
A COMPARISON OF BACKPROPAGATION AND 

CONJUGATE GRADIENT ALGORITHMS FOR 

EFFICIENT TRAINING OF MULTI-

LAYER PERCEPTRON 

NETWORKS 

By 

Guoping Miao 

Bachelor of Science 

Wuhan Urban Construction Institute 

Wuhan, Hubei, P.R. of China 

1990 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
December, 2002 



A COMPARISON OF BACKPROPAGATION AND 

CONJUGATE GRADIENT ALGORITHMS FOR 

EFFICIENT TRAINING OF MULTI-

LAYER PERCEPTRON 

NETWORKS 

Thesis Approved: 

~':.., ·.:' 

: "~f~-~·lj(( .. /-f:·~~~ \~' 

.( 

Dean of the Graduate College 



PREFACE 

The popularity of the multi-layer perceptron neural network (MLP) has been 

growing rapidly and it is used in many real world applications. Although the 

backpropagation algorithm has successfully been used for training very many multi-layer 

perceptron networks, the traditional backprogation methods are considered inefficient. 

Recently there has been much work to let multi-layer perceptron networks take advantage 

of modem numerical optimization techniques. These non-linear optimization methods 

originated from about the early 1960s. A milestone of non-linear optimization was the 

publication of the paper by Fletcher and Powell. Since then, non-linear optimization 

technology has been extensively understood for about four decades and widely applied to 

both academic and industrial fields. Many numerical methods have been applied to train 

MLP networks. In real applications, global optimization, memory requirements, speed 

etc., are still problems, even though today computer technology provides the huge size of 

memory and capacity of high speed and parallel computing which make training MLP 

networks with non-linear optimization methods possible and efficient. Recently there are 

some new developments in the steepest descent family, such as effective backpropagation 

training with variable stepsize. This paper presents a comparison ofbackpropagation and 

conjugate gradient algorithms for efficient training of multi-layer perceptron networks. It 

will explore and analyze some related algorithms in this area and compare the different 

methods for speed and storage requirements. 
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CHAPTER 1 

INTRODUCTION 

1.1. What are artificial neural networks? 

An artificial neural network (ANN) is a mathematical model, a family of 

parameterized functions for fitting data. The most fundamental component of ANNs is a 

large number of interconnected artificial neurons, which are modeled to some extent after 

the structure of human brain. Biological neurons and the multiple connections between 

them are an integral part ofbrain function. The structure ofbiological neurons is very 

complicated. The ANNs try to simulate only the most basic functions of the biological 

neurons. There are two major similarities between biological and artificial neural 

networks, the building blocks (processing units) and the connections (functions) between 

the units [1][2]. 

The history of ANNs is a legacy. Some fundamental and conceptual work for the 

field of networks appeared in the late 19th and early 20th centuries [2]. It's hard to tell 

who is the father of this technology. Many creative individuals from various fields 

contributed to the foundation of ANN. The field has grown rapidly since the beginning, 

but there were setback in 1960s and 1970s due to lack of technical support. This will be 

explained in section 2.3. In the1980s, research in neural networks recovered and 

increased surprisingly. 

Now ANNs have been widely used in many fields, including electronics, 

manufacturing, medical, financial, engineering, etc. ANNs are mostly applied in 
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prediction, classification, data association, data conceptualization, and data filtering. The 

computing mechanism of ANNs associated with learning rules is different from 

traditional methods. ANNs are considered as an important part of the advanced 

generation of modern computing technology. There are three principal kinds of neural 

networks, perceptrons, Hamming networks, and Hopfield networks. Hamming and 

Hopfield networks are not discussed in this paper. 

1.2. Single perceptron networks and their weakness 

The perceptron network is the first application of ANN. Rosenblatt introduced 

the perceptron network in the late 1950s [3][39]. The single perceptron network with its 

learning rule indicates the potential ability of ANNs to solve classification and pattern 

recognition problems. Although it's a simple model, it built the foundation of ANNs and 

triggered a great deal of interest in ANN research. The following is an abbreviated 

notion of a single perceptron network: 

n 

a= v(wr +b) 

The inputs and outputs are represented by vectors r and a, respectively. Each of 

the inputs ri is multiplied by a connection weight Wj. The summed products plus the bias, 

denoted as the net inputs (n), are fed to the transfer function (v) to generate the desired 

outputs. 
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In 1960s, Widrow and Hoff introduced the ADALINE network, and a learning 

rule they called the LMS (Least Mean Square) algorithm [ 4]. Unfortunately, it was later 

shown that the single perceptron network could solve only linearly separable 

classification problems [6]. Both Rosenblatt and Widrow intended to overcome this 

problem and proposed multi-layer perceptron networks [ 4][34]. 

1.3. Multi-layer perceptron and the backpropagation (BP) algorithm 

The structure of a multi-layer perceptron network is a combination of single 

perceptrons. Generally each layer takes the output of previous layers as its input and 

gives its output as the input to the next layer. We will take Hagan's abbreviated notation, 

such as R-S 1-S2 
..• sn, to represent ann-layer MLP network [2]. The following graph is an 

example of a four-layer, 3-4-3-2, perceptron network: 

Input layer Hidden layer(s) Output layer 

A multi-layer perceptron network contains one input layer, one output layer, and 

as many hidden layers as desired. One or two hidden layers are commonly used. The 

transfer functions could be any kind of mathematical functions. The multi-layer 

perceptron overcome the limitation of single perceptrons, which had no hidden layers. It 
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can be used to solve very complicated problems. Hornik, Stinchcombe, and White have 

shown that three-layer networks with sigmoid transfer functions in the single hidden layer 

and linear transfer functions in the output layer can approximate any function to any 

degree of accuracy, if the hidden layer has a sufficient number of processing units [ 5]. 

The following graph depicts the sigmoid transfer function. Later in Chapter 5, I'll apply 

this network model to several test problems. 
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Sigmoid function f(x) = 1/(1 +e-x) 

Rosenblatt and Widrow just presented the idea of multi-layer perceptron 

networks. Regrettably, they were not able to show the power of this neural device since 

they didn't have any algorithms to train MLP networks. Unfortunately neural network 

research was stuck for a time. Many people doubted the capacity and the future of the 

ANN. They quit their research on neural networks and went to other areas [6]. 

In the 1980s, the appearance of the backpropagation algorithm by David 

Rumelhart, Geoffrey Hinton and Ronald Williams [7] was a breakthrough in ANN 

research. ANNs stepped into a new stage. The backpropagation algorithm significantly 

affected the whole neural network world. Many methods based on the backpropagation 

algorithm have been developed in the last two to three decades. 

4 

L 



CHAPTER2 

LITERATURE REVIEW AND PROBLEM STATEMENT 

2.1 Literature review 

2.1.1 Steepest descent algorithm 

A very important part of the ANNs is to find algorithms to train the neural 

networks, in other words, to optimize the error functions of the networks iterately. One 

basic method is called steepest descent. Suppose there is an error function f(x). We 

wish to find a value ofx which minimizes f(x). We start from a chosen initial guess, 

x0 , and then update x0 in stages according to the equation 

(2.1) 

where a is a positive scalar (the learning rate), and p k is the search direction. For our 

objective, we must follow the direction which makes the value of f(x) smaller. There 

are many such directions. The direction in which the function decreases most rapidly is 

the negative of the gradient. Therefore a vector which points to the steepest descent 

direction is 

Pk = -gk · (2.2) 

Combining this to equation (2.1) produces the method of steepest descent 

5 



2.1.2 Standard backpropagation (BP) algorithm 

The multi-layer perceptron networks were not able to show their potential ability 

without a good training algorithm until the discovery of the backpropagation (BP) 

algorithm. The BP algorithm was a breakthrough in training multi-layer networks. It is a 

generalization of the LMS (Least Mean Square) algorithm, an approximated steepest 

descent algorithm, in which an estimated gradient is used. In most perceptron 

applications, we choose to minimize the squared error, 

E = (t(k)- a(k))r (t(k)- a(k)) = er (k)e(k) (2.3) 

where a is a vector of outputs from the ANN and t is a vector of corresponding target 

outputs (output data). k is an index to a particular exemplar (data point) consisting of an 

input vector and an output vector t(k). 

The approximate steepest descent algorithm is as follows: 

(2.4) 

b m -bm 8E/ 
k+l- k -a jab; (2.5) 

where as before w is the weight vector and b is the vector of biases. 

By applying the chain rule, we obtain 

(2.6) 

b m bm m 
k+I = k -as (2.7) 

Here a is the learning rate, sm = a%nm is the sensitivity ofV to a change in the net 

input at layer m, V is a vector of transfer functions, and n is a vector of net inputs (sum of 

weighted inputs). 
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Now by using other applications of the chain rule, we obtain equations (2.8) and (2.9) for 

the hidden layers and the last layer, respectively, and can compute the sensitivity of layer 

m: 

• m 
Sm =V (nm)(wm+I)Tsm+l (2.8) 

• M 

SM = -2V (nM )(t -a) (2.9) 

where Vis the first order derivatives of the transfer functions. To compute derivative of 

the mth layer's transfer function, we only need the weights and the sensitivity of the 

(m+l)th layer. The term backpropagation originated from this process ofbackward 

propagation of derivatives through the MLP. 

BP needs one forward and one backward calculation in each iteration to update 

the weights and biases. Obviously, it is very straightforward and easy to calculate. This 

idea, along with the availability of powerful new computers, also makes scaled parallel 

computing possible [8]. 

Multi-layer perceptron networks trained with the backpropagation algorithm broke 

the limitation of one-layer perceptrons [7]. MLP can solve the XOR problem that the 

simple perceptron could not, and are the most popular form of ANN being applied today. 

2.1.3 The drawbacks ofthe backpropagation algorithm 

Despite BP's effectiveness, many researchers found this algorithm's rate of 

convergence was too slow for the technique to be used practically. "Although BP 

training has been proven to be efficient in many applications, it uses a constant stepsize, 

its convergence tends to be very slow and it often yields suboptimal solutions" [9]. Many 

other researchers believed this, and tried to make some progress on it (detailed in the next 
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section). Li Zhang's paper [11] showed some solid examples in which the 

backpropagation algorithm [8] had trouble in some cases for multi-layer perceptron 

networks in function approximation problems. He further mentioned that BP training 

was very slow and sometimes had convergence problems. Due to its fixed learning rate, 

the training speed is limited. Why does this happen? Basically, the BP algorithm does 

not have a sound theoretical basis and can be inefficient and unreliable [12]. This 

problem will be discussed in detail in Chapter 3. 

2.1.4 Improvement ofthe BP algorithm 

During the last three decades, many researchers made efforts to overcome this 

kind of problem. Some progress has been made. The major two early advances were BP 

with momentum [13], and BP with adaptive learning rates [14]. For BP with momentum, 

a momentum coefficient y, ( 0 s r s 1 ), is used to smooth out the oscillation of the 

trajectory when a larger value of learning rate a is applied. Adaptive BP tries to adjust 

the learning rates through different regions. If the error decreases, the learning rate is 

increased; if the error increases, the learning rate is reduced. But BP with momentum and 

BP with adaptive learning rates are not reliable due to the use of the heuristic factors. 

The most recent achievement is BP with variable stepsize (BPVS) [9]. It achieves the 

basic requirement of dynamic tuning without any heuristic factors. 

2.1.5 Numerical optimization methods 

Unfortunately, the improvement ofBP is very limited [2][12][15][16]. In the last 

decade, numerical optimization techniques have been successfully applied to train multi­

layer perceptron networks. These techniques include Newton's method (NT), the Gauss­

Newton method (GN), the Levenberg-Marquardt method (LM), and conjugate gradient 
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methods (CG) [21]. All of these methods significantly improved the speed of multi-layer 

perceptron training in different aspects, but generally speaking, each of them has 

advantages and disadvantages when compared to the others. 

For the function f(x) of section 2.1.1, we want to find a local minimum efficiently 

(Finding the global minimum is a difficult problem that can be attacked by carrying out 

local minimization from many pseudorandom starting points.). Based on the second-

order Taylor series, Newton's method starts from point x0 and uses the second-order 

Taylor series expansion of f(x) at x0. This yields a quadratic approximation F0 (x) of 

f(x) about x0. Newton's method always reaches the minimum of a quadratic function in 

one step. If the function, f(x), is quadratic, we have the following equation to find the 

mm1mum: 

(2.1 0) 

where His the Hessian, the matrix of second derivatives ofj{x) with respect to x, 

a2 a2 
f(x) 

a2 
f(x) ~f(x) ax,ax2 ax,axn !X, 

a2 
f(x) 

a2 a2 
f(x) H= ax2ax, ~f(x) ax2axn !X2 

a2 
f(x) 

a2 
f(x) 

a2 
axnax, axnax2 ~f(x) !Xn 

The step vector ~x = xk+I - xk is computed by solving the linear system H~x =-g. We 

don't need to compute the inverse of the Hessian matrix. 

If f(x) is not quadratic, Newton's method computes a sequence of estimates that 

may lead toward the minimum. The minimum point x 1 of F0 ( x) is supposed to be the 
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next estimate of the minimum point of f(x). Repeating this process yields successive 

estimates x 1,x21 x 3 .• . , which should gradually approach the minimum point off{x), and, if 

all goes well, finally converge to that point with the desired accuracy. Newton's method 

therefore can be considered as a method based on successive minimization of the 

quadratic functions F0(x), F; (x),F2 (x),F3 (x), .... , each of which is an approximation of 

f{x). 

Newton's method is known as a fast method, but it has two big problems. First, 

unlike the method of steepest descent, convergence is not guaranteed for Newton's 

method unless the starting point is sufficiently near a local minimum ofj{x). It could 

possibly oscillate, or even diverge [2]. Second, as indicated in the Eq. (1.1 ), we need to 

compute the Hessian matrix in each iteration. For low or moderate dimensional variable 

space problems, this is a good tradeoff, but it is worse for high dimensionality, since it 

requires a lot of computation and 0( n 2 ) storage (n is the number of variables over the 

variable space, that is, the number of components in the x vector.) . Unfortunately, the 

number of parameters involved in a multi-layer perceptron network is sometimes very 

large. Often hundreds to thousands of weights and biases are required. This makes 

Newton's method impractical in a large scale MLP. 

The Gauss-Newton method can be developed from Newton's method if the function 

is a sum of squares function as in equation (2.3): 

N 

E(x) = Ie;2 (x) = eT (x)e(x) (2.11) 
i=l 

Newton's method then would be: 

(2.12) 
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It can be shown that 

V'E(x) = Jr (x)e(x) 

V2E(x) = Jr (x)J(x) + S(x) 

Where J(x) is the Jacobian matrix 

aei (x) aei (x) 

ax! axz 
ae2 (x) ae2 (x) 

J(x) = ax! ax2 

aeN(X) aeN(X) 

ax! ax2 

and 

N 

S(x) = Ie;(x)V' 2e;(x) 
i=l 

aei (x) 

axn 
ae2(x) 

axn 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

For the Gauss-Newton method, the term S(x) is dropped. Generally, that's because if 

function E is expanded at a local optimum point x* for those points sufficiently close 

to x • , S( x) = 0 . However there do exist so-called "large residual least squares problem" 

in which S(x) is not small compared to Jr (x)J(x), and for which Newton's method has a 

neighborhood of convergence but the Gauss-Newton method has none. In addition, the 

Gauss_Newton method converges only linearly, if it converges at all, while Newton's 

method converges quadratically. Liya Wang discussed this in more detail [15]. Then the 

Gauss-Newton method is: 

(2.17) 

The advantage of the Gauss-Newton method over the standard Newton's method 

is that it does not require the calculation of the second order derivative in S(x) (the 
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Hessian matrix H). It is less costly in computations. But the drawback of Newton's 

method that needs 0( n 2
) storage still remains for the Guass-Newton method. Also, there 

is something to worry about when we solve the linear system in (2.17), since the solution 

may not be unique. This problem can be overcome by the Levenberg-Marquardt method. 

The Levenberg-Marquardt method is a modification of the Gauss-Newton 

method. In case JT (x)J(x) is singular, the Gauss-Newton method can be changed to 

equation (2.18) [13]. 

(2.18) 

where diag() is the diagonal part of a matrix and the parameter A is an adjustable 

coefficient which avoids the problem if JT (x)J(x) is not invertible. A is multiplied by 

some factor (v>1) whenever E(x) increases and divided by v whenever E(x) decreases. 

The Levenberg-Marquardt method removes some deficiencies of the Gauss-Newton 

method. The key procedure is to calculate the Jacobian matrix in which all terms are first 

derivatives of the error function with respect to each variable. This can be done by a 

simple modification to the standard backpropagation algorithm [16]. 

Both the Gauss-Newton (GN) and Levenberg-Marquardt (LM) backpropagation 

algorithms eliminate the calculation of second order derivatives, but they still need O(n2
) 

storage for the matrix JT (x)J(x). Although the rate of convergence ofNewton's 

method, the Gauss-Newton and Levenberg-Marquardt methods are quite rapid in most 

cases, they do require large storage compared to conjugate gradient (CG) methods, which 

do not have to approximate the Hessian matrix or the Jacobian matrix. The CG methods 

have an obvious advantage over the Newton, Gauss-Newton and Levenberg_ Marquardt 

12 



methods in that there is a much lower storage requirement when we deal with a very large 

number of weights and biases, O(n) versus O(n\ 

2.2 Problem statement 

2.2.1 Motivation and objective 

The steepest descent based methods and the modem numerical optimization 

methods (Newton, GN, LM, and CG) are two different computing categories for training 

MLP networks. Due to the advantages of the conjugate gradient method against the other 

numerical methods (section 2.1.4), we would like to know ifthe performance ofCG is 

better than BP. In addition, Magoulas, Vrahatis, and Androulakis proved that BPVS is 

much more efficient than BP [9]. I expect to prove that CG also has better performance 

than BPVS. This paper will focus on comparing the BP and BPVS algorithms with the 

CG algorithm. The 'restart method' proposed by Powell will be applied to the CG 

algorithm to make the CG method perform better. The purpose of this paper is to explore 

the theory and algorithms that train multi-layer perceptron networks, estimate the 

advantages and disadvantages of the various methods, and provide evidence and direction 

for future work. 

2.2.2. Paper organization 

Chapter 1 has already briefly reviewed some concepts of artificial neural 

networks, what multi-layer perceptron networks are suppose to do and why 

backpropagation is prevalent. These are the basics of the following chapters. Chapter 2 

talks about the current research, and indicates the problem we are going to focus on. 
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Chapter 3 provides a detailed discussion about why the standard BP algorithm is 

not an efficient algorithm for MLP training. 

In Chapter 4, the BPVS algorithm, and its limitations will be introduced. 

Then I'll describe in Chapter 5 the CG algorithm in detail and discuss why CG is 

better than BP. 

In Chapter 6, five different examples (the XOR problem, two function 

approximation problems from Li Zhang's M.S. thesis, and two real problem simulations 

from the UCI repository) will be implemented by computer programs. This provides the 

numerical data for Chapter 7, which compares and analyzes those data to make a 

decision. 

Finally, I'll draw conclusions in Chapter 8 and predict some future work. 

14 
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CHAPTER3 

ANALYSIS OF THE BACKPROPAGATION ALGORITHM 

The backpropagation algorithm is the cornerstone of training MLP networks. 

However, many people believe it is not a good algorithm. As previously mentioned, the 

BP algorithm moves a suitable distance along the negative gradient in each iteration to 

decrease the error E. The intrinsic nature of steepest descent, which is also called 

gradient descent, determines the behavior of the BP algorithm. In the batch version of 

BP, which is just steepest descent, we start with some initial guess for the weight vector 

(which is often chosen pseudorandomly near the origin) denoted by w o. We then go 

downhill and consequently update the weight vector. The direction of the greatest rate of 

decrease for the error is the direction of the negative gradient. Therefore, we move a 

short distance along the negative gradient, at iteration k, evaluated at w k : 

(3.1) 

the coefficient a is called the learning rate. If the value of a is sufficiently small, the 

value of errorE will decrease in each iteration, finally leading to a weight vector at which 

the following condition is satisfied: 

(3.2) 

The problem is that, if the value of a is too small, it will take a long time (many 

iterations) to converge. We need to speed up in order to make the procedure efficient. 

15 
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However, if a is too large, oscillations will occur, and the algorithm may overshoot, 

leading to an increase in E and possibly to divergence. The following figures illustrate 

the problem in an error surface E for a two-dimensional weight space. Figure 3.1 depicts 

the trajectory with small a. In Figure 3.2, when the value of a is too large, the trajectory 

gets unstable. 

I 
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Figure 3.1 
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Figure 3.2 

A little more should be mentioned here. In Figure 3.3, the contour line of a quadratic 

function is very elliptical. In other words, the eigenvalues of the Hessian matrix of E are 

much different, Amax >> Amin. The BP algorithm has to take many small steps to move to 

the minimum. (More will be discussed in Chapter 4.) 

Figure 3.3 
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In the general case, the error functions are not quadratic. The shape of the error 

surface might be very contorted. Hagan shows an example in his textbook [2] in which 

the error function has only two parameters (Figure 3.4). 

10 1$ 

Figure 3.4 

In this example, we have to choose a very small a to avoid oscillation in the steep valley, 

but this will take an extremely long time to go through the relatively flat region. 

Obviously, the BP algorithm is not able to solve this kind of problems efficiently. The 

ideal algorithm is to have a small a when the error surface is very steep; a large a, 

otherwise. 

17 



CHAPTER4 

BACKPROPAGATION WITH VARIABLE STEPSIZE ALGORITHM 

4.1 Backpropagation with variable stepsize (BPVS) algorithm 

The standard BP algorithm is not able to fulfill the requirement that the different 

performance index surface regions should have different learning rates. Many researchers 

tried to look for new approaches to improve the BP algorithm. Many papers have been 

published in recent years. The effective backpropagation training with variable stepsize 

algorithm [9] is a new achievement of a steepest descent based algorithm. The algorithm 

shows good performance without any heuristic factors and satisfies the basic requirement 

for MLP network training. 

The BPVS method is a modified steepest descent algorithm. The idea ofBPVS is 

to tune the learning rate dynamically in each iteration. Its convergence is guaranteed by 

applying estimates of the Lipschitz constant, obtained without additional error function 

and gradient evaluations [9]. 

When we train the network through a training set, we get the performance index: 

1 R N 
2 

R 

E =-IIca, -t,) =IE, 
2 r=l j=l r=l 

(4.1) 
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where (a -t) 2 is the squared difference between the actual output value ar at the fh 

output layer neuron for pattern r and the target output value t r , and r is an index over 

input-output pair exemplars. 

The BPVS algorithm is based on three assumptions regarding the error surface E 

[ref.9]. For simplicity, I omit the assumptions here (it does not further affect our 

discussion). We need to keep in mind that equation (4.2) must be satisfied. 

11 VE(n- VE(l) lis K 11 ~-111 (4.2) 

In the above equation, K is the Lipschitz constant. l;, y E w, w is in the region 

x(w0) which contains wo, and all E(w) < E(w 0 ). 

We can apply theorem 1 of Armijo [9] to obtain the new weight. Then we update 

the equation using the Lipschitz constant. 

wk+l =wk -0.5K-1VE(wk), k=0,1,2 .... (4.3) 

R 

where VE(wk) = IVEr(wk) (4.4) 
r=l 

This is useless because the constant 0.5K -1 is unknown before each iteration. For our 

purpose, we need a large 0.5K -J to speed up convergence. But, if 0.5K -1 is too large, 

convergence cannot be guaranteed. To solve this problem, we always use a small stepsize 

at the beginning and then tune it in each epoch. This can be done by the steps based on 

Armijo's theorem. 

Armijo 's Theorem 2 [9]. Suppose that 'l]o is an arbitrary assigned positive 

number and consider the sequence 17m = ry021-m, m=l,2 .... Then the sequence of weight 

vectors {wk} ~ defined by 
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W k+l = W k - T/mk V E(w k ),k = 0,1,2 ..... (4.5) 

where mk is the smallest positive integer for which: 

(4.6) 

converges to the point w * which minimizes the error function E. 

At this point, the BPVS algorithm has been outlined. We need to make it 

practical to solve MLP training problems. 

As mentioned before, BPVS is a modification of the steepest descent algorithm. 

At each iteration of the steepest descent procedure, the values of the weights are modified 

in the direction in which the error function, E, decreases most rapidly. Along with the 

direction,- V E(w k ), BPVS uses a local approximation of the Lipschitz constant Lk to 

estimate the stepsize 0.5 k-1 at each epoch. Recall the assumption we made before 

(equation (4.2)). We obtain the Lipschitz constant Lk as follows: 

(4.7). 

This overcomes some drawbacks of Armijo's theorem 2 and reflects all the local 

information regarding the direction and the stepsize. But this does not mean that 

Armijo's theorem 2 could be ignored. We still need to apply Armijo's theorem 2 in some 

circumstances to guarantee convergence. The main idea is that if the stepsize 0.5 L:1 is 

very small, we should increase the stepsize by doubling it; on the other hand, if the 

stepsize 0.5 L:1 is too long and the successive steps in weight space do not satisfy 

equation (4.6), then we need to decrease the stepsize. This is the elegant point of the 

BPVS algorithm. It's very simple, but powerful in two aspects. First, Armijo's theorem 
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2 guarantees convergence. Second, 0.5 L:' is sensitive to the local shape of the error 

function. If it needs to, the step size speeds up by doubling itself. This behavior is 

different from other algorithms, such as the standard BP which has a fixed stepsize, or 

adaptive BP which increases the stepsize using some heuristic factors. BPVS is 

especially helpful when training with a very flat error surface region. 

The BPVS algorithm is summarized as following: 

Initialization: Set the epoch k=O, the weights w0 to real pseudorandom values, 

the stepsize to a small value 'lo, the error tolerance to!, the minimum 

stepsize A..min, the Lipschitz constant Lk =1, the number of tuning tk = 1. 

Step 1: Compute the error E, and the gradient of E, for all input-

output pairs through the training set, r E [1, R]. Compute the local 

approximation Lk of the Lipschitz constant, according to Eq (4.7). 

Compute 'lo = 0.5L:'. If 'lk > A..min, go to the next step; otherwise set 

tk = tk + 1, 'h = lh2 1
k _, and go to the next step. 

Step 2: IfEq. (4.6) holds, set mk = 1 and go to step 4; otherwise, set 

mk = mk + 1,tk = 1, and go to the next step 

Step 3: Set 'lk = 770 21
-mk and return to Step 2 

Step 4: Update weights according to w k+J = w k - 'h 'V E( w k), where 
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R 

VE(wk)= IVE,(wk) 
r~l 

Step 5: If E(w k+l) >tal, set k= k+ 1, go to Step 1; otherwise 

stop 

4.2 Drawbacks ofBPVS algorithm 

The BPVS algorithm is not good enough yet. Although the performance of the 

BPVS algorithm has been proven to be much better than standard BP, BP with 

momentum, and adaptive BP [9], it is still a steepest gradient-based algorithm. The 

dynamic tuning approach follows the negative gradient direction to adjust the learning 

rate in each iteration. So, the BPVS algorithm has a more suitable learning rate than the 

other methods (constant learning rate, or learning rate with heuristic factors, etc.). This 

learning procedure is similar to steepest descent with a line search (SDLS). First, both of 

them follow the negative gradient direction in each iteration. Second, following the 

specific direction, they try to make the stepsize as large as possible. The ideas are same. 

But the approaches they take are totally different. SDLS uses a line search method which 

looks for the minimum point in each direction. We'll talk about this line search method 

in detail in Chapter 5. BPVS, on the other hand, evaluates the local information of 

direction and stepsize to estimate the optimal stepsize. This approximation is based on 

Armijo's theorems to guarantee convergence. It's hard to say which method is more 

efficient now. Basically they should have similar rates of convergence. I'll implement 

BPVS and SDLS on various examples to see their performance. SDLS could have more 
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additional error function evaluations than BPVS, but only by a constant factor, the 

average number of evaluations per line search, which is rarely large. 

Broadly speaking, the tuning behavior ofBPVS and SDLS is very negative. The 

critical reason is the learning directions. Both BPVS and SDLS cannot avoid the 

limitation of the direction of the negative gradients. Return to the example we discussed 

in the last chapter. In Figure 3.3, the contour line is very elliptical. At most points on the 

performance index surface, the local gradient does not point directly toward the minimum 

point. The training procedure contains many small steps. Certainly, it is not an efficient 

way if we move along this trajectory. This is not a special case. Any general function 

could be locally approximated as a quadratic function. And if the curvature of this 

approximating quadratic function varies greatly with direction, the convergence will be 

very slow in that region. This essentially affects the entire performance. 

There is another area in which the BPVS algorithm as given in [9] is deficient. 

That is the convergence criterion. 

The terminating condition is a very important aspect of training neural networks. 

One idea that is often used is to stop the training when the value of error function is less 

than or equal to a given tolerance: 

E(w k+l) >tal (4.8) 

where w is the vector of variables. The stopping criteria ofBPVS algorithm falls into this 

category: 

Step 5 : If E(w k+l) >tal, then continue iterating 

This is a very poor idea, though. Ordinarily the user has no idea how large tal 

should be, especially for a large-scale problem, and simply wants to go to a local 
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minimum of E(w). A criterion such as Step 5 would never be used by a professional in 

the field of optimization. Instead, an absolute criterion on the step size 

II w k+l - w k II~ abstot (4.9) 

would be used, or a relative criterion: 

II w k+l- w k II~ reltol*ll w k II (4.10) 

or a combination of the two: 

II w k+l - w k II~ abstol + reltol* II w k II (4.11) 

where , abstol and reltol stand for absolute and relative tolerance, respectively. The 

expression ( 4.11) is the most general one. If abstol is equal to zero, the formula is 

essentially a variation of ( 4.1 0). Under this circumstance, we say if the relative change in 

each component of the vector w is less or equal to reltol on any iteration, then 

convergence is assumed. Later in the testing program, this criteria will be applied. 

Similarly, formula ( 4.9) is defensible. But ( 4.8) is irretrievably worthless. 

We have to reconsider the learning direction of the procedure in order to eliminate 

the limitation of the steepest gradient direction. It would be nice if most of the points on 

the error surface have directions as close to the local minimum as possible. 
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CHAPTERS 

NUMERICAL OPTIMIZATION AND CONJUGATE GRADIENT ALGORITHMS 

5.1 Line search 

Because the line search concept forms the basis for the conjugate gradient 

algorithm, let's talk about it first in this section. To train a multi-layer perceptron 

network, we just take a sequence of steps through the weight space. A good algorithm 

should consider two aspects of each of these steps. One is the direction in which we are 

going to move along, and the other is the pace we move in that direction. Both of these 

must be optimal or nearly optimal for an efficient learning algorithm. With the steepest 

descent backpropagation algorithm, the direction of each step is determined by the local 

negative gradient of the error function, and the step size is given by an arbitrary learning 

rate parameter (either constant or with heuristic factors). For the conjugate gradient 

algorithm, we need to reconsider both aspects. The line search method is applied in 

determining the value of the learning rate. The concept of line search comes from the 

procedure in which, for a particular search direction in weight space, we find the 

minimum of the error function along that direction. 

5 .1.1 Line search 
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Suppose that at step kin some algorithm the current weight vector is w k, and we 

consider a particular search direction p k through weight space. The optimal value for the 

weight vector along the search direction is then given by the expression 

(5.1) 

where the parameter a k is chosen to minimize 

(5.2) 

This means once we have chosen the search direction, we could get the minimum 

point (and also set the optimal stepsize) by evaluating the value of the error function 

E(ak) with a single parameter ak. Hush and Salas have shown a simple approach in 

their paper to complete this procedure [28]. This method is to proceed along the search 

direction in small steps if the error function at each new position decreases, and stop 

when the error starts to increase. 

The derivative ofEq.(5.2) with respect to ak, for a quadratic function E(w), can 

be shown to be 

(5.3) 

a k is chosen to minimize E( a k) by setting this derivative equal to zero. We obtain 

V'E(w)T iw=wk Pk 

prv 2 
E(w) lw=wk Pk 

= 

where Hk is the Hessian matrix evaluated at point w k : 

For a quadratic function, His the same everywhere. 
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5.1.2 Non-linear search and golden section method 

Non-linear optimization is concerned with methods for locating the minimum or 

maximum of a non-linear function of any number of independent variables. For a non-

quadratic function, Eq.(5.3) won't be applied. We need to have a general procedure for 

locating a local minimum of a function in a specific direction. There are many books and 

theories on non-linear optimization. We will combine function comparison and golden 

section search together [21]. Each line search proceeds in two stages, interval location 

and interval reduction. 

F(x) 
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5 .1.3 Interval location 
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The first step is to determine the interval within which the minimum is located. 

Since we always go downhill from the starting points, we assume that this minimum 
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exists and the value of function from the starting point will decrease. Figure 5.1 depicts 

the procedure. 

Suppose we start from point 'a1 '. For a given small distance, we evaluate 

function at the next point 'b1'. If F(a,) > F(b,), then we keep b1 as a2 , go to the next 

point b2 by doubling the distance, and evaluate the point 'b2 '. IfF( a;) > F( b; ), repeat 

the same procedure until an increase in the function evaluation occurs. The minimum 

point should be in the last two intervals, for example, [ a5 , b5 ] in this case [21]. 

5 .1.4 Interval reduction 

Figure 5.2 

Once the interval is determined, we need to know the minimum point within this 

interval. Because the accuracy of this location is not satisfied by the interval location 

procedure, the next step is interval reduction. Namely, narrow the interval till the desired 

accuracy is attained and the minimum is located. Scales has described this procedure 

briefly and clearly. The following graphic and algorithm are directly from Scales [21). 
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The search algorithm has been summarized by Scales as follows: 

Input a1 , b1 , to/ 

Set c1 =a1 +(1-r)(b1 -a1), Fe =F(c1) 

d1 =b1 -(1-r)(b1 -a1),Fd =F(d1 ) 

for k = 1,2, .... Repeat 

if Fe < Fd then 

ck+I = ak+I + (1- r)(bk+I - ak+I) 

Fd = Fc,Fc = F(ck+I) 

else 

end 

end until bk+I - ak+I <to/ 

Procedure LOCMIN ofR. P. Brent [35] is a much more efficient method of interval 

reduction than this one, but this will suffice for our purpose. 

5.2 Conjugate gradient method 

The basic idea of the line search minimization along a specific direction is to 

choose a suitable search direction at each stage of the algorithm. In the steepest descent 

method, the search directions are given by the local negative gradient at every point in the 
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error surface. This is not the best choice though. Because the gradient at the new 

minimum is orthogonal to the previous search direction, choosing successive directions to 

be the local gradient directions can lead to the problem already illustrated in Figure 3.3, 

in which the search oscillates in successive directions while making little progress 

towards the minimum. Figure 3.3 shows a trajectory with successive search directions 

orthogonal. It then takes many steps to converge, even for a quadratic function. That's 

also why we said the steepest gradient based algorithms typically proceeded very slowly. 

This idea led to conjugate gradient methods. 

Let's consider a quadratic function first. These two equations hold for a quadratic 

function: 

VF(x) = Hx+d 

V 2F(x) = H 

(5.6) 

(5.7) 

[30] A set of vectors {pk} is said to be conjugate with respect to a positive 

definite Hessian matrix H if and only if 

PiHp 1 = 0, k * j 

Then the change in the gradient at iteration k+ 1 is 

~gk = gk+I - gk = (Hxk+I +d)- (Hxk +d) = H~xk 

From Eq. (4.1) we have 

~xk =(xk+I-xk)=akpk 

Then we obtain the modification of the conjugacy condition 

akpiHp1 = ~xiHp1 = ~gip 1 = 0, k * j 
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This equation tells us that the search directions will be conjugate if they are 

orthogonal to the changes in the gradient. How does this affect our function optimization 

procedure? First, Scales, Gill, Murray and Wright have proved in their papers [21] that if 

we make a sequence of exact linear searches along any set of conjugate directions {p1, p2, 

.... , Pn}, then the exact minimum of any quadratic function with n parameters, will be 

reached in at most n line searches. For example, if we apply this method to the 2-D 

quadratic function we illustrated in chapter 3, we need at most 2 iterations. Second, we 

no longer need to compute the second order derivatives (the Hessian matrix H). These 

give us a lot of benefits. Our optimization algorithm will be based on this. 

5.3 The conjugate gradient algorithm for MLP training 

Suppose we wish to optimize a function F(x) and start at point x0. The procedure 

generates the sequence of points x1, x2, ... , Xn. For the conjugate gradient method, the 

first search direction, p0, is arbitrary. Usually we initialize p0 with the negative of the 

gradient, -g0 (we do not have to, though). The algorithm is described as follow: 

Step 0: [Initialization] 

Set k=1; x1 to a random point, cycle number m=O, to! 

Step 1: [Set the negative steepest descent direction] 

Calculate gk, set p k = -gk. (5.12) 

Step 2: [Line search] 

At step k, search along the line to determine the step length that minimize 

E(x). Compute stepsize ak using the line search methods (Interval 

location and Interval reduction). 
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Step 3: [Update the minimum point value in each iteration] 

(5.13) 

Step 4: [Stopping criterion] 

If II xk+l - xk II> reltol* II xk II, go to step 8, otherwise go to the next step. 

As mentioned in Chapter 4, for similarity, we use 

II xk+l - xk II> reltol* II xk II instead of II xk+l - xk II> abstol + reltol* II xk II, 

Step 5: [Restart procedure] 

If kmod n = 0, then set pk = -gk, m = m + 1,k = 1, go to step 1, otherwise 

go to the next step. 

Step 6: [Direction search] 

Determine the new search direction at the new minimum point, 

(5.14) 

where Pk+l is calculated according to one of the three expressions (see 

[21]): 

[Hestenes and Stiefel] (5.15) 

[Fletcher and Reeves] (5.16) 

[Polak and Ribiere] (5.17) 

Step 7: [Continue the m 1
h cycle] 

Set k = k + 1, go to step 3. 
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Step 8: [Stop] 

Set iterations m = m * n + k . 

These three expressions for fJ are actually three different conjugate gradient 

methods. There have been some attempts tried to determine which of these expressions 

for fJ is best, but no final conclusions have been reached [25]. Meishan Cheng declares 

in his M.S. thesis [20] that these various CG methods are relatively equivalent. It's 

believable so far. Later in our comparison, we'll apply the Fletcher-Reeves method. 

The conjugate gradient algorithm is a modification of steepest descent, but it is 

based on a sound theoretical foundation. So it is more efficient and reliable than the BP 

algorithm and its variations. And CG does not have any heuristic factors or Hessian 

matrix computation. It is more practical. 

In step 2, if a function is quadratic, step length is determined by the equation: 

(5.18) 

Line search method could be avoided. But generally, the least square error 

function of a multi-layer perceptron network is not a quadratic function. As mentioned 

before, if the function is not a quadratic function, Eq. ( 5 .18) cannot be applied to the 

algorithm. We need to search along the direction to get the minimum point. This 

procedure includes two parts: interval location and interval reduction. First, we need to 

search along the conjugate direction to determine the step length in each step (section 

5.1.3, 5.1.4). Second, the algorithm no longer is guaranteed to converge within n 

iterations. The solution for the second problem is somehow uncertain. It seems that 

many researchers agree to have a restarting procedure for general objective functions. 
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When Fletcher and Reeves first applied the conjugate gradient algorithm to numerical 

optimization problems, they also recommended restarting. In their approach, the 

conjugate gradient method uses the steepest descent direction as the new search direction 

every nor (n+ 1) iterations [30]. We call the Fletcher and Reeves conjugate gradient 

method with their restart procedure the Fletcher-Reeves general method. Powell has 

shown that, without restarts, a linear rate of convergence is usual when there are more 

than two variables [24]. Crowder and Wolfe also gave an example to show that without 

restarting, the rate of convergence of traditional CG methods can be only linear [33]. 

Some later versions have tried to improve on the Fletcher-Reeves general method. 

Powell discussed restart search directions and procedures further in his paper [25]. 

Indeed, Powell does not restart. He generates a better search direction (details will be 

discussed later). We call his restart method "Powell restart" later. 

For our purpose, we are going to apply the Powell restart method in our CG 

algorithm. We expect that this approach might have better performance than any steepest 

descent-based algorithm. 
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CHAPTER6 

CASE STUDIES AND PROGRAM DESCRIPTION 

6.1. Description of the program 

To support my points that have been discussed in the previous chapters, several 

numerical examples will be examined by a computer program. This program named 

BPCG is a collection of functions and subroutines written in standard FORTRAN 77. 

Five different algorithms will be tested in this program. Basically, I am going to focus on 

comparing backpropagation with a variable step size (BPVS) and conjugate gradient 

algorithms (CG). These two algorithms are the backbone of this paper. In addition, I'll 

take the backpropagation with a line search (BPLS), backpropagation with momentum 

(BPMOM) and quasi-Newton (QN) methods as options. This software mainly consists of 

three parts. 

6.1.1 The network design 

The strategy of neural network design is a really important factor of network 

training. As mentioned before, a three-layer network with a sigmoid function in the 

hidden layer and linear function in the output layer can solve any function approximation 

and classification problem. The three-layer network is the basic structure for this 

examination. But sometimes the functions in the hidden layer should be sigmoid 

functions since sometimes, for examples with normalized inputs and outputs, the network 

I 
__1 
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with sigmoid functions in both layers might perform better than that with sigmoid 

functions in the hidden layer and linear functions in the output layer. The number of 

nodes (neurons) in the output layer depends on the dimension of outputs of a specific 

example. The number of nodes in the hidden layer needs to be tested to make a decision. 

It's common to start from a network structure with a small number of nodes in the hidden 

layer. For example, in our Cancer problem which has 14 inputs and 3 outputs (see 

section 6.3, Numerical examples), we'll test the net structure of 14-3-3, 14-6-3,14-9-3, 

respectively. The code of setting up the network parameters refers to the program of Liya 

Wang's master's thesis [15]. But the -1 and 0 subscripts that Wang used have been 

eliminated by S. Nallarelli so that it can be accepted by some other FORTRAN 

compilers. Also, all the problems are tested with the two-layer network instead of just 

one output layer. 

6.1.2. The code of steepest descent-based algorithms 

The second part of the program is the implementation of BPVS, BPLS and 

BPMOM. BPVS is a steepest descent-based algorithm. We are concerned about BPVS's 

performance comparing not only to the conjugate method but also to the steepest descent 

category itself. Specifically, in this study, I'll implement BPLS and BPMOM. The 

comparisons to the modem numerical optimization methods will be discussed in the next 

section. The reason why the BPLS and BPMOM algorithms are chosen is that BPLS is 

the base method ofbackpropagation and BPMOM is a typical variation of 

backpropagation. BPVS adjusts the optimal step size dynamically based on a theoretical 

foundation. BPLS seeks the largest step size by using the line search method. The line 

36 



search method involved in the BPLS algorithm is the golden section method with which 

to determine the optimal step size in each iteration. Since both BPVS and BPLS try to 

make the step size as large as possible in each iteration, they are supposed to have close 

performance to each other in terms of the rate of convergence, except that BPLS needs 

more function evaluations. For the BPMOM algorithm, we select the momentum factor 

y=0.8 as is common. The step size, however, is not easy to select. It has to be tested to 

find an optimum value for different examples. The larger the step size is, the better, as 

long as it does not lead to divergence. 

6.1.3. The existing numerical optimization methods 

The third part is the implementation of the conjugate gradient and quasi-Newton 

methods. Standard, well-tested subroutines were used for these methods. The conjugate 

gradient algorithm uses the Fletcher and Reeves method with restarts in the negative 

steepest descent direction after ann+ 1 iterations cycle. In addition, I added the Polak­

Ribiere formula to the CG method since sometimes this method works well. There are 

four traditional conjugate gradient methods, Fletcher-Reeves, Polak-Ribiere, Beale­

Sorenson, and Perry [20]. For our purposes, we are not going to emphasize the difference 

among them here. Meishang Cheng has fully discussed the advantages and 

disadvantages of these four CG methods in his Master's thesis [20]. 

6.2. Numerical examples 
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In this chapter, I'll implement five examples to test the five different algorithms 

talked above. Generally speaking, they are either classification or approximation 

problems. 

The first example is a function approximation problem. It was examined by Li 

Zhang in his Master's thesis [ 11]. 

(6.1) 

This function approximation by backpropagation with line search algorithm indicated 

some problems, such as inaccuracy, slow rate of convergence, etc. [ 11]. The information 

ofthis example is as follows: 

Number of training Number 
Problem Type of problem Inputs Outputs data of test 

data 
f(xPx2) approximation 2 1 200 49 

The next three examples come from PROBEN1 of the real data depository [26]. They 

were also tested by Liya Wang in his Master's thesis [15]. These three examples are 

listed below: 

Number of training Number 
Examples Type of examples Inputs Outputs data oftest 

data 
Cancer Classification 9 2 175 125 

Building Approximation 14 3 200 150 

Heart Approximation 35 1 390 240 

The last one example is the traditional classification problem, XOR. 49 uniformly 

spaced points are chosen on the square with vertices ( -1,-1 ), ( -1,1 ), (1 ,-1 ), ( 1,1) 
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Number of training Number 
Examples Type of examples Inputs Outputs data oftest 

data 
XOR Classification 2 1 49 24 

6.3. The components of comparison. 

For our goal, we are going to compare the performance ofBP and CG algorithms. 

So the comparison shall focus on three major aspects, the rate of convergence, the 

stability, and the simulation accuracy. The rate of convergence is expressed by the 

number of iterations during the training phase. The accuracy is mainly measured by 

the value of the root mean square error (RMS). 
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CHAPTER 7 

RESULT ANALYSIS 

7 .1. Results of the experiment 

The following sets of data (number of updates of the weights and biases) are the 

test outputs of the program. Each of these tables is for one example, which is tested by 

five different algorithms in the same initial condition. The different initial guesses of the 

network parameters (weights and biases) may affect our test results. So, each example is 

tested under 10 different pseudorandom starting points. We will evaluate the average of 

them. The initial parameters are generated by a pseudorandom number generator, which 

is described in Liya Wang's program [15]. Also, each example is examined for two 

different networks since different network architectures may affect the training results. 

The network with better outputs (smaller sum of square errors) is chosen as the 

component of our comparison. This network is probably not the best one, but it does not 

affect the objective of comparing the efficiency of different training methods in this 

paper. 

Case 1: f(xp x 2 ) = ll(x1
2 + x~ + 1), Number of examples=200 

Table 1.1. Function approximation with a 2-2-1 network, 

Seeds-> I 17 21 27 40 45 66 78 81 96 Average 

BPLS epoch 1163 1026 1088 1007 1031 1170 1248 1105 1144 1058 1104 

BPM epoch 1010 1186 826 1103 1030 1314 1525 1227 1001 1443 1167 
OM stepsize 0.3 
BPVS epoch 1031 1185 1059 1047 1094 1120 1314 1140 1412 1325 1173 
CG epoch 81 66 101 131 101 64 Ill 86 101 88 93 

QN epoch 67 75 118 150 76 61 132 106 135 84 100 
Note: Global rmmmum ofRMS=0.0303 
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Table 1.2. Function approximation with a 2-4-1 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 

BPLS epoch 1641 1754 1424 1216 1182 1098 1196 1129 1270 1012 1292 

BPM epoch 1245 1369 1291 1086 1130 1162 1069 1094 981 1030 1146 
OM stepsize 0.3 
BPVS epoch 1661 1714 1294 1023 1173 1165 1408 1062 972 1034 1251 
CG epoch 244 200 150 379 181 337 235 289 363 253 263 

QN epoch 176 269 165 344 288 336 311 264 371 331 285 
.. 

Note: 1. Global nummum ofRMS=0.0295 

Case 2: Number of examples=175 

Table 2.1. Cancer problem with a 9-2-2 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 1437 1091 1119 1000 1013 977 1396 1109 1549 1105 1180 
BPM epoch 1910 2027 1960 1693 1711 1824 1944 1797 1824 1981 1860 
OM step size 0.5 
BPVS epoch 1175 1016 1058 1023 1022 977 944 1023 1333 1051 1062 
CG epoch 89 51 88 83 74 119 147 93 174 137 105 

QN epoch 97 63 184 113 55 94 114 89 137 173 102 
Note: Global mm1mum ofRMS=0.1491 

Table 2.2. Cancer problem with a 9-4-2 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 1157 1412 1373 1158 1106 1151 1159 1473 1558 1105 1265 
BPM ~och 1498 1522 1519 1477 1459 1513 1320 1479 1417 1475 1468 
OM step size 0.45 
BPVS epoch 1236 1174 1193 1204 1189 1359 1211 1210 1328 1173 1227 
CG epoch 85 103 52 123 300 80 62 71 149 60 108 

QN epoch 81 145 48 146 245 70 98 106 106 67 111 

Note: Global nummum ofRMS=O.l488 

Case 3: Number of examples=200 

Table 3.1 Building problem with a 14-3-3 network 
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Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 1817 1879 2205 1813 1915 2766 1987 2941 2441 2673 2244 

BPM epoch 1741 2483 1951 2156 2043 2265 2346 3118 2732 2442 2328 
OM stepsize 003 
BPVS epoch 1632 1993 2309 2143 1982 2399 2077 2977 2941 2721 2317 
CG epoch 173 407 291 175 407 408 234 233 233 175 274 

QN epoch 167 377 306 248 408 388 218 341 330 242 302 
0 0 Note: 10 Global rmmmum ofRMS=Oo0330 

Table 3.2 Building problem with a 14-6-3 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 2178 1938 2046 2512 2441 2563 2223 2281 3086 2722 2399 

BPM epoch 1822 1823 1841 1905 2203 2057 2186 2433 2796 2991 2205 
OM stepsize 003 
BPVS epoch 2577 2140 1700 2344 3322 1906 1921 2102 3631 2669 2431 
CG epoch 337 338 473 337 225 225 345 450 449 338 351 

QN epoch 300 291 430 265 243 296 429 547 265 306 337 
0 0 Note: 1. Global rmmmum ofRMS=000321 

Case 4: Number of examples=390 

Table 401 Heart problem with a 35-2-1 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 2997 4136 3210 2784 3121 3070 3049 3591 3124 3123 3220 

BPM epoch 3987 3887 2986 2953 3207 3049 2703 2506 3198 3713 3219 
OM stepsize 003 
BPVS epoch 3372 3086 2837 2970 2339 3662 3600 3377 3320 2701 3130 
CG epoch 239 266 198 235 195 206 305 323 232 153 235 

QN epoch 222 202 180 256 232 160 243 345 299 122 226 
0 0 

Note: 1. Global rmmmum of RMS=Oo1317 

Table 4.2 Heart problem with a 35-4-1 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 5061 4503 4278 4451 4322 4014 3660 4076 4411 3899 4266 

BPM epoch 4290 4976 4252 4169 3116 3981 3341 3954 3901 4584 4056 
OM stepsize 003 
BPVS epoch 5393 3698 4542 4555 3820 3519 2522 4886 4313 4584 4180 
CG epoch 373 301 300 388 392 216 301 301 297 267 313 

QN epoch 328 338 248 213 316 189 311 249 253 191 264 
0 0 Note: 1. Global rmmmum ofRMS=Oo1208 
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Case 5: Number of examples=49 

Table 5.1 XOR problem with a 2-2-1 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 321 261 263 374 265 274 260 372 262 263 292 
BPM epoch 361 381 337 344 304 372 288 356 155 418 331 
OM 
BPVS epoch 437 206 202 246 218 218 196 276 150 176 233 
CG epoch 28 36 43 32 21 22 31 22 24 18 27 

QN epoch 29 20 22 28 22 17 20 46 27 22 25 
.. 

Note: 1. Global rmmmum ofRMS=0.001557 

Table 5.2 XOR problem with a 2-4-1 network 

Seeds-> 1 17 21 27 40 45 66 78 81 96 Average 
BPLS epoch 323 289 304 290 298 309 292 311 297 284 299 
BPM epoch 335 275 367 346 296 205 326 271 294 294 301 
OM 
BPVS epoch 266 214 254 266 244 282 202 259 303 225 252 
CG epoch 19 19 26 24 19 24 18 24 19 38 23 

QN epoch 18 10 27 18 15 10 28 25 10 36 20 
.. 

Note: 1. Global rmmmum ofRMS=0.001419 

7.2. Results analysis 

Obviously, the two simplest network structures for each example generate the 

different accuracies of approximation. For the function approximation 

( f(x 1 x 2 ) = 1/ (x1
2 + x; + 1)) problem, for instance, the root mean square error (RMS) of a 

2-4-1 network is better than that of a 2-2-1 network. We will choose the one with the 

better performance as our target. 

The results indicate that conjugate gradient and quasi-Newton algorithms are 

much faster than BPLS, BPVS, and BPMOM algorithms. For all five examples, these 

two numerical optimization algorithms take a few iterations (at most several tens) to 
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converge, while those steepest descent-based algorithms need thousands of iterations. 

This is not an accident though. For example, the training procedure of the cancer problem 

shows that the error surface has a very flat valley. When BPLS, BPVS, and BPMOM 

algorithm fall into this valley, they have to follow the negative gradient direction and 

make a very little progress in each iteration, even though they try to make the step size 

larger. The conjugate gradient method, however, does not have to follow these 

directions. It goes along the conjugate gradient direction. The convergence is very fast. 

Inside the steepest descent-based category itself, the BPVS and BPLS have very 

close rates of convergence. That's what we expected. The difference is the training 

procedure. The BPLS takes a long time to converge since it has to keep evaluating the 

error function till it gets the minimum point in that direction. The BPVS algorithm 

avoids so many function evaluations, requiring fewer than BPLS by approximately a 

constant factor. If the step size of the BPMOM is proper, this algorithm also works well. 

In some cases, BPMOM is even better than BPLS and BPVS. 
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CHAPTERS 

CONCLUSIONS AND FUTURE WORK 

8.1. Conclusions 

The above simulation results provide support for what I expected. I have 

examined three steepest descent-based algorithms (BPVS, BPLS and BPMOM) and two 

numerical optimization algorithms (CG and QN). The results generally show that good 

numerical optimization methods have fast convergence. The newly developed algorithms 

in the steepest descent backpropagation family, such as the 'Effective backpropagation 

training with variable stepsize' are not able to approach the efficiency of the conjugate 

gradient algorithm. CG methods share all the desirable properties of the steepest descent 

method, namely low storage, ease of implementation, and parallelization. However, 

when properly implemented they converge far more rapidly. The advantage of the 

steepest descent methods over those numerical optimization methods (Newton, GN, and 

LM) which need to compute second order partial derivatives and therefore need O(n2
) 

storage is the low storage. We also noticed that the quasi-Newton method trapped to 

local minima several times. This may be another disadvantage of the quasi-Newton 

method. 

8.2. Future work 

We compared the steepest descent based algorithms to the modem numerical 

optimization algorithms. How is the performance of CG and QN? In practice, CG 

methods generally take approximately the same number of iterations as quasi-Newton 
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methods [22]. The results of our simulations seem to agree that CG and QN have close 

performance. It's interesting to investigate and answer this question. 
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