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Chapter I

NTRODUCTIO

Nitramine and nitroaromatic com,pounds are a class ,of contaminants

that are of environmental concern, with at least 20 nitroaromatics

contaminated sites on the National Priority List (Pennington, 19'98). Most of

these sites resulted from past or current activity in the manufacture and the

load-assembe-package (LAP) processes of explosives (ATSDR, 1995). The

principal contaminants po:lutin'9 these areas include 2,4,6-trinitrotoluene

(TNT), andhexahydro-1 ,3,5-trinitro-1 ,3,5-triazine (RDX). The I,atter is loften

used in combination with octahydrol-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazQcine

(HMX) (Pennington, 1:998).

These contaminants inhibit the growth an,d survival of bacteria, fungi,

and actinomycetes (Fuller and Manning:, 1997; K:lausmeier et aI., 1973), soH

fauna (Parmelee et aI., 1993), and higher plants (Palazzo and Leggett, 1986;

'Peterson et al., 199'6). For examp,le, TNT is cytotoxic and ge,n,oloxic to

bacterial and mammalian cells (Honeycutt at aI., 1996; L,achance at aI., 1: 9'98;

Berthe-Corti at aI., 1998). Soil microbial activitiesdecrease'd with increasing

TNT c,ontamination (Gong et aI., 1999). In fact, high flevels of T:NT

contamination may even lead to inhibition of vegetative growth (Gong at a:.,

1999).

In addition to direct toxicity effects from the nitroaromatic compounds,

these contaminants can also lead to nitrate toxicity, resultin'9 from the
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accumul,ation of removed, nitro groups from ring structures during

biodegradation (umbbd.ahc.umn.edu/tntltnt_map.:html; umbbd~ahc~umn~edu

Itnt2/tnt2_map.html). El,evated nitrate levels in drinking water may cause

chronic toxic effects, such as methemoglobinemia ,in babies, and ev,en cancer

if bacteria in the stomach can formN-nitrosocompounds (Hill 1999).

Therefore, it is important to remove the contaminants fro,m the environm,ent.

Many remediation strategies have ,been evaluated for soils

contaminated with nitroaromatic compounds. These include composting

(Garg et aI., 1991; GoodfeUow at aI., 1984; Pasti-Grigsby at aI., 1996),

bioslurry reactors (Shen et aI., 2001; Funket aI., 1993; Hawthorneet aI.,

2000), natural attenuation (Khan and Husain, 2001; FHz et aI.2001),

phytoremediation (Harvey et aI., 1991; Bhadra et al." 2001), and incin,eration

(www.epa.gov/region07Iprograms/spfd/nplfacts/Nebraska_army_ord!inan'ce.

pdf; www.frtr.gov/matrix2/section414_26.html). For example, RDX uptake

occurs readily in plants (Harvey et aI., 1991; iBhadraet aI., 2:001) allowing the

removal of thiscompo:und from soil by phytoremediation. Incineration can be

costly and additional treatment of gases and combusted materials are required

before disposal or release can occur. Natura:I' atten,uati,on is the most

economical procedure, but it is slow, thus, poses a ,potential risk by allowing

contaminants to leach into groundwater. ,Bioremediati,on by c,omposting and

slurry bioreactors are more effective, altho:ugh more costly.
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For example, windrow composting was used at Umatil:la Army Diepot

site in Hermiston, Oregon, a National Priority Listed site. Original levels of

conta,mination in the south lagoo:n were reported as high as 88,,000 mg TNT

kg-1 soil, 731 mgRDX kg-1 soil, and 127 mg HMX kg-1 soil, as well as lower

levels of the metabolites 1,3,5-trinitrobenzene (TNB), 1,3-dinitrobenze:ne

(DNB), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). ,Reductio:n to 30mg

kg-1 of TNT and RDX, the remedial 9,oal, was accomplished by using

composting (www.denix.osd.mil).

As a promising remediation strategy, bioremediation has ga:ined

considerable attention. Numerous studies have 'been conducted to reveal the

biodegradation 'processes of nitroarom,atic compou:nds. TNT may ,be broken

down through an aero:bicor anaerobic pathway (umbbd.ahc.umn.edu), leading

to production of various metabolites that can enter a ,co'mmon biol,ogical

process (umbbd.ahc.umn.edu), or humification to become part of the organic

matrix of the soU (Bruns-Nagel et al. 2000). Although less is known about

biodegradation of RDX and HMX, it :has been shown that the biotransformation

of cyclic nitramines occurs under both anaerobic (McCorm'ick et aI., 1981), and

aerobic conditions (Binks et aI., 1995). Q,nce the cyclic structure is broken,

these contaminants can be easily degraded to smaH n:itrogen/carbon

containing compounds (Menus, 19'90),eventuaUy lea'ding' to ,com,plete

degradation.

There are two major limiting factors in bioremediation of soil

contaminants: microbial activity and availability of the contaminants to the

3



microbes. TNT contamination could decrease microbial activity to

undetectable levels and lead to eventually no vegetation (Gong, 1999). This

implies that natural attenuation may not b,e a viable option. At ,low leve,ls of

contamination where microbia acti.vity ,persists" additives, such as surfactants,

can increase the effectiveness of bioreme,diation (Zappi et al., 1994; Boopathy

and Manning, 1999),by enhancing the solubility of many contaminants,

especially those that are hydrophobic (Mulligan et aL, 2001). 'It has been

shown that up to 70% of the TNT metabolites may irreversibly ~bind to the s,oU

matrix (Shen et aI., 1998). Surfactant molecules adsorbed on the surface of

the contaminant cause repulsion between the head group of the surfactant

and the soil particles (Deshpande et aI., 1999), which may reduce a,dsorption

to the soil matrix. Unfortunately, many surfactants can aff,ect growth of

microorganisms, animals and plants (Mulfi.ganet a ., 2001) by j,nterfering wiith

extracellular transport, inhibiting cell growth, or changing the m,embrane

permeability (Volkering et aI., 1998). Bioremediation is also limited by

avai ability of microbial strains that can effectively degrad'e nitroaromatic

compounds under a range of soil and environm:ental conditions. Therefore,

the objectives of this study were (1) to determine the effects of nitroaromatic

and nitramine contamination on soilc'hemical and m1icrobiological properti:es;

(2) to isolate microorganismsinv1olved in the biod'egradation of nitroaromatics

in soils; and (3) to assess the impact of s'urfactants on the growth of

nitroaromatic-degrading microorganisms.
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Chapter II

LITERATURE REVIEW

Explosive contamination is of concern because microorganisms, soil

fauna and plant life are affected, but also potential y humans as well. To

effectively remove these contaminants, a basic understanding of

characteristics of each contaminant is required. This review includes the

sources of nitroaromatic contaminants, pathways of degradation,

microorganisms involved in degradation, biotic and abiotic treatment

technologies for remediation, and factors impeding treatment efficiency.

Structure and Properties of TNT, RDX, and HMX

TNT, RDX, and HMX are xenobiotic chemicals developed for use as

munitions. The DuPont Company first began producing TNT in 1880 (World

Book Online Americas Edition, 2002), and during World War I it was the most

used high explosive (Encarta Online, 2001). Extremely efficient new high

explosives, such as RDX and HMX, were developed before and during World

War II (Encarta Online, 2001). These munitions are similar in function but

differ in chemical and physical properties (Tables 2.1, 2.2, and 2.3). One

common characteristic of munitions is their relatively high nitrogen content,

ranging from 18.5% to 37.8%
•
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Table 2.1. Chemical and physical properties of TNT.

Chemical

Synonyms

Molecular Formula

CAS Number

Chemical Structure

2,4,6-trinitrotoluene

TNT; sym-trinitrotoluene; trinitrotoluene; 2-methy 
1,3,5-trinitrobenzene;entsufon; 1-methyl'-2,4,6
trinitrobenzene; methyltr-nitrobenzene; tolite; tr- 'it; s
trinitrotoluene; s-trinitrotoluol; trotyl; sym
trinitrotoluol; alpha-trinitrotoluo ; trinitrotoluene

118-96-7

Density (g/cm~) 1.65

Vapor Pressure (mm Hg) 5.51 x 10-0

Molecular Weight 227.133 glmol

Physical State Pale yellow crystalline solid

Water Solubility (mg/L) 150

Partition Coefficient (Kow) 2.00

Modified from denix.osd.mi /denixlPublic/Library/Remedy/Umatilia/umati02.html.
Defense Environmental Network and Information Exchange
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Table 2.2. Chemical and physical properties of RDX.

Chemical Name

Synonyms

Molecular Formula
CAS Number

Chemical Structure

Hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine
RDX; cyclonite; cyclotrimethylenetrinitramine;
hexogen; trimethy,lenetrinitram,ine; hexo ite; 1,3,5
trinitrohexahydro-p-triazine;1,3,5-
trinitrocyclohexane; trinitrohexahydrot(azine;
hexahydro-1,3,5-trinitro-s-triazine; 1,3,5-trinitro
1,3,5-triazacyclohexane

121-82-4

Density (g/cm~) 1.83
Vapor Pressure (mm Hg) 4.03 x 10-~

Molecular Weight 222.117 g/mol

Physical State White crystalline so id

Water Solubility (mg/L) 60

Partition Coefficient (Kow) 0.87

Modified from denix.osd.mil/denixlPublic/Library/Remedy/Umatilla/umati02.html.
Defense Environmental Network and Information Exchange
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Table 2.3. Chemical and physical properties of HMX.

Chemical Name

Synonyms

Molecular Formula

CAS Number

Chemical Structure

Octahydro-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazocine

HMX; octagen; HW4; LX 14-0;
cyclotetramethylenetetranitra 1mine; 1,3,5,7
tetranitro-1 ,3,5,7-tetraazacyc ooctane;
cyclotetramethylene tetranitramine

2691-41-0

Density (g/cmJ
) 1.90

Vapor Pressure (mm Hg) 3.33 x 10-14

Molecular Weight 296.156 g/mol

Physical State White crystalline solid

Water Solubility (mg/L) 5

Partition Coefficient (Kow) 0.26

Modified from denix.osd.mil/denix/Public/Library/Remedy/Umatilla/umati02.html.
Defense Environmental Network and Information Exchange
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Toxicology

For humans, TT exposure through inhalatio,n or dermal exposure can

cause headaches, skin irritation, weakness, cartaracts, anemia, and liver j:njury

(Merck's Index, 1983; McConnell and Flinn, 1946; Hathaway, 1985; Mortone!

aI., 1976). Indirectly, metabolites of TNT,in,cluding 2,4-d,initroto'luene fONT)

and 2,6-DNT, have shown toxicity towards Poecilia reticulzata, with 14-hour

LCso values of 12.5 mg 2,4-DNT L-1 and 18 mg 2,6-DNT L-1 (Deneer et al.,

1998). These metabolites formed in the uniary tract are mutagenic, and ,cause

hemolysis, hepatotoxicity, an,d changes in 'hepatic enzyme evels (Diley et aI.,

1982; Levine at aI., 1990). It has beandemo:nstrated that many munitions

related chemicals have been subjected to the Ames test for mutagenicity

(George et aI., 2001). Studies indicated that TNT is a direct acting mutage,n,

while the monoamino- and diamino-metabolites were less mutagenic" with the

exception of 2-amino-4,6-DNT and 2,6-diamino-4-n:itrotoluene, wh,ich

demonstrated similar levels of mutagenicity to TNT (George et aL, 2001). The

U.S. Army (1980) has reported that TNT may leach to groundwater from s,oB.

The U.S. Environmental Protection Agency (1990) has designated TNT to baa

hazardous waste.

In contrast to TNT, which has been produced for Qv!er 120 years,

widespread use of RDX and HMX began during World War II. Limited

information is availab,le on their toxicity to a biologica system. Exposure to

RDX can be through inhalation and dermal adsorption (Kaplan at aI., 1'965).

RDX has been found in human cerebrospina flui,d, plasma, urine, and feces

14



(Woody at aL, 1992). RDX is classified as a class C carcinogen, and has

been known to cause unconsciousness and epHeptiform seizures (Harvey at

aI., 1991). Solubi ized RDX can leach into the grou,ndwater as weU as biind

strongly with soi (U.S. Army, 1986). The 'U.S. EPA identified it as a re,gulated

hazardous compound (Bhadraet aI., 2001) and a minimal risk level (MRL) of

0.03 mg kg-1 day-1 has been set (Mclellan et aI., 1998). The MRLis a,n

estimation of a dose that is not likely to ca:use adverse systemic effects. The

water solubility of RDX is 60 mg L-1 (Tab,e 2.2). Assuming a person weighs

75 kg and drinks 2 liters of RDX-saturated water a day, this person woul,d ,be

taking 1.6mg kg-1 day-1, which is 53-fold of MRL.

No adverse effects were reported in workers exposed to unknown

concentrations of HMX. However, animal studies indiicate that it may be

harmfu to the liver and centra, nervous system if swallowed, inhaled, or

contacts the skin (ATSDR, 1995). The solubility of HMX is 5 mgL-1 in water

(Table 2.3)" which is only one-twelfth of that ofR:DX and one-thirtieth of TNT.

Nevertheless, the U.S. Army (1979) reports that HMX is like:ly to le,achinto the

groundwater, especially in sandy soils. Therefore, the U.S. EPA (1990)

regulates waste containing HMX as hazardous,and has set restricti,o'ns on

landfiU disposal (199'1). ,Later, the U.S. EPA Office of :Drinking Water set a

limit of 0.4 mg L-1 for drinking water (1994).

Kow, an indicator of toxicity, is the partition coefficient fora compound

between n-octanol and water (Newman, 1, 998). It is used to reflect the

lipophilicity of a compound and to imply relative partitioning of ,axenobioti,c
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between aqueous phases of the env:ironment and Hpids in the organism. In a

simple Kow approa,ch, the organism is envisioned as a membran,e-enveloped

pool of emulsified lipids, and uptake as well as elimination of hydrophobic

organic compounds is controlled by permeation through the aqueous phase

(Newman, 1998; Connell, 1990). The ower the Kow value, the higher

partitioning in the aqueous phase, and the more bioavaila:be the contaminant

is to living organisms (Donnelly et ai, 1994). This has been observed widely in

benthic species in sediment (Landrum and Robbins, 1990). O'n the other

hand, uptake increases and excretion decreases with increasing Kow values in

the log Kow values of 3 to 6 (Newman, 1998). The increased uptake and

reduced excretion i'mply increasing in biomagnification, another measure of

toxicity. Biomagnification is the increase in the conc,entratio!nof a contaminant

as it progresses to higher trophic levels of the food chain (Newman, 1998).

Predators tend to live longer than prey and therefore, have more time to

accumulate a higher concentrati:on of contaminants (Moriarity, 1983). An

example of this transfer through trophic webs has been seen w:ith the p,esticide

DDT. It has been suggested that Log Kow values must fa:1 between 4

(Connolly and Pedersen, 1988) and 6 (G,obas et aI., 1993) to cause

biomagnification. Below 4, decreased uptake and increased elimination

(excretion) rates lim,its the capacity for biomagnification. Bi,omagnificatio,nis

inhibited by low assimi ation effic~iencies above 6 (Thomann, 1989). The Kow

of TNT, RDX, andHMX are 2.00, 0.,87, a:nd 0.26, respectively
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(www.denix.osd.mil). The Kow values of TNT, RDX and HMX donal fall into

this range, thus, it is unlikely that biomagnification win occur.

Sources of TNT, RDX,HMX, and Other Nitroaromatics

Nitroaromatics, such as TNT, RDX andHMX, are commion military

explosives that are found in soils at s:ites such as destruction ranges,

explosive dumping grounds,manufacturi'ngprocesses, firing ranges and

ammunition factories (Shen at aI., 2001). Production grade RDX contains

impurities such as significant amounts of HMX and trace amOiunts of 1

acetylhexahydro-3,5-dinitro-1 ,3,5-triazine (Rosenb'latt et aI., 1991 ),. HMX

becomes the major product and RDX the impurity by ,modification of the iRDX

manufacturing process (Sinks et aI., 1995).

Although site contamination is due to current or past activity in the

manufacture and the load-assemble-package (LAP) processes of expl,osives

(ATSDR, 1995), large quantities of nitroaromatic compounds are also released

to the environment from manufacture and use of pesticides, dyes,plastics,

and pharmaceuticals (Davis et aI., 1997). RDX is also used as a rodenticide

(Wildman and Alvarez, 2001). Other nitroaromatic pesticides include dinose:b,

dinitrocresol, parathion, and methylparathion, which are intentionally released

into the environment during agricultural use (Spain, 2000). itrophenolsand

n,itrotoluenes are used ,extensive'ly as feedstocks in industry a:nd are often

released into surface water from waste streams (Spain, 2000). 'Ine,ontr.ast to
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In the aerobic reduction pathway TNT is reduced to two different

dinitrotoluenes (DNT) to an aminodinitrotoluene (ADNT) (Figure 2.1). In the

anaerobic pathway, TNT is reduced to hydroxyaminodinitrotoluene (HADNT),

ADNT, diaminonitrotoluene (DANT) and triaminotoluene (TAT). Once TAT is

formed, it can be further degraded to an intermediate in the toluene pathway

or organic acids (Figure 2.2). Thus, this represents a more complete

degradation of TNT. Moreover, humification of the metabolites from

aerobic/anaerobic systems can lead to formation of humic compounds and

become part of the organic matrix of the soil (Bruns-Nagel et al. 2000) (Figure

2.3).

The cyclic structure of RDX and HMX can be broken down under both

aerobic and anaerobic conditions (Sinks et aI., 1995; McCormick et aI., 1981),

then degraded to small nitrogen/carbon containing compounds and eventually

to C02 (Melius, 1990). In an anaerobic degradation:

RDX - MNX - DNX TNX

In this pathway, RDX is reduced to hexahydro-1-nitroso-3,5,-dinitro-1,3,5

triazine (MNX), hexahydro-1 ,3-dinitroso-5-nitro-1 ,3,5-triazine (0 X), and

hexahydro-1 ,3,5-trinitroso-1 ,3,5,-triazine (TNX). The nitroso compounds

undergo further degradation to unstable hydroxyl derivatives (Hawari, 2000).

The only detailed biotransformation pathway published for cyc:(ic nitramines

19





Figure 2.1. Three possible aerobic degradation pathways of 2,4,6- 
trinitritoluene. Pathway A involves two bacteria or 
actinomycetes using nonspecific NAD(P)H 
nitroreductases during the entire process with a final 
product 4-acetamido-2-amino-6-nitrotoluene. Pathway B 
involves only bacterial species, but uses some specialized 
enzymes such as nitrobenzene reductase and 4-amino-2- 
nitroso-6-nitrotoluene reductase. Degradation is less 
complete, with the final product 4-amino-2-nitroso-6- 
toluene. Pathway C involves bacteria as well, but uses 
nonspecific NAD(P)H nitroreductases like pathway A. 
Pathway C differs in the metabolites produced during 
degradation, ending with the same final metabolite as 
pathway A. (Adapted from the University of Minnesota 
Biocatalysis I Biodegradation Database. 
umbbd.ahc.umn.edu/tnfftnt~map.html, 2002) 
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Figure 2.2. Four possible anaerobic degradation pathways of 2,4,6- 
trinitrotoluene. Pathway A involves a bacterial species or 
consortia that uses specific enzymes such as 
nitrobenzene reductase during the reduction of TNT. The 
metabolites produced include the dead end intermediate 
2,4-dihydroxyl-amino-6-nitrotoluene and 4-amino-2,6- 
dinitrotoluene which joins into the main pathway. 
Pathway 6 has many possible bacterial species which 
also produces the metabolite 4-amino-2,6-dinitrotoluene, 
but with the a nonspecific NAD(P)H nitroreductase that 
merges into the center pathway. Pathway C involves 
three possible bacterial species using a nonspecific 
NAD(P)H reductase producing 2-amino-4,6-dinitrotoluene 
which merges with the main pathway. Pathway D uses an 
anaerobic consortia and a nonspecific NAD(P)H 
nitroreducases producing the intermediate 2-amino-4,6- 
dinitrotoluene which merges into the center pathway. 
After the four pathways merge the final products of 
degradation include 4-hydroxytoluene, which can be used 
in the toluene pathway or uncharacterized organic acids. 
(Adapted from the University of Minnesota Biocatalysis / 
BiodegradationDatabase. umbdd.ahc.umn.edu/tnt2/tnt2- 
map.html). 
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was in 1981 by McCormick at al. (Figure 2.4). More recently, a partial

biodegradation pathway ofRDX under aerobic conditi,ons has also been

reported (Sinks at aI., 1995).

Microorganisms Involved in the Degradation of Nitroaromatic Compounds

Degradation of nitroaromatic compounds involves the activities of

aerobic, facultative, and anaerobic bacteria as weB as some fungi.

Transformation of TNT by microorganisms has been reported under aerobic

and anaerobic conditions with complete reduction of one or more nitro groups

observed (Crawford, 1995; French et aI., 1998; Marvin-Sikkema et aI., 1994;

Michels et aI., 1995; Preuss et aI., 1995; Spain, 1995; Stahl etal., 1995).

An example of the aerobic pathway was researched with DNT, a

precursor of TNT and once the most widely manufactured explosive in the

world (Nishino et ai, 2000). DNT is also a metabolite of TNT biodegradation.

Burkholderia sp. reduces nitro groups of DNT using dioxygenase and

monooxygenase enzymes. Ligninolytic fungi produce extracellular enzymes

that increase the mineralization of TNT as well (Fritsche et aI., 2000). S,ince

all fungi are obligate aerobes, this type of degradation occurs under aerobic

conditions.

An example of the anaerobic pathway is the use of Clostridia, obligate

anaerobes, which have enzymes that are capable of rapi,d reduction of nitro

groups (Ahmad and Hughes, 2000). Studies have demonstrated transforming
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TNT to an intermediate TAT under anaerobic conditions (McCormick et aI.,

1976; Naumova at aL, 1989; Schackmann and MOiler 1991). Degradation of

TNT under sulfate reducing followed by nitrate reducing conditi'ons has also

shown promise (Preuss at aI., 1993).

The use of nitroaromatics as a sole ,carbon source has been studied.

For example, when Ectomycorrhizal basidiomycetes was sup,plied TNT, the

rate of biotransformation under nitrogen limiting conditions decreased relative

to nitrogen sufficient conditions (Meharg et aL, 1997). Also, no decrease in

growth was observed under short-term carbon starvation suggesting that the

use of TNT as the sole carbon source for this fungi 'i,s most effective in

biodegradation (Meharg et al., 1997). Also, Serratia marcescens has been

shown to degrade TNT as a sale source of carbon and energy (Montpas et al.,

1997).

Some microorganisms also use explosives as a sale source of nitrogen.

This option may be the most favorable choice because the use of explosives

as a sale source of carbon may lead to nitrogen toxicity. Enterobacter cloacae

PB2 is capable of slow aerobic growth with TNT as the sale nitrogen source

(French at al. 1998). Stenotrophomonas maltophilia PB1 was isolated under

aero,bic, nitrogen limiting cond,itions with RDX as a sale source of nitrogen for

growth from soil (Sinks at aL, 1995). In fact, the disappearance of RDXin

crude cell extracts from S. maltpphilia PB1 provides evidence ofa spe,cific

enzyme forRDX degradation (B,inks at aI., 1995).
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Nitroaromatic-degrading microbes have also been found in anaerobic

sewage sludge, which were able to degraide the explosives in bioslurry

reactors in a relatively short period of time (Shen at aI., 2001). Actin,omycetes

sp. isolated from uncontaminated env:ironments could also cause

biotransformation of TNT (Pasti-Grigsby, 1996) and be used as an i;noculant.

An additional carbon source may alsobebeneficia,1 if indigenous

bacteria or inoculants cometabolize the contaminants. Phanerochaete

chrysosporium needed another carbon source to efficiently redu1ce TNT

concentrations (Rho et aI., 2001). Co-substrates, includi,ng g,lycerol, glucose

(Boothpathy etal., 1994; Daun et aI., 1998; Stahl & Aust, 1994; S'ub,lette at ,aI.,

1992), toluene (Tharakan & Gordan, 1999), and acetate (Zappi et aI., 1995),

have been used to simulate the transformation of explosiv,es. Although ,many

microbes have shown promise for use in biore,medation of nitroaromatic

contaminated soil, many more remain unidentified.

Biotic Treatment of Explosives Contamination

Current biotic practices includecomposting (Garg et aI., 1991;

Goodfellow et at, 1984; Pasti-Grigsby et aI., 1996;), bioslurry reactors (S:han

et aI., 2001; Funk et aI., 1993; Hawthorne et al., 2000), phytoremediation

(Harvey at aI., 1991; Bhadra et aI., 2001) and natural attenuation (Khan and

H'usain,2001; Filz at aI.2001).
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Composting

Many of the microorganisms discussed could be used in composting.

Actinomycetes are important decomposers in composts (Goodfellow et aI.,

1984), and have been reported to transform TNT into recalcitrant

intermediates, regardless of any previous TNT exposure (Pasti-Grigsby et aI.,

1996). However, none of the actinomycetes grew when TNT was supplied as

the sole source of nitrogen or carbon in any medium, which indicated a

nutrient-rich environment can help overcome the inhibition of growth resulting

from the presence of TNT (Patsi-Grigsby etal., 1996).

Composting explosives is a proven technology. Windrow composting

was used at the Umatilla Army Depot. During treatment of this superfund site

many lessons were learned aboutcomposting expliosives. Amendment

composition affects biodegradation rates, and a soil-loading rate of 30% s,oi

and 700/0 amendments produced the best results. Moisture content should

remain at 60% water ho.ding capacity, and appropriate temperatures aUowe,d

thermophiUc organisms to enhance biodegradation. Mixing the windrow for

aeration aUows more rapid degradation, higher operating temperatures, and

reduced odor. However non-a'erated windrows exhibited equal or better

removal of contaminants (www.denix.osd.m,illdenixlPublic/Library/Remedy/

Umatilia/umati02.html).

Bioslurry Reactors

29



The degradation rate by microorganisms can be increased by the use

of mechanically mixed, bioslurry reactors. The reactor "enhances the mass

transfer between the solid and aqueous phases and the contact between the

microorganisms and the hazardous compounds" (Shen et aL, 2001). In

addition, nutrients and microbial activities can easily bemanipu ated and are

therefore not site specific (Shen et aI., 2001). A simple static vessel was used

to treat soils contaminated with explosives with subcritical (hot) water. The

treatment was successful with complete degradation at 275°C, although TNT

degradation started at somewhat lower temperatures (Hawthorne et al., 200,0).

In contrast, RDX persistence has been observed, indicating that indigenous

microorganisms were unable to degrade RDX in soil slurry reactors containing

multiple explosives (Funk et aI., 1993). Supporting evidence has shown that

RDX mineralization in a reactor was inhibited by the presence of TNT (Shen et

aI., 1998).

Phytoremediation

Phytoremediation, also known as plant-driven bioremediation, could

provide a cost-effective ap.proach to remediation of explosives, and has

generated increasing interest recently (Medina et aI., 1998). RDX uptake

occurs readily in hydroponic bush bean plants, and RDX accumulates in aerial

parts like the leaves (Harvey et aI., 1991). M. aquaticum plants were able to

significantly remove RDX, but were unable to remove HMX, while C. roseus
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plants had the intrinsic capability to remove both RDX and HMX (Bhadra at a 0'

2001 ).

Natural Attenuation

The term "monitored natural attenuation" is used when c eanup of a site

is reliant on natural attenuation (Khan and Husain, 2001). Policymakers have

shifted to a risk-based approach to become more cost effective, wh'ich in many

cases includes the use of natural attenuation (Khan and Husain, 2001). It is

recognized that there are significant risks associated with soil and

groundwater contamination in application of natural attenuation (Kha,n and

Husain 2001). Thus, a new method,combini:ng natural attenuation with barrier

controls, has been developed for cleaning up groundwater. This m,ethod is

called barrier-controlled monitored natural attenuation (BCMNA). This

strategy uses a low-permeability, nonreactive barrier to re ease contaminants

at a rate that optimizes natura attenuation of contaminated groundwater (Filz

at al., 2001 ).It has a so been determined that this technology reduced the

contaminant concentrations to safe levels (Filz et aI., 2001). A similar

approach, using a barrier, such as a liner, to stop leacheate fro!m reac,hing the

groundwater could be used with s,oil remediation. H,owever, a notable

uncertainty on fate of the exp osives in the environment exisls,and it is difficult

to monitor the type and extent of on-site c,ontamination (Hawari, 2000). This .

strategy needs to be further strength,ened.
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Bioaugmentation

Another option to consider when degrading TNT, 'RDX, HMX, and their

metabolites, is addition of exogenous microorganisms. Bioaugmentation with

special microorganisms may be useful if the indi,genous co'mm:unity I,acks the

catabolic potential of certain pollutants (Blumenroth and Wagner-Dobler,

1998). Under natura;1 environmental conditions, howev,er, in,oculated

microorganisms must compete with indigenous microbes for survival.

Research has proven that adding amendments, such as preferred nutrients

and C source, to the environment provides a temporary advantage for th,e

introduced strain, which would potentially ensure survival of the ino'culant.

Otherwise, the inoculant must be able to exploit a specific niche that is not

occupied by the naturally occurring community (Blumenroth and Wagner

Dobler, 1998). For example, an additional carbon source proved to be

beneficial when establishing an inoculant (Blumenroth and Wagner-Dobler,

1998).

Abiotic Treatment of Explosives Contamination

Abiotic practices currently used to treat explosivas-contaminate,d soUs

include iron reduction (Brannon et aI., 199'8; Shenet at., 2001; Wildman and

Alavaraz 2001; Blowes at aI., 1995; Kaplan at aI., 199:6), alkaline

hydrolysis/oxid,ation (Emmrich, 2001) electrolysis (Rodgers at al., 2001) and

incineration (http://www.epa.gov/region07/programs/spfd/nplfacts/Nebraska_
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army_ordnance.pdf; http://www.frtr.gov/matrix2/section414_26.html).

Iron Reduction

Research has shown the presence of 4-amino-2,6-dinitrotolu'enein

sterilized soil s,lurry, suggesting a portion of TNT was tralnsformed d,ue to

chemical degradation explained by the presence of reductive components

such as sulfide (Shen et aI., 2001). Abiotic transformation of TNT is a function

of pH, and the possibility of a Fe2
+ reduction pathway in reduced soils has

been confirmed (Brannonet aI., 199B).

Zero-valence iron, Fe(O), can be used as a reactive material to remo've

redox-sensitive contaminants (Wildman and Alavarez 2001). Fe(O) can be

buried as a broad continuous curtain (Blowes et aI., 1995), or injected as

colloids (Kaplan et aI., 1996). Usually Fe(O) is used to treat chlorinated

solvents and hexavalent chromium plumes (Vidic and Pohland, 1996),

although Singh at al. (1998) reported that Fe(O) is capable of RDX reduction in

contaminated soil. Permeable reactive Fe(O) barriers can intercept and

degrade RDX plumes (Wildman and Alvarez, 2,001). The rate and extent of

RDX biotransformation can be enhanced by anaerobic.microorganisms th,at

feed on cathodic hydrogen (Wild:man and Alvarez, 2001). Nitro groups

attached to the RDX ring attract electrons released during iron corrosion

(Wildman and Alvarez, 2001). Th·s electron transfer might remove the nitro

groups from the ring structure, releas·ng N02-, which can be used as a

nitrogen source forb,acteria (Singh et aI., 1998).
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Alkaline Hydrolysis

Alkaline hydrolysis is another possible abiotic treatment method. TNT

content dropped to almost zero, and the content of the intermediates,

aminodinitrotoluenes (2A-4,6-DNT, 4A-2,6-DNT) and 2,4-dinitrotoluene (2,4

DNT), decreased by 750/0 using this technology (Emmrich, 2,001). However,

dinitrotoluenes may undergo only partial hydrolysis through this pathway. The

reaction rate of TNT hydrolysis increased with increasing TNT concentration in

the solid and aqueous phases. This method is sufficient at pH 12, which

shortens treatment time, and is recommended when TNT is the only

nitroaromatic contaminant in the soil (Emmrich 2001 ).

Electrolysis

The use of electrical energy to drive unfavorable reactions, electrolysis,

is emerging as a possible remediation technology (Rodgers et aI., 2001).

Electrochemical techniques have benefits such as the use of electrons as

reagents instead of harmful chemicals (www.icpt.nrc/projects/eectr_e.html).

It offers higher energy efficiency versus other techniques such as photo,lysis

(treatment with light) or thermal treatment (Rodgers et aI., 2001). Although

drawbacks can occur, such as parasitic reactions including water electro ysis,

which lowers the energy efficiency by competing with the electrolysis of the

contaminants, TNT and its metabolites decreased approximately 800k by using

electrolysis (Rodgers et al., 2001).
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Incineration

The U.S. Army Corps of Engineers imp emented the on-site incineration

of 16,500 cubic yards of contaminated soils at the Nebraska Ordnance Plant

by supplying oxygen and using temperatures between 870-1200°C.

Combustion has been known to remove 99.99% of the contamination,

although the gases and combustion residue generally require further treatment

before disposal (www.epa.gov/region07Iprograms/spfd/nplfacts/nebraska

_army_ordnance. pdf; www.frtr.gov/matrix2/section414_26.html). Even though

incineration is effective, treatment of highly contaminated soils by direct

incineration is expensive and dangerous (Emmrich, 2001). Among th,e

technologies listed above, the most commonly used treatments are

incineration and composting (Tables 2.4 and 2.5).

Factors Impeding Treatment

Research has demonstrated that nitroaromatic compounds may adsorb

specifically and reversibly to clay min,erals, but nitramine compounds like RDX

do not (Haderlein at aI., 1996). TNT has the highest affinity to clay minerals

(Haderlein, 1996), and eventually will be,come humus i:n soil (Bruns-Nagel,

2000). This may lead to less TNT leaching into the groundwater. SoB

properties such as soil pH, soil type, cation exchang,e capacity (CEe), particle

size, soil permeability and the type of contaminants can promote or discourage
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Table 2.4. Examples of remediation technologies used at installations
where soil remediation is complete.

Remediation Amount Year
Installation NPL Technology of Soil Completed

Alabama AAP X Incineration 32,000 yd3 1994

Cornhusker AAP X Incineration 46,000 tons 1998

Camp Mead Incineration 16,000 yd3 1998

Weldon Spring Incineration 58,000 yd3 1998 co
Louisiana AAP X Incineration 119,000 tons 1989-90

("I')

Savanna AD X Incineration 42,000 tons 1992

Camp Navaho (NG) Composting 4,000 yd3 1999

Umatilla AD X Composting 15,000 yd3 1999

AAP=Army Ammunition Plant
AD=Arm Depot
NG=National Guard
NPL=National Priority List
Modified from Broder MF and Westmoreland RF (1998).



Table 2.5. ~xamples of remediation technologies used at installations
where cleanup activity is in progress.

Remediation Amount
Installation NPL Technology of Soil

NWS Crane Composting 100,000 yd3

Hawthorne AD Composting 64,000 yd3

Iowa AAP X Low temp thermal stripping 10,000 yd3
t---

200,000 yd3 (V')

JolietAAP X Composting

Milan AAP X Composting 58,000 yd3

NewportAAP Composting pilot test complete 9,000 yd3

Pueblo AD Composting 21,000 yd3

Sierra AD Composting 2,000 yd3

Tooele AD X Composting pilot test complete 15,000 yd3

AAP=Army Ammunition Plant
AD=Army Depot
NPL =National Priority List
Modified from Broder MF and Westmoreland RF (1998).



the ability of microorganisms to degrade pollutants (Mulligan et aI., 2001).

Bioavailability of contaminants, for instance, can be reduced by high

percentage of clay and high organic matter content in soil.

Surfactants

One possible solution to overcoming treatment inefficiency is the

addition of surfactants. The availability of contaminants is limited by solubility

(Deshpande at aI., 1999), and the use of surfactants enhan,ces the

bioavailability of the contaminants to the micro!bes and therefore increases the

rate of biodegradation (Boopathy and Manning, 1999). Surfactant molecules

adsorbed on the surface of contaminants cause repulsion between the head

group of the surfactant and the soil particles (Deshpande at aI., 1999).

Research has shown that up to 700k of TNT metabolites may irreversibly bind

to the soil matrix (Shen et aI., 1998). Surfactants could help solublize many

contaminants, especially those that are hydrophobic (Mulligan et aI., 2001).

Previous research demonstrated the need to enhance RDX bioavailabi, ity in

soil-slurry reactors for soils from ammunition plants at Parsons, Kansas and

Amarillo, Texas for a feasible bioremediation approach under aerobic, nitrate

reducing, sulfate-reducing, and mathanogenic conditions (Light, 1997).

Desirable surfactant characteristics include biodegradability, low .

toxicity, and solubility at ambient temperatures if directly applied to th,e soi
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surface (Mulligan, 2001). Many surfa·ctants are of low toxicity to humans, but

can affect animals and plants (Mulliganet al., 2001).

An alternative could be used in situations where microorganisms are

sensitive to commercially produced surfactants. Biosurfactants, naturally

produced by certain bacteria and yeast, are produced from various substrates

including sugars, oils, alkanes and wastes (Lin, 1996). Biosurfactants may be

more biodegradab e, more tolerant to p;H, salt and temperature variation, and

i:n some cases less expensive (W,est and Ha,rwell, 1992). It has been shown

that rhamnolipid surfactants from P. aeruginosa UG2 enhanced the

solubi ization of four-ring polyaromatic hydrocarbons (PAHs) more sign:ificantly

than three-ring PAHs and were five times more effective than sodium dodecyl

sulfate (SDS) (Deschenes et aI., 1994).PAHs are recalcitrant, much like TNT"

RDX and HMX are in the soil. When considering the use of biosurfactants,

emulsification isa cell density dependentphenome,non, and as a result, the

higher the concentration of cells, the more biosurfactant ,is produced (Ron and

Rosenberg, 2001). The cell concentration in an o,pen system, like a polluted

environment, never reaches a hi,gh enough density to emul!sify organ:ics

effectively (Ron and Rosenberg, 2001). Therefore, biosurfa,ctantsare possi!ble

additives for bioremed·ation in a closed system where cell den'sity ca,n be

controlled.

With the combined efforts of microbiologists, engineers, and regulatory

agencies, bioremediation can become the most efficient aind most s,elected

remediation strategy.
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Chapter III

ACETONITRILE EXTRACTABLE AND WATER LEACHABLE 2,4,6

TRINITROTOLUENE (TNT), HEXAHYDRO-,1,3,5-TRINITRO-1 ,3,5-TRIAZ NE

(RDX), AND OCTAHYDROL-1 ,3,5,7·TETRANITRO-1 ,3,5,7-TETRAZOCINE

(HMX) IN SOILS AND THEIR IMPACT ON MICROBIAL COMMUNITY

Abstract. Impact of 2,4,6-trinitrotoluene (T'NT), hexahydro-1 ,3,5-trinitro-1 ,3,5

triazine (RDX), and octahydrol-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazoc:ine (HMX)

contaminations on soil chemical and microbiological properties were

evaluated. Four soils were obtained from munitions manufacture and loading

sites that have been operating since World War U. Tests indicated that

acetonitrile extracts of these soils contained up to 6435,mg TNT kg-1 soil, 2933

mg RDX kg-1 soil, and 2135 mg HMX kg-1 soi, in addition to other detecta!ble

levels of degradation Intermediates. Nitrate-N levels in these soBs reached as

high as 315 mg N kg-1 soil and ammonium-N measured as high as 150 mg N

kg-1
. The long-term contamination resulted in undetectable fungal populati,ons

in all four soils tested. The recoverable bacteria,1 popuilation was as low as 5

bacterial colony forming units g-1 soil. Activity of dehydrogenase, an

intracellular enzyme that is active only ,in viable cells, was also not detected in

the highly contaminated soil. Microbial biomass carbon was as low as 3 mg C

kg-1 soil. Thus, natural attenuation in these soHs may not be a feas:ible

remediation technology. Interestingly, reduction in the total re,covera:ble

microbial population was not observed when an a,gricultural soH was spiked

53



with up to 5000 mg TNT kg-1 soil. Short-term amendment of TNT, however,

did result in a shift in microbial community structure as indicated by distribution

of r/K microb'ial growth strategists. TNT also affected glermination of al,(a,lfa

and cotton. Less than 10% alfalfa seeds germinated when 100 mg TNT L-1

was supplemented. Results obtained from this study may be used to guide

development of bioremediation strateg'ies that maximize, the use of natural

resources while minimize environmental risk.

Introduction

Microorganisms are bioindicators of soil health because they maintain soil

fertility, are in close contact with the soil environment, and may rap:idly

respond to contamination (Torstensson, 1997; Turco et aI., 1994; van Beelen

and Doelman, 1997).

Nitroaromatic compounds, such as 2,4,6-trinitrotolu,ene (TNT),

hexahydro-1 ,3,5-trinitro-1 ,3,S-triazine (RDX), and octahydrol-1,3,5,7-tetranitro

1,3,5,7-tetrazocine (HMX), are common mi:litary explosives that are found in

soils at destruction ranges, exp osive dumping grounds, industry production

sites, firing ranges and ammunition factories (Shen et aI., 2001). These

compou:nds may inhibit the growth and survival of bacteria, fungi, and,

actinomycetes (Fuller and Manning, 1997; Klausmeier et aI., 1'973), soil fauna

(Parmelee et aI., 1993), and higher plants (Palazzo and Leggett, 198:6;

Peterson et aI., 1996). TN'T is cytotox,ic and genotoxic to bacterial and
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mammalian ceUs (Berthe-Corti at aI., 1998; Honeycutt at aI., 1'996; Lachance

et al., 1998). Soil micro'bial activities decreased as TNT contamination

increased (Gong at at, 1999). Contamination of these compounds eQuid

result in extremely low microbial activities and inhibit growth of pla:nts (Gong 'et

aI., 1999). Because of the decreased indigenouspo:pulation, n,atural

attenuation may not be a viable strategy for remediation of nitra,m:ine and

nitroaromatics-contaminated soH environments. Moreover, nitroaromatic

compounds and their degradation metabolites can leach through soil into the

groundwater (U.S. Army, 1980), which results in degraded water quality. One

well-known example is nitrate toxicity. The nitro groups on the nitroaromatic

compounds are removed from the ring structures during degradation (Nishino

et aI., 2000), which leads to production of nitrate. Nitrate is mobile in soil and

may leach to ground water if it is not assimilated timely by microorganisms

and/or plants (Hil , 1991), which results in nitrate contaminatiorn of groundwater

and surface water (Yadav, 1997). Nitrate is known to cause c,hronic toxic

effects (Hill, 1999). Ingestion of nitrate by babies can cause a disease,

methemoglobine:mia (Hill, 1999). This is because nitrate can be reduced to

nitrite, whic,h reacts with hemoglobin to form methemoglobi,n in the blood (Hill,

1999). Methemoglobin has reduced oxygen ,binding affinity, cau;sing the infa:nt

turning blue. More over, nitrate and nitrite in a digestive system of h'umans

can be converted to N-nitroso compounds by bacteria, which cause cancer

(Hill, 1999). In addition, nitrite is known to be a potent antimicrobial age,nt (Hill,

1999). The decreased activity of Nitrosomonas europaea was attrib'uted to
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inhibition of nitrite to the enzyme ammonia monooxygenase (Stein and Ar!p,

1998).

Toxicity of nitroaromatic co.mpounds and their degradation products has

been studied extensively. TNT exposure through inhalation or dermal

exposure can cause headaches, skin irritation, weakness, cataracts, anemia,

and liver injury (Hathaway, 1985; McConnell and Flinn, 1946; Merck's 'Index"

1983; Morton et aL, 1976). Indire,ctly, metabolites of TNT,including 2,4

dinitrotoluene (DNT) and 2,6-DNT, have shown toxicity towards Poecilia

reticulzata, with 14-hour lethal concentration (LC50) values of 12.5 mg 2,4-DNT

L-1 and 18 mg 2,6-DNT L-1 (Deneer et aL, 2001). Studies indicated that TNT is

a direct acting mutagen, while the monoamino- and diamino-metabol'ites w,ere

less mutagenic. However, 2-amino-4,6-DNT a:nd 2,6-diamino-4-nitrotoluene

have demonstrated similar levels of mutagenicity to TNT (George et al., 2001).

Exposure to RDX can be through inhalation and dermal absorption (Kaplan et

aI., 1965), and has been found in human cerebrospinal fluid, plas,ma, urine,

and feces (Woody et aI., 1992). RDX is classified as a class C carcinogen,

and has been known to cause unconsciousness and epileptiform seizures

(Harvey et at, 1991). Animal studies indicate that HMX may be harmful to the

liver and central nervous system if swallowed, inhaled, or contacted (ATSDR,

1995). Therefore, the U.S. EPA (1990) regulates these munition,s as

hazardous, and has set restrictions on landfill disposa11 (1'991).

Although numerous studies have been directed to evaluate the toxi1c'ity

of nitroaromatics, most of these studles 'have focused o,n the inh,ibition of
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growth of certain microorganisms (Fuller and Manning, 1997;Klausmeier et

aI., 1973) or the ability to biodegrade nitroaromatic compounds (e.g. Sinks et

aI., 1995; French et al. 1998; Marvin-Sikkema et al. 1994; McCormick et aI.,

1976; Meharg etal., 1997; Montpas et aI., 1997; Naumova at at., 1989; Preuss

et aI., 1993; Schackmann and Muller 1991). Little work has been conducted to

investigate the effect of munitions on soil microbiological community, with even

less work on microbial com,munity structure.

This study was directed to evaluate TNT, RDX, and HMX

contaminations in soil and impacts of their long-term contamination on levels

of N03-N, NH4-N, and TNT degradation intermediates, on microbial biomass C

content, dehydrogenase activity, and culturable microbial communities. In

addition, studies were also conducted to assess impact of spiked TNT on soi

microbial activity and community, and toxicity of pure TNT on germin,ation of

cottonseed and alfalfa.

Materials and Methods

Soil samples

Three soil samples were taken from the Pantex Facility (Amarillo, Texas),

referred to as PF1, 2 and 3. PF1 was taken from the edge of the facility as a

control soil. All three soils are clay loam. 'PF1 has a mean particle s'ze

distribution of 20% sand and 400k clay. PF2 and PF3 have a mean particle
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size distribution of 240/0 sand, 28% clay. ThePantex facility was originaUy

calleQPantex Ordnance Plant during World War II. This facility processed

millions of pounds of high explosives before 1942. For example, bomb loading

line number one, one of the 11 zones, loaded 8,248 five hundred pound

bombs on a 7 day week basis, requiring about two and one half million pounds

of TNT per day (www.pantex.com). The Pantex facility was deactivated after

World War II ended and was reca,ptured by the Atomic Energy Commission in

1951 as a nuclear weapons facility, the only one in the :United States

(www.pantex.com). The explosives contamination has been present for over

50 years.

One soil sample was taken from the Kansas Army A,mmunition Ptant

(Parsons, Kansas), referred to as KP. The KP soil ,is a sandy clay loam with a

mean particle size distribution of 500/0 sand and 25% clay. This facility was

built in 1941, and was called Kansas 'Ordnance Plant during World War II

(www.parsonsks.com/history.htm). The facility still loads, assembles, and

packs ammunition products for the military and contractors today

(www.dayzim.com).

A soil sample was also taken from a century-long continuous winter

wheat (Triticum aestivum L.) experiment located in central Oklahoma, U.S.A.,

referred to as OK soil. The OK soil is a silt loam with a mean particle-size

distribution of 37.5% sand and 22.50/0 clay. Catta manure from a feedlot w,as

applied to the soil every four years at 269 kg N ha-1 since 1899. This soil was
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used as a healthy soil for comparisons and for evaluating impact of spiked

TNT on microbial activity and community structure.

Soil chemical properties

Soil pH values were determined using a combination glass electrode (soil:0.01

M CaCI2 ratio = 1:2.5), and soil organic C (Corg) and total N by dry combustion

using a Carlo-Erba. NA 1500 Nitrogen/Carbon/Sulphur Analyzer (Schepers et

aI., 1989). Ammonium and nitrate in soil were extracted by shaking with 2 M

KCI (1:5 soil:2 M KCI) for 30 minutes, and filtering through a Whatman number

42 filter paper (Bremner, 1965). NH4+ and N03- in the extracts were analyzed

by QuickChem® lachet using methods 12-107-06-2-A for ammonium and 12

107-04-1-B for nitrate.

Soil organic C and total N were determined using soil samples with

particle size less than 180 Jlrn. Soil pH was determined with air-dried samples

that passed a 2-mm sieve.

Nitroaromatic compounds in soil

Structures and properties of TNT, RDX, HMX and their degradation

intermediates are shown in Table 3.1. Their concentrations in soil wer~

determined using the U.S. Environmental Protection Agency Method 8330

(1997). Briefly, soil and acetonitrile (1:5 ratio) suspension was placed in an
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Table 3.1. Structure and chemical properties of contaminants and
degradation intermediates.

Compound Structure M.W. Solubility N Content C Content

CH3 (mg L-1) ------- % ------

°2N N02

TNT 227.133 150a 19 37

N02
I

RDX (1
222.117 60a 39 16

02~O2

N02

I
jN\

/~ N...............
HMX 02N ~ N02

296.156 5a 39 16
~
N02

CH3
N02

DNT 182.135 270b 15 46

TNB 213.106 350C 20 34

Y
N02

I"::
.0-

D-NS N0
2

168.109 469b 17 43

M.W. = Molecular Weight
a www.denix.osd.mil/denix/Public/Library/Remedy/Umatilia/umati02.html
b chemfinder.cambridgesoft.com
C Merck's Index (1993)
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ultrasonic bath for 18 hrs at 4°C. After settling for 30 min, ,a portion of the

supernatant was remo\/ed, diluted with 0.05 M CaCI2 (1:1 ratio), and then

filtered through a 0.45-Jlrn filter before analysis using a C-18 reverse phase

HPLC column (representative separation is shown in Figure 1, Appendix).

The concentration of nitroaromatics in the extracts was calculated us·ng

calibration curves developed with standard grade (> 980/0) TNT, RDX, HMX,

and their degradation intermediates 1,3,5-trinitrobenzene (TNB), 2,6

dinitrotoluene (DNT), and m-dinitrobenzene (DNB) standards (ChemService,

West Chester, PA, USA). In addition, water leachates were collected by

passing 10-ml of deionized water through a 5-9 soU sample that was he d on a

plastic funnel with a Whatman No 2 folded filter paper. Concentrations of

nitroaromatic compounds and their degradation intermediates in theleachates

were determined using HPLC as described above.

Soil Biochemical and Microbiological Properties, and Microbial Community

Structure

Dehydrogenase activity was assayed using the method described by Casida

et al. (1964). The microbial biomass C was determined by the chloroform

fumigation-incubation method (Jenkinson and Ladd, 1981), using a kc fa~tor of

0.45 with subtraction of the control.

Bacteria were cultured on 0.1-strength Tryptone soya agar (TSA) plates

at 25°C (Katoh and Itoh, 1983; Lawley et aI., 1983). All bacterial colonies
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appearing within 24 h were designated as r-strategists, and the remaining as

K-strategists (De Leij et aI., 1993). Unless specified, colonies were

enumerated on a daily basis for 5 consecutive days and on day 10. Plates

were examined at low magnification (1.5X), and each day colonies that were

visible were marked and enumerated. Thus, 6 counts (classes) were

generated per plate. Plates with 20 to 200 colonies were selected for

enumeration. When plates became too crowded, the next dilutions were used

for enumeration. Distribution of bacteria in each class as a percentage of the

total counts gave insight into the distribution of r- and K-strategists in each

sample. Bacteria counts obta,ined were expressed in colony forming ,units

(CFU) per gram soil.

Fungi were cultured on 0.1-strength malt extract agar (MEA) plates at

23°C. Fungal colonies were observed after 72 hours of incubation with

countable plates of the highest dilution being enumerated.

An agriculture soil was spiked with 0, 250, 500, 1000, 2500 and 5000

mg TNT kg-1 soil, respectively, and incubated for 10 days at 23°C and 60%

field-moisture content. Then bacterial and fungal populations in these soils

were determined as described above.

All the experiments were conducted in tripUcate incubations. Plate

counts were conducted with 5 replicated-plates for each dilution.
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Seed Germination

Water agar plates were spiked with 0, 1.0, 3.2, 10, 32, and 100 mg TNTL-1
,

respectively. Since TNT obtained was dissolved in acetonitrile, equivalent

amount of solvent was added to the control and all the treatments. The seeds

were sterilized by soaking in 1.5% hypochloride for 5 minutes, followed by

95% ethanol for 30 seconds and rinsed with water 6 times. Fifty alfalfa seeds

were placed on each plate. Five replicates were performed. The percent

germination was recorded daily for 5 days.

All results are expressed on a moisture-free basis. Moisture was

determined after drying at 10Soe for 48 h. Significant differences among

treatments were determined using one-way analysis of variance (ANQVA).

Comparison of treatment means was performed using the least significant

difference (LSD) test. Percentage data were transformed using arc sine

transformation before ana ysis (Gomez and Gomez, 1984). All resu:lts reported

are averages of replicated assays and analyses.

Results

Chemical properties and nitrogenous compounds

The pH values of the contaminated soils were similar, rangiing from 7.4 to 7.9

(Table 3.2). The total nitrogen in the contaminated soils ranged from 1.9_ to
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Table 3.2. Properties of the soils studied.

Soil

PF1
PF2
PF3
KP
OK

Organic Total

pHa Cb Nb Sand Clay

k -1 ·1 ----- 0/0--------g g SOI---

7.7 15.1 1.9 20.0 40.0
7.9 18.4 6.9 25.0 27.5
7.6 28.8 22.0 22.5 27.5
7.4 35.3 10.6 50.0 25.0
5.6 10.2 0.9 37.5 22.5

a pH was determined by using soil: 0.1 M CaCI2 (1 : 2.5).

b Organic carbon (C) and total nitrogen (N) was determined
by total combustion using a Carlo-Erba NA 1500 Nitrogen/
Carbon/Sulfur Analyzer.

C Parfcle size distribution was determined using pipette
analysis (Kilmer and Alexander, 1949).
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22.0 9 N kg-1 soil, while total organic carbon ranged from 15 to 35 9 C kg-1 soil

(Table 3.2). Leve,ls of NH4+-N in the contaminated soils were from 45.2 to

150.3 mg NH/-N kg-1 soil, and N03--N from 5.8 to 487.6 mg N kg-1 soil (Table

3.2). NH4+-N level in PF3 soil was 18.6-fold of that in the O:K soil and over 3

fold of those in the PF1 and PF2. N03--N in PF3 was 143-fold of that in the

OK soil and 84-fold of that in the PF1 and over 4-fold of that in PF2. The

highest levels of HMX, RDX, and TNB were found in PF3 soil, and were 2138,

2933, and 441 mg kg-1 soil, respectively (Table 3.3). The highest TNT

concentration was found in the KP soil, which was about 6438 mg kg-1soil.

TNT was the only contaminant that was detectable in the PF1 soil, but was

less than 1 mg kg-1 soil. Levels of TNB and DNB were low in all the soils

tested, but detectable in the PF2 and PF3 soil. Total N in the forms of

contaminant tested reached as high as 2512 mg N kg-1 soil, which represented

about 11.40/0 of the total N detected in the PF3 soil.

Moreover, nitroaromatic contaminants are quite mobile in soil and can

be leached out with water (Figure 3.1). Water eachates of the contaminated

soils showed concentrations of conta,minants up to 52 m;g HMX, 76 mg RDX,

106 mg TNS, and 134 mg TNT kg-1 soil (Table 3.4).

Microbial Activity, Population, and Community Structure

Activity of dehydrogenase, an enzyme that is .active o,nly in viable cells, was

not detectable in the PF3 soil and less than 10 mg triphenyl formazan (TPF)
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Table 3.3. Nitroaromatic compounds and inorganic N detected in the soils studied.

Soil HMX a RDX a
N As % of

DNT a DNB a NH4+-N b N03--N b detected total N

-------------------------------mg N kg-1 soil------------------------------- 0/0

PK1 NO NO < 1.0 NO NO NO 51.1 5.8 57.9 < 4.0

(NO) (NO) « 5.0) (NO) (ND) (ND)

PK2 546 ±161 806 ± 285 102 ± 7 23± 12 0.4 ± 0.5 11 ± 0 45.2 113.4 1648.6 23.9

(1445 ± 302) (2133 ± 533) (551 ± 28) (117±43) (2.7±2.6) (64± 0)

PK3 808 ± 110 1109 ± 153 504 ± 24 87 ± 8 NO 3±2 150.3 487.6 3150.0 14.3

(2138 ± 290) (2933 + 403) (2726 ± 131) (441 ± 41) (NO) (82 ± 29)
en
0')

KP ND 42 ±24 1191 ±101 58 ± 12 NO NO 73.5 314.7 1679.2 15.9

(ND) (112±65) (6438 ± 547) (296 ± 59) (NO) (NO)

a Nitroaromatic compounds were extracted with acetonitrile and analyzed by HPLC using a C-18 column for
separation ( EPA method 8330). Concentations reported are means ± standard error. Results in

parentheses reported in mg contaminant kg-1 soil. HMX =Octahydro-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazocine,
RDX = Hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine, TNB =Trinitrobenzene, TNT= 2,4,6-trinitrotoluene, DNT=
Dinitrotoluene, DNB = Dinitrobenzene, and ND=Not Detected.

b Ammonium and nitrate were determined by extracting with 5:1 2 M KCL and analyzed by Lachet Quick
Chem® methods 10-107-04-1-A and 10-107-06-2-D.



PF1 PF2 PF3 KP

Figure 3.1. Water leachates of nitroaromatic-contaminated soi s
tested in this study. Colors of the leacheates are likely
associated with the contaminants TNT, RDX, and HMX or
the intermediates of their biodegradation. The majo
contaminants in PF2 and PF3 soi s areRDX followed by
HMX and TNT. The major contaminant of KP soil is TNT.
A detectable level of TNT was found in PF1.
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Table 3.4. itroaromatic oompounds detected in water eachates. a

Soil HMX RDX TNT TNB D T DNB

--------------- mg L-1 -Isal -----------------

PF1 NO NO 7.6 ND NO D

PF2 23.6 :62.8 134.0 57.4 ND NO

PF3 52.0 76.4 122.4 106.0 0 13.0

KP NO NO 50.4 36.4 ND NO

a Nitroaromafc compounds were extracted with water and analyzed by
HPLC using a C-18 column for separation ( EPA method 8330).

HMX =Octahydro-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazocine,
RDX =Hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine, TB =Trinitrobenzene,
TNT =2,4,6-trinitrotoluene, DNT = Dinitrotoluene,
DNB = Dinitrobenzene,and ND =Not Detected
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kg-1 soil in the PF2 and KP soil, while activity of this enzyme was over 40 and

about 60 mg TPF kg-1 soil in the PF1 and OK soils, respectively (Figure 3.2).

Interestingly, microbial biomass C was not only detectab'le in the PF3 soil, but

also the detected value was about 5-fold of that in the KP soi, which are 15

and 3.4 mg C kg-1 soil, respectively (Figure 3.2). In general, microbial

biomass C contents were less than 20 mg C kg-1 soil in the co,ntaminated soils

with the exception of PF1, which had 66 mg C kg-1 soil (Figure 3.2)..

Culturable bacteria population was the highest in PF1 soi, 6.3 x 104

CFU 9-1 soil, and the lowest in KP soil, only 5 CFU g-1 soi. The PF2 and PF3

soils had culturable bacterial populations under 158 CFU g-1 soH an,d 20 C,FU

g-1 soil, respectively (Figure 3.3). Fungi were not even detectable in al the

soils tested.

In the bacterial community detected,percentag,e of r-strategists

increased with increasing contamination levels in the PF 50"15, ranging from 8

to 560/0 (Figure 3.3). Interestingly, r-Strategists bacteria were not detected in

the KP soil.

When an agricultural soil was spiked wi h various concentraions of

TNT, the total recoverab e bacterial population was not affected by addition of

T T up to 2500 mg TNT kg-1 soil. Following addition of 5000 mg TNT kg-1

soil, significantly higher bacterial population was found (Figure 3.4). However,

bacterial community structure within the community did change as indicated by.

distribution on percentages of r-strategists (F gure 3.4).n genera, percentage
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of r-strategists increased with increasing concentration of contaminants

(Figure 3.4).

Seed germination

Addition of TNT affected germination of cottonseeds and alfalfa (Figures 3.5

and 3.6). Alfalfa seeds appeared to be more tolerant to the solvent and TNT

Alfalfa germination was not drastically reduced until the seeds were subjected

to 32 and 100 mg TNT L-1
. Within 60 hours, 60% of the afalfa seeds

germinated when exposed to 32 mg TNTL-1
, while less than 100k germination

upon exposure to 100 mg TNT L-1 (Figure 3.6).

Discussion

In less than one minute of contact with the contaminated soils, water leachates

were undoubtedly colorful. The red or pink water has been observed in most

munition-contaminated sites, and this phenomenon has been attributed to

color change when exposed to sunlight (Howard et al. 199). Although

solubility of TNT and RDX were considered ow (Merck Index, 1993), the color

of water leachates from the contaminated soils strongly indicates the presence

of these contaminants. In fact, TNT, RDX, and HMX have been reported tq

leach into groundwa er (U.S. Army 1979; 1980). Resu ts from this study
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Figure 3.5. Germination of cotton at various levels of TNT. Seeds
were germinated on water agar pia es. Standard TNT
so:lution (1 OOOp,pm) obtained was dissol!ved in
acetonitrile. Thus, seeds in the contra were geminated on
plates supp emented with ace onitrile concan ration that
was equivalent to 100 ppm TT standard sol,ution, which
is he hig est aceto,nitrile concen ·ra ion among the plates
tested.
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Figure 3.6. Germination of alfalfa seeds on various levels of TNT.
Seeds were germinated on water agar plates. Standard
TNT solution (1000 ppm) o'btained was dissolved in
acetonitrile. Thus, seeds in the control were geminated on
plates supplemented with acetonitrile concentratio that
was equivalent to those in the 100 ppm TNT plates, which
is the highest ,acetonitrile concentration among the ,plates
tested. Bars indicate standard error.
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suggest that these contaminants might have been I'each-ng from the s'ites over

50 years.

Contamination leveils varied among the soils teste·d. PIF1 soil, which

was taken as a control, contained detectable TNT, a:lthough it was ess than 1

mg TNT kg-1 soil. TNT contamination in other contami,nated sai' sampl'es was

as high as 6435 mg TNT kg-1 soil andRDX up to 2933 mg RDX kg-1 soil.

Thus, it is not surprising that microbial activity was suppressed to as ow as

undetectable levels.

There is limited information on the effects of explosives on the

indigenous community in a historicaUy contaminated site (Fuller and' anning

1998). Results from this study indicated that dehydrogenase activity was

reduc,ed dramatically in the contam:inated soi s,which iscons'stent with

previous findings (Gong et al. 1999). Microbial biomass was a so significantly

reduced due to contamination. However, biom,ass and activity of soil microbia

communities are not the same in principle. Early effects on microbial

pro,cessesmay be detected by measurements of activi y rather than by

determination of microbial biomass content (Landi et al. 2000). This expains

the different trend in dehydrogenase activity and microbial biomass for the KP

soi, suggesting that there were dormant microorganisms presen in the KP

soil.

Although plate counts are limited to revealing a small fraction

(approximately 1-10%) of soil microbial community (Zuber 1994). ong-term

contamination of nitroaromatics undoubtedly has left these soils nearly
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sterilized. Fu!ngal populatjon was undetectable an,d Ibacterial populations were

as low as 5 CFU g-1 soil.

Among the microorganisms that survived, percentages of r-strategists

increased. This is unexpected because r-strategist organisms are fast

growers, which are not effic'ient at metaboHzi:ng recalcitrant substrates or

dealing with stress conditions (Lucki,nbill 1978; De Leij et at. 1993). K

strategists, on the other hand, were expected to do well in a contaminated

environment because they have been shown to be less sensitive to toxins

(Luckinbill 1978; De Leij et a. 1993). Results obtained from the KP so~

supported these concepts. However, results obtain,ad from thePF soils and

the spiked soils are contradictory with the concepts. One possible explanation

is that bacteria proliferating in nitroaromatic-contaminated environments

happened to be dominated by r-strategists in these soi s.

However, tota recoverable bacterial 'populations were not redu,ced

upon addition of TNT to an agriculture soil, and a significant increase was

observed at the highest TNT concentration treated. This differs from a p ior

report that dehydrogenase activities were reduced in T T-spiked soils (Gong

at a . 1999).

Reduction in microbial popu ations in contaminated soilscou dbe due to

toxicity of the contaminants and/or their degradation intermediates 0 products,.

The levels of NH4+ and N03- detected in the high y contaminated 50·15 raise the

question of NH4+ and N03- toxic· y. It is k:nown that certain m"croorganisms,

such asmethanotrophs (Pa'ul and Clark 1996), can ,be i:nh.ibited by high levels
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of NH4+. Nitrate has been show1n to inhibit the growth of bacteri,a, such as

Nitrosomonas europaea (Stein and Arp 1998).

Contamination of nitroaromatic compounds inhibited not only the

microbial community, but also higher plants as shown by the germination of

cotton andalfa fa. Inhibition of nitroaromatics on higherp a,nts has also been

reported by Gong et al. (1999) and Peterson et al. (1996). n fact, vegetative

and microbial growth are both indicative of contamination. As shown by Gong

et al. (1999), soil samples taken from areas where grasses were present had

much higher dehydrogenase activity. However, microbial activities are

generally considered 0 be more sensitive to changes in theenviron,m:ental

conditions.

Apparently, some of the bacteria survived in the contaminated soils and

possess the ability to use contaminants for nutrient and/or energy sources,

implying potential re'leaseof nitrate to the environment. Even though n,itrate

toxicity no anger represents a threat to children once the gastric acid b,arrier

reduces colonization in the upper gut, which minimizes nitrite formation, a risk

of cancer in adults still remains (Hill 1999). Nitroaromatics contamination still

poses a threat to the health of iving organisms.

In summary, soil microbia popu atio,n is sensitive to RDX, HMX and

T T contamination. Microbes existing in a contaminated soil ecosystem

provide an excellent measure of the impact of toxica'nts on he soil

environment. Indigenous microorganisms may be repressed by the toxicity of

the contaminants, which could decrease the efficiency ,of natural atten:uation.
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Reduced microb'iaJ activity wo,ul,d lead to reduced degrad'atio rates of the

contaminants, which would potentially ead to nitrate toxicity and nitroaromatic

contamination in the ground and surface water.
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Chapter IV

ISOLATION, CHARACTERIAZATION AND IDENTIFICATION OF

NITROAROMATIC DEGRADI G BACTERIA

Abstract - Nitramine and nitroaromatic compounds, including the

explosives 2,4,6-trinitrotoluene (TNT), and hexahydro-1 ,3,5-trinitro-1 ,3,5

triazine (RDX) and octahydrol-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazocine (HMX), are

a class of environmental contaminants that have been shown to affect not o,ly

microbial life, but also humans. Isolation, identification, and character'za ion of

microorganisms that are capable of degrading these contaminants would

facilitate bioremediation by optimizing conditions for growth of these

microorganisms. Eight bacteria capable of using either T T or RDX as a sale

source of nitrogen were isolated from soil. Among the 8 bacteria, two were

gram-positive, two cocci, 5 rods and one fibrous. All isolates were capable of

fermenting glucose, lactose, and mannitol, but only isolates 5, 6, and 8

produced C02 with glucose. Isolate 5 was the only bacterium that was

capable of producing alcohol and various acidic end products. All eight

isolates produced catalase. On y isolates 7 and 8 were capable of utilizing

starch, while isolates 4, 5, and 8 were capable of casein hydro,lysis. AU

isolates, with the exception -of isolate 5, produced lipase for fat hydrolysis.

Tryptophanase was not produced by any of the bacterial isolates. Isolates 1,

2, and 3 produced urease and were capab e of the hydrolysis of urea. Resu 5

from gram stain,morphoogy, biooxidation ests, and hydrolysis tests a ong
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with 168 rONA seque,nces suggest that iso ate 2 is a Sinorhizobium, i,solate 3

belongs to Streptomyces, both isolates 5 and 6 are from the same genus,

Bacillus, isolate 7 is a Pseudomonas, a,nd isolate 8 ap:pears to be an

actinomyces. Isolates 1 and 4 remain unidentified.

Key words: TNT, RDX, biodegradation, bacterial isolates

Contamination of nitramine and nitroaromatic compounds in the

environment has been widespread and at east 20 of the National Priority

Listed sites resulted from their contamination [1]. Commonly found

contaminants include 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trin·tro

1,3,S-triazine (RDX). The latter lis often used! in combination with octahy,dro

1,3,5,7-tetranitro-1 ,3,5,7-tetrazocine (HMX) [1]. TNT, RDX a,nd H X are

common military explosives that are found in soils at sites such as destruction

ranges, explosive dumping grounds, manufacturing processes, firing ranges

and ammunition factories [2].

TNT is made up of 18.5% nitrogen, all of which is co sftuent natro

groups. Current use and past disposal practices have resulted in extensive

TNT contamination of soils, sediments, surface wa ers, and groundwater [3, 4,

5], and it has also been shown to be toxic to various biological groups,

includ:ingbacteria, fungi and soi fauna [6, 7, 8].

RDX, royal demolition explosive, has three nitrogen atoms in the

exacyclic ring, three n,itro groups, and is classified as a- polynitramiine. RDX
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is also used as an explosive as well as a rodenticide [9].RDX is a class C

carcinogen, and has been known to cause unconsciousness and epileptiform

seizures [10]. Produiction gradeRDX contains impurities such as significant

amounts of HMX (high melting explosive) and trace amounts of 1

acetylhexahydro-3,5-dinitro-1 ,3,5-triazine [11].

Modification to the RDX manufacturing process allows HMX to become

the major product and RDX the impurity [12]. HMX is an octacyclic ring, with

37.8% of nitrogen. HMX is also a polynitramine and is a regulated toxic

hazardous compound with significant environmental risk from the metabo' ites

formed during degradation [13, 14].

Degradation of these compounds involves the activities of aerobic,

facultative, and anaerobic bacteria and some fungi. TT transformation by

microorganisms has been reported under aerobic and anaerobic conditions

with complete reduction of one or more nitro groups observed [15, 16, 17, 18].

Enterobacter cloacae PB2 (19], a bacterium, and Phanerochaete

chrysosporium, a white rot fungus [20, 21 , have been shown to reduce T T.

Studies have demonstrated the transformation of TNT to the ·ntermediate

trlaminotoluene (TAT) [22, 23, 24]. TAT 's an intermediate of a norma to uene

metabolic pathway in bacteria [25]. Research has also shown prom:·se in the

degradafon of TNT under sulfate reducing followed by nitrate reducing

co ditions [2'6].

Numerous bacteria have been identified to be able to break down RD.X,

including Stenotrophomonas maltophilia PB1 [12], Providencia rettgeri,
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Morganella morganii, and Citrobacter freundij [27], and Rhodococcussp.

strain DN22 [28]. They were all isolated from soil under aerobic, nitrogen

limiting conditions. The fungus Phanaerocheate chrysosporium has also been

shown to degrade RDX [29]. In fact, municipal anaerobic sewage s udge also

effectively mineralized RDX [30]. However, bioremediation effort of

nitroaromatics-contaminated soils is still hampered by lack of strains that

effectively degrade nitroaromatic compounds for an economica Iy feasible

bioremediation approach.

Eight bacteria capable of using either TNT or RDX as a sale source of

nitrogen were isolated. The iso a ed bacteria werechara,cterized using gram

stain, morphology, biooxidation, and hydrolysis tests, a ong w'th 165 rDNA

sequences for their tentative identification.

AER ALS AND METHODS

Growth media, isolation and maintenance. The growth media

consisted of 980 m of basal medium [26] supplemented with 5 ~g of RDX, 20

ml of trace element solution and 1 m vitamin solution [31 I The basal medium

contained (a gliter-1
) KH2P04, 0.16 g; K2HP04.3H20, 0.42g; 82HP04- 2H20,

2.2 g; NaHzP04.HZO, 1.1 g; MgS04.7HzO, 0.1 g. When used in anaerobic

con,dilions, 100 m NaHC03 (10% w/v),50 ml Na2S (1 9 82S.9H20 in 100 ml

H
2
0) and 0.1 9 resazurin [26] were also included in one liter of basal medium.

The media was sterilized by autoclave for 30 minutes for 'use under aerobic
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conditions or by filter sterUization through a O.22-lJm-pore size filter if used

under anaerobic conditions. Glucose (0.5 9 liter-1
) was added to the medium

as a carbon and energy source for microbial growth.

Microorganisms were isolated from soi s taken from ammunjtion

facilities with over 50 years of contamination. Detaieddescriptions of these

soils are given in Chapter 3. Soil samples were pre-incubated at room

temperature at 60% field-moist capacity for 10 days prior to iso ation. The

isolates were obtained by spreading soil suspensions on basal medium plates

with RDX or TNT as the sale source of nitrogen. Microbial colonies isolate,d

were further purified by streaking each isolate at least three ti,mes on fresh

plates.

Routine growth was done with tryptone soya broth (TSB) for enhanced

growth. RDX or TNT (5 ~g L-1
) was added to the medium as a selective

pressure. Stock cultures of the isolates were grown up i,n TSB, mi,xed with

40% glycerol (1:1 ratio), frozen in liquid nitrogen and stored at -8'O°C.

icroscopic characterization. All cells used for microscopic

characteriza ion were grown in TSB or on tryptone soytone agar (TSA) or

basal plates. Observations were made from microbial slides fol owing gram

stain under a Bauch & Lomb brightfield microscope, and pictures were taken

with a Kodak Microscopy Documentation System 290 using a Kodak DC 290 .

Zoom Digital Camera.
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DNA extraction, purification, and analyses. Genomic D: A was

extracted using either liquid or freeze-dried bacterial culture following

procedures described by Sambrook at al. [32]. Unless specified, PCR

amplification was performed on an automated thermacyc er (PTC-100, MJ

Research Inc., Watertown, MA, USA) with an initial denaturation (94°C for 120

sec), followed by 30 cycles of denaturation (94°C for 45 sec), annealing (65°C

for 30 sec) and extension (72°C for 120 sec), and a single final extension

(72°C for 10 min). The annealing temperature used for solate 8 was 60°C.

The primers used during amplification are listed in Table 4.1. peR products

were purified using the UltraClean peR clean up kit (Mo Bio Laboratories, Inc.,

Solana Beach CA, USA) and seque'nced using an ABI PRISM 3700 DNA

analyzer (Applied Biosystems, Foster City, CA,USA). Sequence similarity

searches were conducted using the BLAST network service [34], and

sequence alignments used the GAP program [35].

Biophys·ologicatests. Durham tubes with pheno red glucose,

lactose, and mannito broth were used to test for production of acid and/or gas

from fermentation of a particular sugar, indicated by color change of the media

used or appearance of gas bubbles [36]. These tubes were inoculated and

incubated at 37°C for 48 hours. The lactose fermentation was sow and hose

tubes were monitored for 5 days.

Mixed acid fermentation was determined using the methyl red test. The

isolates were grown in MR-VP medium at 37°C for 48 hours. The formation of
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Table 4.1 Nucleotide sequence of primers used for polymerase chain

reactions (PCR) in this study. a

Target
gene Primer

168 rD A 1
168 rD A 2
168 rONA 3
168 rONA 4

a Toytal et a . [33]

Sequence

51-ceT ACG GGA GGC AGC AG-31

51-CGG TGT GTA CAA GGC CCG GGA AAC G-3'
5'-AGA GTI TGA TCe TGG eTC AG-3'
5'-AAG GAG GTG ATC CAG eCG CA-31
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acids was indicated by a color change from yellow to red immediately foUowi~ng'

addition of methyl red [36].

The Voges-Proskauer test was used to determi:ne if butaned:iol

fermentation occurred. Bacterial isolates were grown in MR-VP medium at

37°C for 4 days. Production of 2,3-butanediol and alcohols was tested by a

color change from yellow to pink or red following addition of Barritt's reagent.

This protocol actually tests for the presence of acetoin, a precursor of 2,3

butanediol [36].

Catalase production was determined by smearing aloopfu of culture on

a slide with a few drops of 30/0 hydrogen peroxide on it. If catalase was

present the hydrogen peroxide effervesced [36].

Oxidase production was determ,inedby p ac'ing a few drops of oxidase

test reagent (1 % dimethyl-p-phenylenediamine hydrochloride) on a Whatman

No. 2 filter paper and then smearing a loopfulof ce Is onto the reagent. Color

change from pink to black indicates oxidase production [36].

Presence of nitratase, reducing nitrate to ni ri e, was detected by

growing the bacterial isolate in nitrate broth at 37°C for 48 hours under an

anaerobic environment. In the presence of nitrites, the culture would turn to

red following addition of sulfanilic acid and dimethyl-u-naphthylamine

dissolved ;n acetic acid [36].

Starch hydrolysis is indicative of amylase presence. Follow·ng streaking

the bacterial isolates to starch agar plates and incubating for 48 hours, Gram's
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iodine was added to the plate's surface. A c:lear ZQ,ne surround:ing the growth

indicates absence of starch [36].

Casein is the predominant protein in milk. Caseinase hydrolyzes this

protein to produce more solub e derivatives. Bacterial 'isolates were streaked

on skim milk agar plates and incubated for 48 hours at 37°C. A c ear zone

next to the growth indicates production of caseinase [36].

Lipase, which hydrolyzes fat 'into one glycerol and three fatty acids, was

tested by growing bacterial isolates on spirit blue agar plates for approximately

48 hours at 37°C. Appearance of blue precipitate or clear zone around the

cells indicates fat hydrolysis [36].

Tryptophanase, which splits tryptophan into indole and pyruvic acid,

was detected by production of indole following growing bacterial isolates in

tryptone broth at 37°C for 48 hours. Tryptophan hydrolysis is indicated by a

red layer at the top of the medium fa lowing addition of Kovacs' reagent [36].

Urease, which splits urea and produces ammonia, was tested by

growing bacterial isolates in urea broth at 37°C for seven days. Upon release

of ammonia, phenol red in the medium wil turn to pink, indicating urea

hydrolysis [36].

RESULTS

Eight bacteria were isolated from long-term n:itroaromatics

contaminatedsoUs. Four isolates were obtainedi using TNT as the solesQurce
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of nitrogen, and another four from using RDX as the sale nitroge:n so'urce.

With the exception of isolate 8, the isolates were obtained under aerobic

environments. Isolate 8 was obtained under anaerobic conditions, but was

later shown to be facultative. Among the 8 bacteria, two gram-positive, two

cocci,S rods and one fibrous were iso ated (Tabe 4.2, Figure 4.1). Isolates 1,

2,4, and 6 are round, smooth, convex, and cream-colored. Isolate 2 produced

a polysaccharide slime layer. Isolate 3 also has cream-coored colonies, but

the bacterial colonies adhered to the medium. This isolate also produced a

brown colored compound released onto the agar plate. Co onies of isolate 7

on TSB plates are light orange with an L-form, irregular s:hape. Isolate 8

exhibits crumbly, textured growth that is green and turns brown after

approximately 2 days of growth Din TSB plates.

All isolates were capable of fermenting glucose, lactose, and mannitol

but only isolates 5, 6, and 8 produced gas with glucose (Table 4.3). None of

the isolates produced gas during lactose and mannitol fermentation. Isolate 5

was the only bacterium that was capable of producing alcoho and various

acidic end products (Table 4.3). However, al eight isoates produced

catalase, which allows for the detoxification of hydrogen peroxide, but not

oxidase (Table 4.3). This suggests that none of the isolates use oxidase in the

metabolism of oxygen. It is expected that most of the isolates are not able to

red'uce ,nitrate. However, isolate 8, though able to grow in an anaerobi-c'

environment, was also not able to use nitrate as the final electron acceptor for

anaerobic respiration (Table 4.3).
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Table 4.2. Description ,of bacteria isolated from soil" capable of us·ng the
specified nitroaromatic compound as the sale - I source.

Isolate Nitrogen
Number Source Soil

Gram
Stain

Morphological
Characteristics

1 TNT PF1 egative Rod
2 TNT PF1 egative Rod
3 TNT PF1 Positive Cocci
4 TNT PF1 egative Cocci
5 RDX PF1 Positive Rod
6 RDX PF3 Negative Rod
7 RDX KP egative Rod
8 RDX KP Negative Actinomyces
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Isolate 1 Isolate 2 Isolate 3 Isolate 4

co
ex>

Isolate 5 Isolate 6 Isolate 7 Isolate 8

1
10Jlm

I
Figure 4.1. Bacterial isolates. Microorganisms were isolated from soils using basal medium plates supplemented with

mineral and vitamin solution and 5 mg kg-1 TNT/RDX as the sale N source. Isolate 3 were fibrous (b)
when initially isolated, but changed morphologically after consecutive culturing in the laboratory for over a
year (a). Isolate 8 was isolated under anaerobic conditions, but later confirmed to be facultative. This
bacterium was fibrous and produced spores (d).



Table 4.3. Biooxidation tests of the isolates.

Glucose Lactose Mannitol Mixed Acid Alcohol Nitrate Catalase Oxidase

Isolate Ferment a Ferment b Ferment C Ferment d Ferment d Reduction e Production f Production 9

1 + acid/-gas + acid/-gas + acid/-gas +
2 + acid/-gas + acid/-gas + acid/-gas +
3 + acid/-gas + acidl -gas + acidl -gas +
4 + acidl -gas + acidl -gas + acid/-gas +
5 + acidl +9a8 + acid/-gas + acid/-gas + + +
6 + acidl +gas + acidl -gas + acid/-gas +
7 + acidl -gas + acid/-gas + acidl -gas +

co 8 + acidl +gas + acidl -gas + acidl -gas +
co

a Durham tubes with Phenol Red Glucose Broth incubated at 37°C for 48 hours.

b Durham tubes with Phenol Red Lactose Broth incubated at 37°C for 48-60 hours.

C .'Durham tubes with Phenol Red Mannitol Broth incubated at 37°C for 48-60 hours.

d MRVP Medium incubated at 37°e for 48-60 hours.
e Determined with Nitrate Medium incubated at 37°e for 48-60 hours.
f 30k H20 2.

9 1ok dimethyl-p-phenylenediamine hydrochloride.



Even though many bacteria arie capable of hydrolyzing starch [38],

results indicate that only isolates 7 and 8 are capable of utilizing starch (Table

4.4). Isolates 4, 5, and 8 were capable of casein hydrolysis and all isolates,

with the exception of isolate 5, producedipase fat hydrolysis (Tabl·e 4.4).

Tryptophanase was not produced by any of the bacterial iso:lates (Table 4.4).

Isolates 1, 2, and 3 produced urease and were capable of hydrolyzing urea

(Table 4.4).

The results of the biooxidation and hydrolys.is tests of bacterial isolates

were compared with descriptions in the Bergey's Manual (1993) for possible

genus identification of the ,isolates (Ta,bles 4.5 - 4.12). The tentative

classification of each isolate was further confirmed by partial sequences of

bacterial 168 rONA (Tab,le 4.13). Isolate 2 ,is a Sinorhizobium, while isolate 3

be ongs to Streptomyces. Isolates 5and6 are from the same genus, Bacillus,

but isolate 7 isa Pseudomonas. Isolate 8 appears to be an Actinomyces. A

tentative identification was determined using the 168 rD·NA sequences and th,e

results of the biophyslological tests (Table 4.14). Although isolate 1 and 4

remain unidentified, results from this study indicated that many di,fferent

genera of bacteria could utilize TNT or RDX as a sale nitrogen source.

DISCUSSION

Oxidative microorganisms obta;in their energy and carbon source from

red;uced organic substances 8;nd releasee,nd products such as carbon dioxide
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Table 4.4. Hydro.lysis of starch, casein, fat, tryptophan, and urea by the

soil isolates at 37°C for 48 ho:urs.

Starch Casein Fat Tryptophan Urea

Isolate Hydrolysis a Hy,drolysis b Hydro,lysis C Hy,drolysis d Hydrolysis e

1

2

3

4

5

6

7

8

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

a Starch agar plates

b Skim milk agar plates

CSpirit blue agar plates
d Try:ptone Broth
e Urea Broth
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T,able 4.5. Tentative identificati'on of isolate 1 based on biophysiological tests and the
Bergey's Manual (1993).

Possible Possible

Genus Species Matching Characteristics

Acinetobacter NO gram (-) catalase + starch hydrolysis -
rod oxidase - acid from Glucose +

,to '.;

Pseudomonas syringaepathovars gram (-) catalase + starch hydrolysis -
vesicularis rod oxidase - acid from Glucose +
viridiflava

Acetobacter diazotrophicus gram (-) catalase + starch hydrolysis -
-a.

liquefaciens rod oxidase - acid from Glucose +0
I\,)

indole -

Xanthomonas albilineans gram (-) catalase + starch hydrolysis -
acampestris rod oxidase - acid from Glucose +

N03- reduction -

Arsenphonus ND gram (-) catalase + acid from Glucose +
rod oxidase - MR-

vp-
Bacillus ND gram variable catalase + spore formation +

polymorphic oxidase -

NO =Not Determined



Table 4.6. Tentative identification of isolate 2 based on biophysiological tests and the
Bergey's Manual (1993).

Possible Possible

Genus Species Matching Characteristics

Acinetobacter ND gram (-) catalase + starch hydrolysis -
rod oxidase - acid from Glucose +

Pseudomonas syringaepathovars gram (-) catalase + starch hydrolysis-
vesicularis rod oxidase - acid from Glucose +

viridiflava

Acetobacter diazotrophicus gram (-) catalase + starch hydrolysis -

~
liquefaciens rod oxidase - acid from Glucose +

0 indole -w
Xanthomonas albilineans gram (-) catalase + starch hydrolysis -

acampestris rod oxidase - acid from Glucose +
N03- reduction -

Arsenphonus ND gram (-) catalase + acid from Glucose +
rod oxidase - MR-

vp-
Sinorhizobium ND gram(-) catalase + extracellular slime

rod oxidase -

Beijerinckia ND gram (-) cysts + extracellular slime
rod giant colonies highly viscous culture

ND =Not Determined



Table 4.8. Tentative identification of isolate 4 based
on biophysiological tests and the Bergey's Manual
(1993).

Possible

Genus Matching Characteristics

Bacillus

Sporosareina

Planoeoecus

gram variable
polymorphic

gram variable
cocci

gram (-)

cocci
N03- reduction -

105

catalase +
oxidase -
spore formation +

catalase +
oxidase -
spore formation +

catalase +

oxidase -
starch hydrolysis -



Table 4.9. Tentative identification of isolate 5 based on
biophysiological tests and the Bergey's Manual (1993).

Possible

Genus

Possible

Species Matching Characteristics

~

o
9>

Bacillus

Erwina

ND

stewarti

gram variable
polymorphic

gram (+)
rod
N03- reduction -

urea hydrolysis -

catalase +
oxidase -
spore formation +

catalase +
oxidase -
acid from Glucose +

acid from Lactose +

acid from Mannitol +

Curtobacterium luteum

ND = Not Determined

gram (+)
rod
starch hydrolysis -

catalase +
oxidase -
acid from Glucose +

casein hydrolysis +



Table 4.10. Tentative identification of isolate 6 based on biophysiological tests and the
Bergey's Manual (1993).

Possible Possible

Genus Species Matching Characteristics

Acinetobacter ND gram (-) catalase + starch hydrolysis -
rod oxidase - acid from Glucose +

Pseudomonas syringaepathovars gram (-) catalase + starch hydrolysis -
vesicularis rod oxidase - acid from Glucose +

viridiflava

Acetobacter diazotrophicus gram (-) catalase + starch hydrolysis -

~
liquefaciens rod oxidase - acid from Glucose +

0 indole --......I

Kingella kingae gram (-) catalase + acid from Glucose +

rod oxidase - ** urea hydrolysis -
indole -

Arsenphonus ND gram (-) catalase + acid from Glucose +

rod oxidase - MR-
vp-

Bacillus ND gram variable catalase + spore formation +

polymorphic oxidase -

** Actually oxidase +, but result is negative with the use of dimethyl-p-phenylenediamine
hydrochloride

ND =Not Determined



Table 4.11. Tentative identification of isolate 7 based on biophysiological tests and the
Bergey's Manual (1993).

Possible Possible

Genus Species Matching Characteristics

Pseudomonas syringaepathovars gram (-) catalase + starch hydrolysis -
vesicularis rod oxidase - acid from Glucose +
viridiflava

Xanthomonas albilineans gram (-) catalase + starch hydrolysis -
acampestris rod oxidase - acid from Glucose +

N03- reduction -
...J.

0
(X)

Legionella ND gram (-) catalase + urea hydrolysis -
rod oxidase - N03- reduction -

Sphingobacterium ND gram (-) catalase + acid from Glucose +
rod oxidase - indole -

endospores -

Arsenphonus ND gram (-) catalase + acid from Glucose +
rod oxidase - MR-

VP-

NO =Not Determined



Table 4.12. Tentative identification of isolate 8 based on
biophysiological tests and the Bergey's Manual (1993).

Possible

Genus Matching Characteristics

Aetinomyeates gram (+)
rough crumbly texture
optimum temp. 37°C
acid from Glucose +
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cataase +
oxidase 
indo'le-
N03- reduction -

facultative anaerobe



Table 4.13. Tentative identification of bacterial isolates based on partial 16S rONA

sequence. The sequences are shown in Figures 2-6 in Appendix.

Isolate Tentative amplified BLAST E Number 0/0

Number Classificationa 16S rDNA (bp) Score Value of Gaps Match

1 ND
...l.
...l. 2 Sinorhizobium 538 1053 0 0 100
0

3 Streptomyces 597 1152 0 3 99

4 ND

5 Bacillus 588 1136 0 1 99

6 Bacillus 1470 2857 0 4 99

7 Pseudomonas 746 1453 0 2 99

8 NO

a highest BLAST score (www.ncbLnlm.nih.gov/blasU). ND =Not determined.



Table 4.14. Tentative identification of bacterial isolates

using 168 rONA sequence, biophysiolog·cal test resu ts,

and descriptions in the Bergey's Manual (1992).

Isolate

1

2

3

4

5

6

7

8

Genus

Unidentified

Sinorhizobium

Streptomyces

Unidentified

Bacillus

Bacillus

Pseudomonas

Actinomycete
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and water. Fermentative bacteria also use organic c,ompoun!ds for energy,biut

the end products are acids, aldehydes, and alcohol [36]. Some

microorga!nisms produce m,ixed acids as end products, whUe others produce

2,3-butanediol and ethanol instead of acids. The Voges-Proskau,er test

accounts for the production of alcohol end products.

Some aerobic and facultative microorganisms uti ize oxygen and:

produce hydrogen peroxide, which is a toxic byproduct [36]. The enzyme

catalase is responsible for detoxification of hydrogen peroxide to water and

oxygen [36]. All the isolates had catalase activity suggesting that they

possess the ability to detoxify hydrogen peroxide.

Oxidase is an enzyme that is part of oxygen metabolism and allows

converting 02 to 02- using the coenzymes FADH2 to FAD+ [36]. All isolates

were oxidase negative, suggesting that these mi'crobes do not require

antioxidant compounds or special enzymes for defense against toxic products

(free radicals with an unpaired electron) formed in the process of electron

transport in Qxygenmetabolism [37]. Free radicals often combine to form toxic

compounds that damage lipids and proteins [37].

Hydrolysis of various substrates can also be useful in classification of

unknown isolates. A genera' class of exoenzymes caned hydrolases spUt

organic compounds into smaller units in the presence of water [36]. A

molec'ule of starch consists of amylose, a straight chain polymer of 200-300'

glucose units, and amylopectin, a 'branched polymer with p:hosphate groups.

Starch is the major nutrient polysa'ccharide of plants [37]. Starch hydrolys:is is
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completed with a;mylases, which yield molecules of maltose, glucose, and

dextrins [36].

Protein hydrolysis, also known as proteol,ysis or pe'ptonization, is do:n,e

to produce solub;le, transparent derivatives. The protein used in this study was

casein, which is the predominant protein i,n milk. Caseinase hydrolyzes casein

into smaller protein units [36].

The enzyme lipase hydrolyzes fat into one molecule of glycerol and

three fatty acid molecules [36]. In many cases these products ,are used by

bacteria to synthesize fats and other ceU components, or are oxidized to yield

energy [36]. Unlike the last two hydrolysis enzymes discussed" all isolates

except number 5 tested positive for lipase.

With the information received from the biophysioiogica'i tests and the

DNA sequences, the bacterial isolates can be tentative:ly identified: and

potential,ly be used in bioremediation. Determination of the identity of each

bacterial isolate could enhance biodegradation effici,ency by optim:izing the

growth conditions.
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Chapter V

EFFECTS OF SURFACTANTS ON THE GROWTH OF NITROAROMATIC

DEGRAD NG BACTERIA

Key words: nitroaromatics, surfactants, growth density

Abstract

The nitroaromatic and nitramine compounds, TNT,RDX andHMX, are

common military explosives that are persistent in the environment, which was

attributed partially to their low solubility. The efficiency of removal from

contaminated sites can be enhanced by the addition of surfactants. Although

many surfactants are consid,ered to have low toxicity to humans, they can

affect microbial growth. Studies w,ereconducted to assess the ,im 1pact of

surfactants on the microorganisms involved in the degradation of nitroaromatic

compounds. Effects of SDS, Steal CA-230, Tween 20, Tween 60, and Tween

80 at 0.4, 4.0 a,nd 25 times the critical mice Ie capacity (CMC)on growth of

three bacteria isolated from soil were tested. These b,acteria were ca'pableof

using TNT or RD'X as a sale nitrogen source. SDS and Steol CA-230

equivalently reduced the growth of solate 3 with increasing surfactant

concentration. Steol CA-230 greatly affected the ,growth of isolate 6,

decreasing the absorbance from 1.5 to 0.1 with the addition of 19,125 mg L-
1

(25 times the 'CMC). The growth of isolate 7 increased absorbance from 1.0 to
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1.4 with 0.4 times the CMC (3 to 306mg L-1
) and to 1.3 with 4 times the CMC

(30.6 to 3060 mg L-1
) of SOS and Steal CA-230. In general, nonionic

surfactants, including Tween 20, Tween 60, and Tween 80, had little effect,

while anionic surfactants, SOS and Steal CA-230, generally inhibited growth of

the bacteria tested. Results obtained from this study suggested that caution

should be exercised in the use of surfactants to facilitate bioremediation

because surfactants might inhibit, promote, or remain neutral to bacterial

growth depending on the type and concentrations used.

ntraduction

Nitroaromatics, such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro

1,3,S-triazine (ROX) and octahydrol-1,3,5,7-tetrazocine (HMX) are common

military explosives that are persistent in the environment (Spain 2000). One

possible solution to help increase the biodegradation rate of nitroaromatic

compounds is the use of additives, such as surfactants. The avai abi ity of

contaminants has been limited by solubility (Oeshpande et al. 1999), therefore

utilization of surfactants can enhance the bioavailability of the contaminants to

the microbes and therefore increase the rate of biodegradation (Boopathy and

Manning 1999).

TNT, RDX and HMX are absorbed in humic materials (Pignate 10 and

Xing 1996) or coat the surfaces of soil particles as non-aqueous liquids. It is

also possible that contaminants fill voids between soil partic es when the
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concentration of the contaminant is 1% or higher (Karimi & Gray 2000).

Surfactants solubilize the contaminants by adsorption on the surface of the

contaminant, which causes repulsion between the head group of the

surfactant and the soil particles (Deshpande et al. 1999). Desirable surfactant

characteristics include biodegradability, low toxicity, and solubility at ambient

temperatures if directly applied to the soil surface for biodegradation (Mulligan

et al. 2001). Many surfactants are of low toxicity to humans, but can affect

animals and plants (Mulligan et al. 2001). Therefore it is important to assess

the impact of surfactants on the microorganisms involved in degradation of

nitroaromatic compounds.

Materials and Methods

Bacterial strains used

Isolates 3, 6, and 7 (Chapter 4) were chosen for this study. Isolates 6 and 7

possess the ability to degrade RDX and were persistent in highly

contaminated environments. Isolate 3 was able use TNT as the sole N

source. All three bacteria were obtained from soils described in Chapter 3.

The chemical properties of the soils are listed in Table 3.1 and Table 3.2. The

characteristics of the three isolates are discussed in Chapter 4 and included in'

Tables 4.1 , 4.2, 4.3 and 4.4.
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Surfactants

Steal CA-230 (sodium laureth sulfate, Stephan Co., Northfield, IL), SOS

(sodium dodecyl sulfate, L-4509 Sigma Chemicals), Tween 20 [POE (20)

sorbitan monolaurate, P-1379 Sigma Chemicals], Tween 60 [POE (60)

sorbitan monolaurate, P-1629 Sigma Chemicals], and Tween 80 [POE (80)

sorbitan monolaurate, P-8074 Sigma Chemicals, St. Louis, MO], were used in

this study. These surfactants were used because of their availability and

varying characteristics. Only food-grade rated surfactants were used. The

properties of the surfactants are listed in Table 5.1.

Growth and maintenance of isolates

Routine growth of isola es was done with tryptone soya broth (TS8). Isolates

6 and 7 were grown at 30°C, while isolate 3 was grown at 37°C. Stock

cultures of the isolates were grown in TS8, frozen with 40% glycerol (1:1)

using liquid nitrogen, and stored at -80°C.

Growth density cUlVes

Nephelometry flasks with 100 ml of TSB were autoclaved for 30 minutes.

After the medium cooled, 0.4,4.0, and 25 times the CMC of a surfactant were

added to each flask. The f asks were then inoculated with 200 IJI of 12-hour-
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Table 5.1. Properties of surfactants used.

Trade Name Chemical Name M.W. Ionic State CMC

-It.

I\-)
~

Tween 20
Tween 60
Tween 80
SDS
Steol CA-230

POE (20) sorbitan monolaurate
POE (60) sorbitan monolaurate
POE (80) sorbitan monolaurate
Sodium dodecyl sulfate
Sodium laureth sulfate

(9 mole-1
)

1226
1310
1308
288
375

nonionic
nonionic
nonionic
anionic
anionic

(mg L-1
)

0.05
0.03
0.01
8.40

765.00

M.W.= Molecular Weight
CMC= Critical Micelle Capacity



old culture of the isolate tested. After inoculation, the flasks were placed on a

rotary shaker at 200 rpm at 30°C for isolates 6 and 7 and 37°C for isolate 3.

Absorbance readings were taken periodically. Absorbance changes due to

increase in culture density were recorded on a Bausch and Lomb Spectronic

20 at 595 nm. This procedure was repeated for all three isolates on all five

surfactants. A blank with TSB was used for calibrating the Spectronic 20.

Resu ts

Nonionic surfactants, Tween 20, Tween 60, and Tween 80, did not greatly

affect the growth of isolate 3, with an average maximum absorbance of 1.9.

Even at 25 times the CMC the absorbance was reduced only slightly (to 1.8).

However, the anionic surfactants Steal CA-230 and 8DS reduced bacterial

growth considerably. At 25 times the CMC (210 and 19,125 mg L-1
) for both

80S and SteoICA-230, the growth density was reduced to an absorbance of

less than 0.1 versus the absorbance of 1.9 in the control (Figure 5.1).

The growth of isolate 6 seemed unaffected by the addition 0.4 times the

CMC of Tween 20, Tween 60, and Tween 80, all of which are nonionic

surfactants. Increasing the amount of nonionic surfactant decreased the

absorbance by approximate y 0.1. At 25 times the CMC (1 mg L-1 of Tween

20 or Tween 60) a reduced absorbance of 1.0 was recorded compared to the

absorbance of the control with no surfactant, which reached 1.5. 8DS, an

anionic surfactant, did affect growth of this isolate, but only reduced its
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Figure 5.1. The effects of Steol CA-230, SDS, Tween 20, Tween 60, 
and Tween 80 on the growth of isolate 3 in tryptone soya 
broth (TSB) at 30°C. Growth was monitored by changes 
in culture turbidity at the wavelength 595 nm. Bars 
indicate standard error. 



stationary culture density to 1.2 upon addition of 25 times the CMC. Steol CA

230, an anionic surfactant, affected its growth substantially. At 25 times the

CMC the culture density never reached 0.1 absorbance, while the stationary

phase culture density was 1.5 absorbance in the absence of Steal CA-230

(Figure 5.2).

In contrast to isolate 6, isolate 7 was not affected by the use of any

addition of Tween 20, Tween 60, and Tween 80. No reduction of absorbance

occurred at all. Also, this bacterium reacted very differently to the anionic

surfactants. When Steol CA-230 and 80S were added, the growth actually

increased compared to the control, indicating that isolate 7 may be using the

surfactants as a nutrient source (Figure 5.3). Although, the addition of 3060

mg 8DS L-1 or 19,125 mg Steal CA-230 L-1 (25 times the CMC) reduced the

growth density absorbance to 1.0 verses the control, which reached an

absorbance of 1.2 (Figure 5.3).

Discussion

Water solubility is a controlling removal mechanism of organic

contaminants, and the efficiency of removing organic contaminants from soil

can be enhanced by the addition of additives such as surfactants (Mulligan at

al. 2001). Using surfactants may reduce adsorption of the contaminants to the

soil matrix. Research has shown that up to 70o~ of th,e TNT metabolites may

irreversibly bind to the soil matrix (Shen et aI., 1998). Surfactants cou,ld help
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Figure 5.2. The effects of Steol CA-230, SDS, Tween 20, Tween 60, 
and Tween 80 on isolate 6 in tryptone soya broth (TSB) at 
30°C. Growth was monitored by changes in culture 
turbidity at the wavelength 595 nm. Bars indicate 
standard error. 



Figure 5.3. The effects of steol CA-230, SDS, Tween 20, Tween 60, 
and Tween 80 on isolate 7 in tryptone soya broth (TSB) at 
30°C. Growth was monitored by changes in culture 
turbidity at the wavelength 595 nm. Bars indicate 
standard error. 



solublize many contaminants, especially those that are hydrophobic (Mulligan

at al. 2001). Surfactantshave been referred to as non-aqueous phase liquids

(NAPL). It has been reported that dispersing droplets of NAPL increases the

interfacial area (Grimberg et aL 1994), solubilizes hydrophobic substrates

(Grimberg et al. 1995), and enhances the dissolution of solid substrates

(Volkering et al. 1998).

An important consideration when solubilizing contaminants is the critical

micelle capacity (CMC) of the additive used. The CMC is the concentration at

which micelles first begin to form (Deshpande et aL 1999). A micelle forms

around a hydrophobic compound, with the hydrophilic part of the surfactant on

the outside, a lowing the contaminant to be brought into solution. It has been

suggested that surfactants must be applied at concentrations above the CMC

for a significant amount of the contaminants to be released i:nto solution

(Deshpande et aI., 1991).

Prior research on the impact of surfactants on bacterial growth shows

no significant difference occurred with growth of Mycobacterium species on

glucose and the surfactant Triton X-100, suggesting that Triton X-100 is not

toxic to that species of bacteria (Chen et al. 2000). Triton X-100 was not used

as a sole source of carbon, did not inhibit bacterial growth on glucose, or did

not act as a competitive substrate in the presence of anthracene, another

organic contaminant (Chen at al. 2000). Their research findings are similar to

the results obtained fro:m this study using Tween 20, 60, and 80. Some

surfactants can be utilized for co-metabolism or growth substrate (Volkering et
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al. 1998). This may be the case with the use of Steol CA-230 and 80S, with

additions of 3 to 3060 mg L -1, which increased the growth of isolate 7 during

this study.

The difference in growth density between the anionic surfactants could

be partially explained by the CMC of each surfactant. The CMC of 8DS is 8.4

mg liter-1
, while the CMCof Steol CA-230 is 765 mg liter~1. Both are much

greater when compared with Tweens 20,60 and 80 (0.05,0.03, and 0.012 mg

L-1
, respectively). As a result, 25 times the CMC is 19,125 mg Steal CA-230 L

1, or210 mg 8DS L-1
, comparing to 0.3 mg Tween 80 L-1

.

Surfactants can inhibit or increase degradation depending on the target

contaminant, the bacterial species involved, and the s'urfactant used (Chen et

al. 2000). Bacteria, that prefer to be attached to a surface for growt:h,wQuld

be restricted by the addition of surfactants that disperse them into the aqueous

phase (Volkering et at 1998). Surfactant can also interfere with extracellular

transport, inhibit cell growth, or change the membrane permeability (Volkering

et al. 1998). This is eviden,ced by addition of surfactant Dowfax 8390 that led

to no growth of Mycobacterium at all concentrations tested (Chen at al. 2000).

In this study, reduction in growth of isolates 3 and 6 was observed for Steal

CA-230, and of isolate 3 for 80S. As a general rule, the sorption of surfactant

occurs on the hydrophobic domains on the cells surfaces. For example,

Pseudomonas cells are less hydrophobic than Mycobacterium, so the latter

cells are more sensitive to surfactants (Chen at al. 2000).
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The use of surfactants may also pose a threat to the environment

because surfactant mobilizes pollutants, which promotes downward or

horizontal movements of pollutants that may subsequent y c,ontaminate

groundwater (Mulligan et aI., 2001). Without confining walls or liners in place,

an increase in nitrogen toxicity from any of the nitrogenous compounds could

be observed. This is evidenced upon applying a 0.75% solution of the

surfactant Witconol to a PCB-contaminated soil (Abdu et aI., 1992).

Therefore, caution should be exercised in applying surfactants to remediate

nitroaromatic compounds contaminated soils.

Biosurfactants, an alternative to commercially produced surfactants, are

naturally produced by certain bacteria or yeast from various substrates

including sugars, oils, alkanes and wastes (Lin 1996). Biosurfactants may be

more biodegradable, more tolerant to pH, salt and temperature variation, and

in some cases less expensive (West & Harwell 1992). It has been shown that

rhamnolipid surfactants from P. aeruginosa UG2 enhanced the solubilization

of four-ring polyaromatic hydrocarbons (PAHs) more significantly than three

ring PAHs and that the biosurfactant was five times more effective than the

surfactant SOS (Deschenes et al. 1994). PAHs are recalcitrant, much like

TNT, RDX and HMX in soil. Emulsification is a cell density dependent

phenomenon. The more cells that are in a location, the more biosurfactant are

produced (Ron & Rosenberg 2001). The cell concentration in an open

system, like a polluted environment, never reaches a high enough cell density

to emulsify organics, like oil, effectively (Ron & Rosenberg 2001 ). However, if
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used in ex-situ technologies, cell density could be maximized byo,ptim"zing

growth conditions, which could make the use of biosurfactants feasible.

Results obtained from this study suggested that caution should be

exercised in the use of surfactants to facilitate bioremediation because

surfactants might inhibit, promote, or remain neutra to bacterial growth

depending on the type and concentrations used. In general, nonionic

surfactants, including Tween 20, Tween 60, and Tween 80, had little effect,

while anionic surfactants, SDS and Steal CA-230, generally inhibited growth of

the bacteria tested.
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Chapter VI

SUMMARY AND CONCLUSION

Nitroaromatic contamination is a threat to the welfare of people as well

as smaller forms of life, including bacteria, fungi, and other soil fauna.

Contaminations of TNT, RDX, and HMX have been in the environment since

the production of high explosives during World War I. Biodegradation is a

possible economical solution for removal of these pollutants. Understanding

microorganisms involved in their biodegradation and their optimal growth

conditions can lead to development of effective bioremediation strategies.

Results from this study indicate that nitroaromatic contamination can be

so toxic that most of the microorganisms in the soil were killed from the

exposure. Nonetheless, a few bacteria were persistent and survived in the

contaminated environment. More importantly, some of these bacteria were

capable of using RDX or TNT as a sale source of nitrogen. Thus, they maybe

potentially used for remediation of nitroaromatics-contaminated soils, providing

that their growth conditions are well evaluated. Isolation and characterization

of these isolates are essential steps of their potential application.

This study indicated that nonionic surfactants had little effect, while

anionic surfactants generally inhibited growth of the bacteria tested. However,

further evaluation of these isolates with respect to growth requirements would

be beneficial prior to apply these bacteria for remediation of nitroaromatics

contaminated soils on a large scale.
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Figure 1. Representative separation of nitroaromatic compounds by the U.S. Environmental Protection
Agency Method 8330 using a C-18 reverse phase HPLC column. Nitroaromatic compounds were
extracted from soils using acetonitrile and a ultrasonicator as described in Chapter 3. Peaks 3, 4, 5 and
6 correspond to octahydrol-1 ,3,5,7-tetranitro-1 ,3,5,7-tetrazocine (HMX), hexahydro 1,3,5-trinitro-1 ,3,5
triazine (RDX), 1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrotoluene (TNT), respectively. Peak 1 is
unidentified.



1 TTGCGACCGT ACTCCCCAGG CGGAATGTTT AATGCGTTAG CTGCGCCACC GAACAGTAAA

61 CTGCCCGACG GCTAACATTC ATCGTTTACG GCGTGGACTA CCAGGGTATC TAATCCTGTT

121 TGCTCCCCAC GCTTTCGCAC CTCAGCG'I1CA GTTCCAGACC AGTGAGCCGC CTTCGCCACT

181 GGTGTTCCTC CGAATATCTA CGAATTTCAC CTCTACACTC GGAATTCCAC TCACCTCTTC

241 TGGACTCTAG ATTGCCAGTA TGAAAGGCAG TTCCAGGGTT GAGCCCTGGG ATTTCACCCC

301 TCACTTAACA ATCCGCCTAC GTGCGCTTTA CGCCCAGTAA TTCCGAACAA CGCTAGCCCC
~

~ 361 CTTCGTATTA CCGCGGCTGC TGGCACGAAG TTAGCCGGGG CTTCTTCTCC GGTTACCGTCI\J

421 ATTATCTTCA CCGGTGAAAG AGCTTTACAA CCCTAGGGCC TTCATCACTC ACGCGGCATG

481 GCTGGATCAG GCTTGCGCCC ATTGTCCAAT ATTCCCCACT GCTGCCTCCC GGTAGGAA

Figure 2. Partial 68 rONA sequence (538 bp) of isolate 2.



1 ATGGGCCAAA GCCTGATGCA GCGACGCCGC GTGAGGGATG ACGGCCTTCG GGTTGTAAAC

61 CTCTTTCAGC AGGGAAGAAG CGAAAGTGAC GGTACCTGCA GAAGAAGCGC CGGCTAACTA

121 CGTGCCAGCA GCCGCGGTAA TACGTAGGGC GCAAGCGTTG TCCGGAATTA TTGGGCGTAA

181 AGAGCTCGTA GGCAGGCTTG TCACGTCGGT TGTGAAAGCC CGGGGCTTAA CCCCGGGTCT

241 GCAGTCGATA CGGGCAGGCT AGAGTTCGGT AGGGGAGATC GGAATTCCTG GTGTAGCGGT

301 GAAATGCGCA GATATCAGGA GGAACACCGG TGGCGAAGGC GGATCTCTGG GCCGATACTG

~
361 ACGCTGAGGA GCGAAAGCGT GGGGAGCGAA CAGGATTAGA TACCCTGGTA GTCCACGCCG

~ 421 TAAACGGTGG GCACTAGGTG TGGGCAACAT TCCACGTTGT CCGTGCCGCA GCTAACGCATeN

481 TAAGTGCCCC GCCTGGGGAG TACGGCCGCA AGGCTAAAAC TCAAAGGAAT TGACGGGGGC

541 CCGCACAAGC GGCGGAGCAT GTGGCTTAAT TCGACGCAAC GCGAACAACC TTACCAA

Figure 3. Partial16S rDNA sequence (597 bp) of isolate 3.



1 TCCTACGGGA GGCAGCAGTA GGGAATCTTC CGCAATGGAC GAAAGTCTGA CGGAGCAACG

61 CCGCGTGAGT GATGAAGGTT TTCGGATCGT AAAGCTCTGT TGTTAGGGAA GAATAAGTGC

121 AAGAGTAACT GCTTGCACCT GACGGTACCT AACCAGAAAG CCACGGCTAA CTACGTGCCA

181 GCAGCCGCGG TAATACGTAG GTGGCAAGCG TTGTCCGGAA TTATTGGGCG TAAAGGGCTC

241 GCAGGCGGTT TCTTAAGTCT GATGTGAAAG CCCCCGGCTC AACCGGGGAG GGTCATTGGA

301 AACTGGGAAA CTTGAGTGCA GAAGAGGAGA GTGGAATTCC ACGTGTAGCT GTGAAATGCG... 361 TAGAGATGTG GAGGAACACC AGTGGCGAAG GCGACTCTCT GGTCTGTAAC TGACGCTGAG
~
~ 421 GAGCGAAAGC GTGGGGAGCG AACAGGATTA GATACCCTGG TAGTCCACGC CGTAAACGAT

481 GAGTGCTAAG TGTTAGGGGG TTTCCGCCCC TTAGTGCTGC AGCTAACGCA TTAAGCACTC

541 CGCCTGGGGA GTACGGTCGC AAGACTGAAA CTCAAAGGAA TTGACGGA

Figure 4. Partial16S ribosomal DNA sequence (588 bp) of bacterial isolate 5.



1 ACAGATGGGA GCTTGCTCCC TGATGTAGCG GCGGACGGGT GAGTAACACG TGGGTAACCT
61 GCCTGTAAGA CTGGGATAAC TCCGGGAAAC CGGGGCTAAT ACCGGATGGT TGTTTGAACC

121 GCATGGTTCA GACATAAAAG GTGGCTTCGG CTACCACTTA CAGATGGACC CGCGGCGCAT
181 TAGCTAGTTG GTGAGGTAAC GGCTCACCAA GGCGACGATG CGTAGCCGAC CTGAGAGGGT
241 GATCGGCCAC ACTGGGACTG AGACACGGCC CAGACTCCTA CGGGAGGCAG CAGTAGGGAA
301 TCTTCCGCAA TGGACGAAAG TCTGACGGAG CAACGCCGCG TGAGTGATGA AGGTTTTCGG
361 ATCGTAAAGC TCTGTTGTTA GGGAAGAACA AGTGCCGTTC AAATAGGGCG GCACCTTGAC
421 GGTACCTAAC CAGAAAGCCA CGGCTAACTA CGTGCCAGCA GCCGCGGTAA TACGTAGGTG
481 GCAAGCGTTG TCCGGAATTA TTGGGCGTAA AGGGCTCGCA GGCGGTTTCT TAAGTCTGAT
541 GTGAAAGCCC CCGGCTCAAC CGGGGAGGGT CATTGGAAAC TGGGGAACTT GAGTGCAGAA
601 GAGGAGAGTG GAATTCCACG TGTAGCGGTG AAATGCGTAG AGATGTGGAG GAACACCAGT
661 GGCGAAGGCG ACTCTCTGGT CTGTAACTGA CGCTGAGGAG CGAAAGCGTG GGGAGCGAAC
721 AGGATTAGAT ACCCTGGTAG TCCACGCCGT AAACGATGAG TGCTAAGTGT TAGGGGGTTT
781 CCGCCCCTTA GTGCTGCAGC TAACGCATTA AGCACTCCGC CTGGGGAGTA CGGTCGCAAG
841 ACTGAAACTC AAAGGAATTG ACGGGGGCCC GCACAAGCGG TGGAGCATGT GGTTTAATTC
901 GAAGCACCGC GAAGAACCTT ACCAGGTCTT GACATCCTCT GACAATCCTA GATATAGGAC
961 GTCCCCTTCG GGGGCAGAGT GACAGGTGGT GCATGGTTGT CGTCAGCTCG TGTCGTGAGA

1021 TGTTGGGTTA AGTCCCGCAA CGAGCGCAAC CCTTGATCTT AGTTGCCAGC ATTCAGTTGG
1081 GCACCTCTAA GGTGACTGCC GGTGACAAAC CGGAGGAAGG TGGGGATGAC GTCAAATCAT
1141 CATGCCCCTT ATGACCTGGG CTACACACGT GCTACAATGG ACAGAACAAA GGGCAGCGAA
1201 ACCGCGAGGT TAAGCCAATC CCACAAATCT GTTCTCAGTT CGGATCGCAG TCTGCAACTC
1261 GACTGCGTGA AGCTGGAATC GCTAGTAATC GCGGATCAGC ATGCCGCGGT GAATACGTTC
1321 CCGGGCCTTG TACACACCGC CCGTCACACC ACGAGAGTTT GTAACACCCG AAGTCGGTGA
1381 GGTAACCTTT ATGGAGCCAG CCGCCGAAGG TGGGACAGAT GATTGGGGTG AAGTCGTAAC
1441 AAGGTAGCCG TATCGGAAGG TGCGGCTGT

Figure 5. Partial 168 ribosomal DNA sequence (1469 bp) of bacterial isolate 6.



1 TTGGACAATG GGCGAAAGCC TGATCCAGCC ATGCCGCGTG TGTGAAGAAG GTCTTCGGAT

61 TGTAAAGCAC TTTAAGTTGG GAGGAAGGGC AGTAAGTTAA TACCTTGCTG TTTTGACGTT

121 ACCGACAGAA TAAGCACCGG CTAACTTCGT GCCAGCAGCC GCGGTAATAC GAAGGGTGCA

181 AGCGTTAATC GGAATTACCT GGGCGTAAAG CGCGCGTAGG TGGTTCGTTA AGTTGGATGT

241 GAAAGCCCCG GGCTCAACCT GGGAACTGCA TCCAAAACTG GCGAGCTAGA GTATGGCAGA

301 GGGTGGTGGA ATTTCCTGTG TAGCGGTGAA ATGCGTAGAT ATAGGAAGGA ACACCAGTGG

361 CGAAGGCGAC CACCTGGGCT AATACTGACA CTGAGGTGCG AAAGCGTGGG GAGCAAACAG

421 GATTAGATAC CCTGGTAGTC CACGCCGTAA ACGATGTCGA CTAGCCGTTG GGATCCTTGA

-Jir,. 481 GATCTTAGTG GCGCAGCTAA CGCATTAAGT CGACCGCCTG GGGAGTACGG CCGCAAGGTT
~
0) 541 AAAACTCAAA TGAATTGACG GGGGCCCGCA CAAGCGGTGG AGCATGTGGT TTAATTCGAA

601 GCAACGCGAA GAACCTTACC AGGCCTTGAC ATGCTGAGAA CCTGCCAGAG ATGGCGGGGT

661 GCCTTCGGGA ACTCAGACAC ACGTGCTGCA TGGCTGTCGT CAGCTCGTGT CGTGAGATGT

721 TGGGTTAAGT CCCGTAACGA GCGCAC

Figure 6. Partial16S rDNA sequence (746 bp) of isolate 7
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