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CHAPTER I 

Abstract 

Nine rnicrosateIlite Ioci were used to determine parentage of all juveniles within 

a popuIation of Gunnison's prairie dogs (Cynomys gunnisoni) aver a four-year period. 

The purpose was to investigate reproductive success, multiple paternity, inbreeding, and 

relatedness, and to assess how these factors changed over time. Parentage assignments 

were made for 836 of 900 (92.9%) juveniles. Mean female reproductive success for the 

population was 3.82 k 0.1 85 (mean SE) and was negatively correlated with population 

size. Mean male reproductive success for the population from 199 1 - 1994 was 7.82 & 

1.15 and was positively correlated with population size. Multiple paternity was 

detected in 166 of 221 (75%) litters composed of more than one juvenile over the four- 

year period. Frequency of muItiple paternity varied slightly over the four years of the 

study, but was within the range reported for other sciurid species. Only 22 of 732 

juveniles resulted from unequivocal inbreeding in this population from 1992-1 994. 

Mean relatedness values (r) between individuals at differing social and spatial scales 

indicated that females within each clan are related similarly the relatedness expected for 

half-siblings, most likely due to the high level of muItip1e paternity occurring in this 

population. Males within each clan, rnaIes compared to females within each clan, 

females between nearby clans, and males between nearby clans are essentially 

unreIated. In conclusion, these aspects of social structure probably helps explain the 

low level of close inbreeding, and thus, the breeding system may have evolved to 

increase the effective population size and maintain genetic diversity within this 

population of Gunnison's prairie dogs. 



CHAPTER 11 

Introduction 

To investigate reproductive success, multiple paternity, inbreeding, and other 

demographic characteristics, parentage of individuals must be accurately resolved. 

Traditionally, behavioral observation was used to determine parentage in natural 

populations, but this can be error-prone, especially for species whose social behavior 

and population structure are not conspicuous (HoogIand 1995; Taylor ef aE. 1997; 

Coltman ef al. 1998; HoogIand 1998a; Worthington WiImer el al. 1999). Molecular 

techniques, such as allozyme analysis, DNA fingerprinting, and most recently, 

microsatellite analysis, have been employed to address genetic structure and parentage 

to evaluate conclusions based on behavioral data or to investigate relatedness in 

organf sms that are difficult to observe (Ellegren 1992; Morin et al. 1994; van Staaden er 

al. 1994; Travis et a/. 1996; GulIberg et al. 1997; Taylor et al. 1997; Campper ef al. 

1998; Yu et a!. 2001). In this study, microsatellite DNA markers were used to identify 

parentage of juveniles and analyze other aspects of the genetic structure of a population 

of Gunnison's prairie dogs (Cynomys gunnisoni) over a four-year period. Numerous 

studies have demonstrated the value of microsatellites in studies of parentage resolution 

and genetic structure in natural populations (Craighead et al. 1995; Paetkau et al. 1995; 

Garza et al. 1997; Alderson et al. 1999; Kays et al. 2000; Burland et al. 2001). Some of 

this research has found that behavioral estimates of male reproductive success may 

differ significantly from genetically determined paternity thus, illustrating the 



importance of analyzing genetic mating systems (Coltman et al. 1999; Worthington 

Wilmer eb al. 1999). 

Long-term investigations are critical for understanding the social complexities 

of animals because populations respond dynamically to the environment (Hoogland 

1995; Travis et aI. 1996; Coltman et al. 1998; Worthington W ilmer et a!. 1999; Slate et 

ul.2000a; Rossiter et a/. 200 1 $. Long-term ecological/behavioral and genetic studies 

have been performed on several prairie dog species (Cynomys), especially the most 

widely distributed and abundant black-tailed prairie dog (C. ludovicianus; Foltz & 

Hoogland 198 1, 1983; Chesser 1983; Hoogland 1995; Dobson el al. 1997; Dobson ef al. 

1998). Recently, Hoogland (I 997, 1998a, b, 1999) conducted a long-term behavioral 

examination of a population of Gunnison's prairie dogs to understand their reproductive 

behavior and sociat organization. 

Gunnison's prairie dogs are medium-sized (650- 1200g) colonial, diurnal, 

burrowing rodents of the family Sciuridae. They inhabit portions of Arizona, Colorado, 

New Mexico, and Utah where they hibernate from November to February (Longhutst 

1944; Pizzimenti & Hoffman 1973; Fitsgerald & Lechleitner 1974; Rayor et al. 1987; 

Hoogland 1997, 199&a, b, 1999). Colonies of Gumison" prairie dogs are subdivided 

into small social groups called clans, which are composed of several breeding females, 

one to two breeding males, and numerous non-reproductive yearlings and juveniles 

(Rayor 1988; Travis et al. 1996; Hoogland 1999). 

Philopatry creates a situation where the females in a clan are cIosely related 

resulting in matrilineal structuring within the colony (Chesser 1983; Dobson et a!. 1998; 

Gompper ef al. 1998). Female prairie dogs are strikingly philopatic, tending to remain 



in their natal clan for life (Iiayor 1985, 1988; Hoogland 1997, 1998a, b, 1999). 

Hoogland's behavioral data indicated that 95% of females in a Gunnison's prairie dog 

colony remained in their natal clan for their entire life. Most juvenile males disperse 

from their natal clan before they reach sexual maturity and breeding males do not 

remain in a particular clan for mose than one year (Hoogland 1999). These behaviors 

should result in a low level of inbreeding in the colony (Hoogland 1992; Dobson et al. 

I997), a prediction that was investigated using the combination of behavioral and 

genetic data in this study. Based on previous behavioral data, it is unknown how males 

residing in the same clan are related, 

MicrosatelIites were analyzed to determine parentage of juveniles and 

relatedness of all individuals in a population of Gunnison's prairie dogs. Microsatellites 

are small tandemly repeated DNA sequences found in the genomes of n large number of 

eukaryotes (Jarne & Lagoda 1996; Hancock 1999). Microsatellites have been used in 

numerous parentage, population genetic, and reproductive success studies due to their 

high Ievel of polymorphism, codominance, Mendelian inheritance, ease of use, and high 

reproducibility (Bmford el al. 1996; Pemberton ef a!. 1999). Some of the species for 

which microsatellites have been used to study reproductive characteristics include 

chimpanzees (Pan ~roglodytex; Morin et 01. 1 9941, deer ( C e m s  sp.; Marshall et al. 

1998; Okada & Tarnate 2000), seals (Halichoerus and Phoca sp.; CoItman et a!. 1998; 

Worthington Wilmer et al. 19991, bears (Ursus sp.; Paetkau & Strobeck 1994; 

Craighead ef al. 1995; Paetkau et al, 1995), wombats (Lasiorhinus sp.; Taylor ef a/. 

19971, cowbirds (Molothrus sp.; Alderson et al. 19991, swaIlows (Hirtkndo sp.; Primmer 



et a!. 1995), cichIids (Pseudotropheus ssp,; Knight et al. 1 9981, and turtles (Podocnemis 

and Chrysemys sp.; Valenzuela 2000; Pearse et al. 2002). 

In this study, a combination of behavioral (obtained from Hoogland) and genetic 

data was utilized to assess reIatedness and reproductive characteristics of individuals in 

a population of C, gunnisoni over a four-year period. The ultimate goal of this study 

was to gain a better understanding of the evolution of social structure and mating 

system in this species and be able to extrapolate to other social mammals. 



CHAPTER 111 

Materials and Methods 

Study site & popu/adion 

Blood samples and behavioral data were colIected from essentially every 

individual in a Gunnison's prairie dog town located in Petrified Forest National Park, 

Apache County, Arizona from I99 1-1 994 (Hoogland 1 997, 1 998a, b, 1999); however, 

there were some individuals from which blood samples could not be obtained . 

Methods for capturing prairie dogs, coIIecting blood samples, and documenting 

behavior are described by Hoogland (1 995). 

Laboratoiy techniques 

Using approximately 50 p1 of blood, whole genomic DNA was isolated 

following the protocol described by Longmire et a!. (1997). Nine microsatel1ite loci 

were amplified via polymerase chain reaction (PCR) using primers originaIIy developed 

for Columbian ground squirrels (Spermophilus columbianus; Stevens et at. 1997) which 

were redesigned by Haynie (2000) and primers developed for Idaho ground squirrels (S.  

brumeus; May st al, 1997) (Table 1). Amplification was conducted in reactions 

containing 1.2 pl genomic DNA (50ng/p1), 1.0 p1 fluorescently-labeled (6FAM, HEX, 

or NED) forward primer (5pM3, 1.0 pI unlabeled reverse primer (5pM), 9 p1 ABI 

PRISMTM True Allelem PCR Premix, and 3,8 pl ddHzO. The cycling conditions were 

95 OC for 12 rnin, 10 cycles of 94 "C for 15 sec, 48 "C to 55 OC for 60 sec, 72 "C for 30 

sec, 25 cycles of 89 OC for 15 sec, 55 "C for 60 sec, 72 'C for 30 sec, followed by a final 

30 rnin 72 "C extension period. PCR products were visualized on a 5% Long Ranger 



polyacsylamide gel using an A81 PRISMTM 377 DNA Sequencer with GENESCANB 

400HD [ROX] internal size standard. All gels were analyzed and scored using 

GENESCAN@ Analysis 2. I and GENOTYPERB 2.0 software. 

Data analyses 

Maternity and paternity were determined for a11 juveniles in the popuIation for 

each year using genetic exclusion and CERVUS 2.0 computer s o h a r e  (Marshall er al.  

1998; Slate et al. 2000b). CERVUS 2.0 was also used to calculate allele frequencies, 

observed and expected heterozygosity, frequency of nu11 alleles, polymorphic 

information content (PIC-index of variability), and average exclusion probabilities for 

each locus separately and for all 9 loci combined. Probability of identity (PI), the 

probability of randornIy selecting two individuals with identical genotypes from a 

population, was calculated for each Iacus and all loci following the method of Paetkau 

et a!. (1995, 1998). 

Maternity was analyzed for each juvenile first by exclusion, which seeks to 

excIude all but a single female as the parent by comparing the juvenile and female's 

genotypes. If a female cannot be excluded, then that individual is designated as the 

potential mother (Chakrabarty el aE. 1988; Morin et al. 1994). In most cases, the female 

assigned as the potential mother of a litter based on genetic exclusion was suggested by 

behavioral observation because female Gunnisonk prairie dogs can be observed 

guarding nursery burrows (Hoogland 1997, 1999). In some instances throughout the 

study, there were fernaIes who shared burrows or juveniles could not be captured before 

mixing with other litters; this prevented the elimination of all but a single female as the 



potential mother. For these juveniles, CERWS 2.0 (Marshall el al. 1998) was used to 

determine which of the remaining aduIt femaIes was the most Iikely mother. 

CERVUS 2.0 determines parentage by calculating a likelihood ratio far each 

candidate parent at each locus. Likelihood ratios are the likelihood that the candidate 

parent is the true parent divided by the likeIihood that the candidate parent is a 

randomly chosen individual based on the given genotypes and aIIele frequencies in the 

population. The overall likelihood ratio for each potential parent is determined by 

multiplying the likelihood ratios at each locus together. Each potential parent is then 

assigned an LOD score, or the log of the overall likelihood ratio. The potential parent 

with the largest LOD score is the most IikeIy parent. Then a Delta statistic, the 

difference in LOD scores between the most likely parent and the next most Iikely 

parent, is assigned to the most likely parent at specified confidence levels (e.g., 95%, 

SO%, etc.). The magnitude of the Delta statistic shows the level of likelihood of the 

most likely parent (i.e., if Delta is small, both are equally likely to be the true mother) 

(Marshall er a!. 1998). 

Paternity was assigned once maternity was assessed. Again, exclusion was used 

first to exclude as many adult males as possible. Males known to have copulated with 

the mother (based on observational data) were tested first. If more than one of these 

remained as a potential father, CERWS 2.0 was used to determine the most likely 

father. If there were cases where all males were excluded, the Iist of potentiaI fathers 

was expanded to include males in clans surrounding the clan where a female resided. If 

paternity could not be determined using these methods, it remained unassigned because 



there were a few unsampled males in the colony known to have copulated with females 

in the colony. 

Annual and lifetime female reproductive success was calculated for each 

breeding female in the population and for the female population as a whole for each 

year and all years combined. This reproductive characteristic was calculated by 

determining the number of offspring produced by each female. For the population as a 

whole, female reproductive success was analyzed as the ratio of tola1 offspring to the 

number of breeding females. Annual and lifetime male reproductive success was 

calcuIated in the same manner. 

Frequency of multiple paternity was calculated as the number of litters 

consisting of more than one pup sired by more than one male divided by the total 

number of litters containing mare than one pup. Juvmiles with undecided maternity 

were not included in this analysis. If paternity was not completely resolved for all 

juveniles within a litter, it was included in this analysis only if there was unequivocal 

evidence for multiple sires for the juveniles with paternity resolved. This calcuIation 

was determined for each yeas included in the study and these values were compared to 

similar data from other sciurid species. 

Finally, inbreeding was evaluated for the entire population by comparing 

observed heterozygosity with the expected heterozygosity, both calculated by CERVUS 

2.0. If the observed heterozygosity is significantly lower than the expected 

heterozygosity, it is an indication that inbreeding might be occurring in this population. 

Inbreeding was aIso determined by assessing the degree of reIatedness among 

individuals in the population and in each cIan. These assessments were based on 



pedigree path analysis and the results from RELATEDNESS 5.0.8 (Queller & 

Goodnight 1989; Taylor et a!. 1997). Pedigree path analysis was used to document 

which individuals were inbreeding and to determine the nature of inbreeding (i.e., 

extreme or moderate). lf the relatedness for the popufation and each clan was greater 

than zero, it was also an indication that inbreeding might be occurring. 

Painvise relatedness (r) was calculated using RELATEDNESS 5.0.8 (Queller & 

Goodnight 1989; TayIor et a!. 1997) to test pedigree relationships between pairs of 

individuals in the population (e.g., mother-offspring, father-offspring, fulI siblings, 

maternal half-siblings, and paternal haIf-siblings) based on parentage assignment. 

Information about clan composition and maps of the colony were used to investigate the 

reIatedness of adult females within each cIan and between geographically close clans, 

relatedness of adult males within each clan and between geographically close clans, and 

relatedness of adult males and females within each clan for each year of the study. 



CHAPTER IV 

Results 

Genetic Variability 

For the nine microsateIlite loci examined, number of aIleles per locus ranged 

from 2-10 with a mean of 6.1 1 for the four years combined (Table 2e). All loci had 

lower heterozygosity than expected (Table 2a-e). PIC and PI values indicated that the 

most infornative loci were GS08, GS14, IGS I ,  and IGS6, whiIe GS 17 and GS20 were 

the least informative (Table 2a-e). First-parent exclusionary power (i.e., the ability to 

exclude females as potential mothers) was 86% for all four years combined. Second- 

parent exclusionary power (i.e., the ability to exclude males as potential fathers when 

the mother is known) was 98% for all four years combined. 

Parentage, Reproduclive Success, & Multiple Paternity 

Maternity was determined for 169 of 169 (100%) juveniles and complete 

parentage (maternity and paternity) was resolved for 16 1 of 169 (95.3%) juveniles for 

the samples obtained during 1991. During 1992, maternity was clarified for 235 of 235 

(100%) juveniles and complete parentage was ascertained for 223 of 235 (94.9%) 

juveniles. Maternity was resolved for 226 of 235 (96%) juveniles and complete 

parentage was determined for 201 of 235 (85.5%) juveniles for samples collected 

during 1993. For the nine juveniles not assigned a mother in 1993, maternity was 

restricted to two females; however, neither female could be excluded and each was 

equally likely to be the true mother (see Table 3t). Maternity was resolved for 261 of 

26 1 (1 00%) juveniles and complete parentage was determined for 25 1 of 26 1 (96.2%) 



juveniles sampled during 1994. Over the four years of this study, maternity was 

determined for 891 of 400 (99%) juveniles and complete parentage was resolved for 

836 of 900 (92.9%) juveniles. 

Based on parentage assignments, the population was composed of 23 clans 

consisting of 3 8 aduIt maIes (28 breeding), 4 1 adult females (37 breeding), and 168 

juveniles in 1991,30 clans with 67 aduIt males (26 breeding), 8 1 adult femaIes (57 

breeding), and 235 juveniles in 1992,24 clans with 98 adult rnaIes (22 breeding), 107 

adult females (65 breeding), and 238 juveniles in 1993, and 22 clans with 100 adult 

males (24 breeding), 1 16 adult females (8 1 breeding), and 261 juveniles in 1994. 

Female reproductive success was 4.51 * 0.20 (mean & SE), 4.12 * 0.19,3.47 * 
0.19, and 3.22 k 0.16 in 1991, 1992, 1993, and 1994, respectively, with a mean female 

reproductive success over the four-year period of 3.82 =i 0.1 85. Across years, female 

reproductive success was negatively correlated with population size (Figure la). Male 

reproductive success was 5.68 * 0.80,8.58 ft 1,0,9.50 k 1.3, and 10.5 k 1.5 for 1991, 

1992, 1 993, and 1994, respectively and mean success was 7.82 * 1.15 over the four 

years. In contrast with females, male reproductive success was positively correlated 

with population size (Figure lb). Lifetime reproductive success was also determined 

for each breeding female (Table 4) and male (Table 5) in the population over the four 

years of the sfxdy. 

In 1 99 I ,  multiply sired litters included 26 of 36 (72.2%) litters with more than 

one offspring, 45 of 55 (81.8%) in 1992,47 of 57 (82.5%) in 1993, and 48 of 73 

(65.8%) in 1994. Mean frequency of multiple paternity over the four-year study was 

75.58% * 8.0%. 



Inbreeding & ReIatedness 

In this population, observed heterozygosity was lower than expected for all 

years at all loci, which may be indicative of inbreeding. FIs was 0.195,0.241,0.230, 

and 0.236 for I99 1, 1992, 1993, and 1994, respectively, with a mean of 0.2 17 for the 

four-year period. However, pedigree path analysis revealed only 22 of 732 juveniles 

from 1992- 1994 were the result of an unequivocal inbreeding event (Table 6 ,  Figure 2a- 

d). Inbreeding could not be determined for individuals sampled during 199 1 because 

relationships of the breeding aduIts were not known. Inbreeding coefficients for these 

22 individuals range from 0.03 13 - 0.25 with a mean f SE of 0.172 + 0.0 I 7. 

Relatedness values (r) for the population as a whole (Table 7a) and for each clan in each 

year (Table 7b) reveal r values near zero, indicating that the individuals in the 

population and clans are unrelated. 

Over the four years of the study, mean mother-offspring, father-offspring, and 

full sibling relatedness values are close to the expected relatedness value of 0.50 (Figure 

3a-e). Mean maternal half-sibling r values are close te the expected value of 0.25, 

somewhat higher than for paternal half-siblings. Mean relatedness of adult females 

within a clan was approximately 0.25, equivalent to a half-sibling r value. All other 

comparisons that were made (adult males within each clan, adult males-females within 

each clan, adult males between nearby clans, and adult females between nearby clans), 

had mean relatedness values near zero, indicating they are not closely related. 



CHAPTER V 

Discussion 

A few studies have shown that social structure may not be the same as the 

breeding structure, and that obsewational data about the mating system may not reflect 

the genetic mating system (Coltman st a/. 1999; Worthington Wilmer et al. 1999). 

Long-term behavioral and genetic studies for understanding social structure and mating 

system evolution are important because such systems are dynamic and complex (Slate 

et al. 2000a; Burland et al. 2001; Rossites et al. 2001). 

Parentage 

Parentage determination can be performed using genetic exclusion probabilities 

(Chakraborty et al. 1988; Morin et al. 1994; Keane et al. 1997) or likelihood-based 

analyses (FoIts & Hoogland 1981 ; Taylor et aE. 1997; Marshall et al. 1998; Slate et al. 

2000b). Genetic exclusion may not always assign the correct parent because exclusion 

probabilities require an exact match between the parent and offspring's genotype. With 

rnicrosatellites, a variety of factors can generate mismatches, including null alleles, 

mutations, and errors in determining the correct allele size for an individual's genotype 

(Gallen et aE. 1993; Paetkau & Strobeck 1995; Pemberton et al. 1995; Haberl& Tautz 

1999; Chambers & MacAvoy 2000). 

Null alleles occur when there are mutations in the DNA sequence flanEung the 

repeat motif of the microsatellite Iocus, resuIting in the primer not binding during PCR. 

IndividuaIs hetemzygous for the mutation will appear to be homozygous and 

hornozygotes, fail to produce an amplification product. The frequency of null alleles 



increases when the primers were developed for a species other than the study species 

(Callen et al. 1993; Chambers & MacAvoy 2000). This poses a potential problem in 

this study because the primers utilized were developed for Colurnbian ground squirrels 

and Idaho ground squirrels. To account for problems such as genotyping error and 

mutation rate, likelihood-based analyses and relatedness coefficients were used in 

addition to genetic exclusion to assign and verify parentage (Chakraborty er al. 1 988; 

Queller & Goodnight 1989; Marshall er a/. 1998). A potential problem with likelihood 

methods for determining parentage is that it: assumes that each locus is in Hardy- 

Weinberg equilibrium and it is not clear how violation of this assumption will affect 

parentage assignment. 

Previous studies attempting to assign parentage using rnicrosatellite data had 

varying degrees of success. Alderson et a!. (1999) were able to assign 55 of 61 (90%) 

brown-headed cowbird chicks (Molothrus ater) to their parents or sibling groups using 

seven loci. Coltman et aE. (1999) assigned parentage to 226 of 365 (62%) Soay lambs 

(Ovis aries) using ten microsatellite and five protein loci. Worthington WiEmer et al. 

(1999) were able to assign parentage to only 320 of 81 1 (39.5%) grey seal pups 

(Ha/ichoerus gqvpws) using nine microsatellite loci. In this study, parentage was 

assigned to 836 of 900 (92.9%) offspring using nine rnicrosatellite loci, which was 

aided by having an extensive behavioral data set. In a previous study of the same 

colony, Haynie (2000) used seven of the nine rnicrosatellite loci utilized in this study 

and was able to assign parentage to only 3 1 % of the 1994 cohort of juveniles, and 

subsequently estimated multiple paternity at 27%. The addition of two highly 

loci in my study greatly increased the ability and accuracy in resolving 



parentage. This in turn probably explains the disparity between the estimates of 

multiple paternity (65.8% of litters) in this study compared with that in Haynie's (2000) 

work. The inability to resoIve paternity for some juveniles (5.8%) in this study may 

result from lack of DNA samples for some males, null alleles, and decreased genetic 

variation fiom using heteroIogous primers. The one instance where maternity could not 

be resolved was when the potential mothers were full siblings having identical 

genotypes. 

Reproductive Success 

The correlations between mean female and male reproductive success and 

population size would not have been elucidated without examining consecutive years of 

the same population. The number of males attaining reproductive success remained 

nearly constant over the four-year period (range = 22 - 28) even though the population 

as a whole increased in size and the number of adult females increased. Reproductive 

success in males siring offspring appears limited by the number of females in the 

population, whereas female reproductive success appears Iimited by increased 

population density, and possibly reduced avaitability of burrow space (Fig. 1 a, b). 

Generally, the longer an individual lived, the greater its Iifetime reproductive 

success. In a few instances, some males living only one or two years had high 

reproductive success compared to maIes who lived three or four years. Hoogland 

(200 1) suggested that mating success, and probabIy reproductive success, is highly 

correlated with mass in both males and females. Parentage assignments provided in this 



study should allow a more thorough investigation into the possibility of a positive 

correlation between body size and reproductive success in this species. 

Multiple Paternity 

Multiple paternity has been documented in a variety of animal species having 

more than one offspring per litter and in some species it may occur at a high frequency 

(Boellstorff el a/. 1994; Schenk &: Kovacs 1995; Berteaux et al. 1999; Haynie 2000; 

Valenzuela 2000). Many scuirid species have been found to exhibit multiple paternity. 

BoelIstorff et al. (1 994) found this to occur at a frequency of 89% in California ground 

squirrels (Spermoplzilus beecheyi), whereas Hanken & Sherman (1 98 1 ) observed 

multiple paternity in Belding's ground squirreIs (S. beldingi) in 78% of the litters 

examined. At the other end of the range of leveIs of multiple paternity, Murie (1995) 

found that 16% of Columbian ground squirrel litters were multiply sired, whereas 

Hoogland (1 995) estimated multiple paternity occurred in black-tailed prairie dogs at a 

rate of 5%. The high frequency of multiple paternity observed in this Gunnison's prairie 

dog population (76%) was within the range observed for other scuirid species. The 

level of multiple paternity in this population varies over the four-year period and Travis 

et al. (1996) suggested that it may vary among populations of this species. 

Explanations for such a high frequency of multiple paternity include group 

selection arguments such as increasing the effective population size and maintaining 

genetic diversity in isolated popuIations (Moran & Garcia-Vasquez 1998; Martinez 

ZOO()), and individual benefits such as reducing the potential for inbreeding, increasing 

genetic variability in a female's offspring, and promoting sperm competition. Because 



male reproductive success is directly associated with the number of offspring sired, 

males will mate with multiple females to increase the number of offspring they sire. In 

contrast, female reproductive success is related to creating genetically superior 

offspring and keeping them alive; thus, females are expected to be more selective in 

mate choices (Krebs & Davies 1993). The reasons why females mate with multiple 

males are not completely understood. Hoogland (1  998a) found that 100% of female 

Gunnisonk prairie dogs that mated with three or more males became pregnant and gave 

birth to pups, and he concluded that multiple matings by females may be necessary to 

ensure pregnancy. He also found that litter size was directly related to the number of 

males with which a female mated. Sperm competition has been studied in numerous 

organisms and probably benefits females by alIowing more fit offspring (howlton & 

Greenwe11 1984). 

In breeding 

Inbreeding in a population can be heightened by sociality and philopatry. Some 

level of inbreeding can maintain co-adapted gene complexes and increase ability of 

locating mates, but higher Ievels are often associated with decreased fecundity, survival, 

and dispersaI of offspring (Hoogland 1992; Brown & Brown 1998; Crnokrak & Roff 

1999; Daniels & Walters 2000; Slate et al. 2000a; Rossiter et al. 200 1). In order to 

determine the level of inbreeding occurring in a population, it was necessary to know 

the level of heterozygosity and degree of relatedness of individuals. BIack-tailed prairie 

dogs appear to avoid extreme inbreeding (e.g., are mother-son, father-daughter, and full 

sibling matings), but matings among more distant relatives (e.g., cousins, aunt-nephew, 



and uncle-niece) apparently can be tolerated (Hoogland 1982; Foltz & Haogland 1983; 

Dobson ei 01. 1997). Factors reducing extreme inbreeding in black-tailed prairie dogs 

include male dispersa1 from natal territory, aduIt male dispersal from breeding territory 

when daughters become sexually mature, delay of sexual maturity in females when their 

father remains in the territory, and behavioral mechanisms to avoid mating with related 

individuaIs (HoogIand 1992, 1995, 1999). 

The 22 instances of inbreeding detected in the study population from 1992- 1994, 

were fewer than expected from previous estimates of inbreeding in this species (Travis 

et al. 1997) and the low level of observed heterozygosity in this population. Travis et 

a/ .  (1997) also found low genetic diversity using DNA fingerprinting and speculated 

there was limited gene flow among popuIations and, as a result, heightened inbreeding 

within each colony. The estimate of inbreeding in the study population is likely to be 

an underestimate because if we extended farther back in time, we would likely find 

more instances of inbreeding. However, pedigree path analysis provided a more 

reliable measure of inbreeding than simply looking at levels of heterozygosity (Fls). Fls 

values range from negative one (a population that is extremely outbred) to positive one 

(popuIation that is very inbred). The values calculated in this study are relatively high 

(mean over four years = 0.2173, but high values are also an indication of further 

population subdivision, which can be explained by the clan social structure of 

Gunnison's prairie dogs. Processes accounting for both the low level of inbreeding and 

the high Frs values include high frequency of multiple paternity, high population 

mrnover (low yearly survival rate), and frequent dispersal of males from clans that 



occurred in this population (Hoogland 1999). There appears to be no evidence for 

inbreeding depression, but further investigation of this would be needed. 

An observation that arose when examining the inbreeding paths was that there 

were no cases where a female bred with any of her progeny. The majority of instances 

of inbreeding arose from father-daughter, grandfather-granddaughter, paternal half- 

siblings, etc., and this could have resulted from the high level of multiple paternity in 

the population. Fathers may not be able to recognize their offspring and paternal half- 

siblings may not know they share the same father, but mothers should be able to 

recognize their offspring and full and maternal half-siblings should be familiar 

(Michener 1974; Holmes & Sherman 1982). 

Relatedness 

Recently, a few studies have assessed genetic relatedness of individuals in one 

or more populations to gain insight into a specieshocial structure. Kays et aE. (2000) 

found that kinkajous (Potosfravus) may form family groups and that females seem to 

disperse more often or farther than males. Burland ef al. (1999) found essentially zero 

within colony relatedness in brown long-eared bats (Plecotus aurirus), even though 

behavioral studies reported natal philopatry in this species. 

Relatedness calculations allowed independent testing of parentage assignments 

and estimated relatedness of individuals within the population at varying spatial and 

social scales. This examination revealed that parentage assignments for the colony 

studied were remarkably accurate. The relatedness structure of the Gunnison's prairie 

dog clans documents that adult females within a clan (mean r = 0.24) are lower than 



indicated by behavioral data. Such data had suggested that females in a clan are 

primarily mother-daughter, full sibling, aunt-niece, and cousin relationships (Rayor 1985, 

1988; Hoogland 1997, 1998a, b, 1999, whereas the present study revealed a large number 

of half-siblings among adult femaIes within each clan as a zesuIt of the high frequency of 

multiple paternity. The males in clans with multiple breeding males appear to be 

unrelated (mean r =-0.13). Both sexes between nearby clans are effectiveIy unrelated 

(mean r = -0.06 and -0.08), increasing the genetic heterogeneity of social structure in this 

species. AFI relatedness comparisons were not significantly different between years, 

suggesting that this social. structuring of Gunnison's prairie dog colonies remains constant 

over time. 

In conclusion, this study provided significant insight into the social structure and 

mating system of Gunnison's prairie dogs. A correIation between reproductive success 

and population size occurred in both males (positive) and females (negative). Prior to 

this research, high levels of multiple paternity appeared charactenistic in this species, 

but it was not fuIIy known, as well as the fact that this changes over time within a 

colony and possibly between populations. Inbreeding was estimated to be somewhat 

high, based on decreased observed heterozygosity, but was found to be much lower by 

pedigree path analysis in this study. Females within each clan are less reIated than once 

believed, while males within a clan are unrelated. Between geographically close clans 

(those that share a boundary), males are unrelated and females are unrelated. This 

socia1 structure and mating system of Gunnison's prairie dogs may have evolved to 

decrease inbreeding, increase the effective population size, and maintain genetic 

diversity within a popuhtion. 
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Table 1 Microsatellite locus names and primer sequences organized in 5' --, 3' orientation. HEX, NED, and 6FAM are 

fluorescent labels attached to forward primers. 

Locus Name LabeIed forward primer Reverse primer 
- - - - - 

HEX-ACCAATGGGAGACACATCCAA 

NED-CCAAGAGAGGCAGTCGTCCAG 

6FAM-CAGAATCAGGTGGGTCCATAGTG 

6FAM-CAATTCGTGGTGGTTATATC 

6FAM-GCCCAGCCATCACCCTCACC 

6FAM-AGAG AACAACATCAACAGGGTGTG 

NED-GGCTCCAAGTCCCAGGGAC 

HEX-ATAACAGCACCCTGCACCAC 

HEX-GGGCATTAATTCCAGGACTT 

-- 

GTGTCTTAAACTCCTTGTAATAGCCCCCTG 

GTGTCTTTCGAGCAGAGCACTTCACAGA 

GTGTCTTGATGAA ACCTATTTGCCTTCCTTC 

GTGTCTTCTGTCACCTATATGAACACA 

GTGTCTTTCCAGAGTTTTTCAGACACA 

GTGTCTTGGTCCTCATCCTGCCAATTTC 

GTGTCTTGGTCCTCATCCTGCCAATTTC 

AATCCATCCXTACCTGTAATGC 

GGGCTGGAATTAAAGGTATCA 

*Locus names described by Stevens el 01. (1 997) 
$Primers redesigned by Haynie (2000) for multiplex gel Ioading 
?Locus names described by May et a/ .  (1 997) 



Table 2 Locus names and descriptive statistics for genetic variability at each locus 

for the Gumison's prairie dog popuIation at Petrified Forest National Park, Apache 

County, Arizona far each year from I991 -1994 separately (a - d) and for all four 

years combined (e). A = number of aIleles, N - sample size, Ho = observed 

heterozygasity, HE = expected hetesosygosity, PIC = polymorphic information 

content, PI = probability of identity, PE1 = first-parent exclusionary power, and 

PE2 = second-parent exclusionary power. 

- 

LOCUS A N Ho HE PIC PI PE1 PE2 

GS08 

GS12 

GS14 

GS17 

GS20 

GS22 

GS26 

IGS 1 

IGS6 

Mean 

Total 



b. 

1992 

LOCUS A N Ho HE PIC PI PEI PE2 

GSOX 7 356 0.542 0.662 0.617 0.157 0.252 0.426 

IGSI t 0 388 0.639 0.729 0.690 0.1 10 0.332 0.510 

Mean 5.78 385 0.384 0.506 0.474 

Total 3.34 x 10" 0.354 0.978 



C. 

1993 

LOCUS A N Ho HE PIC PI PE1 PE2 

GSO8 8 359 0.568 0.710 0.667 0.125 0.301 0.478 

GS17 

GS20 

GS22 

GS26 

IGS I 

IGS6 

Mean 

Total 



LOCUS A N Ho HE PIC PI PEl PE2 

GS08 

GS I2 

GS 14 

GS 17 

GS20 

GS22 

GS26 

IGSl 

1GS6 

Mean 

Total 



Combined I99 1-1 994 

Locus A N Ho H E  PIC PI PE 1 PE2 

GS08 

GS 12 

GS14 

GS17 

GSZO 

GS22 

GS26 

tGS 1 

IGS6 

Mean 

Total 



Table 3 Parentage assignment for each offspring in the Gunnison's prairie dog 

population at Petrified Forest National Forest, Apache County, Arizona from 

1991-1994, The ID listed for each individual is assigned upon capture with the 

right and left eartags in parentheses, If the father could not be assigned, it is 

designated as ******. Juveniles designated with t indicate maternity narrowed to 

two potential mothers, which are sisters with identical genotypes 

Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartam) 

199 1 3SBSx (E39, E40) 3SBS (529,530) I4 (C55, C56) 

199 1 3SBSx (E41, E42) 3SBS (529,530) 45 (901,902) 

1991 3SBSx (€9 I ,  E92) 3SBS (529,530) 14 fC55, C56) 

1991 3SBSx (141,142) 3SBS (529,530) ****** 

I99 1 3SRSx (F99, GO) 3SRS (A23, DO) RI 0 (B29, B30) 

1991 3 SRSx (G 19, G20) 3SRS (A23, DO) 17 (C59, C60) 

1991 3SRSx (G5, G6) 3SRS (A23, DO) 38 (765,837) 

3SRS (A23, DO) 

ZSRS (A23, DO) 

3SRS (A23, DO) 

4str (947,9483 

4str (947,948) 

4str (947,948) 

4str (947,948) 

SO (925,926) 

50 (925,926) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1991 50x (125,126) 50 (925,926) 23 (C45, C46) 

50x (15,16) 

SOX (17,110) 

HBSx (165,166) 

HBSx 1183,184) 

HBSx (19,155) 

HBSx (517, J18) 

BSx (H65, H66) 

BSx (H77, H78) 

BSx (131,132) 

6 1 x (F75, F76) 

61x (F91, F92) 

61x (F93, F94) 

61x (F95, F96) 

6 I x (G29, G30) 

4x (E49, E50) 

4x (E5 1, E52) 

4x (E53, E54) 

4x (€55 ,  E56) 

4x (E57, E58) 

6x (F55, F56) 

6x (F57, F58) 

6x (F69, F70) 

6x (434 1, G42) 

7x (115,116) 

7x (117,118) 

7x (119,120) 

7x (143,144) 

72x (H63, H64) 

72x (H93, H94) 

72x (H95, H96) 

T2x (135,136) 

CBSx (H59, H6O) 

44 (495,496) 

03 (C43, D3) 

03 (C43, D3) 

44 (495,496) 

44 (495,496) 

09 (SO, C27) 

04 (497,498) 

41 (231,232) 

44 (495,496) 

04 (497,498) 

17 (C59, C60) 

17 (C59, C60) 

21 (13, 14) 

****** 



Year Juvenile's ID (earrags) Mother's ID (eartags) Father's ID (eartags) 

1991 CBSx (H61, H62) 80 (297,298) R03 (915,916) 

C M S x  (J25,526) 

WARSx (H45, H46) 

81x (H35, H36) 

8 1x (H49, H50) 

81x (179,180) 

81x (J29, J30) 

FRx (F73, F74) 

FRx (G7, G8) 

ERx (G9, G 10) 

FRx (527,528) 

Ox (D57, D58) 

Ox (D59, D6O) 

Ox (DB 1, D62) 

Ox (D63, D64) 

Ox (DX7, D88) 

CRSx (197,198) 

CRSx (J11,512) 

CRSx (J13, J14) 

CRSx (J9, J10) 

RSBBx (187,188) 

RSBBx (J59, J6O) 

BBx (El I ,  E12) 

BSx (E13, E14) 

BBx (E2 1, E22) 

BBx (E23, E24) 

BBx (E3, EX) 

BBx (E5, €6) 

BBOl x (J39,540) 

CBSx (H55, H56) 

WARSx (G47, G48) 

BB6x (G45, G46) 

BB6x ((371, GT2) 

80 (297,298) 

80 (297,298) 

8 1 (275,276) 

8 1 (275,276) 

81 (275, 276) 

8 1 (275,276) 

88 (1 15, 116) 

88 (1 15, 116) 

88 (I 15, 116) 

88 (1 15, 116) 

90 (465,466) 

90 (465,466) 

90 (465,466) 

90 (465,466) 

90 (465,466) 

91 (A9, AlO) 

91 (A9, AlO) 

91 (A9, A10) 

91 (A9, A10) 

95 (322,324) 

95 (322,324) 

BB (564, C53) 

BB (564, C53) 

BB (564, C53) 

BB (564, C53) 

BF3 (564, C53) 

BB (564, C53) 

BB0 (A7 1, A72) 

BBO (A7 1, A72) 

BE0 (A71, A72) 

BBB (29 I, 292) 

8B6 (29 1,292) - 



Year Juvenile's FD (eartags) Mother's ID (eartags) Father's ID (eartags) 

199 1 BB6x (H83, H84) BB6 (291,292) 3 1 (207,208) 

1991 BB6x (H85, H86) BB6 (29 1,292) 3 1 1207,208) 

199 1 BB7x (G25, G26) BB7 (A55, ,456) 44 (495,496) 

199 1 BBTx (H91, H92) BB7 (A55 A561 44 (495,496) 

1991 BB7x (133,134) BB7 ( A S ,  A56) 44 (495,496) 

1991 C9x (D55, D56) BB9 (705,706) 7 (43 1 ,432) 

1991 C9x (D8 1, D82) B89 (705,706) 7 (431,432) 

1991 C9x (D9 I ,  D92) BB9 (705, 706) **Y*** 

I99 1 BSBBx {D95, D96) BSBB (9 1,92) 04 (497,498) 

199 1 BSBBx (D97, D98) BSBB (9 1,92) 04 (497,498) 

1991 BSBBx (D99, EO) BSBB (9 1,921 04 (497,498) 

1995 WA6x (E45, E46) BSBB (91,92) R44 (97 1, C32) 

199 I WA6x (E47, E48) BSBB (9 I, 92) 04 (497,498) 

199 1 WA6x (E7 1, E72) BSBB (9 1, 92) 04 (497,498) 

199 1 BBOx (J15, J 16) C5 (A25, C47) 17 (C59, C60) 

I99 I CBSx (H57, H58) C5 (A25, C47) 05 (73,74) 

1991 RR5x (113,114) C5 (A25, C47) 17 (C59, C60) 

1991 CRx (147,148) CR (A53, A541 17 (C59,660) 

1991 CRx (149,150) CR (A53,654) 3 1 (207,208) 

199 I CRx (189,190) CR (A53, A54) 0s (73,74) 

1991 CRx (19 1,192) CR (A53, A54) 19 (351,352) 

1991 CRx (143,194) CR (A53, A54) 0s (73,741 

199 1 CRx (195,196) CR (A53, A54) 31 (207,208) 

199 1 Hx (H27, H28) H (876, C42) 22 (499,500) 

1991 Hx (H69, H70) H (876, C42) 22 (499,500) 

199 1 Hx (163,164) H (8 76, C42) 22 (499,500) 

1991 HBBx (G73, G74) HBB (260,759) 15 (307,308) 

1991 HBBx (H29, H30) HBB (260,759) 15 (307,308) 

1991 HBBx (H33, H34) HBB (260,759) R03 (915,916) 

1991 IlBBx (145,146) HBB (260,759) 15 (307,308) 

1991 HBBx (167,168) HBB (260,759) 1 5 (307,3 08) 



Year Juvenile's ID (eartags) Methe+s ID (eartags) Fathets ID (eartags) 

HBBx (169,170) 

HRBx (H2 1, M22) 

HRBx (H23, H24) 

HRBx (H25, H26) 

HRBx (159, 160) 

HRBx (185,186) 

HRSx (E19, E20) 

HRSx (E25, E263 

HRSx (E27, E28) 

HRSx (E29, E30) 

RCx (4375% G76) 

RCx (H79, H80) 

RCx (I5 1,152) 

RCx (753,154) 

RCx (I6 1,162) 

RCx (177,178) 

RCx (J7,J8) 

BSOx (121,122) 

COX (F5 1, F52) 

COX (F77, F78) 

COX (F79, F8O) 

RSx (F43, F44) 

RSx (F45, F46) 

RSx (F47, F48) 

RSx (F49, F50) 

RSx (F63, F64) 

RSx (F65, F66) 

RSx (F67, F68) 

TSx (F97, F98) 

TSx (G17, G18) 

TSx (G23, G24) 

TSx (G67, G68) 

WA4x (H7 I, H72) 

HBB (260, 759) 

HRI3 (963, 964) 

HRB (963,964) 

HRB (963,964) 

HRB (963,964) 

HRB (963,964) 

HRS (34,738) 

HRS (34,738) 

HRS (34,738) 

HRS (34,738) 

RC (B2, C58) 

RC (BZ, C58) 

RC (B2, C58) 

RC (B2, C58) 

RC (B2, C58) 

RC (B2, C58) 

RC (B2, C58) 

RRO (213,214) 

RRO (213,214) 

R R O  (213,214) 

RRO (213,214) 

RS (505,506) 

RS (505,506) 

RS (505,506) 

RS (505,506) 

RS (505,506) 

RS (505,506) 

RS (505,506) 

TS (625,737) 

38 (625,737) 

TS (625,737) 

TS (625,737) 

WA4 (755, C54) 



Year Juvenile? ID (eartags) 

WA4x (H73, H74) 

WA4x (H75, H76) 

WA4x (H81, H82) 

WA6x (E69, E70) 

WA6x (E73, E74) 

WA6x (F71, F72) 

WA7x (E8 1, €82) 

WA7x (E83, E84) 

WA7x (E87, Egg) 

WA7x (E89, E90) 

WA7x (F41, F42) 

2RSx (M43, M44) 

2RSx (M45, M46) 

2RSx (M47, M48) 

2RSx (M49, M50) 

2RSx (M73, M74) 

3SBSx (S83, S84) 

3SBSx (T1 I ,  T12) 

3SBSx (U9, U10) 

HOx (Q95,496) 

HOx (T57, T58) 

HOx (T59, T60) 

HOx (773, T74) 

4SBSx (P4 1, P42) 

4SBSx (P67, P68) 

4SBSx (Q9, Q10) 

4SBSx (R51, R52) 

4strx (467,468) 

4strx (R97, R98) 

4sm (539, S40) 

4sm (S41, S42) 

4sm (T45, T46) 

RSBSx (R49, R50) 

Mother's ID (eartags) Father's ID (emags) 

WA4 (755, C54) 19 (35 1,352) 

WA4 (755, C54) 19 (351,352) 

WA4 (755, C54) 05 (73,74) 

WA6 (921, C57) 04 (497,498) 

WA6 (92 1 ,  C57) 04 (497,498) 

WA6 (92 1 ,  C57) 04 (497,498) 

WA7 (365, C30) 44 (495,496) 

WA7 (365, C30) 7 (431,432) 

WA7 (365, C30) 7 (431,432) 

WA7 (365, C30) 7 (43 1,432) 

WA7 (365, C30) 7 (43 1,432) 

2RS (583,584) 19 (35 1,352) 

2RS (583,584) R41 (L67, L68) 

2RS (583,584)  19 (35 1,352) 

2RS (583,584) 19 (35 1,352) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1992 RSBSx (RS, R6$ 55 (G47, (348) 07 (B 17, C69) 

5sm (M8 1 ,  M82) 

5stm (04 1,042) 

Sstnr (PI, P2) 

Sstrx (PIT, P18) 

Sstrx (Q2T,Q28) 

6 1x (N49, N50) 

63x (N5, N6) 

61x (035,036) 

61x (037,038) 

61x (039,040) 

2x (S35, S36) 

2x (S79, S80) 

2x (U39, U40) 

2x (U57, U58) 

2x (U87, U88) 

3x 0 4 1 ,  T42) 

66x (P73, P74) 

6sm (PI 1, P12) 

6stnc (P13, P14) 

6stm (P47, P48) 

6sm (P9, P 10) 

6strx (Ql5,  Q16) 

3x (T23, T24) 

3x (T61, T62) 

3x (U11, U123 

70x (42 1,422) 

73x (P57, P58) 

73x (P59, P60) 

T 3 x  (P85, P86) 

73x (P87, P88) 

73x (417, Q18) 
73x (Q19,Q20) 

5str (127,128) 

Sstr (127,128) 

5str (127,128) 

5sw (127,128) 

5str (127,128) 

6 1 (893, C25) 

61 (893, C25) 

61 (893, C25) 

61 (893, C25) 

61 (893, C25) 

62 (H39, H40) 

62 (H39, H40) 

62 (Ii39, H40) 

62 (H39, H40) 

62 (H39, H40) 

63 (L 1, L2) 

66 (215,216) 

6str (H73, H74) 

6str (H73, H74) 

6str (H73, H74) 

6str (H73,5174) 

6sts (H73, H74) 

70 (K99, LO) 

70 (K99, LO) 

70 (K99, LO) 

70 (K94, LO) 

73 (193,144) 

73 (193,194) 

73 (193,194) 

73 (193,194) 

73 (193,194) 

73 (193,144) 



Year Juvenile's ID (eartags1 Mother's ID (eartags) Father's ID (eartags) 

1992 RR3x (T43, T44) 74 (H47, H48) 26 (D13, D14) 

1992 SOX (497, Q98) 

I992 SOX (Sl I, $12) 

1992 80x (537, S38) 

79 (H35, N36) 

79 (H35, H36) 

80 (Hll ,  H12j 

8O(Hll ,  H12) 

sO(H11, H12) 

SO(HI1, HI23 

80 (HII,  HI2)  

8 B (19,155) 

8 1 (19,155) 



Year Juvenile's ID (eartags) Mothe+s ID (eartags) Father's ID (eartags) 

1992 5x (N23, N24) 95 (322, 324) 26 (D13, D14) 

1992 5x (N25, N26) 95 (322,324) 26 (D13, D14) 

I992 5x (N27, N28) 95 (322,324) 26 (D13, D14) 

1992 5x (N29, N30) 95 (322,324) 26 (D 13, D14) 

1992 6x (MU, 86) 96 (K8 1, K82) 01 (768, B59) 

1992 6x (N2 1,  N22) 96 (Kg 1 , K82) 38 ((377, C7&) 

1992 6x (05,06) 96 (KSl, K82) 0 E (768, B59) 

1992 6x (S57, S58) 96 (K8 1 ,  K82) 38 (C77, C78) 

1992 98x (PSI, P52) 98 (J79, L65) 43 (971, (232) 

1992 98, (P53, P54) 98 (579, L6S) 43 (971, C32) 

1992 98x (R17, R18) 98 (579, C65) 43 (971, C32) 

1992 98x (R55, R56) 98 (579, LB5) R35 (F41, F42) 

1992 BBx (P37, P38) BB (187,788) 26 (D33, D14) 

1992 BBx (SI, $2) BB (187,1883 26 (D13, D14) 

I992 BBx (T85, T86) BB (187,188) 26 (DI3, D14) 

F 992 79x (R19, R20) BB2 ( I  79,J3) 23 (C45, C46) 

1992 79x (R63, R64) BBI (179, J3) 

1992 BBZx (Q47, Q4R) BB2 (179,53) 

I992 BB6x (R6 1, R62) BB6 (29 1,292) 02 (Lao, L84) 

1992 BB6x (517, S18) BB6 (29 I. 292) 02 (L8O. L84) 

1992 BB6x (T3, T4) BB6 (29 1,292) 02 (L80, L84) 

1992 BSx (011,012)  BS (F43, F44) 5 (L77, L78) 

1992 BSx (013,014) BS (F43, F44) R41 (L67, L68) 

1992 BSx (015,016) BS (F43, F44) R4E (L67,268) 

1992 BSx (019,020) BS (F43, F44) 21 (13, 14) 

1992 BSx (02 1,022) BS (F43, F44) R4 I (L67, L68) 

1992 BSx (Q55,Q56) BS (F43, F44) 21 (13, 143 

I992 BSBBx (443,444)  BSBB (195,196) 02 (L80, L84) 

1992 BSBBx (Q59, Q60) BSBB (195,146) R10 (L8, M23) 

I992 l3SBBx (Q6 1,462) BSBB (195,196) R10 (L8, M23) 

I992 BSBBx (463, Q64) BSBB (195,196) 02 (LSO, 284) 

1992 fBSBBx (M3, R54) BSBB (195,196) 02 (LBO, L84) 

1992 4sm (Q85.486) C1 (089,090) Ol (768, B59) 



Year Juveni lets ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1992 4sm (T65, T66) C 1 (089,090) R10 (Zg, M23) 

CSx (S13, S14) 

C5x (S33,534) 

C5x (S6 I ,  S62) 

CSx (S77, S78) 

C5x (T67, T68) 

C5x (T95, T96) 

C7x (T69, T70) 

C7x (U37, U38) 

Fx W89, N90) 

Fx (09,010)  

Fx (099, PO) 

Fx (P15, P16) 

Hx (Q11,Q12) 

Hx (437,438) 

I-Ix (R93, R94) 

3SBSx (U 19, U20) 

3SBSx (V1 I ,  V12) 

H2x (Q13, Q14) 

H2x (423, Q24) 

H2x (S71, S72) 

H2x (S73, S74) 

H2x (S8 1, S82) 

H2x (U15, S16) 

H3x (R69, R70) 

H3x (R9 1, R92) 

H3x (S15, S16) 

H3x (S43, S44) 

H3x (S99, TO) 

RR9x (473,474) 

W x  (R45, R45) 

H9x (R79, R80) 

H9x (TI, T2) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eanags) 

1992 HBSx (425, Q26) HBS (H45, H46) 5 (LT7, L78) 

I992 HBSx (R7, R8) HBS (H45, H46) R23 ((317, G18) 

1992 HBSx (R7 1, R72) HBS (H45, H46) R41 (L67, L68) 

1992 HBSx (R73, R74) HBS (H45, H46) 07 (B17, C69) 

1992 HBSx (R75, R76) RBS (H45, H46) R4 1 (C67, C68) 

1992 HRBx (S3, S4) HRB (M17, MIX) 38 (C77, C78) 

1992 HRBx (S87, S88) HRB (MIT, MIS) 01 (768, B59) 

HRBx (S89, S90) 

HRBx (T25, n 6 )  

HWAx (N45, N46) 

HWAx (N47, N48) 

HWAx (457, Q58) 

RR3x (P8 1, P82) 

RR3x (P93, P94) 

RR3x ( 4 3  1,432) 

RR3x (Q33,434) 

HWA (H85, H86) 

HWA (H85, H86) 

RWA (H85, H86) 

1992 RR3x (U23, U24) RR3 (H53, H54) 26 (D13, DI4) 

1 992 TSx (T7 1, T72) RR3 (H53, H54) R46 (F59, F60) 

1992 TSx (T89, T90) RR3 (1-753, H54) 26 (D13, D14) 

I992 TSx (T9 1,792) RR3 (H53, H54) R46 (F59, F60) 

1992 RR8x (P3 1, P32) RR8 (149,150) R41 (L67, L68) 

1992 RR8x (P63, P64) RR8 (144,150) 4 (L87, L88) 

1992 RR8x (P65, P66) RR8 (149,150) R10 (LX, M23) 

1992 RRXx (P89, P90) RR8 (149,150) 02 (L80, L84) 

1992 RR9x (017,018) RR9 (K67, K68) R13 (H21, N22) 

1992 RR9x (R15, R16) RR9 (K67, K68) R35 (F41, F42) 

1992 RR9x (S5, S 6 )  FtR9 (K67, K68) R35 (F4 1, F42) 

1992 RSx (029,030) RS (K89, K90) 43 (971, C32) 

1992 RSx (03  1,032) RS (K89, K90) 43 (971, C32) 

1992 RSx (P3, P4) RS (KS9, K90) R23 ((317, G18) 

1992 RSx (P5, P6) RS (K89, K90) 43 (971, C32) 

1992 RSx (P55, P56) RS (K89, K90) ****** 

1992 RSBBx (R.25, R26) E B B  (H27, H28) 21 (13,141 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1992 RSBBx (R27, R28) E B B  (H27, H28) *+**** 
1992 RSBBx (R57, R58) RSBB (H27, H28) 23 (C45, C46) 

1992 RSBBx (SS 1, S52) RSBB IH27, H28) R23 (G17, Gl8) 

1992 5% (439,440) RSBS (H93, H94) 02 (L80, L84) 

1992 55x (477,478) RSBS (H93, H94) 21 (13, 14) 

1992 55x (R47, R48) RSBS (H93, H94) 21 (13, 14) 

1992 RSBSx (Q35, Q36) RSBS (H93, H94) R 1 0 1L8, M23) 

1992 RSBSx (R39, R40) RSBS (H93, H94) 21 (13, 14) 

1992 RSBSx (R4 1, R42) RSBS (H93, H94) 21 /13,14) 

1992 WAX (P33, P34) WA (H55, H56) ****** 

1992 WAX (P69, P70) WA (H55, H56) 07 (B 17, C69) 

1992 WAX (P7, P8) WA (N55, N56) 07 (B17, C69) 

1992 WAX (469,470)  WA (H55, N56) 07 (B 17, C69) 

1942 WAX (Q7, Q&) W A  (H55, H56) 07 (B 1 7, C69) 

1992 WAX (R77, R78) WA (H55, H56) 07 (B17, C69) 

1992 HxR (R29, R30) WAO (F9 1 ,  F92) 5 (L77,278) 

1992 WAOx (R3 1, R32) WAO (F91, F92) R23 ((317, G18) 

1992 WAOx (R33, R34) WAO (F9 1, F92) 5 (L77, L78) 

1992 WAOx (T27, T28) WAO (F91, F92) R41 (L67, L68) 

1992 WAOx (1177, U78) WAO (F9 1, F92) R23 (G17, G18) 

1992 WA 1 x (P49, P50) WAI (189,190j 0 (L95, L96) 

1992 WAlx (R11, R12) WA1 (189,190) 0 (L95, L96) 

1992 WAlx (R2 1, R22) WAl (189,190) R10 (L8, M23) 

1992 WAlx (R9, RlO) WAl (I89,190) R10 (L8, M23) 

1992 WA3x (07,08) WA3 (F36, F6 1 ) R48 (G23, (324) 

1992 WA3x (P35, P36) WA3 (F36, F61) R48 (G23, G24) 

1992 WA3x (P79, PSO) WAS (F36, F6 1) 6 (329, B30) 

1992 WA3x (479,480) WA3 (F38, F6I) R46 (FS9, F60) 

1992 WA3x (Q8 I ,  482) WA3 (F36, F61) R46 (F59, F60) 

1992 WA4x (R23, R24) WA4 (755, C54) R10 (L8, M23) 

1992 WA4x (R43, R44) WA4 (755, C54) R10 (L8, M23) 

1992 WA4x (R65, R66) WA4 (755, C54) RI 0 (L8, M23) 

1992 WA4x (R67, R68) WA4 (755, C54) R10 (L8, M23) 



Year Juveni!els ID (eartags) Mother's ID (eamgs) Father's ID (emags) 

1982 WA4x (S9, S 10) WA4 (755, C54) R10 (L8, M23) 

WASx (S59, S60) 

WASx (T5, T6) 

WASx (T7, T8) 

WA7x (N11, N12) 

WA7x (N5 I, N52) 

WATx (N57, N58) 

Wk7x (N59, N60) 

WA8x (429, Q30) 

WA8x (441, Q42) 

WA8x (S97,S98) 

WABBx (S45, S46) 

WABBx (547, S48) 

WABBx (S7, S8) 

WABBx (T47, T48) 

3SBSx (Y47, Y48) 

3SBSx (Y59, YBO) 

3SBSx (227,228) 

3SBSx (257,258) 

3SRSx (37,38) 

3SRSx (Z33,Z34) 

3SRSx (Z35,Z36) 

3SRSx (29 1,Z92) 

4SBSx (39,40) 

4strx (267,268) 

4strx (269,270) 

RROx (9 1,921 

57x (Y35, Y36) 

57x (Y37, Y38) 

57x (Y39, Y40) 

57x (Y95, Y96) 

3SRSx (289,290) 

61x (13, 14) 

WA5 (L89, L90) 

WAS (L89, L90) 

WA5 (L89, L90) 

WAT (365, C30) 

WA7 (365, C30) 

WA7 (365, (230) 

WA7 (365, C30) 

WA8 (H9 1, H92) 

WAS (5191, H92) 

WAS (H91, H92) 

WABB (153,154) 

WABE (153,154) 

WABB (153,154) 

WABB (753,154) 

3SBS (R55, RS6) 

3SBS (R55, R56) 

3SBS (R55, a56) 

3SBS (R55, R56) 

3SRS (039,040) 

3SRS (039,040) 

3SRS (039,040) 

3SRS (039,040) 

4SBS (F7 1, F72) 

4str (S33,534) 

4str (S33,534) 

51 (TI 1, Ti23 

57 (N59, N60) 

57 (N59, N60) 

57 (NS9, N60) 

57 (N59, N60) 

60 (W3, W4) 

61 (893, C25) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1993 61x (35,36) 61 (893, C25) 44 (495,496) 

61x (5,6) 

61x (59,601 

61x (7,8) 

61x (271,272) 

6x (197, 198) 

6x (199,200) 

6x (22 1,222) 

6x (223,224) 

65x (Y11, Y123 

65x (Y29, Y30) 

65x (Y5, Y6) 

65x (YT, Y8$ 

65x (Y 9, Y 10) 

WA2x 1x23, X24) 

67x (Y51, Y52) 

67x (Y69, Y 70) 

67x (21 5,216) 

6sm (255,256)  

6strx (259,260) 

HRSx (15, 16) 

HRSx (269,270) 

HRSx (27 1,272) 

HRSx (273,274) 

WRSx (329,330) 

2x (33,34) 

2x (51,52) 

BB5x (281,282) 

75x (Y27, Y28) 

75x (Y83, YS4) 

75x {Y85, Y86) 

77x (135,136) 

77x (3,4) 



Year Juvenile's JD (eartags) Mother's ID (eartags) Father's ID (earlags) 

1993 7 7 ~  (273,274) 77 (Q4 1,442) s ( ~ 7 7 ,  ~ 7 8 )  

1993 C3x (181,182) 77 (441,442) 5 (L77, L78) 

1993 RR3x (1 9,201 77 CQ4 1, Q42) 5 (L77, L78) 

1993 79x (191, 192) 79 (N45, N46) R10 (461,462) 

1943 79% (Y23, Y24) 79 (N45, N46) 02 (L80, L84) 

1993 80x (1 17, 1 18) 80 (R7, R8) 35 (F4 1, F42) 

1993 80x ( I  26, 127) 80 (R7, R8) 35 (F4 1, F42) 

1993 SOX (128, 129) 80 (R7, R8) 35 (F41, F42) 

1993 80x (130, 131) 80 (R7, R8) 35 (F41, F42) 

1993 80x ( 1  57, 158) 80 (R7, RS) 02 (L80, L84) 

1993 8 1 x (45,46) 8 1 (P87, P88) ****** 

1993 8 1x (47,48) 8 i (PS7, P88) 07 (8 1 7 ,  C69) 

1983 8 1 x (65,661 81 (P87, P88) 07 (B 17, C69) 

1993 FBSx (1 77,178) 82 (P63, P64) 07 (B 17, C69) 

1993 FBSx (1 79, 180) X2 (P63, P64) R27 (N47, N48) 

1993 FBSx (1 89, 190) 82 (P63, P64) 07 (B 17, C69) 

1993 FBSx (351,352) 82 (P63, P64) 02 (L80, L84) 

1993 91x (1 13, 114) 91 (U39, U40) ****** 

1993 91x (137, 138) 91 (U39, U40) ****** 

1993 91x (153, 154) 9 1 (U39, U4Q) 29 (D75, D76) 

1993 9 1x (1 55, 156) 9 I (U39, U40) R47 (V8 1, V82) 

1993 91x (99, 100) 91 (U39, U40) 13 (H75, M23) 

1993 8x (X95, X96) 9s (J79, L65) 34 ((35, GB) 

1993 8x (Y25, Y26) 98 (J79, L65) 34 (G5, G6) 

1993 8x (Y49, Y5Q) 98 (J79, L65) ****** 

1993 BBOx (Y13, Y14) BBO (133,134) 7 (431,432) 

1993 BBOK (Yl5, Y16) BBO (133,134) 39 (G79, GXO) 

1993 5SRSx (309,3 10) BB3 (P11, P12) 3 ((257, Q58) 

1993 5SRSx (325,326) BB3 (PI 1, P12) 17 (768, B59) 

1993 BB3x (287,288) BB3 ( P l l ,  P12) 17 (768, B59) 

1993 BB3x (467,468) BB3 (PI 1, P12) 3 (457, Q58) 

I993 RROx (93,94) BB3 ( P l l ,  P12) 3 (Q57, Q58) 

1993 RSBSx (363,364) BB3 (PI 1, P12) 17 (768, B59) 



Year Juvenile's ID (eartags) Mother's ID (eartags1 Father's ID (eartags) - .  - 

19931 BB4x (X65, X66) BB4 (N2 1, N22) or 
HBB (557. S58) 43 (971, C32) 

HBBx (X63, X64) 

HBEx (XY 1,  X92) 

HBBx (X53, X94j 

HBBx (Y4 1, Y42) 

HBBx (Y43, Y44) 

2x C1,2$ 

2x (283,284) 

BB5x (Z87,Z88) 

5strx (193, 194) 

WA8x (161,162) 

BSBBx (23,24) 

BSBBx (63,64) 

COX (391,392) 

RB3x (149, 150) 

C2x (W9 1, W92) 

C2x (X15, Xl6) 

C2x (XI 7, X18) 

C5x (27,28) 

C5x (Z23,Z24) 

C9x (XI 1, X12) 

C9x (X33, X34) 

C9x (X35, X36) 

C9x (X5, X6$ 

CBx (239,240) 

CBx (24 1.242) 

CBx (245,246) 

BE4 (N2 1, ~ 2 2 )  or 
HBB (S57, S58) 
BB4 (N2 1, N22) or 
HBB (S57, S58) 
BB4 (N2 I ,  N22) or 
HBB ( S T ,  S58) 
BB4 (N2 1, N22) or 
HBB (S57, S58) 
BB4 (N2 1, N22) or 
HBB (S53,S58) 
BB4 .CN2 1, N22) or 
HBB (S57, S58) 
BB4 (N2 1, N22) or 
HBB (S57, S58) 
BB4 (N2 1, N22) or 
HBB (S57, S5X) 
BB5 (N49, N50) 

BB5 (N49, N50) 

BB5 m49, NSO) 

BB9 (R2 1, R22) 

BS (Q29, Q301 

BSBB (P73, P74) 

CO (V9 1, V92) 

CO (V9 1, V92) 

CO (V9 1, V92) 

C2 (V7 1, V72) 

C2 (V7 1, V72) 

C2 (V7 1, V72) 

C5 (J13, J14) 

CS (J13,514) 

Cg (Q73,474) 

C9 (Q73,4741 

C9 (473,474'1 

C9 (473,4741 

CB (P47, P48) 

CB (P47, P48) 

CB (P47, P48) 



Year Juvenile's ID (eartags) Mother's ID ( m g s )  Father's ID (eartags) 

CRX (132, I33) 

CRx (4 1,42) 

CRX (43,44) 

CRx (299, WS4) 

FRABx (23 1,232) 

Ex (Z47,Z483 

Fx (249,ZSO) 

FRx (171, 172) 

H3x (26 1,262) 

Hx (Y57, Y58) 

Hx (YS9, Y90) 

Hx (Y91, Y92) 

Hx (Y93, Y94) 

H x  (Z17,Z18) 

HOx (9, 10) 

HOx (X37, X38) 

HOx (25 1,252) 

H l x  (139, 140) 

H 1x (67,68) 

H l x  (69,701 

Hlx (83,841 

BB9x (7 1,72) 

H3x ( I  65,166) 

W3x (277,278) 

RSRABx (105, 106) 

H6x (263,264) 

H6x (293,294) 

H6x (297,298) 

H6x (327,328) 

BSBBx (49,SO) 

H7x (21,221 

H7x (25,26) 

H7x (Y63, Y64) 



- -- 

Year Juvenile's ID (eartags) Mothef s ID (eartags) Father's ID (eartags) 

lox (61,621 

HBSx (349,350) 

79x (Y3, Y4) 

HWAx (W89, W90) 

HWAx (W93, W44) 

HWAx (W95, W96) 

HWAx (W97, W98) 

HWAx (X89, X90) 

RROx (521,522) 

RROx (88,90) 

RR2x (107, 108) 

77x (85,86) 

7x (273,274) 

C3x (257,258) 

RR3x (31,321 

WX (275,276) 

RR5x (279,280) 

RRSx (293,294) 

RRSx [Z95,296) 

RR9x (X3, X4) 

RR9x (X87, X88) 

W x  (YTI, Y72) 

RR9x (255,256) 

BSBBx (75,76) 

RSx (259,260) 

RSx (26 1,262) 

HBS (S9, S 10) 

HBS (S9, S 10) 

HWA (H85, H86) 

HWA (H85, H86) 

HWA (H85, H86) 

HWA (H85, H86) 

HWA (H85, H86) 

HWA (H85, H86) 

R R O  (T73, T74) 

RRO (T73,774) 

RR2 (129,130) 

RR3 (S97,S98) 

RR3 (S97, S98) 

RR3 (S97, S98) 

R R Z  (597, S98) 

RR5 IN5  1, N52) 

M5 (N51, N52) 

RR5 (N5 1, N52) 

RR5 (N51, N52) 

RR9 (K67, K68) 

RR9 (K67, K68) 

RR9 (K47, K68) 

RR9 (K67, K68) 

RS (185,186) 

RS (785,186) 

RS (I&S,I86) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1993 RSx (263,264) RS (185,186) 29 (D75, D76) 

1993 R5x (265,266) RS (185,186) 29 (D75, D76) 

1993 RSBBx (95,96) RSBB (H27,H28) 12 (E89, E90) 

1993 RSBBx (Y 75, Y76) RSBB (H27, H28) 13 (H75, M23) 

1993 RSBBX (Y79, Y78). RSBB (H27, H28) ****** 

RSBBx (Y79, Y80) 

RSBBx (YSJ, Y82) 

FRx (147, 148) 

H3x (297,2983 

RSRABx (1 5 1, 152) 

RSRABx (1 63, 164) 

RSRABx (97,98) 

TSx (X99, YO) 

TSx (Y 73, Y74) 

RSBB (H27, H28) 

RSBB (HZT, H28) 

RSWB (P89, P90) 

RSRAB (P89, P90) 

RSRAB [P89, P9O) 

R S M  (P89, P90) 

RSRAB (P89, P90) 

TS (T33, T34) 

TS (T33, T34) 

1993 TSx (Z19,ZZO) TS (T33, T34) 35 (F4 I, F42) 

1993 WA2x (X59, X60) TS (T33. T34) 35 (F4 I ,  F42) 

1993 WASx (121, 122) WA (U93, U94$ 29 (D75, D76) 

1993 WA5x (123,124) WA (U93,1194) 29 (D75, D76) 

1993 WASx (125,126) WA (U93, U94) 34 (G5, G6) 

1993 WA5x (143,144) WA (U93, U94) 1 2 (E89, E90) 

1993 WA5x (145,146) WA (U93, U94) R47 (VX 1, V82) 

1943 WA5x (195,196) WA W93, U94) 12 (E89, E90) 

1993 WAOx (169,170) WAO (F9 1, F92) R01 (S61, S62) 

1993 WAOx (X39, X40) WAO (F9 1, F92) 44 (495,496) 

1993 WAOx (X69, X70) WAO (F9 1, F92) 12 (E89, E90) 

1993 WAOx (253,254) WAO (F9 1, E92) 44 (495,496) 

1993 WA2x (X13, X14) WA2 (K37, K38) 14 (349, J S l )  

1 993 WA2x (X25, X26) WA2 (K37, K38) 14 (549, J5 1 ) 

1993 WA2x (X6 1 ,  X62) WA2 (K37, K38) 3 5 (F4 1, F42) 

1993 WA3x (77,781 WA3 (U57, U58) 12 (E89, E90) 

1993 WA3x (79,80) WA3 w57, U58) 45 (G4 1, G42) 

1993 WA3x (8 1,821 WA3 (US7, U58) ****** 

1993 WAX (175, 176) WA4 (477, Q78) R27 (N43, N48) 



Year Juvenile's ID (eartags) Mother's ID (eamgs) Fathef s ID (mags)  

WA6x(11,12) 

WA6x (17, 18) 

WA6x (Y45, Y46) 

WA6x (Y87, Y 88) 

WA6x (23 1,232) 

57x (X97, X98) 

BSx (29,301 

BSx (Z85,Z76) 

Wd7x (X 19, X20) 

1993 WA7x (X4 1 ,  X42) 

1993 WA7x (Y97, Y98) 

1993 WA8x (Y 17, Y 1 8) 

1993 WA8x (237,238) 

1993 HRBx (159, 160) 

1993 HRBx (167,168) 

1 993 WABBx (I 15,116) 

1993 WABBx (73,74) 

1993 WABSx (111,112) 

1993 WABSx (141,142) 

1994 3SBSx (845,846) 

1994 3SRSx (945,946) 

1994 3SRSx (947,948) 

1994 4SBSx (656,657) 

1994 4SBSx (660,661) 

1994 4SBSx (679,680) 

1994 4SBSx (68 I ,  682) 

1994 4SRSx (721,722) 

1994 4SRSx (749,750) 

1994 4SRSx (753,754) 

1994 4SRSx (FI5, F16) 

WA6 (P49, P50) 

WA6 (P49, P50) 

WA6 (P49, PSO) 

WA6 (P49, P50) 

WA6 (P49, P50) 

WA7 (365, C30) 

WA7 (365, G30) 

WA7 (365, C30) 

WA7 (365, C30) 

WA7 (365, C30) 

WA7 (365, C30) 

WA8 (H9 1, H92) 

WA8 (H9 1, N92) 

WABB (R75, R76) 

WABB (R75, R76) 

WABB (R75, R76) 

WABB (R75, R76) 

WABS (W7, W8) 

WABS (R27, R28) 

3SBS (Y27, Y28) 

3SRS (71,72) 

3SRS (71,721 

4SBS (F7 1, F72) 

4SBS (F7 1, F72) 

4SBS (F3 1, F72) 

4SBS {F71, F72) 

4SRS (P 1, P2) 

4SRS (P 1, P2) 

4SRS (P 1, P2) 

4SRS (Pl, P2) 





Year Juvenile's ID (eartags) Mother's D (eartags) Father's IJJ (eartags) 

1994 BSBBx (927,928) 61 (B52, V87) 6 (97 1, C32) 

I994 CBSx (793,794) 

1994 CBSx (8 15,8 16) 

1994 CBSx (837,838) 

1994 CBSx (853, X54) 

1994 RROx (767,768) 

1 994 RRQx (787,788) 

1994 2x (909,9 10) 

1994 2x (F7, F8) 

1994 62x (875,876) 

1 994 RR5x (980,9X I )  

1994 65x (658,659) 

1994 65x (664,665) 

1994 SSBSx (AS, A9) 

1994 BB3x (A52, A53) 

1994 6SRSx (967,968) 

1994 6SRSx (A58, A59) 

1994 6SRSx (A95, A96) 

3 994 SSRSx (C10, C11) 

1994 6sm (869,870) 

1994 bstrx (877,878) 

1994 6strx (923,924) 

1994 7 1 x (C46, C47) 

1994 71x (C77, C78) 

1994 72x (917,918) 

1994 BB5x (867,868) 

1494 3x (A62, A63) 

1994 CBx (A64, A65) 

1994 CBx (C64, C65) 

1994 HRSx (685,686) 

1 994 HRSx (713,714) 

1994 HRSx (733,734) 

1994 HRSx (765,766) 



- 

Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1994 RROx (75 1,752) 80 (X61, X62) 0 (J49,150) 

1994 RROx (769,770) 80 (X6 1, X62) 6 (97 1 ,  C32) 

E 994 RROx (795,796) 80 (X6 1, X62)  6 157 1, C32) 

1994 RROx (939,940) 80 (X6 1 ,  X62) 46 (P3, V89) 

1994 8 I x (695,696) 

1 994 8 1 x (705,706) 

1994 8 1x (725,726) 

1994 8 1 x (727,728) 

1994 BB5x (91 1,912) 

1994 BB5x (915,916) 

1994 4x (C12, C13) 

1994 4x (4214, C15) 

1994 4x (C16, C17) 

1994 4x (F47, F48) 

1994 RR2x (C99, FO) 

L 994 RSRABx (C60, C6 1 ) 

1994 RSRABx (C62, C63) 

1994 2x (no tags) 

1994 3x ('312, G13) 

1994 WABBx (AT 1, A721 

1994 87x (976,977) 

1994 H3x (A40, A41) 

i 994 H3x (A42, A43) 

1 944 9x (969,970) 

1994 9x (984,985) 

1994 9x (986,987) 

1994 9 x  (A22, A231 

1994 C9x (88 I, 882) 

1994 C9x (897,898) 

1994 C9x (A87, A881 

1994 RR4x (A85, A861 

1994 8x (644,645) 

1994 8x (646,647) 



- -- - 
Year Juvenile's JD (eartags) Mother's ID (eartags) Father's ID (eamgs) 

I994 8x (648,649) 98 ($79, L65) 6 (97 1 ,  C32) 

1994 8x (653,654) 98 (J79, L65) 46 (P3, V89) 

1994 BBx (773,774) BE 42 (A17, A181 

1994 BBx (783,784) BB 15,6) 01 (T3J,T38) 

I994 BBx (885,886) BB ( 5 ,6 )  24 ( ~ 4 7 ,  ~ 4 8 )  

1994 BB2x (8 19,820) BB2 (1 79,J3, V74) 15 (T85, T86) 

1994 BB2x (839,840) BB2 (1 79, J3, V74) 15 (T85, T86) 

1994 BB2x (907,908) BB2 (1 79, J3, V74) 15 (T85. T86) 

1994 BB3x (891,892) BB3 (1 19, 120) 5 (L77, LT8) 

L 994 BB3x (94 1,942) BB3 (1 19, 120) 5 (L77, L78) 

1994 WA8x (AO, A I )  BB3 (1 19, 120) *****rl: 

1994 BB4x (670,699) BB4 (N2 1, N22) 46 (P3, V89) 

1 994 BB4x (675,676) BB4 (N2 1, N22) 03 (P5, P6) 

1994 BB7x (A18, A191 BB7 (Y83, Y84) 46 (P3, V89) 

1994 BB7x (A6, A7) BB7 (Y83, Y84) 46 (P3, V89) 

1994 3 SRSx (A46, A47) BB9 (R2 1 ,  R22) 2s (42 1, H S ~ )  

1994 BB9x (83 1,832) BB9 (R2 1 ,  R22) 27 (017,018) 

1 994 BB9x (85 1,852) BB9 (R2 1, R22) 27 (017,018) 

1994 BB9x (943,944) BB9 (R2 1, a221 27 (017,018) 

1994 I-ITSx (955,956) BB9 (R2 1 ,  M2) 27 (017,018)  

1994 HTSx (A77, A78) BB9 (R2 1, R22) 25 (421, H84) 

1994 BSBBx (833,834) BSBB (Y29, Y30) 6 (971, C32) 

I994 74x (C9 1, C92) CO (49,50) 31 (VXl, V82) 

1994 COX (A12, A13) CO (49,501 31 (V81, Y82) 

1994 COX (AE6, A175 C0 (49,50) 3 1 (V81. V82) 

1994 COX (A38, A393 CO (49,501 31 (VS1, V82) 

1994 COX (A92, A93) CO (49,501 31 (V81, V82) 



-- - 
Year Juvenile's ED (eartags1 Mother's ID (eartags) Father's 113 (eartags) 

1994 5SBSx (777,778) c9 (Q73,474) 40 (W49, W50) 

1994 3x (A28, A29) CB (7.83 01 (T37, T38) 

1994 3x (A60, A61) CB (7,8$ 01 (T37, T38) 

1994 CRx (779,780) CR (917, Q18) 27 (017,018) 

1994 CRX (781,782) CR(QF7,418) 27 (01~,018)  

1994 CRx (789,790) CR (417, Q18) 27 (017,018) 

1994 CRSx (717,718) CRS (H9 I ,  H92) 01 (T37, T38) 

1994 CRSx (887,888) CRS (H9 1, H92) 7 (L95. L96) 

1994 CRSx (889,890) CRS (H91, H92) 7 (L95, L96) 

1994 TSRx (992,993) CRS (H91, H92) 01 (T37, T38) 

t 994 CWAx (813,914) CWA (1 15, P 16) 5 (L77, L78) 

1994 CWAx (893,894) CWA(115, 116) 31 (Ygl, VS2) 

1994 CWAx (895,896) CWA (1 IS, 116) 5 (L77, L78) 

1994 CWAX (919,920) CWA(115, 116) ****** 
1994 ABx (A44, A45) FBS (287,288) 25 (QZ 1, H84) 

1994 FBSx (A30. A3 1 )  FBS (287,288) 25 (Q21, H84) 

1994 FBSx (F17, Fig) FBS (287,288) 25 (Q2 1. H84) 

1994 FRx (A34, A35) FR (237,238) 7 (L95, L96) 

1994 FRx (F43, F44) FR (23 7,23 8) 7 (L95, L96) 

1994 OOx (C93, C94) FRB (77,781 42 (A17, A18) 

1994 FRBx (A10, A1 I) FRB (T7,75) 01 (T37, T38) 

1994 Hx (873,874) H (Z19, W O )  ****** 

1994 Hx (937,938) H (219,220) 6 (971, C32) 

1994 Hx (95 1,952) H (Z 19,220) 25 (42 1 ,  H84) 

1944 HOx (785,786) HO (X87, X88) 16 (Y85, V86) 

1994 HOx ((248,4249) HO (X87, X88) 16 (V85, V86) 

1994 RSx (803,804) HO (X87, X88) 16 (V85, V86) 

1994 RSx (809,8 1 0 HO (X87, XB8) 16 QV85, V86) 

1994 H2x (A73, A74) HZ w11, N12) 15 (T85, T86) 

L 994 H2x (F3 1, F32) H2 (N1 I ,  NiZ) 1 S (T85, T86) 

1 994 H2x (F33, F34) H2 (N11,NlZ) 15 (T85, T86) 

1994 H2x (F35, F36) HZ (N11, N12) 15 (T85, T86) 

1994 H2x (G84, G85) H2 @I 1, N12) i 5  [T85, T86) 



-- 

Year Juvenile's ID (eartags) Mother's ID ( m a g )  Father's ID (eartags) 

1994 87x (957,958) H3 (145, 146) 46 (P3, V89) 

1 994 87x (974,975) H3 (145, 146) 6 (97 1, C32) 

1994 87x (998,999) H3 (145, 146) 46 (P3, V89) 

1994 H3x (959,960) H3 (145, 146) 46 (P3, V89) 

1994 H4x (996,997) H4 (185, 186) 27 (017 ,018)  

1994 H5x (739,740) H5 (513, J14) 26 (687,688) 

1994 H5x (745,746) H5 (513, J14) 26 (687,688) 

1994 H5x (82 1,822) H5 (J13.514) 32 (47.48) 

1994 H6x (A2, A3) H6 IRIS, R20) 15 (T85, T86) 

1994 H6x (1.14, A5) H6 (R19, R20) 15 (T85, T86) 

1994 F74x (F77, F78) H7 IQ89, Q90) 46 (P3, Vg9) 

E 994 H7x (757,7581 H7 (@9, Q90) 31 (V81,V82) 

1994 H7x (759,760) H7 (489, Q90) 3 1 (V8 I ,  V82) 

1994 H9x (849,850) H9 (P69, P70) 27 (017,018) 

1994 H9x (86 1,862) H9 (P69, P70) ****** 

1994 H9x (863,864) H9 (P69, P70) 5 (L77, L78) 

f 994 HBBx (723,724) HBB (61,62) 0 (J49,J50) 

1994 HBBx (C71, C72) HBB (61,62) 47 (549,550) 

1994 HBBx (C73, C74) HBB (61,62) 47 (549,550) 

1994 HBSX (805,806) r-res (z27,z28) 46 (~3, v89) 

1994 NBSx (807,808) HBS (Z27,Z28) 46 (P3, V89) 

1994 HBSx (817,818) HBS (227,228) 6 (97 1, C32) 

1994 FBSx ((358, G59) HRB (P47, P48) 25 (Q21, H84) 

1994 HRBx (823,824) HRB (P47, P48) 25 (Q21, H84) 

1994 HRBx (827,828j HRB (P47, P48) 25 (42 1, H84) 

1994 HRBx (929,930) HRB (P47, P48) 0 (J49, J5Q) 

1994 HRI3x (A36, A371 HRB (P47, P48) 25 (Q2 1, H84) 

1 994 WTSx (865,866) HTS (I  1, 12) 27 (017,018) 

I994 HTSx (883,884) HTS (1 1, 12) 27 (017,018) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1994 M C x  (G 1, G2) RAC (155, 156) 32 (47, Q8) 

1 994 RACx (G3, G4) RAC (1 55, 156) 32 (Q7, Q8) 

1994 RACx (G5, G6) RAC (155, 156) 32 (47, @I 
1994 M C x  (G8, G9) RAC (1 55 ,  156) 3 1 (V8 1, V82) 

1994 COX (A14, A151 RB3 (V93, V94) 31 (V81, V82) 

1994 RB3x (F37, E38) RB3 (V93, V94) R19 (539,651) 

1994 RB3x (F37, F38) ICB3 (V93, V94) R19 (539,65 1 ) 

1994 C9x (899,900) RR4 (187, 188) 16 [V85, V86) 

1994 RR4x (A75, A76) RR4 (1 87, 188) 25 (Q21, H84) 

1994 RR4x IF 1 ,  F2) RR4 (1 87. 188) 25 (421, H84) 

1 994 WAX (ASO, A5 1 ) RR5 (Z63,Z64) R19 (539,65 1) 

1994 RR9x (671,672) RR9 (K67, K68) 0 (J49, J50) 

1994 W 9 x  (673,674) RR9 (K67, K68) ****** 

1994 KR9x (689,690) RR9 (K67, KBg) 40 (W49, WSO) 

1994 RSx (775,776) RS (Y71, Y72) 16 (V85, Y86) 

1994 RSx (855,856) RS (Y71, Y72) I6 (V85, V86) 

1994 RSBBx (729,730) RSBB (111, 112) 0 l (T37, T38) 

1994 RSBBx (73 1,732) RSBB ( 1  11, 112) 01 (T37, T38) 

1994 RSBBx (791,792) RSBB(111, 112) 01 (T37, T38) 

1994 RR2x (C97, C98) RSRAB ( 1  0 5 , l  OG) 1 9 (V25, V26) 

1994 TSx (994,945) TS (131, 182) 7 (L95, L96) 

1994 TSx (A20, A21) TS (181, 182) 7 (L95, L96) 

1994 RR5x (965,966) WA (Z59,Z60) R19 (539,651) 

1 994 WAx (C52, C53) WA (Z59,Z60) 31 (V81, V82) 

1994 WAX (C54, C55) WA (Z59,260) R19 (539,651) 

1994 WA2x (693,698) WA2 (K37, K38) 40 (W49, W50) 

1994 WA2x (699,700) WA2 (K37, K38) 6 (97 I ,  C32) 

1994 WA2x (70 1,702) WA2 (K37, K38) 40 (W49, W50) 

1994 WA2x (715,716) WA2 (W7, K38) 6 (97 1, C32) 



Year Juvenile's ID (eartags) Mother's ID (eartags) Father's ID (eartags) 

1994 4x (C56, C57) WA3 (23 1,232) 19 (V25, V26) 

1994 4x (G60, G61) WA3 (23 1,2323 I9 (VZS, V26) 

1994 CBSx (925,926) WA3 (23 1,232) 6 (97 1, C32) 

1994 WA4x (825,826) WA4 (T73, T74) 47 (549,550) 

1994 WA4x (963,964) WA4 (T73, T74) 25 (42 1, H84) 

1994 WA4x (A26, A27) WA4 (T73, T74) 47 (549,550) 

1994 WA4x (AM, A57) WA4 (T73, T74) 47 (549,550) 

1994 WA4x (El 9, F20) WA4 (T73, T74) 47 (549,550) 

1 994 WASx (A96, A97) WAS (X69, X70) 32 (Q7, Q3) 

1994 WASx (F3, F4) WAS (X69, X70) 0 1 (T37, T38) 

1994 WA6x (841,842) WA6 (Y47, Y48) 46 (P3, V89) 

1994 WABSx (A69, A701 WABS (H27, H28) RJ 9 (539,65 1 )  

1994 WABSx (Fl 1, F12) WABS (H27, H28) 01 (T37, T38) 

1994 WABSx (F45, F46) WABS (5127, H28) ****** 

1994 WABSx (G10, GI 1) WAR3 (H27, H28) 32 IQ7,Qg) 



Table 4 Lifetime reproductive success for females in the Gunnison's prairie dog 

population in Petrified Forest National Park, Apache County, Arizona from 199 1 - 1994. 

Female JD listed is assigned upon capture with right and left eartags in parentheses. 

Number af Years Year($) at Female ID (earrags) Number of Offspring 
of Adult Age Adult Age Produced 

1 1991 RS (505,506) 7 

1 199 1 3SRS (A23, DO) 6 

1 1991 BSBB (9 1,92) 6 

1 199 1 HBB (260,759) 6 

1 1991 HRB (963,964) 5 





Number of Years Year($ at Female ID Number of Offspring 
of Adult Age Adult Age Produced 

HRB (M17, MlB) 

RR8 (149,150) 

WAI (189,190) 

WABB (753,154) 

74 (H47, H48) 

BB (187,138) 

WA5 (L89, L90) 

55 (G47, G48) 

76 (F15, F16) 

C 1 (089,090) 

HO (145,146) 

H4 (C97, L98) 

H9 (EIS, E16) 

63 (L1, L2) 

BB3 (P1 1, P12) 

WA (U93, U94) 

80 (R7, R8) 

9 3 (U39, U40) 

RSRAB (PgP, P90) 

WA6 (F49, P50) 

3SBS (RS5, R56) 

3SRS (039,040) 

57 m59, N60) 

82 (P63, P64) 

H 1 (S35, S36) 

H3 (R9, R10) 

RR3 (S97, S98) 



Number of Years Year(s) at Female ID (eartags) Number of Offspring 
of Adul t Age Adult Age Produced 

rcR5 (NS 1, N52) 

TS (T33, T34) 

67 (S85, S86) 

72 (037,038) 

S 1 (P87, P88) 

CO (v9 1, V92) 

C2 (V7 1, V72) 

WA3 (U57, U58) 

Gstr (V97, V98) 

BB5 m 4 9 ,  N50) 

FR (P65, P66) 

H8 (M43, M44) 

HBS (S9, S 10) 

WABS (M7, R28) 

60 (R93, R94) 

82 (351,352) 

CO (49,50) 

78 (X23, X24) 

80 (X61, X62) 

90 ( 1 59, 160) 

CWA (1 IS, 116) 

HO (XS7, X88) 

H3 (145, 146) 

RC (155, 156) 

4str (X5, X6) 

50 (161,162) 

56 (255,256) 



Number of Years Ye&) at Female ID (eartags) Number of Offspring 
of Adult Age Adult Age Produced 

58 (143, 144) 

5SBS (X11, X12) 

6str (Y59, Y60) 

85 (22 1,Z22) 

87 (195, 196) 

BB ( 5 6 )  

BB3 ( I  19, 120) 

BB7 (Y83, Y84) 

FBS (287,288) 

FR (237,238) 

H (219,220) 

HBB (61,62) 

HBS (Z27,Z2&) 

RR4 (187, 188) 

RSBB(ll1, 112) 

WA (259,260) 

WA3 (23 1,232) 

3SRS (7 1,72) 

6SBS (167,168) 

7 1 (55,561 

72 (X37, X38) 

BB5 (9, 10) 

CB (7,8) 

FR8 (77,78) 

HTS (11, 12) 

RR2 r(45, Y46) 

RS (Y7 1, Y72) 



Number of Years Year(s1 at ID (eartags) Number of Offspring 
of Adult Age Adult Age Produced 

TS (181, 182) 

WAS (X69, X70) 

WA6 (Y47, Y48) 

WA7 ( I  37, 138) 

3SBS (Y27, Y28) 

SSSB (Y29, Y30) 

H4 (185, 186) 

RR3 (Y49, Y50) 

RT25 (263,264) 

RSRAB (105,106) 

WA8 (128, 129) 

WA4 (755, C54) 

BB6 (29 1, 292) 

95 (322, M38) 

66 (215,216) 

F (471,715) 

WAD (F9 1, F92) 

H (F67, M13) 

H2 (129,130) 

Sstr (127,128) 

RS (185,186) 

BBO (133,134) 

H7 IQW Q9W 

60 (R75, R76) 

H2 (N11, N12) 

8 1 (R45, R46) 

62 (U89, U90) 



Number of Years Year($ at ID (eartlgsl Number of Offspring 
af Adult Age Adult Age Produced 

97 (477,4781 

HRB (P47, P48) 

BB9 (R2 1, R22) 

CR (Q17, Q18) 

WA4 (T73, T74) 

H6 (RI9, R20) 

H9 (P69, P70) 

4SRS (P 1, P2) 

Sstr (S33, S34) 

65 (R17, R18) 

77 (441, Q42) 

BB4 (N2 1 ,  N22) 

c9 (Q73,474) 

59 (Tll ,T32) 

5SRS (P73, P74) 

asns ( ~ 6 3 ,  ~ 6 4 )  

RB3 (V93, Y94) 

F (Q7 1, Q72) 

79 (N45, N46) 

13s (429, Q30) 

WA7 (365, C30) 

2RS (583,584) 

90 (465,466) 

HRS (34,738) 

RSBB (H27, H28) 

98 (579, L65) 

C5 (J13, J14) 



Number of Years Year(s) at Female ID (earlags) Number of Offspring 
of Adult Age Adult Age Produced 

RR9 (K67, K68) 

4SBS (F7 1, F72) 

CRS (H91, H92) 

NWA (H85, N86) 

WA2 (K37, K38) 

BB2 (1 74,531 

6 1 (893, C25) 

65 (052, V87) 



Table 5 Lifetime reproductive success for males in the Gumison's prairie dog 

population in Petrified Forest National Park, Apache County, Arizona from 1 99 1 - 1994. 

Male ID Iisted is assigned upon capture with right and left eartags in parentheses. 

Number of Years Yearts) at Nurnbcr of 
of Adult Age Adult Age Maje ID (eartags) OffS rin Sired 



Number of Years Year($) at Number of 
of Adult Age Adult Age 

Male ID (eartags1 
0% rin Sired 

2 1991-1992 RIO (B29. B30) 4 



Number of Years Year(s) at Number of 
of Adult Age Adult Age Male ID (earm€3) Off$,ring Sired 

40 (W49, W50) 

32 (Q7, QQ 

19 (V25, V26) 

R01 (S61, S62) 

03 (P5, P6) 

14 (S59. S60) 

35 (267.268) 

44 (495,496) 

R20 (I3 17, C69) 

0 1 (768, B59) 

19 (351,352) 

7 (43 1,432) 

38 (C77, C78) 

5 (L77, L78) 

0 (L95, L96) 

0 (J49, JS I ) 

02 (LEO, L84) 

29 (D75, D76) 

0 1 (T37, T38) 

17 (GS, G6) 

45 ((341, G42) 

34 (G23, G24) 

26 (687,688) 

43 (M35, MS6) 

6 (971, C32) 

42 (A17, AIB) 

75 

.--.--.rr-..,r. ,,,,- - ,,., - ,rm,. " '7 ! T - f  "lf a n - m  =- - 1--- -:- -. . - r. - .-.-,-..I =;;;;:~:r-l:------- 



Table 6 Inbreeding paths for individuals in the Gumison's prairie dog population in 

Petrified Forest National Park, Apache County, Arizona from 199 I - 1 994. The year, 

juvenile ID (eartaps) resulting from inbreeding event, and inbreeding coefficient for each 

path and juvenile indicated. Each individual in the path is designated by its ID (eartags) 

and is separated by a dash I-) and the apex of each path is underlined. The ID for each 

individual is assigned upon capture with the right and left eartags in parentheses. 

* Juveniles are represented graphically in Figure 2. 

Year Juvenile ID 
Path (eartags) Ft Fx 

1992 H ~ x  (Q13, Q14) H2 (129,130) - 2RS (583,584) - R15 (H99, 10) 0.125 0.125 

79x (Y23. Y24) 

79x (191, T92)* 

FBSx (179, 180) 

FRx (171, 172) 

FRx (147, 14&)* 

FRx (147, 148)* 

H3x (Z97.298) 

H3x (297,298) 

79 (M45, N46) - 02 IL80, L84) 

79 (N45, N46) - I-IWA (H85, H86) - 31 (207.208) - 
BSBB (195,196) - R10 (QG1, Q62) 

82 (P63, T64) - RRX (149,150) - 3 1 1207,2081 - 
HWA (H85, H86) - R2T (N47, N48) 

FR (P65, P66) - RR8 (149,150) - 3 1 (207.208) - 
H WA (H85, H86) - R27 (N47, N48) 

RSRAB (P89, P90) - RR8 (149,150) - 3 1 (207.2081 
HWA (H85, H86) - R27 (N47, N48) 

RSRAB (P89, P90) - 02 (LBO. L84) - R27 (N47, N48) 

RSRAB (P89, P90) - lW8 (149,150) - 3 1 (207.208) - 
HWA (H85, H86) - R27 (N47, N48) 



Year Juvenile ID 
(eartags) Path FI Fx 



Table 7 Relatedness values for the entire population (a) and for each clan (b) of 

Gunnison's prairie dogs in Petrified Forest National Park, Apache County, Arizona 

from 1991-1994. Clans are named by male(s) residing in each clan assigned based on 

observational data. 

a. 
Year ~ o ~ u l a x n  r * SE Population Size 

199 1 -0.0024 k 0.0014 273 

Year Clan Name Clan r 



Year Clan Name Clan t 



Year Clan Name Clan r 

44B-R24 

R03 

R06 

R08-R14 

RIOB 

R13 

R23 

w5 
R40 

R4 1 

R46 

R48 

0-R27 

01 

02 

07 

3 

4 

5 

12A 

12B 

13 

14 

17A 

17B 

29-R47 

34 



Year Clan Name Clan r 

39A 

39B 

43-R03 

44 

R10 

NMI 

NM2 

NM3 

0- 16 

0 1 A 

0 1 B 

5A 

5B 

6 

7 

14-19 

15 

24 

25A 

25B-27 

31-RI9A 

32 

40 

42A 

42B 

46A 

46B 

47 



Year Clan Name Clan r 



Figure 1 Mean number of offspring per female (a) and male (b) * SE versus the 
population size each year from 199 1- 1994. 

Population size 

0 L- -, 

0 100 200 300 400 500 600 

Population size 



Figure 2 Inbreeding paths for juveniles designated by an asterisk (*) in Table 6 sampled 

from the Cunnison's prairie dog population in Petrified Forest National Park, Apache 

County, Arizona from 1991-1994. The ID for each individual is assigned upon capture 

with the right and left eartags in parentheses. 

21 (13, 14) 

/ 
BS (F43, F44) 

\ BSx (0 19,020)* 

HWA (H85, H86) RSBB (195,196) 



3 1 (207,208) 

/ \ 
RR8 (149,150) HWA (H85, H86) 

1 "80'Y 
RSRAB (P89, P90) R27 (N47, N48) 

\ FRx (147, 148)" / 



Figure 3 Mean relatedness values (I. it SE) for known relationships among individuals in 

the Gunnison's prairie dog population in Petrified Forest National Park, Apache County. 

Arizona for I99 1-1994 separately (a-d) and all years combined (e). n = number of 

painvise comparisons made for each relationship. 
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