indicator of the upcoming monsoon season 

over Ethiopia more than a year before its onset. In fact, this ocean basin possesses 

a stronger predictive potential than even the eastern Pacific. This is because June-
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September (time of maximum concurrent correlation) SST anomalies over the 

eastern Pacific must be predicted and made available prior to the onset of the 

rainy season so that the predicted SST values can be used as predictor in an 

existing empirical model to forecast June-September Ethiopian rainfall. Errors 

can be introduced in the prediction of June-September SST anomalies, especially 

considering the ENSO predictability barrier in boreal spring (Webster et al. 1998). 

Such errors can offset the benefits offered by the underlying strong SST-rainfall 

association.  On the other hand, SST prediction of Arabian SST is not required; 

i.e., the observed/analyzed Arabian Sea SSTs for May of the previous year are 

directly used in an existing empirical prediction model to forecast June-

September Ethiopian rainfall for the current year. Hence, supported by 

diagnostic studies and the highly successful wavelet banding prediction 

technique of Chapter 4, the Arabian Sea/northern Indian Ocean could offer the 

best information for accurate seasonal rainfall predictions over Ethiopia.  

 

The lagged correlation for the southern Indian Ocean (Fig. 6.2a) largely 

follows the correlation pattern of its northern counterpart except that (a) the 

major peaks of the lagged correlations tend to lead those for the Arabian 

Sea/northern Indian Ocean by 1-2 months, especially in Y(-1) and Y(0), (b) the 

correlation magnitudes are stronger towards the end of  Y(-1), (c) the highest 

negative correlation is attained towards the end of the reference monsoon season, 
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and (d) the correlations become positive in the early months of Y(+1) and 

negative after April of that year.  

 

The general features of Fig. 6.2a are reproduced when monthly rainfall 

anomalies for June, July, and September are correlated separately with Arabian 

Sea/northern Indian Ocean and southern Indian SSTs, but the most marked 

difference is observed for August rainfall (Fig. 6.2b). Although not statistically 

significant, the correlation between all-Ethiopian standardized August rainfall 

and July and August SSTs over the Arabian Sea/northern Indian Ocean becomes 

positive. This relationship is not observed for June, July, and September rainfall 

anomalies, for which the correlations with monthly summer SSTs are strongly 

negative. Examination of the data shows that Arabian Sea/northern Indian 

Ocean SST and August all-Ethiopian rainfall anomalies have the same polarity 

for about 53% of the cases. This is consistent with the overall positive correlation 

in Fig. 6.2b. Thus, positive July-August SST anomalies over the Arabian Sea can 

enhance August Ethiopian rainfall. This subject will be examined later in this 

section. Except for reduced magnitudes, the correlation pattern for southern 

Indian Ocean SST is similar to Fig. 6.2a.   

 

The effects of SST variations over the equatorial Indian and Atlantic Oceans 

on June-September all-Ethiopian rainfall anomalies are depicted in the  

temporal evolution of the correlation signals  in Fig 6.3a.  Notable features  in  the  
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 FIGURE 6.3. (a) Same as Fig. 6.1a except for the Equatorial Indian Ocean (10°-

10°N, 45°-110°E, solid line) and the equatorial Atlantic (10°S-10°N, 22°W-15°E, 

dashed line). (b) Same as (a) except for August all-Ethiopian standardized 

rainfall anomalies.  
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correlation patterns for the equatorial Indian Ocean are the weak negative 

correlations during the reference monsoon season, the weak positive correlations 

in the spring of Y(0), and the strong negative correlations during October-

December of Y(0). The strong negative correlations (maximum magnitude of  

~-0.64 in November) between equatorial Indian Ocean SSTs for 

October/November   and    Ethiopian   June-September   rainfall   suggest   wind- 

evaporation-monsoon  interactions,  as described earlier  for the TBO (e.g., Chang 

and Li 2000;  Meehl and Arblaster 2002), in which a strong monsoon enhances 

surface winds that, in turn,  lead  to  increased  evaporation  and  enhanced  

ocean mixing. This process continuously cools the surface waters and establishes 

negative SST anomalies over the equatorial Indian Ocean after the end of the 

monsoon season. The strong negative correlation (r~-0.64) in April of Y(-1) also is 

noteworthy (Fig. 6.3a). The timing of this correlation is the same as that found for 

the Arabian Sea/northern Indian Ocean, and thus further underlies the potential 

for Indian Ocean SST in predicting Ethiopian rainfall several seasons in advance. 

While SST variations over the equatorial Atlantic do not show a strong 

correlation with June-September Ethiopian rainfall except in the first semester of 

Y(-1), they do tend to have the same polarity early in the reference monsoon 

season (Fig. 6.3a). 

 

As was the case for Arabian Sea/northern Indian Ocean correlation patterns, 

the lagged correlation between the equatorial Indian Ocean SST and all-
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Ethiopian August rainfall becomes less negative/weak positive during the 

monsoon season (Fig. 6.3b).  For the equatorial Atlantic, the correlation patterns 

changed significantly when the SST-rainfall relationship was examined on 

monthly basis. In contrast to the weak correlations for June-September rainfall 

(Fig. 6.3a), the correlations between August Ethiopian rainfall and equatorial 

Atlantic monthly SSTs were relatively strong negative for the monsoon months, 

indicating that warmer equatorial Atlantic during (especially) July to September 

reduces August Ethiopian rainfall (Fig. 6.3b).  

 

Fig. 6.4 presents additional analyses for the tropical Atlantic Ocean. The 

effects of SST in the northern tropical Atlantic are examined in relation to SST 

variations in the southern tropical Atlantic using the monthly SST difference 

between the northern and southern tropical Atlantic (north minus south, N-S). 

The correlations between June-September all-Ethiopian standardized rainfall and 

the southern tropical Atlantic (Fig. 6.4a) show a marginal relationship in Y(0) and 

Y(+1), but statistically significant correlations are achieved early in Y(-1). The 

correlation for the N-S SST difference follows the same correlation pattern for the 

southern tropical Atlantic, but with opposite polarity (Fig. 6.4a). The contribution 

from the northern tropical Atlantic is weak except in summer of  

Y(-1) and late spring of Y(0), where the magnitudes of the correlations for N-S 

SST difference slightly increase. In agreement with the correlation  

for the equatorial Atlantic, the SST-rainfall  relationship for  the  tropical  Atlantic   
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 FIGURE 6.4. (a) Same as Fig. 6.1a except for the southern tropical Atlantic 

(20°S-0°, 22°W-15°E, solid line) and SST difference (N minus S; dashed line) 

between northern tropical Atlantic (N; 10°-35°N, 22°W-10°W) and southern 

tropical Atlantic (S). (b) Same as (a) except for August all-Ethiopian standardized 

rainfall anomalies.  
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significantly increases for August Ethiopian rainfall (Fig. 6.4b). In particular, the 

correlation between August all-Ethiopian standardized rainfall and southern 

tropical Atlantic SST is strong and statistically significant at 1% level according to 

a two-tailed Student’s t-test in the summer of Y(0). The correlation for N-S SST 

difference also changes significantly for August Ethiopian rainfall (Fig. 6.4b), 

with a change  in correlation  sign beginning in early summer of Y(0).  On the 

other hand, for both the equatorial Atlantic and the southern tropical Atlantic, 

the correlations between monthly SSTs and individual monthly rainfall 

anomalies for June, July, and September are negligible or remain weakly 

positive/negative during the monsoon months (not shown). The implications of 

these correlation results are (a) August rainfall contributes significantly to the 

negative concurrent correlations (especially after July) found for June-September 

rainfall (Figs. 6.3a, 6.4a), and (b) the equatorial and southern tropical Atlantic 

SSTs affect Ethiopian rainfall primarily in August. Noting the implication in (a), 

the negative correlation between August Ethiopian rainfall and equatorial and 

southern tropical Atlantic SST is consistent with our earlier results in Section 3.4 

that showed strong negative correlations between June-September Ethiopian 

rainfall and equatorial and southern Atlantic SST on seasonal (Fig. 3.29b) and 

annual (Fig. 3.30b) time-scales. Note that the seasonal and annual modes account 

for more than 55% of the total June-September Ethiopian rainfall variability.  

 



 308

The monthly correlation patterns discussed above indicate weak correlation 

values and reversed polarities between monsoon months for the Atlantic and 

Indian Ocean basins. To examine these relationships in detail, the observed 

rainfall and SST anomalies in July and August are depicted in Fig. 6.5. Table 6.1 

summarizes Fig. 6.5 and gives the number of cases when SST and rainfall 

anomalies have the same sign. Inspection of Fig. 6.5 and Table 6.1 shows that 

significant percentages of SST and rainfall anomalies have the same polarity.  For 

the Arabian Sea and the southern Indian Ocean, in more than 53% of years, both 

SST and rainfall anomalies have the same sign in August. However, for stronger 

rainfall anomalies (>|0.25|σ), the number of years of the same polarity 

substantially decreases. For the southern Atlantic and the equatorial Indian 

Ocean, all-Ethiopian rainfall and SST anomalies have opposite polarities for a 

large majority of years.    

 

Of particular interest is the year 1984 (Fig. 6.5), during which rainfall and SST 

anomalies over the Arabian Sea and the equatorial and southern Indian Ocean 

had the same polarity in July and August. On the other hand, SST anomalies 

over the southern tropical Atlantic were opposite in sign to all-Ethiopian 

standardized rainfall anomalies for both months. The magnitudes of the 

southern tropical Atlantic SST anomalies are larger than the corresponding SST 

anomalies in the Indian Ocean in July and August. These facts are relevant to the 

simulation experiments of the next section.  
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Table 6.1. Anomaly statistics summarized from Fig. 6.5 showing the number of 

cases when standardized all-Ethiopian rainfall and ocean basin SST anomalies 

possess the same polarity. Numbers give years and percentages give the 

number of cases as fraction of total years (30).  

Ocean basin         July  August 

Arabian Sea/N. Indian Ocean  14 (47%) 16 (53%) 

Equatorial Indian Ocean 13 (43%) 11 (37%) 

Southern Indian Ocean 15 (50%) 17 (57%) 

Southern Atlantic Ocean 15 (50%) 13 (43%) 

 
 

 In summary, the Arabian Sea/northern Indian Ocean SST pattern exhibits 

the second strongest (after the eastern equatorial Pacific) concurrent correlation 

with June-September rainfall, but features the strongest predictive signal more 

than a year before the rain commences over Ethiopia. The equatorial and 

southern Indian Ocean basins show moderate to strong negative concurrent 

correlations with Ethiopian rainfall. While SSTs in the Indian Ocean are 

negatively correlated with Ethiopian June-September rainfall, the equatorial 

Atlantic SST shows weak positive (negative) correlations for the first (second) 

half of summer. For the Arabian Sea and the equatorial Indian Ocean, the 

correlations between SSTs and August all-Ethiopian rainfall become positive, 

while for the equatorial and southern Atlantic, the correlations for August 

rainfall are strongly negative compared to the correlation for June-September 

rainfall. These correlation analyses highlight the relative importance of the 
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different ocean basins on Ethiopian rainfall. A key finding of the analysis is that 

the relationships between rainfall and SST are different for seasonal and monthly 

rainfall anomalies. Moreover, relevant to the simulation study presented next is 

the fact that Ethiopian rainfall and Indian (Atlantic) Ocean SST anomalies have 

the same (opposite) polarity in 1984. In the next section, the relative effects of SST 

variations over the Indian Ocean and the tropical Atlantic are examined through 

model sensitivity tests. 

 

6.3 Effects of the Atlantic and Indian Oceans on 

Rainfall Variability over the Horn of Africa: Model 

Sensitivity Studies 

The above climatological assessment shows that SSTs over the Atlantic and 

Indian Ocean affect Ethiopian rainfall to a varying degree. To understand the 

large-scale atmospheric response to SST forcings over the Atlantic and Indian 

Oceans, several simple sensitivity studies involving SST variations over different 

ocean basins were performed using the recent RegCM3 release (May 2006). As 

indicated in Chapter 5, the changes in the new version primarily enhance the 

functionality of the model and do not affect the model’s dynamical core and 

physics.  In addition, the long-term simulations performed in Section 5.5 using 

the latest release have shown that RegCM3 realistically reproduces the observed 

rainfall variability over the Horn of Africa. A full description of RegCM3 was 

given in Chapter 5.  
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6.3.1  Experimental Design and Data Sets   

Several experiments were performed to examine the effects of SST variations 

in the Mediterranean Sea, the Atlantic, and the Indian Ocean. The experiments 

involve modifying SST anomalies over a specific ocean basin while prescribing 

seasonally varying climatological SSTs elsewhere in the model domain. This 

strategy was implemented in several atmospheric GCM studies to identify the 

dynamical atmospheric response to SST forcing and examine regional SST-

rainfall relationships for different parts of Africa including West Africa (e.g., 

Folland et al. 1991; Rowell 2003) and central, eastern, and southern Africa (e.g., 

Goddard and Graham 1999; Latif et al. 1999). However, unlike GCMs for which 

only initial conditions and SST forcing are needed, the RegCM3 requires 

additional time-dependent atmospheric boundary conditions. These atmospheric 

initial and boundary conditions can be climatological data (e.g., 4 times daily 

surface pressure, and surface to upper level wind, temperature, and moisture) or 

actual time-dependent reanalysis fields.  

 

Climatological atmospheric boundary conditions would probably be more 

appropriate for these SST experiments, but 6-hourly climatological data are not 

readily available for RegCM3 use. Because of computational resource and time 

limitation, we were not able to develop the required climatological atmospheric 

data. Instead, we chose to use the 6-hr NCEP/NCAR Reanalysis (Kalnay et al. 

1995) atmospheric initial and boundary data for two extreme years that were 
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used in validating the RegCM3; i.e., 1984 and 1996. For SST specification, both 

monthly climatologies and actual monthly OISST (Reynolds et al. 2002) data 

were used. Monthly SST climatologies were obtained by averaging the eighteen 

monthly values at each grid point (1-degree latitude/longitude) for 1982-1999.   

 

Understanding the dynamical atmospheric response to SST forcing for 

different ocean basins for 1984 is of substantial scientific interest because it was 

one of the driest years for much of sub-Saharan Africa. On the negative side, the 

results of SST experiments that are initialized and constrained by large-scale 

circulation patterns of a given year may be influenced by the atmospheric 

characteristics of that year. This caveat undermines the generality of the SST 

sensitivity experiments. To assess the impacts of atmospheric initial and 

boundary conditions, we performed identical SST experiments for some of the 

simulations using 1996 atmospheric data. Noting the substantial differences 

between the large-scale flow in 1984 and 1996 for Ethiopia (Segele and Lamb 

2005), a significant commonality between model simulations differing only by 

initial and boundary atmospheric data for 1984 and 1996 is a clear indication of 

the model’s ability to isolate a prescribed SST forcing. As will be shown later, 

substantial similarities were found between experiments that differ only by 

atmospheric initial and boundary conditions.  

 

 



 314

To examine the effects of SST variations across the Mediterranean Sea, the 

Atlantic, and Indian Ocean, several experiments were carried out for the domain 

shown in Fig. 6.6. For SST sensitivity investigation, a number of ocean basins in 

the Atlantic and Indian Oceans were selected (1) based on their importance (from 

results of Chapter 3) to Horn of Africa rainfall (e.g., the Arabian Sea and 

southern Indian Ocean), (2) to contrast SST effects within an ocean sector (e.g., 

the Atlantic sector is defined to include the equatorial Atlantic),  and (3) based on 

results of previous studies (e.g., interhemispheric SST difference in northern and 

southern Atlantic; to be discussed later). Thus, the Indian Ocean was partitioned 

into 4 subdivisions—the Arabian Sea/northern Indian Ocean (ArbS; 10°-30°N, 

40°-80°E), equatorial Indian Ocean (EqIO; 10ºS-10ºN, 40°-110ºE), southern Indian 

Ocean (SIO; 10°S-40°S, 50°-110°E), and the entire Indian Ocean (IO, 40°S-30°N, 

40°-110°E). Similarly, the Atlantic was divided into 5 basins—the equatorial 

Atlantic (EqAT; 10°S-10°N, 22°W-15°E), southern Atlantic (SAT; 10°S-40°S, 22°W-

20°E), Atlantic sector south of 10ºN (AT; 10°N-40°S, 22°W-20°E), northern  

tropical  Atlantic  (NtAT; 10º-35ºN,  10º-22ºW),  and   southern   tropical  Atlantic  

(StAT; 0º-20ºS, 22ºW-15ºE). The MDTR region was defined to cover the entire 

Mediterranean Sea and the Black Sea (MDTR; 30º-46ºN,5ºW-42ºE).  All of the 

aforementioned ocean regions are shown in Fig. 6.6.  

 

For the control experiments, climatological SSTs were prescribed for the 

entire domain (Fig. 6.6),  but  the  simulations  were  performed  using the NCEP- 
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`  

FIGURE 6.6. Complete model domain showing the individual ocean basin areas 

for the different experiments defined in Table 6.2 and discussed in the text.  

 

NCEP Reanalysis data for atmospheric initial and boundary conditions for 1984 

and 1996. These control simulations are identified by the last two digits of the 

year for the atmospheric initial and boundary data; i.e., CTRL84 and CTRL96. In 

addition, two other simulations were performed using the actual OISST and 

NCAR/NCEP Reanalysis data for 1984 and 1996 for the entire domain. These 

simulations are referred to as ACTL84 and ACTL96. Each control (forced by 

climatological SST) and actual (forced by observed OISST) simulation is used to 

compare simulation results that employ identical atmospheric initial and 

boundary data. These experiments are summarized in Table 6.2. 
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Table 6.2. List of the RegCM3 experiments discussed in the text.  

Experiment Description 

CTRL84 
Seasonally varying climatological SST over entire domain; Reanalysis for 
1984  

CTRL96 Same as above but Reanalysis for 1996  

ACTL84 Observed OISST for 1984; Reanalysis for 1984   

ACTL96 Observed OISST for 1996; Reanalysis for 1996 

ATw84 
Seasonally varying climatological SST over entire domain except over the 
Atlantic where SSTs are increased by 1K; Reanalysis for 1984 

IOw84 Same as above except for the Indian Ocean sector 

ArbSw84 Same as above except for the Arabian Ocean/northern Indian Ocean 

EqATw84 Same as above except for the equatorial Atlantic  

EqIOw84 Same as above except for the equatorial Indian  

EqIOc84 
Seasonally varying climatological SST over entire domain except over the 
equatorial Indian Ocean where SSTs are decreased by 1K; Reanalysis for 
1984 

EqIOw96 
Seasonally varying climatological SST over entire domain except over the 
equatorial Indian where SSTs are increased by 1K; Reanalysis for 1996 

EWgrdIO84 

Seasonally varying climatological SST over entire domain except over 
equatorial Indian Ocean where zonally eastward decreasing SST anomalies 
with 2K amplitude warm (cool) the western (eastern) equatorial Indian 
Ocean; Reanalysis for 1984 

EWgrdIO96 Same as above but Reanalysis for 1996  

MDTRw84 
Seasonally varying climatological SST over entire domain except over the 
Mediterranean Sea where SSTs are increased by 1K; Reanalysis for 1984 

NwScAT84 
Seasonally varying climatological SST over entire domain except 1K 
warming over northern tropical Atlantic and 1K cooling in the southern 
tropical Atlantic; Reanalysis for 1984 

NcSwAT84 
Seasonally varying climatological SST over entire domain except 1K 
cooling over northern tropical Atlantic and 1K warming in the southern 
tropical Atlantic; Reanalysis for 1984 

SATw84 
Seasonally varying climatological SST over entire domain except  over 
southern Atlantic where SSTs are increased by 1K; Reanalysis for 1984 

SIOw84 
Seasonally varying climatological SST over entire domain except  over 
southern Indian Ocean where SSTs are increased by 1K; Reanalysis for 
1984 
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For warm SST sensitivity experiments, SSTs were increased by 1K in the 

ArbS, EqIO, SIO, IO, MDTR, EqAT, SAT, and AT sectors separately while 

prescribing the 18-year average SST everywhere else in the model domain for 

each experiment. The simulations with the above prescribed SST and using 

atmospheric initial and boundary conditions for 1984 are identified by their 

ocean basin names, the SST anomaly type (w), and the  last two digits of the year, 

i.e., ArbSw84, EqIOw84, SIOw84, IOw84, MDTRw84, EqATw84, SATw84, and 

ATw84 (Fig. 6.6, Table 6.2). Each of the above experiment is compared with the 

CTRL84 simulation to assess the changes arising from the prescribed SST forcing, 

the only difference between the CTRL84 and the above individual sensitivity 

experiments being the warm SST anomalies in the warm simulations.  

 

In the EqIO sector, two additional simulations corresponding to two distinct 

SST specifications were performed. (1) To examine the effects of warm (cold) SST 

anomalies over the western (eastern) EqIO, westward linearly increasing SST 

anomalies were added to the climatological SST over the EqIO while maintaining 

the 18-year average SSTs elsewhere in the model domain. This SST specification 

crudely follows a reversed SST gradient in the Indian Ocean associated with the 

so called “Indian Ocean Dipole”, as depicted in Fig. 2 of Webster et al. (1999). 

The climatological SSTs over the western Indian Ocean (10ºS-10ºN, 45°-70ºE) 

were increased by a maximum of +2K off the coast of eastern Africa and then 

linearly decreased eastward to zero at 70°E. Over the eastern Indian Ocean (10ºS-
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10ºN, 70°-110ºE), the climatological SSTs were linearly further reduced eastwards 

with a maximum negative anomaly of -2K applied at the eastern extreme (110ºE). 

This east (E) to west (W) increasing zonal SST gradient (grd) in the EqIO (IO), 

with initial and boundary atmospheric conditions for 1984, is referred to as 

EWgrdIO84. (2) To contrast the large-scale atmospheric response to positive SST 

anomaly forcing and assess the model rainfall response, the EqIOw84 simulation 

was repeated with a cold (c) SST anomaly of -1K added to the 18-year average 

SST over the same ocean basin (EqIOc84). Because the only difference between 

the EqIOc84 and EqIOw84 simulations is the specification of equal but opposite 

SST anomalies in the EqIO, comparison of the two simulation results would 

show the strength of the forcing and the degree of linearity in the atmosphere 

response to identical but opposite SST anomaly forcings.  

 

Over the tropical Atlantic, interhemispheric meridional SST gradient is 

observed in the course of the average annual cycle, with maximum contrasts 

during March-April (e.g., Curtis and Hastenrath 1995). Of particular interest is 

Lamb and Peppler’s (1992) empirical documentation of the atmospheric-oceanic 

conditions accompanying sub-Saharan drought. They found that in three of the 

four severe sub-Saharan drought years since 1940 (1972, 1977, and 1984), a 

distinctive basinwide SST anomaly pattern prevailed in the tropical Atlantic 

Ocean, with positive departures (from a 60-year average) to the south of ~10N 

and negative departures to the north. The interhemispheric SST difference for 
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July-September was pronounced in 1984 (Fig. 2 of Lamb and Peppler 1992). To 

examine the effects of such interhemispheric SST difference on Horn of Africa 

rainfall, the 1982-99 average SST was cooled (c) by -1K in the NtAT (N) and 

warmed (w) by +1K in the StAT (S) while maintaining the 1982-99 average SST in 

the remaining areas of the domain (Fig. 6.6). This experiment with the above SST 

specification in the Atlantic (AT) was performed using initial and boundary 

atmospheric conditions for 1984, and is referred to as NcSwAT84. To assess 

further the strength of the atmosphere response to the above SST specification, 

the NcSwAT84 was repeated by reversing the sign of the SST anomalies in the 

northern and southern tropical Atlantic, i.e., the 1982-99 average SST was 

increased (decreased) by +1K (-1K) in the NtAT (StAT). This experiment is 

referred to as NwScAT84.  

 

In addition, to test the sensitivity of model solutions to atmospheric 

boundary conditions, the EqIOw84 and EWgrdIO84 experiments were repeated 

using 6-hr NCEP/NCAR Reanalysis boundary conditions for 1996. These 

simulations are referred to as EqIOw96 and EWgrdIO96. As indicated earlier, the 

simulation with 1996 atmospheric data will be compared with the CTRL96 and 

ACTL96 simulations.  

 

Thus, in addition to the basic SST experiments that investigate the impacts of 

SST forcing in several ocean basins, a number of other model simulations were 
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performed to assess the sensitivity of the SST forcing and the validity of the 

results. The EqIOw84, EwIOc84, NwScAT84, and NcSwAT84 experiments 

contrast the effects of warmer and colder SST forcing and enable us to examine 

the degree of linearity and the strength of the model rainfall response to 

prescribed SST anomalies in the Indian Ocean (EqIOw84, EwIOc84) and the 

Atlantic (NwScAT84, NcSwAT84). On the other hand, comparisons of the 

EqIOw84 and EqIOw96 simulations and the EWgrdO84 and EWgrdIO96 

experiments would show the impacts of initial and boundary conditions for 

different SST forcings (i.e., uniform +1K warming in the EqIO and linearly 

eastward decreasing SST anomaly of +2K amplitude in the western EqIO and -2K 

amplitude in the eastern EqIO). Thus, repeating the basic SST sensitivity 

experiments using different initial and boundary conditions or forcing the 

experiments with the opposite SST anomalies hopefully increases the reliability 

of the model sensitivity results. Comparisons are made by computing differences 

from the appropriate control simulations. Such difference fields are expected to 

reveal the effects of the prescribed SST forcing on local/regional rainfall.  

 

Table 6.2 summarizes all experiments described above. To allow a smooth 

transition between the 1982-99 average SST field and the modified field within 

each ocean basin, a linear interpolation was performed by increasing/decreasing 

the 1982-99 average SST to the modified SST values over 4 grid points at the edge 

of each ocean basin. For each of these experiments, the model was run from 25 
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May to 30 September at a horizontal resolution of 90 km and a time step of 3 

minutes. Also, because of its success, the modified MIT scheme (Run 5 of 

Experiment III; Chapter 5) is used for all simulations. First, results of the control 

simulation for 1984 atmospheric initial and boundary conditions, for which the 

basic SST experiments were performed, are presented in the next section.  

 

6.3.2  Control Simulation for 1984 Atmospheric Initial and Boundary 

Conditions     

The CTRL84 simulated rainfall was used as a reference to assess changes in 

simulated rainfall associated with SST forcing over different ocean basins. The 

CTRL84 simulation produced a realistic rainfall distribution for June-September 

(Fig. 6.7a) that compared well with the simulated and observed rainfall 

climatology for 1982-99 (see Fig. 5.12). However, the main rainfall center shifted 

to the east by about 2º.   The difference between the ACTL84 and CTRL84 runs 

should primarily reflect the effects of SST differences across the model domain as 

the two simulations differ only by lower boundary (SST) conditions. The CTRL84 

June- September model rainfall significantly exceeded the ACTL84 rainfall over 

western, southern, and eastern Ethiopia and over northern Eritrea, as indicated 

by the difference (ACTL84 minus CTRL84) map in Fig. 6.7b. However, the 

overall seasonal simulated rainfall patterns show differences in the magnitudes 

of departures for individual months (Fig. 6.7c, d). In July, the CTRL84 simulated 

rainfall  was  wetter  than  the  ACTL84  run  especially for Ethiopia (Fig. 6.7c). In  
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FIGURE 6.7. Spatial patterns of simulated precipitation fields. (a) Simulated 

precipitation for the control run (CTRL84) for June-September (contours every 4 

mm d-1). (b) Difference between the actual and control (ACTL84 minus CTRL84) 

simulated precipitation for June-September. (c) Same as (b) except for July. (d) 

Same as (b) except for August. Units are mm d-1. 

 

contrast, for August, ACTL84 minus CTRL84 indicates excess rainfall primarily 

along the western borders of Ethiopia and Eritrea and along the highlands of 

Somalia, and drier conditions over central and southwestern Ethiopia in August 

(Fig. 6.7d). 

 

The anomalous (ACTL84 minus CTRL84) seasonal SST forcing is shown  

in Fig. 6.8. A strong similarity exists between the June-September 1984 SST 

a b

c d
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anomalies over the tropical Atlantic shown in Fig. 6.8 (based on 1982-99 SST 

average) and the July-September 1984 SST anomalies displayed in Fig. 2 of Lamb 

and Peppler (1992) computed from a 60-year average. Compared to the CTRL84, 

the ACTL84 simulation is forced by colder SSTs over the Indian Ocean west of 

80ºE and north of 20ºS, the Mediterranean Sea, and northern tropical Atlantic, 

and by warmer SSTs over the tropical Atlantic south of 20ºN and southeastern 

Indian Ocean. The outcome of this SST distribution is drier (compared to the 

CTRL84 simulated values) June-September rainfall over most of Ethiopia, Eritrea, 

and coastal areas of Somalia. However, the effects of individual ocean basins 

cannot be inferred from these two first-order simulations.   

 

 

FIGURE 6.8. Spatial patterns of SST anomalies (K) for June-September 1984. 

Anomalies are departure from 1982-1999 climatology. 

 

Although there are some differences in SST anomalies for July and August 

1984 (Fig. 6.9) over  the  northern  Arabian  Sea,  southeastern  Indian  Ocean, and  
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FIGURE 6.9. (a) Same as Fig. 6.8 except for July 1984. (b) Same as (a) except 

for August 1984. 

 

western Mediterranean, the monthly SST anomaly distributions for these 

months resemble closely the seasonal SST anomalies in Fig. 6.8. Inspection of the 

SST anomaly fields shows that July 1984 SSTs are colder than August 1984 SSTs 

over the northern Arabian Sea and western Indian Ocean, and warmer than 

August 1984 SSTs over the southeastern Indian Ocean and western 

Mediterranean Sea (Fig. 6.9a, b). Furthermore, the southern tropical Atlantic 

a 

b 
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warming appears to expand and strengthen in August 1984. It is unclear how 

these SST differences can explain the difference between July and August 

simulated rainfall in north-central Ethiopia (Fig. 6.7c, d). To investigate the likely 

effects of individual ocean basins, several sensitivity experiments were 

performed to isolate the effects of individual oceans by specifying SSTs over 

selected regions. Separate results are presented for the Indian Ocean and for the 

Atlantic and the Mediterranean Sea. The next section discusses the simulation 

results for the Indian Ocean sector. 

 

6.3.3 Impacts of SSTs over the Indian Ocean for 1984 Atmospheric 

Initial and Boundary Conditions 

The effects of SST variation over the Indian Ocean are seen readily in Fig. 

6.10, which depicts rainfall departures from the CTRL84 of simulations forced by 

various regional SST anomalies in the Indian Ocean sector. The areas of the 

Indian Ocean considered are the ArbS, EqIO, SIO, and IO (Fig. 6.6). The 

experiments were described in Section 6.3.1 and summarized in Table 6.2. In 

general, warming/cooling over different Indian Ocean basins tend to induce 

wetter (Fig. 6.10a, b, c, e, f)/drier (Fig. 6.10d) seasonal rainfall over much of the 

Horn of Africa. However, there are significant spatial and temporal variations in 

the rainfall departure fields for all simulations. 
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FIGURE 6.10. Plots of June-September rainfall departures (mm d-1) from the 

control values for simulations forced by SST warming/cooling in different areas of 

the Indian Ocean basin. Fig. 6.6 and Table 6.2 provide the details of the 

experiments. (a) ArbSw84 values minus CTRL84 values. (b) Same as (a) except 

for EWgrdIO84 run. (c) Same as (a) except for EqIOw84 run. (d) Same as (a) 

except for EqIOc84 run. (e) Same as (a) except for SIOw84 run. (f) Same as (a) 

except IOw84 run.  

 

a b

c d

e f

Lake Tana 
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The ArbSw84 run, forced by +1K warming in the ArbS basin (Fig. 6.6, Table 

6.2), simulated wetter conditions through much of Ethiopia, Djibouti, and Eritrea 

(Fig. 6.10a).  Of all the simulations, the ArbSw84 experiment caused the largest 

widespread June-September wet conditions in the monsoon regions of the Horn 

of Africa (Fig. 6.7a). The largest positive effect on Horn of Africa rainfall from 

Arabian Sea warming occurred in August, when much of Ethiopia  

experienced wetter  conditions compared to August  CTRL84  rainfall.  However, 

dry conditions persisted over west-central Ethiopia, especially in July and 

September (not shown). Because the difference between the ArbSw84 and 

CTRL84 experiments is the +1K warming of the ArbS, the simulated rainfall 

difference suggests that the observed 1984 negative SST anomaly in the ArbS 

sector (Fig. 6.8) might have contributed to the observed dryness in Ethiopia, 

assuming (as will be shown later) that the opposite experiment with negative 

anomalous SST forcing in the ArbS would give the reverse of the ArbSw84 

simulation result. 

 

The EWgrdIO84 experiment assesses the effects of a westward increasing 

SST anomaly over the EqIO (Fig. 6.6, Table 6.2).  This simulation strongly affects 

the equatorial regions of Ethiopia, Somalia, and Kenya (Fig. 6.10b), which have 

seasonal rainfall peaks in April and October. The wettest anomalies of this 

experiment are off the coasts of Kenya and Somalia, where warmer SST 

anomalies were specified. Inspection of the EWgrdIO84 simulated monthly 



 328

rainfall reveals wetter conditions in September and drier conditions in 

July/August especially over central and western Ethiopia (not shown). In 

particular, consistent with the observed effects of warm equatorial waters off the 

coast of east Africa and cool waters farther east in the equatorial Indian Ocean, 

the wet anomalies are stronger by the end of the monsoon season/the beginning 

of the short rainy seasons in southern Ethiopia and Kenya. Note that, 

climatologically, the east-west SST anomaly gradient maximizes in 

October/November (e.g., Hastenrath et al. 1993; Webster et al. 1999), at the peak 

of the second short rainy season in Ethiopia and Kenya. Interestingly, a 2K 

amplitude increase (decrease) of climatological SST over the western (eastern) 

Indian Ocean has produced only a weak June-September SST gradient between 

eastern and western waters.   

 

The EqIOw84 experiment examines the effects of warm SST anomalies in the 

EqIO (Fig. 6.6, Table 6.2). The wet anomalies produced by the EqIOw84 

simulation are strongest over extreme western Ethiopia (Fig. 6.10c) compared to 

the other simulations involving SST specifications over the Indian Ocean sector. 

Simultaneously, pockets of west-central Ethiopia experience drier conditions in 

all months, but especially in September. Examination of the daily simulation data 

indicates prolonged dry spells in west-central Ethiopia beginning in late August. 

These dry spells extended into early to mid-September. The main differences 

between the ArbSw84 and EqIOw84 simulations are the time and location of the 
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wettest rainfall. For the EqIOw84 simulation, the wettest period occurs in July 

and the highest rainfall tends to be in western Ethiopia. On the other hand, the 

ArbSw84 simulation produces abundant rainfall over southwestern, central, and 

northeastern Ethiopia in August. However, the overall June-September rainfall 

departures for the EqIOw84 and the ArbSw84 simulations bear strong similarity, 

both featuring positive rainfall departures over eastern and extreme western 

Ethiopia and negative departures in west-central Ethiopia.  

 

The EqIOc84 experiment investigates the effects of colder SST anomalies over 

the EqIO (Fig. 6.6, Table 6.2). This SST specification is opposite to the EqIOw84 

experiment. Hence, the EqIOc84 run would show the sensitivity of the model to 

prescribed SST anomalies. In contrast to the EqIOw84 run, the EqIOc84 

simulation reduced rainfall over much of Ethiopia, especially along the Main Rift 

Valley and eastern Ethiopia, and produced wetter conditions in northern Eritrea 

(Fig. 6.10d). The absence of the large positive departure over western Ethiopia in 

the EqIOc84 experiment is a good indication of the difference between the 

EqIOc84 and EqIOw84 simulations. However, the negative departure for the 

EqIOc84 run is limited to parts of southwestern Ethiopia. The large negative 

departure southeast of Lake Tana (Fig. 6.10c) is appreciably weakened, reverses 

sign, or moves into the Rift Valley regions for the EqIOc84 experiment (Fig. 

6.10d). Although the simulated rainfall departures (from CTRL84) for the 

EqIOc84 run are not opposite to those found for the EqIOw84 experiment (Fig. 
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6.10c), most areas exhibit negative rainfall departures for the EqIOc84 experiment 

than for the EqIOw84 simulation. Clearly, the reversed (cold) SST anomaly 

forcing significantly reduced rainfall across much of the Horn of Africa.  

 

The SIOw84 experiment examines the response to warm SIO (Fig. 6.6, Table 

6.2). The simulated rainfall departure (SIOw84 minus CTRL84) pattern is similar 

to the EqIOw84 run except that the magnitude of departure is smaller over 

western Ethiopia (Fig. 6.10e). However, there are significant rainfall differences 

between the SIOw84 and EqIOw84 simulations over Eritrea and the Arabian 

Peninsula, where the SIOw84 run produced drier conditions compared to the 

control run.  

 

Finally, the IOw84 simulation assesses the response to a hypothetical all-

Indian Ocean warming (Fig. 6.6, Table 6.2). The simulation result indicates that 

warming of the entire Indian Ocean has the effect of enhancing (reducing) 

rainfall over the southern (northern) half of the monsoon regions in the Horn of 

Africa (Fig. 6.10f). The dryness in the northern half is particularly acute in July 

and August (not shown). This pattern is reversed in June and especially 

September, yielding overall wet conditions in Eritrea (Fig. 6.10f).  Although the 

SST scenario for the IOw84 simulation is nearly the geographical combination of 

the ArbSw84, EqIOw84, and SIOw84 simulations, the outcome of the IOw84 

simulation in July and August is different from these three runs. Additional 
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experiments may be needed to understand the causes of the disparity between 

the IOw84 and the ArbSw84, EqIOw84, and SIOw84 experiments. 

 

The overall effects of warm SSTs over the Indian Ocean sector are assessed 

using simulated rainfall averaged over the 100 Ethiopian station locations (Fig. 

3.3a) for individual months of June-September (Fig. 6.11). The figure highlights 

the month-to-month variations of the different simulations. To examine the 

relative effects of SST forcing in different areas of the Indian Ocean basin, the 

simulated rainfall from the sensitivity experiments are compared to the CTRL84 

simulated rainfall.   

 

The different runs show strong sensitivity response in different months  

(Fig. 6.11). The ArbSw84 run has the strongest effect in August during  

which abundant rainfall was simulated across much of Ethiopia. This forcing 

is opposite to the observed colder than climatology 1984 SST anomaly (Fig. 6.8). 

The EWgrdIO84 simulation show increased rainfall in September (especially over 

southern regions) and drier conditions in July (especially over central and 

western Ethiopia). The effect of warmer waters over the equatorial Indian Ocean 

is strongly felt in July in which widespread positive anomalies cover most places, 

especially western portions of Ethiopia. This positive SST anomaly also is 

opposite to the observed negative anomaly in 1984 (Fig.6.8), although  

the magnitude of the observed 1984 SST  anomaly in the EqIO  was less  than  the  
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FIGURE 6.11. All-Ethiopian June-September observed and simulated rainfall 

(mm d-1) for SST specifications over different regions of the Indian Ocean sector 

given In Fig. 6.6. and Table 6.2. The region average simulated rainfall is obtained 

by averaging model grid rainfall for the closest four grids surrounding each of the 

100 Ethiopian station locations and averaging the interpolated values for 

individual months. The results of applying a bilinear interpolation method were 

quite similar to those results obtained by averaging the nearest four grid points 

surrounding a station.  

 

anomaly in the ArbS. In contrast, the EqIOc84 simulation, which parallels the 

observed negative anomaly in 1984 over the EqIO (Fig. 6.8), produced the lowest 

rainfall in July. These results indicate (a) strong model sensitivity to SST forcing, 

(b) equal but opposite SST anomaly forcings tend to produce contrasting but not 

symmetric rainfall departures, and (c) SSTs in the Indian Ocean sector also 

contributed to the observed rainfall deficiency in 1984. Warm SSTs over the 

southern Indian Ocean significantly enhance rainfall in August, but when the 
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entire Indian Ocean is warmer than climatology, a north-south dry-wet rainfall 

pattern develops in July and August.  Comparing the ArbSw84, IOw84, and 

EWgrdIO84 simulations, it can be noted that warm SSTs over the Arabian 

Sea/off the coast of eastern Africa favor wetter conditions over Ethiopia during 

the start and end of the monsoon in the Horn of Africa.    

 

Using the conclusions in (a) and (b) above and noting that there is strong 

similarity in the June-September rainfall departure maps for EqIOw84 and 

ArbSw84 experiments, comparison of Fig. 6.5 for 1984 and Fig. 6.11 indicates that 

model results are qualitatively consistent with the observed SST and all-

Ethiopian rainfall anomaly relationship. For example, in July 1984, all-Ethiopian 

rainfall anomaly and SST anomalies over the Arabian Sea, equatorial Indian 

Ocean, and southern Indian Ocean were negative. Compared to the CTRL84 

simulated rainfall, positive SST anomalies over those ocean basins also yielded 

wetter rainfall. Leaving aside the fundamental computational difference between 

the observed standardized rainfall anomalies and modeled averaged rainfall, the 

model results clearly maintained the sign relationship, i.e., warm SSTs over the 

ArbS, EqIO, and SIO enhanced rainfall over Ethiopia. The same description holds 

for August SST-rainfall relationship, especially for the ArbS and EqIO.  

 

Our above findings on the effects of Indian Ocean SSTs on the Horn of Africa 

rainfall are consistent with previous findings on rainfall-SST relationships for 
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Africa (Section 2.3.6).  For example, Latif et al. (1999) indicate that warmer Indian 

Ocean produces enhanced precipitation over eastern equatorial Africa. Goddard 

and Graham (1999) suggest that the central-eastern/southern Africa precipitation 

anomalies partially arise from changes in convective heating over the Indian 

Ocean driven largely by SST changes. The model sensitivity studies in this 

section reveal that the effects of SSTs over the ArbS and EqIO are strongest 

during the peak of the summer season in July and August. Although this model 

sensitivity study does not explicitly show the effects of SSTs on the onset and 

cessation of Ethiopian rainfall season, the wetter conditions especially in 

September for the ArbSw84, EqIOw84, and EWgrdIO84 simulations indicate that 

warm SSTs over the western Indian Ocean likely favor delayed cessation of the 

monsoon in Ethiopia. This is consistent with the results of Segele and Lamb 

(2005), who found positive correlations between the cessation of the monsoon 

over eastern and northeastern Ethiopia and SSTs over the western Indian Ocean.  

 

6.3.4  Impacts of SSTs over the Atlantic for 1984 Atmospheric Initial 

and Boundary Conditions 

The simulated effects of SST variations over the Atlantic Ocean sector and 

the Mediterranean Sea on rainfall over the Horn of Africa are shown in Fig. 6.12. 

The areas of the Atlantic examined are the EqAT, SAT, AT, NtAT, and StAT (Fig. 

6.6). The experiments were described in Section 6.3.1 and summarized in Table 

6.2. Although the simulations, in general, were designed to assess the effects of 
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hypothetical basinwide warming in the Atlantic and the Mediterranean Sea, the 

SST specification in the NcSwAT84 experiment was patterned following the  

observed colder (warmer) 1984 SST in the northern (southern) tropical Atlantic 

(present Fig. 6.8; Fig. 2 of Lamb and Peppler 1992).  The strength of the 

atmosphere response to this SST specification was further examined using a 

reversed SST gradient in the tropical Atlantic, with warming (cooling) in the 

northern (southern) tropical Atlantic (NwScAT84). The observational evidence of 

the SST-rainfall relationship for the Atlantic was presented in Section 6.1.  

 

An outstanding feature of the simulations is that warming over the Atlantic 

and the Mediterranean Sea primarily affects rainfall over northwestern Ethiopia 

and southern Eritrea (Fig. 6.12a, b, e, f), where significant positive departures 

from the control run cover large areas. The EqATw84 (Fig. 6.12a) and SATw84 

(Fig. 6.12b) runs reduce rainfall over central and eastern Ethiopia, and increase it 

over northern Ethiopia and southern Eritrea, especially in July and September 

(not shown). The primary difference between these two simulations is that the 

SATw84 run produces drier July than the EqATw84 run (e.g., Fig. 6.14). 

 

Warming of the Atlantic Ocean sector south of 10ºN (ATw84) generally 

enhances (reduces) rainfall in the northern (southern) regions of the domain (Fig. 

6.12c). The effect of this forcing is minimal in June but increases in July, August, 

and  September (not shown).  The  simulated  monthly  rainfall  distribution  (not  
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FIGURE 6.12. Plots of June-September rainfall departures (mm d-1) from the 

control run for simulations forced by SST warming/cooling in the Atlantic and 

Mediterranean Sea. Fig. 6.6 and Table 6.2 provide the details of the experiments. 

(a) EqATw84 values minus CTRL84 values. (b) Same as (a) except for SATw84 

run. (c) Same as (a) except for ATw84 run. (d) Same as (a) except for MDTRw84 

run. (e) Same as (a) except for NwScAT84 run. (f) Same as (a) except for 

NcSwAT84 run.  

a b

c d

e f
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shown) further indicates drier conditions in July but wetter conditions in August 

over most regions in Ethiopia and Eritrea. In September, much of Eritrea and 

northern Ethiopia received excessive rainfall while central Ethiopia had 

significant deficiencies. Thus, the seasonal rainfall departure distribution (Fig. 

6.12c) in Eritrea (central Ethiopia) primarily reflects the excessive (deficient) 

simulated rainfall in August-September (July). This distribution also is reflected 

for the SATw84 simulation. In addition, the difference between the ATw84 and 

SATw84 simulated rainfall spatial distribution is very small (Fig. 6.12b, c), 

indicating a weak influence of equatorial Atlantic warming (note the weak 

magnitude of rainfall departures in Fig. 6.12a).  

 

The MDTRw84 experiment, forced by +1K SST anomalies in the 

Mediterranean Sea and Black Sea (Fig. 6.6, Table 6.2), produced positive rainfall 

departures in Eritrea and northern, central, and southwestern Ethiopia (Fig. 

6.12d). Unlike the ATw84 run, the MDTRw84 simulation affects the Horn of 

Africa rainfall distribution beginning in June. The strongest seasonal effect is on 

northwestern Ethiopia and western Eritrea, but abundant rainfall covers central 

and southwestern Ethiopia in June and August, and western and northwestern 

Ethiopia in July and September (not shown).  The enhanced Horn of Africa June-

September rainfall in the MDTRw84 simulation is consistent with a GCM 

simulation result of Rowell (2003), who showed that years with warmer (cooler) 
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than average July-September SSTs in the Mediterranean are often wetter (drier) 

over the Sahel.  

 

The NwScAT84 and NcSWAT84 simulations examine the effects of the 

north-south Atlantic SST gradient on the Horn of Africa rainfall (Fig. 6.6, Table 

6.2). Although the magnitudes of the north-south (area average) SST differences 

in the Atlantic Ocean resulting from the specification of ±1K anomalies magnify 

the observed gradients, they are not unrealistic. For example, using data for 1948-

92, Curtis and Hastenrath (1995) reported a north-south mean difference ranging 

from -1.6 to 1.8ºC in June to August. For the NwScAT84 run, the north-south SST 

difference ranges from 0 to 4ºC for June to August. The large magnitude of SST 

gradient used here might amplify the result but would likely give the correct 

sign of atmospheric response to SST forcing. The Atlantic Ocean basins used here 

to compute the gradient do not extend to western Atlantic as defined by Curtis 

and Hastenrath (1995). Moreover, the south Atlantic domain (Fig. 6.6) extends 

farther east in order to cover the positive SST anomalies off the western coast of 

southern Africa (present Fig. 6.8, Fig. 2 of Lamb and Peppler 1992).   

 

Warmer north Atlantic and cooler south Atlantic SSTs (NwScAT84) enhance 

rainfall over northwestern Ethiopia and southern Eritrea (Fig. 6.12e). However, 

rainfall is reduced over central and northeastern Ethiopia.  Examination of the 

monthly simulated rainfall for the NwScAT84 run indicates that rainfall was 
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deficient in June and July but abundant in August.  On the other hand, the 

simulation with the reversed SST gradient (i.e., cooler than average SSTs over the 

northern Atlantic and warmer than average in the south) appears to reduce the 

negative rainfall departures in west-central and eastern Ethiopia and produce 

slightly wetter conditions in eastern Ethiopia (Fig. 6.12f). The NcSwAT84 

simulation also reduced the large positive rainfall departures produced by the 

NwScAT84 simulation in northern Ethiopia (Fig. 6.12e). A clear difference 

between the two simulations emerges when monthly rainfall departures are 

examined. Inspection of the simulated monthly rainfall shows that the 

NcSwAT84 run gave copious rainfall over much of Ethiopia and southern Eritrea 

in June and September, but produced deficient rainfall in August.  

 

The maximum effect of these contrasting simulations occurs in August (Fig. 

6.13).  Noting the similarity of SST gradients in NcSwAT84 and ACTL84 (e.g., 

Figs. 6.8, 6.9), the simulation results of the NwScAT84 (Fig. 6.13a) and 

NcSwAT84 (Fig. 6.13b) runs demonstrate the impacts of anomalous northern 

(southern) Atlantic warming (cooling), respectively, on Ethiopian rainfall in 1984. 

In particular, the simulated abundant rainfall in June (e.g., Fig. 6.14 for 

NcSwAT84) and deficient rainfall in August (Fig. 6.13b) for the NcSwAT84 

simulation compared to the CTRL84 run are consistent with the 1984 observed 

above normal all-Ethiopian rainfall for June (not shown) and extreme deficiency 

in August  (Fig. 6.5b).  Note also that the regions of negative rainfall departure  in  
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FIGURE 6.13. Departures of August simulated rainfall from the CTRL84 run 

values for (a) NwScAT84 and (b) NcSwAT84 experiments. Fig. 6.6 and Table 6.2 

provide the details of the experiments. Units are mm d-1. 

 

August for the NcSwAT84 simulation cover the western escarpments of the Rift 

Valley, and extend to northern Ethiopia, essentially covering the region that was 

most affected by the 1984 Ethiopian drought. Considering the significant 

deficient rainfall in August for the NcSwAT84 simulation (Fig. 6.13b) and the 

relatively large positive rainfall departures in August for the SATw84 and 

ATw84 simulations (not shown), the northern and southern tropical Atlantic 

SSTs and SST difference between the north and south Atlantic appear to be 

important for Horn of Africa rainfall. In addition, the observational analysis (Fig. 

3.4) and the above modeling results are consistent, and indicate that SST 

variations across the Atlantic maximally affect Horn of Africa rainfall in August. 

This issue will be examined later in this section. 

a b
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Figure 6.14 compares model rainfall averaged across 100 Ethiopian 

raingauge station locations for simulations forced by SST variations over the 

Atlantic and the Mediterranean Sea. Most experiments involving Atlantic SST 

forcing show strong effects on July, August, and September rainfall, but appear 

to have little effect on June rainfall.  Compared to the CTRL84, the warming of 

the Atlantic south of 10ºN tends to reduce (increase) Ethiopian rainfall in 

July/September (August). The reduction in rainfall in July for the ATw84 

simulation appears to be caused by the warming in SAT since the EqATw84 

simulation only marginally affects July rainfall (Fig. 6.14).  

 

In all three simulations (i.e., the EqATw84, SATw84, and ATw84), Ethiopian 

September rainfall is reduced. Conversely, enhancement of September rainfall 

appears to result from the north-south SST gradient (resulting from the ±1K 

modification of the 1982-99 average SST) between the northern and southern 

Atlantic. In fact, both the NcSwAT84 and (especially) the NwScAT84 

experiments tend to increase Ethiopian September rainfall. The N-S SST 

difference exerts marked influence on rainfall at the peak of the monsoon season 

as evidenced in the substantial change in simulated August rainfall for the 

NcSwAT84 and NwScAT84 experiments (Fig. 6.13, 6.14). The highest positive 

August rainfall departure is associated with the MDTRw84 simulation (Fig. 6.14). 

It is interesting to note that compared to all warm simulations, the MDTRw84 

produced the lowest simulated September rainfall (Fig. 6.11, 6.14). 
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FIGURE 6.14. Same as Fig. 6.11 except for the Atlantic Ocean and the 

Mediterranean Sea. 

 
 

The importance of the north-south SST gradient over the Atlantic is further 

examined in Fig. 6.15, which shows the time evolution of the interhemispheric 

SST difference (N minus S, Fig. 6.15a) between the NtAT and StAT (Fig. 6.6) for 

all SST forcings in the Atlantic. The corresponding simulated rainfall is shown in 

Fig. 6.15b. The simulated rainfall was constructed by averaging model rainfall 

interpolated to raingauge locations for individual months as discussed earlier. 

 

The N-S SST differences corresponding to the NwScAT84 and NcSwAT84 

experiments form the extreme bounds enveloping the N-S SST differences of the 

observed 1984 OISST as well as the N-S SST differences for the other experiments 

(Fig. 6.15a). The N-S SST differences for  the EqATw84 and SATw84  experiments  
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FIGURE 6.15. (a) Evolution of SST difference (K) over the Atlantic Ocean 

computed as the difference of average SST for the north tropical Atlantic (10º-

35ºN, 22ºW-15ºE) and south tropical Atlantic (0º-20ºS,22ºW-15ºE) for simulations 

forced by SST variations over different ocean basins in the Atlantic for 1984 as 

described in the text. (b) Time series of simulated monthly rainfall (mm d-1) 

corresponding to SST forcing in (a).  Fig. 6.6 and Table 6.2 provide the details of 

the experiments. 

a 
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are identical because neither modifies SSTs over the northern Atlantic, and the 

southern Atlantic domain either includes grid values of climatology plus 1K 

north of 0-10ºS for the EqATw84 calculation or climatology plus 1K between 10-

20ºS for the SATw84 case.  Thus, in each case, an equal number of grid point 

anomalies of 1K SST is used.  

 

 Inspection of Fig. 6.15 reveals a striking parallel in the simulated monthly 

rainfall amounts and N-S Atlantic SST differences in August. As in the N-S SST 

difference, the NwScAT84 and NcSwAT84 simulated rainfall amounts form the 

extreme limits of the other simulated rainfall amounts. This indicates that 

warmer SSTs in the northern Atlantic combined with cooler SSTs in the south 

increase the Ethiopian summer rainfall, but cooler waters in the north and 

warmer waters in the southern Atlantic appreciably decrease Ethiopian rainfall 

in August, as occurred in 1984. Because the tropical north Atlantic tends to 

become anomalously warm during the warm phases of the ENSO, (e.g., Curtis 

and Hastenrath 1995), the NwScAT84 and NcSwAT84 experiments indicate that 

the Atlantic Ocean acts  to oppose the impacts of the Pacific SSTs on Ethiopian 

August rainfall. The N-S SST difference appears to have little influence in June. 

In contrast, the simulated rainfall for September shows wide differences, 

indicating influences other than the N-S SST gradient (e.g., magnitudes of SST). 

Note also that, although the EqATw84 and SATw84 have an identical N-S SST 
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difference, the simulations are forced by different SST patterns since the ±1K 

anomalies modify the 1982-99 average SST in different regions.  

 

6.3.5  Sensitivity to Atmospheric Boundary Conditions 

As indicated earlier, the sensitivity of model simulations to atmospheric 

boundary conditions is assessed by applying identical SST specifications but 

changing the atmospheric initial and boundary conditions. Thus, the SST 

specifications for the CTRL84, ACTL84, EqIOw84, and EQgrdIO84 again were 

applied, but the 1984 initial and boundary atmospheric conditions were replaced 

by the NCEP/NCAR Reanalysis data for 1996. Fig. 6.16 shows the resulting 

simulated June-September rainfall for the CTRL96, ACTL96, EqIOw96, and 

EWgrdIO96 simulations.  

 

The CTRL96 simulated rainfall is wetter than its CTRL84 counterpart (note 

the areas covered by the 4-12 mm d-1 contours in Figs. 6.7a versus 6.16a). As the 

two simulations differ only by the atmospheric boundary conditions, the wetter 

condition in CTRL96 is primarily a reflection of the favorable flow patterns in 

1996. Segele and Lamb (2005) documented the differences in the large-scale flow 

in 1984 and 1996. In contrast to the large negative departures noted in the 1984 

case, the ACTL96 simulated rainfall is wetter than the CTRL96 simulated rainfall 

(Figs. 6.7b versus 6.16b); the large discrepancy between the two years, however, 

is a result of combined atmospheric and oceanic effects.  
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FIGURE 6.16. Spatial patterns of simulated precipitation and difference fields. (a) 

Simulated precipitation for the CTRL96 (contours are drawn every 4 mm d-1). (b) 

Difference between ACTL96 and CTRL96 (ACTL96 minus CTRL96) simulated 

precipitation for June-September 1996. (c) Same as (b) except for EqIOw96 

simulation. (d) Same as (b) except for EwgrdIO96 run. Fig. 6.6 and Table 6.2 

provide the details of the experiments. Units are mm d-1.  

 
 

Figs. 6.16c and 6.16d show interesting results that support our above 

assessments and conclusions of the effects of SST variations over the Atlantic and 

Indian Ocean.  Fig. 6.16c and Fig. 6.16d are the counterparts of Fig. 6.10b and Fig 

6.10c, which result from the specifications of warmer SSTs over the equatorial 

Indian Ocean and an east-west gradient with warming (cooling) over the western 

dc 

a b
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(eastern) Indian Ocean. Despite the significant differences in the large-scale flow 

patterns in 1984 and 1996 (Segele and Lamb 2005, Figs. 15-16), the EqIOw96 and 

EWgrdIO96 experiments reflect the major rainfall characteristics simulated by 

the EqIOw84 and EWgrdIO84 runs, respectively. For example, comparing Fig. 

6.7b and Fig. 6.16c, we note that both simulations show wetter rainfall conditions 

especially over the equatorial regions of Ethiopia and Kenya. This feature is 

produced only by the EWgrdIO simulation. Note also the striking similarity 

between Fig. 6.7c and Fig. 6.16d, both of which reflect the effects of Equatorial 

Indian Ocean warming; excessive rainfall over western Ethiopia, wetter 

conditions over the Rift Valley and eastern Ethiopia, and deficient rainfall over 

west-central Ethiopia. The striking similarity among these simulations of vastly 

differing atmospheric boundary conditions but identical SST forcing gives 

further confidence in the validity and generality of the overall results of the 

sensitivity studies discussed earlier.   

 

6.4  Circulation Changes Corresponding to Warming/ 

Cooling  over the Equatorial Indian Ocean 

The atmospheric response to SST forcing over the Indian Ocean is examined 

by focusing on circulation changes associated with the equatorial Indian Ocean 

warming/cooling (EqIOw84/EqIOc84). As noted in Section 6.3.3, warming 

(cooling) of the Indian Ocean generally enhances (reduces) rainfall over the Horn 
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of Africa. The contrast between simulated rainfall for warm and cool equatorial 

Indian Ocean is highest in July (Fig. 6.17).  

 

Warm EqIO Cool EqIO 

    

FIGURE 6.17. Departures of July simulated rainfall from the CTRL84 run values 

for (a) EqIOw84 and (b) EqIOc84 runs. Fig. 6.6 and Table 6.2 provide the details 

of the experiments. Units are mm d-1. 

 

 For the warm equatorial Indian Ocean (EqIOw84) run, most areas of the 

Horn of Africa except west-central Ethiopia experienced wetter conditions, with 

the largest positive departure being over western Ethiopia. In contrast, except at 

a few locations, the cool equatorial Indian Ocean (EqIOc84) experiment produced 

drier conditions in the region compared to the CTRL84 run. The largest negative 

rainfall departures are over northeastern Ethiopia and southern Eritrea.  Because 

the maximum difference between the two simulations is in July, the circulation 

patterns corresponding to the EqIOw84 and EqIOc84 runs are contrasted with 

the CTRL84 simulation for this month. Since the atmosphere response to 

warm/cool sensitivity simulations are examined relative to the CTRL84 

a b
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experiment, the main features of the simulated large-scale atmospheric 

circulation of the CTRL84 run are presented to facilitate the discussion on the 

departure fields of the sensitivity experiments from the CTRL84 run (simulated 

values for warm/cool experiments minus CTRL84 run values).  First, the ability 

of the CTRL84 simulation to reproduce the main monsoon flow is examined. This 

is followed by a concise assessment of the vertical cross sections of simulated 

(CTRL84) horizontal winds, specific humidity, and horizontal divergence.   

 

 To assess if the simulation forced by the 1982-99 average SST produces the major 

monsoon features, the large-scale flow patterns for the CTRL84 experiment (Fig. 

6.18) are qualitatively compared with the mean seasonal (May-October) 

reanalysis fields discussed in Chapter 3 (Fig. 3.1). There is a strong similarity 

between the observed mean seasonal flow (Fig. 3.1) and the modeled flow forced 

by the climatological SSTs. The primary differences between the July CTRL84 

simulated flow (Fig. 6.18a) and the mean seasonal patterns (Fig. 3.1) at 850 hPa 

are the strengthening of the LLJ, the strong westerlies west of Ethiopia, and the 

dry northwesterlies along the Red Sea. In particular, the westerlies extending 

from West Africa to northwestern Ethiopia and the LLJ off the Somali coast are 

stronger in the CTRL84 simulation compared to the May-October 1970-99 

average. At 200 hPa, the easterly flow in the tropics (10ºS-20ºN) for the July 

CTRL84 simulation shows good correspondence with the May-October  

long-term average, but  the  easterlies in Fig. 6.18b are stronger  than the seasonal  



 350

 

 
 
FIGURE 6.18. (a) Horizontal wind vectors (arrows; scale at the right bottom 

corner) and resultant wind speed (contours) at 850 hPa for the July CTRL84 

simulation (Fig. 6.6, Table 6.2). (b) Same as (a) except for 200 hPa. Units are 

m s-1. Contour interval is 10 m s-1. 

a 

b 
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means, especially over Ethiopia where they exceed 30 m s-1. Furthermore, the 

simulated flow locates the center of the northern subtropical hemisphere 

anticyclone over Iraq/Iran, north of its climatological mean position. These 

changes are expected because the mean May-October flow is strongly smoothed 

by the averaging as well as by including May and October fields, which exhibit 

weaker monsoon characteristics. Overall, the major monsoon characteristics are 

captured well by the CTRL84 simulation.  

 

Figure 6.19 shows a north-south vertical cross section of meridional wind 

(contour; m s-1) and specific humidity (shaded; g kg-1) averaged across the 

longitudinal center of Ethiopia (between 38º-40ºE) for July CTRL84 simulation. 

To approximate the surface elevation, the longitudinally and temporally 

averaged model surface pressure is shown. The model locates the strongest 

southerlies near the surface south of Ethiopia (~1-2ºN) and the strongest 

northerlies in the lower troposphere (~ 700 hPa) in Eritrea (~15-17ºN).  

 

The location and vertical slope of the ITCZ can be identified by the kinematic 

axis (meridional wind discontinuity) and the tighter moisture gradient north of 

15ºN (Fig. 6.19). On the other hand, although the meridional wind discontinuity 

reaches the surface north of 10ºN, which is probably a result of recurving 

southwesterlies over northern Ethiopia (e.g., Fig. 6.18a), there is little latitudinal 

moisture  change  across  much of Ethiopian latitudes between 6-14ºN.  Thus,  the  
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FIGURE 6.19. Meridional-vertical transect of meridional wind speed (contour, 

northerlies dashed; m s-1) and specific humidity (shading; g kg-1) averaged over 

38º-40ºE in July for the CTRL84 simulation (Fig. 6.6, Table 6.2). Temporally and 

longitudinally (38º-40ºE) averaged model surface pressure (hPa) is used to 

approximate surface elevation (gray shading). 

 

surface confluence line must be located north of Ethiopian latitudes. This 

conclusion is supported by the observational analysis of Section 3.3.1 (e.g., Fig. 

3.2b). Another interesting feature of Fig. 6.19a is the center of maximum 

southerlies in the upper troposphere north of about 17ºN. These southerlies are 

part of the diverging easterlies of the TEJ at 150 hPa (e.g., Fig. 6.18b). 

 

 The vertical profiles of zonal wind and convergence/divergence fields  

for CTRL84  are  shown  in  Fig. 6.20. The westerlies are shallower in the west but  
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FIGURE 6.20. East-west vertical (1000-80 hPa) transect of zonal wind (contour; 

m s-1) and horizontal divergence (shading; x10-5 s-1) averaged over 8º-15ºN for 

the July CTRL84 simulation (Fig. 6.6, Table 6.2). Dashed lines indicate easterly 

winds. Isotach spacing is 5 m s-1. Temporally and latitudinally (8º-15ºN) averaged 

model surface pressure (hPa) is used to approximate surface elevation (gray 

shading). 

 

deeper in the east on the western fringes of the LLJ (note the eastward upwards 

sloping of the zonal wind contours). These westerlies are overlain by the easterly 

wind regime that maximizes at the 150 hPa, a result consistent with the findings 

of Segele and Lamb (2005). A north-south vertical cross section of zonal wind 

shows that the core of the TEJ spans a broad latitudinal belt in July but 

concentrates between 10º-12Nº in August.  

 

 

Rift Valley 
Escarpments
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Shallow low-level convergence/divergence covers eastern 

Ethiopia/northern Rift Valley (Fig. 6.20). A thick layer of mid-to-upper 

tropospheric divergence extends from about 750 to 100 hPa above the 

escarpments where strong convection initiates. The situation changes for the 

western regions, which are dominated by shallow low-level divergence and deep 

mid-to-upper level convergence extending up to 150 hPa. The convergence 

pattern remains largely unchanged when varying the latitudinal belt (subzones 

within 8º-15ºN) for averaging. Inspection of the divergence field at different 

levels revealed upper level divergence between 100-80 hPa west of 38ºE. It is to 

be noted that western Ethiopia is one of the wettest regions totaling more than 

1800 mm a year, of which more than 90% is received during May-October (e.g., 

Fig. 1 of Segele and Lamb 2005). A significant part of this rainfall comes from 

westward propagating storms that are initiated in the east rather than from 

locally developed convection. It appears that the deep layer of low-to-mid 

tropospheric convergence and elevated upper tropospheric divergence may be 

instrumental in maintaining the towering storms that probably overshoot into 

the lower stratosphere. 

 

With the above background, the changes in the atmospheric circulation 

associated with the warming/cooling of the equatorial Indian Ocean SSTs now 

are examined. Departure fields are calculated as the difference between 

EqIOw84/EqIOc84 simulations and the CTRL84 run values. The low-level 
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atmospheric response to the equatorial Indian Ocean warming is captured by the 

horizontal wind difference between the EqIOw84 and CTRL84 simulations 

(EqIOw84 minus CTRL84 values) at 850 hPa (Fig. 6.21a). A high-resolution 

version of the departure field is given in the regional map in Fig. 6.21b.  

 

 Compared to the CTRL84 run, the EqIOw84 simulation strengthens the 

westerlies across western and central Africa. With reference to Fig. 6.18a, this 

indicates enhanced westerlies entering western Ethiopia (Figs. 6.21a,b). The 

strongest departure winds (magnitudes of slightly less than 5 m s-1) are along the 

Red Sea coast, and correspond to the anomalous cyclone in northern Sudan. This 

anomalous cyclonic circulation is a reflection of enhanced southwesterlies across 

northwestern Ethiopia/Eritrea (Fig. 6.21b) and increased northerly/northeasterly 

trades over Egypt/northern Sudan. This flow creates a strong ITCZ north of 

Ethiopia. The increased westerlies from the Atlantic/West Africa appear to 

weaken the diverging southeasterlies in southern Ethiopia/southern 

Sudan/northwestern Kenya.  

 

In sharp contrast, the EqIOc84 simulation produced weak westerlies from 

the tropical Atlantic/West Africa at 850 hPa, resulting in easterly anomalies 

west of Ethiopia (Fig. 6.22). Another profound difference from the  

EqIOw84 simulation is the strong anomalous southeasterlies in the  

equatorial Indian Ocean extending to the coast of Somalia.  
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FIGURE 6.21. (a) Horizontal wind departure vectors (m s-1; scale at the bottom 

right) at 850 hPa for the July EqIOw84 run. Departures are calculated as 

EqIOw84 simulation values minus CTRL84 run values. For clarity, vectors are 

shown every 4 model grids. (b) Same as (a) except for high-resolution regional 

map showing departure vectors for all model grids. Fig. 6.6 and Table 6.2 provide 

the details of the experiments. 

a 

b 
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FIGURE 6.22. (a) Same as Fig. 6.21a except for the EqIOc84 simulation. (b) 

Same as Fig. 6.21b except for the EqIOc84 simulation. 

 

a 

b 
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The easterly/southeasterly anomalies over the equatorial Indian Ocean in 

Fig. 6.22 are the result of strengthened southeasterlies that cross the equator with 

a weaker westerly component. Compared to the CTRL84 flow, the latitude of 

recurvature in the equatorial Indian Ocean is shifted to the north. The weakened 

westerlies in the Arabian Sea imply reduced rainfall for Ethiopia as discussed in 

Chapter 3. Note that parts of the strong southeasterly anomalies west of 35ºE and 

south of 10ºN in Fig. 6.22b strengthen the southeasterlies there (e.g., Fig. 6.18a). 

Also, the southeasterly/easterly anomalies are stronger to the west of 35ºE than 

to the east of 40ºE, thereby accentuating the directional wind divergence in 

southern Ethiopia (e.g., Fig. 6.18a). Thus, because of the existence of the LLJ, the 

stronger southeasterly anomalies to the west of 35ºE imply stronger low-level 

divergence not only over the climatologically dry southern and southeastern 

lowlands but also over the wet regions in southwestern Ethiopia.  

 

In the upper levels, the contrast between the EqIOw84 and EqIOc84 

simulated horizontal winds is stronger between 300-150 hPa. The difference 

between the EqIOw84 and CTRL84 horizontal wind vectors for 200 hPa is shown 

in Fig. 6.23a. The corresponding difference map for the EqIOc84 run is given in 

Fig. 6.23b. The EqIOw84 simulation has produced stronger easterlies to the west 

and north of Ethiopia and weaker easterlies over the Indian Ocean. The result is 

easterly departures to the west of Ethiopia and westerly departure fields to  

the east in the western Indian Ocean south of 10ºN. This  flow  configuration  has  
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FIGURE 6.23. Same as Fig. 6.21a except for 200 hPa. (b) Same as Fig. 6.22a 

except for 200 hPa. Resultant departure wind magnitudes are contoured every  

5 m s-1. 

 

a 

b 
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created strong upper level divergence (Fig. 6.24a) and enhanced rainfall  

over much of the Horn of Africa (Fig. 6.17a). In contrast, the EqIOc84 experiment 

caused easterly departure vectors over the Indian Ocean and westerly departure 

winds west and north of Ethiopia (Fig. 6.23b). This enhances easterlies east of 

50ºE and south of 10ºN, but weakens the TEJ across Northeast Africa and 

Arabian Peninsula. Weakened (strengthened) TEJ to the west and north (east) of 

Ethiopia corresponding to cooler Indian Ocean SST results in reduced upper 

level divergence (Fig. 6.24b) and consequently decreased July rainfall across 

much of the Horn of Africa (Fig. 6.17b).  The upper level convergence in 

southwestern Ethiopia for the EqIOc84 simulation (Fig. 6.24b) further supports 

our earlier assessment of the effects of increased lower level 

southeasterly/easterly anomalies for the EqIOc84 simulation. Thus, the EqIOc84 

simulated flow at both lower and upper levels favor drier conditions in the 

climatologically wet regions of Ethiopia.  

 

In general, the main characteristics of the large-scale circulations for the 

different simulations involve changes in low-level flow patterns, especially in the 

westerlies from West Africa and the LLJ off the coast off Somalia. Significant 

changes also occur in the wind structure at upper levels, the primary  

effects being reflected in the strength of  the  TEJ, which  affects  the intensity and 

distribution of upper level divergence, and possibly the westward propagation 

of convective storms that develop over the Yemen highlands. A more 
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comprehensive assessment of the changes in the large-scale patterns associated 

with the various SST forcings would require a chapter of its own and is left for a 

future study. 

 

  
 
FIGURE 6.24. Departure maps of horizontal divergence (x10-5 s-1) at 200 hPa 

calculated as (a) EqIOw84 simulation values minus CTRL84 run values, and (b) 

EqIOc84 simulation values minus CTRL84 run values.  Fig. 6.6 and Table 6.2 

provide the details of the experiments. 

 
 

6.5  Effects of Vegetation Coverage on Precipitation 

As discussed in Chapter 2, numerous studies have indicated that changes in 

vegetation coverage and properties can affect local climate and circulation 

patterns through changes in surface-atmosphere fluxes of water, momentum, 

and energy. Vegetation can be affected by prolonged dryness. The extremely dry 

conditions observed in the 1984 spring in Ethiopia had the potential to desiccate 

the vegetation and alter the vegetation canopy on a large-scale.  This prompted 

a b
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the question--if the failure of the short rains dried vegetation on a massive scale, 

could that change play a role in the observed total failure of the 1984 summer 

rains in Ethiopia?  This issue is addressed through simple sensitivity tests using 

the RegCM3. However, this investigation is limited in its scope and aims only to 

identify the effects of vegetation changes on rainfall, and does not attempt to 

investigate the large-scale circulation changes or the surface-atmosphere 

exchanges of water and energy associated with the sensitivity experiments.   

 

6.5.1  Experimental Design     

As noted in Section 5.1.2, the RegCM3 uses BATS to describe land use 

characteristics. The vegetation layer of BATS has 19 land cover types including 

deserts, grasses, shrubs, and trees. Fig. 6.25 shows the default BATS land cover 

type (excluding the ice cap/glacier category) over the Horn of Africa. Each 

category has specified characteristics including vegetation albedo, maximum 

fractional vegetation cover, soil texture and color types, and roughness length, 

which affect the surface-atmosphere exchanges of energy, water, and 

momentum.  In addition, soil moisture is initialized according to the vegetation 

specification (e.g., Pal et al. 2005). For example, the soil moisture availability for 

desert is 10% while for bog or marsh it is 90%. 

 

The effect of vegetation cover on precipitation is assessed by examining  

the impact on  simulated  rainfall  resulting  from  changes  in the specification of  
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FIGURE 6.25. Default land cover type used in RegCM3.  

 

vegetation types for the region between 8º-18ºN and 32º-45ºE, where the effects 

of the failure of the short rains would have especially been strong. This strategy 

is analogous to what Xue and Shukla (1993, 1996) used in their sensitivity studies 

in which they changed the land surface condition in the Sahel into 

desert/broadleaf trees (forest) to investigate the impacts of 

desertification/afforestation on the model climatology.   

 

Three simulations were performed for the entire domain shown in Fig. 6.6.  

The control run uses the default land use described by BATS (Fig. 6.25), and 

hence has identical vegetation specification as the ACTL84 simulation discussed 

in Section 6.3. A hypothetical wet simulation was performed by assuming that 



 364

wet spring rains would create abundant vegetation before the start of the 

summer rains.  For the wet simulation (WET84), the default vegetation land 

cover types were changed to reflect wetter conditions that would probably exist 

if the spring rains were wetter than normal. For this scenario, each land cover 

type north of 8ºN was changed such that the new land cover became 

greener/less dry, and in most cases the default BATS land cover type was 

changed at least 1 category up to wetter conditions (Fig. 6.26).  For example, 

desert regions are changed to semi-desert, short grasses are changed to tall 

grasses, shrubs are changed to trees, and trees are changed to forests. These 

changes were made after examining the specified values of the vegetation 

properties such as maximum fractional vegetation cover, vegetation albedo, and 

leaf area indices. In most cases, the changes increase the maximum fractional 

vegetation cover and/or decrease the vegetation albedo values. Some categories 

were left unchanged (e.g., bog/marsh).   

 

Contrasting this specification is the dry simulation (DRY84) in which each 

land cover was changed to a less green/drier category (Fig. 6.27), corresponding 

to the situation that might have occurred as a result of the failure of the 

Ethiopian 1984 short rains. In this case, the default BATS land cover type was 

changed at least 1 category down to drier conditions, which is the exact opposite 

of the land cover changes made for the WET84 simulation. This drier 
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specification created a strong land cover contrast compared to the greener 

landscape corresponding to the default BATS land use.  

 

  
FIGURE 6.26. Land cover type used for the WET84 simulation. 

 

Each of the three simulations was driven by the OISST monthly data 

(Reynolds et al. 2002) with the NCEP/NCAR Reanalysis version 1 (Kalnay et al. 

1996) initial and time-dependent lateral boundary conditions for 1984. The 

atmospheric boundary conditions are updated every six hours. The model 

integration time step, resolution, and physics are the same as for the simulations 

in Section 6.3. Each run was initialized on May 25, 1984, and run through 

September 30, 1984. The results of are presented in the next section. Because the 

boundary conditions and model configuration for the control run are identical to 

the ACTL84 run, the control simulation is referred to as ACTL84.  
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FIGURE 6.27. Land cover type corresponding to the DRY84 simulation.  

 

6.5.2  Simulation Results     

Simulated rainfall for the WET84 and DRY84 experiments are compared with 

the ACTL84 simulation values. The ACTL84 run (Fig. 6.28a) locates the main 

rainfall center in the wetter regions of western Ethiopia. Departure maps were 

constructed for individual months and for the entire June-September season by 

subtracting the ACTL84 simulation values from the corresponding WET84 and 

DRY84 simulation results. Examination of the results for individual months 

shows that the rainfall response to changes in vegetation cover, reflecting 

changes in the atmospheric circulation, was strong beginning in July. Fig. 6.28 

shows the June-September rainfall departure from the ACTL84 values for the 

WET84 (Fig. 6.28b) and DRY84 (Fig.6.28c) simulations. Departure maps for July, 
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August, and September, for which the effects of the forcing are most 

pronounced, are similar to the seasonal departure map and will not be presented. 

The response to the dry/wet surface forcing is minimal in June.  

 

 

  

 
FIGURE 6.28. June-September simulated rainfall and departure maps. (a) 

Simulated rainfall (ACTL84) for the default vegetation layer of BATS. (b) Rainfall 

departure for the WET84 simulation. (c) Same as (b) except for the DRY84 

simulation. Departures are computed by subtracting the ACTL84 simulated 

rainfall from the corresponding WET84 and DRY84 simulated values. Units are 

mm d-1.  

b c

a
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The simulation for the wet short rains scenario, with the resulting ample 

vegetation cover, produces enhanced June-September rainfall primarily in the 

western regions, and reduced rainfall at a few scattered locations in the 

southwest and east-central and north (Fig. 6.28b). Although the simulation 

produced more positive departures than negative, the overall signal appears to 

be mixed. This probably is due to the small difference between the default and 

modified land cover types or due to the small spatial variation of the physical 

properties (e.g. albedo) of the modified vegetation cover. Xue and Shukla (1996) 

also found mixed signals for their GCM sensitivity experiments that investigated 

the effects of large-scale afforestation in sub-Saharan area on the climate. In their 

afforestation experiment, Xue and Shukla (1996) changed shrubs and bare soil 

into broadleaf trees over a large sub-Saharan area extending from 13ºN to 20ºN. 

Their result showed that while rainfall increased in much of the afforestation 

region, it decreased to the south of the region. They further identified surface 

albedo and cloud cover as the most important factors controlling the changes in 

land surface-atmosphere interaction. Additional experiments may be needed to 

understand the causes of the mixed sensitivity results for the Horn of Africa.  

 

On the other hand, Fig. 6.28c shows clear evidence of the effects of reduced 

pre-monsoon core vegetation cover on rainfall in the Horn of Africa. Except for a 

few locations in southwestern Ethiopia, drying and reducing the default 

vegetation cover has resulted in substantial reduction of June-September rainfall 
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over many regions, including northeastern Ethiopia where the highest June-

September deficient rainfall was observed in 1984 (e.g., Segele and Lamb 2005). 

Because there is a direct correspondence between vegetation specification and 

soil moisture status in RegCM3, the DRY84 simulation is similar to a simulation 

with decreased soil moisture. Therefore, the result is consistent with a positive 

feedback mechanism described by Eltahir (1998) for North America, in which 

decreased initial soil moisture progressively leads to decreased latent heat fluxes, 

increased sensible heat fluxes, decreased moist static energy, increased stability, 

and finally decreased precipitation.  In general, although the WET84 simulation 

did not give the opposite result to the DRY84 simulation, i.e., increased rainfall 

through much of the domain, the results of the simulations collectively suggest 

that the failure of the 1984 short rains probably had negatively affected the 

summer monsoon season through its drying effect on vegetation cover. Further 

examination of the causes of this effect is left for a subsequent investigation.  

 

6.6  Summary 

This chapter has investigated the effects of SST variations through 

observational analyses and model sensitivity experiments. The observational 

results showed a strong simultaneous relationship between Ethiopian rainfall 

and SSTs over the equatorial eastern Pacific. However, this relationship does not 

have significant seasonal forecasting value, because of the lack of lead time. In 

order to forecast June-September rainfall, it is necessary to know Pacific SSTs in 
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advance for that season. This requires predicting SSTs to forecast rainfall, thereby 

introducing errors that reduce the skill obtained from the concurrent SST-rainfall 

relationship. With errors introduced by projecting current SST magnitudes to 

values the Pacific Ocean probably would have in summer, the equatorial Pacific 

SST no longer relates to rainfall as strongly as the observation analysis indicates. 

The other alternative is to use observed SSTs recorded more immediately prior to 

the onset of the monsoon season in Ethiopia. However, the correlations between 

equatorial Pacific SST prior to the onset of the monsoon and Ethiopian summer 

rainfall is not strong because of the boreal spring predictability barrier of climate 

system in the tropics (e.g., Webster et al. 1998; present Fig. 6.1). On the other 

hand, the correlation between the Arabian Sea SST a year in advance and 

Ethiopian summer rainfall is stronger than the correlation between equatorial 

eastern Pacific SST for any month except August-October of current year and 

Ethiopian JJAS rainfall.  Therefore, the Arabian Sea SST has greater potential 

predictive value for forecasting seasonal Ethiopian rainfall with lead times that 

Ethiopian society can exploit.  

 

The model sensitivity experiments reported in this chapter have highlighted 

the relative importance of SST variations in several basins of the Atlantic and 

Indian Oceans and the Mediterranean Sea. The effects of these water bodies vary 

considerably in space, time, and strength. Furthermore, not only the absolute SST 

magnitudes, but also the presence of basin-scale north-south/east-west gradients 



 371

is important in shaping seasonal rainfall in the Horn of Africa. In particular, a 

north-south SST gradient over the tropical Atlantic exerts a strong influence on 

August rainfall. Both observational and modeling studies showed that cool 

northern (warm southern) tropical Atlantic significantly reduces Ethiopian 

rainfall. In fact, model sensitivity experiments indicated that the 1984 Ethiopian 

dry summer was partially a result of such SST distribution in the tropical 

Atlantic. On the other hand, warm northern (cool southern) tropical Atlantic 

tends to favor wetter conditions in the Horn of Africa. Because the northern 

tropical Atlantic tends to be warmer than the southern tropical Atlantic during El 

Niño, this result implies that during the warm ENSO phase, SST variations in the 

Atlantic tend to counter the effects of warm equatorial eastern Pacific SSTs on 

Horn of Africa rainfall.   

 

Warming in the Arabian Sea, the equatorial Indian Ocean, and the 

Mediterranean Sea tend to enhance summer rainfall in the Horn of Africa. The 

effects of the Mediterranean Sea and the Arabian Sea warming are pronounced 

in August, while the impact of the equatorial Indian Ocean tends to be felt more 

strongly in July. While SST variations in the Indian Ocean strongly affect the 

extreme western Ethiopia, the effects of the Mediterranean Sea are pronounced 

over central Ethiopia. Model sensitivity experiments also showed that warming 

of the equatorial Indian Ocean strengthen the LLJ, the westerly low-level flow 

from West Africa, and the TEJ. In contrast, these large-scale features are 
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weakened when the equatorial Indian Ocean is cooler than average. Model 

sensitivity tests further indicated that an east-west SST gradient in the equatorial 

Indian Ocean primarily affects rainfall in September. In particular, warm (cool) 

western (eastern) equatorial Indian Ocean cause widespread rainfall in 

climatologically dry regions of southern and southeastern Ethiopia and 

equatorial regions of Somalia and Kenya. The implication of the results of the 

above modeling experiments is that a successful seasonal forecasting scheme 

needs to take into account the effects of/contributions from each ocean basin in 

forecasting rainfall over the Horn of Africa.  

 

The influence of vegetation type and status on rainfall amount and 

distribution also has been investigated in Chapter 6. In brief, the simulations 

suggest a reduced vegetation cover leads to an increasingly dry landscape. It was 

found that a vegetation degeneration due to a weak spring rains is likely to 

reduce the summer monsoon rainfall, especially in regions that typically receive 

less rainfall. However the opposite situation, enhanced vegetation coverage and 

status, does not necessarily increase rainfall across the region of lush vegetation. 

An important implication of this result is that, because of the demonstrated 

sensitivity to vegetation coverage, an accurate representation of the vegetation 

canopy is crucial for a successful utilization of RCMs for seasonal forecasting 

over this region.  

 



 373

CHAPTER 7: SUMMARY AND CONCLUSIONS 
 
7.1  Summary 

The Horn of Africa is one of the least developed regions of the world, where 

rain fed agriculture and livestock raising are the main sources of livelihood. 

June-September is the main rainfall season for a large portion of the region. In 

recent decades, the region has experienced devastating droughts and 

occasionally damaging floods. Despite the catastrophic climate-related 

calamities, the region’s weather, climate, and their variability are not well 

understood.  

 

Based on simple correlation, regression, and composite analyses, the 

relationships between Ethiopian rainfall and the large scale atmospheric 

circulations covering Africa, the Atlantic, and Indian Ocean have been identified. 

The following atmospheric features lead to or are associated with enhanced 

regional rainfall. The opposite atmospheric features are associated with drier 

conditions: 

1. Deep monsoon trough at the surface and lower geopotential heights 

extending up to 700 hPa over the Arabian Peninsula and India (10º-

30ºN,30º-85ºE); lower surface pressure and lower near-surface 

geopotential heights below 925 hPa over West Africa (20º-25ºN,  

10ºW-0º); 
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2. A strong meridional ridge along the Mozambique channel and higher  

pressure over the Gulf of Guinea; 

3. Higher geopotential heights between 10º-30ºS and west of 50ºE 

extending from the surface up to 700 hPa; 

4.  Higher geopotential heights north of 15ºN in the middle-to-upper 

troposphere (500-150 hPa); 

5. A strong Low Level Jet (LLJ) north of 10ºN at 850 hPa; strong 

northerlies along the Red Sea and surrounding regions; 

6. Strong westerlies over eastern Ethiopia and the Gulf of Aden at 850 

hPa; strong easterlies over the equatorial Indian Ocean (4ºS-0º;55-68ºE) 

at 850  hPa;  

7. Cooling at 500 hPa over Ethiopia; 

8. Warmer tropospheric temperatures between 20º-40ºN extending from 

the surface up to 200 hPa, and cooler lower tropospheric temperatures 

over the western Indian Ocean, the Atlantic,  and over much of Africa 

south of about 15ºN excluding the Congo basin; 

9. Strong upper level easterlies over the monsoon regions with northerlies 

over Sri Lanka/southern India at 150 hPa.  

 

Other important findings from the observational analyses include: 

1. At the height of the monsoon season, the surface position of the ITCZ is 

north of Ethiopia. 



 375

2. The effect of the Mascarene high on Ethiopian rainfall is the highest 

when it is west of about 70ºE. Ethiopian rainfall is more strongly related 

to sea level pressure changes over the Gulf of Guinea than over the 

southern Indian Ocean, excluding the Mozambique Channel.   

3. The influence of southern hemisphere winter atmospheric systems on 

Ethiopian rainfall generally weakens above 700 hPa, but the northern 

hemispheric systems north of 15ºN above 700 hPa begin to exert 

stronger influence on the Horn of Africa weather. 

4. There is no statistically significant linear association between Ethiopian 

rainfall and atmospheric circulation features over the equatorial Pacific 

on short time scales. 

 

Because of the nonlinear nature of atmospheric processes, rainfall variations 

are determined by the nonlinear interactions of several atmospheric/oceanic 

processes that occur at different time and spatial scales. To assess rainfall 

variability and the forces that affect it at different time scales, a wavelet analysis 

technique was applied to Ethiopian raingauge, the NOAA Climate Prediction 

Center (CPC) Merged Analysis of Precipitation (CMAP) rainfall estimates for the 

entire Horn of Africa, sea surface temperature (SST), and several atmospheric 

variables. The analysis identified and isolated the dominant modes of rainfall 

variability and the corresponding atmospheric and oceanic features that are 

described below.  
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Examination of the power spectra associated with the 5-day May-October 

Ethiopian rainfall showed that there are distinct temporal modes of rainfall 

variability covering a wide range of frequencies ranging from the intraseasonal 

to multidecadal and longer time scales, of which the annual cycle constitutes the 

primary mode of variability over the Horn of Africa. The power spectra for June-

September 5-day rainfall is similar to that for May-October rainfall, except that 

(1) the power associated with the annual cycle becomes less prominent, (2) there 

is strong spectral power at the intraseasonal time scale, and (3) there are two 

distinct modes corresponding to rainfall variability at the biennial and ENSO 

time scales.  The main results from the wavelet analysis are the following: 

1.  Moisture and local circulations appear to be important factors 

influencing rainfall on the intraseasonal time scale (15-75 days). In 

addition, no link was found with the Madden-Julian Oscillation (MJO). 

Further study is required to identify clearly regional circulations that 

explain rainfall variability at this time scale. 

2.  Rainfall variations with periods from 75-230 days tend to be affected by 

pressure changes over the tropical Atlantic Ocean and Arabian 

Peninsula. Wet monsoon conditions are characterized by a southwest-

northeast directed pressure gradient associated with a general pressure 

fall over the Arabian Peninsula and pressure rise over the Gulf of 

Guinea. Associated with this anomalous pressure configuration, 
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westerly wind anomalies accelerate into Ethiopia and create an 

enhanced region of low-level convergence along the Red Sea.  

3.  Rainfall variability associated with the annual cycle (0.6-1.5 year) 

exhibits the largest variance and the highest correlation signals with 

atmospheric fields. Among the fields examined, the TEJ exerts the 

highest impact on rainfall, with strongest correlation between easterlies 

and rainfall being -0.97. Likewise, SST changes over several ocean 

basins including the western Indian Ocean, the Gulf of Guinea, and the 

South China Sea strongly influence rainfall (r ~ |0.8|).  

4.  At the biennial/ENSO time scales (1.5-4.4 year), the largest regional 

atmospheric anomalies affecting rainfall occur over the southeastern 

tropical Indian Ocean, the northeastern Atlantic, the western 

Mediterranean, and the Arabian Peninsula. During the cold ENSO 

phase, the Azores high strengthens, the mid-latitude westerlies across 

the Mediterranean weaken, the monsoon trough over the Arabian 

Peninsula deepens, and pressure over the eastern/southeastern Indian 

Ocean falls. The decrease in pressure over the eastern/southeastern 

Indian Ocean parallels the increase in pressure over the southern 

tropical Pacific, and hence is part of the SOI phenomenon.  

5.  The relationships between Ethiopian rainfall and equatorial Pacific 

SSTs at the biennial and ENSO time scales are similar. In both cases, 

Ethiopian rainfall strongly positively (negatively) correlates with 
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equatorial western (eastern) Pacific SSTs. However, the effects of Indian 

Ocean SST on Ethiopian rainfall are different at the biennial and ENSO 

time-scales. At the biennial time-scale, SST variations over the bulk of 

the tropical Indian Ocean correlate, if at all, weakly with Ethiopian 

rainfall, but the situation changes dramatically at the ENSO time scale 

in which rainfall correlates strongly negatively with SST over much of 

the tropical Indian Ocean. 

 

Building upon the above results of observational analyses, the predictability 

of Ethiopian rainfall was assessed for several time-scales and statistical 

prediction models developed. A forecasting technique that combines linear 

regression with wavelet analysis was used to develop prediction models that are 

valid for medium (a week to less than a month) and long range (a month to 

seasons) forecasts. A nonlinear technique (artificial neural network) was 

examined but combining the wavelet banding technique with a simple linear 

regression method was found sufficient to develop very encouraging prediction 

models for Ethiopia.  

 

For medium range forecasting, data for 1970-89 were used to develop a 

model capable of forecasting all-Ethiopian average rainfall 20 days in advance 

from several atmospheric predictors across Africa, the Mediterranean Sea, the 

Atlantic, and the Indian Ocean. The model was tested on independent data for 
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1990-99 and found to explain about 63% of the total all-Ethiopian rainfall 

variance. The SST-based models developed for seasonal forecasts performed 

even better. These empirical models were developed in two ways: in the first 

method, regional predictors were selected after evaluating their importance in 

the rainfall-SST relationship; in the second method, predictors were chosen 

objectively by employing Principal Component Analysis to reduce the number of 

predictors to a required level. Both methods produced dependable prediction 

models for forecasting monthly totals and seasonal anomalies of all-Ethiopian 

rainfall, and anomalies at a specific location. For monthly and seasonal 

predictions, the models developed in this study performed exceptionally well in 

identifying the most extreme years, and greatly outperformed previous linear 

regression models developed for Ethiopia.   

 

The modeling study first investigated the ability of the RegCM3 to reproduce 

the observed rainfall amounts and distribution over the Horn of Africa. 

Exhaustive sensitivity tests were performed to select the best convective scheme 

applicable for the region. After adapting and validating a suitable model 

configuration, the interannual variability of the simulated rainfall was assessed. 

Examination of the results showed that the correlation between the simulated 

and observed Ethiopian seasonal rainfall for 1982-99 was strong (r~0.66).   This 

configured model was utilized subsequently to investigate the roles of individual 

ocean basins in the Atlantic and Indian Oceans.  
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The effects of basin-scale SST variations were assessed through observational 

and model sensitivity experiments. The observational analysis showed that the 

equatorial Pacific correlates strongly with contemporary Ethiopian rainfall from 

June to October (r ~ -0.58 to -0.68). However, this concurrent correlation is of 

little value to forecast June-September rainfall because the observed SSTs 

available at the time of the forecast (before the start of the season) must be 

projected forward in time to June-September. This introduces errors, barring 

perfect dynamical/statistical SST predictions. On the other hand, the correlation 

between Arabian Sea SST and June-September Ethiopian rainfall is strong a year 

before the monsoon starts in Ethiopia (r~-0.65). Thus, Arabian Sea SSTs can 

readily be used to forecast rainfall a year in advance. No other ocean basin 

offered such a strong relationship prior to the onset of the rainy season in 

Ethiopia.  

 

Several sensitivity experiments were carried out with the RegCM3 to assess 

the roles of SSTs over the Mediterranean Sea, the Atlantic, and Indian Ocean on 

Horn of Africa rainfall. The experiments used seasonally varying climatological 

SST forcing for the control run. SSTs then were increased/decreased over 

selected ocean basins to examine the impact of a specific region. The 

NCEP/NCAR Reanalysis data for 1984 were used for atmospheric initial and 

boundary conditions. To examine the sensitivity of the simulation results to 

atmospheric initial and boundary conditions, some of the simulations were 
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repeated using identical SST forcing, but with atmospheric initial and boundary 

conditions for 1996. For a given atmospheric initial and boundary conditions, the 

difference between the simulation for a warmer/cooler ocean basin and the 

control integration was interpreted as the impact of the warmer/cooler ocean 

basin. The effects of SST variations in the Mediterranean Sea, the Atlantic, and 

Indian Ocean basins on Horn of Africa rainfall varied considerably in space, 

time, and strength. The main results are summarized below. 

1. The Arabian Sea/northern Indian Ocean (ArbS; 10°-30°N, 40°-80°E) SST 

strongly impacts rainfall. Compared to the control run, the simulation 

with warm ArbS produced wetter conditions across much of the Horn 

of Africa, with the highest positive rainfall departure (warm simulation  

values minus control run values) occurring in August. The area of 

positive rainfall departures for the warm ArbS simulation is wider than 

is the case for the other simulations forced by warm/cool SSTs in the 

Atlantic and Indian Ocean basins.  

2. A uniform warming of SST over the equatorial Indian Ocean (IqIO; 

10ºS-10ºN, 40°-110ºE) primarily affects central and extreme western 

Ethiopian rainfall. Warm SSTs in the EqIO enhance rainfall over 

western Ethiopia and reduce it over the central regions. A uniform 

EqIO cooling has the opposite effect. On the other hand, a linear east-

west SST gradient over the EqIO affects rainfall further south, over the 

equatorial regions of Ethiopia and Kenya. Warm waters over the 
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western Indian Ocean and cooler waters in the east enhance rainfall 

primarily in the southern regions of Ethiopia and Somalia, and 

northern Kenya. The effect is pronounced in September. 

3. The southern Indian Ocean (10°S-40°S, 50°-110°E) has similar effects on 

Horn of Africa rainfall as the EqIO, enhancing rainfall in extreme 

western Ethiopia/eastern Sudan. On the other hand, a uniform 

warming of the entire Indian Ocean (40°S-30°N, 40°-110°E) tends to 

affect the northern and southern half of the region differently, creating 

drier (wetter) conditions in the north (south), especially at the height of 

the monsoon season. 

4. The effects of the Atlantic Ocean are more strongly experienced over 

north Ethiopia/Eritrea. Its impacts strongly depend on the 

interhemispheric SST difference. Warmer SSTs over the southern 

tropical Atlantic (0º-20ºS, 22ºW-15ºE) combined with cooler SSTs over 

the northern tropical Atlantic (10º-35ºN, 10º-22ºW) strongly reduce 

August rainfall over the Horn of Africa. This was the case in the severe 

drought year of 1984. 

5. Warm Mediterranean waters (30º-46ºN, 5ºW-42ºE) enhance rainfall in 

the Horn of Africa. Compared to the control run, the simulation with 

warmer Mediterranean Sea produced large positive rainfall departures, 

especially over central Ethiopia in August.  
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6. Model simulations driven by identical SST forcing but with different 

atmospheric initial and boundary conditions produced remarkably 

similar rainfall departure patterns that were attributed to the prescribed 

SST forcing.  

 

Model sensitivity experiments also were used to investigate the effects of 

vegetation type and coverage on Horn of Africa rainfall amount and distribution.  

The study found a strong reduction in rainfall when a more desert-like landscape 

replaced the default vegetation and land use types. A desert-like landscape was 

specified to approximate a vegetation degeneration that likely followed the poor 

early rains of spring 1984. The results highlight the importance of accurate 

representation of the vegetation canopy for a successful utilization of RCMs for 

seasonal forecasting.  

 

7.2  Conclusions  

This study has comprehensively investigated and documented the weather 

and climate systems that affect the intraseasonal, interannual, biennial, ENSO, 

and longer time-scale rainfall variability over the Horn of Africa through 

observational and modeling analyses. Building on the observational analysis 

results, dependable forecasting models have been developed using a novel 

technique that combines wavelet analysis and linear regression methods. The 

empirical models developed in this study can be used to forecast rainfall 
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amounts and anomalies for a specific location or region for periods ranging from 

a few days to seasons in advance. The modeling study has established a usable 

regional model for the Horn of Africa. The sensitivity studies performed have 

identified the roles of individual ocean basins and local vegetation properties for 

monsoon rainfall variability for the region. The experiments highlighted the 

relative importance of SST variations in several basins of the Atlantic and Indian 

Oceans and the Mediterranean Sea.  

 

In general, this study has both scientific and societal value. Scientifically, the 

detailed observational analysis of our study addresses one of the major issues 

Washington et al. (2006) raised concerning the lack of systematic understanding 

of the basic state of the atmospheric circulation over parts of Africa. The 

identification, examination, and documentation of the regional and local 

atmospheric and oceanic features and mechanisms directly linked to Horn of 

Africa rainfall variability on several time-scales contribute to the understanding 

of the basic circulation patterns in this little-studied region of Africa. As 

Washington et al, (2006) noted, such knowledge is essential for improving the 

management of activities affected by climate variability and future climate 

change, not only locally but also on a larger scale. The study also has significant 

societal value. The prediction capability of this study will play a role in reducing 

the catastrophic impacts of droughts and floods by improving disaster 

preparedness through early warnings of impending weather/climate conditions. 
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However, the usability of these prediction models depends on whether the 

forecasts are target oriented, effectively disseminated, and correctly interpreted. 

This requires identifying human activities most severely impacted by climate 

fluctuations by geographic locations and recognizing the most affected regional 

economic sectors that possess the flexibility to adjust and benefit substantially 

from seasonal climate forecasts. This is achieved through intensive and 

continuous interactions among climate scientists, climate information users, and 

decision makers. Supported by this comprehensive knowledge, the elaborate 

prediction methods and results of this study can readily be applied to achieve the 

desired goal.  
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