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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Quantum mechanical studies of biornolecu!es have been rapidly 

developed recently by enhanced computational power and improvement of 

computational methods (2, 3, 4, 5, 6).  Our research interests are mainly focused 

on biomolecules including individual amino acids, the basic building block of 

proteins and p-coumaric acid, the chromophore of photoactive yellow protein. 

These molecules contain 20-40 atoms. It is now feasible to perform numerical ab 

initio calculations on molecules with 20 - 40 atoms and more than one hundred of 

electrons on a lGHz personal computer. This allows us to study important 

properties of biomolecules from the first principles of quantum mechanics, 

including geometry optimization, hydrogen bonding interactions, vibrational force 

constant and electrostatic properties. One of our main goals of a6 injtio studies of 

biomolecules is vibrational band assignment for time-resolved FTl R spectroscopy 

to probe structural dynamics of proteins. 

Vibrational band assignment is a complex, time consuming, and costly 

process. The general procedure is outlined as below. Vibrational frequencies are 

calculated based on a set of force constants, masses, and normal mode analysis 

(7, 8, 9). Traditionally, the typical values of force constant were obtained from 

vibrational studies for a specific chemical bond of simple, small molecules. Such 

typical values of various chemical bonds serve as initial values in a trial and error 

process to find the actual force constants. For each set of force constants, 



vibrational frequencies are computed based on normal mode analysis. Such 

frequencies are compared with the experimental data. If the frequencies do not 

match with experimental data in a specific spectral region, this set of force 

constants must be modified. This process will be continued until the computed 

vibrational frequencies match with experimental vibrational bands. Since 

vibrational data are often collected in a limited spectral region, this set of force 

constants is still not guaranteed to be correct. The next test of the accuracy of 

force constants is by the use of isotopic labeling, namely replace a specific 

atom(s) with its isotope ('H -+ 2 ~ ,  12c + l3c, + 1 5 ~ ,  "0 + 180). Force 

constants of a molecule are independent of atomic weight of a particular atom 

while vibrational frequencies do shift upon isotopic labeling. So, a set of correct 

force constants should give correct vibrational frequencies of the isotopically 

labeled molecule as well. With traditional method for vibrational band 

assignment, it is necessary to use isotopically labeled compound, which can be 

chemically challenging and costly. We will use a6 initio method for vibrational 

band assignment. A great advantage is that no trial and error is needed and the 

frequencies will be calculated straightforward based on structures. 

There are a number of ab initio methods to use for ab initio studies. It is 

important to evaluate the accuracy of specific ab initio method to specific need. 

To evaluate the accuracy of the perFormed computations, we emphasize the 

importance to compare computational data with experimental data. The 

computational data may provide us valuable information of biomolecules such as 

band assignment of vibrational spectroscopy for structural and kinetic studies of 



proteins. Researchers have been assigning infrared vibrational modes of 

biornolecules to structural motions for decades (10, t 1, 12). For instance, to 

identify a band in the infrared (IR) spectrum by experimental approach, one has 

to prepare isotopically labeled molecules, observe the peak shift, make empirical 

calculations of vibrational frequencies with force constants, and conclude that 

what kind of vibration generates this peak. At the same time, it is very convenient 

and timesaving to assign these bands for specific biomolecules by ab initio 

computational studies. Since no analytical solution is available for systems with 

two or mare electrons, approximation is necessary. There are two basic quantum 

theories for ab initio calculation, Hartree-Fock theory and density functional 

theory (13, 14, 15) (see chapter II for further information). However, 

computational results make sense only when evaluated them via comparing to 

experimental data. In particular, calculations of vibrational frequencies offer 

strong control over reliable evaluation of computational methods. In addition, 

without ab initio quantum mechanical calculations, vibrational band assignment is 

a trial and error process and requires isotopic labeling, which can be chemically 

challenging, costly, and time consuming. 

1.2 Objectives 

Quantum mechanical computation is a valuable tool for us to examine the 

properties of biomolecules while experimental approaches have limitations. 

Our research goals are: 

Goal 1, Band assignments of biornolecules: a free chrornophore in solvent, 

protonated pcoumaric acid methyl ester in trans form, model 



compound of the chromophore of photoactive yellow protein, a 

solvent molecule (dimethyl sulfoxide) and one amino acids (L- 

alanine at low pH). 

Goal II. Conformational effect, hydrogen bonding effect and solvent effect 

on the vibrational frequencies; electrostatic properties (charge 

distribution and electrostatic fields) of biomolecules. 

Goal Ill. Band assignment of the chrornophore in the ground state of 

functional intermediates of photoactive yellow protein. 

In order to achieve optimal computational speed and good computational 

accuracy, we test four methods, HFISTO-3G, HF13-21G, HF16-31G(d), and 

B3LYP16-31G(d) by comparing vibrational frequency calculations to the 

experimental data. Then we choose the appropriate computational methods to 

achieve these goals. 



CHAPTER ll 

BAND ASSIGNMENT OF BFOMOLECULES USING AB IEJETIO METHODS 

2.1 Ab initio methods 

The term ab initio is Latin for "from the beginning." This name is given to 

computations that are derived directly from theoretical principles with no inclusion 

of experimental data. Ab lnitio methods are based on the fundamental taws of 

quantum mechanics and employ a variety of mathematical transformation and 

approxjrnation techniques such as using a combination of gaussian functions to 

solve the fundamental equations or finding an approximate solution to a 

differential equation. Two different quantum theories are applied in ab initio 

approaches to the many-electron systems: the Hartree-Fock theory and the 

density functional theory. 

The time-independent Schrodinger equation describing the wavefunction 

of a particle has the general form: 

Hy(7) = E y ( i )  

where H is the Hamiltonian operator, E is the eigenenergy of the particle, y~ is the 

eigenwavefundion (16). The Hamiltonian is made up of kinetic and potential 

energy. The Hamiltonian of a system consisting of N electrons and K nuclei with 

charges 2, reads (1 3): 



where index i refers to the electrons and n to the nuclei, rn is the electron mass, 

and M, are the masses of the different nuclei. The first two terms represent the 

kinetic energies of the electrons and nuclei respectively; the third term represents 

the Coulomb repulsion between the electrons and the fourth term represents the 

Coulomb attraction between electrons and nuclei, and the last term represents 

the Coulomb repulsion between the nuclei. It is impossible to solve this equation 

analytically for any system that contains two or more electrons. Therefore, 

adequate approximations must be made. The first approximation is Born- 

Oppen heimer approximation, which separates ejectron and nuclear motion 

based on the idea that the nuclei move much more slowly than the electrons 

since the nuclei are much heavier than the electrons. Then the Hamiltonian for 

electrons has the following form: 

where the first term is the kinetic energy of the electrons, the second term is the 

Coulomb repulsion between the electrons, and the third term is the Coulomb 

attraction between electrons and nuclei. The electrostatic energy of the nuclei 

should be added to the energy of the electrons to arrive at the total energy. 

Although the Hamiltonian (2.2) is much more simplified, it remains intractable 

because of the second term containing the interactions between the electrons. 

Hartree-Fock theory is a basic method for approximating the eigenfunctions of 

the Hamiltonian (2.2). 



Hartree-Fock theory or self-consistent field method was first proposed by 

Douglas Hartree to find the approximate wave functions of a rnultielectron atom 

and then modified by Vladimir Fock (17). There are two approximations in 

Hartree-Fock theory. The first approximation is the center field approximation, 

which means that the Coulombic electron-electron repulsion in equation (2.2) is 

taken into account by integrating the repulsion term. This gives the average 

effect of the repulsion, but not the explicit repulsion interaction (14). The second 

approximation involves expressing the wavefunction as linear combinations of a 

predefined set of one-electron functions know as basis functions. The functions 

used most often are linear combinations of Gaussian-type orbitals ( I  7, 14). 

Gaussian functions have the general form: 

g(a, 7) = ex" mz'e-"2 (2.3) 

where ?is composed of x, y, z. The quantities n, rn, I are integers. u is a constant 

determining the size of the function (15). 

Density functional theory (DFT) has become very popular in recent years. 

It originated from a theorem by Hoenburg and Kohn stating that the energy of a 

molecule can be determined from the electron density instead of a wave function 

(18). Following on the work of Kohn and Sham, the approximate functionals 

employed by current DFT methods partition the electronic energy into four terms: 

E = E ~ +  t i v +  E ~ +  E~~ (2.4) 

where IiT is the kinetic energy term of the electrons, E' includes the Coulomb 

repulsion between pairs of nuclei and attraction between nuclear and electron, E~ 

is the Coulomb repulsion between the electrons, and E~~ is the exchange- 



correlation term including the exchange energy arising from the antisymmetry of 

the quantum mechanical wavefunction and dynamic correlation in the motions of 

the individual electrons. All terms except the nuclear-nuclear repulsion are 

functions of the electron density (1 5).  The advantage of using electron density is 

that the integrals for Coulomb repulsion need be done only over the electron 

density and at least some electron correlation can be included in the calculation 

(14). The B3LYP method that used for this thesis is a hybrid calculation including 

Hartree-Fock exchange and DFT exchange-correlation functionals. B3LYP 

indicates that E'' uses Becke's three parameters and LYP correlation correction 

(2, 3, 15). 

We used the commercial software Gaussian98 to perform the ab initio 

calculations. Gaussian98 can be used to perform geometry optimization, 

calculations of vibrational frequency, electrostatic field, charge distribution, and 

system energy. There are many semi-empirical and ab initio methods available in 

Gaussian98. Semi-empirical methods in Gaussian98 can be applied to systems 

where parameters have been developed for all of their component atoms and are 

not as accurate as appropriate ab initio methods. Only ab initio methods, both 

Martree-Fock and DFT are employed in our studies. 

2.2 Geometry optimization 

The initial chemical structure of the molecule is created first using the 

software ChernDraw, next imported into another software Chern3D to generate 

the internal coordinates, i.e., bond length, bond angle, and dihedral angle, and 

then to optimize the geometry using semi-empirical method - PM3, based on 



energy minimization. The resulting coordinates are imported into Gaussian98 

and geometry is optimized using a specific ab initio method by minimizing the 

energy iteratively. Based on the finally optimized geometry, we may perform the 

following computations: force constants for vibrational frequency calculations, the 

ground state energies for tine structures, electrostatic potential maps, etc. Hence, 

geometry optimization is a crucial step to perform further calculations. 

To illustrate applications of various ab initio methods, we show the results of 

ab initio studies of a srnall molecule - dirnethyl sulfexide (DMSO) as an 

example. Table I s h o w s  the computed ground state energies and computational 

time for DMSO calculated with the HFISTO-3G, HFl3-21G, HF16-31G(d), and 

B3LYP16-31GId) methods (The first three methods are based on Hartree-Fock 

theory and B3LYP is based on density function theory. Among these four 

methods, HFISTO-3G uses the smallest number of basis functions, HF/3-21 G 

employs larger number of basis functions than MF/STO-36, and HFI6-31G(d) 

and B3LYP16-31 G(d) employ larger number of basis functions than HF13-21 G. 

The number of the basis functions is dependent of the size of the system). The 

energy difference arises from different methods used. We cakulate root-mean- 

square derivation (RMSD) of the Cartesian coordinates of optimized structure for 

HFISTO-3G, HF/3-2lG, and HFI6-31G(d) from the Cartesian coordinates for 

B3LYP16-31G(d). HF/STO-3G method yields very small RMSD of 0.1248, 

compared to the resolution of crystal structure (usually one to two angstroms) by 

X-ray diffraction experimental method and it is the least time consuming. 

Therefore, HFISTO-3G method that gives high enough accuracy can  be used as 



an optimal method for geometry optimization calculations. As we will see later, 

however, this method is not accurate enough for vibrational frequency 

calculations, 

1 B3LYP/6-31G(d) I -553.1 9 O.OOQ 18m6s 
1 a.u. = 261 9.6kJlmol (See Appendix I),  m = minute, s = second. 

Table I. The ground state energy of DMSO 

2.3 Searching for an optimal method for vibrational frequency catculations 

Method 

H FISTO-3G 
HFJ3-21 G 

We Zest the above four ab initio methods to calculate vibrational 

frequencies of protonated pcoumaric acid methyl ester in trans form (pCA-ME- 

Energy (a.u.) 

-545.1 9 

-548.68 

trans) in DMSO solvent using 1GHz Personal Computers in order to find the 

optimal method for vibrational frequency 
3 2 

RMSD (A) 
0.124 

0.062 

calculations. The chemical structure of 

pCA-ME-trans is shown in Figure 2.1. 
0 

CPU time 

1mlOs 

lr1-119~ 

Figure 2.1 The chemical structure of Here trans denotes the protons are on 
the lowest energy conformation of 
pCA-ME-trans. opposite sides of C7=C8 bond. We choose 

pCA-ME-trans to study because it has structural importance as a model 

compound of photoactive yellow protein chromophore. There are five double 

bonds in this molecule, three in the phenolic ring, one in carbonyl group (C=O), 

and one in the central C=C bond. The frequencies of C=C and C=O are generally 

in the region of 1800 cm-' - 1450 cm" (10). The experimental Fourier transform 

infrared (FTIR) spectrum of pCA-ME-trans shows 5 prominent 1R bands in this  



region, with peak positions located at 1703 cm" , 1632 cm-' , 1605crn*'~ 1588cm-', 

and 1 51 5 cm'q~igure 2.2). 

The ab initio calculations of vibrational frequencies are performed in three 

major steps, First, the chemical structure of the molecule is created in 

ChemDxaw, and then imported into Chem3D for structural optimization using the 

semi-empirical method - PM3, as mentioned before. Second, the structure is 

imported to Gaussian98 where it is optimized in vacuum and then in a solvent 

using an ab initio method in Gaussian98 software. finally, the farce constants 

are computed based on the optimized structure and then the frequency 

calculations are performed. The output structures of pCA-ME-trans from 

Gaussian98 and vibrational modes are viewed using GaussianView software. 

Before comparing ta experimental R I R  data, computed frequencies have 

to be scaled to reduce known systematic errors. For instance, neglecting of 

electron correlation based on Hartree-Fock theory results in overestimated 

frequencies by about 10% - 12% (15). Since there is no default scale factor for 

HFISTO-3G method, we use 0.821 4 as a scale factor by optimizing the positions 

of calculated frequencies t~ best match the experimental data. As for HFJ3-21G, 

HF16-31 G(d), and B3'LYP16-31 G(d) methods, the scale factors are 0.9085, 

0.8929, and 0.9613, respectively, recommended by the book "'Exploring 

Chemistry with Etectronlc Structure Methods1' (15). These scale factors are 

allowed to be changed in order to optimally match the experimental data (15). 

Therefore, we use the scale factors 0.8979 for HF13-21G method, 0.8844 for 

HF16-31G{d) method, and 0.9961 for B3LYP16-31GId) method to optimally match 



the experimental data as shown in Figure 2.2. The intensities were normalized to 

the third peak in all cases and the experimental data used are fitted results. 

By comparing the computed frequencies to the experimental FTlR data, 

we found that B3LYPJG-3lG(d) method shows excellent agreement whereas the 

other three methods - HFISTO-3G, MF/3-21 G, HF/6-31 G(d) give less good 

accuracy (see Figure 2.2). Therefore, we use B3LYP16-31G(d) method for 

vibrational frequency calculations henceforth unless otherwise stated. 



H F16-3 1 G (d) 

Wavenumber [cm -'I 
Figure 2.2 Comparisons of four a& initio methods for vibrational frequency 
calculations of pCA-ME-trans in DMSO to the experimental IR absorption spectrum. 
The vibrational bands from Gaussian98 calculations are depicted in shaded bands 
with ab initio methods of HFISTO-3G (A), HFi3-21 G (B), WIG-31G(d) (C) and 
B3LYP16-31G(d) (D). The fitted IR absorption spectrum of pCA-ME-trans from FTlR 
measurement is shown in (A-D). The scale factor is 0.8214 for HF/STO-JG, 0.8979 
for HF/3-21 G, 0.8844 for HFIG-31 G(d), and 0.9661 for 03LYPl6-31 G(d). 



2.4 Importance of conformations 

Groups bonded only by a single bond can undergo rotation of motions 

about that bond with respect to each other. The temporary molecular geometries 

that result from rotations of groups about single bonds are called conformatians 

of the molecule (19). Rotational freedom around three single bonds (C4 - OH, 

C8 - C9, and C9 - 0) of pCA-ME-trans (Figure 2.1) gives rise to eight (z3 = 8) 

conformations (see Table 11). Each conformation has its own conformational 

energy, respectively. The relative populations of these conformations are 

determined by their ground state energies based on Bolrmann distribution. 

Therefore, when free molecules are in solvent, the conformations that have the 

lowest energies will be dominating rather than all conformations being present. 

So, it is important to find the conformations with low energies in the cases where 

motecules have freedom to rotate. 

We calculated and compared conformational energies of these eight 

conformations of pCA-ME-trans, as shown En Table II. pCA-ME-trans has two 

predominant conformations. According to Bottzmann distribution, these two 

conformations occupy 47.4% and 41 .&%, another two occupy 5.8% and 5.0% 

contributing to 99.98% of the total population at room temperature of 298K, and 

the rest four conformations contribute trivial. The energy values of these 

conformations are calculated in DMSO using 83LYP16-31G(d) method. In 

addition, the population is computed based on Boltzmann distribution Equation 

(2.51, 



1a.u. =2619.6 kJlmol (See Appendix I) ,  *-with respect to -612.750 a.u. 

fable If.  Calculated energy of pCA-ME-trans 

The calculated frequencies of the  five double bond vibrational modes of 

1 

four populated conformations of pCA-ME-trans are shown in Table Ill. The 

overall frequencies represent the calculations averaged over four conformations 

2 -61 2.74372 16.45 0.008% 

Molecu te 

11 Tk3& 
1 

according to their populations. The frequency of Band 111 (1 604 cm-I) changes by 

Energy (a. u.) 

-6? 2.74980 

Energy (kJlmol) 

0.52* 

Population 

4.998% 



only 0.3 cm" or less among the four conformations. Therefore. the Band Ill is 

regarded not sensitive to pCA-ME-trans conformations. The frequencies of Band 

I!, IV and V change by 2.6, 2.2 and 2.1 cm", respectively, these three bands are 

rather weakly sensitive to pCA-ME-trans conformations. In contrast, the 

frequency of Band I changes by 6.6 cm-', and shows the largest sensitivity to 

pCA-ME-trans conformations. The scale factor used here is 0.9659 and the 

vibrational frequencies were calculated in DMSO using B3LYPI6-3 1 G(d) method. 

Tabfe Ill. Vibrational frequencies of pCA-ME-trans in OMSO 
pCA-ME-trans Relative Band I Band I i Band 1 1 1  Band IV Band V 
conformations Population (cm-I ) (cm-' ) (ern-') (cm-9 (cm-' ) 

Overall v,,l NIA 1710.4 1634.6 1605.0 1579.4 1512.8 

Experiment ve, NIA 1703.0 1632.0 1604.7 1587,6 1515.0 

AY = ~ c a l  - ~ e x p  NIA 7.1 2.6 0.3 -8.2 -2.2 

IAvlEv,p NIA 0.42% 0.16% 0.02% 0.52% 0.15% 

is the 1st conformation, is the 3rd conformation, 'is the 5th conformation and is the 
7th conformation in Table II. The scale factor for calculated frequencies is 0.9659. The 
first four rows are the calculated vibrational frequencies after scaling. 

Since pCA-ME-trans in solution occupies different conformations according to 

their populations, we may simulate the infrared absorption spectrum using 

foilawing equation (2.6) 



r = l  

and compare the averaged overall frequencies to the experimental data. The 

largest Av is 8.2 ern-'. This variance is only 0.52% of the measured frequency. 

These resuits demonstrate that the force constants from Gaussian98 calculations 

using B3LYP16-31G(d) are highly accurate. 

The comparison between calculated frequencies of four conformations of 

pCA-M E-trans and the corresponding experimental frequencies is shown in 

Figure 2.3. Here we use a scale factor 0.9659 for the overestimates of 53LYP16- 

31G(d) method. In this way, we include the contributions of all populated 

conformations and it shows excellent agreement to the experimental data. So, 

Figure 2.3 IR absorbance spectra: fitted experimental data of pCA-ME-trans in DMSO 
and computed data of the mixture of four calculated conformation according to their 
populations (shaded). The scale factor is 0.9659. 



2.6 Band assignment and vibrational modes of pCA-ME-trans 

We know from Figure 2.3 that the calculation and the experimental data 

are in excellent agreement and that we use GaussianView software to visualize 

t he  vibrational modes for each calculated vibrational frequency. Then we may 

assign the bands of the first conformation of pCA-ME-trans by connecting the 

vibrational modes to the experimental data. The first conformation is in the same 

configuration as the  chrornophore in photoactive yellow protein. Figure 2.4 shows 

the vibrational modes of five bands in pCA-ME-frsns. The vibrational mode of 

\ J 
0-CH3 

171 2 cm" (C=O stretching) 

3 4 4  

1634 cm-' (C7=C8 stretching) 1604 cm-' (s ring vibration) 

1577 cm-' (as ring vibration) 1 51 1 cm" (as ring vibration) 

Figure 2.4 Five vibrational modes of pCA-ME-trans. Arrows indicate the motions of the  
atoms. 



Band I at 1712 cm-' is assigned to C=O stretching, Band II at 1634 cm-' to 

CJ=CB stretching, Band Ill at 1604 cm-' to symmetric ring vibration, Band IV at 

1577 cm-' and Band V at $51 I cm-' to asymmetric ring vibrations. These 

movements are the major components of the vibration, which may also involve 

displacement of other atoms. The vibrational modes of other vibrational 

frequencies are beyond our discussion. 

2.7 Band assignment of other biomolecules 

0 
We have also performed band assignment for two 

I I 
C 

other molecules, DMSO and l-alanine monomer at 

Figure 2.5 The DMSO is a simple 
chemical structure of 
DMSO. molecule we are 

very interested in and is a polar solvent. 

The structure of DMSO is shown in 

Figure 2.5. We calculated the vibrational 

frequencies of DMSO in DMSO solvent 

using B3LYP16-31G(d) method and the 

scale factor is 0.9550. Figure 2,6 shows 

the 1R absorbance spectrum and the 

second derivatives spectrum of 
Wavenumber [cm-'1 

calculated (blue) and experimental data Figure 2.6 The absorbance spectra 
Ibottom'l and the second derivatives 

(black) of DMSO. The reason we take the SP&"'("P) of DMSO. The expenmental 
data is shown in black line and the 

second derivatives is that there are wide, 
calculation in blue. The scale factor is 
0.9550. 



overlapping bands in the infrared spectrum and their positions are very dear in 

the second derivatives spectrum. Based on ab initio calculations, the bands at 

1437 cm-' , 141 8 cm-' , 1407 cm"' , 1 3 1 1 cm-', 1293 cm-' are assigned to various 

types of symmetric and asymmetric bending motions of C-H on both methyl 

groups. Other motions are not mentioned here. 

COOH Proteins are composed of 20 different amino 
'I 

* I 
H3N-C-H acids (1 3. Monitoring structural changes of amino 

I 
I 
C'43 

acids at active sites is crucial to probe structural 

Figure 2.7 The chemical functions 
structure of h-alanine at 
low pH. of proteins 

(20, 211, therefore, it is also very 

important to do band assignment of 

amino acids. Here we take alanine as 

an example. 

The chemical structure of 

alanine at low pH is shown in Figure 

2.7. It has a carboxyl group (COOH), 

an amino group ( N H ~ ~ ,  and a 

sidechain group CH3. It is the second 

smallest of the 20 amino acids. We 

calculated the vibrational frequencies 

of L-alanine in DzO solvent using 

63LYP16-3 1 G(d) method and the scale 

Figure 2.8 The absorbance spectra 
(bottom) and the second derivative 
spectra (top) of alanine at low pH in D20. 
The black line represents the 
experimental data while t he  blue line is 
for t h e  calculation. The scale factor is 
0.9613. 



factor is 0.9613. Figure 2.8 shows the IR absorbance spectrum and the second 

derivatives spectrum of calculated (blue) and experimental data (black) of L- 

alanine at low pH in D20. The band at 1729 cm" is assigned to the carbonyl 

stretching of COOD group, 1464 cm" to C-H bending of CH3 group, 1405 cm-' to 

C-H bending of CH3 group coupled with OD bending of COOD group, 1377 cm" 

to C-H bending of the center and 1322 cm-' and 1269 cm" to C-H bending of the 

center coupled with OD bending of COOD group. 

We demonstrated band assignment of L-alanine at low pH as an example. 

We can perform vibrational band assignment in the same way for other amino 

acids. 

En conclusion, we choose optimal methods in terms of different criteria to 

achieve our goals: HFISTO-3G method for geometry optimization ca!culations, 

B3LY P16-31 G(d) method for vibrational frequency calculations, and HFI6-31 G(d) 

method for electrostatic potential calculations as we will see in Chapter Ill. 



CHAPTER Ill 

ELECTROSTATIC PROPERT1ES OF CHARGED 

AND IONIZABLE GROUPS 

Embedding a charged group inside a protein in a nonpolar (low-dielectric) 

environment is energetically unfavorable. Therefore, most charged groups in a 

protein are solvent-exposed. t he  buried charges Glu46 is fully conserved in the 

PYP family (22) and GIu134 is conserved in rhodopsin family (231, indicating their 

structural and functional importance (21). In this chapter, we report our ab initia 

computational studies on Ehe electrostatic properties of charged and ionizable 

groups, namely hydrogen bonding interactions, charge distribution, and 

electrostatic field. 

3.1 Introduction of hydrogen bonds 

Hydrogen bond (H-bond) is important for protein structure and functions. 

H-bonds are formed between a hydrogen acceptor (an electronegative atom, 

usually oxygen or nitrogen with a lone pair of electrons) and a hydrogen atom 

covalently bonded to another electronegative atom (a hydrogen donor). Figure 

3,1 shows various types of interactions that involve H-bonds. The distance 

between two electronegative atoms in H-bonding ranges from 2.7A to 3.2A (17, 

24). H-bonds can be found in biological systems for structural stability. For 

instance, a Helix structure is considerably stabilized by many internal H-bonds 

each of which connects the hydrogen atom on the nitrogen atom of the peptide 

bond of one amino acid and the carbonyl oxygen atom of the fourth amino acid's 

peptide bond. B Sheet structure is formed by many hydrogen bonding 



interactions between adjacent polypeptide chains (1). H-bonds are also formed 

between amino acid side chains. 

Hydrogen II \ / 
acceptor 0 N 

I I 
I I 

H H 
Hydrogen 
donor 0 

I 

Figure 3.1 H-bonds in biological system. Dashed lines represent H-bonds. The 
hydrogen acceptor is usually oxygen or nitrogen (1). 

H-bonds are weaker than covalent bonds. The H-bond dissociation energy 

is about t 5 - 30 kJ/mol (1). We take a water molecule as an example to see how 

H-bond is formed. The oxygen atom of a water molecule forms two covalent 

bonds with two hydrogen atoms by sharing two pairs of electrons, respectively. 

This results in two pairs of unshared electrons. Since oxygen is more 

electronegative than hydrogen, the oxygen nucleus attracts electrons more 

strongly than does the hydrogen nucleus. The sharing of electrons between H 

and 0 is therefore unequal. The electrons are more often in the vicinity of the 

oxygen atom than of the hydrogen. The result of this unequal sharing of electrons 

is that the oxygen atom bears a partial negative charge and each hydrogen atom 

bears a partial positive charge. As a result, there is an electrostatic attraction 

between the oxygen atom of one water molecule and the hydrogen of another. 



This attraction and partial sharing of electrons lead to the formation of M-bond. H- 

bonds are individually weak, but collectively they have a very significant influence 

on the three-dimensional structure of proteins (1). 3n addition, hydrogen bonding 

interactions are important for proton transfer in proteins. 

3.2 Hydrogen bonds effect on vibrational frequency of C=O stretching 

Backbone 

H 3 N C C O O -  

Side chain 

Aspartic Acid Glutamic Acid 

Figure 3.2 The chemical structures aspartic acid and glutamic acid. The groups for 
forming backbones are indicated in the rectangular square, and the rests are side 
chains. 

ProtonationJdeprotonation of aspartic acid (Asp) side chain or glutamic 

acid (Glu) side chain (see Figure 3.2) are extensively studied for their important 

roles in proton transfer for energy transduction and signal transduction in four 

photoreceptor proteins - bacteriorhodopsin (bR) (25), sensory rhodopsin I (SR- 

1) (261, rhodopsin (R) (27), photoactive yellow protein (PYP) (20). Proton transfer 

in these photoreceptor proteins is facilitated by hydrogen bonding interactions, 

which involve the carboxyl group Asp and Glu as a proton donor or as a proton 

acceptor (28). The vibrational frequency of C=O stretching mode of protonated 

carboxyl group (COOH) is in the range of 1700 cm-' - 1765 cm-', depending on 

the hydrogen bonding interactions with neighboring group. Vibrational mode of 



Figure 3.3 Vibrational mode of carboxylic C=O 

C=O stretching is depicted in 

Figure 3.3. Table 1 shows the 

vibrational frequencies of 

protonated Asp(D) or Glu(E) side 

chains in different proteins based 

on FTlR data and the number of 

stretching. The arrows indicate the vibrational formed between the 
direction. 

corresponding AsplGlu and other groups. In the case of PYP, the vibrational 

frequency at 1737 cm-' in the ground state is assigned to the protonated Glu46 

(E46). Deuteration of the carboxylic group COOH-COOD, leads this peak 

down-shifted to 1726 cm" (20). 085, D96, 0115, 13204, D212 are ordered 

according to bR sequence. M is an important intermediate state of the bR 

photocycle for light driven transmembrane proton pump. 



Table I. R I R  band position of C=O stretching vs. number of H-bonds 
- 

Protein COOH group Type of H-bonds I R  ~ r e q .  NO. of p 

(Code) h (cm-') H-bends 
- - 

M412 085 AOOO 1760'~~'  0 

R D83 A000 1767"') 0 

bR568 Dl15 I31 00 1 742(30) 1 

bR568 D96 B100 1 7 4 0 ~ ~ ~ '  1 

M412 D212 Dl00 1 7 3 ~ ' ~ ~ '  1 

PYP E46 BOlO 1737'"9" 1 

M412 0115 B100 1 73d301 1 

R El 22 B100 1 734P2) I 

E represents glutamic acid and D represents aspartic acid. M412 denotes 
that peak absorption of bR's M intermediate state is at 412nrn and bR568 
denotes that peak absorption of bR ground state is at 568nm. See Tabk II 
for hydrogen bonding types for code. Refer to Appendix II for H-bonds 
formation for each residue. 

For a COOH group, the vibrational frequency of C=O stretching mode is 

sensitive to hydrogen bonding interactions of its carbonyi oxygen with a H-bond 

donor(s) andlor of its hydroxyl group with a H-bond acceptor(s). Table I shows 

that without hydrogen bonding, C=O stretching frequency is around 1760 cml, 

with one H-bond, the C=O vibrational frequency is characteristically down-shifted 

to 1734 -1742 crn*'. and with two H-bonds. it is further down-shifted to 1700 cm'. 

In quantum mechanics, vibrations are treated as harmonic oscillators, 

where their force constants can be obtained from ab inifio calculations. We know 

that the time-independent Schrodinger equation in the energy basis for harmonic 

oscillators is as follows (33): 



where A is plank constant, m is the mass of the atom, C is the force constant, 

and E is the eigenenergy. By solving this equation, we found the eigenenergy 

has discrete values: 

rac 0-FJ* * * - 
Glu46 / 0 1 En =(n+- )hv ,  n = 0,1,2,3 ,... (3.2) 2 
-C 

\\ The vibrational frequency is proportional to 
0 

the square root of force constant 

/ 1 6  
Figure 3.4 The p ~ 4  v = -p, where v is the frequency, Tripe 
chrornophore of PYP forms an 2 rn 

H-bond with Glu side chain. 
bonds have larger force constants and 

exhibit higher vibrational frequencies than double and single bonds, and double 

bonds have larger force constants and display higher vibrational frequencies than 

single bonds. When a H-bond is formed in proteins between a COOH group and 

another group (see Figure 3.4), the electrostatic interaction between the H-bond 

and the C=O bond will weaken the force constant of C=O (34, 35). As a result, 

the frequency of C=O stretching will be lower. 

We chose 4-Methylvaleric acid {MVA) to model the side chain of Glu and 

examine the H-bond effect on energy and vibrational frequency of the carboxyl 

group. The chemical structure of MVA is shown in the first column and the 

second row of Table I!. We use B3LYPJ6-31GId) melhod to calculate the 

vibrational frequencies of this molecule in vacuum. Then we add methanol 

molecules ta form H-bonds and calculate the vibrational frequencies and 

conformational energies. Each oxygen atom has two lone pairs of electrons; 

thus, it may form two H-bonds with methanol molecules, as illustrated in Table 11. 



Dashed lines indicate the H-bonds. Without hydrogen bonding interaction, the 

vibrational frequency of carboxylic C=O stretching is at 1776 ern-' (A000). Upon 

formation of one H-bond between the carbonyl oxygen (B100) or carboxyl 

hydrogen (BOA 0) and hydroxyl group of methanol, this frequency is down-shifted 

to 1745 cm". However, when the carboxyl oxygen (8001) forming H-bond with 

methanol, it is up-shifted to 1787 cm-'. According to the energies of 6010, B100 

and 6001, BOO1 occupy the highest energy state indicating this formation is the 

least likely. A, 6, C and D denotes that the number of H-bond is zero, one, two, 

and three respectively, whereas three numbers denote the positions of H-bonds. 

The frequency is down-shifted to 171 2 - 1720 cm-"for C110 and C110" types, to 

1756 cm-' for CO11 and C101 types because of the presence of 001 type of H- 

bond, and it is up-shifted to 1799 cm-'. AS for three H-bonds, this frequency is 

down-shifted to 1693 cm-' without 001 type of H-bond while it is down-shifted to 

1725 cm-' and 1734 cm" with 001 type of H-bond. Overall, these calculations are 

reasonably matching the corresponding experimental frequencies as shown in 

Table 111. 

Table Ill. Vibrational frequency of C=O stretching of protonated 
carboxylic group 

Calculated Freq. 
in vacuum (cm") 

1 776 

1 745 - 1 747 

1713 

with 0 I-?-bond 

with 1 H-bond 

with 2 H-bond 

FTlR Freq. 
(cni' ) 

1760 -1 767 

1734 - 1742 

1700 - 1715 



Table 11. Frequency shifts vs. number of H-bonds 

Model Type of No. of Scaled Freq. AV 
E (ad.) A€ 

H bond v,(cm-') (cm-') Code (kJ/m 0 I) 

r' J/" H-C-p~-C 
I 

A000 0 1775.5 0 -386.337 0 
CH> 'OH 

i , /-....i 
n e c - - c L c - c  

\ ...-P- cu, 
C110* 2 1720.1 55.4 -386.361 -62.87 

1 
0 4 3  

ow 

H&' 
\ 
C b  

The energy ot methanol alone is -1 15.714 a.u. The energies are the subtraction of the 
energies of methanols involved from the total energy. 7a.u. = 2619.6 kJJrnol (See 
Appendix I ) .  The scale factor is 0.961 3. 



Table 11. Frequency shifts vs. number of H-bonds (continued) 

Model 
Type Of No. of Scaled Freq. AV A€ 

H bond v,(cm-') (cm-') (a-U'' (Wimol) (Code) 

The Energy of methanol alone is -1 15.714 a.u. The energies are the subtraction of the 
energies of meihanols involved from the total energy. 1a.u. = 2619.6 kJlrnol (See 
Appendix I). The scale factor is 0.961 3. 



3.3 Solvent effect on vibrational frequency of protonated carboxylic group 

The ab initio calculations mentioned above are performed in vacuum while 

the IR experimental data of protonated carboxylic group are obtained in dielectric 

medium. Therefore, we have to consider solvent effect when we perform ab initio 

cabculations. There is a family of models for systems in non-aqueous solution, 

called Self-consistent Reaction Field (SCRF) methods. These methods all model 

the solvent as a continuum of uniform dielectric constant E: the reaction field. The 

solute is placed into a cavity within the solvent. We select tomasi's Polarized 

continuum Model (PCM) which defines the cavity as the union of a series of 

interlocking atomic spheres to calculate the model system in solvents (15, 5, 6). 

Solvents can be classified into three types based on their ability to form H- 

bonds: nonpolar aprotic solvent that can not form H-bond with the model system; 

polar aprotic solvent that can be H-bond acceptor, protic solvent that can serve 

H-bond donor and acceptor (19), provided that the model system has hydrogen 

acceptor or hydrogen donor ready to form H-bonds. The vibrational frequency of 

carboxylic C=O stretching is dependent of dielectric medium, which is apparent in 

Table I. If this correlation between vibrational frequency and dielectric medium is 

known, it can be used to monitor environmental changes of the carboxylic group 

jnside proteins from FTlR spectra. This will help us to obtain a better 

understanding of the structural basis of protein functions. Therefore, we carry out 

a number of ab initio calculations using 83LYPI6-31 G(d) theory to compute the 

vibrational frequencies of MVA in all possible solvents provided in the program 

Gaussian98. We found that the vibrational frequency of carboxylic C=O 



stretching is linearly proportional to the inverse dielectric constant of the aprotic 

solvent (see Figure 3.5). When protic solvent is present, the vibrational frequency 

is significantly lower due to strong H-bonds formation (small box in Figure 3.5). 

The dashed line is a least-squares fit of the vibrational frequencies of COOH in 

aprotic solvents and in vacuum while the solid line is a least-squares fit in aprotic 

solvents only. The standard deviation between fitted result and data points is 

2.58 cm" for aprotic solvents and vacuum, and is 1.93 cm-' for aprotic solvents 

only. 

2 2 Inverse Dielectric Constant e4' ( N m  /C ) 
Figure 3.5 Dependence of calculated vibrational frequency of carboxylic C=O 
stretching on inverse dielectric constant of solvent. Hollow circle point represents the 
frequency in vacuum, solid circles in nonpolar aprotic solvent, hollow squares in polar 
aprotic solvent, and solid squares in protic solvent. The solid line is the fitting result of 
those data points for aprotic solvents and the dashed line is that for aprotic solvents 
and for vacuum. The small box is the enlarged area of three points for protic solvents. 



Table IV shows detailed information of Figure 3.5 including the dielectric 

constants, structural formulas of the solvents and corresponding calculated 

vibrational frequencies of carboxylic C=O stretching. 

Table IV. Dependence of vibrational frequency on solvent based on ab 
initio DFT calculations 

Solvent Name Dielectric Solvent Scaled Vibrational 
Constant E Formula Freq. (cm-') a 

Vacuum 1 1 NIA 1775.5 
Heptane 1.9 0.52 c7H16 1769.2 

CycloHexane 2.0 0.49 C6H12 1768.9 
CarbonTetrachloride 2.2 0.45 CC14 1767.7 

Benzene 2.2 0.45 C6H6 1767.7 
Toluene 2.4 0.42 C7H8 1767.1 

DiEthylEther 4.3 0.23 C4H100 1755.4 
Chloroform 4.9 0.20 CHCt3 1760.9 

ChloroBenzene 5.6 0.1 8 C6H5CI 1760.5 
Aniline 6.9 0.1 5 CsHsNHz 1760.9 

Tet raHydroFuran 7.6 0.13 C4HsO 1758.5 
DiChloroMethane 8.9 0.1 1 CHzC12 1757.7 
DiChloroEthane 10.4 0.10 C2H4C12 1754.0 

Acef one 20.7 0.05 C3H6O 1752.0 
Ethanol 24.6 0.04 CeHsO 1736.1 

Methanol 32.6 0.03 CH40 1 734.7 
Acetonitrile 36.6 0.03 CH3CN 1751.1 

NitroMethane 38.2 0.03 CHsN02 1751 .O 
DMSO 46.7 0,02 C2HsS0 1754.9 
Water " 78.4 0.01 H20 1733.9 

Values of dielectric constant are given for 1 atm and 20" C (36, 37). a scale factor is 
0.961 3. The vibrational frequency is for C=O stretching of carboxylic acid group. 
protic solvents. "polar aprotic solvents. Other solvents are nonpolar aprotic solvents. 

3.4 Electrostatic field and charge distribution studies of biomolecules 

It is difficult to measure the electrostatic field and charge distributions 

experimentally. Calculated charge distribution is an important parameter in 

papers to perform molecular dynamics simulation (38, 39, 40) and to make 

further conclusion (41, 42), Based on our studies, however, these charge 



distribution calculations are not reliable while we should rely much more on t he  

electrostatic field. Ab initio methods can perform a Mulliken population analysis, 

which partitions the shared electrons to the atoms in the moPecule even though 

the net charge of the molecule is zero or localized on a particular atom. Ab initio 

methods can also compute the electrostatic potentials and fields generated by 

the molecule itself. Since there are no experimental data to compare to, are 

these calculations reliable? We calculate the charge distribution and electrostatic 

+O 171 

4 444 

+O 1% 

Figure 3.6 Charge distributions over pCA-ME-trans molecules. (A) HF16-3 1 G(d) 
method; (0) 53LYP16-31G(d) method. The unit of the charge is e. The carbon 
atoms are depicted in gray, the oxygen atoms in red, and t h e  hydrogen atoms in 
white. The average difference in charge is 0.077e. The largest variance in charge 
is 0.198e. 



potentials of pCA-ME-trans molecule with all four methods HFtSTO-3G, HFl3- 

21G, HFl6-31G(d), and B3CYPl6-31G(d). The charge distributions of HFJG- 

31 G(d) and B3CYP16-31 G(d) as examples are shown In Figure 3.6. Their contour 

plots of electrostatic potentials of two methods are shown in Figure 3.7. 

In Figure 3.6, atoms in red are oxygen atoms carrying partial negative 

charges for their strong electronegativities (the ability to attract electrons), atoms 

-12 8 -4 0 4 8 12 
X (Angstrom) 

-8 

-?2 -8 -4 0 d B 12 

X (Angstrom) 
Figure 3.7 Contour plots of equipotential lines (red: negative; blue: positive; and 
green: zero potential) at Z=1.6 A calculated using (A) HF16-31G(d) and (B) 
B3LYP16-31 G(d) methods. The increment between two neigh boring equipotential 
lines is 0.2 V. 



in gray are carbon atoms carrying partial negative or positive charges, and atoms 

in white are hydrogen atoms carrying partial positive charges. The net charge of 

this pCA-ME-trans molecule is zero. The charge distributions resulted by these 

two methods are very different in that two methods divide the electrons shared 

between atoms in different ways. So, calculated charge distribution is not 

dependable in characterizing the electrostatic properlies. Since the atoms 

carrying electric charges generate electrostatic field around them, the 

electrostatic potential reflect the electrostatic field through 5 = -o v , where E is 

the electrostatic field, V is the electrostatic potential, and v is the vector 

differential operator. Therefore, the calculated electrostatic potentials indirectly 

reflect the charge distribution. 

In Figure 3.7, red circles are indicating negative equipotential lines, green 

circles are zero equipotentials, and blue circles are positive equipotential lines. 

The position of the molecule is determined by the equipotential of nucleus (see 

Appendix 111). In contrast with the computed charge distributions, which give very 

different values for the four methods, it is evident that the two contour plots for 

different methods are almost the same. Therefore, we conclude that HF16-31 G(d) 

method is the optimal method for electrostatic potential calculations and 

electrostatic field is more unambiguous in characterizing elect rostatlc properties 

of a rnoleculle than point charge distribution. 



CHAPTER lV 

BAND ASSIGNMENT OF THE CHROMQPHORE 

OF PHOTOACTIVE YELLOW PROElN 

4.1 Photoactive yellow protein 

Photoactive yellow protein (PYP) is a small water-soluble protein. It was 

first isolated from the bacterium Halorhodospira halophifa in 1985 (43, 44). PYP 

is the putative photoreceptor for the negative phototaxis response to blue light 

(45). It bears a unique thioester-linked p-cournaric acid (pCA) chromophore for 

light detection (46, 47). The protein in the receptor state is characterized by a 

strong absorption band centered at 446 nm, resulting in its yellow color (43). 

Upon absorption of a blue 

photon, PYP undergoes a 

cyclic process involving r;z';;e 
350 rns 

structural transitions at the 

chromophore, photoactive site 

residues, and over the global 
I , # ?  I ? =  I ( # '  I I Q  

Time Is] 
protein conformation. The 

intramolecular 

photocycle of PYP is shown in proton transfer 
changes 

Figure 4.1. Following 

chromophore trans to cis 
Figure 4.1 The photocycfe of PYP. The pG446 

around the ~ 7 ~ ~ 8  bond state is the receptive State, and the pB355 state is 
the signaling state. The pB'355 state is the most 

(Figure 4.2) and C9=S bond recently discovered intermediate, and is of central 
importance for understanding PYP receptor 
aciivation. 

photoisomerization, a red- 



shifted intermediate state pR with A,,, at 465 nm is formed in nanoseconds. 

Subsequently, a proton transfer event occurs in which the pCA accepts a proton 

from Glu46 (201, leading to a blue-shifted intermediate state pBhi th  A,,, at 355 

nm. Subsequent large conformational changes result in a new blue-shifted pB 

state with A,,, at 355 nm. Finally, pB returns to the initial state pG 

Monitoring structural changes occurring during the photocycle of PYP from 

FTlR difference spectra is crucial to probe structural functions of PYP. The 

infrared signals in the pR - pG, and pB' - pG difference spectra are dominated by 

the chromophore and key residues at active site of PYP. Therefore, we will 

obtain important information of vibrational modes for these 1R signals by 

assigning these bands through ab initio calcuIations. The reason why we use 

model compounds is that the 

chromophore is connected 

covalently to the entire protein 

" O w  

via thioester linkage, thus it is 

rn \ 
S C H ,  necessary to separate the 

chromophore from the protein 

appropriately in order to perform 

ab initio calculations. The 

chemical structures of the 

"I chromophore and the model 
S C H 3  

compounds are shown in Figure 
Figure 4.2 The Chemical structures of the 
chrornophore in the ground state of PYP (A), 4.2. We use the model 
the model compounds for pG (B), pR (C), and 
PB' 0). 



compound Figure 4.2 (6) as the deprotonated trans chromophore in pG state 

Figure 4.2 (A), Figure 4.2 (C) as the deprotonated cis chromophore in pR state, 

and Figure 4.2 (0) as the protonated cis chrornophore in pB' state. 

4.2 Band assignment of the chromophore 

In order to assign ahe bands of the FTIR difference spectra pR - pG and 

p 5  - pG, we first calculate the vibrational frequencies of the model compound of 

pG, pR, and pB' in ethanol using B3LYP16-31G(d) method, then subtract the 

scaled frequencies of pG from those of pR and p8'. The calculated frequencies 

of pG, pR and pB' are shown in Table 1. 

I 

The scale factor is 0.9623 for pG and pR, and 0.9779 for pB'. 

The calculated vibrational frequencies of pR and pG before subtraction 

are shown in Figure 4.3 (A) and after subtraction are shown in Figure 4.3 (B3. 

The experimental difference spectrum of pR - pG revealing the structural 

changes of protein and the chromophore is also shown in Figure 4.3 (B). The 

negative band at 1726 cm" arises from the stretching mode of deuterated 

carboxylic sidechain of Glu46 (20). This band is not present in computational 

data. The second negative band at 1643 cm-' is assigned to the stretching mode 

of carbonyl group (C=O) coupled with C7=C8 stretching and with a little ring 

vibration on the pG chromophore because the calculated frequency is exactly 

overlapping the experimental frequency. The third negative band at 161 0 ern-' is 



assigned to the stretching 

mode of C7=C8 double bond 

next to the phenolic ring 

coupled with symmetric ring 

vibration. The negative band at 

1552 cm-' is contributed by 

asymmetric ring vibration. And 

the band at 1501 cm" is 

assigned C7=C8 stretching 

mode coupled with asymmetric 

ring vibration. In the same 

'I 500 
way, we assign the positive 

Wavenumber [cm -' ] band at 1622 em-' to t he  
Figure 4.3 The difference spectrum of pR - pG. 
(A) The calculated frequencies of pR (black) and stretching mode of carbony1 
pG (blue) before subtraction; (8) the difference 
spe&a of the experimental dati is shown in black group coupled with symmetric 
and the computational data in blue. The scale 
factor for pR and pG is 0.9623. ring vibration on the pR 

chmmophore, the positive band at 1597 cm-' arises from the stretching mode of 

C7=C8 double bond coupled with carbonyl stretching and with symmetric ring 

vibration, and the positive band at 1485 cm-' is assigned to the asymmetric ring 

vibration of the pR chromophore. The intensities of the negative band of pG 

chromophore at 1487 cm" and the positive bands of pR chromophore at 1557 

cm" and 1489 cm-I are cancelled out because the positive and negative 

intensities are close to each other. Therefore, these bands are not shown in the 



difference spectrum. The remaining bands are considered as contributions of 

amino acids of PYP 

The band assignment of pBj chromophore bands is performed the same 

way as those of the pR and pG chromophore. The calculated vibrational 

frequencies of pB' and pG before subtraction are shown in Figure 4.4 {A) and 

after subtraction are shown in Figure 4.4 (6 ) .  The experimental difference 

spectrum of pB' - pG is also shown in Figure 4.4 (8). The positive band at 1674 

cm-' is assigned t he  stretching 

mode of carbonyl group 

coupled with C7=C8 stretching 

z 
and a little ring vibration on 0 

2 
d 

pB' chromophore. The positive 

band at 1622 cm"' arises from 

the stretching mode of C=C 
m 
C1 

double bond coupled with 6 e 
S: symmetric ring vibration. The 2 
0 
L) 

positive band at 1594 cm-' is c 
E? 
Q) 

assigned to asymmetric ring 
a 01 

f 

vibration. The band at 1563 1700 1800 1500 

cm-' are assigned to the Wavenumber ~cm" ] 

Figure 4.4 The dtfference spectrum of p8' - pG. 
asymmetric ring vibrations (A) The calculated frequencies of p B  (black) and 

pG (blue) before subtraction; (B) the difference 
coupled with C7=C8 spectra of the experFmental data is shown in black 

and the computational data in blue. The scale 
stretching. And the positive fador for pB' is 0.9779 and for pG is 0.9623. 



band at 1514 cm" is assigned to the asymmetric ring vibration of the pB' 

chromophore. 

Among each five bands arising from the chromophore, three of them are 

considered as spectral markers for they can provide us important information of 

structural changes. The first spectral marker is the negative band at 1643 cm-', it 

is down-shifted to 1622 cm-I for pR chromophore and up-shifted to 1674 cm" for 

pB' chrornophore. The vibrational modes 

of this spectral marker for pG, pR and pB' 

chromophore are shown En Figure 4.5. It 

is characterized by carbonyl group (C=0) 

stretching mode and isornerization of 

C7=C8 double bond, but it coupled with 

different motions in pG, pR, and pB' 

states. The second spectral marker is the 

negative band at 1610 cm-', it is down- 

shifted to 1597 cm-' for pR chromophore 

and up-shifted to 1622 cm-' for pB' 
Figure 4.5 The vibrational modes 
of the first spectral marker. (A) 
1643 cm-' for pG chromophore; chromophore. It is noticeable that the 

(B) 1622 'cm" for pR 
chromopho~; (c) 1674 cm" for intensity of this band in pB' - pG FTlft 
pBt chromophore. 

difference spectrum decreased due to the 

cancellation of a positive band at the same position arising from other amino 

acids of PYP. The vibrational modes of this spectral marker for pG, pR and pB" 

chromophore are shown in Figure 4.6. It is characterized by C7=C8 stretching 



coupled with symmetric ring vibration. The third spectral marker is the negative 

Figure 4.6 The vibrational modes Figure 4.7 The vibrational modes 
of the second spectral marker. of the third spectral marker. (A) 
(A) 1610 cm-' for pG 1501 cm-' for pG chromophare; 
chromophore; (€3) 1597 cm-' for ( B  1485 cm-' for pR 
pR chtornophore; (C) 1622 cm-' chromophore; (C) 1514 cm-' for 
for pB' chromophore. pB' chromophore. 

band around 1 501 cm-', it is down-shifted to 1485 cm-' for pR chromophore and 

up-shifted to 1515 cm-' for pB' chromophore. The vibrational modes of this 

spectral marker for pG, pR and p8' are shown in Figure 4.7. It is characterized by 

protonation of the chrornophore and asymmetric ring vibration. 

Thus, the band assignment of the chrornophore bands in pG, pR, and pB" 

states for spectral region 1760 cm-' - 1480 cm-' is complete. 



CHAPTER V 

SUMMARY AND REMARKS 

5.1 Summary 

Time-resolved infrared absorption spectroscopy is an important technique 

for structural and kinetic studies of protein functional mechanism. Vibrational 

band assignment is a crucial step in order to obtain structural information from 

infrared absorption spectra. Traditionally, vibrational band assignment is a 

challenging task, requires repetitive, trial and error empirical calcuEalians and 

synthesis and use of isotopically labeled molecules. We employed a new 

approach for vibrational band assignments based on ab initio computational 

studies. We tested and evaluated the accuracy of vibrational band assignment of 

four ab initio methods, H FISTO-3G, MFJ3-21 G, and H F16-31 G (d) based on 

Hartree-Fock theory, and B3LYP16-31 G(d) based on density function theory, by 

comparing the computational results with experimental data. We found that 

B3LYP16-31 G(d) is the optimal method. This method is therefore employed for 

vibrational band assignment of a free chromophore, pcournaric acid methyl 

ester, and obtained excellent results. When assigning vibrational bands of 

biomolecules, geometry optimization, conformational effect, and solvent effect 

have to be taken into account to best match the experimental data. 

Electrostatic interactions play a major role in !he structure and function of 

proteins. It is difficult to perform direct experimental studies on electrostatic 

interactions in proteins. We employ ab inirio computational method to study 

hydrogen bonding interactions and their effects on vibrational frequencies of 

participating groups. This allows the use of vibrational spectral markers to probe 



hydrogen bonding interactions in proteins that is a major contributor to protein 

S ~ ~ U C ? U K ~ !  stabilization. In addition, we tested two methods that characterize 

electrostatic properties of a molecule, (i) point charge distribution, and (ii) 

electrostatic potential map. We found that despite the fact that many groups have 

reported point charge distributions in biomolecules, this method is inaccurate and 

misleading. A more reliable method is electrostatic potential map that provides 

clear view of electrostatic field generated by the molecule and insight how this 

electrostatic field will influence the proton affinity of ionizable groups and the 

structure of polar groups in the area. 

In addition, we made vibrational frequency calculations of three 

chromophore structures in the ground state and functional intermediates of 

photoactive yellow protein, a photoreceptor protein for bacterial vision. Without 

use of any isotopic labelings, the results are in good agreement with 

experimental data. We also identified three spectral markers characterizing the 

structural changes from the chromophore. 

5.2 Remarks 

Computational biophysics based on ab initio computational methods is a 

rapidly growing field, empowered by the increasing computational powers and 

new developments in a$ initio computational methods. The results reported in 

this thesis demonstrate that ab initio computational studies of biomolecules can 

provide valuable structural, spectral, and energetic information for biophysical 

studies of proteins. We are in the process of further expanding the scope of our 



computational studies of biomolecules in combination with experimental studies 

of the functional mechanism of proteins. 

Hvdroeen bonding interactions in proteins: Hydrogen bonding interaction is 

crucial in protein structural stabilization and in many functional processes of 

proteins, including signal transduction, energy transduction, and enzymatic 

catalytic processes. A typical protein folding energy, the energy difference 

between the native structure and the unfolded structure of a protein, IS 

approximately 40-50 kJlmole, equivalent to the sum of only three hydrogen 

bonding interactions (-15 kJ/mol each). By combining time-resolved infrared 

absorption spectroscopy with ab initio computational studies, it is possible to 

study functionally important structural changes in proteins involving the formation 

and disruption of hydrogen bonding interactions. This approach will be further 

employed in studies of the activation mechanism of photoactive yellow protein. 

Proton affinity of ionizable qroups in Proteins: Proton transfer is a fundamental 

process in biological energy transduction, and is essential for many receptor 

proteins in biological signal transduction. Proton transfer takes place as a result 

of induced changes in the proton affinities of participating ionizable groups during 

the functional process of a protein. In order to understand the structural basis of 

proton transfer, it is insightful to carry out ab initio computational studies on 

proton affinities of ionizable groups in proteins. 

Since protein environment of an ionizable group in not homogeneous, 

reliable calculations should include the specific environment of the ionizable 

group. We are in the process of performing such ab initio calculations by 



combining with molecular dynamics simulation. That is, we select an ionizable 

group and its surrounding groups at the active site of the protein to be treated 

using ab initio computational method, and the rest of proteins to be studied using 

classical molecular dynamics simulation. The structural optimization is performed 

via an alternative iterative process, with ab initio calculations, folIowed with 

molecular dynamics simulations. Upon completion of structural optimization, we 

then calculate the energies of the protein with and without a proton residing on 

the chosen ionizable group. The energy difference between the two protonation 

states is a direct measure of proton affinity of the ionizable group. Since a protein 

is a dynamic system, experiences constant structural fluctuations, a number of 

protein conformational frames will be selected and employed to perform proton 

affinity calculations. This ongoing project is in collaboration with Dr. Benjamin H. 

McMahon at the Theoretical Biophysics Division in Los Alamos National 

Laboratory. 
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Appendix I 

Atomic units 

The fundamental equations of quantum chemistry are usually expressed 

in units designed to simplify their form by eliminating fundamental constants. The 

atomic unit of length is the Bohr radius 

12 2 where EO is permittivity of free space, €0 = 8.85~10- C Nm2, h is planck's 

constant, h = 663x1 O-"JS, me is electron mass, me = 9.1 09x1 om3'kg, e is unit 

charge, 1 e = 1 .~XIO-'~C. Coordinates can be transformed to Bohrs by dividing 

them by ao. Energies are measured in hartrees (i.e. a.u.1, defined as the 

Coulomb interaction between two charges of e separated by one Bohr distance 

(1 5): 

1 hartree = 
e2 

4m0a0 (2) 

Masses are also specified in terms of electron mass units (i.e. define me=l). 

Therefore, we may exchange the units as follows, 

where NA is Avogadro's number. After carrying out the calculations, we have the 

following relations, 

1 a. u. = 27.2 eV = 261 9.6 kJlrnol 



Appendix ll 

H-bond formation in proteins 

1R Freq. No. of H-bond 1 Distance 
'*OH group lcm') H-bonds ~ar tner  (A) 

M412 085 1760'~~' 0 0 1 NIA 

PYP €46 1 7 3 ~ ' ~ ~ '  1 HC69 1 2.687 

E: glutamic acid, D: aspartic acid, T: threonine, Y: tyrosine, HC: the 
chromophore, H: histidine, and S: serine. M412 denotes that peak absorption 
of bRts M intermediate state is at 412nm and bR568 denotes that peak 
absorption of bR ground state is a1 568nm. R denotes rhodopsin and PYP 
denotes photoactive yellow protein. See Table I[ in Chapter Ill for hydrogen 
bonding types for code. 



Appendix Ill 

Overlapping procedure 

1. Plot the contour plot of equipotential lines at s=O A indicating the electric fields 

generated by the nuclei of pCA-ME-trans. (Figure 1). 

2. Overlap the chemical stnrcture of pCA-ME-trans on the contour plot according 

to the nuclei positions of the atoms. 

X (Angstrom) 

Figure 1 The contour plot of equipotential lines of pCA-ME-trans at z=O A is shown in 
blue. The chemical structure is overlapping the contour plot 
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