
A COMPARISON OF BACKPROPAGATION AND

CONJUGATE GRADIENT ALGORITHMS FOR

EFFICIENT TRAINING OF MULTI-

LAYER PERCEPTRON

NETWORKS

By

Guoping Miao

Bachelor of Science

Wuhan Urban Construction Institute

Wuhan, Hubei, P.R. of China

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2002

A COMPARISON OF BACKPROPAGATION AND

CONJUGATE GRADIENT ALGORITHMS FOR

EFFICIENT TRAINING OF MULTI-

LAYER PERCEPTRON

NETWORKS

Thesis Approved:

~':.., ·.:'

: "~f~-~·lj((.. /-f:·~~~ \~'

.(

Dean of the Graduate College

PREFACE

The popularity of the multi-layer perceptron neural network (MLP) has been

growing rapidly and it is used in many real world applications. Although the

backpropagation algorithm has successfully been used for training very many multi-layer

perceptron networks, the traditional backprogation methods are considered inefficient.

Recently there has been much work to let multi-layer perceptron networks take advantage

of modem numerical optimization techniques. These non-linear optimization methods

originated from about the early 1960s. A milestone of non-linear optimization was the

publication of the paper by Fletcher and Powell. Since then, non-linear optimization

technology has been extensively understood for about four decades and widely applied to

both academic and industrial fields. Many numerical methods have been applied to train

MLP networks. In real applications, global optimization, memory requirements, speed

etc., are still problems, even though today computer technology provides the huge size of

memory and capacity of high speed and parallel computing which make training MLP

networks with non-linear optimization methods possible and efficient. Recently there are

some new developments in the steepest descent family, such as effective backpropagation

training with variable stepsize. This paper presents a comparison ofbackpropagation and

conjugate gradient algorithms for efficient training of multi-layer perceptron networks. It

will explore and analyze some related algorithms in this area and compare the different

methods for speed and storage requirements.

111

L

I would like to express my appreciation to my major thesis advisor, Dr. J.P.

Chandler, for his great insight and helpful guidance. When I was thinking about how

good the "Efficient backpropagation training with variable stepsize" algorithm was, he

said it should not be better than a good conjugate gradient method. This inspired me to

choose the topic of this paper. Evidence shows he is correct no matter how steepest

descent algorithms change their appearance. In addition, I appreciate his provision of

software for numerical methods. I also thank Dr. B. E. Mayfield and Dr. N. Park for their

assistance and time during this study.

lV

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION .. 1

1.1 General concept of neural networks .. 1
1.2 Perceptron networks and their weakness .. 2
1.3 Multi-layer perceptron networks and the backpropagation (BP) algorithm 3

2. LITERATURE REVIEW AND PROBLEM STATEMENT 5

2.1 Literature review ... 5
2.1.1 Steepest descent algorithm ... 5
2.1.2 The backpropagation algorithm ... 5
2.1.3 Drawbacks of the BP algorithm .. 7
2.1.4 Improvement ofBP algorithm .. 8
2.1.5 Numerical optimization methods ... 8

2.2 Problem statement .. 13
2.2.1 Motivation and objective .. 13
2.2.2 Organization of this paper ... 13

3. ANALYSIS OF THE STANDARD BP ALGORITHM 15

4. BACKPROP AGA TION WITH VARIABLE STEP SIZE (BPVS) ALGORITHM ... 18

4.1 The BPVS algorithm ... 18
4.2 The drawbacks of the BPVS algorithm.. .. .21

5. NUMERICAL OPTIMIZATION AND CONJUGATE GRADIENT ALGORITHMS
... 25

5.1. Line search ... 25
5 .1.1 Linear search ... 25
5.1.2 Non-linear search and the golden section method 26
5.1.3 Interval location ... 27
5.1.4 Interval reduction .. 28

5.2. Conjugate gradient method ... 29
5.3. The conjugate gradient algorithm for MLP training 31

v

Chapter Page

6. CASE STUDIES AND PROGRAM DESCRIPTION 35

6.1. The testing problems ... 35
6.1.1 The network design ... 35
6.1.2 The code of steepest descent-based algorithms 36
6.1.3 The existing conjugate gradient and quasi-Newton methods 37

6.2. Numerical examples .. 37
6.3. Components of comparison ... 39

7. RESULT ANALYSIS .. .40

7.1. Results .. 40
7.2. Result analysis and discussion43

8. CONCLUSIONS AND FUTURE WORK .. .45

REFERENCE .. 47

vi

1. E(w)

2. wm

3.
1 T

F(x)=-x Hx+dx+c
2

4. v
5. V'F(x) = Hx + d

6. \7 2 F(x) = H
7. f(x)

8f /8x1

8fj8x
8. gk = Y'f(x) =

9. k

10. Pk

11. ak

12. f3k

13.s
14. X 0

15. x·
16. t
17. a
18. b
19.n
20.r
21. Q
22.N
23 . .:t
24. Lk

NOTATIONS

sum of mean square function

weight vector ofm1
h layer ofMLP

quadratic objective function

transfer function (activate function)
gradient of F(x)

Hessian matrix of F(x)

general continuous objective function

gradient of iteration k

number of iteration
search direction

learning rate (step size) in iteration k

Fletcher and Reeves coefficient

sensitivity
starting point

minimum point
target vector
output vector
bias
net input-sum of weighted input
input
number of inputs in a training set
number of output neurons
coefficient of Levenberg-Marquardt method
Lipschitz constant

vii

L

CHAPTER 1

INTRODUCTION

1.1. What are artificial neural networks?

An artificial neural network (ANN) is a mathematical model, a family of

parameterized functions for fitting data. The most fundamental component of ANNs is a

large number of interconnected artificial neurons, which are modeled to some extent after

the structure of human brain. Biological neurons and the multiple connections between

them are an integral part ofbrain function. The structure ofbiological neurons is very

complicated. The ANNs try to simulate only the most basic functions of the biological

neurons. There are two major similarities between biological and artificial neural

networks, the building blocks (processing units) and the connections (functions) between

the units [1][2].

The history of ANNs is a legacy. Some fundamental and conceptual work for the

field of networks appeared in the late 19th and early 20th centuries [2]. It's hard to tell

who is the father of this technology. Many creative individuals from various fields

contributed to the foundation of ANN. The field has grown rapidly since the beginning,

but there were setback in 1960s and 1970s due to lack of technical support. This will be

explained in section 2.3. In the1980s, research in neural networks recovered and

increased surprisingly.

Now ANNs have been widely used in many fields, including electronics,

manufacturing, medical, financial, engineering, etc. ANNs are mostly applied in

L

prediction, classification, data association, data conceptualization, and data filtering. The

computing mechanism of ANNs associated with learning rules is different from

traditional methods. ANNs are considered as an important part of the advanced

generation of modern computing technology. There are three principal kinds of neural

networks, perceptrons, Hamming networks, and Hopfield networks. Hamming and

Hopfield networks are not discussed in this paper.

1.2. Single perceptron networks and their weakness

The perceptron network is the first application of ANN. Rosenblatt introduced

the perceptron network in the late 1950s [3][39]. The single perceptron network with its

learning rule indicates the potential ability of ANNs to solve classification and pattern

recognition problems. Although it's a simple model, it built the foundation of ANNs and

triggered a great deal of interest in ANN research. The following is an abbreviated

notion of a single perceptron network:

n

a= v(wr +b)

The inputs and outputs are represented by vectors r and a, respectively. Each of

the inputs ri is multiplied by a connection weight Wj. The summed products plus the bias,

denoted as the net inputs (n), are fed to the transfer function (v) to generate the desired

outputs.

2

L

In 1960s, Widrow and Hoff introduced the ADALINE network, and a learning

rule they called the LMS (Least Mean Square) algorithm [4]. Unfortunately, it was later

shown that the single perceptron network could solve only linearly separable

classification problems [6]. Both Rosenblatt and Widrow intended to overcome this

problem and proposed multi-layer perceptron networks [4][34].

1.3. Multi-layer perceptron and the backpropagation (BP) algorithm

The structure of a multi-layer perceptron network is a combination of single

perceptrons. Generally each layer takes the output of previous layers as its input and

gives its output as the input to the next layer. We will take Hagan's abbreviated notation,

such as R-S 1-S2
..• sn, to represent ann-layer MLP network [2]. The following graph is an

example of a four-layer, 3-4-3-2, perceptron network:

Input layer Hidden layer(s) Output layer

A multi-layer perceptron network contains one input layer, one output layer, and

as many hidden layers as desired. One or two hidden layers are commonly used. The

transfer functions could be any kind of mathematical functions. The multi-layer

perceptron overcome the limitation of single perceptrons, which had no hidden layers. It

3

L

can be used to solve very complicated problems. Hornik, Stinchcombe, and White have

shown that three-layer networks with sigmoid transfer functions in the single hidden layer

and linear transfer functions in the output layer can approximate any function to any

degree of accuracy, if the hidden layer has a sufficient number of processing units [5].

The following graph depicts the sigmoid transfer function. Later in Chapter 5, I'll apply

this network model to several test problems.

0.9

08

07

06 I
05

0.4

03

02

0.1

0
-5 -4 -3 -2 -1 2 4 5

Sigmoid function f(x) = 1/(1 +e-x)

Rosenblatt and Widrow just presented the idea of multi-layer perceptron

networks. Regrettably, they were not able to show the power of this neural device since

they didn't have any algorithms to train MLP networks. Unfortunately neural network

research was stuck for a time. Many people doubted the capacity and the future of the

ANN. They quit their research on neural networks and went to other areas [6].

In the 1980s, the appearance of the backpropagation algorithm by David

Rumelhart, Geoffrey Hinton and Ronald Williams [7] was a breakthrough in ANN

research. ANNs stepped into a new stage. The backpropagation algorithm significantly

affected the whole neural network world. Many methods based on the backpropagation

algorithm have been developed in the last two to three decades.

4

L

CHAPTER2

LITERATURE REVIEW AND PROBLEM STATEMENT

2.1 Literature review

2.1.1 Steepest descent algorithm

A very important part of the ANNs is to find algorithms to train the neural

networks, in other words, to optimize the error functions of the networks iterately. One

basic method is called steepest descent. Suppose there is an error function f(x). We

wish to find a value ofx which minimizes f(x). We start from a chosen initial guess,

x0 , and then update x0 in stages according to the equation

(2.1)

where a is a positive scalar (the learning rate), and p k is the search direction. For our

objective, we must follow the direction which makes the value of f(x) smaller. There

are many such directions. The direction in which the function decreases most rapidly is

the negative of the gradient. Therefore a vector which points to the steepest descent

direction is

Pk = -gk · (2.2)

Combining this to equation (2.1) produces the method of steepest descent

5

2.1.2 Standard backpropagation (BP) algorithm

The multi-layer perceptron networks were not able to show their potential ability

without a good training algorithm until the discovery of the backpropagation (BP)

algorithm. The BP algorithm was a breakthrough in training multi-layer networks. It is a

generalization of the LMS (Least Mean Square) algorithm, an approximated steepest

descent algorithm, in which an estimated gradient is used. In most perceptron

applications, we choose to minimize the squared error,

E = (t(k)- a(k))r (t(k)- a(k)) = er (k)e(k) (2.3)

where a is a vector of outputs from the ANN and t is a vector of corresponding target

outputs (output data). k is an index to a particular exemplar (data point) consisting of an

input vector and an output vector t(k).

The approximate steepest descent algorithm is as follows:

(2.4)

b m -bm 8E/
k+l- k -a jab; (2.5)

where as before w is the weight vector and b is the vector of biases.

By applying the chain rule, we obtain

(2.6)

b m bm m
k+I = k -as (2.7)

Here a is the learning rate, sm = a%nm is the sensitivity ofV to a change in the net

input at layer m, V is a vector of transfer functions, and n is a vector of net inputs (sum of

weighted inputs).

6

Now by using other applications of the chain rule, we obtain equations (2.8) and (2.9) for

the hidden layers and the last layer, respectively, and can compute the sensitivity of layer

m:

• m
Sm =V (nm)(wm+I)Tsm+l (2.8)

• M

SM = -2V (nM)(t -a) (2.9)

where Vis the first order derivatives of the transfer functions. To compute derivative of

the mth layer's transfer function, we only need the weights and the sensitivity of the

(m+l)th layer. The term backpropagation originated from this process ofbackward

propagation of derivatives through the MLP.

BP needs one forward and one backward calculation in each iteration to update

the weights and biases. Obviously, it is very straightforward and easy to calculate. This

idea, along with the availability of powerful new computers, also makes scaled parallel

computing possible [8].

Multi-layer perceptron networks trained with the backpropagation algorithm broke

the limitation of one-layer perceptrons [7]. MLP can solve the XOR problem that the

simple perceptron could not, and are the most popular form of ANN being applied today.

2.1.3 The drawbacks ofthe backpropagation algorithm

Despite BP's effectiveness, many researchers found this algorithm's rate of

convergence was too slow for the technique to be used practically. "Although BP

training has been proven to be efficient in many applications, it uses a constant stepsize,

its convergence tends to be very slow and it often yields suboptimal solutions" [9]. Many

other researchers believed this, and tried to make some progress on it (detailed in the next

7

section). Li Zhang's paper [11] showed some solid examples in which the

backpropagation algorithm [8] had trouble in some cases for multi-layer perceptron

networks in function approximation problems. He further mentioned that BP training

was very slow and sometimes had convergence problems. Due to its fixed learning rate,

the training speed is limited. Why does this happen? Basically, the BP algorithm does

not have a sound theoretical basis and can be inefficient and unreliable [12]. This

problem will be discussed in detail in Chapter 3.

2.1.4 Improvement ofthe BP algorithm

During the last three decades, many researchers made efforts to overcome this

kind of problem. Some progress has been made. The major two early advances were BP

with momentum [13], and BP with adaptive learning rates [14]. For BP with momentum,

a momentum coefficient y, (0 s r s 1), is used to smooth out the oscillation of the

trajectory when a larger value of learning rate a is applied. Adaptive BP tries to adjust

the learning rates through different regions. If the error decreases, the learning rate is

increased; if the error increases, the learning rate is reduced. But BP with momentum and

BP with adaptive learning rates are not reliable due to the use of the heuristic factors.

The most recent achievement is BP with variable stepsize (BPVS) [9]. It achieves the

basic requirement of dynamic tuning without any heuristic factors.

2.1.5 Numerical optimization methods

Unfortunately, the improvement ofBP is very limited [2][12][15][16]. In the last

decade, numerical optimization techniques have been successfully applied to train multi­

layer perceptron networks. These techniques include Newton's method (NT), the Gauss­

Newton method (GN), the Levenberg-Marquardt method (LM), and conjugate gradient

8

methods (CG) [21]. All of these methods significantly improved the speed of multi-layer

perceptron training in different aspects, but generally speaking, each of them has

advantages and disadvantages when compared to the others.

For the function f(x) of section 2.1.1, we want to find a local minimum efficiently

(Finding the global minimum is a difficult problem that can be attacked by carrying out

local minimization from many pseudorandom starting points.). Based on the second-

order Taylor series, Newton's method starts from point x0 and uses the second-order

Taylor series expansion of f(x) at x0. This yields a quadratic approximation F0 (x) of

f(x) about x0. Newton's method always reaches the minimum of a quadratic function in

one step. If the function, f(x), is quadratic, we have the following equation to find the

mm1mum:

(2.1 0)

where His the Hessian, the matrix of second derivatives ofj{x) with respect to x,

a2 a2
f(x)

a2
f(x) ~f(x) ax,ax2 ax,axn !X,

a2
f(x)

a2 a2
f(x) H= ax2ax, ~f(x) ax2axn !X2

a2
f(x)

a2
f(x)

a2
axnax, axnax2 ~f(x) !Xn

The step vector ~x = xk+I - xk is computed by solving the linear system H~x =-g. We

don't need to compute the inverse of the Hessian matrix.

If f(x) is not quadratic, Newton's method computes a sequence of estimates that

may lead toward the minimum. The minimum point x 1 of F0 (x) is supposed to be the

9

L

next estimate of the minimum point of f(x). Repeating this process yields successive

estimates x 1,x21 x 3 .• . , which should gradually approach the minimum point off{x), and, if

all goes well, finally converge to that point with the desired accuracy. Newton's method

therefore can be considered as a method based on successive minimization of the

quadratic functions F0(x), F; (x),F2 (x),F3 (x), , each of which is an approximation of

f{x).

Newton's method is known as a fast method, but it has two big problems. First,

unlike the method of steepest descent, convergence is not guaranteed for Newton's

method unless the starting point is sufficiently near a local minimum ofj{x). It could

possibly oscillate, or even diverge [2]. Second, as indicated in the Eq. (1.1), we need to

compute the Hessian matrix in each iteration. For low or moderate dimensional variable

space problems, this is a good tradeoff, but it is worse for high dimensionality, since it

requires a lot of computation and 0(n 2) storage (n is the number of variables over the

variable space, that is, the number of components in the x vector.) . Unfortunately, the

number of parameters involved in a multi-layer perceptron network is sometimes very

large. Often hundreds to thousands of weights and biases are required. This makes

Newton's method impractical in a large scale MLP.

The Gauss-Newton method can be developed from Newton's method if the function

is a sum of squares function as in equation (2.3):

N

E(x) = Ie;2 (x) = eT (x)e(x) (2.11)
i=l

Newton's method then would be:

(2.12)

10

It can be shown that

V'E(x) = Jr (x)e(x)

V2E(x) = Jr (x)J(x) + S(x)

Where J(x) is the Jacobian matrix

aei (x) aei (x)

ax! axz
ae2 (x) ae2 (x)

J(x) = ax! ax2

aeN(X) aeN(X)

ax! ax2

and

N

S(x) = Ie;(x)V' 2e;(x)
i=l

aei (x)

axn
ae2(x)

axn

(2.13)

(2.14)

(2.15)

(2.16)

For the Gauss-Newton method, the term S(x) is dropped. Generally, that's because if

function E is expanded at a local optimum point x* for those points sufficiently close

to x • , S(x) = 0 . However there do exist so-called "large residual least squares problem"

in which S(x) is not small compared to Jr (x)J(x), and for which Newton's method has a

neighborhood of convergence but the Gauss-Newton method has none. In addition, the

Gauss_Newton method converges only linearly, if it converges at all, while Newton's

method converges quadratically. Liya Wang discussed this in more detail [15]. Then the

Gauss-Newton method is:

(2.17)

The advantage of the Gauss-Newton method over the standard Newton's method

is that it does not require the calculation of the second order derivative in S(x) (the

11

Hessian matrix H). It is less costly in computations. But the drawback of Newton's

method that needs 0(n 2
) storage still remains for the Guass-Newton method. Also, there

is something to worry about when we solve the linear system in (2.17), since the solution

may not be unique. This problem can be overcome by the Levenberg-Marquardt method.

The Levenberg-Marquardt method is a modification of the Gauss-Newton

method. In case JT (x)J(x) is singular, the Gauss-Newton method can be changed to

equation (2.18) [13].

(2.18)

where diag() is the diagonal part of a matrix and the parameter A is an adjustable

coefficient which avoids the problem if JT (x)J(x) is not invertible. A is multiplied by

some factor (v>1) whenever E(x) increases and divided by v whenever E(x) decreases.

The Levenberg-Marquardt method removes some deficiencies of the Gauss-Newton

method. The key procedure is to calculate the Jacobian matrix in which all terms are first

derivatives of the error function with respect to each variable. This can be done by a

simple modification to the standard backpropagation algorithm [16].

Both the Gauss-Newton (GN) and Levenberg-Marquardt (LM) backpropagation

algorithms eliminate the calculation of second order derivatives, but they still need O(n2
)

storage for the matrix JT (x)J(x). Although the rate of convergence ofNewton's

method, the Gauss-Newton and Levenberg-Marquardt methods are quite rapid in most

cases, they do require large storage compared to conjugate gradient (CG) methods, which

do not have to approximate the Hessian matrix or the Jacobian matrix. The CG methods

have an obvious advantage over the Newton, Gauss-Newton and Levenberg_ Marquardt

12

methods in that there is a much lower storage requirement when we deal with a very large

number of weights and biases, O(n) versus O(n\

2.2 Problem statement

2.2.1 Motivation and objective

The steepest descent based methods and the modem numerical optimization

methods (Newton, GN, LM, and CG) are two different computing categories for training

MLP networks. Due to the advantages of the conjugate gradient method against the other

numerical methods (section 2.1.4), we would like to know ifthe performance ofCG is

better than BP. In addition, Magoulas, Vrahatis, and Androulakis proved that BPVS is

much more efficient than BP [9]. I expect to prove that CG also has better performance

than BPVS. This paper will focus on comparing the BP and BPVS algorithms with the

CG algorithm. The 'restart method' proposed by Powell will be applied to the CG

algorithm to make the CG method perform better. The purpose of this paper is to explore

the theory and algorithms that train multi-layer perceptron networks, estimate the

advantages and disadvantages of the various methods, and provide evidence and direction

for future work.

2.2.2. Paper organization

Chapter 1 has already briefly reviewed some concepts of artificial neural

networks, what multi-layer perceptron networks are suppose to do and why

backpropagation is prevalent. These are the basics of the following chapters. Chapter 2

talks about the current research, and indicates the problem we are going to focus on.

13

Chapter 3 provides a detailed discussion about why the standard BP algorithm is

not an efficient algorithm for MLP training.

In Chapter 4, the BPVS algorithm, and its limitations will be introduced.

Then I'll describe in Chapter 5 the CG algorithm in detail and discuss why CG is

better than BP.

In Chapter 6, five different examples (the XOR problem, two function

approximation problems from Li Zhang's M.S. thesis, and two real problem simulations

from the UCI repository) will be implemented by computer programs. This provides the

numerical data for Chapter 7, which compares and analyzes those data to make a

decision.

Finally, I'll draw conclusions in Chapter 8 and predict some future work.

14

L

CHAPTER3

ANALYSIS OF THE BACKPROPAGATION ALGORITHM

The backpropagation algorithm is the cornerstone of training MLP networks.

However, many people believe it is not a good algorithm. As previously mentioned, the

BP algorithm moves a suitable distance along the negative gradient in each iteration to

decrease the error E. The intrinsic nature of steepest descent, which is also called

gradient descent, determines the behavior of the BP algorithm. In the batch version of

BP, which is just steepest descent, we start with some initial guess for the weight vector

(which is often chosen pseudorandomly near the origin) denoted by w o. We then go

downhill and consequently update the weight vector. The direction of the greatest rate of

decrease for the error is the direction of the negative gradient. Therefore, we move a

short distance along the negative gradient, at iteration k, evaluated at w k :

(3.1)

the coefficient a is called the learning rate. If the value of a is sufficiently small, the

value of errorE will decrease in each iteration, finally leading to a weight vector at which

the following condition is satisfied:

(3.2)

The problem is that, if the value of a is too small, it will take a long time (many

iterations) to converge. We need to speed up in order to make the procedure efficient.

15

-- ·-----

However, if a is too large, oscillations will occur, and the algorithm may overshoot,

leading to an increase in E and possibly to divergence. The following figures illustrate

the problem in an error surface E for a two-dimensional weight space. Figure 3.1 depicts

the trajectory with small a. In Figure 3.2, when the value of a is too large, the trajectory

gets unstable.

I
2f

I ,.

J'
' 1k
'2

"' " -2 -1

Figure 3.1

1'

·1

·2

.a'

"

;

··~+-~·· (/ i ~
' / \
' I i

I ~1
-2 -1

Figure 3.2

A little more should be mentioned here. In Figure 3.3, the contour line of a quadratic

function is very elliptical. In other words, the eigenvalues of the Hessian matrix of E are

much different, Amax >> Amin. The BP algorithm has to take many small steps to move to

the minimum. (More will be discussed in Chapter 4.)

Figure 3.3

16

In the general case, the error functions are not quadratic. The shape of the error

surface might be very contorted. Hagan shows an example in his textbook [2] in which

the error function has only two parameters (Figure 3.4).

10 1$

Figure 3.4

In this example, we have to choose a very small a to avoid oscillation in the steep valley,

but this will take an extremely long time to go through the relatively flat region.

Obviously, the BP algorithm is not able to solve this kind of problems efficiently. The

ideal algorithm is to have a small a when the error surface is very steep; a large a,

otherwise.

17

CHAPTER4

BACKPROPAGATION WITH VARIABLE STEPSIZE ALGORITHM

4.1 Backpropagation with variable stepsize (BPVS) algorithm

The standard BP algorithm is not able to fulfill the requirement that the different

performance index surface regions should have different learning rates. Many researchers

tried to look for new approaches to improve the BP algorithm. Many papers have been

published in recent years. The effective backpropagation training with variable stepsize

algorithm [9] is a new achievement of a steepest descent based algorithm. The algorithm

shows good performance without any heuristic factors and satisfies the basic requirement

for MLP network training.

The BPVS method is a modified steepest descent algorithm. The idea ofBPVS is

to tune the learning rate dynamically in each iteration. Its convergence is guaranteed by

applying estimates of the Lipschitz constant, obtained without additional error function

and gradient evaluations [9].

When we train the network through a training set, we get the performance index:

1 R N
2

R

E =-IIca, -t,) =IE,
2 r=l j=l r=l

(4.1)

18

where (a -t) 2 is the squared difference between the actual output value ar at the fh

output layer neuron for pattern r and the target output value t r , and r is an index over

input-output pair exemplars.

The BPVS algorithm is based on three assumptions regarding the error surface E

[ref.9]. For simplicity, I omit the assumptions here (it does not further affect our

discussion). We need to keep in mind that equation (4.2) must be satisfied.

11 VE(n- VE(l) lis K 11 ~-111 (4.2)

In the above equation, K is the Lipschitz constant. l;, y E w, w is in the region

x(w0) which contains wo, and all E(w) < E(w 0).

We can apply theorem 1 of Armijo [9] to obtain the new weight. Then we update

the equation using the Lipschitz constant.

wk+l =wk -0.5K-1VE(wk), k=0,1,2 (4.3)

R

where VE(wk) = IVEr(wk) (4.4)
r=l

This is useless because the constant 0.5K -1 is unknown before each iteration. For our

purpose, we need a large 0.5K -J to speed up convergence. But, if 0.5K -1 is too large,

convergence cannot be guaranteed. To solve this problem, we always use a small stepsize

at the beginning and then tune it in each epoch. This can be done by the steps based on

Armijo's theorem.

Armijo 's Theorem 2 [9]. Suppose that 'l]o is an arbitrary assigned positive

number and consider the sequence 17m = ry021-m, m=l,2 Then the sequence of weight

vectors {wk} ~ defined by

19

W k+l = W k - T/mk V E(w k),k = 0,1,2 (4.5)

where mk is the smallest positive integer for which:

(4.6)

converges to the point w * which minimizes the error function E.

At this point, the BPVS algorithm has been outlined. We need to make it

practical to solve MLP training problems.

As mentioned before, BPVS is a modification of the steepest descent algorithm.

At each iteration of the steepest descent procedure, the values of the weights are modified

in the direction in which the error function, E, decreases most rapidly. Along with the

direction,- V E(w k), BPVS uses a local approximation of the Lipschitz constant Lk to

estimate the stepsize 0.5 k-1 at each epoch. Recall the assumption we made before

(equation (4.2)). We obtain the Lipschitz constant Lk as follows:

(4.7).

This overcomes some drawbacks of Armijo's theorem 2 and reflects all the local

information regarding the direction and the stepsize. But this does not mean that

Armijo's theorem 2 could be ignored. We still need to apply Armijo's theorem 2 in some

circumstances to guarantee convergence. The main idea is that if the stepsize 0.5 L:1 is

very small, we should increase the stepsize by doubling it; on the other hand, if the

stepsize 0.5 L:1 is too long and the successive steps in weight space do not satisfy

equation (4.6), then we need to decrease the stepsize. This is the elegant point of the

BPVS algorithm. It's very simple, but powerful in two aspects. First, Armijo's theorem

20

L

2 guarantees convergence. Second, 0.5 L:' is sensitive to the local shape of the error

function. If it needs to, the step size speeds up by doubling itself. This behavior is

different from other algorithms, such as the standard BP which has a fixed stepsize, or

adaptive BP which increases the stepsize using some heuristic factors. BPVS is

especially helpful when training with a very flat error surface region.

The BPVS algorithm is summarized as following:

Initialization: Set the epoch k=O, the weights w0 to real pseudorandom values,

the stepsize to a small value 'lo, the error tolerance to!, the minimum

stepsize A..min, the Lipschitz constant Lk =1, the number of tuning tk = 1.

Step 1: Compute the error E, and the gradient of E, for all input-

output pairs through the training set, r E [1, R]. Compute the local

approximation Lk of the Lipschitz constant, according to Eq (4.7).

Compute 'lo = 0.5L:'. If 'lk > A..min, go to the next step; otherwise set

tk = tk + 1, 'h = lh2 1
k _, and go to the next step.

Step 2: IfEq. (4.6) holds, set mk = 1 and go to step 4; otherwise, set

mk = mk + 1,tk = 1, and go to the next step

Step 3: Set 'lk = 770 21
-mk and return to Step 2

Step 4: Update weights according to w k+J = w k - 'h 'V E(w k), where

21

R

VE(wk)= IVE,(wk)
r~l

Step 5: If E(w k+l) >tal, set k= k+ 1, go to Step 1; otherwise

stop

4.2 Drawbacks ofBPVS algorithm

The BPVS algorithm is not good enough yet. Although the performance of the

BPVS algorithm has been proven to be much better than standard BP, BP with

momentum, and adaptive BP [9], it is still a steepest gradient-based algorithm. The

dynamic tuning approach follows the negative gradient direction to adjust the learning

rate in each iteration. So, the BPVS algorithm has a more suitable learning rate than the

other methods (constant learning rate, or learning rate with heuristic factors, etc.). This

learning procedure is similar to steepest descent with a line search (SDLS). First, both of

them follow the negative gradient direction in each iteration. Second, following the

specific direction, they try to make the stepsize as large as possible. The ideas are same.

But the approaches they take are totally different. SDLS uses a line search method which

looks for the minimum point in each direction. We'll talk about this line search method

in detail in Chapter 5. BPVS, on the other hand, evaluates the local information of

direction and stepsize to estimate the optimal stepsize. This approximation is based on

Armijo's theorems to guarantee convergence. It's hard to say which method is more

efficient now. Basically they should have similar rates of convergence. I'll implement

BPVS and SDLS on various examples to see their performance. SDLS could have more

22

--- L

additional error function evaluations than BPVS, but only by a constant factor, the

average number of evaluations per line search, which is rarely large.

Broadly speaking, the tuning behavior ofBPVS and SDLS is very negative. The

critical reason is the learning directions. Both BPVS and SDLS cannot avoid the

limitation of the direction of the negative gradients. Return to the example we discussed

in the last chapter. In Figure 3.3, the contour line is very elliptical. At most points on the

performance index surface, the local gradient does not point directly toward the minimum

point. The training procedure contains many small steps. Certainly, it is not an efficient

way if we move along this trajectory. This is not a special case. Any general function

could be locally approximated as a quadratic function. And if the curvature of this

approximating quadratic function varies greatly with direction, the convergence will be

very slow in that region. This essentially affects the entire performance.

There is another area in which the BPVS algorithm as given in [9] is deficient.

That is the convergence criterion.

The terminating condition is a very important aspect of training neural networks.

One idea that is often used is to stop the training when the value of error function is less

than or equal to a given tolerance:

E(w k+l) >tal (4.8)

where w is the vector of variables. The stopping criteria ofBPVS algorithm falls into this

category:

Step 5 : If E(w k+l) >tal, then continue iterating

This is a very poor idea, though. Ordinarily the user has no idea how large tal

should be, especially for a large-scale problem, and simply wants to go to a local

23

L

minimum of E(w). A criterion such as Step 5 would never be used by a professional in

the field of optimization. Instead, an absolute criterion on the step size

II w k+l - w k II~ abstot (4.9)

would be used, or a relative criterion:

II w k+l- w k II~ reltol*ll w k II (4.10)

or a combination of the two:

II w k+l - w k II~ abstol + reltol* II w k II (4.11)

where , abstol and reltol stand for absolute and relative tolerance, respectively. The

expression (4.11) is the most general one. If abstol is equal to zero, the formula is

essentially a variation of (4.1 0). Under this circumstance, we say if the relative change in

each component of the vector w is less or equal to reltol on any iteration, then

convergence is assumed. Later in the testing program, this criteria will be applied.

Similarly, formula (4.9) is defensible. But (4.8) is irretrievably worthless.

We have to reconsider the learning direction of the procedure in order to eliminate

the limitation of the steepest gradient direction. It would be nice if most of the points on

the error surface have directions as close to the local minimum as possible.

24

L

CHAPTERS

NUMERICAL OPTIMIZATION AND CONJUGATE GRADIENT ALGORITHMS

5.1 Line search

Because the line search concept forms the basis for the conjugate gradient

algorithm, let's talk about it first in this section. To train a multi-layer perceptron

network, we just take a sequence of steps through the weight space. A good algorithm

should consider two aspects of each of these steps. One is the direction in which we are

going to move along, and the other is the pace we move in that direction. Both of these

must be optimal or nearly optimal for an efficient learning algorithm. With the steepest

descent backpropagation algorithm, the direction of each step is determined by the local

negative gradient of the error function, and the step size is given by an arbitrary learning

rate parameter (either constant or with heuristic factors). For the conjugate gradient

algorithm, we need to reconsider both aspects. The line search method is applied in

determining the value of the learning rate. The concept of line search comes from the

procedure in which, for a particular search direction in weight space, we find the

minimum of the error function along that direction.

5 .1.1 Line search

25

Suppose that at step kin some algorithm the current weight vector is w k, and we

consider a particular search direction p k through weight space. The optimal value for the

weight vector along the search direction is then given by the expression

(5.1)

where the parameter a k is chosen to minimize

(5.2)

This means once we have chosen the search direction, we could get the minimum

point (and also set the optimal stepsize) by evaluating the value of the error function

E(ak) with a single parameter ak. Hush and Salas have shown a simple approach in

their paper to complete this procedure [28]. This method is to proceed along the search

direction in small steps if the error function at each new position decreases, and stop

when the error starts to increase.

The derivative ofEq.(5.2) with respect to ak, for a quadratic function E(w), can

be shown to be

(5.3)

a k is chosen to minimize E(a k) by setting this derivative equal to zero. We obtain

V'E(w)T iw=wk Pk

prv 2
E(w) lw=wk Pk

=

where Hk is the Hessian matrix evaluated at point w k :

For a quadratic function, His the same everywhere.

26

(5.4)

(5.5)

L

5.1.2 Non-linear search and golden section method

Non-linear optimization is concerned with methods for locating the minimum or

maximum of a non-linear function of any number of independent variables. For a non-

quadratic function, Eq.(5.3) won't be applied. We need to have a general procedure for

locating a local minimum of a function in a specific direction. There are many books and

theories on non-linear optimization. We will combine function comparison and golden

section search together [21]. Each line search proceeds in two stages, interval location

and interval reduction.

F(x)

I
I
!

i I

J ' 1 A 1
....... i 2.0.•'
i I !

r
- ·- 4ll ---·· ,.. r• ··~---SA ---------t,._....,J

I

~--~--~----------~--------------------1__ I X

Figure 5.1

5 .1.3 Interval location

I
l
I

b4
bs

The first step is to determine the interval within which the minimum is located.

Since we always go downhill from the starting points, we assume that this minimum

27

exists and the value of function from the starting point will decrease. Figure 5.1 depicts

the procedure.

Suppose we start from point 'a1 '. For a given small distance, we evaluate

function at the next point 'b1'. If F(a,) > F(b,), then we keep b1 as a2 , go to the next

point b2 by doubling the distance, and evaluate the point 'b2 '. IfF(a;) > F(b;), repeat

the same procedure until an increase in the function evaluation occurs. The minimum

point should be in the last two intervals, for example, [a5 , b5] in this case [21].

5 .1.4 Interval reduction

Figure 5.2

Once the interval is determined, we need to know the minimum point within this

interval. Because the accuracy of this location is not satisfied by the interval location

procedure, the next step is interval reduction. Namely, narrow the interval till the desired

accuracy is attained and the minimum is located. Scales has described this procedure

briefly and clearly. The following graphic and algorithm are directly from Scales [21).

28

The search algorithm has been summarized by Scales as follows:

Input a1 , b1 , to/

Set c1 =a1 +(1-r)(b1 -a1), Fe =F(c1)

d1 =b1 -(1-r)(b1 -a1),Fd =F(d1)

for k = 1,2, Repeat

if Fe < Fd then

ck+I = ak+I + (1- r)(bk+I - ak+I)

Fd = Fc,Fc = F(ck+I)

else

end

end until bk+I - ak+I <to/

Procedure LOCMIN ofR. P. Brent [35] is a much more efficient method of interval

reduction than this one, but this will suffice for our purpose.

5.2 Conjugate gradient method

The basic idea of the line search minimization along a specific direction is to

choose a suitable search direction at each stage of the algorithm. In the steepest descent

method, the search directions are given by the local negative gradient at every point in the

29

---- L

error surface. This is not the best choice though. Because the gradient at the new

minimum is orthogonal to the previous search direction, choosing successive directions to

be the local gradient directions can lead to the problem already illustrated in Figure 3.3,

in which the search oscillates in successive directions while making little progress

towards the minimum. Figure 3.3 shows a trajectory with successive search directions

orthogonal. It then takes many steps to converge, even for a quadratic function. That's

also why we said the steepest gradient based algorithms typically proceeded very slowly.

This idea led to conjugate gradient methods.

Let's consider a quadratic function first. These two equations hold for a quadratic

function:

VF(x) = Hx+d

V 2F(x) = H

(5.6)

(5.7)

[30] A set of vectors {pk} is said to be conjugate with respect to a positive

definite Hessian matrix H if and only if

PiHp 1 = 0, k * j

Then the change in the gradient at iteration k+ 1 is

~gk = gk+I - gk = (Hxk+I +d)- (Hxk +d) = H~xk

From Eq. (4.1) we have

~xk =(xk+I-xk)=akpk

Then we obtain the modification of the conjugacy condition

akpiHp1 = ~xiHp1 = ~gip 1 = 0, k * j

30

(5.8)

(5.9)

(5.10)

(5.11)

L

This equation tells us that the search directions will be conjugate if they are

orthogonal to the changes in the gradient. How does this affect our function optimization

procedure? First, Scales, Gill, Murray and Wright have proved in their papers [21] that if

we make a sequence of exact linear searches along any set of conjugate directions {p1, p2,

.... , Pn}, then the exact minimum of any quadratic function with n parameters, will be

reached in at most n line searches. For example, if we apply this method to the 2-D

quadratic function we illustrated in chapter 3, we need at most 2 iterations. Second, we

no longer need to compute the second order derivatives (the Hessian matrix H). These

give us a lot of benefits. Our optimization algorithm will be based on this.

5.3 The conjugate gradient algorithm for MLP training

Suppose we wish to optimize a function F(x) and start at point x0. The procedure

generates the sequence of points x1, x2, ... , Xn. For the conjugate gradient method, the

first search direction, p0, is arbitrary. Usually we initialize p0 with the negative of the

gradient, -g0 (we do not have to, though). The algorithm is described as follow:

Step 0: [Initialization]

Set k=1; x1 to a random point, cycle number m=O, to!

Step 1: [Set the negative steepest descent direction]

Calculate gk, set p k = -gk. (5.12)

Step 2: [Line search]

At step k, search along the line to determine the step length that minimize

E(x). Compute stepsize ak using the line search methods (Interval

location and Interval reduction).

31

L

Step 3: [Update the minimum point value in each iteration]

(5.13)

Step 4: [Stopping criterion]

If II xk+l - xk II> reltol* II xk II, go to step 8, otherwise go to the next step.

As mentioned in Chapter 4, for similarity, we use

II xk+l - xk II> reltol* II xk II instead of II xk+l - xk II> abstol + reltol* II xk II,

Step 5: [Restart procedure]

If kmod n = 0, then set pk = -gk, m = m + 1,k = 1, go to step 1, otherwise

go to the next step.

Step 6: [Direction search]

Determine the new search direction at the new minimum point,

(5.14)

where Pk+l is calculated according to one of the three expressions (see

[21]):

[Hestenes and Stiefel] (5.15)

[Fletcher and Reeves] (5.16)

[Polak and Ribiere] (5.17)

Step 7: [Continue the m 1
h cycle]

Set k = k + 1, go to step 3.

32

L

Step 8: [Stop]

Set iterations m = m * n + k .

These three expressions for fJ are actually three different conjugate gradient

methods. There have been some attempts tried to determine which of these expressions

for fJ is best, but no final conclusions have been reached [25]. Meishan Cheng declares

in his M.S. thesis [20] that these various CG methods are relatively equivalent. It's

believable so far. Later in our comparison, we'll apply the Fletcher-Reeves method.

The conjugate gradient algorithm is a modification of steepest descent, but it is

based on a sound theoretical foundation. So it is more efficient and reliable than the BP

algorithm and its variations. And CG does not have any heuristic factors or Hessian

matrix computation. It is more practical.

In step 2, if a function is quadratic, step length is determined by the equation:

(5.18)

Line search method could be avoided. But generally, the least square error

function of a multi-layer perceptron network is not a quadratic function. As mentioned

before, if the function is not a quadratic function, Eq. (5 .18) cannot be applied to the

algorithm. We need to search along the direction to get the minimum point. This

procedure includes two parts: interval location and interval reduction. First, we need to

search along the conjugate direction to determine the step length in each step (section

5.1.3, 5.1.4). Second, the algorithm no longer is guaranteed to converge within n

iterations. The solution for the second problem is somehow uncertain. It seems that

many researchers agree to have a restarting procedure for general objective functions.

33

L

When Fletcher and Reeves first applied the conjugate gradient algorithm to numerical

optimization problems, they also recommended restarting. In their approach, the

conjugate gradient method uses the steepest descent direction as the new search direction

every nor (n+ 1) iterations [30]. We call the Fletcher and Reeves conjugate gradient

method with their restart procedure the Fletcher-Reeves general method. Powell has

shown that, without restarts, a linear rate of convergence is usual when there are more

than two variables [24]. Crowder and Wolfe also gave an example to show that without

restarting, the rate of convergence of traditional CG methods can be only linear [33].

Some later versions have tried to improve on the Fletcher-Reeves general method.

Powell discussed restart search directions and procedures further in his paper [25].

Indeed, Powell does not restart. He generates a better search direction (details will be

discussed later). We call his restart method "Powell restart" later.

For our purpose, we are going to apply the Powell restart method in our CG

algorithm. We expect that this approach might have better performance than any steepest

descent-based algorithm.

34

L

CHAPTER6

CASE STUDIES AND PROGRAM DESCRIPTION

6.1. Description of the program

To support my points that have been discussed in the previous chapters, several

numerical examples will be examined by a computer program. This program named

BPCG is a collection of functions and subroutines written in standard FORTRAN 77.

Five different algorithms will be tested in this program. Basically, I am going to focus on

comparing backpropagation with a variable step size (BPVS) and conjugate gradient

algorithms (CG). These two algorithms are the backbone of this paper. In addition, I'll

take the backpropagation with a line search (BPLS), backpropagation with momentum

(BPMOM) and quasi-Newton (QN) methods as options. This software mainly consists of

three parts.

6.1.1 The network design

The strategy of neural network design is a really important factor of network

training. As mentioned before, a three-layer network with a sigmoid function in the

hidden layer and linear function in the output layer can solve any function approximation

and classification problem. The three-layer network is the basic structure for this

examination. But sometimes the functions in the hidden layer should be sigmoid

functions since sometimes, for examples with normalized inputs and outputs, the network

I
__1

35

--L

with sigmoid functions in both layers might perform better than that with sigmoid

functions in the hidden layer and linear functions in the output layer. The number of

nodes (neurons) in the output layer depends on the dimension of outputs of a specific

example. The number of nodes in the hidden layer needs to be tested to make a decision.

It's common to start from a network structure with a small number of nodes in the hidden

layer. For example, in our Cancer problem which has 14 inputs and 3 outputs (see

section 6.3, Numerical examples), we'll test the net structure of 14-3-3, 14-6-3,14-9-3,

respectively. The code of setting up the network parameters refers to the program of Liya

Wang's master's thesis [15]. But the -1 and 0 subscripts that Wang used have been

eliminated by S. Nallarelli so that it can be accepted by some other FORTRAN

compilers. Also, all the problems are tested with the two-layer network instead of just

one output layer.

6.1.2. The code of steepest descent-based algorithms

The second part of the program is the implementation of BPVS, BPLS and

BPMOM. BPVS is a steepest descent-based algorithm. We are concerned about BPVS's

performance comparing not only to the conjugate method but also to the steepest descent

category itself. Specifically, in this study, I'll implement BPLS and BPMOM. The

comparisons to the modem numerical optimization methods will be discussed in the next

section. The reason why the BPLS and BPMOM algorithms are chosen is that BPLS is

the base method ofbackpropagation and BPMOM is a typical variation of

backpropagation. BPVS adjusts the optimal step size dynamically based on a theoretical

foundation. BPLS seeks the largest step size by using the line search method. The line

36

search method involved in the BPLS algorithm is the golden section method with which

to determine the optimal step size in each iteration. Since both BPVS and BPLS try to

make the step size as large as possible in each iteration, they are supposed to have close

performance to each other in terms of the rate of convergence, except that BPLS needs

more function evaluations. For the BPMOM algorithm, we select the momentum factor

y=0.8 as is common. The step size, however, is not easy to select. It has to be tested to

find an optimum value for different examples. The larger the step size is, the better, as

long as it does not lead to divergence.

6.1.3. The existing numerical optimization methods

The third part is the implementation of the conjugate gradient and quasi-Newton

methods. Standard, well-tested subroutines were used for these methods. The conjugate

gradient algorithm uses the Fletcher and Reeves method with restarts in the negative

steepest descent direction after ann+ 1 iterations cycle. In addition, I added the Polak­

Ribiere formula to the CG method since sometimes this method works well. There are

four traditional conjugate gradient methods, Fletcher-Reeves, Polak-Ribiere, Beale­

Sorenson, and Perry [20]. For our purposes, we are not going to emphasize the difference

among them here. Meishang Cheng has fully discussed the advantages and

disadvantages of these four CG methods in his Master's thesis [20].

6.2. Numerical examples

37

In this chapter, I'll implement five examples to test the five different algorithms

talked above. Generally speaking, they are either classification or approximation

problems.

The first example is a function approximation problem. It was examined by Li

Zhang in his Master's thesis [11].

(6.1)

This function approximation by backpropagation with line search algorithm indicated

some problems, such as inaccuracy, slow rate of convergence, etc. [11]. The information

ofthis example is as follows:

Number of training Number
Problem Type of problem Inputs Outputs data of test

data
f(xPx2) approximation 2 1 200 49

The next three examples come from PROBEN1 of the real data depository [26]. They

were also tested by Liya Wang in his Master's thesis [15]. These three examples are

listed below:

Number of training Number
Examples Type of examples Inputs Outputs data oftest

data
Cancer Classification 9 2 175 125

Building Approximation 14 3 200 150

Heart Approximation 35 1 390 240

The last one example is the traditional classification problem, XOR. 49 uniformly

spaced points are chosen on the square with vertices (-1,-1), (-1,1), (1 ,-1), (1,1)

38

Number of training Number
Examples Type of examples Inputs Outputs data oftest

data
XOR Classification 2 1 49 24

6.3. The components of comparison.

For our goal, we are going to compare the performance ofBP and CG algorithms.

So the comparison shall focus on three major aspects, the rate of convergence, the

stability, and the simulation accuracy. The rate of convergence is expressed by the

number of iterations during the training phase. The accuracy is mainly measured by

the value of the root mean square error (RMS).

39

_ _.....L

CHAPTER 7

RESULT ANALYSIS

7 .1. Results of the experiment

The following sets of data (number of updates of the weights and biases) are the

test outputs of the program. Each of these tables is for one example, which is tested by

five different algorithms in the same initial condition. The different initial guesses of the

network parameters (weights and biases) may affect our test results. So, each example is

tested under 10 different pseudorandom starting points. We will evaluate the average of

them. The initial parameters are generated by a pseudorandom number generator, which

is described in Liya Wang's program [15]. Also, each example is examined for two

different networks since different network architectures may affect the training results.

The network with better outputs (smaller sum of square errors) is chosen as the

component of our comparison. This network is probably not the best one, but it does not

affect the objective of comparing the efficiency of different training methods in this

paper.

Case 1: f(xp x 2) = ll(x1
2 + x~ + 1), Number of examples=200

Table 1.1. Function approximation with a 2-2-1 network,

Seeds-> I 17 21 27 40 45 66 78 81 96 Average

BPLS epoch 1163 1026 1088 1007 1031 1170 1248 1105 1144 1058 1104

BPM epoch 1010 1186 826 1103 1030 1314 1525 1227 1001 1443 1167
OM stepsize 0.3
BPVS epoch 1031 1185 1059 1047 1094 1120 1314 1140 1412 1325 1173
CG epoch 81 66 101 131 101 64 Ill 86 101 88 93

QN epoch 67 75 118 150 76 61 132 106 135 84 100
Note: Global rmmmum ofRMS=0.0303

40

Table 1.2. Function approximation with a 2-4-1 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average

BPLS epoch 1641 1754 1424 1216 1182 1098 1196 1129 1270 1012 1292

BPM epoch 1245 1369 1291 1086 1130 1162 1069 1094 981 1030 1146
OM stepsize 0.3
BPVS epoch 1661 1714 1294 1023 1173 1165 1408 1062 972 1034 1251
CG epoch 244 200 150 379 181 337 235 289 363 253 263

QN epoch 176 269 165 344 288 336 311 264 371 331 285
..

Note: 1. Global nummum ofRMS=0.0295

Case 2: Number of examples=175

Table 2.1. Cancer problem with a 9-2-2 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 1437 1091 1119 1000 1013 977 1396 1109 1549 1105 1180
BPM epoch 1910 2027 1960 1693 1711 1824 1944 1797 1824 1981 1860
OM step size 0.5
BPVS epoch 1175 1016 1058 1023 1022 977 944 1023 1333 1051 1062
CG epoch 89 51 88 83 74 119 147 93 174 137 105

QN epoch 97 63 184 113 55 94 114 89 137 173 102
Note: Global mm1mum ofRMS=0.1491

Table 2.2. Cancer problem with a 9-4-2 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 1157 1412 1373 1158 1106 1151 1159 1473 1558 1105 1265
BPM ~och 1498 1522 1519 1477 1459 1513 1320 1479 1417 1475 1468
OM step size 0.45
BPVS epoch 1236 1174 1193 1204 1189 1359 1211 1210 1328 1173 1227
CG epoch 85 103 52 123 300 80 62 71 149 60 108

QN epoch 81 145 48 146 245 70 98 106 106 67 111

Note: Global nummum ofRMS=O.l488

Case 3: Number of examples=200

Table 3.1 Building problem with a 14-3-3 network

41

--·~

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 1817 1879 2205 1813 1915 2766 1987 2941 2441 2673 2244

BPM epoch 1741 2483 1951 2156 2043 2265 2346 3118 2732 2442 2328
OM stepsize 003
BPVS epoch 1632 1993 2309 2143 1982 2399 2077 2977 2941 2721 2317
CG epoch 173 407 291 175 407 408 234 233 233 175 274

QN epoch 167 377 306 248 408 388 218 341 330 242 302
0 0 Note: 10 Global rmmmum ofRMS=Oo0330

Table 3.2 Building problem with a 14-6-3 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 2178 1938 2046 2512 2441 2563 2223 2281 3086 2722 2399

BPM epoch 1822 1823 1841 1905 2203 2057 2186 2433 2796 2991 2205
OM stepsize 003
BPVS epoch 2577 2140 1700 2344 3322 1906 1921 2102 3631 2669 2431
CG epoch 337 338 473 337 225 225 345 450 449 338 351

QN epoch 300 291 430 265 243 296 429 547 265 306 337
0 0 Note: 1. Global rmmmum ofRMS=000321

Case 4: Number of examples=390

Table 401 Heart problem with a 35-2-1 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 2997 4136 3210 2784 3121 3070 3049 3591 3124 3123 3220

BPM epoch 3987 3887 2986 2953 3207 3049 2703 2506 3198 3713 3219
OM stepsize 003
BPVS epoch 3372 3086 2837 2970 2339 3662 3600 3377 3320 2701 3130
CG epoch 239 266 198 235 195 206 305 323 232 153 235

QN epoch 222 202 180 256 232 160 243 345 299 122 226
0 0

Note: 1. Global rmmmum of RMS=Oo1317

Table 4.2 Heart problem with a 35-4-1 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 5061 4503 4278 4451 4322 4014 3660 4076 4411 3899 4266

BPM epoch 4290 4976 4252 4169 3116 3981 3341 3954 3901 4584 4056
OM stepsize 003
BPVS epoch 5393 3698 4542 4555 3820 3519 2522 4886 4313 4584 4180
CG epoch 373 301 300 388 392 216 301 301 297 267 313

QN epoch 328 338 248 213 316 189 311 249 253 191 264
0 0 Note: 1. Global rmmmum ofRMS=Oo1208

42

-

Case 5: Number of examples=49

Table 5.1 XOR problem with a 2-2-1 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 321 261 263 374 265 274 260 372 262 263 292
BPM epoch 361 381 337 344 304 372 288 356 155 418 331
OM
BPVS epoch 437 206 202 246 218 218 196 276 150 176 233
CG epoch 28 36 43 32 21 22 31 22 24 18 27

QN epoch 29 20 22 28 22 17 20 46 27 22 25
..

Note: 1. Global rmmmum ofRMS=0.001557

Table 5.2 XOR problem with a 2-4-1 network

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average
BPLS epoch 323 289 304 290 298 309 292 311 297 284 299
BPM epoch 335 275 367 346 296 205 326 271 294 294 301
OM
BPVS epoch 266 214 254 266 244 282 202 259 303 225 252
CG epoch 19 19 26 24 19 24 18 24 19 38 23

QN epoch 18 10 27 18 15 10 28 25 10 36 20
..

Note: 1. Global rmmmum ofRMS=0.001419

7.2. Results analysis

Obviously, the two simplest network structures for each example generate the

different accuracies of approximation. For the function approximation

(f(x 1 x 2) = 1/ (x1
2 + x; + 1)) problem, for instance, the root mean square error (RMS) of a

2-4-1 network is better than that of a 2-2-1 network. We will choose the one with the

better performance as our target.

The results indicate that conjugate gradient and quasi-Newton algorithms are

much faster than BPLS, BPVS, and BPMOM algorithms. For all five examples, these

two numerical optimization algorithms take a few iterations (at most several tens) to

43

converge, while those steepest descent-based algorithms need thousands of iterations.

This is not an accident though. For example, the training procedure of the cancer problem

shows that the error surface has a very flat valley. When BPLS, BPVS, and BPMOM

algorithm fall into this valley, they have to follow the negative gradient direction and

make a very little progress in each iteration, even though they try to make the step size

larger. The conjugate gradient method, however, does not have to follow these

directions. It goes along the conjugate gradient direction. The convergence is very fast.

Inside the steepest descent-based category itself, the BPVS and BPLS have very

close rates of convergence. That's what we expected. The difference is the training

procedure. The BPLS takes a long time to converge since it has to keep evaluating the

error function till it gets the minimum point in that direction. The BPVS algorithm

avoids so many function evaluations, requiring fewer than BPLS by approximately a

constant factor. If the step size of the BPMOM is proper, this algorithm also works well.

In some cases, BPMOM is even better than BPLS and BPVS.

44

CHAPTERS

CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

The above simulation results provide support for what I expected. I have

examined three steepest descent-based algorithms (BPVS, BPLS and BPMOM) and two

numerical optimization algorithms (CG and QN). The results generally show that good

numerical optimization methods have fast convergence. The newly developed algorithms

in the steepest descent backpropagation family, such as the 'Effective backpropagation

training with variable stepsize' are not able to approach the efficiency of the conjugate

gradient algorithm. CG methods share all the desirable properties of the steepest descent

method, namely low storage, ease of implementation, and parallelization. However,

when properly implemented they converge far more rapidly. The advantage of the

steepest descent methods over those numerical optimization methods (Newton, GN, and

LM) which need to compute second order partial derivatives and therefore need O(n2
)

storage is the low storage. We also noticed that the quasi-Newton method trapped to

local minima several times. This may be another disadvantage of the quasi-Newton

method.

8.2. Future work

We compared the steepest descent based algorithms to the modem numerical

optimization algorithms. How is the performance of CG and QN? In practice, CG

methods generally take approximately the same number of iterations as quasi-Newton

45

methods [22]. The results of our simulations seem to agree that CG and QN have close

performance. It's interesting to investigate and answer this question.

46

REFERENCES

1. R. Beale and T. Jackson, Neural Computing: An Introduction, Adam­
Hilger, 1991

2. M. Hagan, H. Demuth, and M. Beale, Neural Network Design, Boston: PWS
Pub.,1996

3. F. Rosenblatt: "The perceptron: A probabilistic model for information storage
and organization in the brain," Psychological Review, Vol. 65, pp. 384-408,
1958

4. B. Widrow, M. E. Hoff, "Adaptive switching circuits," IRE WESCON
Convention Record, New York: IRE Part 4, pp. 96-104, 1960

5. K. M. Hornik, M. Stinchcombe and H. White, "Multilayer feedforward
networks are universal approximators," Neural Networks, Vol. 2, No.5, pp.
359-366, 1989

6. M. Minsky and S. Papert, Perceptrons, Cambridge, MA: MIT Press, 1969

7. D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations
by back-propagating errors," Nature, Vol. 323, pp. 533-536, 1986

8. D. Rumelhart, and J. McCleland, Parallel Distributed Processing, Cambridge,
MA: MIT, Vol. 1, 1986

9. G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis: "Effective
backpropagation training with variable stepsize", Neural Networks, Vol. 10,
No. 1, pp. 69-82, 1997

10. Pinaki RoyChowdhury, Y. P. Singh, and R. A. Chansarkar, "Dynamic
tunneling technique for efficient training of multilayer perceptrons", IEEE
transactions on Neural Networks, Vol. 10, No. 1, pp. 48-55, 1999

11. Li Zhang, "Orthogonal least squares algorithm for radial basis function
networks and its comparison with multilayer perceptron networks", M.S.
Thesis, Computer Science Department, Oklahoma State University, 1998

12. C. Charalambous, "Conjugate gradient algorithm for efficient training of
artificial neural networks", lEE Proceedings, Vol. 139, No.3, pp. 301-310,
1992

47

-

13. R. A. Jacobs, "Increased Rates of Convergence Through Learning Rate
Adaptation", Neural Networks, Vol. 1, No.4, pp. 295-308, 1988

14. T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D. L. Alkon,
"Accelerating the convergence of the backpropagation method," Biological
Cybernetics, Vol. 59, pp. 256-264, 1988

15. Liya Wang, "Damped Newton method--an ANN learning algorithm", MS.
Thesis, Computer Science Department, Oklahoma State University, 1995

16. M. T. Hagan, and M. Menhaj, "Training feedforward networks with the
Marquardt algorithm", IEEE Transactions on Neural Networks, Vol. 5, No.6,
pp. 989-993, 1994

17. P. J. Werbos, "Beyond regression: New tools for prediction and analysis in the
behavioral sciences", Ph.D. Thesis, Harvard University, Cambridge, MA,
1974

18. Christopher M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press Inc., 1995

19. M. Hestenes, Conjugate Direction Methods in Optimization, Springer-Verlag,
1980

20. Meishan Cheng, "A survey and comparison for conjugate gradient methods
for optimization", M.S. Thesis, Computer Science Department, Oklahoma
State University, 1993

21. L. E. Scales, Introduction to Non-linear Optimization, Springer-Verlag, 1985

22. Jorge Nocedal, Stephen Wright, Numerical Optimization, Springer-Verlag,
1999

23. Loyce Adams, J. L. Nazareth, "Linear and nonlinear conjugate gradient­
related methods", Soc. for Industrial and Appl. Math., 1996

24. M. J. D. Powell, "Some convergence properties of the conjugate gradient
methods", Mathematical Programming, 11 (1976) 42-49

25. M. J.D. Powell, "Restart procedures for the conjugate gradient methods",
Mathematical Programming, 12 (1977) 241-254

26. D. F. Shanno: "Recent advances in numerical techniques for large-scale
optimization", Neural Networks for Control, Miller, Sutton and Werbos, eds.,
Cambridge MA: MIT Press, 1990

48

27. P. Baldi and K. Hornik, "Neural networks and principal component analysis:
learning from examples and local minima," Neural Networks, Vol. 2, pp. 53-
58, 1989

28. D. R. Hush and J. M. Salas, "Improving the learning rate ofbackpropagation
with the gradient reuse algorithm," IEEE International Conference on Neural
Networks, Vol. 1, pp. 441-447, 1988

29. UCI Machine Learning, URL: http://www.ics.uci.edu/~mleam/MLSummary.html, U.
California-Irvine

30. R. Fletcher and C. M. Reeves, "Function minimization by conjugate
gradients," The Computer Journal, Vol. 7, pp. 149-154, 1964

31. M. F. McGuire and P. Wolfe, "Evaluating a restart procedure for conjugate
gradients", Report RC-4382, IBM Research Center, Yorktown Heights, 1973

32. Lutz Prechelt, PROBEN1-A Set ofNeural Network Benchmark Problems and
Benchmarking Rules, Technical Report 21194, University Karlsruhe, 1994,
file /pub/neuron/proben1.tar.gz, available via anonymous ftp from
ftp.ira.uka.de

33. H. P. Crowder and P. Wolfe, "Linear convergence of the conjugate gradient
method", IBM Journal of Research and Development, 16(1972) 431-433

34. F. Rosenblatt, Principles ofNeurodynamics, Washington D. C.: Spartan Press,
1961

35. R. P. Brent, Algorithms for Minimization Without Derivatives, Englewood
Cliffs, N.J., Prentice-Hall, 1972

36. W. C. Davidon, "Variable Metric Method for Minimization", Technical
Report ANL-5990 (Rev.), Argonne National Laboratory, November 1959

37. Kenneth Levenberg, "A Method for the Solution of Certain Non-linear
Problems in Least Squares", Quart. J Math., 1943

38. D. W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear
Parameters", Soc. for Industrial and Applied Math., Vol. 11, No.2, 1963

39. H. D. Block, B. W. Knight, Jr. and F. Rosenblatt, "Analysis of a Four-Layer
Series-Coupled Perceptron. II", Reviews of Modern Physics, vol. 34, pp.135-
142, January 1962

49

'•
\

VITA

Guoping Miao

Candidate for the Degree of

Masters of Science

Thesis: A COMPARISON OF BACKPROP AGATION AND CONJUGATE
GRADIENT ALGORITHMS FOR EFFICIENT TRAINING OF MULTI­
LAYER PERCEPTRON NETWORKS

Major Field: Computer Science

Biographical:
Education: Graduated from Wuhan Urban Construction Institute, Wuhan, China

in 1990; received Bachelor of Engineering. Complete the requirements for
the Masters of Science degree with a major in Computer Science at
Oklahoma State University in December 2002.

Experience: Construction Engineer in Nanjing Chemical Industrial Company
from 1990 to 1997; Computing and Information Service Lab Assistant,
Oklahoma State University, January 1999 to October 2000; Member of
Scientific Stuff, Nortel Networks Inc., Dallas from November 2002 to
present.

