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CHAPTER]

INTRODUCTION

Background

The 1990 Clean Air Act Amendments (eAA) established two fuel programs - the

Refonnulated Gasoline Program and Wintertime Oxyfucl Program. The Wintertime

Oxyfuel Program requires the use of fuel with no less than 2.7% oxygen by weight during

winters in carbon monoxide (CO) non-attainment areas (Squillace et aI., 1997). The

Reformulated Gasoline Program requires the use of year round use of reformulatoo

gasoline that contains at least 2% by weight of oxygen in the areas of most severe ozone

pollution (Squillace el al. , ]997). No specific oxygenate was prescribed by the 1990

Clean Air Act Amendments. but MTBE became oxygenate of choice because of its low

cost, ease of production, and favorable blending characteristics with conventional

gasoline (Report to Governor and Legislature of the State of California, 1999; Gullick

and LeChevallier, 2000). Reformulated gasoline accounts for 30% of gasoline sold

nationwide and MTBE is used in about 84% of reformulated gas (USEPA, ]997). The

Oxyfuel Program involves the use of MTBE in 3% of all oxyfuels in 13 states across the

United States. This widespread use has led to contamination of groundwater and drinking

water supplies through leaking underground fuel tanks, spills at industrial and refueling

tenninals. transport accidents, atmospheric deposition and stonn runoff (USEPA, 1999;

Hartley et aI., 1999). The seriousness of the pTob lem can be judged from the fact that in



the survey of eight urban areas conducted by the United States Geological Survey

(USGS) in L993-94, MIBE was the second most frequently detected volatile organic

compound (Squillace et al. , 1996). Several other studies have established the widespread

nature of MTBE contamination at low concentrations in various dri,nking water sources in

the states like California and Maine (California Department of Health Services. 2001;

Maine Geological Survey, 2001)

MTBE is problematic because of its high solubility, weak sorption to subsurface

solids, ability to move at velocities tbat are similar to the velocities of local groundwater,

low taste and odor thresholds and potential health risks (Squillace et aI., 1997; Report to

Governor and Legislature of the State of California, 1999). The USEPA has classified

MTBE as a possible human carcinogen and has issued a health advisory of 20 - 40 Ilgf! to

prevent unpleasant taste and odor and to provide a large margin of safety from possible

health effects (USEPA, 1997). Several physical-chemical and bioremediation strategies

have been tried for MTBE clean-up in groundwater including air stripping, granular

activated carbon (GAC) adsorption, air sparging, soil vapor extraction, biostimulation

and bioaugmentation. In many remediation cases, such as air stripping, soil vapor

extraction, air sparging, or wastewater treatment operations, large air streams

contaminated with MTBE are generated that require further treatment (Fonin and

Deshusses, 1999a). Physical-chemical treatment strategies for these vapors such as GAC

adsorption, catalytic oxidation, advanced oxidation process and membrane processes

involve many technical and economic constraints. Alternatively, biofiltration has

emerged as a promising method in treatment of dllute, high-flow waste gas streams

containing odors or VOC's because of Jaw capital and operating costs, low energy
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requirements and an absence of residual products requiring further treatment or disposal

(Devinny et aI., 1999; Fortin and Deshusses, 199%).

In biofiltration, a humid air stream is passed through a porous support material on

which pollutant degrading cultures are immobilized. The aim of this research was to

study the treatment of MTBE vapors by compost biofiltcrs and to address questions and

prohlems raised by previous research.

Need of the Study

A few studies have been conducted on biofiltration of MTBE. In these studies

compost based biofilters (Eweis et aL 1997), biofilter containing Celite™ R-635 (an

extruded diatomaceous earth averaging I em in size) (Eweis et aI., 1998), and biotrickling

filters containing pall rings and lava rocks (Fortin and Deshusses, 1999a) have been

successfully used for the treatment of MTBE vapors. Recently a study was reported in

which MTBE vapors were treated in a biofilter using cometabolism with pentane

(Dupasqier et al., 2002). However in this study the MTBE degradation rates were much

lower than the earlier reports. In spite of these relatively successful studies, there are still

some problems and questions that need to be answered. The first and foremost problem is

the start-up time of the biofilter treating MTBE. It took one year for Eweis et al. (1997) to

sec a little degradation in the biofilter operating at a wastewater treatment plant. It took

three weeks of acclimation in another study on biofiltration of MTBE even after

inoculation of the biofIlter with MTBE degrading culture (Eweis et a1., 1998). Fortin and

Deshusses (1999a) also observed the same unusually long acclimation phase in the

biotrickling ftIters treating MTBE despite vigorous inoculation with competent
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microorganisms. According to these researchers, the causes for the slow start·up were the

difficulty to establish a thriving consortium, the slow growth rate, and the low biomass

yield of the process culture. Not only in the case of MTBE, this lag bas also been

observed by Ergas et al. (1994) even after inoculation with actively degrading liquid

culture, in their study concerning biofiltration of another relatively recalcitrant

compound, dichloromethane. They also give similar reason for this, that redistribution

and growth of microbial populations or attachment of the organisms to the media may be

required before significant removal is observed after inoculation. Thus this issue of start­

up time is not just confined to MTBE biotiltration but to other relatively recalcitrant

compounds also and needs to be addressed. In this context, Fortin and Deshusses (1999a)

suggested that peat humic substances (PHS) appeared to have a positive effect on the

pcrfonnance of the biotrickling filters in their study and may have a role in decreasing the

start-up times of the biotrickling filters treating MTBE. However, no further study was

conducted to ascertain this role. So the role of PHS in improving the start-up of the

biofilter needs fuJ1her research.

Almost all the studies conducted so far on MTBE biofi Itration were conducted at

relatively high concentrations of MTBE and relatively high loading rates. In many

operations like air stripping, low concentrations of MTBE are expected in the off-gas.

This study attempts to address this issue by investigatlng the performance of biolitters at

low concentrations and low loading rates of MTBE.

Another issue that needs to be addressed is the transient behavior of the biofilter

treating MTBE. In the field transient behavior is the rule rather than the exception.

Moreover, in the case of MIBE, the long start-up time required for biofiltration of MTBE
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raises questlons about the ability of the bioreactors to treat effiuents with changing

conditions (Fortin and Deshusses, I999b). Transient behavior has been studied for the

biotrickling filters by Fortin and Deshusses (1999b) but no good study has been

conducted in the case of biofilters. Thus this gap needs to be filled for successful

application ofbiofilters in the field.

In addition to above issues, this study also addresses the issue of comparison of

perfonnance of the bioftlters treating MTBE vapors, containing adsorbing vs. non

adsorbing materials in the biofilter media.

Objectives of the Study

Some of the objectives of the present study are:

1. To investigate the role of PHS in biodegradation of MTBE.

2. To study the response of the biofilters treating MTBE vapors at various steady

state loading conditions obtained by different combinations of flow rates and inlet

MTSE concentrations. Particular emphasis was placed on low concentrations of

MTSE, which are usua\1y encountered in MTSE air-stripping operations (Fortin

and Deshusses, )999a).

3. To study the transient response of the biofilters to step change in concentrations

and flow rates.

4. To compare the perfonnance ofbiofilters containing adsorbing (granular activated

carbon) and non adsorbing materials (perlite) in relation to start-up times, steady

state, transient state conditions.
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CHAPTER II

LITERATURE REVIEW

Biofiltration - an Introduction

Biofiltration IS an air pollution control (APC) technology that uses

microorganisms immobilized over a porous medium to break down the pollutants present

in the air stream (Devinny et aI., 1999). Initially biofilters were used for the control of

odors from wastewater, composting, food processing and livestock breeding operations

(Leson, 1998; Pomeroy, 1957; Carlson and Leiser, 1966). In the early odor treatment

systems, contaminated gases were passed through soil beds and the units were termed as

soil filters (Kinney et ai., 1998). However, in the 1970's, more advanced biofilters using

a mixture of compost or peat and structural support (branches, wood chips, bark or

mineral granulates) were developed (Leson, 1998). With the emergence of these systems,

biofiltration became increasingly popular in Germany and the Netherlands. Presently in

these countries, biofiltration is a widely used APC technology and is considered the best

available control techno logy (BACT) for a variety of volatile organic compounds (YOC)

and odor control applications. Since 1990, research and application of biological gas

treatment have greatly increased in the United States as well (Kinney et a1. 1998).

Biofilters have treated off-gases from a wide range of source categories. They have been

used for deodorization of off-gases from wastewater treatment plants, composting, food

processing etc. Their applications in YOC and air toxic control involve treatment of gases
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from coating and printing operations, production of adhesives, polymers,

pharmaceuticals, plastics, solvents, and furniture etc. Biofilters have also been used in

operations such as chemical and petroleum storage, and treatment of gases produced

during soil remediation by methods of such as soil vapor extraction (Leson, 1998).

Principle of Operation

A biofilter for the control of air pollutants consists of one or more beds of porous

solid state filter material whose surface is covered with a biofilm in which

microorganisms are immobilized. Contaminated gas is vented through the reactor, and as

a result contaminants diffuse into the biofilm where they are aerobically biodegraded by

the resident microorganisms. Products of this biooxidation may include water and carbon

dioxide, microbial biomass, inorganic acids if the VOC's contain chlorine (Cl), sulfur (S)

or nitrogen (N), intennediates from incomplete biooxidation of VOC's, and heat (Lesan,

1998).

Design and Operational Considerations

Media selection

Biofilters use a porous solid medium to support microorganisms and give them

access to the contaminants in the air flow. The nature of the medium is a fundamental

factor for successful application of biofi lters. It will affect the frequency at which the

medium is replaced and will have a major impact on key factors such as bacterial activity

and pressure drop across the reactor (Devinny et aI., 1999). Thus, selection of the proper

biofilter media is an important step towards developing a successful biofiltration
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operation. Desirable media properties include optimal microbial environment, large

specific surface area, structural integrity, high moisture retention, high porosity and low

bulk density. (Swanson and Loehr, 1997).

Common components of biofilter media include biological residues such as

compost, peat, soil and inert substances like wood chips, perlite, activated carbon and

vermiculite. Table I summarizes the important properties of common biofiiter media

components.

Table 1. Important Properties of Common Biofi Iter Media Components

Property Compost Peat Soil Activated Synthetic.
carbon, materials

perlite, and
other inert
materials

Indigenous High Medium- High None None. .
Lowmlcroorgamsms

population
density

Surface area Medium High Low High High

Air Medium High Low Medium-high Very high
penneabi Ii ty

Assimilable High Medium- High None None
nutrient content hiM

Pollutant Medium Medium Medium Low-high None to high,
sorption very high
capacity
Lifetime 2-4 2-4 years >30 years >5 years >15 years

years
Cost Low Low Very low Medium-high Very high

General Easy, Medium, Easy, low Needs Prototype only
applicability cost water activity nutrients, may or biotrickling

effective control biofilters be expensive filters
I problems
Source. Devmny et aI., 1999
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Moisture rontent

Maintaining optimum moisture content 10 the filter is the major operational

requirement of a biofilter (Leson and Winer, 1991). There are many reasons why

maintaining an optimum moisture level is critical. Some of these are addressed below:

An overwet biofilter medium causes:

• High backpressures and low gas retention times, due to Ii lIing of the pore space with

water.

• Oxygen transfer problems due to reduced air/water interface per unit biofilm votwne.

• Creation of anaerobic zones that promote odor fonnation and slow degradation rates.

• Nutrient washing from the biofilter medium.

• Production 0 f high strength, low pH, leachate requiring disposal (Swanson and Loehr,

1997).

A dry biofilter medium causes:

• Deactivation ofVOe-degrading microorganisms.

• Contraction and consequent medium cracking, resulting ;n reduced retention times.

• Frustrated attempts to rewet dry, hydrophobic medium materials (Swanson and

Loehr, 1997).

Optimal biofilter medium moisture content ranges from 40-60% (wet weight) (Leson and

Winer, 1991). This can be maintained by intluent gas humidification, direct water

addition to the surface ofbiofilter media or a combination of both.
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Microorganisms

Bacteria and fungi are the two dominant groups of microorganisms in biofilters.

These microorganisms may be indigenous to the selected mediwn as in the case of

compost or may be inoculated (Devinny et a1., 1999). Inoculation of the biofilter with

pre~grown cultures is generally carried out in the following three cases:

• When the selected medium does not have sufficient population and diversity of

microorganisms, such as in the case of GAC and perlite.

• When the compound to be treated is difficult to biodegrade

• When there is a need to reduce acclimation time and improve startup time for a

biofilter.

There is a disagreement among researchers about the inoculation of a biofilter with

laboratory grown cultures. Many investigators have suggested inoculation using a single

ideal species, known to vigorously degrade the compound of interest, as inoculum for a

biofilter (Devinny et aJ. 1999). While others, like Bohn (1992), have suggested that

inoculation with laboratory grown cultures may increase the degradation rates for only a

short time due to the high probability thaI these organisms will be outcompeted by the

microorganisms native to the medium (Bohn, 1992). Swanson and Loehr (1997) have

noted that seeding compost based biofilters has not been demonstrated to improve the

performance in removing easily degradable chemicals. In spite of the above mentioned

disagreement, it has become a common practice to inoculate the biofilters with a single

ideal species of microorganisms, bacterial consortium, or activated sludge, to degrade

more complex contaminants or to reduce adaptation time of the biofilter (Devinny et al.,

1999; Wani et aI., 1997).
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Temperature

Temperature is a key concern in all biological treatment systems, and thus it is

also a vital factor for efficient biofilter operation (Wani et aI., t 997). There are three

general temperature classes of aerobic microorganisms: psychrophilic microorganisms

that grow best below a temperature of 20°C; mesophilic microorganisms that achieve

highest growth rates between 20 - 40°C; and thermophilic organisms that grow best at

temperature above 4SoC (Wani et aI., 1997). Biofiltration relies predominantly on the

activity of mesophillic and to some extent, themlOphilic microorganisms (Leson and

Winer, 1991). Leson and Winer (1991) recommended that off gas temperature be

maintained belween 20 - 40°C for optimum results.

For maximum pollutan( removal, near neutral pH conditions (6 to 8) are optimal

in most microbial bioreactor systems treating volatile organic compounds (Kinney et aI.,

1999). In some cases biodegradation of pollutants can generate acidic by-products.

Examples are oxidation of sulfur or nitrogen- containing compounds and chlorinated

organics (LesoH and Winer, L991). Thus, measures must be taken to prevent pH drop.

Three measures were recommended by Ergas et aJ. (1994), who encountered a pH drop in

the filter medium in biofiltration of dichl oromethane. These three measures are:

• Formulate the medium with an increased buffer concentration usmg additives

such as limestone, crushed oyster shells and marl.

• Periodically wash the medium with a buffer solution.
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• Operate the system in n downflow mode and periodically replace upper media

layers.

Nutrients

In addition to carbon and energy derived from the degradation of the contaminant,

nutrients such as nitrogen, phosphorous, sulfur and trace elements are required for

microbial growth (Wani et a1., 1997). Typically, compost-based filter materials will

provide sufficient inorganic nutrients. However some researchers have found that nutrient

limitation may be responsible for reduced biofiJter perfonnance even in compost-based

biofilters. Corsi and Seed (l995) have suggested available nitrogen levels of greater than

200 mg/kg of dry packing material or more for effective biofilter perfonnance. In another

study, Gribbins and Loehr (1998) observed that for a toluene elimination capacity of 30

glmJ/hr, an available nitrogen concentration of greater than 1000 mglkg of dry packing

material was required for optimal biofilter perfonnance. Presently there are no guidelines

developed that identify the amount of available nutrients needed in biofilters. However

some possible solutions to overcome nutrient limitation problem in compost based

systems are:

• Addition of excess nutrients (e.g. N~N03) to the packing media prior to start up

of the system

• Addition of slow release fertilizers (Kinney et aI., 1999)

Waste gas pretreatment

Biofilters being biological systems, can be poisoned by the presence of toxic

contaminants, the excessi ve concentrations of contaminants in the raw gas stream, and
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excursions tn environmental conditions such as temperature and moisture content (Wani

et a1., 1997). Therefore, waste gas pretreatment is essential for optimal blofilter operation.

pretreatment may include:

1. Particulate removal.

2. Load equalization by the use of GAC etc., if VOC concentrations in the influent

stream are highly variable,

3. Temperature regulation, and

4. Humidification.

Maintenance and Monitoring

Routine maintenance of biofilters includes monitoring waste gas temperature and relative

humidity; and filter bed moisture content, temperature. pH and back pressure (Wani et

aI., 1997).

Biofiltration Studies

Numerous bench and pilot scale studies have been conducted on bioJiltration. For the

purpose of this review, studies are classified based upon their objective as follows:

• Studies conducted to investigate the innuence of design and operational

parameters. such as moisture content, nutrient supply, or media type, on the

biofilters. A few such studies are summarized in Table 2.

• Studies conducted to demonstrate the perfonnance of biofillers in treating one or

more pollutants during steady state and/or transient operation. These studies are

summarized in Table J.

13



• Studies conducted to model physical and chemical processes occurring in the

biofilters.
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Table 2. Biofilter Studies Investigating the Effect of Design and Operational Parameters

Pa.-ameter Reference Contaminant Biofilter medium Results Jinvestil:!:ated
Nutrient Gribbins Toluene Compost and Perlite • A "threshold amount" of soluble nitrogen is
supply and Loehr required for optimum perfonnance. This
(specifically (1998) requirement is more critical at high voe
nitrogen loadings or after long periods of operation
supply) • At toluene loading of 30 g!m)fhr the non-

limiting soluble nitrogen concentration in the
media is greater than 1000 mg(kg as N (dry wl.)

Corsi and Benzene, Composted municipal • Available nitrogen levels 0[200 mg/kg or more
Seed (1995) Toluene,o- so1id waste, composted appear to be necessary for effective biofilter

Xylene bark fine5, composted perfonnance
food and yard waste or

I composted sewage
sludge and Perlite

Moisture Govind and Isopentane Compost and foam • Optimum water content for the peat biofilter
content Bishop fluff or Peat and foam was 56% (dry weight basis)

(1998) fluff • Optimum water content for compost biofilter
was 65% (dry weight basis)

Auria et al. Ethanol Peat with Ca(OH)2 as a • Elimination capacity dropped from 27 glmJIhr
(1998) pH buffer to 4 glm3fhr when the water content was

Idropped from 49% 1035%
-~.
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Table 2. Conld.

Temperature Govind and Isopentane Compost or • Maximum removal efficiencies ofisopentane were observed
Bishop Peat above the bed. temperatures of 35°C. Below 25°C, the
(1998) removal efficiencies decreased almost linearly with

temperature.
pH Devinny Ethanol GAC • Rapid ethanol consumption at high loading was associated

and Hodge with the production of acetaldehyde, acetic acid and ethyl
(1995) acetate. The resulting pH reduction inhibited treatment.
Smet et at. Dimethyl sulfide Compost or • Gradual decrease in elimination capacity was observed as a
( 1996) and Dimethyl wood bark result of acidification.

disulfide
Effect of Devinny Ethanol GAC • Inoculation with ethanol degrading microorganisms
inoculation and Hodge eliminated the initial perdiod of poor perfonnance generally

(] 995) associated with GAC biofilters. Most rapid treatment was
observed in the biofilter with the highest amount of seed
culture.

Smet et al. Dimethyl sulfide Compost or • Inoculation increased the dimethyl sulfide elimination
( 1996) and Dimethyl wood bark capaci ty from less than 10 glm)fhr to 680 g/m3/hr for

disulfide compost biofiller and from 5 glm 3fhr to 35 g/m3/hr for wood
bark. biofilter

---
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Table 3. Biofilter Studies Demonstrating the Perfonnance of the Biofilters to Treat One or More Pollutants

Contaminant(s) Biofilter Empty Bed Contact Critical Maximum Maximum Reference
Medium Time Load* Elimination Removal

(g/m3!hour) Capacity Efficiency

--f-- -
(g/m3/hour) (%)

Toluene Peat Compost 20 - 357 seconds <10 20 N.R. Ottengraf et al.

1--'
(1983)

Methanol Peat and Perlite ' 2.82 - 5.6 minutes 68 112.8 100 Shareefdeen et
(40:60 v/v) -- -

al. (1993)
Dichloromethane Compost and Perlite 0.7 - 1 minutes N.R. N.R. >98% Ergas et aJ.

(50:50 v/v) (1994)
Ethanol GAC 3.1 minutes N.R. ISG N.R. Devinnyand

I Hodge (1995)
Dimethyl Sulfide Wood Bark I 14 - 113 seconds 4.8 IA6 100 Smet et al.I

I

(1996)(

, Dimethyl Sulfide Compost J 1 seconds 20.83 28.3 100% Smet et al.

.. ( 1996)
Styrene Perlite 30 seconds 80-83 79 96-98% Cox et aL

(1996)

Toluene Peat 54 seconds 190 70 65% Bibeau et al.,
(1997).-

MTBE Compost 1 minute 6-8 100 Eweis et al.
(1997)

lsopentane , Peat and Foam Ouff <2 - > 12 minutes N.R. N.R. 95% Govind and

.._J Bishop (1998)

N. R. = Not reported
* At low loadings. elimination capacity essentially equals the load, but if the loading is increased, a point will be reached where the
overall mass loading will exceed the overall elimination capacity. This point is typically called the crilicalload.
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Table 3. - Contd.

Contaminanl(S) Biofilter Empty Bed Contact Critical Maximum Maximum R.eference
Medium Time Load Elimination Removal

(g/m3/hour) Capacity Efficiency
(~m3Ihour) (%)

)sopentane Compost and Foam fluff <2 - > 12 minutes N.R. N.R. 100% Govind and
Bishop ( 1998)

Toluene Pelletized activated 2 minutes N.R. N.R. >99% Govind and
carbon Bishop (1998)

TCE Pelletized activated 2 minutes N.R. N.R. >99% Govind and
carbon Bishop (1998)

Methylene Pelletized activated 2 minutes N.R. N.R. >99 Govind and
Chloride carbon Bishop (1998)

MTBE and Celitel.'III R-635 I minute N.A, N.A. 100 Eweis et al.
Toluene (1998)

l-Nitropropane Peat I 2.19 - 3.65 minutes 12-13 6 N,R. Wu et al.
(1998)

MTSE Pall rings and Lava 54 - 90 seconds 40- 50 50 97 Fortin and
Rocks Deshusses

- ( 1999a)
Styrene Pellets composed of 0.52-3.12 minutes 164 141 97 Jorio el at

__preconditioned biomass (2000b)
Carbon Peat I 17-69 seconds N.R. ] 87.5 99% Hartikainen etI

disulfide and I (expressed al. (200 I)
hydrogen i in tenns ofIsulfide I Sulfur)

MTBE and Verrniculite 0.06-2.85 hours N.R. 12 (Pentane) N.R. Dupasquier et
Pentane 1.8 (MTBE) aJ. (2002)

N. R. ::: Not reported
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Biofilter Modeling

Biofllter models were developed to achieve the following objectives:

I. To organize experimental data and to understand relationships between

parameters such as media surface area, blological activity, biofilm thickness, and

pollutant removal (Devinny et al. 1999).

2. To predict elimination capacity and efficiency as a function of reactor design,

properties of pollutants and microbiological parameters, and for designing and

sizing filters (Bibeau et al. 1997).

J. To optimize the process.

Numerous models have been developed to describe biological and physical processes in

biofilters (Ottcngrafand van den Dever (l983), Hodge and Devinny (1995), Shareefdeen

et al. (1993), Sharecfdeen and Baltzis (1994), van Lith et a!' (1990), Deshusses et a1.

(1995) a, b). Of these, Ottengraf's model is still the most commonly referenced model

(Devinny et al. 1999) and is described in detail in the following section.

Ottengrafs model

Ottengrafs model was first published in 1983 (Ottengraf and van den Gever,

1983, OUengraf. 1986) and is based on the following simplifying assumptions:

L Interfacial resistance in the gas phase is neglected and equilibrium is assumed

between concentrations in the gas-phase and interfacial concentration of the

contaminant.

2. The flow of the gas phase through the filter bed is of the plug flow type.
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3. In the biolayer, pollutant transfer takes place by diffusion which can be described

by the effective diffusion coefficient, Ddf·

4. The biofilm thickness is small compared to the support medium, so flat geometry

is assumed. for the biofilm.

5. The microkinetics for substrate elimination in the biofilm can be described by a

Michaelis-Menton equation or relationship ofMonod:

11 Cr=----X 1
)' C+K

where:

r = Substrate utitization rate (mass/unit volume. time)

1.1 = Maximum growth rate (time-I)

y = Cell yield coefficient (mg/mg)

K = Monad or Michaelis-Menton constant (mass/unit volume)

x = Active microorganism concentration (mass/unit volume)

C = Concentration in the liquid phase (mass/unit volume)

To allow for the analytical solution of differential equations, the Ottengrafs model

differentiates among three operating situations, i.e. First-order kinetics, zero order

kinetics with reaction rate limitation, and zero order kinetics with diffusion ratc

limitation.

First Order Kinetics

lfthe Michaelis-Menton constant (K) is very large compared to the concentration

in the liquid phase (e), the rate expression approaches first order kinetics. The results for
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the gas-phase pollutant concentration with respect to filter height for first order kinetics is

given by:

Co (-hR)-. =exp -- 2
C! mU

aD
R = -~ tan h ~

o

q. is Thiele number. For the first order kinetics the Thiele number is given by:

Co = Outlet concentration of pollutant in gas-phase (giro J
)

Ci = inlet concentration of pollutant in gas-phase (glmJ
)

h = Height in the biofilter (m)

k = First-order reaction rate consant (hour-I)

m = Gas liquid partition coefficient (dimensionless)

U = Superficial velocity of gas (mlhour)

<P = Thiele number

0= Biolayer thickness (m)

D = Diffusion coefficient (m2/s)

a = interfacial area per unit volume (m 2/m 3
)

Zero Order kinetics

If the Michaelis-Menton constant (K) is very small compared to concentration in

the liquid phase (C), the rate expression approaches zero order kinetics. In this case two

situations are possible; zero order rate with diffusion limitation, and zero order rate with
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reaction rate limitation. The Thiele number (<1», which reflects the ratio of the maximum

rate degradation and the maximum rate of diffusion in the biofilm, is used to differentiate

between reaction and diffusion limitations. For a zero order reaction the Thiele number is

defined by:

!Kom
CD = 8 VDei 3

where

Ko = Zero order reaction rate constant (mol m'J hour-I)

If tbe Thiele number is greater than 12, the overall reaction rate is determined by the

diffusion rate, and if the Thiele number is less than J2, the overall reaction rate is

detennined by the biological reaction rate.

Diffusion limitation: In case of diffusion limitation, the biolayer is not fully active

and depth of penetration in it is smaller than the layer thickness. In this case, removal of

the pollutant is controlled by the rate of diffusion. The results for the gas-phase pollutant

concentration with respect lo filter height for zero order kinetics with diffusion limitation

is given by:

~~ ~ (1- h;ag;~J 4
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Reaction limitation: There is no diffusion limitation in this case. This means that

the biolayer is fully active and conversion is controlled by the reaction rate. The results

for the gas-phase pollutant concentration with respect to filter height for zero order

kinetics with reaction limitation is given by:

Co [h KO]Ci =1- CiU 5

From equations 2, 4 and 5, it can be concluded that the concentration profile along the

height of the biofilter is exponential, linear or quadratic for first-order, zero-order with

reaction rate limitation, and zero-order with diffusion limitation, respectively.

MTBE - an Introduction

Methyl tertiary butyl ether (MTBE) was first introduced in U.S. gasoline in 1979,

primarily in premium grades of gasoline at levels of 2-3% by volume, as an octane

booster (Report to Governor and Legislature of the State of California, 1999). However,

since November I, 1992, the 1990 Clean Air Act Amendments require areas that exceed

the national ambient air-quality standard for carbon monoxide to use oxygenated gasoline

during the winte(s, when the concentration of carbon monoxide is highest (Squillace et

aI., 1997). According to the Oxygenated Fuel Program, gasoline must contain no less

than 2.7% oxygen by weight, which is equal to 15 % MTBE by volume, to meet this

oxygen requirement (Squillace et a1., 1996). Furthermore, since February 1995, the Clean

Air Act Amendments also require nine metropolitan areas that have the most severe
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ozone pollution to use year-round reformulated gasoline that contains fuel oxygenates

(Squillace et aI., 1997). Reformulated gasoline must contain at least 2% oxygen by

weight, which is equal to II % MTBE by volume, to meet this oxygen requirement

(Squi \lace et al., 1996). While other oxygenates such as methanol, ethanol, or ali phatic

ethers are sporadically used in refonnulated gasoline, MTSE has become the oxygenate

of choice among refiners, because of its low cost, ease of production and favorable

blending characteristics with conventional gasoline (Report to Governor and Legislature

of the State of Cali fomi a, 1999; Gullick and LeChevalJier, 2000)

Currently, 32 areas in 18 states sell reformulated gasoline. Reformulated gasoline

accounts for about 30% of the gasoline sold nationwide, and MTBE is used in about 84%

of the reformulated gas (USEPA, 1997). The oxyfuel program involves 19 areas in 13

states, with MTBE used in 3% of all oxyfuel at levels of 10 - 15% by volume (Johnson et

aI., 2000). This widespread use of MTBE has led to contamination of groundwater and

drinking water supplies. There are both point as well as non point sources of MTBE

contamination. Typical point sources include releases from gasoline storage and

distribution systems, spills at industrial and refueling tenninals, and transport accidents

(US EPA, 1999; Hartley et al. 1999). Non-point discharges include atmospheric

deposition and stonn runoff (USEPA, 1999).

There is uncertainty about chronic toxicity and carcinogenic effects of MTSE on

humans (Hartley et a1., 1999; USEPA, 1998). The USEPA has classified MTBE as

possible human carcinogen and has issued a health advisory of 20 - 40 1lg/1 to prevent

unpleasant taste and odor and to provide a large margin of safety from possible health

effects (USEPA, 1997). On March 20, 2000, the USEPA announced the beginning of
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regulatory action under the Toxic Substance Control Act (TSCA) to significantly reduce

or elimi nale the use of MTBE in gasoline (US EPA, 2001).

Physiochemical Properties and Environmental Fate ofMTBE

MTBE is an ether with the structural formula CH30C(CH3h. It is a volatile,

flammable, colorless liquid at room temperature and has a terpene - like odor (Squillace

et al. , 1996). Table 4 lists some important physical and chemical properties of MTBE. Of

particular significance are its high aqueous solubility, and low Henry's constant and

octanol - water partitioning coefficient (~w) (Gullick and LeChavallier. 2000). High

solubility in water, combined with its high concentrations in oxygenated gasoline, can

result in high amount of MTBE being dissolved when gasoline containing MTBE comes

in contact with surface water and ground water (Squillace et al., 1997). Once MTBE is in

groundwater, its high solubility, weak sorption to subsurface solids, and resistance to

biodegradation by indigenous bacteria make it a fairly mobile and persistent contaminant

in groundwater (Squillace et aI., 1997; Gullick and LeChavallier, 2000). In surface water,

volatilization of MTBE can play an important role in decreasing its concentrations.

However for very deep and slow moving ri vers or lakes, the hal f-Ii ves can be of the order

of months. especially at low temperatures (Squillace et aI., 1997). In the atmosphere,

reactions with OH- radicals may degrade MTBE, giving it a half life as short as 3 days in

a regional airshed, or it may partition into atmospheric water including precipitation

(Squillace et aL, 1997; Gullick and LeChavallier, 2000).
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Table 4: Physical-Chemical Properties ofMTBE

Molecular weight (g1mole) 88.15

Molecular formuJa CSH'20

Boiling point (at 760 mm Hg at 20uC) 55.t1C

Vapor pressure (mm Hg at 20ue) 240

Solubility (rog/1 00 g water) I 4.8

Henry's law constan[ (dimensionless) 0.022-0.12

LogKoc 0.94~ 1.3

Log KO\\l 0.55-0.91

Source: US Environmental ProtectIon Agency, 1998

MTBE Contamination

Widespread MTBE use has led to its contamination of shallow groundwater and

drinking water supplies across the United Slates (Squillace et aI., ] 996; Gullick and

LeChavallier, 2000). The great majority of these detections to date have been weJl below

levels of public health concern, however the detections at lower levels have raised

consumer taste and odor concerns that have caused water suppliers to stop using some

water suppLies and to incur costs of treatment and remediation (USEPA, 1999). One of

the earliest and most comprehensive national occurrences survey of MTBE in

groundwater resources was performed by the USGS as a part of its National Waler

Quality Assessment (NAWQA) program (Squillace et aI., 1996). Of the 60 voe's

analyzed in samples of shallow urban ground water collected from eight urban areas

during 1993-] 994, MTBE was the second most frequently detected chemical (27% of the
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sites) ranking just behind chloroform. The frequency of detection of MTBE was much

higher in the urban land-use wells. While only 3% of the urban land-use wells had

concentration exceeding 20 ~gli (lower limit of the drinking water health advisory level

set by USEPA), the maximum concentration detected was over 100 IJ.gll.

One of the most recent studies on MTBE contamination has been carried out in

the fomt. of a survey of the surface and subsurface drinking water supplies in the

American Water System (AWS) of tbe American Water Works Company from 1997­

1998 (Gullick and LeChavallier. 2000). MTBE was detected at least once in 8.8% of the

wells duri ng the course of the study with max imunl concentration detected as 14. 1 ~g/I.

A summary released by the California Department of Health Services (California

Department of Health Services, 2001) reveals that MTBE was detected in 4% of the

1,920 public water systems sampled and 1.8% of the 7,818 drinking water sources

sampled. In public water systems, 1.9% of the detections were greater than the secondary

MCL of 5 J-1g/l, and 0.8% were greater than the California primary Mel of 13 ~gll. In

case of drinking water sources 0.6% were greater than the secondary MeL (5 IJ.g/l for the

state of Cahfornia) and 0.3% were greater than the primary MeL (13 IJgll for the state of

California). A comprehensive survey of the MTBE contamination in its drinking water

supplies conducted by the state of Maine (Maine Geological Survey, 200 I) revealed that

MTBE was the most frequently detected gasoline constituent in private residential water

supplies as well as in public water supplies. The study also predicted that approximately

1400-5200 private wells may have concentrations of MTBE greater than Maine's

drinking water standard of 35 J-Lgll.
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Apart from the above mentioned surveys, there have also been many reports on

point source MTBE contamination, such as from leaking underground storage tanks.

Lawrence Livennore National Laboratory in California examined groundwater data from

236 leaking underground fuel tank sites located in 24 counties within California (Hapel et

aI., 1998). In 1995/96 MTBE detections were reported at 78% of these sites. Seventy

percent of the sites had MTBE concentrations greater than 20 Jlg/I, and 10% had

concentrations greater than 10,000 Jlg/1. In Maine, a gasoline leak from an overturned car

was likely to be responsible for contamination of 24 domestic wells within 2,200 feet, ten

of which attained MTBE levels greater than 100 ppb (Maine Geological Survey, 2001).

Leaking underground storage facilities led to the contamination of groundwater used as a

drinking water source in the Santa Monica area with an MTBE concentration of more

than 600 flg/l (USGS, 2001). According to Johnson et al. (2000) there are perhaps some

250,000 leaking underground fuel tanks (LUFT) releases involving MTBE, and a

significant number of MTBE releases may continue to reveal themselves as problematic

sources of contamination for the nation until at least 2010.

Remediation and Water Treatment Technologies for MTBE Clean-up

As stated earlier MTBE has high solubility, a low octanol - water partition

coefficient, a low Henry's constant and is a relatively recalcitrant compound. These

properties make MTBE highly mobile contaminant and present significant challenges for

its treatment and remediation by conventional technologies. Some of the remediation

strategies and treatment technologies used and proposed for MTBE clean up are

discussed below.
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Ground water extraction

Ground water extraction is an effective method to remove dissolved-phase MTBE

(Creek and Davidson, 2000). Creek and Davidson (1998) describe six case studies in

which ground water extraction has been used with treatment techniques like air stripping

or advanced oxidation processes to remediate MTBE contaminated sites. Based upon the

data review. the authors conclude that ground water extraction led to preferential removal

ofMTBE in comparison to more highly retarded compounds such as benzene.

Air stripping

Air stripping is one of the most commonly considered strategies for removal of

MTBE from water (Gullick and LeChevaIJier, 2000). It has been used in conjunction with

ground water extraction at some MIBE contaminated sites. However. because of

MTBE's relatively low Henry's constant, air stripping is less effective for MTBE

removal than for other VOC's usually encountered in contaminated ground water (Davis

and Powers, 2000). Gullick and LeCheva!lier (2000) describe two case studies in which

air stripping systems designed for VOC's such as benzene and tetrachloroethylene were

not able to remove MTBE effectively from water. Creek and Davidson (1998) present

some case studies in which air stripping was used effectively as an MTBE treatment

technology) but the ai r-to-water ratios used in all these were relatively high (> 180: 1).

Adsorption

Granular activated carbon (GAC) use for MTBE treatment has not been generally

successful. Of the eight case studies presented by Creek and Davidson (1998) where
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GAC was used for the treatment of MTBE, only one case study was considered a

successful application of GAC for treating MTBE - impacted water. Most of the

remaining sites had to shift to some other treatment technology such as air stripping

because of the poor perfonnance of the GAC. The reason for this is, MTBE is poorly

adsorbed on GAC and often breaks through relatively quickly which may lead to frequent

carbon change out requirements (Creek and Davidson, 2000, Brown et aI., 1997).

Although GAC does not seem to be effective for the treatment of high concentrations of

MTBE, some researchers have recommended its use as a polishing step for low levels of

MTBE removal (Creek and Davidson, 2000, Brown et a1., 1997). In spite of all this, GAC

technology for MTBE remediation needs further investigation, as it has been claimed in

some reports that coconut shell GAe and new products like Filtrasorb 600i!l are much

more effective for MTBE removal than coal based GAC (Creek and Davidson, 2000,

http://www.calgoncarbon.com/news/pr0004l0.html). There are a few reports in which

other adsorbents like carbonaceous resins, porous graphitic carbon and high silica zeolites

have been investigated for MTBE removal (Anderson, 2000; Davis and Powers, 2000),

Based upon these studies, it has been established that adsorbents like Ambersorb® 563

and 572, and high silica zeolites like high mordenite are much more effective for MTBE

removal than activated carbon.

Advanced Oxidation Processes

Several relatively successful laboratory scale studies have been conducted in

which advanced oxidation processes have been used for destroying MTBE in water.

Barreto et al (1995) demonstrated photocatalytic degradation of MTBE using T102 as

catalyst; Yeh and Novak (1995) used H20 2 in the presence of ferrous iron (Fenton's
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reagent) to chemically oxidize MTBE; Chang and Young (2000) demonstrated removal

ofMTBE by using W/I-h02. Creek and Davidson (1998) regard advanced oxidation a

promising technology, provided currently available methods are refined to make It more

cost effective. It can also be used as a part of a treatment train e.g. in combination of

GAC or biological degradation for groundwater remediation (Creek and Davidson, 2000;

Yeh and Novak, 1995).

Air sparginglBiosparging

Air spargingfbiosparging appears to be applicable for MTBE remediation,

because MTBE is volatile (although less so than BTEX), and somewhat biodegradable

(less so than BTEX) (Creek and Davidson, 2000). Creek and Davidson (1998) report a

case study of the site at which there was evidence that air sparging was physically

removing MIBE and adding oxygen to groundwater. At another site where biosparging

was being used, it appeared that it did somewhat aCl:elcrate the natural degradation and

attenuation processes that were apparently already decreasing MTBE and BTEX levels at

the site (Creek and Davidson. 2000).

Soil vapor extraction

For the site where MTBE sti It resides in the soil-entrapped gasoline, soil vapor

extraction is expected to work better for MTBE than BTEX compounds due to MTBE's

relatively high vapor pressure (Creek and Davidson, 2000). Creek and Davidson (1998)

report several case studies in which soil vapor extraction was not only successful in

removing large amount of MTBE from soil, but in some cases also led to the
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improvement in groundwater conditions, probably by preventing contaminant recharge to

the groundwater system (Creek and Davidson, 2000).

Bioremediation ofMTBE

Several mixed and pure cultures have been isolated that can metabolize (Cowan et

al., 1996; Eweis et aI., 1997; Fortin and Deshusses, 1999a; Hanson et a1., 1999; Salanitro

et a1., 1994) and cometabolize (Gamier e{ al., 1999; Steffan et aL, t 997; Hardison et aI.,

1997, Hyman et aI., 1998) MTBE in laboratory microcosms under aerobic conditions.

There are few studies that have demonstrated MTBE biodegradation under methanogenic

(Wi lson and Cho, 2000), den itrifying (Bradley et aI., 200 I), and iron reduci ng conditions

(Finneran and Lovley, 2001). There are now several reports where it has been shown that

MTBE can also be biodegraded in the field. Three strategies have been tested for MTBE

biorernediation - intrinsic bioremediation, biostimulation and bioaugmentation. A study

conducted on intrinsic biodegradation of MTBE in the Coastal Plain aquifer, Sampson

County, North Carolina, by Borden et at. (1997) showed that MTBE can be biologically

degraded under aerobic and denitrifying conditions. The decay rate observed in this study

was very low (0 ~ 0.001 dol), however in another study conducted in the Borden aquifer.

Ontario, Canada (Schinner and Baker, 1998), signi ficant reductions in MTBE mass were

observed after the period of 8 years, which was attributed to biodegradation. Recently,

researchers from U. S. G. S. demonstrated tremendous potential for intrinsic

biodegradation ofMTBE in surface water sediments and shallow ground waters, with the

help of laboratory and field studies (Bradley et al.. 2001; Bradley et aI.. 1999; Landmeyer

et al., 2001). Their studies show that oxygen supply appears to be the most important
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constraint In bioremediation of MTBE by indigenous bacteria. In surface - water

sediments, additional constraints appear to be parameters such as percentage content of

silt, clay, and organic matter. The most important observation was that the prior redox

conditions, or previous MTBE exposure did not seem to affect the MTBE biodegradation

in laboratory microcosm studies (Bradley et aI., 2001) conducted with surface - water

sediments. In a study conducted at U.S. Coast Guard Support Center, Elizabeth Ciry

(KC), Wilson and Cho (2000) suggested that the anaerobic biodegradation of MTBE was

capable of bringing its concentration below regulatory standards before the plume had

traveled 800 ft.

Because of the apparent oxygen limitation in the subsurface, several studies have

been conducted in which attempts have been made to stlrnulate the biodegradation of

MTBE by injection of oxygen to the subsurface. Hicks (1999) presents two case studies

in Wisconsin where biostimulation by use of oxygen release compound (ORC~) appeared

to decrease the MTBE concentrations substantially in the subsurface. In a recent study

conducted by Landmeyer et al. (200 I), rapid biodegradation of MTBE was observed after

dissolved oxygen levels in the shallow ground water were increased by adding an ORC®

slurry. Within 60 days, MTBE removals up to 87% and 79% took place in the wells

located close to and further downgradient respectively. Salanitro et al. (2000) observed

the similar rapid removal of MTBE after the lag period of 173-230 days upon injection of

oxygen to the subsurface. A recent study by Wilson et a1. (2002) showed decrease in

MTBE concentration from several hundred to less than 10 J-Lg/I by introduction of all

aerobic zone using diffusive oxygen release. The lag time for degradation was less than 2

months and apparent pseudo first order degradation rate was 5.3day"1. These studies show
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that intrinsic bioremediation and biostimulation can be promising strategies for MTBE

clean ups, however still there are some constraints associated with these technologies.

The first constraint is that the intrinsic biodegradation of MTSE may be too slow and

may not be effective at some distance from the source of contamination as happened in

case of the Coastal plain aqui fer study in North Carolina (Borden et aI., 1997). The

resulting delay in clean up can lead to further spreading of the contamination as MTBE

can move in groundwater at velocities that are similar to the velocities of the local ground

water (Squillace et a1., 1996). Also, intrinsic bioremediation may fail if large amount of

organic malter and readily degradable substrates are present along with MTSE, as this

can lead to competitive inhibition of MTBE biodegradation by other carbon sources, or

competitive consumption of oxygen to support MTBE biodegradation (Bradley et a1.,

2001). Bradley et al. (2001) observed an inverse relationship between MTBE

mineralization and percentage content of silt and clay (grain diameter < 0.125mm) in

surface-water sediments, which can be of concern when dealing with clayey soils.

Biostimulation also has its potential disadvantages, e.g. in the study conducted at Port

Hueneme, California (Salanitro et aI., 2000), there was a long lag time before significant

biodegradation of MTSE was observed. Moreover it was not effective in removing

tertiary butyl alcohol (TBA), which is also a contaminant of concern in MTSE

remediation. In contrast to this, biostimulation worked exceptionally well at Vandenberg

Air Force base, California where the lag time for MTBE degradation was low, and

degradation rates were relatively high (WilsOll et aI., 2002).

Some of these constraints may be eliminated by bioaugmentation. Although very few

studies have been been reported so far, where bioaugmentation has been used for MTSE
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clean up (Salanitro et a1., 2000; Spinnler et aI., 2001), it appears to be a promising

strategy. SaJanitro et al. (2000) injected oxygen and MTBE degrading culture (Me, 100)

to the aquifer and observed decrease in MTBE concentrations after only 30 days and

throughout the 261-day experiment eventually to ~ 0.001-0.01 mgll. TBA concentrations

also declined to < 0.01 mg/l. However there are certain disadvantages associated with

bioaugmentation. These disadvantages also apply to biostimulation by oxygen injection

and ORC. Bioaugmentation and oxygen injection may reduce the permeability of the

aquifer within the intended treatment zone. This might lead to reduced groundwater flow

through the treatment zone and result in partial bypass of contaminated groundwater

around it (Wilson et a1. 2002). In short it can be said that intrinsic biodegradation,

biostimulation and bioaugmentation appear to be promising strategies for MTBE

remediation but following factors should be investigated to assess their feasibility with

respect to other strategies and also with respect to each other:

1. Presence or absence of indigenous microorganisms capable of degrading MTBE.

2. Extent and the rate of degradation of MTB E by indigenous bacteria.

3. Dissolved oxygen levels at the site.

4. Type of soil.

5. Existence of other contaminants or organic matter that can serve as alternative

carbon sources.

6. Financial constraints and time available.
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Air-phase Treatment of MTBE by Biofiltration

In many remediation cases, such as aIr stripping, soil vapor extraction, aIr

sparging, or wastewater treatment operations, large air streams contaminated with MTBE

are generated that require further treatment (Fortin and Deshusses, 1999a). Many

treatment technologies such as carbon adsorption, catalytic oxidation, membrane

processes, and biofiltration are available for the treatment of MTBE contaminated air. Of

all these, biofiltration offers an attractive option mainly because it has low operating costs

and produces minimal secondary pollutant waste streams (Devinny et al. 1999). Few

reports have been published showing effective MTBE removal from air streams using

biofilters and biotrickling filters (Fortin and Deshusses, 1999a, b; Eweis et aI., 1998;

Schroeder et al., 2000). Recently a study was reported in wtlich MTBE vapors were

treated in a biofilter using cometabohsm with pentane (Dupasquier et a1. 2002). All the

studies using metabolic degradation of MTBE in general have one thing in common, that

it took a large amount of time (6 months-I year) to get at least some biodegradation or

MTBE in the biofilters that were not inoculated with competent MTBE degrading

organisms. It took more than one year before MTBE biodegradation began in the

biofiltration work conducted at a wastewater treatment plant (Ewcis et aI., J997). In

another study conducted by Fortin and Deshusses (1999a), it took six months to enrich

MTBE degraders in the biotrickling tilters. It is also interesting to note that after the

biotilters were inoculated with competent and highly active MTBE degrading

microorganisms, the start-up times were reduced to a few weeks, but still they are longer

than usually observed in other biofilter applications (Fortin and Deshusses, 1999a; Eweis

et a!. 1998; Schroeder et ai, 2000). According to Fortin and Deshusses (1999a), the main
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causes of this appear 10 be the difficulty in establishing a thriving consortium due to shear

stresses experienced by the organisms in the biotrickling filters, slow growth rate and low

biomass yield of the process culrure. However in spite of slow start·up, the sludies have

shown that once the biofilters start, they can be very effective in removing MTBE from

air. In a study conducted by Eweis el a1. (1997), a compost biofilter at the Joint Water

Pollution Control Plant of the Los Angeles County Sanitation District that was creating

air streams containing other hydrocarbons removed MTBE effectively after the lag period

of 1 year. The elimination capacity was 6-8 glm3/hour. Concentrations up to 200 ppb

MTBE in the gas phase were removed at an average removal efficiency of 90%. In

another study, Eweis et aL (1998) observed removal efficiencies of greater than 95% at

an inlet concentration of 35 ppm MTBE, using a pilot scale biofilter tilled with the media

composed of extruded diatomaceous earth and inoculated with MTBE degrading

organisms. In this study, the impact of toluene on removal of MTBE was also studied by

introducing different concentrations of toluene into the inlet air during the course of the

experiments. Toluene concentrations of 8 and 25 ppm reduced the MTBE removal

efficiencies for a short interval of time but the biofiltcrs quickly recovered to achieve

removal efficiencies close of 98% for MTSE and tOO% for toluene. In another study,

addition of 70 ppm toluene led to significant breakthrough of MTBE (due to nitrogen

limitation) but the biofilter did recover after some time to achieve near 100% removal of

both toluene and MTBE (Schroeder et a!. 2000). Fortin and Deshusses (l999a) observed

greater than 97% removal efficiencies of MTBE at the inlet concentrations of 0.65 - 0.85

glrn
3

using biotrickJing filters filled with lava rocks and pall rings. In the study conducted

by Dupasquier et aJ. (2002), pentane oxidizing bacteria were to used degrade MTBE in a
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biofiher filled with Vermiculite. MTSE degradation rates obtained in this study were

much lower than those using consortia or pure strains that can mineralize MTBE. At {he

residence time of 1.\ hours and inlet pentane concentration of 18 glm"\ the elimination

capacity of MTBE was between 0.3 and 1.8 g/mJ/hour with inlet MTBE concentration

ranging from 1.1 to 12.3 g/m3
.

Thus these studies demonstrate that biofiltration can be considered as a strategy

for off-gas treatment containing MTBE but some issues need further research. The

problem areas include long start-up time of the biofilters tTcating MTSE, behavior of

MTBE degrading biofilters under transient conditions, and removal ofMTSE in biofilters

in the presence ofBTEX and other contaminants.
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CHAPTER III

MATERIALS AND METHODS

Experimental System

An illustration of the experimental biofiltration system is provided in Figure I.

The system consisted of two Plexiglass columns (Biofilter P and C) of 40 em height with

an internal diameter of 9.8 em. Each column contained four sampling ports that enabled

detennination of concentration of the contaminant prior to, at the exit of and at two levels

along the length of the columns. Distances of the two intennediate sampling ports were

13 cm and 27 em from the inlet of the column. Filter bed materials filling the entire

height of biofiltration columns were supported by a stainless steel sieve plate.

Compressed air, after being passed through activated carbon to remove any particulates

or organics, was humidified and contaminated with MTBE before being fed tangentially

at the base of the column. Humidification was carried out by bubbling the air through two

liquid reservoirs of capacity 1 Land 0.5 L. MTBE was introduced to the air flow stream

using a programmable syringe pump (kdScientific model 2000 series) equipped with 5

mL gas tight glass syringe (Hamilton Company, Reno, NY). Pure liquid MTBE was

pumped into a heated tee junction in the supply line where it was allowed to volatilize

into the air stream. Air flow rates at the inlet and exhaust ends were metered by means of

previously calibrated gas flow meters.
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Figure 1. Biofiltration system: 1, activated carbon filter; 2, flow meter; 3, small water reservoir (0.5 L); 4, big water reservoir

(l L); 5, syringe pump; 6, mixing chamber; 7, biofilter P; 8, biofilter C.
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Filter Media

Most of the biofilter media include a mixture' of biologncal residues and inert bulking

agents as this combination provides low pressure drop, reduced compaction, improved

porosity, homogeneous gas flow, and reduced channeling (Devinny et aI., ]999; Swanson

and Loehr, 1997). In the present study compostlbulking agent was selected as a filter

media because of the following specific advantages in addition to the general one

provided above:

1. High surface area, high air penneability, high water retention capacity and low

cost (Devinny et al., ]999; Swanson and Loehr, 1997).

2. Easy moisture control as compared to peat beds (Devinny et a1., i 999).

3. Low pressure drop and space requirements as compared to soil biofilters

(Devinnyet aI., J999).

The compost used in this study was obtained from the city of Nonnan, Oklahoma,

yard waste composting facility. The bulking agents used in this research were perlite

(Pursell Industries Inc., Sylacauga, AL) and granular activated carbon (F600 12x40,

Calgon Carbon Corporation, Pittsburgh, PA). The mean particle diameter of GAC was I

rnm. The perlite was sieved through # 10 mesh U.S. sieve (2.00 mm). Residue containing

the fines was discarded and that which was retained on the sieve was used in the media.

The compost was sieved through # 4 mesh U.S. sieve (4.75 mm) to discard big pieces of

wood chips before it was used. Biofilter P was packed with compost and perlite in the

ratio of 60:40 by volume. Biofilter C was packed with compost, perlite and carbon in the

ratio of60:20:20 by volume.
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Geometric Mean Diameter (Dso) Determination

Geometric mean diameter for the media used in biofilter P and biofilter C was

determined by sieve analysis. Specifications of sieves used in sieve analysis are given in

Table 5. Sieves were weighed to the nearest 0.1 grams and a known weight of medium

was sieved through them. The weight of individual sieve along with the medium retained

on it was then determined, from which the weight of the media retained on each sieve

was calculated. This data allowed the calculation of the mass fraction of each particle size

range. The plot of cumulative percentage less than top sieve size vs. sieve size on log-

probability paper, gave the required geometric mean diameter (Dso).

Partition Coefficient Studies

Partitioning coefficient was estimated using the procedure described by Hodge

and Devinny (1995). Serum bottles (160 ml) (Wheaton) sealed with Tel1on® lined rubber

septa (diameter 20 mm, Supelco, Bellefonte, PAl and containing 25 ml (Bioftlter P) Or 10

ml (Biofilter C) of media were used in this experiment. Three replicates were taken for

each case. The bottles and media were au toelaved for 1 hour (121 oC, 15 psi) before

addition of a known amount of MTBE. The bottles were kept in constant-temperature

incubator to eliminate the effect of temperature on partitioning and were mixed

occasionally with a vortex machine. Headspace samples were taken for several days; the

lack of further change indicated equilibrium had been reached between the air and

solid/water phases. The partitioning coefficient (kh) was detennined by the following

relationship:
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Table 5: Specifications of Sieves Used in Sieve Analysis

Sieve # Opening (rom)

4 4.76

10 2

20 0.85

30 0.6

40 0.42

50 0.297

60 0.25
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From the above value of partition coefficient, the value of mass partition coefficient (km)

was detennined using the following formula:

= k~ (1 - 8)
8

The value of retardation coefficient (R) was then detennined by the following

relationship;

R = Mads + Mair
Ma,r

= 1 +km

where:

Ma = Mass of the contaminant added, mg

Mair = Mass of the contaminant in air phase, mg

Vsw = Volume of solid/water phase

Calr = Concentration in air phase, mgll

Cads = Concentration in adsorbed phase, mgt]

Mads = Mass of contaminant in the solid/water phase, mg

8 =Filter material porosity
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Nutrient Media

Daigger mineral salts media (Daigger, 1979) was used for maintaining the MTBE

degrading culture, soaking compost and GAC, and for irrigation of the biofilters. The

media was prepared by mixing 100 mt of phosphate stock, and 10 ml each of nitrogen,

sulfate and chloride stock, and diluting to 1 L volume by adding distilled/deionized

water. The components of phosphate, nitrogen, sulfate and chloride stock are given in

Table 6.

Inoculum Preparation

At start-up, both the bioftlters were inoculated with a MTBE degrading bacterial

consortium. This consortium was supplied by the Department of Environmental Sciences.

Cook College, Rutgers University, New Brunswick, NJ. The enriched consortium was

diluted (2 times dilution) with sterile Daigger mineral salts media in 0.5 Lor 1 L culture

bottles. The headspace of 250 mL (in case of 0.5 L bottle) and 500 mL (in case of 1 L

bottles) was provided to ensure availability of sufficient amount of oxygen. These bottles

were fitted with Hungate tubes, sealed with Teflon® lined rubber septa (diameter 20 mm,

Supelco, Bellefonte, PA), and were kept on the shaker at room temperature (approx.

2SoC). The culture was maintained for approximately 20 days during which it was fed

MTBE many times before inoculation of the biofilters.

Reactor Start-up and Operation

Before packing the reactors, the compost and GAC were soaked in the nutrient
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Table 6. Composition of Daigger Mineral Salts Media

I Stock Chemical Concentration (gil)

Nitrogen stock NH4Cl 101.2

Phosphate stock K2HP04 43.5
I

KH2P04 34.0

Sulfate stock MgSO,.7H2O 15.0

MnS04.F-hO 0.45
I

Na2Mo04.2H20 0.05

Chloride stock CaCI2 2.0

FeClJ.6H2O 1.5 ,I

CoCb.6H2O 0.15

ZnCl2 0.15

I CuCh.2H2O 0.05

HJBOJ 0.015

-- ------
Cone. HC) 3 mLiL

Source: Dalgger, 1979
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solution (Daigger mineral salts media) several times to bring their initial pH of 9, down to

neutral. Media for biofilter P was prepared by mixing 3 L of compost with 2 L of perlite

(60:40 v/v) and 400 ml (VSS = 58 mg) of the MTBE degrading culture. Similarly, media

for Biofilter C was prepared by mixing 3 L of compost with 1 L of perlite, I L of GAC

and 400 ml (VSS = 146 mglL) of the MTBE degrading culture. In both cases the

moisture content of the mixture was brought to field capacity by addition of Daigger

mineral salts media, before packing the reactors with the media. Contaminated air flow

was then started and samples were taken after 30 minutes.

The reactors were maintained at room temperature (approx. 2SoC) and apart from

packing material, the operation of the two parallel biofilters was identical. During the

three months of operation of the reactors, they were subjected to different loading rates

obtained through the combination of different air flow rates and MTBE concentrations.

Experimental schedule and operating conditions are shovm in Table 7.

Peat Humic Substances (PHS) Effect Evaluation Experiments

A previous study (Fortin and Deshusses, 1999) had indicated that PHS may have a role in

shortening the startup time of the bioftlters treating MTBE. Therefore experiments were

conducted to determine the effect of PHS on biodegradation of MTSE. These

experiments were conducted in two stages. In the first stage, the effect of low

concentrations of PHS (0.2, 2 and 20 mg/l) on MTBE biodegradation was investigated

(low concentration experiment). In the second stage, the effect of high concentrations of

PHS (50, 100, 150 ad 200 mglt) on MIBE biodegradation was investigated (high

concentration experiment).
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Table 7: Experimental Schedule and Operating conditions

DAY Empty Bed Biofilter P Biofilter C

Residence Average Loading Average Loading

Time Concentration rate Concentration rate

(minutes) (glm3
) (glm3/hour) (glmJ

) (glm3/hour)

1~38 1.4 0.2 8.27 0.19 7.94

39-55 1.4 0.34 14.14 0.33 13.81

56-65 2.3 0.3 7.9 0.33 8.66

66-77 2.3 0.1 2.76 0.09 2.46

-
78-87 2.3 0.05 1.44 0.05 1.36

88-100 3.5 0.06 1.02 0.06 1.01
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Experiments were performed with 160 ml serum bottles containing 50 ml of

sterile Daigger mineral salts media, and sealed with Teflon® lined rubber septa and

aluminum crimp caps. Autoclaved controls (I2l0C, 15 psi for 30 minutes) were used to

evaluate abiotic losses. Corresponding to each concentration of PHS, six bottles were

used.. Two of these six bottles were used as controls and remaining four were inoculated

with 1 ml of MTBE degrading culture. A known amount of PHS was then added to the

two of four inoculated bottles and incubation was earned out at 25°C. Consumption of

MTBE was monitored by headspace analysis with the help of GCIMS until all of it was

degraded.

AnalyticaJ Techniques

Gas-Concentration Oetennination

MTBE in the inlet and the outlet air was measured using a Gas Chromatograph/Mass

Spectrometer (Model: GCMS-QP5050, Shimadzu Corporation, Kyoto, Japan).

lntegration of peak areas was carried out using Class 5000 software (Shimadzu

Corporation, Kyoto, Japan). The GC was equipped with a 60 m 08-624 column (J&W

Scientific, Folsom, CA), with an internal diameter 0.32 mm and film thickness 1.8 J,Lrn.

Oven temperature was held at looDe for 2 minutes and then increased to 130DC at

20°C/min. The injector was kept at 150°C and column pressure was 25 psi. The carrier

gas used was helium. 200 I.d samples were injected into the GC from a 500 I.d gas tight

syringe (Hamilton Company, Reno, NV) into the split injector (split ratio = 5). The mass

spectrometer was tuned to optimize the signal in the 35-125 m/z range. Under these

conditions the retention limes of MTBE and tertiary butyl alcohol (TBA) were
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approximately 3.1 and 2.97 minutes respectively. It should he noled that TBA could be

reliably quantified up to the concentration as low as 0.002 mg/I, but it could be detected

at lower concentrations by matching of the mass spectra corresponding to its peak with

library mass spectra. At standard operating conditions, influent and effluent streams were

analyzed in triplicate once per day. Gas standards for MTBE and TBA were prepared as

follows:

I. Stock solutions of MTBE were prepared in methanol with concentrations l4.88

gil and 74.4 gil and stored at 4°C.

2. In case of MTBE different volumes of these stock solutions, or in some cases

known amount of pure MTBE were added to the 120 mL serum bottles containing

deionized water. The bottles were sealed with Teflon® lined rubber septa and

aluminium crimp caps. In case of TBA, known volumes of pure TBA were

injected into the sealed serum bottles containing deionized water.

3. These bottles were kept in the constant temperature incubator at 25()C for at least

1 hour to equilibrate.

4. Henry's constants (25°C) of 0.000587 atm m)/mol for MTBE and 0.0000144 alm

m3/mol for TBA were used to calculate headspace concentrations of MTBE and

TBA.

5. Calibration of the instrument was perfonned regularly by injecting at least three

known concentrations.

50



r
Humidity

Humidity of the influent and effluent aIr was measured usmg a Digital

ThemometerlHygrometer (Model DTH I, Davis Instruments, Baltimore, MD) that had

effective range of20 - 90% Relative Humidity (RH).

Pressure Drop

Pressure drop across each column was determined with an Air Velocity Meter

(Model 400, Dwyer Instruments, Inc. Michigan City, IN). This meter can also function as

a manometer with a range of 0-10 inches of water.

Moisture and Ash Content

Moisture and ash content of the media was measured before packing the columns.

This was done according to ASTM method D 2974 - 00 (2001).

Volatile Solids

The procedure used in section 209F of Standard Methods (APHA et a1., 1985)

was used to determine the volatile solids.

Density Measurements

Biofilter material density was measured by weighing a sample of known volume

(50 ml) using analytical balance (Fisher Scientific).
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Porosity Measurements

The porosity of media samples was estimated by measuring the volume of the

sample with a graduated cylinder (50 ml). The sample was weighed with an analytical

balance and water (22°C) was then added to fill the void-space volume. Air bubbles were

dislodged by periodically tapping the cylinder. The saturated sample weight was then

deteJ1l1ined and percent porosity was calculated from the following relationship:

% porosity == (void space volume)
(volume of the sample)

% porosity == (weight of sample + cylinder + water) - (weight of sample + cylinder)
(density of water) ... (volume of sample)

pH determinations

The pH values of the samples were measured using a pH meter (Accumet, pH

meter 900, Fisher Seienti fie). Samples were saturated with d isti !Jed water, covered with

parafilm and allowed to stand for approximately 1 hour before pH measurement was

taken using pH meter. The pH meter was calibrated using buffer solutions of pH 4, 7 or

10.

52

(.
I

1
c'~,

~.

, I

It'
.;ll
~J:

:i;



CHAPTER IV

RESULTS AND DISCUSSION

The results of this study are divided into the following categories:

1. Culture maintenance

2. Biofilter media characterization

3. Peat Humic Substances (PHS) effect evaluation experiment

4. Start-up response of the biofilters

5. Behavior of the biofi lters under di fferent steady state loading conditions

6. Behavior of the biofilters under transient conditions

7. Validation of Ottengraf's model

Culture Maintenance

MTBE degrading culture was a gift from Dr. Robert Cowan of the Department of

Environmental Sciences, Cook College, Rutgers University, New Brunswick, NJ. The

culture was transported from New Jersey by the next day air delivery, 1t was diluted (2

times dilution) and maintained in three glass bottles (Active 1,2 and 3) of 0.5 LorI L

capacity. During this period MTBE was repeatedly fed to the culture and degradation was

monitored by analysis on GCIMS. The results ofculture maintenance are shown in Figure

2, 3 and 4. The culture showed a lag period of about II days before it started to degrade

MTSE rapidly. One probable reason for this lag was the temperature
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Figure 2. Biodegradation ofMTBE by Rutgers culture (Active 1).
(Note: The peaks correspond to the time when the culture was spiked with MTBE. The
arrows indicate the time when the bottles were flushed with air and also spiked with
MTBE)
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variations to which culture might have been subjected during transportation.

To ensure availability of sufficient amount of oxygen, the bottles were flushed

with air for approximately 15 minutes on day 14. However on day 17 all the bottles

showed a decrease in the rate of MTBE biodegradation. So on the same day, all the

bottles were opened, pH was checked and ailer flushing the headspace with air, they were

again incubated at 25°C. The pH was found to be near neutral and depletion of nutrients

and oxygen was not expected, but inspite of this, rates of MTBE biodegradation did not

reach the previous values.

An exact reason for this slow down is not known. However a possible explanation

is the formation and accumulation of toxic metabolites. Some of the metabolites of

MTBE degradation shown by previous studies are TBA, 2-methyl-2-hydroxy-I-propanol

(MHP) and 2-hydroxyisobutyric acid (HIBA) (Steffan et a1. 1997). It is speculated that

further breakdown produces intennediates such as 2-propanol, acetone and

hydroxyacetone (Steffan et al. 1997; Salanitro et aT. 1998) (see Appendix B for

degradation pathway). Of all these metabolites, the analysis system used in this work was

able to detect only the most commonly encountered metabolite of MTBE, i.e. TBA. No

TBA accumulation was observed at any stage of the experiment in any of the bottles.

This is in accordance with the observations of A1agappan and Cowan (200 I) with this

culture. They did nOl find any accumulation of TBA even at MTBE concentrations

greater than 1000 mg/1.

While Active I and Active 3 bottles were used to inoculate the biofilters on day

20, some experiments were conducted with the Active 2 bottle to investigate the reason

for the slow dow11 of the culture activity. After day 24, the culture in Active 2 bottle was
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split into two bottles. Both the bottles were flushed with air and in one bottle 20 m1 of

headspace was replaced with pure oxygen. The bottles were then kept on the shaker and

incubated at 2SoC (See Figure 5). The rate of consumption of the first spike of MIBE

was nearly the same in the two bottles. But for the second spike, the culture in the bottle

that was flushed with air (Active 2a) stopped degrading MTBE while the culture in the

bottle with partial replacement of headspacc with pure oxygen (Active 2b) continued to

degrade MTSE at relatively slower rate. On day 21, when MTBE concentration was

nearly zero in Active 2b, the headspace in both the bottles was replaced with 40 ml

oxygen. This was done to see whether the degradation activity could be restored in active

2a after being supplied with excess oxygen, but this did not happen. Even after 16 days of

incubation (after the partial replacement of the headspace with pure oxygen) no

degradation of MTBE was observed in Active 2a while the culture in Active 2b was still

able to degrade MTSE. It should be noted that the culture in Active 2b also stopped

degrading MTSE after few days (data not shown).

As no duplicates were used in this experiment, no definite conclusion regarding

the effect of oxygen concentration can be derived from it, however limited data does

suggest that excess oxygen might be helpful in maintaining this particular culture for

longer times. Also the slow down in the rate of MTBE degradation after each successive

spike of MTBE and the subsequent cessation of MTBE biodegradation do support the

hypothesis of the accumulation of toxic metabolites.

Another interesting point to note is while in the batch mode the culture lost its

activity after some time, no loss of activity with time was observed after inoculation into

the biofilters. This may be because the toxic compounds were not able to accumulate in
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the biofilters due to continuous air flow through the system. Also it has been suggested

that for cultures with slow growth rates such as this (Ilm:u = 0.033 hour-I at 2SoC

(Alagappan and Cowan, 2001), attached growth might provide a more favorable

environment (Fortin and Deshusses, 1999a).

Biofilter Medium Characterization

Characteristics of biofllter materials such as particle size, density, moisture and

ash content, pH, porosity, partition coefficient, mass partition coefficient and retardation

factor (see Chapter II for definitions) are shown in Table 8. Moisture content of both the

media was close to 55% which is within the recommended operating range (40~60%) of

the biofilters (Leson and Winer, 1991). Throughout the study the influent air humidity

was kept greater than 90% to ensure minimum loss of moisture from the biofiHer media.

pH of the biofilter P media was neutral, however, biofilter C media was slightly alkaline

due to the presence of activated carbon. The activated carbon used in this study had a pH

of 9, and although it was soaked in the nutrienllbuffer solution several times, the pH did

not come exactly down to neutral.

Values of k h, km and R were considerably higher for biofilter C medium than

biofitler P medium. This was due to the presence of activated carbon and the relatively

high amount of adsorption taking place in biofilter C medium. According to Hodge and

Devinny (1994), values ofR typically vary from 2 or 3 to tens of thousands, so the values

obtained in the present study are within the acceptable range. It should be noted that

theoretically the detention time of the contaminant in the biofilter is the air detention time
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Table 8, Biofilter Medium Characterization

Parameter Biofilter P Biofilter C

Particle size, d50 (mm) 2.4 2.7

Density (gil) 736 724

Moisture content (%) 55 56

Ash content (%) 24 25

pH 7 7.5

Porosity 0.34 0.37

Partition coefficient (kh) 62 6t45

Mass partition coefficient (km) 120 10462

Retardation factor (R) 121 ]0463
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multiplied by the retardation coefficient., therefore it is expected that MTBE had much

higher detention times in biofilter C than biofilter P.

PHS Effect Evaluation Experiment

-A previous study (Fortin and Deshusses, 1999a) has indicated that PHS may have

a beneficial effect on the performance ofbiofilters treating MIBE, and may shorten their

stan-up times also. Therefore experiments were conducted to determine the effect of PHS

on biodegradation of MTBE. These experiments were conducted in two stages. In the

first stage, the effect of low concentrations of PHS (0.2, 2 and 20 mg/I) on MISE

biodegradation was investigated (low concentration experiment). In the second stage, the

effect of high concentrations of PHS (50, 100, 150 and 200 mg/I) on MTBE

biodegradation was investigated (high concentration experiment). The results of 'low

concentration experiment' are shown in Figures 6a., 6b and 6c. and the results of 'high

concentration experiment' are shown in Figures 7a, 7b, 7c and 7d. It can be clearly seen

from the above mentioned figures that PHS did not have any favorable or adverse effect

on the biodegradation of MTBE for the range of concentrations investigated. It should

also be noted that these experiments were conducted in suspended growth reactors for the

sake of simplicity. The response in attached growth systems might be different, but in our

case no further slUdies on the effect of PHS were earned out.
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Start-up Response of the Biofilters

Very few studies have reported the details of the start-up period of biofilters.

Start-up response is very important in the case of MISE biofiltTation, as previous studies

have shown that relatively long start-up times are required by biofilters treating MTSE

compared to other biofilter applications (Devinny et aI., 1999).

In the present study, after packing the columns with the media inoculated with

400m] MTBE degrading culture (VSS = 58 mg), the contaminated air flow was started to

both the biofilters. Figures 8 and 9 show the start-up response of the two biotilters. It

should be noted that there was some syringe pump malfunctioning for the first 9 days of

the operation of the bioftlters. Due to malfunction there was some inconsistency in the

data, especially in case ofbiofilter P. Due to this problem with the syringe pump, MTBE

was not fed to the reactors for about 38 hours after glh day, although the flow of air was

not stopped to the two reactors.

In the case of biofilter C, for the first 7 days of its operation, nearly constant

removal of about 30% was seen. This is assumed to be due to adsorption on activated

carbon. The breakthrough of the carbon led to the considerable decrease in removal

efficiencies on 8
th

and 9
1h

days. On the I i h and 13lh day, due to the possible regeneration

of activated carbon by the passage of clean air through the biofilter (due to above

mentioned syringe pump malfunctioning), removal efficiency of 28-29% was observed.

After this the removal efficiency of the biofilter was unstable, however the general trend

indicates a steady increase from day 20 up to day 26, when a relatively steady removal of

about 50% was observed. Tn contrast 10 biofllter C, removal in biofiIter P was nearly zero

for the first 9 days, suggesting poor adsorption of MTBE on perlite and compost.
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Removal efficiencies were fluctuating after that but from day 21 $1 to day 33 there was a

steady increase in removal efficiency from 0 to about 40%.

Visual observation revealed the growth of white, filamentous, fungus like material

throughout the biofilter beds on 16lh day. The growth of this fungus like materiaJ

continued to increase until day 22, when 2-3 strands of this material, about 2-3 em long

were observed in both the biofilters. Usually fungus growth in the biofilters is associated

with low pH and low moisture conditions (Devinny et a1. , 1999). However in this case the

chances of both these problems developing in our biofilters were very remote. That is

because the biofilters were started at near neutral pH and high moisture content, and

moreover the inlet air was humidified to greater than 90% relative humidity before

entering the filters. The fact that tbe growth of this fungus like material was negligible in

the later stages of the biofiller operation also refutes the occurrence of low pH and low

moisture conditions in the biofilters. In spite of no visible signs of bed drying, 150 ml

water was poured to both the biofilters on day 22 and visual observation suggested that

fungus started to decay after thal. This problem was not encountered again during the

entire operation of the biofilters.

TBA was detected in the outlet air of both the biotilters on day 23 suggesting that

biodegradation had started in both the reactors, The detection of TBA was confirmed by

matching the mass spectra corresponding to TBA peak with the NlST62 library, mass

spectra of TBA from Shimadzu Class5000 software. This unusually long acclimation

time even after inoculation of the biofilters with active MTBE degrading culture has been

observed in the previous biofiltration studies also. In the study by Eweis et al. (1998) the

acclimation phase was about three weeks. Fortin and Deshusses (1999a) also mentioned
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Figure 8: Start-up response of Biofilter C
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Figure 9: Start-up response of Biofilter P ...
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the long acclimation times required by the biotrick.1ing filters used in their study. They

observed a lag time of about 25-35 days before removal efficiencies started to increase in

their biotrickling filters. Long start-up times have also been observed in the case of some

other relatively recalcitrant compounds such as dichloromethane. Ergas et al. (1994)

observed a lag time of about a week before little degradation of dichloromethane started

to occur in their biofilter even after inoculation with active dichloromethane degraders.

They explained that the redistribution and growth of microbial populations or attachment

of the organisms to the media may be required before sign.ificant removal is observed

after inoculation (Ergas et al., 1994). In the present case, low specific growth rate of the

culture (0.033 hour- l at 2SoC) and moderate cellular yields (0.35 mg ceIJs COD/mg

substrate COD at 2SoC) might be the reason for slow start-up (Alagappan, 2001 ).

One hundred ml of Daigger mineral salts media was poured from the top to each

biofilter on day 33 to overcome any possible nutrient limitation. Interestingly both the

biofilters showed a decrease in removal efficiencies for the next two days following the

addition of nutrient media. This might be due to the drainage of some active biomass \\,rith

the leachate produced after nutrient addition or oxygen and contaminant mass transfer

problems due to reduced air/water interface per unit biofilter volume as a result of high

water content.

Behavior of the Biofilters Under Steady State Loading Conditions

Long Tenn Performance of Biofilters

Biofilter P and Biofilter C were operated at various steady state loading rates

obtained by the combination of different gas flow rates and inlet concentrations. In total
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the biofilters were subjected to 6 different loading rates designated by run numbers 1, 2,

3, 4, 5 and 6. Operating conditions for each run are shown in Figures 10 and II.

Variation of removal efficiencies and elimination capacities over time for both the

biofilters are shown in Figures 12 and 13 respectively.

In run 1, the biofilters were subjected to average MTBE concentration of about

0.2 mgIL and gas flow rate of 2.12 L/min, giving the empty bed residence time of 1.4

minutes. Under these conditions Biofilter C exhibited higher removal efficiencies than

Biofilter P. A fraction of MTBE removed in both the biofilters was converted to TBA

(see Figure 14 and Table 9). TBA was detected in the outlet stream of both the biofilters

on day 23 by matching of its mass spectrum with the NIST62 library mass spectrum from

ctass5000 software, however quantification ofTBA was carried out starting from day 27.

The appearance of TBA in the outlet air of both the biofllters was slightly surprising

because no accumulation of TBA was ever observed in the liquid batch cultures.

Concentration of TBA started to decrease in the outlet air stream of Biofilter C staning

from day 33 and in the Biofilter P starting from day 34. It is possible that initially the

degradation rate ofTBA lagged behind the MTBE degradation but as the culture malured

TBA degradation rate increased and its accumulation in the biofiJters decreased.

After day 39 the inlet concentration of MTBE was increased to both the biofilters,

keeping the Dow rate constant (see Figure 12). This led to a decrease in removal

efficiencies for both the biofilters. The elimination capacity of biofilter C increased for

some days presumably due to adsorption on activated carbon, but decreased in the later

days of run 2 (see Figure 13). Immediately after the increase in concentration, there was

an increase in TBA in the outlet stream ofbiofilter C. Th.is increase was not seen in case
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Table 9: Stochiometric Amounl ofTBA From Biofilter P and C

..

Run Air Flow A verage inlet Mass of Mass of Removal Removal Concentration Concentration

# (l/min) conccntrati on MTBE into TBA Efficiency of Efficiency of ofTBA .... ofTBA **

ofMTBE the column produced* Biofilter C Biofilter P (Biofilter C) (Biofilter P)

I
(mgtl) (moles/min) (moles/min) (%) (%) (mg/I) (mg/I)

1 2.12 0.2 4.8xl0'o 4.8xl0·D 48.54 31.0 0.086 0.054

2 2.12 0.33 7.9x 1DO{) 7.9xlO·o 23.74 16.75 0.069 0.049

-
3 1.32 0.33 4.95x 10'b 4.95xlO~ 36.84 23.34 0.107 0.066

4 1.32 0.1 l.5x I 0'0 l.5xlO·D 29.19 33.91 0.0254 0.0297

5 1.32 0.05 7.5xlO·' 7,5xl0" 53.60 39.54 0.0230 0.0175

-
6 0.87 0.05 4.92x 10" 4.92xIO" 68.54 46.34 0.0297 0.0201

* Assuming 1 mole ofMTBE gives 1 mole ofTBA
** Assuming all the MTBE is converted to TBA
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ofbioftlter P until day 45. It may be possible that following the increase in concentration,

a significant portion of the MTBE was adsorbed onto the surface of the activated carbon,

and when this MTBE was metabolized, TBA was produced. TEA continued to show up

in the outlet stream of biofilter C for the entire duration of run 2, but its concentration

was almost negligible in the case ofbiofilter P after the 50lh day.

In run 3, a loading rate similar to that of run 1 was obtained by decreasing the gas

flow rate and keeping the concentration the same as in run 2. The increase in residence

time improved the removal efficiencies of both the biofilters. either due to improved gas

liquid mass transfer ofMTBE or due to the fact that microorganisms had more time to act

on the contaminant. During this run, no TBA was observed in the outlet stream of

biotilter P but TBA continued to show in the outlet stream of biofilter C until the 66th

day. As discussed earlier, the metabolism of adsorbed MTBE and relatively high

elimination capacities of biofilter C compared to biofilter P might be responsible for this

difference.

Run 4 was started at the end of the 66 1h day. In this rUll, the concentration of

MTBE was decreased to 0.1 mgtl, keeping the residence time same as in run 3. Removal

efficiencies of biofilter P increased, while that of bioftlter C decreased considerably in the

tirst few days of its operation (see Figure 12). This may be due to desorption of MTBE

from the activated carbon. Elimination capacities of both the biofilters decreased,

indicating that the reactors were operating in the regime where diffusion limitation occurs

and elimination capacity varies directly with inlet concentration (for constant gas flow

rate) (Ottengrafand van den Oever. 1983). This aspect will be discussed in more detail in

the 'steady state perfonnance' section.
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It should be noted that just after two days of reduction of MTBE inlet

concentration, TBA concentration in the outlet stream of the biofilter C decreased to zero

(see Figure 14). After that, TBA was never detected in the outlet stream of any of the

biofilters for the remaining period of their operation.

At the end of 1he 78th day, run 5 was started by decreasing the inlet MTBE

concentration to 0.05 mg/1, keeping the flow rate same as in run 4. After a small period of

poor removal, presumably due to desorption, removal efficiencies of biofilter C started to

increase and remained greater than biofilter P for the entire period of the run. Biofilter P

also showed improvement in removal efficiencies.

Run 6 was started on day 88 by decreasing the gas flow (residence time = 3.5

minutes) and keeping the inlet MTBE concentration same as in run # 5. Removal

effLciencies of both the biofilters showed an increase and performance of biofilter C was

better than biofilter P for the entire duration of the run.

Steady State Performance ofBiofilters

This section discusses the steady state performance of the biofilters. The results

presented here were obtained in the pseudo-steady state, which was identified by nearly

constant exit gas concentration of MTBE. Figures 15 and 16 show the plots of

elimination capacity vs. load for biofilters P and C respectively. It can be easily seen

from Figures 15 and 16 that elimination capacity is an increasing function 0 f inlel load up

to the loading rate of about 8 g/m]/hour. Beyond the loading rate of 8 g/m3/hour

elimination capacity in both the biofilters reached a maximum value that was independent

of the inlet loading rate. This value was about 2.5 g/m3/hour for biofilter P and about 3.2

g/m3/hour for biofilter C (see Figures 15 and 16).
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In run 1, the biofilters were subjected to a loading rate of about 8 glm3lhour and

steady state elimination capacities of 2.54 g/mJ/hour and 3.2 g/mJlhour were obtained for

biofilters P and C, respectively (see Tables 10 and 11). Increasing MTBE concentration

from 0.2 mg/l to 0.33 mg/l did not increase th.e elimination capacities of both the

biofilters. They were still operating at approximately same elimination capacity as during

run I. This suggests that both the biofilters were limited by the degradation reaction rate

because if they had been limited by diffusion limitation, the increase in concentration

would have enhanced the transfer rate of the pollutant from gas phase to biofilm enabling

more microorganisms to act on the pollutant and thereby increasing the elimination

capacity.

In run 3, loading rates similar to run I were obtained with a different combination

of gas flow rate and inlet concentration. Ideally the biofilters should have shown the same

elimination rate as in run I and 2 (because of the degradation reaction limitation), but

both of them had slightly lower elimination capacities compared to earlier values. This

may be due to the inhibition effect of high concentration of MTBE (0.33 mg/I) applied in

run 2 and 3. Such inhibition effect has also been observed in other biofiltration studies

(Jorio et al. , 2000a; Jorio et aI., 2000b). This inhibition effect might have damaged to the

culture so the biofilters were not able to reach the previously obtained value of maximum

elimination capacity.

Lowering ofMTBE concentration in run # 4 reduced the elimination capacities of

both the biofilters suggesting the diffusion limitation regime (Ottengraf and van den

Oever, 1983). At this low concentration biolayer was not fully active and elimination

capacity was limited by the di ffusion rate from gas phase into the biofi tm rather than the
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Table 10: Experimental Results at Various Flow Rates and Concentrations for Biofilter P

Run # EBRT Inlet Inlet Load Removal Elimination

(minutes) Concentration (g/m3/bour) Efficieocy Capacity
I

(glm 3
) (%) (g/m 3/hour)

1 1.4 0.2± 0.04 8.27 ± 1.88 31.0± 0.96 2.54± 0.25

2 1.4 0.34± 0.02 14.14± 1.02 16.75± 5.37 2.35± 0.88

3 2.3 03± 0.02 7.9± 0.6 23.34± 2.77 1.82 ± 0.27

4 2.3 0.1 ± 0.01 2.76± 0.32 33.91 ± 6.8 0.97 ± 0.33

5 2.3 0.05 ± 0.01 1.44±0.31 39.54±5.92 0.53 ± 0.13

6 3.5 0.06 ± 0.01 1.02±0.1 46.34 ± 7.01 0.47±0.12

Table 11; Experimental Results at Various Flow Rates and Concentrations for Biofilter C

Run # EBRT Inlet Inlet Load Removal Elimination

(minutes) Concentration (g/m3/hour) Efficiency Capacity

(glmJ
) (%) \

(glm' /hour)

.
1 1.4 0.19 ± 0.04 7.94± 1.71 48.54± 5.01 3.22 ± 0.58

--
2 1.4 033 ± 0.03 13.81 ± 1.06 23.74± 3.66 3.26± 0.58

_.
3 2.3 0.33 ± 0.05 8.66 ± 1.32 33.73 ± 3.76 2.76 ± 0.45

--
4 2.3 0.09± 0.02 2.46 ± 0.45 29.76± 3.75 0.7 ± 0.13

5 2.3 0.05 ± 0.01 1.36 ± 0.16 53.60 ± 7.88 0.78± 0.22

6 3.5 0.06 ± 0.01 1.01±0.l8 68.54± 2.89 0.71±0.15
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reaction rate. Typical of diffusion limitation regime, further lowering of inlet MTBE

concentration led to sti II lower values 0 f elimination capacities in the biofilters.

However a look at the steady state removal efficiency values for runs 2 through 6

reveals that their values increase with the decrease in loading rates (see Tables 10 and

11). Increase in residence time possibly led to improved gas liquid mass transfer or more

time for the microorganisms to act on the contaminant, and decrease in inlet

concentration led to increased fraction of MTBE being converted. Maximum removal

efficiency for both the biofi Iters was achieved at lowest loading of about 1 g1mJlhour.

Thus biofilters were most efficient in removal ofMTBE at low loadings.

Concentration profiles of MIBE along the height of the biofilters

Figures 17 and 18 show the steady state concentration profiles of MTBE along the

height of biofilter C and P respectively. As stated earlier, if zero order kinetics are

assumed in the biofilter then according to Ottengrafs model, the shape of concentration

pro fi Ie is linear in case a f reaction limi tation and quadratic in case 0 f di [fusion Ii mit..ation

(see 'biofi Iter modeling section of chapter II). A look at the concentration profiles for

runs 4, 5 and 6 for both biofilters, reveals that they show dependence on the column

height according to equation 4 (Chapter 11). This gives further evidence that the loading

rates during these runs corresponded to diffusion limited regime. However for runs 2 and

3 the pro flies are fairly linear for both the biofiIters, suggesting reaction limitation. As far

as run I in concerned, the profiles for both the biofilters do not clearly show the nature of

limitation but as the loading rate in this was similar to run 3, this should correspond to

reaction limitation.
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Another interesting thing that should be noticed is tbe flattening of the

concentration profiles at low loading conditions (run 4, 5 and 6) for both the biofilters.

This effect is undesirable because in this case lengthening of the column may have a linle

or no effect on removal efficiency.

Some inconsistency in data was observed in case of runs 2 and 3 for biofilter P

and runs 2, 4, and 5 for biofilter C where the observed MTBE concentration for sampling

port 3 was more than sampling port 2. This may be due to channeling in the bed.

Concentration profiles of TBA along the height of the biofilters

Concentration profiles ofTBA along the height ofbiofilter C for 35lh day (run 1),

52 nd day (run 2) and 61 51 day (run 3) are presented in Figure 19. For all the profiles, TBA

concentration increases with the height of the biofilters up to sampling port 3 (height =27

em), suggesting that more and more MTBE was being converted as it moved through the

bed. However for 32nd day and 61 st day profiles, the concentration orTBA in the outlet of

the biofi leer was observed to be lesser than sampling port 3. This provides indication that

degradation of TBA was taki ng place inside the bed.

Comparison of steady state perfonnance of two biofilters

It should be noted that the except for the run 4, the steady state removal efficiency

and elimination capacity of biofilter C was always higher than biofilter P (see Tables 10

and II). This can be explained by the presence of activated carbon in biofiltcr C medium.

The research carried out in the field of drinking water treatment by the use of activated

carbon has suggested that carbon, with its unique properties, perfonns better than other
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conventional media. Dussert and Vanstone (1994) noted that the adsorption capacity of

activated carbon serves to concentrate substrates, nutrients and oxygen, extends the

contact time between the biomass and adsorbed organic substances and reduces the

concentration of toxic substances in local microbial environment. These factors lead to

better perfonnance of activated carbon in drinking water treatment. In the present case

the same factors are likely to be responsible for better performance of biofiltcr C as

compared to biofilter P. Abumaizer et a!. (t 998) got simjlar results when they compared

the performance of compost biofilters with and without activated carbon in the case of

BTEX biofiltration. As far as run 4 is concerned, slightly inferior performance of

activated carbon may be due to desorption of MTBE from the activated carbon because

of decrease in inlet concentration ofMTBE as compared to run 3.

Comparison of present study with previous studies on MTBE biofiltration

Few studies have been conducted on MTBE biofiltration so far. Comparison of

the present study with past studies on MTBE biofiltration is presented in Table 12. It can

be noticed that removal efficiency and elimination capacity attained in the present study

are lower than all the other studies except for the study by Dupasquier et a1. (2002). One

of the reason for lhis may be that the culture used in the present study was not able to

metabolize MTBE at the fast rate. The initial toxicity problem referred to in the culture

maintenance section, might be responsible for this in the sense that it may have never

been able to revert back to its original activity even after being inoculated into the

biofilter.
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Tahle 12: Comparison of Various Studies on MTBE Biofiltration

Reference Biofilter medium
-

Empty Start-up Inlet MTBE Maximum Maximum Comments
bed time concentration removal elimination

contact efficiency capacity
time (%) (g/m3/hour)

Eweis et a1. Compost I minute 1 year 200 ppb# 100% 8 Biofiher was not inoculated

(1997) with any MTBE degrading
culture and the inlet air
stream contained other
hydrocarbons besides MTBE

Eweis et al. Extruded I minute 3 weeks 35 ppm 100% N.R. Biofilter was inoculated with

( 1998) di atomaceous MTBE degrading microbial

earth culture

Fortin and Pall rings and 54-90 25-35 0.65-0.85 97% 50 BiotriclJing filters were

Deshusses lava rocks seconds days glm3 inoculsled with MTBE

(1999) degrading microbial
consortium

Dupasquier Vermiculite 0.06- N.R. 1.1-12.3 glm3 30%* 12 (Pentane) CometabolislD ofMTBE

et a1. (2002) 2.85 1.8 (MTBE) with pentane was used in this

hours
study. The biofiltcr was
inoculated with P. aeruginosa
capable ofcometabolizing
MTBE in the presence or
pentane.

Present Compost and 1.42~ :!3 days 0.05-0.34 69% 3.26 Biofllte1 was inoculaled with

study perIitelactivated 3.47 mgll MTBE degrading microbial

carbon minutes
consortium

* Calculated from their steady state elimination capacity and loading data.
# Maximum concentration ofMTBE in the study
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Headloss in the biofilters

Headloss in the bed or resistance to the gas flow is an important parameter since it

detennines the energy required to force the contaminated gas through the filter bed.

Headloss was monitored occasionally during the course of the experiment and the data

are presented in Table 13. It should be noted that the head loss values for both biofilter P

and C were negligible during the entire period of their operation. They never exceeded

0.3 em of water in case of biofilter P and 0.18 em of water in case of biofilter C. This

suggests that the porosity of the beds was adequate lhroughout the experiment. Another

thing to notice is the dependence of head loss values on air flow rate. Headloss values

decreased with the decrease in air flow rate for both the biofilters.
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Table 13: Headless in Biofilters

Day Air Flow Headloss

(Vrnin) Biofilter P Biefilter P Biofilter C Biofilter C

(inches H2O) (em H2O) (inches H2O) (emHlO)

17 2.117 0.1 0.254 0.05 0.127

I I

29 2.117 0.12 0.3048 0.07 0.1778

38 2.117 0.12 0.3048 0.07 0.1778

55 2.117 0.12 0.3048 0.07 0.1778

62

I
1.3225 0.04 0.1016 0.02 0.0508

78 1.3225 0.04 0.lO16 0.02 0.0508

90 0.868 0.01 0.0254 0.005 I 0.0127

I
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Transient Behavior of the Biofilters

The transient response to step changes in inlet concentration or gas flow rate was

investigated for both the biofilters. A total of five changes were made in the loading rate

during the entire period of operation of the biofilters, and transient response was observed

by sampling influent and effluent ends.

Inlet MTBE concentration increase from 0.2 mg/L to 0.33 mgIL

Transient response of the biofilters to step change in inlet MTBE concentration from 0.2

mg/I to about 0.33 mg/l is shown in Figures 20 and 21. Immediately after the

concentration increase, elimination capacity of biofilter P dropped considerably

presumably due to stress experienced by bacteria as a result of shock loading. Following

this, elimination capacity suddenly increased, and this period of relatively high

perfonnance was maintained for a few hours, after which the elimination capacity

dropped again. Fortin and Deshusses (l999b) observed same kind of transient response

for their biotrickling fi Hers treating MTBE. According to them, one explanation of this

phenomenon can be that the culture was under significant stress after the increase in

loading which made it highly active [or some time to release that stress.

In the case of biofi Iter C, no drop in elimination capacity was seen after the

increase in concentration. Rather than dropping the elimination capacity increased

considerably, which can be attributed to adsorption on activated carbon. This relatively

high performance continued to drop in the subsequent days due to decrease in adsorption

capacity of carbon. Following the change, biofilter C took approximately 13 days to

achieve relatively steady elimination capacities, while biofilter P achieved it within a day.
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Flow rate decrease from 2.12 Umin to 1.32 Umin

On the 571h day, EBRT was increased by decreasing the flow rate from 2.12

Umin to 1.32 Llmin. The transient response of the biofilters to this change in loading is

shown in Figures 22 and 23. Both the biofilters were very fast in achieving new steady

elimination rates following this change. Acclimation to the new conditions was achieved

in less than two hours. As discussed earlier, loadings before and after this change

probably corresponded to the reaction limited regime, so there was no significant change

in elimination rates before and after the change in loading.

Inlet MTBE concentration decrease from 0.33 mg/L (0 0.1 rng/L

Inlet concentration of MTBE was decreased from O.33mglL to about 0.1 mg/L to

both the biofilters on 6ih day. Transient response of the biofilters to this change is shown

in Figures 24 and 25. Following the decrease, the elimination capaci ties 0 f both biofi Iter

P and C dropped, suggesting that they were entering the regime where di ffusion

limitation governs elimination 0 f the po 11 utant. rn fact, bio fi Iter C exhibited negative

elimination capacities for some hours following the change, which was most likely due to

desorption of MTBE from activated carbon. However, elimination rates continued to

increase after that, suggesting biological removal. Steady elimination capacities were

reached after about 4 to 5 days. Contrary to this, biofi Iter P achieved relatively steady

elimination capacities within hOLlrs.
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Inlet MTBE concentration decrease from 0.1 mgIL to 0.05 mgIL

The inlet concentration of MTBE was further dropped from 0.1 to 0.05 mgIL on

79th day. Figures 26 and 27 show transient response of biofilters to this change. The

behavior of the biofilters to this decrease in concentration was very similar to the

previous one. Elimination capacities of both the biofilters decreased due to possible

diffusion limitation. Nearly zero ehmination capacities were observed for biofilter C for

few hours, that increased steadily for many days before reaching relatively steady values.

In this case also, biofilter C took more time to reach steady elimination rates than biofilter

p,

Flow rate decrease from 1.32 Umin to 0.868 Llmin

The flow rate to both the biofilters was decreased further from 1.32 Llmin to

0.868 Llmin. Unfortunately following the change in flow rate there were some

operational problems with the syringe pump which prevented us to observe the transient

behavior of the biofilters to this change. However it is expected that transient response lo

this change should be similar to previous flow rate decrease.
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CHAPTER V

CONCLUSIONS

Present study demonstrated biofiltration of MTBE contaminated air streams and

gives the comparison of performance of biofilter media containing adsorbing (Biotilter

C) and non-adsorbing material (Biofilter P), at various loading rates. Some of the

important findings of this study are:

1. For both the biofilters, decrease in loading rates led to more efficient removal of

MTBE. Maximum steady state removal efficiency far biofilter P was about 46%

and for boi.filter C was 69%, obtained at the lowest loadjng rate of approximately

J glmJ/haur.

2. Maximum elimination capacities far both the biolilters were obtained at relatively

high loading rates of 8 to 14 glmJ/hoUI. For biofilter P maximum elimination

capacity was approximately 2.5 g/m3/hour and for biafilter C it was about 3.2

glm.3lhour.

3. The removal efflciencies and elimination capacities obtained in the present study

were considerably lower than that obtained in the most previous studies. The

reason for this may be the slow rate of degradation of MTBE by the culture due to

possible toxicity during maintenance of culture in the batch mode.
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4. Steady state performance of biofilter C was almost aJways better than biofilter P,

which can be attributed to more favorable eovironmeot provided by activated

carbon for the microorganisms in blofilter C medium.

5. Adsorption on activated carbon was likely responsible for the removal of MTBE

during the first 8 days of the operation of biofilter C when nearly zero removal

took place in biofilter P. This suggests that use of higher volume of activated

carbon or better adsorbents such Ambersorb 563@ may reduce or eliminate the

period of poor performance during the start-up phase.

6. There was no difference in start-up time of the biofilters (23 days), as indicated by

the presence of TBA in their outlet stream. Presence of activated carbon had no

effect in decreasing the lag time of the microorganisms.

7. Transient behavior of the biofilters revealed that the presence of activated carbon

in biofilter medium may prevent decrease in MTBE elimination in case of step

increase in concentration due to shock experienced by microorganisms. However

it may also lead to poor performance for few days following the decrease in

MTBE concentration due to desorption.

8. Biofilter C was always slow to attain relatively steady elimination capacities

compared to biofilter P, after the step change in inlet concentrations, which can be

attributed to the presence of activated carbon in biofilter C medium. While it

usually took less than a day for biofilter P to achieve relative steady elimination

rates, it took 4-12 days for biofilter C lo achieve the same.
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9. Flattening of concentration profiles along the biofilter bed at low loading rates or

diffusion limited regime was observed. This effect is undesirable because in this

case lengthening of the column may have little or no effect on removal efficiency.

10. Retardation factor of biofi Iter C medium was much higher than biofilter P

medium because of the presence of activated carbon in t.he fomler. As retardation

factor is directly proportional to the contaminant detention time, for the same flow

rate MTBE detention time in biofilter C is expected to be more than biofilter P.

11. Slowdown and subsequent loss of activity of MTBE degrading microorganisms

observed in case of batch cultures was not observed after their inoculation into

biofilters. This may be due to reduced toxicity in the biofilters due to continuous

air flow through the system or better environment provided by attached growth to

slow growing microorganisms like these.

12. Peat humic substances had no favorable or adverse effect on MTBE

biodegradation in the range of concentrations studied (0.2 - 200 mgfJ).

13. While no accumulation ofTBA was observed in the batch cultures. it was seen in

the outlet stream of both the biofilters on 23 rd day. TBA concentration continued

to increase in both the biofilters until 33m day after which it started to drop. This

suggests that initially TBA degradation lagged behind MTBE degradation but as

the culture matured the degradation rates of TBA increased and consequently its

accumulation decreased in both the biofilters.
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CHAPTER VI

RECOMMENDATIONS FOR FUTURE STUDY

There are a lot of questions that still need to be answered in case of MTSE

biofiltration. Some of the suggestions for the future study are:

1. The response of the biofilters to low residence times « I minute) and low

concentrations should be investigated as this would most probably be the case for

air stripping operations and emissions from wastewater treatment plants involving

MTBE.

2. The start-up times of the biofilters [or MTBE are still high. To improve them

following strategies could be investigated:

a) The volume of activated carbon in the biofilter media could be increased

allowing better removal in the initial days of its operation.

b) Better adosbents like Ambersorb 56J® for MTBE could be used in the

biofilter media (Davis and Powers. 2000). However care should be taken

while doing this, as there may be problems with maintaining near neutral

pH with the use of resins in biofilter beds.

3. Biofiltration of MTBE using cometabolism in the presence of some other

compounds such as straight chain alkanes or benzene should be investigated. This

may eliminate some problems relating to the slow growth rate of MTBE

metabolizing bacteria, such as start-up times.
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4. Biofiltration of MTBE usmg cometabolism in the presence of some other

compounds such as straight chain alkanes or benzene, should be investigated.

This may eliminate some problems relating to the slow groW1h rate of MTBE

metabolizing bacteria, such as start-up times.

5. Biofiltration of MTBE in the presence of compounds such as BTEX, which are

likely to be present with it at the contaminated sites, should be studied.

6. Studies should be conducted with different biofiltration media to investigate

which media perfonns best in relation to start-up, steady state and transient state

performance.

7. Studies should be conducted to determine the fate of MTBE In the biofilters,

whether it is mineralized or converted to some other metabolite.

8. Some pilot scale studies should be conducted for successful implementation of

biofiltration for MTBE vapor treatment in the field.
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CHAPTER VII

ENGINEERING SIGNIFICANCE OF THE STUDY

This study investigated the biofiltration of MTBE at various steady state loading

rates ranging from I g/m3/hour to 14 glm) /hour. In addition to this, the start-up response

and transient response of the biotilters were studied, and performance of the biofilters

containing adsorbing (granular activated carbon) and non adsorbing materials (perlite)

was compared. Some of the significant conclusions relevant to the field application of

biofiltration for the treatment of MTBE vapors are:

I. Relatively low values of removal efficiencies and elimination capacities obtained

in the present study indicate that the present system (i.e. present design of the

reactor, medium and culture) should only be used if low performance is sufficient

to meet the off gas standards in soil vapor extraction, air sparging, or air slripping

operations.

2. Target loading should be considered before using the present system in the field.

Jfthe desired removal efficiencies are relatively high, low loading rates have to be

applied.

3. Flattening of the concentration profiles along the depth of the biofilters at low

loading rates suggests that the perfonnance of the biofilters cannot be increased

by increasing the height.
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4. The use of adsorbing material in the biofilter medium may lead to better steady

state performance. Depending on its quantity in the medium, the adsorbing

material may eliminate the period of poor performance during start-up and

immediately after the step increase in inlet concentration.

5. More research is needed, especially on the important issues delineated in Chapter

VI, before effective full-scale biofilters can be designed and operated in the field.
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APPENDIX A

SAMPLE CALCULATIONS FOR DETERMINATION OF HEADSPACE AND
LIQUID PHASE CONCENTRATIONS OF MIBE AND TBA

Dimensionless Henry's constant for MTBE (2SoC) = 0.0216

Dimensionless Henry's constant for TBA (2SoC) = 0.00059

Specific gravity of MTBE = 0.744 glml

Specific gravity afTBA =0.786 glml

According ta Henry's law, following relations are valid for MTBE or TBA when

equilibrium is reached between the headspace and aqueous phase:

M = (CgYg) + (elY')" Al

By definition Henry's constant (H) is,

H = (Cg/C1) A2

where:

M = Mass ofMTBE or TBA added to the bottle

Cg =Concentration in the gas phase

CI = Concentration in the liquid phase

Yg = Volume oftbe gas phase

VI = Volume of the liquid phase

If M is known as in the case of MTBE or TBA calibration standards, Cg or C1 can be

calculated using equation AI and A2. If Cg is known as in the case of culture

maintenance experiments and PHS effect evaluation experiment, C1 can be calculated

using equation A2.
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APPENDTX B

BIODEGRADAnON PATHWAY OF MTBE ...

TEA

HIBA

MTBE CH
3I

HC-C-O-CH} I J

CH)

1
CH)
I

HC-C-O-OH
3 I

CH3

1
MHP CH)

I
HC-C-CH - OH

3 I 2

CH3

1
~H) 0
I ~

HC-C-C
3 I '"

CH OH
3

TBF CH
I 3

---- H C-C-O-CHO
3 I

CH3

Formal dehyde

2-Propanol Acetone

"'Adapted from Hardison et a l. (1997), Salanitro et a1. ( 1998) and Steffan et aI, ( 1997)
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APPENDIXC

RAW DATA FOR CULTURE MAINTENANCE

,
Active I Active 2 Active 3

I
Day [MTEE, mg/I] Day [MTBE. mg/I] Day [MTBE, mg/I]

Aqueous phase Aquoous phase AQueous phase
0 41.17692685 a 47.86490833 0 31.65596759
2 40.27309444 2 44.42211481 2 33.36922222
3 37.16128889 3 42.28923426 3 29.25241204
4 37.1087537 4 43.39618333 4 30.73775833
6 37.17249074 6 44.91853333 6 31.3881537
9 37.52128796 9 47.03503889 9 31.76842037
J 1 37.25968426 II 48.88883056 11 31.49801204
13 1.351574074 13 I 18,93417659 13 1.628667989
13 11.94335714 U.S 12.74479938 13 11.710625 I

13.5 0 14.5 0 13.5 2.925780864--
13.5 18.89848688 14.5 20.03198225 13.5 25.67816667
14.5 4.368115741 15.5 2.497714506 14.5 16.89132562
14.5 22.6316659 15.5 20.14826157 14.5 38.08920756

~

15.5 0.550618056 16.5 0 15.5 17.49279244i
15.5 16.98681096 16.5 18.37060957 16.5 0
16.5 0 17.5 16.1241088 16.5 23.09847068-_.
16.5 16.80402778 17.5 11.70658102 17.5 20.76210725
17.5 15.71658642 18.5 5.237587191 17.5 14.98902623
17.5 11.19379784 19 1. <)44997685 18.5 7.907838735
18.5 6.392294753 20 0 19 4.264030864-
19 3.642982253 20 2\.46234877 20 0
20 0 22 10.20491049 20 13.87680401

--
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APPENDIXD

RAW DATA FOR OXYGEN EFFECT EXPERIMENT

Day Active 1* Active 2*
0 33.57766 34.40427
1 30.00921 31.00361
5 12.72243 10.47329
6 0 0
6 56.13872 66.99433
9 33.6118 39.78513
12 17.03858 40.07527
17 6.311539 34.00131
19 2.62135 32.12342
21 0.420475 33.59801
21 23.5259 33.59801
22 21.01929 29.0496
24 18.75291 27.87918
27 12.69903 N.A.**
34 0.411917 35.48194

*ActIve 1 - PartIal replacement of headspace with pure oxygen
*Active2 - Headspace flushed with air
**N.A. = Not analyzed
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APPENDIX E

RAW DATA FOR BIOFILTER MEDIUM CHARACTERIZATION

Moisture Content and Ash Content

Bio1ilter C

Description Sample 1 Sample 2
Weight of empty dish 158.57 g 159.84 g

I Weight of dish and wet media 248.28 g 222.08 g
I Weight of di sh and dry media (after 24 hours at 105UC) 197.47 ,I; 187.77 g
I Weight of dish and dry media (after 30 minutes at 550UC) 187.88 g N.A.

N.A. = Not apphcable

Biofilter P

Description Sample 1 Sample 2
Weight of empty dish 164.37 g 157.42 g
Weight of dish and wet media 237.00 g 225.61 g
Weight of dish and dry media (after 24 hours at lOSuC) 196.01 g 189.04 g
Weight of dish and dry media (after 30 minutes at S50UC) 188.34 g N.A.
N.A. = Not apphcable
Media density and porosity

Density and Porosity determinations

Biofilter C

._--
Description Sample I
Weight ofmeasuring cylinder 133g
Volume of media taken SOml
Weight of cylinder and media 169.2 g
Weight of cy~inder. media and water (at 22UC) 187.6 g
Density of water at 22uC 0.997 wee
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Biofilter P

Description Sample 1
Weight of measuring cylinder 131.5 g

Volume of media taken 50ml
Weight of cylinder and media 168.3 g
Weight of cylinder, media and water (at 22°C) 185 g
Density of water at 22uC O.997g1cc

Partition Coefficient Studies

Biofilter C

Volume of serum bottle used = 160 ml

Volume ofmedia taken = 10 ml

Volume of headspace = 150 ml

Volume ofMTBE added to the serum bottle =20 ~1

Specific gravity of MTBE = 0.744 mg/1l1

Therefore mass of MTBE added to the serum bottle = 14.88 mg

Porosity of medium = 0.37

Time Headspace concentration of MTBE
(days) (mg/l)

2 0.505918633
5 0.26490805
9 0.269421562
12 0.24416963
16 0.2337988
18 0.247174865

Note: kh was calculated for the last three observations in the aoove table and average
value rounded of to the nearest whole number was reponed
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Biofilter P

Volume of serum bottle used = 160 ml

Volume of media taken = 25 ml

Volume of headspace = 135 ml

Volume ofMTBE added to the serum bottle = 10 III

Specific gravity ofMTBE = 0.744 mg/JlI

Therefore mass ofMTBE added to the serum bottle = 7.44 mg

Porosity of medium = 0.34

Time Headspace concentration of MTBE
(days) (mpjl)

0 4.767241243
2 4.456892176--
3 4.393054271
4 4.505596843
5 4.412165552

Note: kh was calculated for the last four observations in the above table and average value
rounded of to the nearest whole number was reported
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APPENDIX F

RAW DATA FOR PHS EFFECT EYALUATION EXPERIMENT

PHS = 0.2 mgf]

Incubation Aqueous phase MTBE Aqueous phase MTSE Aqueous phase MTBE
time (mgll) (mgll) (mgll)

(hours) (with PHS) (No PHS) Control
1.5 32.50435532 33.75298814 35.81114323
6 27.05249711 28.51396325 30.28799248
14 28.91611574 29.23217332 28.80095226
24 25.62196094 26.80110301 27.41004369
48 25.1l412103 25.40772619 28.39496462
72 24.84925039 25.99008526 28.6998966
168 9.447594907 8.486858796 25.45146019
192 3.09896875 2.437436343 26.83999074

PHS = 2 mg/J

Incubation Aqueous phase MTBE Aqueous phase MTBE Aqueous phase MTSE
time (mgll) (mg/l) (mg/)

(hours) (with PHS) (No PHS) Control_..._-
1.5 3J .20577546 29.45052025 30.76591348
6 27.54823929 31.1758941 28.89194647
14 27.15081539 29.88153906 29.00992216
24 26.64113889 29.04704832 26.93811834
48 26.5402877 28.50249868 25.90632176
72 25.92405826 28.90166667 26.68473187
168 7.96604213 6.914394444 22.8567588
192 2.120885417 0.817561343 26.26644387
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PHS =20 mg/I

Incubation Aqueous phase MTBE Aqueous phase MTBE Aqueous phase MTBE
time (mglt) (mg/1) (mgIl)

(hours) (with PHS) (No PHS) Control
1.5 27.18628646 29.90408883 27.07549971
6 27.43414554 27.11503414 28.63613831
14 25.36314381 26.37839728 27.7472691-
24 26.82470457 25.79587818 26.85057841
48 25.53448049 25.49856283 26.15771362
72 26.36416512 25.36599035 26.3050625
168 6.067243519 7.28030787 23.04902778
192 0.643877315 1.968728009 26.10898958 I

PHS = 50 mg/I

Incubation Aqueous phase MIBE Aqueous phase MTBE Aqueous phase MTSE
time (mg/I) (mgfl) (mg/I)

(hours) (with PHS) (No PHS) Control
4 28.35412235 28.58735913 27.12864352

24 23.75796065 24.27816104 24.73454431
48 26.03210378 I 25.71802662 26.89435417
132 18.21402685 17.51610185 26.71190509
156 14.3610787 13.68990451 29.36300637
180 6.980348958 5.370394097 29.25640683
192 3.421152778 1.962089699 30.34020139- --

PHS = 100 mg/I

Incubation Aqueous phase MTBE Aqueous phase MIBE Aqueous phase MISE
time (mg/I) (rog/I) (mg/I)

I (hours) (with PHS) (No._~lI~ Control
4 28.86266005 28.49224239 25.65802183

I 24 24.18075033 24.33334127 23.1048254I

48 29.91129082 26.00676042 25.76118981
132 17.24805972 17.64796574 24.35760324
156 13.76764236 14.12068808 30.31568576
180 6.607968171 6.449956019 28.10369387
192 3.025103588 3.297157407 29.03118866
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PHS = 150 mgtl

Incubation Aqueous phase MTBE Aqueous phase MTBE Aqueous phase MTBE
time (mg/I) (mg/l) (mg/I)

(hours) (with PHS) (No PHS) Control
4 28.20389484 28.37474603 27.2727662

24 23.8166789 25.3229990 I 23.87180787
48 30.27769491 32.47595972 30.6052824 t
132 15.97264213 16.5658963 26.71190509
156 11.73281713 12.41 511053 29.31684954
180 5.18510706 5.509889468 30.98301042
192 1.886958912 2.038636574 30.98301042

PHS = 200 mg/I

Incubation Aqueous phase MTBE Aqueous phase MTBE Aqueous phase MTBE
time (mg/I) (mg/I) (mg/I)

(hours) (with PHS) (No PHS) Control
4 27.33428406 28.67714054 27.05592526

24 22.82023446 24.82183267 23.15172222
48 30.25171759 30.73604815 29.32180185
132 15.4148463 17.43468796 25.90890833
156 10.66095949 13.72993403 31.2519942 t
180 4.931456019 6.975391204 28.16552083
192 1.393051505 3.304799769 27.79441551
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APPENDLXG

RAW DATA OF MTBE CONCENTRATIONS AT DIFFERENT SA.MPLING PORTS

Day Biofilter P (MTBE, mg/I) Biofrlter C (MTBE, mWl)
Inlet SP-2 SP-3 Outlet Inlet SP-l SP-3 Outlet

(12.5 em) (27 em) (12.5 em) (27 em)
1 0.25 N.A. N.A. 0.24 0.19 N.A. N.A. 0.17--
2 0.23 N.A. N.A. 0.23 0.25 N.A. N.A. 0.17
3 0.18 N.A. N.A. 0.22 0.25 N.A. N.A. 0.17
4 0.21 N.A. N.A. 0.24 0.27 N.A. N.A. 0.19
5 0.22 N.A. N.A. 0.21 0.26 N.A. N.A. 0.17
6 0.24 N.A. N.A. 0.23 0.24 N.A. N.A. 0.18
7 0.22 N.A. N.A. 0.25 0.29 N.A. N.A. 0.21
8 0.24 N.A. N.A. 0.25 0.24 N.A. N.A. 0.22
9 0.25 N.A. N.A. 0.24 0.19 N.A. N.A. 0.20
12 0.23 N.A. N.A. 0.21 0.23 N.A. N.A. 0.17

-
13 0.18 N.A. N.A. 0.15 O. J7 N.A. N.A. 0.12
14 0.18 N.A. N.A. 0.18 0.17 N.A. N.A. 0.15

"-
15 0.22 N.A. N.A. 0.19 0.19 N.A. N.A. 0.16
16 0.18 N.A. N.A. 0.14 0.16 N.A. N.A. 0.12
17 0.18 N.A. N.A. 0.12 0.29 N.A. N.A. 0.18
18 0.28 N.A. N.A. 0.17 0.31 N.A. N.A. 0.16
19 0.15 N.A. N.A. 0.12 0.23 N.A. N.A. 0.15
20 0.16 N.A. N.A. 0.13 0.14 N.A. N.A. 0.12.-
21 0.15 N.A. N.A. 0.15 0.16 N.A. N.A. 0.10
22 0.20 N.A. N.A. 0.12 0.18 N.A. N.A. 0.10
23 0.21 N.A. N.A. 0.13 0.25 N.A. N.A. 0.14- --

24 0.25 N.A. N.A. 0.15 0.16 N.A. N.A. 0.1
25 0.16 N.A N.A. 0.13 0.17 N.A. N.A. 0.11
26 0.19 N.A. N.A. 0,15 0.24 N.A. N.A. 0.11
27 0.17 0.11 0.1 I 0.11 0.20 0.09 N.A. 0.09
28 0.19 0.11 0.14 0.11 0.24 0.12 N.A. 0.12
29 0.26 0.14 0.17 0.14 0.26 0.09 N.A. 0.09
30 0.18 0.10 0.11 0.10 0.16 0.08 N.A. 0.08
31 0.19 0.14 0.18 0.14 0.20 0.09 N.A. 0.09
32 0.31 0.19 0.17 0.19 0.24 0.12 0.17 0.12
33 0.20 0.11 0.13 0.11 0.22 0.11 0.13 0.11

i 34 0.15 0.12 0.10 0.12 0.14 0.08 0.12 0.08
35 I 0.15 0.12 0.14 0.12 0.13 0.08 0.15 0.08

I 36 I 0.15 0.10 0.13 0.10 0.16 0.07 0.13 0.07
SP-2 = Sampling port # 2 at 12.5 em from the inlet of the column
SP-3 = Sampling port # 3 at 27 em from the inlet of the column
N. A. = Not analyzed
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Day Biofilter P (MTBE, mgll) Biofilter C (MTBE, mgfl)
Inlet SP-2 SP-3 Outlet Inlet SP - 2 SP - 3 Outlet

(12.5 em) (27 em) (12.5 em) (27 em)
37 0.21 0.14 0.17 0.15 0.16 0.09 0.17 0.16
38 0.20 0.14 0.16 0.15 0.17 0.08 0.16 0.15
39 0.18 0.13 0.14 0.13 0.16 0.08 0.14 0.13
40 0.30 0.23 0.25 0.24 0.33 0.17 0.24 0.24
41 0.32 0.25 0.28 0.28 0.28 0.19 0.27 0.26
42 0.35 0.27 0.31 0.31 0.31 I 0.19 0.32 0.29
43 0.35 0.27 0.30 0.30 0.35 0.20 0.32 0.31
44 0.35 0.30 0.33 0.31 0.35 0.21 0.29 0.31
45 0.34 0.29 0.31 0.29 0.34 0.21 0.29 0.31
46 0.38 0.31 0.36 0.32 0.37 0.21 0.34 0.32
47 0.34 0.28 0.30 0.31 0.32 0.22 0.29 0.29
50 0.31 0.23 0.28 0.28 0.29 0.20 0.29 0.29
52 0.34 0.27 0.27 0.28 0.31 0.24 0.30 0.29
54 0.31 0.27 0.30 0.33 0.33 0.26 0.30 0.29
55 0.35 0.27 0.30 0.31 0.34 0.25 0.33 0.29
56 0.32 0.27 0.32 0.30 0.34 0.28 0.33 0.31
58 0.30 0.22 0.25 0.25 0.34 0.22 0.29 0.27
59 0.33 0.25 0.25 0.28 0.33 0.20 0.29 0.28
60 0.26 0.21 0.25 0.28 0.31 0.20 0.27 0.26
61 0.29 0.22 0.27 0.28 0.29 0.21 0.31 0.25
63 0.30 0.24 0.26 0.26 0.33 0.21 0.27 0.25
64 0.32 0.23 0.27 0.27 0.44 0.21 0.27 0.27
65 0.33 0.27 0.27 0.27 0.29 0.20 0.25 0.29
66 0.28 0.22 0.26 0.28 0.30 0.19 0.27 0.28
68 0.10 0.06 0.07 0.08 0.08 0.07 0.07 0.09--
70 0.11 0.06 0.08 0.08 0.09 0,08 0.08 0.09
72 0.10 0.07 0.08 0.08 0.09 0.06 0.08 0.09

73 0.12 0.07 0.08 0.08 0.09 0.06 0.08 0.08
74 0.10 0.07 0.07 0.06 0.08 0.06 0.06 0.07
76 0.10 0.07 0.07 0.08 0.09 0.07 0.08 0.08-
77 0.13 0.07 0.09 0.09 0.14 0.08 0.09 0.09_.
78 0.09 0.07 0.09 0.08 0.09 0.06 0.08 0.08--
79 0.10 0.06 N.A. N.A. 0.09 0.06 N.A. N.A.
80 0.05 0.03 0.04 0.03 0.05 0.04 0.05 0.04
81 0.05 0.03 0.05 0.04 0.05 0.03 0.03 0.04
82 0.05 0.03 0.03 0.03 0.05 0.03 0.03 0.04
85 0.05 0.03 0.04 0.03 0.06 0.02 0.04 0.04
86 0.08 0.05 0.05 0.05 0.06 0.02 0.03 0.03
87 0.06 0.03 0.04 0.03 0.04 0.02 0.03 0.04

SP-2 = Sampling port # 2 at 12.5 cm from the inlet of the column
SP-3 = Sampling port # 3 at 27 em from the inlet of the column
N. A. = Not analyzed
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Day Biofilter P (MTBE, mg!1) Biofilter C (MTBE, mg/l
Inlet SP-2 SP-3 Outlet Inlet SP -2 SP- J Outlet

(12.5 em) (27 em) (12.5 em) (27 em)
88 0.04 0.03 0.03 0.03 0.05 0.03 0.03 0.03
90 0.06 0.03 0.04 0.03 0.05 0.01 0.03 0.03
91 0.06 0.03 I 0.04 0.03 0.05 0.02 0.03 0.03
92 0.06 0.02 N.A. N.A. 0.08 0.02 N.A. N.A.
93 0.06 0.03 0.04 0.04 0.06 0.02 0.04 0.03
94 0.05 0.03 0.03 0.03 0.05 0.01 0.02 0.02
95 0.05 0.03 0.04 0.03 0.05 0.02 0.04 0.03
96 0.05 0.03 0.03 0.03 0.05 0.02 0.03 0.03
98 0.07 0.03 N.A. N.A. 0.06 0.02 N.A. N.A.

i 101 0.06 0.03 0.04 0.04 0.06 0.02 0.04 0.04
102 0.06 0.03 0.05 0.04 0.07 0.02 I 0.04 0.03

SP-2 = Sampling port # 2 at 12.5 em from the inlet of the column
SP-J = Sampling port # 3 at 27 em from the inlet of the column
N. A. = Not analyzed

132



APPENDIXH

RAW DATA OF TBA CONCENTRATIONS IN THE OUTLET STREAM OF THE
BIOFTLTERS

Day Bioftlter C Biofllter P
(TBA, mgll) (TBA, mg/l)

Outlet Outlet

27* 0.0025 0.0000
28 0.0057 0.0000
29 0.0034 0.0047
30 0.0045 0.0030
31 0.0038 0.0027
32 0.0041 0.0031
33 0.0050 0.0027
34 0.0042 0.0052
35 0.0027 0.0036
36 0.0000 0.0000
36 0.0000 0.0000
37 0.0000 0.0000
38 0.0000 0.0000
39 0.0000 0.0000
40 0.0000 0.0000
41 0.0026 0.0000
42 0.0028 0.0000
43 0.0054 0.0000
44 0.0040 0.0000
45 0.0051 0.0024
46 0.0059 0.0029
47 0.0056 0.0000-
50 I 0.0049 0.0000
52 0.0057 0.0000 --
54 0.0050 0.0000
55 0.0055 0.0000
56 0.0050 0.0000

I 58 0.0044 0.0000
59 0.0040 0.0000
60 0.0050 0.0000
61 0.0050 0.0000
63 0.0025 0.0000--
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Day Biofilter C Biofilter P
(TBA, mgll) (TBA, mg/I)

Outlet Outlet

65 0.0044 0.0000
66 0.0049 0.0000

t*Note: Quantification ofTBA was started on 27 day and no TBA was detected in any of
the biofilters after 66th day
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APPENDIX I

CALCULATION OF BIOFILTER PERFORMANCE AND OTHER PARAMETERS

Some of the biofiltration parameters used in the present study and their calculation is

presented below:

1. Mass loading rate (volumetric) = Q xCi
V

2. Removal Efficiency = (Ci-CO)x100
Ci

3 I
·· . C . Q(Ci-Co). E lmmahon apaclty = -=---..:.----"-

V

where:

Q= Air flow rate (m3/hour)

v = Volume of the biofilter (m3
) = 3.016 x 10-3 m3

Ci = Inlet MTBE concentration (g/m3
)

Co = Outlet MTBE concentration (g/m3
)

Biofilter C

Day Air Flow Inlet Outlet Loading rate Removal Elimi nation
rate [MTBE] [MTBE] (g/m3/hour) Efficiency Capacity

(m3/hour) (rng/I) (rog/l) (%) (g/ro3/hour)
1 0.1272 0.19 0.17 7.8157 10.1107 0.7902
2 0.1272 0.25 0.17 10.7298 32.2262 3.4578
3 0.1272 0.25 0.17 10.3405 30.8296 3.1879
4 0.1272 0.27 0.19 11.5697 31.7398 3.6722
5 0.1272 0.26 0.17 10.9826 33.8118 3.7134
6 0.1272 0.24 0.18 10.1293 26.1073 2.6445
7 0.1272 0.29 0.21 12.1748 27.6922 3.3715
8 0.1272 0.24 0.22 10.1352 9.0549 0.9177
9 0.1272 0.19 0.20 7.9821 -4.1253 -0.3293
12 0.1272 0.23 0.17 9.7396 27.8964 2.7170
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Day Air Flow Wet Outlet Loading rate Removal Elimination
rate [MTBE] [MTBE] (giro3/hour) Efficiency Capacity

(m3fhour) (mg!l) (mgll) (%) (gIm)/hour)
13 0.1272 0.17 0.12 7.2092 29.9290 2.1576
14 0.1272 0.17 0.15 7.3185 13.8253 1.0118
15 0.1272 0.19 0.16 7.9495 15.1066 1.2009
16 0.1272 0.16 0.12 6.5628 22.3868 1.4692
17 0.1272 0.29 0.18 12.0266 35.7111 4.2948
18 0.1272 0.31 0.16 12.9614 48.6867 6.3105
19 0.1272 0.23 0.15 9.6890 34.5328 3.3459
20 0.1272 0.14 0.12 5.6967 8.6697 0.4939
21 0.1272 0.16 0.10 6.6751 35.2558 2.3533
22 0.1272 0.18 0.10 7.3879 40.2321 2.9723
23 0.1272 0.25 0.14 10.6103 43.8691 4.6546
24 0.1272 0.16 0.10 6.6415 33.7032 2.2384
25 0.1272 0.17 0.11 7.3591 39.6213 2.9158
26 0.1272 0.24 0.11 10.2019 56.0917 5.7224
27 0.1272 0.20 0.09 8.3645 52.9572 4.4296
28 0.1272 0.24 0.12 10.2980 52.3014 5.3860
29 0.1272 0.26 0.09 10.7843 63.7798 6.8782
30 0.1272 0.16 0.08 6.6482 51.9251 3.4521
31 0.1272 0.20 0.09 8.2834 51.8363 4.2938
32 0.] 272 0.24 0.12 10.2560 50.2366 5.\523
33 0.1272 0.22 0.1 I 9.1780 50.9582 4.6769
34 0.1272 0.14 0.08 6.0808 46.1725 2.8077
35 0.1272 0.13 0.08 5.6885 41.2298 2.3453
36 0.1272 0.16 0.07 6.7094 53.7342 3.6052
37 0.1272 0.16 0.09 6.9205 45.5933 3.1553
38 0.1272 0.17 0.08 7.3545 53.5775 3.9403
39 0.1272 0.16 0.08 6.8141 50.9131 3.4693
40 0.1272 0.33 0.17 14.0624 48.9504 6.8836
41 0.1272 0.28 0.19 11.8914 32.4653 3.8606

-
42 0.1272 0.31 0.19 12.9524 36.6350 4.7451
43 0.1272 0.35 0.20 14.7932 41.7999 6.1835
44 0.1272 0.35 0.21 14.5729 38.1284 5.5564
45 0.1272 034 0.21 14.3326 37.6693 5.3990
46 0.1272 0.37 0.21 15.7060 43.3338 6.8060
47 0.1272 0.32 0.22 13.7026 33.1639 4.5443
50 0.1272 0.29 0.20 12.1326 31.6651 3.84J8
52 0.1272 0.31 0.24 13.2555 23.7300 3.1455
54 0.1272 0.33 0.26 13.7093 20.0829 2.7532
55 0.1272 0.34 0.25 14.2394 27.4125 3.9034
56 0.1272 0.34 0.28 14.4077 18.4204 2.6540 I
58 0.0792 0.34 0.22 9.0107 35.8174 3.2274
59 0.0792 0.33 0.20 8.5758 37.8714 3.2478
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Day AirF]ow Inlet Outlet Loading rate Removal Elimination
rate [MTBE] [MTBE] (glm)/hour) Efficiency Capacity

(m3/hour) (rog/I) (m.eJl) (%) (wm3!hour)
60 0.0792 0.31 0.20 8.1061 36.2251 2.9364
61 0.0792 0.29 0.2] 7.6592 28.9680 2.2187
63 0.0792 0.33 0.21 8.6432 34.8746 3.0143
64 0.0792 0.44 0.21 11.6455 52.3717 6.0990
65 0.0792 0.29 0.20 7.6138 30.7019 2.3376
66 0.0792 0.30 0.] 9 7.8638 37.3421 2.9365
68 0.0792 0.08 0.07 2.1296 7.7283 0.1646 --
70 0.0792 0.09 0.08 2.4566 18.8726 0.4636 .-
72 0.0792 0.09 0.06 2.3960 30.1760 0.7230

I 73 0.0792 0.09 0.06 2.4346 32.4836 0.7908
74 0.0792 0.08 0.06 1.9925 25.5588 0.5093
76 0.0792 0.09 0.07 2.2824 24.6605 0.5628
77 0.0792 0.14 0.08 I 3.5789 43.3820 1.5526
78 0.0792 0.09 0.06 2.4353 33.0731 0.8054
79 0.0792 0.09 0.06 2.3796 32.6367 0.7766
80 0.0792 0.05 0.04 1.3161 27.7879 0.3657
81 0.0792 0.05 0.03 1.2202 40.1288 0.4897
82 0.0792 0.05 0.03 1.4246 50.4556 0.7188
85 0.0792 0.06 0.02 1.5607 58.3029 0.9099
86 0.0792 0.06 0.02 1.5555 57.9950 0.9021
87 0.0792 0.04 0.02 1.1669 44.5077 0.5193
88 0.0792 0.05 0.03 1.2418 43.4792 0.5399
90 0.0521 0.05 0.01 0.8828 72.2171 0.6375
91 0.0521 0.05 0.02 0.9308 69.5610 0.6475
92 0.0521 0.08 0.02 1.4484 73.7462 1.0681
93 0.0521 0.06 0.02 0.9526 65.37 t 0 0.6227
94 0.0521 0.05 0.01 0.8101 68.7279 0.5568
95 0.0521 0.05 0.02 0.9359 64.2837 0.6016
96 0.0521 0.05 0.02 0.9476 67.8152 0.6426
98 0.0521 0.06 0.02 1.0793 70.8029 0.7642
101 0.0521 0.06 0.02 1.0153 66.7551 0.6778
102 0.0521 0.07 0.02 1.1423 69.8088 0.7974

137



.L..

Biofilter P

Day Air Flow Inlet Outlet Loading rate Removal Elimination
rate [MTBE] [MTBE] (g/mJ/hour) Efficiency Capacity

(mJlhour) (mg/I) (mgll) (%) (gimJ/hour)
I 0.1272 0.25 0.24 10.3606 4.2443 0.4397
2 0.1272 0.23 0.23 9.6596 -I. 7215 -0.1663
3 0.1272 0.18 0.22 7.6662 -18.7655 -1.4386
4 0.1272 0.21 0.24 8.6808 -18.4431 ~ 1.6010
5 0.1272 0.22 0.21 9.4823 5.7114 0.5416
6 0.1272 0.24 0.23 9.9823 3.5099 0.3504
7 0.1272 0.22 0.25 9.4434 -11.5185 -1.0877
8 0.1272 0.24 0.25 9.9347 ~7.5665 -0.75]7
9 0.1272 0.25 0.24 10.6025 3.5122 0.3724
12 0.1272 0.23 0.21 9.7912 10.7652 1.0540
13 0.1272 0.18 0.15 7.4108 16.6005 1.2302
14 0.1272 0.18 0.18 7.6628 0.1633 0.0125
15 0.1272 0.22 0.19 9.1266 9.9382 0.9070
16 0.1272 O. t 8 0.14 7.4456 18.5149 1.3786
17 0.1272 0.18 0.12 7.6207 32.6893 2.4911
18 0.1272 0.28 0.17 11.8289 38,0033 4.4954
19 0.1272 0.l5 0.12 6.3878 21.4308 1.3690
20 0.1272 0.16 0.13 6.6802 17.9942 1.2021
2J 0.1272 0.15 0.15 6.3651 -0.1124 -0.0072
22 0.1272 0.20 0.12 8.5071 38.1081 3.2419
23 0.1272 0.21 0.13 8.8083 36.2782 3.1955
24 0.1272 0.25 0.15 10.5334 38.4099 4'c)459
25 0.1272 0.16 0.13 6.9524 21.8308 1.5178
26 0.1272 0.19 0.15 8.1345 24.6542 2.0055
27 0.1272 0.17 0.] J 7.3544 39.1258 2.8775
28 0.1272 0.19 0.11 8.0142 39.7393 3.1848
29 0.1272 0.26 0.14 10.7947 45.5756 4.9197
30 0.1272 0.18 0.10 7.7952 48.2250 3.7593
31 0.1272 0.19 0.14 8.1673 28.3318 2.3139
32 0.1272 0.31 0.19 13.2350 39.9743 5.2906
33 0.1272 0.20 0.11 8.3440 42.8357 3.5742
34 0.1272 0.15 0.12 6.3923 22.1209 1.4140
35 0.J272 0.15 0.12 6.4817 24.3807 1.5803
36 0.1272 0.15

--
0.10 6.4968 37.5097 2.4369

37 0.1272 0.21 0.14 8.6769 31.9343 2.7709
38 0.1272 0.20 0.14 8.3523 31.0428 2.5928
39 0.1272 0.18 0.13 7.5628 30.0251 2.2707
40 0.1272 0.30 0.23 12.4600 20.6442 2.5723 ...
41 0.1272 0.32 0.25 13.6336 21.9520 2.9929
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Day Air Flow Inlet Outlet Loading rate Removal Elimination
rate [MTBE] [MTBE] (glm3fhour) Efficiency Capacity

(mJlhour) (mg/I) (mWI) (%) (glm)/hour)
I 42 0.1272 0.35 0.27 14.9388 24.1878 3.6134

43 0.1272 0.35 0.27 14.7407 22.5179 3.3193
44 0.1272 0.35 0.30 14.9134 13.7649 2.0528
45 0.1272 0.34 0.29 14.2603 15.5114 2.2120
46 0.1272 0.38 0.31 16.] 459 19.2641 3.1104
47 0.1272 0.34 0.28 14.4970 19.8624 2.8795
50 0.1272 0.31 0.23 ]2.9568 23.8333 3.0880
52 0.1272 0.34 0.27 14.3466 19.2364 2.7598
54 0.1272 0.31 0.27 13.0226 11.2520 1.4653
55 0.1272 0.35 0.27 14.6844 23.0192 3.3802
56 0.1272 0.32 0.27 13.3849 13.4764 1.8038
58 0.0792 0.30 0.22 7.7806 26.0013 2.0231
59 0.0792 0.33 0.25 8.5914 24.5050 2.1053
60 0.0792 0.26 0.21 6.9333 21.2166 1.4710
6\ 0.0792 0.29 0.22 7.5189 24.9062 1.8727
63 0.0792 0.30 0.24 7.8921 19.8551 1.5670
64 0.0792 0.32 0.23 8.3381 26.1160 2.1776
65 0.0792 0.33 0.27 8.5767 ]8.7412 1.6074
66 0.0792 0.28 0.22 7.3954 22.4867 1.6630
68 0.0792 0.10 0.06 2.5805 35.1521 0.9071
70 0.0792 0.11 0.06 2.7841 40.4585 1.1264
72 0.0792 0.10 0,07 2.4964 24.8002 0.6\9\
73 0.0792 0.12 0.07 3.0545 39.4265 1.2043
74 0.0792 0.10 0.07 2.5999 32.7923 0.8526
76 0.0792 0.10 0.07 2.7263 33.2727 0.9071
77 0.0792 0.13 0.07 3.4550 43.7265 1.5107
78 0.0792 0.09 0.07 2.4886 29.4359 0.7326

1--'_--

79 0.0792 0.10 0.06 2.6005 38.6288 1.0046 I1--.

80 0.0792 0.05 0.03 1.2404 44.4859 0.5518
81 0.0792 0.05 0.03 1.2717 34.8913 0.4437
82 0.0792 0.05 0.03 1.3764 36.4188 0.5013
85 0.0792 0.05 0.03 1.4341 45.5187 0.6528
86 0.0792 0.08 0.05 2.0438 39.3674 0.8046
87 0.0792 0.06 0.03 1.5962 44.2134 0.7057
88 0.0792 0.04 0.03 1.08] 4 31.6845 0.3426
90 0.0521 0.06 0.03 1.0933 46.4033 0.5073 ._-
91 0.0521 0.06 0.03 1.0128 53.6778 0.5437
92 0.0521 0.06 0.02 0.9873 59.1957 0.5845
93 0.0521 0.06 0.03 1.0674 45.5556 0.4863
94 0.0521 0.05 0.03 0.8412 38.3259 0.3224
95 0.0521 0.05 0.03 0.9145 45.1 ]91 0.4126
96 0.0521 0.05 I 0.03 0.8367 38.8465 0.3250_.
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Day AirFlow Inlet Outlet Loading rate Removal Elimination
rate [MTBE] [MTBE] (g/m3/hour) Efficiency Capacity

(m3/hour) (mg/l) (mg/I) (%) (glm3/hour)
98 0.0521 0.07 0.03 1.1150 56.2543 0.6273
101 0.0521 0.06 0.03 1.0220 54.8858 0.5610
102 0.0521 0.06 0.03 1.0174 45.3712 0.4616
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