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CHAPTER 1

INTRODUCTION

Rubber covered nip rollers have a number of applications within web lines. Any

material in continuous flexible strip form is a Web. Materials like paper, textiles, metal

foil, tapes, plastic film, and non-woven materials are examples of Webs. Web handling is

the science involving the mechanics and dynamics of transporting webs from unwind

stations, through machinery, to rewind stations. Rubber covered rollers are often used to

nip the web against a metal surfaced roller that is driven, to achieve a certain web

velocity or web tension.

Winding determines the quality of web rolls in a web handling industry. Several

types of winding include center winding, center winding with a nip roller and surface

winding. In center winding with impinging nip roller, the driving torque is given to the

core while the nip roller is free to rotate. In surface winding, the torque is given to the nip

roller and the core is free to rotate. The Wound-on-Tension(WOT) is the tension of the

web in the outer layer of a winding roll. Past research[l] has shown that the value of

wound-on-tension for rollers wound by center winding is greater than that for surface

winding under the same winding conditions. While winding with a nip roller, there can be

an increase in wound-on-tension due only to the nip, without increasing the web line

tension. A nip roll can also exude the air entrained into a wound roll during high speed

winding. Rubber covered nip rollers are often used on winders where vibration may be a



problem. The resiliency of the rubber cover also increases the contact area between web

roll and nip roll for a given nip load, compared to a metal surfaced roll, thus reducing the

maximum contact pressure which can affect web quality.

Rubber covered rollers have been studied by Ning Cai[2] and Kaya[3]. Ning

Cai[2] found that the nip induced tension mechanics is the intrinsic property for winding

with a nip roller, and the mechanics can be applied to both center winding with nip rollers

and surface winding. He also found that the compliance of the nip roller had no effect

upon the nip induced tension. He concluded that the compliance of the nip rollers had no

effect upon the wound roll stress in center winding, with an un-driven nip rollers, and

surface winding. His studies were done at a low nip load of 6 plio

Research done by Omar Sedat Kaya[3] has shown that, while using the rubber

covered nip rollers, the value of WOT was similar to the WOT values measured using a

solid aluminum roller at low nip loads, as Ning Cai[2] found. But, while operating at high

o

nip loads (in his case 30 pli)and high wrap angle (180 ) there was a significant increase

of WOT values with solid rubber covered rollers, when compared to a solid rigid

aluminum roller. The complexity of the rubber covered roller is the rubber itself. Rubber

is nearly incompressible and rubber often changes in shape, which is often mistaken as a

change in volume. The increase in WOT is due to the constriction of rubber causing the

web to speed up, and frictional forces to develop between the web and the surface of the

rubber roll that results in an increase in web tension and WOT.
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From the previous research of Kaya[3], it is seen that the incompressibility of

rubber causes the web to speed up locally, hence causing the increase in WOT. Rubbers

can be made to compress by grooving circumferentially or having voids cast into them, as

in the case of urethane foams. If the rubber is made to compress without speeding up,

then the grooving or voids should prevent the increase in WOT found with solid rubber

covers. This issue was investigated and results are documented and presented in the

forthcoming chapters.
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CHAPTER 2

LITERATURE SURVEY

Prediction of stresses in wound rolls has been an interesting topic for a long time.

Wound roll quality and performance are related to the level and distribution of in-roll

stresses. It is the in-roll stresses which determine the structural integrity of the wound roll

and make it an effective package. It is also this same stress which can cause damage to a

web when not controlled properly. So, it is very important to find a way of controlling the

in-roll stresses.

2.1 Overview on Wound Roll Models:

Web material parameters have been known to affect the wound roll stresses, since

the advent of wound roll models. The web material properties are documented in this

research. In 1986 Hakiel[4] composed a wound roll model in the form of a second order

differential equation in radial pressure of the form:

Equation (2.1)

where g2 is the ratio of E~r

E t is In-plane Modulus

4



E r is Radial Modulus

r is radius

80' r is radial stress or pressure

This differential equation requires two boundary conditions for solution. The first

boundary condition results from equilibrium of the outer layer:

T
8cr =~*h

r S

where Tw is Web Tension (psi)

S is Radius of Outer Layer

h is Web Thickness

Equation (2.2)

The boundary condition in Equation 2.2 is valid only for center winding with no lay on or

rider roll. The second boundary condition results from enforcement of compatibility

between the first layer of the wound roll and the core upon which the roll is wound:

where u(l) is Radial Deflection of the roll at the core

a r is Pressure beneath outer layer

Ec is Core Stiffness

Equation (2.3)

He normalized the deformation(u) by dividing by the radius; thus both sides of

this equation are dimensionless. The pressures( dar 's) throughout the roll are solved as

each layer is added on. The pressures are then added to the pressures which resulted from

previous solutions. He obtained the radial stress in the i th lap of wound roll by the

5



summation of incremental inter-layer pressures. This solution is shown in Equation 2.4 .

n

O'ri = I,80'ri
i=l

where 0' ri is radial stress in i th lap of wound roll

80'ri is incremental inter-layer pressure

Equation (2.4)

Execution of Haidet's model shows that the web tension is the most sensitive input

parameter in terms of impact on the internal roll pressure and stress. The in-plane and

radial modulus of elastici ty also affect the stresses but to a lesser extent.

The radial modulus is one of the parameters which decides the stresses in a wound

roll. In this research, the model of Pfeiffer[l] is used to determine the value of radial

modulus. He plotted some compressive stress-strain curves for paper on semi-logarithmic

graph paper and found that they were fairly straight lines. He found an exponential

relationship between the compressive pressure (Pc) and compressive strain( cc)' from

the linear plots. When the vertical pressure scale was made logarithmic and the same data

were plotted, the stress-strain diagram turns into an almost straight line. The

mathematical model is truly straight, and equations 2.5 and 2.6 show how to go from the

general equation of a straight line to the equation of the model.

y=rnx+b

where m =slope of curve

b =y intercept

6

Equation (2.5)

Equation (2.6)



Ec =compressive strain

Pc =compressive pressure

K 1=residual pressure

K2 =constant( Springiness Factor)

The value of K 1is equal to the pressure on the sheets when the strain is reduced to zero.

One would expect this pressure to be zero, but there is a slight pressure on a vertical

stack, in this case due to the weight of the sheets themselves. In the present research, this

model has been used to evaluate the radial modulus of five different kinds of paper used

in WOT measurements.

2.2 Overview of Web Line Tension Effect on Wound Roll Stresses:

The tension in the web between the unwinding and winding station namely, web

line tension (T w ) is the most sensitive parameter in winding models. In this research, the

effect of web line tension under various wrap angles and different rollers has been

studied. So, it is very important to study the effect of web line tension on winding models

from previous research.

The WOT measurement model in the WHRC lab has been used in this research

for measurement of WOT with various solid and grooved rollers and papers. The model

of WOT measurement with nip induced mechanism was first proposed by Good, Wu and

Fikes[5]. They gave the first basic understanding of the nip induced tension mechanism

with their analytical and experimental results. The mechanism was discovered as an

7



elongating machine direction strain caused by compressive Hertzian-like contact stresses

which exists beneath the nip roll location on the lower side of web which in intimate

contact with wound roll. A new boundary condition was formulated for wound roll stress

models in which the tension in the outer wrap was set equal to the sum of the incoming

web stress and the saturated value of nip induced tension. The new boundary condition

relied on the coefficient of friction, and the nip loading was presented as

I...IN h
(Jr Ir=s= [{T wlr=s} + h];

where N is Nip Loading and

/-! is the Kinetic Coefficient of Friction

h is web thickness

s is the radial location of outer wrap

T w is Web Line Tension

Equation(2.7)

The WOT measurement has been done on both surface and center winding in this

research. It is important to know the model of the WOT in both winding conditions. The

WOT measurement for center wound rolls is the model proposed by Good and Fikes[6].

With their experiments on Center Winding with un-driven nip roll, they gave an equation

for Wound-on-Tension, T

Equation(2.8)

Where T w is the Web line Tension, /-! is the coefficient of friction, N is the nip

load per unit width, h is the web caliper which yields units of stress for the tension.

8



Core (su pported)
Nip Roller

/'Cylinder for Adjustmenl

""'....~ Incomi ng
Web

Wound
Roll

of Nip Pressure

Figure 2.1: A Center Winder With an Impinging Nip Roller

The effect of web line tension in center and surface winding become clearer with

the non-interfering method of evaluating roll structure, for both surface and center

winding with a nip, by Good, Hartwig and Markum[7]. They used the experimental setup

shown in figure 2.2. They concluded that Wound-on-tension in center winding with an

un-driven nip appeared to be function of web tension and less a function of nip load. In

surface winding WOT appeared to be a function of nip load but was nearly unaffected

from web tension. The equation for WOT for surface winding was given as

WOT =NIT

T N
WOT=NIT+ we

ellwlJ 58.3

Where NIT = JlN / h

for 0 < N < 10 pli

for 10< N< 33.3pli

9

Equation(2.9)

Equation(2.10)



T w is Web Line Tension

I-t is the kinetic coefficient of friction between web layers

I-t wn is the kinetic coefficient of friction between web and nip

N is the nip load per unit width

h is the web caliper which yields units of stress for the tension

8 is wrap angle

Position Guide Unwind

Load Cell - W1T

Ultrasonic Position
Sensor Measurement
&. Control LO:.ld Cell - Nip Load

Measurement & Control
Nip Loading
Cylinder

Figure 2.2: WHRC WIT Apparatus used by Good, Hartwig and Markum
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From the Equations 2.9 and 2.10 for surface winding it can be seen, for lower nip

loads, the WOT is equal to the nip induced tension. At higher nip loads, WOT is

dependent on nip induced tension and web line tension. Also the equations are just

empirical representation of WOT for particular material of news and nip roller (aluminum

in this case) used in that work.

2.3 Overview of Speed Differential in Rubber Covered Rollers:

By Kaya's[3] work it is known that the local speeding of the rubber roller is the

cause for an increase in WOT, when winding at high nip loads. The study of differential

speed of the rubber covered nip in contact with a wound roll, has not been documented

well. The differential speed of a rubber covered roll in contact with a metal surface roller

has been studied and facts have been documented in the past.

In the year 1964, Foreman [8] studied the application of rubber covered rolls to

pinch rolls and bridles and explained the differential in speeds as a result of the

lengthening of the rubber surface in the area of contact with the strip. Foreman[8] studied

the rubber covered rolls and established a relation between the rubber compression and

the velocity of the strip passing through them. He stated that the increased length of

contact between the compressed rubber and the strip passing through the rollers is the

reason for the increased velocity in the strip.

11



P(uniformly applied pressure)

~__----Free Block

,----- -------------------------------------------- ------] ....~t------->...-Compressed Block

I
I~

...
~I I

~

Figure 2.3 Rubber Block Under Action of Uniform Pressure

Foreman studied a block of rubber to illustrate this principle. In the uncompressed

state the block has dimensions of hI and L1and in the compressed state it deforms to h 2

and L 2 respectively. He neglected the friction between the surfaces in contact and

assumed that the block is so confined that no change occurs in the plane perpendicular to

the paper. Since there is no volume change under this condition, the area of the

compressed block will be equal to the area of the uncompressed block.

Using Hooke's Law:

E£=(J

Substituting Equation 2.13 in Equation 2.12 he got

12

Equation (2.11)

Equation (2.12)

Equation (2.13)



Equation (2.14)

From the above equation, he concluded that the surface of a rubber under

compression will increase in length and that the increase will be in some proportion to the

applied pressure. Foreman, also stated that a longer surface contact area creates a

phantom roll of apparently larger diameter but with same rotational speed. However, the

velocity of the strip will be greater than the apparent surface speed of the roll, in

proportion to the lengthening of the rubber surface in the area of contact.

Foreman said that the velocity of the strip is dependent on factors like radius of

roll, covering thickness, covering durometer and roll pressure. The velocity of the strip

with the dependence on covering thickness and durometer, matters as in the present work,

rollers with different durometers and with grooved rubber rollers two different of

thickness of rollers have been studied for WOT values.

Eleven years later(1975), Bharat Bhushan and N. H. Cook[9] developed a

modified friction model for two mating spheres. They assumed that the contact takes

place at the peak of the asperities. They stated the result of this model as, if the adhesion

stress/shear strength of the weaker material is greater than 1.5 then adhesion has a strong

influence on friction. It was, also, found that the coefficient of friction was independent

of the load. This work gives the influence This paper gives the influence of friction for

two different strengths of material, which is very relevant for this present work when

rubber hardness variation was studied.

13



In 1986, Beucker[10] studied cross machine variations in the cover construction

and surface contours. He investigated the length increase of rubber when used as the nip

and stated that the surface speed of the metal roll was greater than the surface speed of

the rubber roll.

He studied the speed differential with cover thickness and loading. Figures 2.5 &

2.6 show that the speed differential is dependent upon the hardness as well as on the

loading and thickness. He said that the coefficient of friction is the parameter that is

defined with the slippage between two different surfaces. In the present work, rubbers of

different hardness and thickness have been used for nip rollers. Some of them are

grooved, and it is interesting to note the results of speed differential for the five web

materials used.

.1-
A

T ..i.
Deflection

T

Figure 2.4: System of Rubber Deflection of Loaded Rolls studied by Beucker [10]
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Figure 2.5: Speed Differentia-I, as a function of Load and Cover Thickness[lO]

Figure 2.6: Speed Differential, as a function of Load and Hardness[10]

Good J.K.[ll], documented soI1le of the properties of rubber and also examined

two dimensional algorithms that relate to both force and deformation of rubbers rolls in

contact with other rolls. He founo that Young's Modulus is highly dependent upon the

Shore hardness and is independellt of rUbber type. He used the slope of diametral strain

15



versus the compressive strain data to estimate Poisson's ratio. It was found to approach

0.5 for rubber materials.

_---.r--. x

r-o

t
~.

~b

Figure 2.7: Definitions of Variables for Lindley's theory

Good modified the force/deformation relationship by accounting for the Young

Modulus effect in Johnson's and Evan's expressions and they are

1 (1- v)2 Eo (1 + kS2) (28)3/2.JR
F=

3 1-2v 1-v2 t

16

Equation(2.15)



F

Figure 2.8: Definition of Variables for Johnson's Theory

~X

Good found that the two dimensional force versus deformation relationships of Johnson

and Evans appeared to be applicable up to strains of 6-7%, provided that the confinement

of rubber is accounted for in the modulus.

It is important to be aware of past research on rubber covered nip rolls on wound

rolls. Ning Cai[2] did a empirical study on the effect of nip roll compliancy upon center

and surface winding. He calculated the nip load from the following equation

T *sina6 6.49 * F *sina4N = w +--------'-
sinal IO.75*sina l

Where: T w =Web Line Tension

F =Force due to gas pressure in the cylinder

I 2 2 "
L = -v6.25 + 1.75 = 6.49

17

Equation(2.17)



r

4.75"

l<.5"

2.()"

\
IO.7S"

1.75'

Figure 2.9: Drawing of Nip Roller Mechanics used by Ning Cai

He also developed a FORTRAN program to calculate the actual nip load applied

on the web roll as a function of roll radius. Using the notion of web slippage over the nip

roller, the surface winding was modeled as

I-l - N T
WOT= p p + w

h el!a-p8

I-l_N
Where P P is nip induced tension

h

18

Equation(2.18)



Jlp- p is the kinetic coefficient of the friction between paper and paper

Jla- p is the kinetic coefficient of friction between paper and aluminum nip roller

e is the angle of wrap around the nip roller, which is shown in Figure 2.10

Figure 2.10: Simplified Mechanics of Nip Roller used by Ning Cai

Cai concluded that compliance of nip rollers has no effect upon the wound roll

stress in center winding with an un-driven nip roller, and has minor effects to the

wound roll stress in surface winding. As per the above equation, the coefficient of

friction between surface driven roller and the web did affect the wound-on-tension

than the nip compliancy. His study pertained to a low range of nip loads. He found

19



the WOT values to be almost the same for both a solid aluminum roll and solid rubber

covered rolls, in both center and surface winding.

Kaya [3] in 1999 studied the WOT in surface winding for newsprint, using

different types of nip rollers. He saw that the penetration of the rubber cover, due to

the nip load, caused the web in the nip contact zone to speed ahead of the web. This

increase in velocity resulted in slippage between the web and the surface driven roll.

The friction forces added to the WOT. He concluded that, for a rubber covered nip

roll, the wrap angle has an effect on WOT at high nip loads. At low nip loads, rubber

covered nips behaved like a aluminum roller, since the nip load was not sufficient to

deform the nip roller.

The difference of WOT for a 4" outer diameter aluminum and a rubber covered

roller was more apparent at high nip loads and high wrap angle(180 degrees in his

case) than the lower wrap angle ( 45 degrees in his case). Kaya concluded that this

increase in WOT is due to the local speeding of rubber, which in turn caused the

lengthening of rubber in the lateral direction. This is interesting from the point of

view of the increase in WOT given by solid rubber rolls. So, the present research the

rubber groove effects are studied, to give more evidence of the behavior of rubber.

Good[12], stated that the relative increase of velocity of a web moving through

rubber covered rolls is approximately equal to the circumferential strain in the contact

zone.

20



I1VI - £ - 81Iv - ee,avg - 14t Equation (2.19)

11V Vweb - VR 8
where -V = , =the maximum deformation of the rubber covering

Vweb

and t = cover thickness.

The conclusion is that the penetration of rubber, due to the nip load especially at

high nip loads, will cause the web in the nip contact zone to speed ahead of web. This

speeding up of the web results in slippage between the web and nip roller, and friction

forces add to the WOT. So, the radius of these rollers will increase from the original 4"

and this increase in radius and local speeding causes the high WOT at high nip loads

during surface winding. The effects are seen more obviously in surface winding than in

center winding, as the wrap angle of surface nip roller would be sufficient to increase the

WOT, due to frictional forces.

From the discussion above, WOT is dependent on nip load for metal surfaced nips

and the evidence that rubber covered rolls can increase WOT if (1) they are significantly

impinged and (2) the wrap angle of web about the nip roller is sufficient. The rubber

covered rollers in contact with metal surface rollers have been proven to have a local

increase in velocity in the contact zone which, Kaya[3] postulated to be the source of the

additional WOT. The objective of this research is to determine the validity of Kaya's[3]

postulate by comparing the WOT's measured using rigid metal surface nips and nips with

solid rubber covered rollers, to covers with grooves and open cells that can allow the

rubber to deform laterally without speeding up in the circumferential direction.
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CHAPTER 3

EXPERIMENTAL SET-UP

3.1 Winding Machine Description and Winding Conditions:

The winder at the WHRC lab is capable of winding webs in both center and

surface winding modes. The web line tension and the nip load of the winder are held

constant using closed loop controllers. The winder, also, has the capability of installing

various nip rollers with various angle of wrap of the web about the nip roll. The WHRC

winder has undergone several modifications in its set-up and control over the years.

The winder is shown in figure 3.1 with the various components labeled. The

complete explanation of this experimental set-up has been given by Balaji[l3]. In this

work can give us more explanation of the winder components individually. In the present

work, the thrust has been given more to the nip rollers and angle of wrap of the web

around the nip roller.

Nip Roller: The nip rollers are used to apply nip load over the width of the roll being

wound as seen in Figure 3.1. They are pivoted on a swing arm and held by two vertical

columns and the whole compact structure of nip roller mechanism is mounted on linear

guides. The nip rollers used for this research were Aluminum Shell roller, Rubber

Covered rollers of hardness 30 and 62 Durometer Shore A, and Grooved Rubber Covered

rollers of hardness 55,62 and 86 Durometer Shore A. A mateIial with low Poisson's ratio
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(Polyurethane Foam) was used as a rubber cover to see the effect on the WOT. The

Poisson's ratio of rubber was found to be 0.46 for rubber from the documentation of

Good[12] on his work on modeling rubber covered nip rollers. The table 3.1 above gives

information on the different rollers used for the experiments. The Figures A-2 and A-3 in

the appendix shows the Grooved Rubber Covered roller B winding FCP. The rigid roll in

this research work refers to the solid aluminum shell roll of 4" in diameter.

Grooved Nip Rollers: The rubber was grooved circumferentially and grooves were all of

uniform width. The direction of the grooves were circumferential to remove air

entrainment. All the grooves were vertical, and parallel to the end face of rubber covered

roll. Grooves were spaced equally from each other.

Figure 3.1: View of WOT Experiment with Grooved Rubber Roller B
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Legends:

Figure 3.4: Winder Set-up used at WHRC

1. Unwind Station 7. Winding Station

2. Web Lateral Motion Guide 8. Linear Guide ways

3. Infra red sensor for lateral motion guide 9. Air Cylinder

4. Web Line Tension Feedback Roller 10. WOT Roller

5. Speed Comparator 11. Stepper Motor

0

6. Nip Roller 12. 45 Wrap Angle Set-up
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Nip Roll O.D. Cover Durometer Land Groove Groove Poisson's

(in) Thickness(in) Shore A Width(in) Width(in) Depth(in) Ratio

Rigid 4 - - - - - -

Aluminum

Roll

Roll A 4 0.36 86 0.184 0.063 0.184 0.46

Roll B 4 0.49 55 0.184 0.063 0.184 0.46

Roll C 4 0.307 55 0.184 0.063 0.184 0.46

Roll F 4 0.5 62 - - - 0.46

Roll G 4 0.5 62 0.184 0.063 0.184 0.46

Roll H 4 0.5 12 - - - 0

Roll I 4 0.5 30 - - - 0.46

Table 3.1 Details of Different Rollers used for measuring WOT in WHRC Winder

Angle of Wrap Adjustment: Kaya's[3] results showed that an increase in WOT required

a high nip load and a sufficient wrap of the web about the nip prior to the web being

wound onto the winding roll. In the present research, two wrap angles were possible,

180° and 45° . The 180° wrap angle was obtained with the old Winding Machine Set-

up. For the 45° wrap angle, two new idle rollers were mounted on top on the existing nip

rollers to give a 45° wrap angle. The figure A-7 shows the winder with a wrap angle of

180° of web around the web and Figure A-8 shows us the modification made to the

previous winder to achieve a 45° wrap angle of web.
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Equation 3.1

3.2 Modulus of Rubber Covered Rollers:

The modulus of a rubber covered roller is estimated by the equation given below

by Good[13].

Err = 26.54 * eO.0524*(hardness)

where Err is Modulus of Rubber in psi

Hardness = IRHD Number = Durometer Shore A

He obtained this equation from the curve fit of experimentally measured modulus versus

IRHD data for several different types of rubber. In this experiment Rubber Rolls of

86,55, 62,30 and 12 Durometer Shore A were used and their modulus are given in the

table 3.2.

Durometer Shore
Nip Roll Modulus of Rubber(psi)

A

Roll A 86
2404

Roll B 55
474

Roll C 55
474

Roll F 62
684

Roll G 62 684

Roll H 12
50

Roll I 30
128

Table 3.2 Value of Err for Nip Rollers Used during Experiment
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3.3 Web Thickness and Width:

The thickness of all the web materials were measured using a micrometer. A stack

of 10 layers of web was prepared and the thickness of the web was measured at six

different points along the width of the web. The thickness of each layer of web was thus

calculated from the average values of these trials. Care was taken not to allow any air

entrainment between the web while measuring the web thickness. This was done by

sliding the webs, to remove air entrainment when stacked for thickness measurement.

Also the web was held in a flat position to give accurate results. The width, which is very

crucial in finding the pounds per inch of web line tension or nip load, was also measured

and it is documented along with thickness in table 3.3.

Web Material MFC FCP LWC NEWS SC

Thickness (in) 0.00260 0.00337 0.00167 0.00295 0.00185

Width (in) 6 6 6 6 5.4

Table 3.3 Thickness and Width of Various Web Materials

Where LWC is Light Weight Coated paper

MFC is Machine Finished Coated paper

NEWS is Newsprint

FCP is Fine Coat Paper

SC is Super Calendared
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3.4 Web Materials Used and their Applications:

The five paper grades used in this research were LWC, MFC, NEWS, FCP and

SC. In this section the paper grades and their commercial applications are described.

LWC: Light Weight Coated paper delivers brightness, shade, opacity and cleanliness. It

prints with a high gloss and excellent fidelity at lighter basis weights. This paper is used

in magazines, catalogs and brochures where its light weight for postage is crucial.

MFC: The machine finish coated paper has one side rough and other side printable. This

paper is mainly used in business forms. It is also used in tag stocks, hand peel label and

catalogs.

NEWS: The main use for newsprint is newspapers, with smaller amounts being used for

magazines, inserts, comics and general commercial printing. In some places, newsprint

serves as a cheap general purpose printing paper like exercise books. Standard newsprint

is printed mainly by offset and letterpress, but flexography is also increasing. It has less

glossiness and brightness compared with other paper grades.

FCP: The fine coated paper is designed for applications like ink-jet printers, as it

provides an economic alternative, which is especially suited to CAD type applications

and graphic type images. It is also used in company brochures and stock reports. The

FCP has a white glossy look and is the thickest of the paper grades used here.
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sc: The super calendared paper has high sheen and smoothness. It is excellent for use in

die-cutting applications. It has good strength and high apparent density. It is widely used

in manufacturing tapes, labels and magazines.

3.5 In-Plane Modulus(E l ) Test:

A web 50-ft in length and 6" in width was constrained at one end by taping to the

floor while the other end was attached to a 6" wide metal strip, with a hole in the middle

to apply pull force using hand force gauge. On the metal strip side, a clean sheet of paper

was taped to the floor adjacent to the web and the end of web was marked on this sheet.

The web was pulled slowly and gradually for different pulling forces and the

cOITesponding deflections were marked on the clean sheet of paper. The stress-strain

graph was plotted and the value of in-plane modulus estimated from the slope of the

curve. Tests were repeated thrice and average values of the modulus were recorded as the

in-plane modulus of the web. The In-plane moduli of various web materials used are

given in the table 3.3. An example plot of a stress-strain curve for newsprint is shown in

Figure 3.

Web LWC MFC NEWS FCP SC

E t (psi) 804680 830000 584050 909570 1145700

Table 3.4 Results of In-Plane Modulus Tests for Various Web Materials
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Figure 3.5: Stress-strain curve for Newsprint for in-plane modulus test.

3.6 Radial Modulus( E r ) Test:

The radial modulus( E r ) is another input parameter needed to study the pressure

distribution inside the wound roll, using the mathematical models like Hakiel's[3]. Web

samples were cut 6" by 6" and stacked 2" high. This stack was loaded on the Instron

Material Testing Machine having platens of square cross section of 7 X 7(in 2). The

LabVIEW program controlled the application of load to the web stack from a to 200-psi

pressure. The program recorded the pressure and strain values. The radial modulus and
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pressure is given as input to MS Excel spreadsheet. The predicted pressure is obtained

from Pfeiffer's Equation show in equation 3.2

Equation (3.2)

Web K1Psi K 2

LWC 0.166 55.43

MFC 0.195 59.73

NEWS 1.803 27.49

FCP 0.397 182.57

SCA 0.5 77.129

Table 3.5: Coefficients of K1 and K2 in Pfeiffer's Equation
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Figure 3.6: Radial Modulus of Elasticity for LWC
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The absolute difference between the measured pressure, and predicted pressure is

measured as error. The total error is obtained and minimized by iterating on K 1and K 2

simultaneously. The Solver in MS Excel program is used to find K 1 and K 2 The radial

modulus of web is obtained from the equation

Equation (3.3)

A plot of Radial Modulus of Lwe and pressure is shown in Figure 3.4

3.7 Friction Tests:

The coefficient of friction between the different web materials over different

rollers was measured in addition to web to web friction. The 4 inch aluminum roller was

fixed at both ends, using bench wises as shown in Figure 3.4 and a piece of the web was

wrapped around and a known weight of 10 pounds was hung from one end. The other end

was attached to a force gauge.

The frictional force was measured by pulling at constant velocity about the roller.

The tests were repeated thrice and averaged to find the kinetic coefficient of friction

between the web and aluminum roller. The web to web friction was measured using the

same setup by wrapping a layer of web around the roller and then repeating the test

described above. The friction coefficients were determined using capstan expression. The

results of the friction tests are summarized in the table 3.5. The capstan equation, which

is used to find coefficient of friction, is given in equation 3.4

Equation (3.4)
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where T1and Tzare loads, J.! is coefficient of friction and e is Wrap Angle

Web Rigid Roll A Roll B Roll C Roll F Roll G Web to

Aluminum Web

Roll

LWC 0.59 0.53 0.82 0.63 0.66 0.64 0.34

MFC 0.35 0.51 0.87 0.67 0.67 0.65 0.33

NEWS 0.22 0.49 0.75 0.91 0.64 0.67 0.16

FCP 0.38 0.51 0.34 0.35 0.49 0.46 .36

SCA 0.27 0.49 0.56 0.78 0.54 0.66 0.34

Table 3.6: Coefficient of Friction of Various webs on Different Rollers and web

Fore Gauge

Figure 3.7 Friction Measurement Test

34

Roller



CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Wound-on-Tension dependency on Wound Roll Radius and Nip Load Sequence:

The WOT was measured by a two stage testing process in which WOT was

directly observed using the WOT load cells in one stage and infening WOT from pull-tab

measurements in another case. In this thesis WOT was measured using the Interfering

Method using the load cells.

In the sets of experiments done so far with the seven different type of nip covers

and various web types, the value of WOT values were independent on the wound roll

radius, so the value of the WOT was averaged for each nip load.

The WOT appeared to be independent of wound roll radius, while nip load was

held constant, an example of which is shown in Figure 4.1. The nip load was increased

during experiments performed with the urethane foam covered roller (Roll H). This was

done because the behavior of Roll H was just the opposite of the other rolls as nip load

increased the WOT decreased, as shown in Figure 4.2. The nip load was always

decreased from highest value say 33.3 to 25 to 16.7 to 8.3 plio This was done to prevent

internal roll slippage during winding which can lead to erroneous WOT measurement.
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Figure 4.1 Effect of Wound Roll Radius on WOT for Surface Wound MFC Paper with

Different Rollers
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o

Figure 4.2 Center Wound FCP showing the Decreasing WOT with Increasing Nip Load
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Figure 4.3 is the error bar plot for surface wound LWC at 1 ph web line tension

for four nip load sequence. From the plot we can say 95% confidence level and the tests

are highly repeatable. Another plot for surface wound MFC at 1 ph web line tension is

given the Figure A.9. This plot also gives 95% confidence level.

Error Bar Plot for Surface Wound LWC

25 -,---------------------~

20 t---------------~"..=-..JI---___l

~ 15 -r---------------:;;,...--~-------_l
~ 10 -t----~-~-~~------------1

5+-----L------------------1

I-+-Average I

250200100 150

Nip Load (LB)

50

0-t-------r----,..---------r----.-------1
o

Figure 4.3 En·or Bar Plot for Surface Wound LWC with 95% Confidence level.

4.2 Angle of Wrap Dependency:

The effect of angle of wrap of the web about the nip roller on WOT was studied

with the various rolls including rigid aluminum and solid rubber rollers. The wrap angles

o 0

used in these experiments were 180 and 45 . The first set of results are shown in

Figure 4.4 and are for the machine finished coated paper which was surface wound at

o 0

Web Line Tension of 1 ph with the rigid roll and roll F at 180 and 45 . From the

results, it is shown that the WOT values are dependent on wrap angle of both the rigid

and un-grooved rubber cover(roll F). It is seen from the plot that the value of WOT is

37



o 0

lower for lower wrap angle 45 than for the higher wrap angle 180 , for the same

winding and nip roll conditions. The effect of wrap angle is seen more at higher nip

loads than at lower nip loads in these test results.

Wrap Effects on Surface Wound Machine Finished Coated
Paper Tw =1 pli

35302515 20

Nip Load (pi i)

5 10

-+- Rigid Tw 1 WA 180
---Roll F Tw 1 WA 180
-+- Rigid Tw 1 WA 45
--e-Roll F Tw 1 WA 45

35

30
_ 25
m
d.. 20

b 15

;: 10

5

O+----.---------r----,----.,.--------,.------,---~

o

Figure 4.4 Wrap Effects on Surface Wound Machine Finished Coated Paper at

The same rollers were tested for wrap angle dependency for same surface winding

conditions and rollers but for a higher web line tension of 3 plio The results are shown in

the Figure 4.5. From the plots, WOT is seen to have dependence of wrap angle, but now

the WOT dependence on Wrap Angle is less. Again, this plot shows the wrap angle has

larger effect at higher nip loads
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Wrap Effects on Surface Wound Machine Finished Coated
Paper Tw =3 pli
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Figure 4.5 Wrap Effects on Surface Wound Machine Finished Coated Paper at

Figure 4.6 shows the results for MFC paper center wound at 3 pli web line

tension, with a rigid, un-grooved roller(Roll F) and grooved roller(Roll G). The value of

WOT is lower for lower wrap angle and higher for higher wrap angle throughout the nip

load sequence. The most significant impact of wrap angle on WOT was noted for the un-

grooved rubber roller. It appears the paper speeds up with the rubber cover in the contact

zone, which requires the web on the nip roller to slide, which results in frictional forces

which increase the WOT. The increased angle of wrap generates additional friction forces

and hence higher WOT. If the difference is significant, this is interesting because

Kaya's[3] work was all sUlface winding.
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Coated Paper Tw = 3 pli
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Figure 4.6 Wrap Effects on Center Wound Machine Finished Coated Paper at

The rigid roller was used to study the effect of wrap angle during center winding

at different web line tensions. The rigid roller was run with machine finished coated

o 0

paper for two web line tensions 1 and 3 pli, and two wrap angles 180 and 45 . The

results are shown in Figure 4.6, It was found that wrap angle had no impact on WOT,

when center winding with rigid rollers. This agreed with the previous research work of

Kaya[3]. He found that the aluminum roller exhibited no effect of wrap angle on WOT at

any nip load.
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Figure 4.7 Wrap Effects on Center Wound Machine Finished Coated Paper for Rigid

Aluminum Roller

Results of center wound machine finished coated paper at both 1 and 3 pli web

o 0

line tensions with 45 and 180 wrap angle are shown in Figure 4.8. Note from the plot

that for 1 pli web line tension, the WOT values are the same for rigid and rubber covered

roller (Roll F) at lower nip loads of 8.3 and 16.7 plio at higher nip loads of 25 and 33.3

pli, the rubber covered roller produces higher WOT compared with the rigid aluminum

roller. The same behavior is observed with 3 pli web tension where the WOT values are

high at higher nip loads for Roll F when compared to the rigid Aluminum roller. The

o

WOT values were lower for lower wrap angle 45 and higher for higher wrap angle

o
180 at all nip loads. This behavior is seen even at higher web line tension of 3 plio
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Center Wound Machine Finished Coated Paper
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Figure 4.8 Variation of WOT at High Nip Loads for Rubber Covered Roll F with Rigid

o 0

Aluminum Roll and at Different Wrap Angles 180 and 45 during Center Winding.

4.3 Web Material Effects: The impact of these rubber covered rollers on WOT was

studied for several web materials. While winding them in surface winding at 1 pli web

line tension, the materials(including MFC, LWC, SC and News) produced a WOT

behavior which was consistent for web materials. For all the curves in Figure 4.9, for a

given material, the value of WOT is almost same for both rigid aluminum roll and un-

grooved rubber roller(RolI F) at low nip loads of 8.3 and 16.7 plio This is seen for all

materials. At higher nip loads, the Roll F produces a higher WOT when compared with

the Rigid Aluminum Nip Roll for all the web materials. This provides evidence that this

WOT behavior occurs for several web materials.
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Figure 4.9 Surface Wound Results for 4 Paper Grades for Rigid Aluminum Roll and Un-

o

Grooved Rubber Roll ( Roll F) at 1 pli Web Line Tension and 180 wrap angle

Web line tension and nip load can be very high in the real time factory

conditions. To study a high web line tension and nip load with center wound nip rollers,

like rigid aluminum and un-grooved rubber roll(Roll F ), materials such as machine

finished coated paper and fine coated paper were required, as they had high breaking

o

strengths. Tests were run at 180 wrap angle and 3 pli web line tension. The FCP results

shown in Figure 4.10 are superimposing well and the MFC results are similar. At high

web tensions and perhaps high web/rubber friction coefficients, the rubber cover has little

impact on WOT.
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Figure 4.10 Variation of WOT at High Nip Loads for Center Wound MFC and FCP at 3

o

pli Web Line Tension and 180 Wrap Angle

4.4 Impact of Grooves, Cover Thickness and Hardness: Kaya[3] reported in his

research work that at high nip loads, the WOT was higher at higher nip loads for the 4"

30 Durometer Rubber Covered Roller than with 4" Rigid Aluminum Roller, for surface

winding. Similar behavior was seen in the experiments done in this research with rubber

covered rolls with no grooves.

The experiments and results of the grooved rubber covers and solid rubber covers

o

for surface wound MFC at 1 pli Web Line Tension and 180 wrap angle are shown in

Figure 4.11. In the plot, the un-grooved roller (Roll F) produces higher WOT at higher
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nip loads. Whereas, the grooved rollers A, B, C and G are producing lower WOT at all

nip loads when compared with both Rigid Aluminum roller and Un-grooved Rubber

Roller. The dimensions and properties are given in Table 3.1. In Table 3.1, note that Roll

A is the grooved roller with highest hardness and it is seen as giving the WOT highest

among the grooved rollers for all nip loads.

Surface Wound Machine Finished Coated Paper Tw = 1 pli

35302515 20

Nip Load (pli)

105

~ Rigid Tw 1 WA 180 1------------------------,
---Roll A Tw 1 WA 180
-.-Roll B Tw 1 WA 180
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......-Roll G Tw 1 WA 180
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Figure 4.11 Variation of WOT for Surface Wound MFC at 1 pli Web Line Tension and

o

180 Wrap Angle

The only difference between the Roll B and Roll C is that the rubber thickness of

Roll B is higher than Roll C, and every other property like hardness and dimensions of

land width and groove width are the same. Roll B yields lower WOT at all nip loads

when compared with Roll C. Thus, the thickness of the grooved rubber roll also
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influences the WOT value. The Rolls F and G are the ones with same hardness and G is

the grooved roller, and F is one without grooves. From the plot of WOT values from

Figure 4.11 it is clear that Roll G yields lower WOT values when compared with Rigid

Roll or the Un-grooved Roll F at all nip loads.

The grooved rubber covers were then studied at a higher web line tension of 3 pli

for surface winding. The results from these set of experiments were consistent with WOT

behavior at 1 ph web line tension. From the plots in Figure 4.12, it is shown that the

grooved rollers yield lower WOT values for almost all nip loads and at higher nip loads

the grooved rollers yield lower WOT than the un-grooved rubber roller.

Surface Wound Machine Finished Coated Paper
Tw =3 pli
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Figure 4.12 Variation of WOT for Surface Wound MFC at 3 pli Web Line Tension and

o

180 Wrap Angle
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Figure 4.14 Variation of WOT for Surface Wound News at 1 pli Web Line Tension and

o

180 Wrap Angle

4.5 Study of Foam Roller on WOT Behavior: A material with low Poisson's ratio

(Polyurethane Foam) was used as a rubber cover to see the effect on the WOT. While

o

center winding with Foam Roller H at 1 pli web line tension and wrap angle of 180 ,the

WOT was found to decrease with increasing nip load. The plot is shown in the Figure

4.15 and in these experiments the nip load increased during the test. The highest WOT

was observed with lowest nip load. This was done to eradicate the slippage of wound roll

and interference of slippage on WOT measurements. The results shown in Figure 4.15
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may be quite useful for webs which must be wound with a nip to disclude entrained air

but where low WOT is required to prevent defects.

Center Wound News with Roll H at Tw=1 pli &
WA=180

1.5

~ 1
c.-I-o
3: 0.5

o
o 5

Nip Load (pli)

10 15

Figure 4.15 WOT Plot for Foam Roller H for Center Wound News at 1 pli Web Line

Tension and Wrap Angle 180
0

•

The cover of Roll H was quite soft (Shore A 12) and was a urethane foam rubber

and Roll I was a urethane rubber with a 30 Shore A. Results of winding tests with these

rollers and the rigid roller are shown in the Figure 4.16. It appears Poisson's ratio of the

nip roller is quite important in determining the WOT.

49



~Rigid Tw1 WA180
_Rolli Tw1 WA180
---.- Roll H Tw1 WA180

-~ 20-t-
O 15;:

10

5

O-+------,-----,-----=--.-----,----~----I

Center Wound NEWS at Tw=1 pli WA=180
35 -,--------------.:..--------

30 ­

25

o 5 10 15 20

Nip Load(pli)

25 30

Figure 4.16 WOT Plot for Center Wound News at 1 pli Web Line Tension and

o

Wrap Angle 180 .

4.6 Discussion: In this research work it was found that at high nip loads the solid rubber

covered nip rollers produce higher WOT than for similar solid aluminum rollers, whereas

the grooved rubber rollers produced WOT lower than the solid aluminum roller. Also, a

study of foam seems to be interesting as they have the very different behavior of

decreasing WOT with increasing nip load.

In this work, the grooved rubber covers were studied for their effect on WOT and

Rubber covers with voids(Urethane Foam) were also studied. From the results it is

seen that grooved rollers of high durometer produce WOT comparable to rigid rollers.

Grooving of low durometer covers appears to successfully prevent the velocity

increase of the rubber in the contact zone. Poisson's ratio of the cover appears to be

quite important in determining WOT behavior as a function of nip load. For the
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rubber foam cover WOT was nearly independent of nip load from 0-7 pli after which

the WOT declined.
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CHAPTERS

CONCLUSIONS & OBSERVATIONS FOR DESIGN

5.1 CONCLUSIONS:

Conclusions have been drawn from the expeIiments done with vaIious rollers and

web materials at different running conditions. They are:

1. At high nip loads solid rubber covers can produce WOT higher than that produced

by a rigid roller. This behavior confirms the postulate of Kaya[3] given in his

research work.

2. Also this higher WOT is achieved by using high wrap angles of the web around

the rubber covered nip rollers. Low wrap angle produced the same or less WOT

than that produced by Iigid nip roll. Kaya[3] too observed that the higher wrap

angle combined with high nip load produced higher WOT.

3. The increased web line tension decreases the amount of WOT that can be gained

by using solid rubber cover.

4. Grooved Rubber ip Rollers can produce WOT less than the Rigid Nip roll at all

nip loads. Grooved rollers of high durometer produce WOT comparable to rigid

rollers. Grooving of low durometer covers appears to successfully prevent the

velocity increase of the rubber in the contact zone.

5. Grooved roll cover of higher thickness can produce lower WOT when compared

with grooved roll cover of same durometer.
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6. Grooved roll cover of higher durometer can produce higher WOT when compared

with grooved roll cover of same thickness.

7. Poisson's ratio of the cover appears to be quite important in determining WOT

behavior as a function of nip load. The urethane rubber foam cover has a

Poisson's ratio close to zero and the WOT was nearly independent of nip load

from 0-7 ph after which the WOT declined.

5.2 OBSERVATIONS FOR DESIGN:

Nip rolls are often grooved to provide vents for entrained air. This study shows

grooving rubber rolls can significantly decrease the WOT. If both venting and high WOT

are desired. The width of the rubber between grooved should be set high enough to

achieve plane strain conditions. If low WOT is desired a urethane foam roller should be

considered.
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FUTURE WORK

The control of WOT has often been a big problem in Web Handling Industry, so

the usage of rubber rollers and grooved rollers can be helpful in deciding the WOT so

that nip rollers can be designed based on the need. and this capability can be incorporated

in the WINDER to analyze soft roll covers.

The study of low Poisson's ratio covers gives us new interesting behavior and this

can be extended with studying more covers of low Poisson's ratio with varying hardness

levels and structure of grooved rolls can be studied more to know the impact of land

width of the grooves on WOT.
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Figure A-I: WOTM Machine at WHRC

Figure A-2: WOT Experiment with Grooved Rubber Roller B and Wound Roll
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Figure A-3: Another View of WOT Experiment with Grooved Rubber Roller B

Figure A-4: WOT Measurement Set-up at WHRC
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Figure A-5: Another View of WOT Measurement with Wound Roll Set-up at WHRC

Figure A-6: View of Wound Roll with Wrap Angle and Nip Loading Set-up at WHRC
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o

Figure A-7: Wrap Angle at 180 in WHRC Set-up

o

Figure A-8: Wrap Angle at 45 in WHRC Set-up
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Error Bar Plot for Surface Wound MFC
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Figure A-9: Error Bar Plot for SUlface Wound MFC with 95% Confidence Level
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