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ABSTRACT

Proper partitioning of the surface heat fluxes that drive the evolution of the planetary

boundary layer in numerical weather prediction models requires an accurate specification

of the initial state of the land surface. The lack of observational data for characterizing

these initial conditions is arguably the most difficult aspect in the evaluation of land surface

models. Routine observations of fractional vegetation coverage and leaf area index (LAI)

are not available at high resolution ( � 1 km), nor are observations of soil moisture and soil

temperature. This gap in our observational capabilities seriously hampers the evaluation

and improvement of land surface model parameterizations, since model errors likely relate

to improper initial conditions as much as to inaccuracies in the model formulations. Two

unique datasets help to overcome these difficulties. First, approximately 1-km resolution

fractional vegetation coverage and LAI can be derived from biweekly maximum normal-

ized difference vegetation index (NDVI) composites obtained from daily observations by

the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and

Atmospheric Administration satellites. Second, the Oklahoma Mesonet supplies multiple

soil temperature and soil moisture measurements at various soil depths each hour. Com-

bined, these two unique datasets provide significantly improved initial conditions for a land

surface model and allow an evaluation of the utility of the land surface model with much

greater confidence and detail than previously.

Simulations from The Pennsylvania State University–National Center for Atmospheric

Research fifth-generation Mesoscale Model (MM5) that both include and neglect these

unique land surface observations help to evaluate the value of these two data sources to

land surface model initializations. The dense network of surface observations afforded by

the Oklahoma Mesonet, including surface flux data derived from special sensors available

at some of the Mesonet sites, provides verification of the model results. The National Cen-

ters for Environmental Prediction (NCEP) operational Eta model, which provides initial

conditions for MM5, exhibits strong biases in soil temperature and severe underestima-

tion of soil moisture compared with observations during 2004 and 2005. Therefore, the

xviii



inclusion of soil temperature and soil moisture observations within MM5 simulations dra-

matically improves model performance. Including both soil and vegetation observations,

however, tends to offset this improvement, indicating the necessity for adjustments to the

land surface model physics.

A principal-component regression reveals simple relationships between latent heat flux

and other available surface observations. Development of a new parameterization for evap-

oration from bare soil takes advantage of periods of very dry conditions observed across

Oklahoma. Combining this with a new empirical canopy transpiration scheme within MM5

yields improved sensible and latent heat flux forecasts and better partitioning of the surface

energy budget. Surface temperature and mixing ratio forecasts show improvement when

compared with the dense network of observations from the Oklahoma Mesonet.

xix



Chapter 1

Introduction

Numerical weather prediction models require an accurate representation of initial land

surface conditions in order to partition properly the sensible and latent heat fluxes that drive

the evolution of the planetary boundary layer. Several key components of the land surface

that significantly affect surface heat and moisture fluxes include soil temperature and mois-

ture, fractional vegetation coverage (σf ), and green leaf area index (LAI). The lack of

observational data for the accurate specification of these components in model initial con-

ditions is arguably the most difficult aspect in the evaluation of land surface models. Soil

temperature and moisture measurements are unavailable in most areas and routine remote-

sensing observations of σf and LAI are not available at high resolution, i.e., with pixel

widths on the order of 1 km and daily updates. This gap in our observational capabilities

seriously hampers the evaluation and improvement of land surface model parameteriza-

tions, since improper initial conditions and inaccuracies in the model formulations very

likely produce comparable model errors.

Models accomplish the exchange of energy between the land surface and the atmo-

sphere through land surface parameterizations (e.g., Bhumralkar 1975; Blackadar 1976;

Deardorff 1978; McCumber and Pielke 1981; Pan and Mahrt 1987; Noilhan and Planton

1989), which characterize the state of the land surface and forecast the evolution of the low-

est layer of the model atmosphere. The surface energy balance relies strongly upon the soil

1



and near-surface conditions, and plays a critical role in determining the prognostic variables

in land surface models. Surface energy fluxes depend heavily upon soil temperature and

soil moisture conditions, as well as vegetation coverage, atmospheric conditions, and the

physical properties of the soil. Soil moisture is an important component describing the land

surface and provides a key link between the atmosphere and the water and energy balances

at the surface of the earth (Wei 1995; Robock et al. 2000; Leese et al. 2001; Koster et al.

2004a). It influences the available water for plant transpiration, and plays a role in the mass

balance for many forecast models. Soil thermal conductivity estimates, which facilitate the

proper heat transfer within the soil, also strongly depend upon soil moisture specifications.

For calculations of soil heat transfer, the most sophisticated land surface parameterizations

require not only near-surface soil temperatures, but also temperature profiles within the soil

(e.g., Viterbo and Beljaars 1995; Chen and Dudhia 2001). In addition, vegetation coverage

and density provide critical information on the partitioning of total evaporation between

bare soil and canopy transpiration (Chen and Dudhia 2001). Together, soil temperature,

soil moisture, and vegetation affect forecasts of temperature, mixing ratio, cloud cover, and

precipitation by working in concert to directly influence sensible, latent, and ground heat

fluxes.

The mesoscale model employed for this study implements a monthly climatology for

fractional vegetation coverage and a constant leaf area index. Studies have shown that such

coarse resolution data based solely on climatology are insufficient to capture the detailed

surface characteristics necessary to properly initialize a land surface parameterization (e.g.,

Chang and Wetzel 1991; Crawford et al. 2001; Santanello and Carlson 2001; Kurkowski et

al. 2003). By using climatological values for land surface characteristics, the model does

not account for short-term or annual variability in vegetation coverage and condition due

to daily variations in rainfall, seasonal droughts, flooding, forest fires, irrigation, defor-

estation, desertification, crop harvesting, land usage, hail or tornado damage, and temporal

variations in the growth and senescence of green vegetation. Large-scale atmospheric os-

cillations may also play a role in the interannual variability of vegetation (e.g., Jin and
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Zhang 2002; Matsui et al. 2005). Modeling studies implementing near real-time land sur-

face characteristics from satellite observations have shown great promise for improving

forecasts (e.g., Oleson and Bonan 2000; Zeng et al. 2000; Crawford et al. 2001; Kurkowski

et al. 2003).

Taking advantage of a unique set of soil and vegetation observations to improve the

initial specification of the land surface should lead to more accurate model forecasts of air

temperature and moisture, which directly affect planetary boundary layer processes and

convective development. Better short-term forecasts of these near-surface variables benefit

a wide range of personal and economic activities, including aviation, electrical energy gen-

eration and trading, agricultural pest control, construction, transportation, and the weather

risk market (Dutton 2002). Further societal applications to improved short-term and sea-

sonal model forecasts include enhanced accuracy in fire weather, convective initiation, fog,

and air quality predictions and positive impacts for agricultural production, land manage-

ment practices, and the energy industry.

This study represents an effort to improve the specification of initial conditions and

to ultimately facilitate improved model forecasts. Chapter 2 surveys the available liter-

ature concerning soil temperature, soil moisture, and vegetation and the role of each in

numerical weather prediction models. Chapter 3 describes sources of soil and vegetation

observations, while chapter 4 assesses the current state of initial land surface conditions

provided to many numerical weather prediction models. This assessment provides a start-

ing point for determining how to improve the specification of initial land surface variables

in land surface models. Modifications to a mesoscale model discussed in chapter 5 allow

the model to assimilate soil temperature, soil moisture, σf , and LAI observations for sev-

eral case studies. In addition to supplying initial soil conditions, a dense network of surface

observations over the primary study area provides a means to verify forecasts. Results show

that despite improved land surface conditions, inaccuracies still exist in the model formu-

lations. This result provides a springboard for assessing parameterization errors within the

model. Chapter 6 describes the surface energy fluxes in a specific land surface model and

3



introduces a new empirical latent heat flux parameterization. In a novel approach to deter-

mining latent heat flux, the new parameterization derives from surface observations rather

than from theoretical formulations. Chapter 7 shows the results of forecasts that imple-

ment the new parameterization and chapter 8 wraps up the discussion by presenting ways

to further improve a land surface model.
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Chapter 2

Background

2.1 Soil moisture

Several studies have demonstrated sensitivities of forecasts of near-surface variables to

soil water content. An inspection of the relationship between soil moisture variations and

surface turbulent energy fluxes for a variety of vegetation types in different land surface

modeling schemes reveals that energy fluxes display more sensitivity for dry soils than for

wet soils and that sparsely vegetated areas require the most accurate soil moisture informa-

tion (Dirmeyer et al. 2000). Changes in soil moisture modify the balance between latent

and sensible heat fluxes and can influence surface temperatures or affect turbulent transfer

in the boundary layer (McCumber and Pielke 1981). Soil moisture inhomogeneities may

also aide in dryline development (Ziegler et al. 1995). The importance of soil moisture is

illustrated by Pan and Mahrt (1987), who couple a one-dimensional model of the planetary

boundary layer (Troen and Mahrt 1986) with a two-layer soil hydrology model (Mahrt and

Pan 1984) and find that surface evaporation can drive boundary-layer development.

Root-zone soil moisture impacts planetary boundary layer processes and the develop-

ment of deep convection by moderating sensible and latent heat fluxes and influencing

boundary layer moisture (Clark and Arritt 1995; Basara and Crawford 2002). Yan and

Anthes (1988) investigate the effect of soil moisture variations on precipitation patterns
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by simulating adjacent strips of moist and dry land. They find that for sufficiently wide

horizontal strips under convectively unstable conditions, the inhomogeneities in surface

moisture lead to gradients of ground temperature that eventually help produce sea-breeze

circulations and an increase in convective rainfall. This result compliments the observa-

tions of Pielke and Zeng (1989), who show increases in available buoyant energy when

irrigated land lies adjacent to natural grassland, compared with natural grassland alone.

Soil moisture further affects boundary-layer cloud development by increasing cloud cover

for both moist and dry soils, depending on the strength of the stability above the boundary

layer (Ek and Holtslag 2004).

The influence of soil moisture on persistent seasonal climate anomalies was first sug-

gested by Namias (1952, 1959). More extensive numerical and observational studies of soil

moisture reveal that soil moisture anomalies influence regional atmospheric conditions over

time scales of two to three months (Liu et al. 1993; Vinnikov et al. 1996), with variations in

temporal scales of soil moisture attributable to the seasonal cycle of potential evaporation

(Entin et al. 2000). After simulating soil moisture anomalies, there is evidence that soil

moisture affects model forecasts of precipitation, atmospheric moisture, and temperature

for several weeks (Walker and Rowntree 1977; Rowntree and Bolton 1983). Modeling

studies of soil temperature and moisture conditions show that differing soil moisture ini-

tializations influence monthly or seasonal temperatures and precipitation patterns (Rind

1982; Betts et al. 1996) and that these initial conditions again possess a persistence time

scale of months to seasons (Yeh et al. 1984; Walsh et al. 1985; Vinnikov and Yeserkepova

1991; Gao et al. 1996; Liu and Avissar 1999a,b). Monthly forecasts also show sensitivity to

initial soil moisture conditions, displaying increased skill for precipitation and air temper-

ature forecasts with more realistic land surface initializations (Koster et al. 2004b). Other

studies report that soil moisture anomalies also affect extreme precipitation forecasts on

monthly time scales (Beljaars et al. 1996; Viterbo and Betts 1999). In seasonal predictions,

Fennessy and Shukla (1999) investigate the role of initial soil moisture using ensembles

of global climate model simulations and find that increases in initial soil wetness lead to
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increased seasonal evaporation, decreased seasonal mean surface air temperatures, and gen-

erally increased seasonal mean precipitation in many regions. Koster et al. (2004a) identify

specific regions, including the Great Plains, where soil moisture anomalies are particularly

important for seasonal rainfall prediction. Other authors assert that the seasonal evolution

of the atmosphere in a regional atmospheric model is dependent upon initial soil moisture

and landscape specification (Pielke et al. 1999). Thus, when compared with soil temper-

ature, soil moisture clearly has more interannual variability and more strongly influences

forecasts (Liu and Avissar 1999a,b; Rodell et al. 2005).

2.2 Soil temperature

While soil moisture appears to be the most important factor for land-surface initial-

izations (Gannon 1978; McCumber and Pielke 1981; C. Smith et al. 1994), one should

not underestimate the role of soil temperature in the evolution of the lower atmosphere,

especially for short-range forecasts. Without accurate soil temperature information, a plan-

etary boundary layer scheme may incorrectly distribute heat near the surface. Substrate

temperatures that are too cold or warm lead to a surface cooling or warming bias (Dudhia

1996). Longwave radiation loss is a function of soil temperature and directly affects the

surface radiation budget. Ground heat flux also is a function of soil temperature (Brotzge

and Crawford 2003), and affects the sensible heat flux, boundary layer growth and decay,

turbulence, and air temperature. Additionally, there are successful attempts at retrieving

soil moisture from more easily obtained soil temperature observations (e.g., Xu and Zhou

2003).

Results from a simulation using The Pennsylvania State University–National Center

for Atmospheric Research (PSU–NCAR) fifth-generation Mesoscale Model (MM5) ver-

sion 3.6 (Dudhia 1993; Grell et al. 1995; Dudhia 2003) illustrate the importance of initial

soil temperature conditions. A test compares a 48-hour control forecast over Oklahoma

initialized with a 1200 UTC National Centers for Environmental Prediction (NCEP) Eta
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analysis on 3 May 2004 with a second forecast with the same initial conditions except that

the soil temperature at each grid point in the 0–10 cm layer is perturbed by a uniform ran-

dom number (Bratley et al. 1987, chapter 6) bounded by
�

2°C. For consistency with the

lower soil layers, the soil temperature in the 10–40 cm layer is perturbed by half the mag-

nitude of the perturbation in the top soil layer. The root-mean squared difference between

the perturbed forecast compared with the control forecast (Wilks 2006, p. 308) shows that

the magnitude of the difference between the perturbed soil temperatures and those in the

control forecast decreases over the length of the forecast period (Fig. 2.1a). Because of

external influences on the top soil layer, perturbed soil temperatures in the 0–10 cm layer

return to control forecast soil temperatures more quickly over time than temperatures in the

10–40 cm layer. An anomaly correlation, given by

AC �

m

∑
n � 1

���
Tp � Tc ����� t � 0

�
Tp � Tc ����� t � h 	� m

∑
n � 1

�
Tp � Tc � 2 ��� t � 0

m

∑
n � 1

�
Tp � Tc � 2 ��� t � h 	 1 
 2 � (2.1)

where Tp is the perturbed soil temperature and Tc is the control soil temperature at grid

point n, summed over m grid points for each forecast hour t over h forecast hours, provides

a measure of association between the control and perturbed forecast fields (Wilks 2006,

p. 311). Here, the sign and magnitude of the perturbation at forecast time h is compared

against the value of the initial perturbation at each grid point. The anomaly correlation at

each forecast hour for both soil levels reveals that the sign of each perturbation strongly

persists throughout the forecast period (Fig. 2.1b). Perturbations persist because horizontal

diffusion between adjacent gridded soil temperature values is negligible compared with

horizontal diffusion in the atmosphere. This test indicates that inaccurate soil temperatures

provided as initial conditions from gridded analysis fields may adversely affect the resulting

short-term model forecasts of near-surface variables.
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FIG. 2.1: Comparative measures between a control model simulation and a model simula-
tion with randomly perturbed soil temperatures showing a) root-mean squared difference
and b) anomaly correlation for the 0–10 cm layer (red) and the 10–40 cm layer (blue).

2.3 Vegetation

The concept that areas of vegetation may influence precipitation through increased

moisture availability has circulated for a number of years. Anthes (1984) notes that with

the rapid colonization and deforestation of islands in the Caribbean Sea in the 18th century,

legislators noticed detrimental environmental effects and enacted an ordinance to create a

protected forest reserve on the island of St. Vincent “for the purpose of attracting the clouds

and rain” (Beard 1949, p. 30). More recently, scientific studies of the effect of vegetation
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density and coverage indicate the absolute necessity for including vegetation parameteri-

zations within numerical weather prediction models (e.g., Pielke et al. 1991; McPherson et

al. 2004).

An assessment of the spatial variability of observed latent heat fluxes reveals a strong re-

lationship between evaporation and the distribution of soil moisture and vegetation (Chen

and Brutsaert 1995). Lower albedo and decreased infrared emission over vegetated sur-

faces increases the net radiation absorbed at the surface. This energy feeds evaporation,

transpiration, and sensible heating and results in a moister lower atmosphere with higher

equivalent potential temperature than over bare soil (Anthes 1984). The effect of vegeta-

tion and soil moisture on soil heat capacity and thermal inertia can produce pronounced

soil temperature, skin temperature, and air temperature gradients in response to observed

vegetation density gradients (e.g., E. Smith et al. 1994). Compared with areas with healthy

vegetation, high temperatures and drier soils in areas with struggling vegetation lead to

high sensible heat fluxes and suppressed latent heat fluxes. These gradients and mesoscale

heterogeneities may induce perturbation boundary-layer circulations as the vegetation in-

creases available low-level moist static energy and water vapor (Anthes 1984). Strong

mesoscale latent heat fluxes imply the presence of well-developed mesoscale circulations

that spawn intense cloud activity and transport water vapor into the atmosphere (Chen and

Avissar 1994b).

Several modeling studies have demonstrated that inhomogeneities in spatial landscape

variability may induce mesoscale circulations (e.g., Ookouchi et al. 1984; Avissar and

Pielke 1989; Pielke et al. 1991; Chen and Avissar 1994a; Segele et al. 2005). Development

of these circulations requires a discontinuity of soil moisture, vegetation type, vegetation

coverage, or land usage, such as dense, irrigated, extended crop areas adjacent to bare soil

areas (Segal et al. 1988) or zones of devegetation produced by hail swaths (Segele et al.

2005). Vegetation breezes operate on relatively small scales of perhaps 30 km (Sellers

et al. 1986), though Anthes (1984) finds enhanced convective precipitation under certain

atmospheric conditions over semiarid land by modeling strips of vegetation on the order
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of 50–100 km wide. Using a model with a land surface parameterization calibrated with

observations, Pinty et al. (1989) show that a significant mesoscale circulation forms over

moist soil, but dry soil cuts off the vegetation breeze, even with dense vegetation cover.

Observations support the assertion that vegetation breezes only appear under relatively

weak synoptic forcing and light winds (e.g., Segal and Arritt 1992). Doran et al. (1995)

observe a mesoscale circulation due to thermal contrasts between semiarid grassland and

irrigated farmland, but only under relatively calm conditions. One study documents a tem-

perature reduction of 10°C over irrigated cropland compared with adjacent dry soil, with an

associated rise in low-level moisture over the crops that penetrates well into the boundary

layer (Segal et al. 1989). This same study, however, did not observe any well-defined mes-

oscale circulations, though terrain effects and strong synoptic flow may have overwhelmed

the circulation.

Vegetation also affects the diurnal range of temperatures. A documented seasonal vari-

ation in the annual march of the diurnal temperature range, which displays a minimum in

the summer and winter months, results from the cooling effect of high rates of transpiration

from vegetation during the summer and from changes in insolation and cloudiness during

the winter (Durre and Wallace 2001). This finding corroborates a modeling study that first

simulates forest cover, then pasture. The change from forest to pasture reduces evapotran-

spiration by 30%, increases the surface temperature by 4°C, and increases the summertime

diurnal temperature range (Silberstein et al. 1999).

Low-level horizontal temperature gradients such as those caused by surface inhomoge-

neities in soil moisture or vegetation may generate enough lift to release potential instabil-

ity (e.g., Sun and Ogura 1979). Numerical simulations have shown that vegetation initiates

and enhances convection both by shading the soil, which reduces ground heat flux and in-

creases the energy available for sensible and latent heating, and by extracting moisture from

the soil (Sud et al. 1993; Clark and Arritt 1995). The increased roughness length associated

with vegetation compared with bare soil reduces the low-level wind speed and increases the

strength of turbulent eddies, which may also lead to convective initiation (Anthes 1984).
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The preferred location for convective initiation by mesoscale circulations is at the interface

between vegetation and bare soil (Anthes 1984; Mahfouf et al. 1987). In one study, the

greatest rainfall occurs over moist, vegetated surfaces and the authors note that vegetation

may moderate the sensitivity of models to initial soil moisture conditions (Clark and Ar-

ritt 1995). Models generally perform best at forecasting convection when given realistic

parameterizations of both soil moisture and vegetation, particularly under weak synoptic

flow conditions (Garrett 1982; Chang and Wetzel 1991; Xue et al. 1996). To improve the

soil moisture specification and to prevent excessive drying in a multilayer soil hydrological

model, some authors recommend including the vegetation-dependent process of hydraulic

lift, a soil water redistribution process that releases water from root systems into dry soil at

night (Ren et al. 2004).

Observational studies report measurements of the effect of vegetation on the boundary

layer. Fiebrich and Crawford (2001) trace a case of anomalously cool air temperatures at a

single Oklahoma Mesonet site to its proximity to an irrigated cotton field. Similarly, grow-

ing winter wheat can develop dewpoint anomalies, while distinct warm anomalies appear

over areas of harvested wheat (Haugland and Crawford 2002; McPherson et al. 2004). Un-

der weak synoptic forcing and when the atmosphere is relatively dry, these warm anomalies

over harvested wheat adjacent to growing vegetation may induce cloud formation, while ar-

eas with high latent heat fluxes such as heavy tree cover and lakes tend to suppress clouds

(Rabin et al. 1990).
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Chapter 3

Observations

An accurate specification of initial conditions for model forecasts relies on observations

of soil temperature, soil moisture, surface fluxes, and standard variables available from

the Oklahoma Mesonet and vegetation conditions based on satellite observations. The

availability of this unique set of observations across Oklahoma makes this an ideal region

for studying potential improvements to model forecasts.

3.1 Oklahoma Mesonet

The Oklahoma Mesonet is an integrated network of automated surface observing sta-

tions, with at least one site in each of Oklahoma’s seventy-seven counties (Fig. 3.1). Mea-

surements of atmospheric variables occur every five minutes at each of the 116 sites.1 All

Mesonet sites report soil temperature at one or more depths every 15 minutes. Infrared

temperature sensors (Fiebrich et al. 2003) record the skin temperature at 86 sites. Over

100 sites also record soil moisture every thirty minutes at levels of 5, 25, 60, and 75 cm

below the surface. Approximately 75 sites measure ground heat flux and total net radiation

every five minutes. A special suite of instruments augments the standard instrumentation at

1A newly commissioned site at Fittstown, Oklahoma briefly brought the total number of sites to 117 on
12 May 2005, but the Oklahoma Climatological Survey decommissioned the Bee, Oklahoma site on 13 July
2005.
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FIG. 3.1: Site locations for each of the 117 Mesonet sites providing data between 1 March
2004 and 1 October 2005.

ten sites, measuring sensible heat flux and the four components of net radiation every five

minutes. All data fall subject to rigorous quality assurance procedures in order to produce

reliable research-quality data (Shafer et al. 2000). A complete description of the Oklahoma

Mesonet, including sensor specifications, appears in Brock et al. (1995), while Basara and

Crawford (2000) describe the soil moisture instrumentation.

3.1.1 Soil moisture measurements

Matric potential is a pressure potential arising from the interaction of water with the

colloidal matrix of soil particles. Water molecules undergo attractive forces due to capil-

lary suction and surface adsorption (Marshall et al. 1996, p. 34). Plants must overcome

this attractive force within the soil in order to maintain water transport from roots to leaves.

Values of matric potential are negative, with larger absolute values of matric potential in-

dicating drier soil. Depending on whether a unit quantity of water has volume, mass, or

weight units, expressions of matric potential may appear with a variety of units attached.

Potential, or more generally energy, per unit volume is in J m
� 3 or equivalent pressure units.

Potential per unit mass is in J kg
� 1 and potential per unit weight is in meters (Marshall et
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FIG. 3.2: The Campbell Scientific, Inc. 229-L heat dissipation matric potential sensor.
The inset represents a cross section through the ceramic matrix (after Basara and Craw-
ford 2000).

al. 1996, p. 37).

Scientists have recognized for some time that the rate of heat dissipation in soil directly

relates to the matric potential (e.g., Shaw and Baver 1939). The Campbell Scientific, Inc.

(CSI) 229-L heat dissipation matric potential sensor (Fig. 3.2) installed at Oklahoma Meso-

net sites takes advantage of this principle. Encased within a porous ceramic matrix resides a

hypodermic needle that houses a resistor as a heating element and a thermocouple as a tem-

perature sensor. The instrument measures an initial soil temperature with the thermocouple,

applies a small voltage to the resistance heater for several seconds, and again measures the

resulting soil temperature. The difference ∆T between the initial and final temperatures

depends upon the amount of water in the surrounding soil. To remove variability between

sensors across the Mesonet, ∆T relates to a normalized reference temperature for all sensors
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∆Tref according to

∆Tref � m∆T
�

b � (3.1)

where m and b are sensor-specific calibration coefficients (Basara and Crawford 2000).

Data from vacuum, pressure chamber, and tensiometer measurements of soils (Reece 1996)

yield an empirical relationship between the normalized reference temperature and matric

potential given by

ψ � � cexp

�
a∆Tref � � (3.2)

where ψ is the matric potential (kPa) and a and c are calibration constants equal to 1.788

°C
� 1 and 0.717 kPa, respectively. Compared with both the original formulation that ap-

pears in Reece (1996) and the modified version from Basara and Crawford (2000), this

relationship is simpler and more accurate (B. G. Illston 2005, personal communication).

While matric potential provides an important measure of soil moisture for modeling

water movement within the soil and from the soil to plants, volumetric water content pro-

vides forecast models with important information regarding the volume of water present

within the soil as a fraction of the total soil volume. Land surface models rely on measures

of volumetric water content to determine soil thermal conductivity and model hydrology. A

soil water retention curve describes the relationship between volumetric water content and

matric potential for a given soil type (e.g., Clapp and Hornberger 1978; Rawls et al. 1982).

Due to the large number of sensors at different depths and different observing sites, the Ok-

lahoma Climatological Survey (OCS) decided not to determine a soil water retention curve

for each sensor at each site. Instead, an empirical relationship based on detailed soil char-

acteristics and bulk density measurements at each observing site provides coefficients α

(kPa
� 1) and n characteristic to each soil texture (Arya and Paris 1981). This same method-

ology also provides estimates of the residual water content, Θr, and the saturated water

content, Θs, both measured in units of m3
water m

� 3
soil. The residual water content represents

the volumetric water content of very dry soil and the saturated water content, or porosity,

represents the maximum amount of water that a given soil volume can hold. These quanti-
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ties provide estimates of the soil volumetric water content from calculated values of matric

potential using

Θ � Θr
� Θs � Θr�

1
��� α �

� ψ � 100 ��� n � 1 � 1 
 n , (3.3)

where Θ is the volumetric water content and Θr is specifically defined as the water content

for which the gradient ∂Θ � ∂ψ becomes zero (van Genuchten 1980).

3.1.2 Soil temperature measurements

All Mesonet sites employ a Fenwal thermistor to measure soil temperature at 30-second

intervals at a depth of 10 cm under both bare soil and native vegetation. Recorded soil

temperature observations represent an average of these measurements over 15 minutes.

Approximately half of the Mesonet sites measure soil temperature at a depth of 5 cm under

both bare soil and native vegetation and at a depth of 30 cm under native vegetation. Brock

et al. (1995) note that the shadow of the solar panel from the Mesonet tower occasionally

affects soil temperature readings at the 5-cm depth. In addition, vegetation cover may

moderate the response of soil temperature sensors (Fiebrich and Crawford 2001). Allowing

for the inherent difficulty with consistently maintaining a completely vegetation-free area

over thermistors buried under bare soil, and because numerical weather prediction models

typically account for vegetation, all soil temperatures in this study represent those measured

under native vegetation.

3.1.3 Surface energy flux measurements

Measurements of surface energy fluxes rely on instrumentation installed as part of the

Oklahoma Atmospheric Surface-layer Instrumentation System (OASIS) project (Brotzge et

al. 1999). Standard OASIS sites, of which there were approximately 75 during the course

of this study, observe total net radiation and ground heat flux. An NR-Lite domeless net

radiometer manufactured by Kipp & Zonen measures the net radiation at each of these
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sites. While a four-component net radiometer likely provides measurements with greater

accuracy, cost and maintenance requirements make the NR-Lite the most suitable net ra-

diometer for wide distribution across the Mesonet (Brotzge and Duchon 2000). Values of

net radiation from the NR-Lite radiometer have a correction applied based on a sensor-

specific factory calibration coefficient and the observed 2-meter wind speed. Corrections

for wind speed only apply if the observed net radiation is greater than 20 W m
� 2 and the

2-meter wind speed exceeds 5 m s
� 1 (Brotzge 2000). The ground heat flux is the sum

of the conductive ground heat flux and the storage ground heat flux. Each site directly

measures the conductive ground heat flux using the arithmetic mean of two Radiation and

Energy Balance Systems, Inc. (REBS) HFT3.1 heat flux plates installed at a depth of 5

cm. Estimates of the storage ground heat flux derive from measurements of the volumetric

water content at 5-cm, an average volume fraction of minerals and organic matter, and soil

temperature from two REBS integrating platinum resistance temperature detectors installed

diagonally within the 0–5 cm soil layer (Brotzge and Crawford 2003).

A suite of OASIS instruments measures sensible heat flux and the four components of

net radiation at ten super sites.2 A Kipp & Zonen CNR1 four-component net radiome-

ter measures the incoming and outgoing components of solar and far infrared radiation.

The CNR1 measures net radiation more stably and accurately than the NR-Lite (Brotzge

2004). Sensible heat fluxes derive from CSAT3 sonic anemometer measurements of the

covariance of the z-axis wind speed with sonic temperature, computed by an eddy co-

variance processing algorithm from CSI, and multiplied by the specific heat at constant

pressure and the observed air density. Due to the nature of sonic anemometer observa-

tions, these sensible heat fluxes are unavailable or invalid during periods of precipitation.

A gradient profile technique (e.g., Brotzge and Crawford 2000) can produce estimates of

sensible heat flux during precipitation, though comparisons of sensible heat flux between

numerical models and observations occur in this study during only synoptically quiescent

2The Oklahoma Climatological Survey discontinued OASIS super site measurements at the Burneyville
site on 21 June 2005, bringing the total number of super sites to nine.
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conditions. Many of the super sites retain the capability of directly estimating latent heat

fluxes from measurements, corrected for the density of atmospheric oxygen, obtained from

a CSI KH-20 Krypton hygrometer (Brotzge and Crawford 2003). However, OCS does not

distribute latent heat flux data because maintenance ceased on this instrumentation prior to

the beginning of this study. The residual of the surface energy balance instead provides a

proxy for latent heat flux estimates and may actually provide a more reasonable estimate of

the latent heat flux than direct estimates from an eddy covariance system (Brotzge 2004).

Brotzge (2000) provides a thorough discussion of OASIS instrumentation, measurements,

and calculations of surface energy fluxes.

3.2 Satellite-derived vegetation indexes

The Advanced Very High Resolution Radiometer (AVHRR) subsystem resides aboard

each of the six currently active NOAA Polar Orbiting Environmental Satellites (POES) re-

ferred to as NOAA-12, -14, -15, -16, -17, and -18. The Office of Satellite Operations, an

organizational component of NOAA’s National Environmental Satellite, Data, and Infor-

mation Service (NESDIS), manages these operational environmental satellites. Each satel-

lite flies at an altitude of 833
�

19 km in a sun-synchronous orbit with a period of 101.6�
0.5 minutes. The local solar time of the satellite’s passage is constant for any latitude.

Thus, multiple images of the same location show the same sun angle, excepting changes in

illumination over long periods due to orbital drift (Kidwell 1998). The AVHRR subsystem

measures six spectral channels with a field of view of 1.3 milliradians by 1.3 milliradians,

giving a ground resolution of 1.09 km. Complete details of the newest AVHRR/3 system

appear in Goodrum et al. (2001).

Two primary satellites work in tandem to sample the entire planet daily, with several

backup satellites available should a primary satellite fail. Other earth-observing satellites

carry AVHRR sensors and possess the capability of obtaining higher resolution measure-

ments, e.g., the 30-m resolution land remote sensing satellite system (Landsat) and the
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10-m resolution System Probatoire d’Observation de la Terre (SPOT). However, the cost

of acquiring the higher resolution data may be prohibitive for large-scale applications, both

financially and in terms of storage space. The readily available AVHRR data require only

nominal cost. In addition, the revisit period of these high-resolution satellites is 16 days

for Landsat and roughly 26 days for SPOT. Since cloudless observations may not be

possible for a given location, more than a month may pass between successive observa-

tions. The Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiome-

ter (MODIS) provides daily coverage in 36 spectral bands at 250–100-m resolution (Justice

et al. 1998). However, this satellite is still experimental and has an uncertain future.

Several types of vegetation indexes derive from AVHRR data (e.g., Viña et al. 2004),

but NDVI is the most popular vegetation index for estimating σf and LAI. NDVI is a

function of the reflectance of different wavelengths of the solar spectrum:

NDVI �
ρ2 � ρ1

ρ2
� ρ1

� (3.4)

where ρ1 and ρ2 are reflectance measurements by a silicon detector in AVHRR channels

1 (0.58–0.68 µm) and 2 (0.725–1.00 µm), respectively (Goodrum et al. 2001; Gutman

and Ignatov 1998). The high reflectance of near-infrared light (ρ2) and the low reflectance

of visible red light (ρ1) on vegetation produce larger values of NDVI (Walter-Shea et al.

1992). Conversely, the low reflectance of near-infrared light and high reflectance of red

light from clouds, snow, water, and bare soil produce low (typically negative) values of

NDVI (Yin and Williams 1997). Fortunately, NDVI partially compensates for changes in

illumination, surface slope, and viewing angle, all of which strongly affect observed radi-

ances (Gutman et al. 1995). Composite maximum NDVI images over a period of weeks

effectively eliminate low NDVI values due to cloud contamination and provide for appro-

priate parameterizations of vegetation coverage (e.g., Crawford et al. 2001; Kurkowski et

al. 2003). The current study employs a 15- or 16-day observation window for computing

maximum NDVI composites.
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The characterization of vegetation in numerical models requires two parameters. The

model grid cell fraction where a photosynthetically active green canopy intercepts down-

ward solar radiation at midday defines σf (Chen et al. 1996). The vegetation fraction acts

as a weighting coefficient between direct evaporation from the top soil layer, evaporation

of precipitation intercepted by the canopy layer, and transpiration from the vegetation. De-

pending on the season and the area of interest, σf could conceivably range from 0% to

100%. The ratio of total green leaf area to its covered ground area (Curran 1983; Yin

and Williams 1997) defines the LAI, which is a measure of the vegetation biomass. Typ-

ical values of LAI vary depending on the biome represented in a satellite pixel, but may

have maxima between 6 and 8 for deciduous forests and between 2 and 4 for annual crops.

Desert and tundra yield low LAI values near 0.1, while LAI for coniferous forests may

exceed 15. Area-averaged LAI values such as those measured by satellite display lower

maxima and a narrower range of values than point measurements (Scurlock et al. 2001).

Depending upon the sub-pixel structure of vegetation, σf and LAI have different rela-

tionships with NDVI. For example, if a satellite image pixel contains non-uniform dense

vegetation, the relationship is

NDVI � σf NDVI∞
�

�
1 � σf � NDVI0 � (3.5)

where NDVI0 and NDVI∞ are the signals from bare soil and dense green vegetation, re-

spectively. However, if a satellite pixel contains non-uniform non-dense vegetation, the

relationship becomes

NDVI � σf NDVI∞

�
NDVI∞ � NDVI0 � exp

�
� kLg � �

�
1 � σf � NDVI0 � (3.6)

where k is an extinction coefficient and Lg is a leaf area index defined as the number of leaf

layers over only the vegetated part of the pixel (Gutman and Ignatov 1998), in contrast to

the conventional definition of LAI. Clearly, extracting both σf and LAI from NDVI is a
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non-trivial process. An alternative approach prescribes one variable and derives the second.

Some land surface models prescribe a constant value of LAI for all land use categories and

allow σf to vary each month. Yin and Williams (1997) assume a linear relationship between

LAI and NDVI, such that

LAIi � LAImax
NDVIi � NDVImin

NDVImax � NDVImin
� (3.7)

where the subscripts max, min, and i refer to the climatological maximum, climatologi-

cal minimum, and period values observed at a particular location, respectively. However,

Gutman and Ignatov (1998) indicate that the derivation of σf from NDVI should be more

accurate than the derivation of LAI from NDVI.

Chang and Wetzel (1991) introduced a two-line-segment method in which the linear re-

lationship between σf and NDVI changes where the NDVI value exceeds a certain thresh-

old:

σf � ��� �� 1 � 5

�
NDVI � 0 � 1 � � NDVI � 0 � 547

3 � 2

�
NDVI � � 1 � 08 � NDVI � 0 � 547

� (3.8)

where the values of σf are bounded by 0 and 1. This method has been used in several studies

(e.g., Crawford et al. 2001, Kurkowski et al. 2003) and provides an optimal fit to field

validation data under the assumption that σf and the fraction of photosynthetically active

radiation (i.e., the fraction of visible light used by the green canopy for photosynthesis) are

linearly related.

The Center for Advanced Land Management Information Technologies (CALMIT) at

the University of Nebraska, Lincoln, Nebraska receives AVHRR High Resolution Picture

Transmission (HRPT) data from a receiving station and provides processed σ f and LAI data

over the central United States. Location information embedded within the AVHRR Level

1b HRPT data allow for geometric correction of NDVI images to a Lambert Azimuthal map

projection. A two-line-segment method (Eq. 3.8) determines σf and an empirical model

(Eq. 3.7) provides estimates of LAI. Global field measurements of LAI (Scurlock et al.
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2001) provide a basis for assigning a maximum LAI to each land cover classification in the

National Land-Cover Database (NLCD, Homer et al. 2004). NLCD classifications derive

from Landsat Thematic Mapper (TM) observations over the period 1992–2003. CALMIT

mosaics and resamples the NLCD cell sizes from 30 m to 1 km to match the pixel reso-

lution of AVHRR measurements. Maximum and minimum NDVI values for the growing

season (April–September) are generated from AVHRR data spanning the period 1989–2002

from the United States Geological Survey (USGS) Earth Resources Observation Systems

(EROS) Data Center.

When compared with a 5-year climatology for fractional vegetation coverage (Gut-

man and Ignatov 1998) implemented in several operational forecast models, a systemat-

ically low bias exists for σf derived from 15-day maximum NDVI composites over the

period 15 April–15 September 2004. After alerting CALMIT scientists to the problem,

they responded by applying a radiometric enhancement to both the σ f and LAI data using

calibration coefficients for each spectral channel embedded within the HRPT data stream

(Goodrum et al. 2001). Radiometric enhancement is a standard digital image processing

technique that customizes an image for a particular application and serves to adjust radiance

measurements for changes in atmospheric conditions or instrument response characteris-

tics. This modification produced more reasonable σf and LAI values characteristic of the

unusually dry spring and wet summer observed in 2004.
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Chapter 4

Soil temperature and moisture errors in

Eta analyses

Clearly, forecast models require both accurate soil temperature and soil moisture ini-

tializations. Though efforts are under way to provide more extensive networks of soil

moisture data from a variety of remote sensing and direct observational sources (Entekhabi

et al. 1999; Leese et al. 2001; Seuffert et al. 2004; Crawford and Essenberg 2006), rou-

tine in situ observations of soil temperature and moisture suitable for data assimilation are

currently unavailable over large areas of the continental United States and the world.

Due to the absence of a large observational soil-monitoring network, many forecast

models implement complex land surface models to realistically determine soil hydrology.

The NCEP operational Eta model (Black 1994) produces land surface analyses by contin-

uously cycling temperature and moisture fields within the National Centers for Environ-

mental Prediction–Oregon State University–Air Force–Hydrologic Research Lab (Noah)

land surface model (LSM, Chen et al. 1996; Koren et al. 1999). In the past, these fields

evolved only in response to radiation budget constraints and modeled precipitation, but

NCEP recently upgraded the self-cycling process so that soil fields respond instead to radi-

ation budget constraints and adjusted precipitation observations from both radar and gauge

data over the United States.
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Many modeling efforts have used NCEP Eta model analyses and forecasts over the

continental United States as initial and boundary conditions for a variety of applications

(e.g., Colle et al. 2001; Bright and Mullen 2002; Stensrud and Weiss 2002; Westrick et

al. 2002; Zhender 2002; Brennan et al. 2003; Chen et al. 2004; Hart et al. 2004; Hoadley

et al. 2004; Galewsky and Sobel 2005; Zamora et al. 2005; Zhong et al. 2005). The Eta

model therefore provides very important initial land-surface conditions that strongly in-

fluence forecasts for both operational and research purposes. Unfortunately, many land

surface models, including the Noah LSM, do not capture observed soil moisture variations

when forced with atmospheric observations or cycled model output (Robock et al. 2000).

Marshall et al. (2003) find a strong positive bias in soil moisture from the Eta model in

comparison to Oklahoma Mesonet observations, but also noted that a change in the Eta

model initialization procedure to a continuous self-cycling initialization for soil moisture

significantly mitigated this bias. Marshall et al. (2003) also report a warm bias in soil tem-

peratures at a depth of 5 cm in the late afternoon and a cool bias in the early morning. On

the other hand, Robock et al. (2003) find good agreement when comparing soil tempera-

ture and moisture output from a more recently implemented version of the Noah LSM with

observations from the Oklahoma Mesonet averaged over all of Oklahoma during 1998–99.

This portion of the study compares Eta model analyses of soil temperature and moisture

at 0000 UTC and 1200 UTC with observations from the Oklahoma Mesonet between 1

March 2004 and 1 October 2005. In contrast to the findings of Robock et al. (2003), strong

biases in model soil temperature exist, as well as a severe underestimation of soil moisture

at all depths.

4.1 Eta model description

The NCEP Eta model (Black 1994) is initialized from analyses provided by the Eta Data

Assimilation System (EDAS, Rogers et al. 1996; Nelson 1999). The EDAS first produces

a 3-h forecast from its own analysis over the continental United States. The system then
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uses this forecast as a background field for assimilating subsequent observations over this

3-h period and produces a new analysis valid at the end of the 3-h window. This process

continues indefinitely, with forecasts out to 84 hours produced from the most recent EDAS

analysis every six hours. The Eta model produces each EDAS forecast, and consequently

the initial atmospheric and soil conditions are consistent with the forecast model and match

its resolution, physics, and dynamics (Rogers et al. 1996). The absence of a complete set

of observations of soil temperature and soil moisture necessitates continuously self-cycling

soil fields within the EDAS without observational corrections or soil moisture nudging

toward climatology. These soil fields evolve only in response to external forcing from

model physics and surface forcing in the form of precipitation and the surface radiation

balance within the EDAS.

Prior to a modification on 16 March 2004, the EDAS assimilated hourly precipitation

data consisting of radar and gauge observations from NCEP Stage II and Stage IV anal-

yses (Fulton et al. 1998; Lin et al. 2005). These analyses exhibit a systematic dry bias

which, when used as the driver for soil moisture, leads to drier soil. After an adjustment on

this date, comparisons of the cumulative 24-h precipitation from EDAS against daily gauge

analyses, inflated by 10% to correct for catchment errors, yield a long history of net deficits

or surpluses in precipitation. Adjustments to the EDAS hourly precipitation input based on

this history attempt to eliminate the deficit or surplus over 24 hours. Adjustments remain

limited to
�

20% of the hourly precipitation analysis values and only apply to grid points

in the analysis with non-zero precipitation. The EDAS assimilates the adjusted hourly pre-

cipitation input and then models the precipitation field. This modeled precipitation drives

the land surface physics, though the modeled precipitation does not necessarily match the

bias-adjusted observations (Lin et al. 2005).

A more extensive modification to the land surface scheme occurred on 3 May 2005

in the operational Eta model, now termed the North American Mesoscale (NAM) model.

Previously, the EDAS would create precipitation during the assimilation process in regions

where the Eta model did not forecast precipitation. The renamed NAM Data Assimila-
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tion System (NDAS) no longer adjusts precipitation totals in locations where the precipita-

tion from the NAM model is less than the bias-adjusted observations. However, the latent

heat and moisture fields are reduced where the modeled precipitation is greater than the

bias-adjusted observations. More importantly, the NDAS drives the land surface physics

directly with the bias-adjusted observations rather than with the NDAS modeled precipi-

tation, resulting in moister soil. The previous version tended toward a dry bias during the

assimilation because the modeled precipitation did not exactly replicate observed precipita-

tion coverage and intensities. The new method allows for a more robust and more accurate

precipitation assimilation that increases soil moisture. Additionally, there is no longer an

upper limit for cloud water mixing ratios when computing optical depths, which improves

radiation absorption, and modifications to the cloud cover parameterization allow for more

fractional cloudiness (DiMego and Rogers 2005).

Simultaneous upgrades to the Noah LSM addressed low-level temperature and humid-

ity biases. Vegetation and soil databases have more classes with higher spatial resolution.

A 1-km resolution, USGS 24-class vegetation type database replaced the 13-class, 1-degree

resolution simple biosphere (SiB) vegetation types (Sellers et al. 1986). For soil character-

istics, the 1-km resolution, 16-class State Soil Geographic Database (STATSGO, Miller and

White 1998) data eclipsed the 1-km resolution, nine-class Zobler soil types (Zobler 1986).

A 1-degree database of soil temperatures at the lower boundary at 300 cm depth replaced

an old 2.5-degree soil temperature database. In addition, model developers lowered the leaf

area index and compensated for the effect of the new precipitation assimilation procedures

on the existing soil moisture bias by tuning the canopy conductance and other vegetation

parameters within the Noah LSM. A lowered roughness length for heat reduces the skin

temperature, thereby lowering the 2-m temperature forecasts and reducing the warm bias,

though this does not change latent or sensible heat fluxes significantly. Overall, these mod-

ifications reduce drying trends and increase the low-level moisture (DiMego and Rogers

2005).
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4.2 Comparison with observations

Gridded 40-km Eta model analyses of soil temperature and moisture at 0000 UTC and

1200 UTC are bilinearly interpolated to Oklahoma Mesonet observation sites allowing for

direct model verification. While Eta model soil analyses are available at the present oper-

ational grid spacing of 12 km, researchers seldom use these analyses for initializing fore-

cast models. Comparisons span the period from 1 March 2004 through 1 October 2005.

This period is sufficient to characterize the performance of the EDAS soil temperature and

moisture schemes both before and after the change from continuously self-cycling modeled

precipitation and radiation to assimilation of precipitation observations on 3 May 2005.

Point measurements of soil temperature and moisture are not as spatially representative

as atmospheric measurements, primarily due to spatial heterogeneities in vegetation cov-

erage and soil types (Marshall et al. 2003; Brotzge and Crawford 2003). For this reason,

spatial and temporal averaging of observations reduces small-scale noise and enables model

validation and intercomparisons (e.g., Marshall et al. 2003; Robock et al. 2003). However,

interpolating observations to a model grid yields comparisons that are partly a function

of the interpolation scheme rather than the underlying observations. An analysis scheme

cannot account for small spatial variations in the observations and thus analyzed and ob-

served values may differ considerably (Schlatter 1975). Moreover, individual observation

points, and not areal averages, provide the raw data for objective analysis schemes that pro-

duce gridded initial conditions for models. As shown in chapter 2, initial soil conditions

strongly influence model forecast results. It is therefore important to correctly estimate

point values of soil temperature and soil moisture in the Eta model so that these values can

provide meaningful initial conditions for other numerical models with different grid sizes.

The choice to average point comparisons in this study rather than interpolate the observa-

tions to the model grid permits a bulk characterization of the model performance over all

of Oklahoma without introducing errors via an objective analysis scheme. This approach

is similar to other studies that compare model output and observations (e.g., Crawford et
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FIG. 4.1: Soil temperature (K) at 0000 UTC 15 July 2005 from a) Oklahoma Mesonet
observations at a depth of 5-cm under sod and b) the 0–10 cm soil layer of the 0000 UTC
Eta analysis.

al. 2000, 2001; Santanello and Carlson 2001; Robock et al. 2003).

Though comparisons between the Eta model and observations only include point mea-

surements, Figures 4.1 and 4.2 provide informative visualizations of the geographic vari-

ability of Oklahoma Mesonet 5-cm soil temperature and moisture observations compared

with Eta model 0–10 cm soil temperature and moisture analyses for a representative sum-
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FIG. 4.2: Soil moisture (m3 m
� 3) at 0000 UTC 15 July 2005 from a) Oklahoma Mesonet

observations at a depth of 5-cm and b) the 0–10 cm soil layer of the 0000 UTC Eta
analysis.

mer day. The Oklahoma Mesonet observations are interpolated to a 3-km horizontal grid

using a two-pass Barnes analysis (Barnes 1973). The Eta analyses, shown here interpo-

lated to the same 3-km horizontal grid, display a cool and dry bias typical of many 0000

UTC analyses. In addition, the differences in the patterns of each field can influence the

subsequent forecast.
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The Noah LSM model within the EDAS contains five soil layers representing depths

of 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm, and a constant reservoir temperature

at 300 cm. The physical equations in the Noah LSM predict the soil temperature and soil

moisture at the midpoint of each soil layer. Soil temperatures in the 0–10 cm model layer

are compared with Oklahoma Mesonet observations at a depth of 5 cm and soil tempera-

tures in the 10–40 cm model layer are compared with observations at a depth of 30 cm. For

soil moisture, the values from the Eta analysis in the 0–10 cm, 10–40 cm, and 40–100 cm

layers are compared with observations at depths of 5 cm, 25 cm, and 60 cm, respectively.

These direct comparisons allow computation of root-mean squared error (rmse) and bias

(Wilks 2006, 279–280) across the entire Oklahoma Mesonet.

4.2.1 Soil temperature

There is a strong positive soil temperature bias (forecasts minus observations) in the 0–

10 cm layer from 0000 UTC Eta model analyses compared with observations of 5-cm soil

temperatures from all Oklahoma Mesonet sites (Fig. 4.3). Twelve hours later at 1200 UTC,

there is a predominately negative bias. The conspicuous spike representing the 1200 UTC 6

March 2005 bias is a notable exception that depicts an analysis problem for the Oklahoma-

wide soil temperatures in the 0–10 cm layer. Overall, the bias for this most shallow soil

layer is 4.1°C (-1.0°C) and the rmse is 5.0°C (2.4°C) for 0000 UTC (1200 UTC) Eta anal-

yses. Ground temperature errors of this magnitude can produce errors in upward longwave

radiation of over 20 W m
� 2 during the summer. Errors appear reduced in magnitude in the

deeper 10–40 cm soil layer, and the 0000 UTC and 1200 UTC soil temperature analyses

differ only slightly (Fig. 4.4). There is a temporally coherent pattern of errors throughout

the year such that errors of the same sign persist for multi-week periods. This trend appears

to follow the more variable pattern of daily biases in the upper soil layer. Modifications to

the land surface model on 3 May 2005 do not appear to affect significantly the magnitude

of subsequent soil temperature errors.
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FIG. 4.3: Point calculations of daily soil temperature bias (°C) averaged over all of Ok-
lahoma in the 0–10 cm layer from 0000 UTC (red) and 1200 UTC (blue) Eta analyses
compared with 5-cm soil temperature observations from the Oklahoma Mesonet.

While the physical equations predict the soil temperature at the midpoint of a given soil

layer, soil temperatures in the Eta model physically represent an average in that layer. A

more strict comparison with observations therefore requires an integrated soil temperature

throughout a layer rather than point measurements at a specific depth. A cubic spline

interpolation between observations of skin temperature and soil temperature at depths of

5 and 10 cm, summed over 5 mm increments, allows an estimate of the soil temperature

in the 0–10 cm layer. This integrated soil temperature compares well with the 5-cm soil

temperature observations. The daily difference between the Oklahoma-wide 0–10 cm soil

temperature bias in Eta analyses calculated from either direct measurements at 5-cm or

an integrated temperature in the layer may reach as high as 2°C. However, the overall

error statistics for the 0–10 cm layer calculated using an integrated soil temperature do not

change substantially compared with the direct measurements shown in Fig. 4.3.
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FIG. 4.4: Point calculations of daily soil temperature bias (°C) averaged over all of Ok-
lahoma in the 10–40 cm layer from 0000 UTC (red) and 1200 UTC (blue) Eta analyses
compared with 30-cm soil temperature observations from the Oklahoma Mesonet.

4.2.2 Soil moisture

There is a pervasive and persistent dry bias in both the 0000 UTC and 1200 UTC Eta

soil moisture analyses. For each day, the Oklahoma-wide average soil moisture in the 0–

10 cm model layer of the Eta analyses is generally drier than the observations at 5 cm

(Fig. 4.5). In the 10–40 cm layer, the soil moisture bias slightly exceeds zero for only a

single 0000 UTC Eta analysis and in the 40–100 cm layer, the soil moisture bias never

becomes positive over the period of study (Figs. 4.6 and 4.7). Overall, the bias for each

soil layer is � 0 � 03 m3 m
� 3, � 0 � 05 m3 m

� 3, and � 0 � 09 m3 m
� 3 for the 0–10 cm, 10–40

cm, and 40–100 cm Eta model layers, respectively. In the 40–100 cm Eta model layer, the

daily average soil moisture error across all of Oklahoma reaches as large as 35% of the

typical range of soil moisture when compared with observations at a depth of 60 cm.

There is notable improvement in the analyzed soil moisture fields after the change from
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FIG. 4.5: Point calculations of daily soil moisture bias (m3 m
� 3) averaged over all of

Oklahoma in the 0–10 cm layer from 0000 UTC (red) and 1200 UTC (blue) Eta analyses
compared with 5-cm soil moisture observations from the Oklahoma Mesonet.

self-cycling precipitation to observed precipitation assimilation on 3 May 2005. While this

change reduced the magnitude of the errors, and evidences itself as a large discontinuity in

the bias time series of Figures 4.6 and 4.7, a strong dry bias persists in the soil moisture

field.

4.3 Discussion

Systematic biases clearly exist in Eta analyses of both soil temperature and soil mois-

ture. Consistent with the results of Marshall et al. (2003), soil temperatures in the most

shallow soil layer tend to be too warm at 0000 UTC and too cool at 1200 UTC. Positive soil

temperature errors in 0000 UTC Eta analyses likely stem in part from the documented ex-

cess of solar radiation during the daytime (Zamora et al. 2005), while the generally negative

34



                   
Date

-0.10

-0.05

0.00
B

ia
s 

(m
3  m

-3
)

MAR
04

APR
04

MAY
04

JUN
04

JUL
04

AUG
04

SEP
04

OCT
04

NOV
04

DEC
04

JAN
05

FEB
05

MAR
05

APR
05

MAY
05

JUN
05

JUL
05

AUG
05

SEP
05

FIG. 4.6: Point calculations of daily soil moisture bias (m3 m
� 3) averaged over all of

Oklahoma in the 10–40 cm layer from 0000 UTC (red) and 1200 UTC (blue) Eta analyses
compared with 25-cm soil moisture observations from the Oklahoma Mesonet.

soil temperature biases in 1200 UTC Eta analyses result from underestimated downward

longwave radiative fluxes during nighttime hours (Stensrud et al. 2006). Modifications to

the land surface physics on 3 May 2005 did not mitigate these errors; soil temperatures in

the top soil layer remain too high in the 0000 UTC Eta analyses and dry soil moisture bi-

ases continue in each of the top three soil layers. Tests indicate that these systematic biases

in both soil temperature and moisture do not appear to be strongly dependent upon soil or

vegetation types defined in Eta model grid cells.

At the Eufaula Oklahoma Mesonet site, the EDAS soil moisture errors in the top two

model layers result from both an inappropriate response to rainfall events and accelerated

desiccation of the soil compared with observations, particularly in the 10–40 cm layer

(Fig. 4.8). The response to precipitation in the 40–100 cm layer appears limited except

after several consecutive days of heavy precipitation. The new precipitation assimilation
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FIG. 4.7: Point calculations of daily soil moisture bias (m3 m
� 3) averaged over all of Ok-

lahoma in the 40–100 cm layer from 0000 UTC (red) and 1200 UTC (blue) Eta analyses
compared with 60-cm soil moisture observations from the Oklahoma Mesonet.

procedure implemented on 3 May 2005 somewhat improved soil moisture estimates at

some Mesonet sites, though systematic dry biases remain in the Eta analyses.

An exploration of the influence of soil heat capacity can help to address the effect of

such a dry bias on soil temperatures. Soil heat capacity is a function of soil moisture and

directly affects the diagnosis of soil temperature. Underestimates of soil moisture such as

those in Eta model analyses could therefore result in poorly estimated soil temperatures.

A simple, one-layer slab soil model driven by Oklahoma Mesonet observations allows ap-

proximate calculations of the influence of errors in soil moisture alone on soil temperature.

The composite soil volumetric heat capacity employed in the slab model is

Cg � ΘCwater
�

�
1 � Θs � Csoil

�

�
Θs � Θ � Cair � (4.1)

where Θ is the soil volumetric water content, Cwater � 4 � 2 � 106 J m
� 3 K

� 1, Csoil � 1 � 26 �
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FIG. 4.8: Observed soil moisture at 1200 UTC at Eufaula (red) at depths of a) 5 cm,
b) 25 cm, and c) 60 cm compared with 1200 UTC Eta analyses (blue) in the 0–10, 10–
40, and 40–100 cm soil layers, respectively, and observed daily (0000 UTC–0000 UTC)
precipitation totals (bars).
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106 J m
� 3 K

� 1, and Cair � 1004 J m
� 3 K

� 1 are the volumetric heat capacities of water,

soil, and air, respectively, and Θs is the soil porosity (Chen and Dudhia 2001). The soil

porosity depends upon the soil texture (Cosby et al. 1984) determined from soil cores at

each observation site. The slab model predicts the soil temperature T at a depth of 5 cm

using

Cgds
∂T
∂ t � QGS � (4.2)

where QGS
is the storage ground heat flux and ds � 10 cm is the depth of the slab. Since

the observation frequency for soil temperature is 15 minutes and that for soil moisture is

30 minutes, the slab model linearly interpolates the soil moisture observations to obtain a

complete time series of data at 15-minute intervals. Unfortunately, the Oklahoma Mesonet

sensors do not directly measure the storage ground heat flux, and instead obtain the best

possible estimate based on soil temperature, soil moisture, and average soil properties at

selected Mesonet sites. When using Eq. (4.2) with estimated QGS
, the observed volumetric

water content value, and an initial soil temperature equal to the observed value at 5 cm, the

slab model produces soil temperatures that slowly diverge from observations. For this rea-

son, an improved estimate of QGS
is calculated by determining the value of QGS

needed to

produce the observed 5-cm soil temperature, given the observed volumetric water content.

The sensitivity of the slab model to errors in the volumetric water content is explored

using the improved estimates of QGS
for each 15-minute period. Ground temperatures

from model simulations produced for equal positive and negative volumetric water content

biases are compared with observations. While this simple model does not account for the

influence of differing soil moisture on the storage ground heat flux or the surface energy

balance, it represents an idealized approach to determine the effect of soil moisture errors

on soil temperature forecasts.

Given observations and soil characteristics at the Watonga Oklahoma Mesonet site for

72 hours beginning at both 0000 UTC and 1200 UTC 20 July 2004, this simple one-layer

slab soil model estimates the 5-cm soil temperatures that would develop if the observed 5-
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FIG. 4.9: Slab soil model temperatures (°C) initialized by a) 0000 UTC and b) 1200 UTC
5-cm soil temperature observations at Watonga on 20 July 2004. Soil moisture errors of

�
0 � 1 m3 m

� 3 (blue) and � 0 � 1 m3 m
� 3 (red) yield temperatures that differ from observed

soil temperatures (black).

cm soil moisture error were equal to
�

0 � 1 m3 m � 3 (Fig. 4.9), or twice the soil moisture error

seen in the Eta analyses. Different initialization times show the effect of a soil moisture

bias on each part of the diurnal cycle. Results reveal that negative soil moisture biases alone

may account for more than 1.6°C increases (decreases) in maximum (minimum) daily soil

temperatures. Positive soil moisture biases account for a more modest reduction of about

0.9°C in the amplitude of the diurnal soil temperature cycle. While underestimates of soil

moisture may contribute to the sign of the soil temperature errors shown in Figure 4.3, soil
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moisture alone apparently cannot account for the magnitude of the soil temperature errors

in Eta analyses.

As previous studies have shown, soil temperature and soil moisture estimates strongly

impact forecasts by numerical weather prediction models that implement sophisticated land

surface parameterizations. Problems with soil fields in Eta analyses, which provide initial

conditions for a variety of research and operational modeling applications, may negatively

impact the resulting model forecasts. These existing biases suggest the strong need for

an extensive network of soil observations, in addition to atmospheric surface observations,

and the necessity for assimilating those observations into land surface initializations. Model

simulations in the following chapter test the impact of proper initial soil conditions in mes-

oscale model forecasts.
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Chapter 5

Model simulations

5.1 Model description

The Pennsylvania State University–National Center for Atmospheric Research (PSU–

NCAR) fifth-generation Mesoscale Model (MM5) version 3.6 (Dudhia 1993; Grell et al.

1995; Dudhia 2003) is a nonhydrostatic mesoscale modeling system with advanced model

physics jointly developed by The Pennsylvania State University and NCAR. MM5 is a grid-

point model with variables distributed on an Arakawa B grid (Arakawa and Lamb 1977).

The model solves differential equations with finite differences centered in space and time.

Second-order finite differences apply to advection terms and an Asselin time filter smoothes

all prognostic variables. In the late 1990s, MM5 was the most popular mesoscale modeling

system for local and regional modeling efforts (Mass and Kuo 1998) and today continues as

a tool for numerical weather prediction, air quality studies, and hydrological studies (Chen

and Dudhia 2001). As computing power increased, and grid spacing decreased, model de-

velopers recognized the need for a computationally inexpensive way to correctly treat land

surface processes in order to capture the effect of small-scale land surface variations on

surface energy fluxes and the atmosphere. In response, they implemented within MM5 the

Oregon State University land surface model (OSULSM), an advanced LSM that improved

the simulation of boundary layer and precipitation processes and surface heat fluxes (Chen
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and Dudhia 2001). The Noah LSM is the newest version implemented in MM5 version 3.6

and represents a community effort between several agencies over many years. The Noah

LSM contains four soil layers depicting soil temperature and soil moisture and accounts

for vegetation categories, monthly vegetation fraction, and soil texture, and includes pa-

rameterizations for evaporation, soil drainage, runoff, the root zone, and canopy moisture

(Skamarock et al. 2005). It also features frozen-soil physics, snow cover prediction, and

the ability to ingest albedo data (Dudhia 2003).

Benefits of MM5 over similar numerical weather prediction models for use over the

Great Plains include the implementation of the sigma vertical coordinate system, excellent

documentation and technical support, parallelization, and the available land surface physics

options. The Noah LSM functions as the primary land surface model in MM5 and contains

nearly identical code to the land surface schemes found in both the NCEP operational Eta

model and the Weather Research and Forecasting (WRF) modeling system. This allows for

direct compatibility between the time-dependent soil variables and surface fluxes in MM5

simulations and the Eta model analyses that initialize the simulations.

The Eta model consistently provides analyses and forecast output every three hours

from each of its four runs per day, making it an ideal source for initial and boundary con-

ditions for any potential case study. The operational Eta model and its companion EDAS

both have a relatively high resolution of approximately 12 km, making its initial soil mois-

ture useful for initializing MM5 coupled with the Noah LSM (Chen and Dudhia 2001),

though the approximately 40-km output grid initializes the model in the following simu-

lations. Despite the higher resolution available from the native 12-km forecast grid (Eta

grid 218), the 40-km output grid (Eta grid 212) contains substantially more information on

atmospheric variables, is considerably smaller, and consumes less bandwidth during daily

downloads.
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FIG. 5.1: Location of the four nested MM5 domains with 27-, 9-, 3-, and 1-km grid
resolution.

5.2 Parameter selections

The primary study area focuses on Oklahoma due to the availability of Oklahoma Meso-

net observations for soil measurements and model verification. MM5 is used to produce

48-hour forecasts on four nested model domains with 27-, 9-, 3-, and 1-km grid resolu-

tion (Fig. 5.1) and 23 vertical half-sigma levels. NCEP Eta model analyses initialize the

MM5 forecasts and Eta model forecasts provide boundary conditions every six hours. Spe-

cific user-defined options include the Kain and Fritsch (1993) cumulus parameterization

on domains one and two only, no shallow convection on any domain, the Medium-Range

Forecast model (MRF) planetary boundary layer (PBL) parameterization (Hong and Pan

1996) with moist vertical diffusion in clouds, simple ice microphysics (Dudhia 1989), and

the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al.

1997). The Dudhia (1989) solar radiation parameterization determines the surface down-

ward shortwave radiation. As mentioned previously, the Noah LSM provides the multi-
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layer soil physics and vegetation package. The coarse domain time step is 60 seconds and

each domain receives initial conditions from the Eta analyses rather than from values inter-

polated from the coarse domain. Other options and parameters remain set to their default

values.

5.3 Atmospheric variables on standard observing levels

Valid comparisons between model forecasts and observations of typical atmospheric

variables require interpolation between the surface and the lowest sigma level such that

forecasts are valid at World Meteorological Organization (WMO) standard observing lev-

els. Standard heights for air temperature measurements are 1.25–2 m above ground level

(AGL) and the standard height for wind measurements is 10 m AGL (WMO 1996). In the

MRF PBL scheme, MM5 calculates forecast fields for air temperature and mixing ratio at

2 m AGL and for wind speed and direction at 10 m AGL. The MRF PBL scheme follows

Blackadar (1976) and assumes that the atmospheric layer between the surface and the low-

est half-sigma level satisfies Monin-Obukhov similarity theory. The 2-m temperature is an

interpolated value found by converting the 2-m potential temperature, θ2, to temperature

using the value of surface pressure. The 2-m potential temperature is

θ2 � θg
� ∆θ

ψT

�
2m �

ψT

�
σ � � (5.1)

where θg is the potential temperature of the ground surface and ∆θ is the difference be-

tween the surface potential temperature and the potential temperature at the lowest half-

sigma level, which is scaled by the ratio of empirical stability correction functions at 2

m, ψT

�
2m � , and at the height of the lowest half-sigma level, ψT

�
σ � (Paulson 1970; Dyer

1974). Similarly, the 2-m mixing ratio is

w2 � wsg

�

�
wσ � wsg � ψw

�
2m �

ψw

�
σ � � (5.2)
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where wsg is the saturation mixing ratio at the ground surface temperature, wσ is the mixing

ratio at the lowest half-sigma level, and ψw

�
2m � and ψw

�
σ � are again empirical stability

correction functions. The zonal and meridional wind components at the lowest half-sigma

level are scaled by stability correction functions to give the components of horizontal wind

speed at 10 m AGL. The stability correction functions for temperature, mixing ratio, and

wind speed differ depending upon the stability class of the planetary boundary layer. Each

of these four classes is determined by the value of the bulk Richardson number, RB, where

RB
�

0 � 2 is stable, 0 � 0 � RB � 0 � 2 is damped mechanical turbulence, RB � 0 � 0 is forced

convection, and RB � 0 � 0 is free convection. For damped mechanical turbulence, the sta-

bility correction functions are strongly dependent upon the Obukhov length.

5.4 Model verification

Verification of MM5 model forecasts using Oklahoma Mesonet data is a necessary

step in a proper evaluation of the impact of improved land surface conditions on model

forecasts. An objective analysis of the observations to the model grids would result in ver-

ification statistics that are dependent upon the chosen analysis procedure. Exceptions may

include a verification procedure requiring smoothed fields to eliminate small-scale variabil-

ity or computations of difference fields between observations and model forecasts. A more

accurate method, therefore, involves interpolating forecasts from the model grids to the Ok-

lahoma Mesonet site locations (e.g., Crawford et al. 2001; Kurkowski et al. 2003; Marshall

et al. 2003; Brotzge 2004). Verification statistics derive from corresponding forecast and

observation pairs.

The MM5 model grid points are created using a Lambert conformal map projection.

A traditional and accepted method for interpolating forecasts to observation points is to

convert the latitude and longitude site locations to a point in Lambert conformal map coor-

dinates and then bilinearly interpolate the forecasts to this point. This procedure requires

valid forecasts at each of the four grid points forming a grid square surrounding the obser-
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x

FIG. 5.2: The four closest grid points (blue) to the observation site (‘x’), more distant
points (red), and very distant points (black). Arcs with constant radii indicate relative
distance from the observation site to several grid points.

vation point.

There are two problems with a bilinear interpolation approach to model verification.

First, the four grid points defining the grid cell in which the observation point lies are not

necessarily the four geographically closest grid points. Figure 5.2 illustrates this argument.

The blue dots indicate the four closest grid points to an observation site at the location

marked by the ‘x’. Blue semi-circles of equal radii surround the easternmost and west-

ernmost blue points showing that the observation site lies within this particular radius of

influence. The observation site lies outside this same radius for the red points, as indicated

by the red curves.

The second and most critical problem arises from the treatment of soil temperature

and moisture in the Noah LSM chosen for MM5. Regardless of the initial conditions, the

model replaces existing soil temperatures with a constant value over water bodies. The

model ignores the influence of such an anomaly in its calculations by performing detailed

LSM calculations only for grid points over land. However, soil temperature fields in the

model output retain the constant values over water. Naturally, the model also replaces

volumetric water content with a constant 1.0 m3 m
� 3 on grid points over water bodies.
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Bilinear interpolation for the situation depicted in Figure 5.3 would result in inaccurate

soil temperature and moisture values interpolated to the observation site indicated by the

‘x’. A comparison would match unrealistically low soil temperature forecasts and high soil

moisture forecasts with observations in such an arrangement. This situation is a problem

at the Bee, Butler, and Clayton Oklahoma Mesonet sites for MM5 grid resolutions of both

3-km and 1-km. The land use category is water beneath one (Butler and Clayton) or two

(Bee) of the four grid points defining the grid cells surrounding each station.

A simple solution to each of these problems is to calculate a distance-weighted average

forecast value at each observation point with the requirement that the grid point is over

land. That is,

X �

N

∑
i � 1

Gi

�
1 �

di

∑N
i � 1di

�
N � 1 � (5.3)

where X is the interpolated value at the observation site, Gi is the forecast value at grid

point i, di is the distance from the ith grid point to the observation site, and N � 1 is the

total number of grid points used in the weighted average. If one of the four closest points

lies over a water body, the interpolation instead uses the next closest grid point over land.

x

FIG. 5.3: Grid points (black dots) surrounding an observation site (‘x’) near a lake (blue).
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The four closest grid points over land determine the interpolated value and the result does

not necessarily require an average of the forecasts at the four grid points defining a grid

cell. Comparisons for all forecast variables use the same four closest grid points over land.

Distances between grid points and observing sites are very small on high spatial-reso-

lution model grids, such as domains three and four. Because this method exists as an im-

provement over bilinear interpolation, it is extremely important to measure such distances

accurately. Assuming a spherical Earth with a constant radius would introduce large errors

in distance calculations. To avoid such errors, the World Geodetic System 1984 (WGS 84)

Ellipsoid provides the geographic datum upon which to calculate distances. Complete de-

tails of the WGS 84 Coordinate System appear in National Imagery and Mapping Agency

(2000). The most accurate inverse geodetic formulae presented in Sodano (1965) yield the

distance between grid points and the observation site. Available latitude and longitude co-

ordinates for each Mesonet site have a precision that corresponds to about 0.01 km at the

latitude of Oklahoma. This precision error is much larger than the distance errors from the

Sodano (1965) inverse geodetic formulae.

A distance-weighted average interpolation scheme should provide reasonable and

smooth interpolated forecast values at observation points. To verify that this is true, de-

fine an analytic soil temperature field by

F

�
x � y � � Tmax �

Tmax � Tmin

xnyn
xy

�
1 � 5cos2

�
2πx
Lx

�
sin2

�
2πy
Ly

�
� 0 � 5sin

�
4π

�
x � y �

Lx
�

Ly

� �
0 � 5cos

�
πy
2Ly

� � (5.4)

where Tmax and Tmin are the maximum and minimum soil temperatures in the field, xn

and yn are the maximum grid dimensions, and Lx and Ly are the zonal and meridional

wavelengths, respectively. Figure 5.4 shows this field on a rectangular 178 � 133 point

grid superimposed on a map of Oklahoma with Tmax � 22°C, Tmin � 16°C, Lx � 178 grid

units and Ly � 133 grid units. This analytic field represents a typical magnitude, range, and
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FIG. 5.4: Analytic soil temperature (°C) defined by Eq. (5.4).

FIG. 5.5: Soil temperatures (°C) defined at random points by Eq. (5.4) and interpolated
back to a regular grid using a distance-weighted average of the four random points closest
to each grid point.
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FIG. 5.6: Difference field (°C) showing the temperatures in Figure 5.5 minus the temper-
atures in Figure 5.4.

distribution of warm season 5-cm soil temperatures observed by the Oklahoma Mesonet

across Oklahoma.

Eq. (5.4) determines the soil temperature field at xn
� yn random points (to ensure ad-

equate coverage) assigned by a uniform random number generator (Bratley et al. 1987,

chapter 6). Figure 5.5 shows this field interpolated back to a regular grid using the distance-

weighted average interpolation scheme given by Eq. (5.3). The analytic and interpolated

fields (Figs. 5.4 and 5.5) are nearly identical. A difference field defined as the interpolated

field minus the analytic field shows larger errors in regions with sharp gradients, though

the largest percentage error is less than 0.006% (Fig. 5.6). The scheme clearly produces

reasonable interpolated values. Note that this test of the distance-weighted average interpo-

lation scheme represents the worst possible scenario. In practice, the fourth closest regular

grid point to a Mesonet observation site must lie within 1.18 grid intervals. The closest

four random points to a regular grid point may not necessarily fall anywhere close to the

grid point. Indeed, the distance between a regular grid point and its fourth closest random
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point in this test exceeded 1.18 grid intervals for nearly 37% of the regular grid points.

The benefits of this interpolation scheme outweigh its unconventional nature. Alterna-

tively, a bilinear interpolation scheme for an MM5 forecast verification necessitates ignor-

ing comparisons with soil variables from observation sites near water bodies. This reduces

the data available for the verification and is a particular problem on high-resolution model

domain four, which lies over only a small portion of Oklahoma. In contrast, the distance-

weighted average interpolation scheme retains these observations while maintaining the

integrity of the forecast variables.

5.5 Comparative tests with differing initial conditions

5.5.1 Selection of case studies

To aid in a selection of several case studies, MM5 is used to compute daily 48-hour fore-

casts on the larger three domains during the period 1 April–30 September 2004. For these

preliminary forecasts, 1200 UTC Eta analyses provide initial conditions only for domain

one, from which each nested domain receives interpolated initial and boundary conditions.

Results from 9-, 24-, and 33-hour forecasts of 2-m air temperature and mixing ratio on do-

main three for each model run, when compared with corresponding Mesonet observations,

highlight several good and bad forecasts for further study. Based on these comparisons,

case studies selected for further study include 48-hour model forecasts initialized at 1200

UTC on 3 May, 20 July, 1 August, and 3 September 2004. There are strong similarities

between observations and modeled 2-meter air temperature and mixing ratio fields at all

three forecast times for forecasts initialized on 3 May and 20 July 2004. Clear conditions

prevailed over most of Oklahoma for 3–4 May, with partial cloudiness entering the northern

portion of the state during the morning of 4 May and dissipating by late afternoon. Clear

skies dominated for 20–21 July, though an upper-level low initiated thunderstorms near

2000 UTC 20 July 2004 over the Texas Panhandle. Cirrus anvils from these storms over-
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FIG. 5.7: Modeled (red) and observed (black) downward shortwave radiation at Foraker,
Oklahoma for the forecast initialized at 1200 UTC 1 August 2004 using the default value
of σx � 1 � 0 and the default radiation calculation frequency of 30 min.

spread the western third of Oklahoma overnight. A warm bias of several degrees Celsius

exists in afternoon forecasts of 2-meter air temperature initialized on 1 August 2004, with

an early morning cool bias. A dry bias also is present for the forecast period. A ridge of

high pressure centered over Oklahoma prevented cloud development for 1–3 August. Re-

sults of the 3 September 2004 preliminary MM5 run exemplify a bad forecast with a warm

bias for 2-meter air temperatures and a poor representation of the moisture field compared

with observations. Shallow cumulus fields developed over much of Oklahoma during the

afternoons of 3 and 4 September. In all cases, no strong synoptic features passed over the

body of Oklahoma. This assortment of fair and poor preliminary forecasts under synopti-

cally quiescent conditions provides several ideal cases for studying the impact of improved

initial conditions on forecasts of radiative fluxes and maximizes the potential for isolating

the effect of changes to the land surface model on near-surface atmospheric variables.

52



0 1 2 3 4 5 6 7 8 9 10 11 12
Forecast Hour

200

400

600

800

S
ho

rt
w

av
e 

R
ad

ia
tio

n 
(W

 m
-2
)

FIG. 5.8: Modeled (red) and observed (black) downward shortwave radiation at Foraker,
Oklahoma for the forecast initialized at 1200 UTC 1 August 2004 with σx � 1 � 6 and a
radiation calculation frequency of 5 min.

5.5.2 Solar radiation tuning

Model simulations on a primary domain over the body of Oklahoma reveal a system-

atic overestimation in surface downward shortwave radiation from the Dudhia (1989) solar

radiation parameterization within MM5. Other studies report similar findings and note the

strong dependence of the scheme on aerosol optical depth (e.g., Zamora et al. 2003, 2005).

Marshall et al. (2003) discuss similar problems with Eta model simulations. The large

positive bias in incoming solar radiation may result from the parameterization’s neglect

of stratospheric ozone and the treatment of scattering and absorption. Rather than explic-

itly accounting for ozone absorption, Rayleigh scattering, aerosol absorption, and upward

aerosol scattering, the Dudhia shortwave parameterization combines these physical atten-

uation processes into a single scattering parameter, scaled by a constant, σx. Forecasts of

incoming solar radiation using the default value of σx
� 1 � 0 result in solar radiation overes-

timates exceeding 50 W m
� 2 under cloudless skies (Fig. 5.7). The excess radiation from the

solar parameterization alone overwhelms the effect of improvements to initial land-surface
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conditions. Additionally, the default frequency of 30 minutes for calls to the atmospheric

radiation scheme causes the phase difference apparent in Figure 5.7.

A modification to the atmospheric radiation calculation frequency to five minutes prop-

erly shifts the downward shortwave radiation curve such that it becomes in-phase with the

observations, though the magnitude of the radiation remains unchanged. In lieu of adding

explicit formulations for ozone and aerosol absorption and Rayleigh and upward aerosol

scattering, as suggested by Zamora et al. (2003), tuned σx values for each case study pro-

vide the best match to solar radiation observations from all nine OASIS super sites within

the body of Oklahoma (Fig. 5.8). The best overall σx values are 1.4, 1.7, 1.6, and 1.4 for

forecasts initialized at 1200 UTC on 3 May, 20 July, 1 August, and 3 September 2004,

respectively. These tuned σx values remain constant in each call to the solar radiation sub-

routine through the entire forecast period.

5.5.3 Initial conditions

To explore the importance of the land surface on the model forecasts, four different

sets of initial conditions for the soil and land surface initialize MM5. The control MM5

(CTRL) uses a 0.15° � 0.15° climatological σf , assumed valid in the middle of each of

the 12 months of the year, produced from a five-year climatology of NDVI observations

(Gutman and Ignatov 1998). Values of σf at each grid point are interpolated temporally

according to the day of the month for each model run. The model also assumes a constant

LAI (the default is set to 4.0) based on categorical USGS land usage data, regardless of the

season or location. Eta model analyses provide initial soil temperature and soil moisture

conditions.

The second MM5 (MM5VEG) initial condition includes the 1-km resolution σf and

LAI observations derived from a 15- or 16-day NDVI composite. Composite windows

span the periods 16–30 April, 1–15 July, 16–31 July, and 16–31 August 2004 for the 3

May, 20 July, 1 August, and 3 September 2004 case studies, respectively. All four nested
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FIG. 5.9: 3 May 2004 fractional vegetation coverage (percentage) for domain three based
on a 5-year climatology. Blue areas indicate water bodies.

FIG. 5.10: Fractional vegetation coverage (percentage) for domain three calculated from
a maximum NDVI composite over the period 16–30 April 2004. Blue areas indicate
water bodies.
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model domains receive interpolated vegetation data. A final vegetation index value at the

center of each grid square derives from an arithmetic mean of all pixels within each grid

square. Modifications to MM5 allow the model to accept an array of LAI values for all

domains. Satellite-derived σf and LAI data cover a swath similar to the area of domain

two. LAI and σf values for points outside the area of the satellite pass in domains one and

two remain set to a constant 4.0 and climatology, respectively.

Since NDVI is a function of both σf and LAI, Gutman and Ignatov (1998) conclude that

both σf and LAI cannot be regarded as two independent pieces of information and should

not be used together in the same land-surface parameterization. However, inadequacies

inherent in a modern numerical weather prediction model vastly outweigh the importance

of errors introduced by the dual specification of vegetation parameters from a single NDVI

observation. Additionally, it is advantageous to provide the model with as much informa-

tion as possible by adding a second variable rather than using a constant LAI. Adding

spatial variability to the LAI field reduces errors in surface heat fluxes (e.g., Li and Avissar

1994). Moreover, these two vegetation indexes are relatively independent within the land

surface model selected for this study. In the Noah LSM, canopy resistance is a function

of LAI, while the partitioning of latent heat between bare soil and vegetation relies on σ f .

Together, LAI and σf specify the total canopy transpiration.

The third MM5 (MM5SOIL) initial condition uses Mesonet soil data, but climatology

for the vegetation. A two-pass Barnes analysis (Barnes 1973) generates gridded fields of

observed soil moisture at 5, 25, and 60 cm depth and soil temperature at depths of 5, 10, and

30 cm beneath native vegetation on MM5 model domains three and four. Optimized anal-

yses produce a large response for mesoscale waves, but damp unrealistic high-frequency

waves across Oklahoma (Maddox 1980). Soil temperature and moisture observations re-

place Eta model analyses of soil fields on nested domains three and four in two of the four

initial soil temperature layers and three of the four initial soil moisture layers in MM5. The

Mesonet observations of soil temperature at a depth of 5 cm replace the initial model soil

temperature in the 0–10 cm layer. The 10–40 cm model layer is the second layer in the
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FIG. 5.11: Leaf area index (dimensionless) for domain three calculated from a maximum
NDVI composite over the period 16–30 April 2004. Blue areas indicate water bodies.

soil model. To maintain consistency with soil temperatures in the deeper model layers, a

cubic spline interpolation supplies a fit between all three observed soil temperatures and the

initial model soil temperature in the 40–100 cm layer, with the assumption that the 40–100

cm layer temperature is valid at a depth of 70 cm. The interpolated value at a depth of 25

cm replaces the initial MM5 soil temperature in the 10–40 cm layer. The observed volu-

metric water content at a depth of 5 cm from the Mesonet replaces the initial soil moisture

field in the 0–10 cm model layer. The 25 cm volumetric water content measurements re-

place the initial soil moisture field in the 10–40 cm model layer, and the 60 cm volumetric

water content measurements replace the initial soil moisture field in the 40–100 cm model

layer. The initial soil temperature field in the 40–100 cm layer and both the soil temperature

and moisture fields in the 100–200 cm layer remain unchanged from the interpolated Eta

analyses for domains three and four. All soil fields for domains one and two also remain

unchanged from the interpolated Eta analyses.

The fourth MM5 (MM5VEGSOIL) initial condition uses the 1-km AVHRR-derived σ f
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FIG. 5.12: 3 September 2004 fractional vegetation coverage (percentage) for domain
three based on a 5-year climatology. Blue areas indicate water bodies.

FIG. 5.13: Fractional vegetation coverage (percentage) for domain three calculated from
a maximum NDVI composite over the period 16–31 August 2004. Blue areas indicate
water bodies.
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FIG. 5.14: Leaf area index (dimensionless) for domain three calculated from a maximum
NDVI composite over the period 16–31 August 2004. Blue areas indicate water bodies.

and LAI values along with the soil data from the Oklahoma Mesonet. This initial condition

provides the most accurate specification of the land surface and soil conditions for the

model.

A comparison between initial σf for the 3 May 2004 CTRL and MM5VEG forecasts

illustrates the stark contrast between climatological (Fig. 5.9) and observed σ f derived

from a 15-day maximum NDVI composite over the period 16–30 April 2004 (Fig. 5.10).

The LAI for the same period ranges from just above 0.0 in urban areas to greater than 8.0

in the forests of southeastern Oklahoma (Fig. 5.11). The fractional vegetation coverage

climatology on 3 September 2004 (Fig. 5.12) more closely resembles the σ f observations

over the period 16–31 August 2004 that initialize the 3 September MM5VEG simulation

(Fig. 5.13). However, the LAI from the same observing period deviates substantially from

a constant 4.0 (Fig. 5.14). When MM5 employs a constant LAI in control forecasts, it

clearly loses information about the vegetation biomass covering the actual land surface.

Initial soil temperature conditions in the 0–10 cm layer in the 1200 UTC 3 May 2004
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SOILMM5 simulation compared with initial conditions in the CTRL simulation differ by

several Kelvin in some locations and show that the Eta analysis for this soil layer is too

cool (Figs. 5.15 and 5.16). Errors are generally smaller in the 10–40 cm soil temperature

layer (Figs. 5.17 and 5.18). Soil moisture initial conditions in the CTRL simulations suffer

from the dry bias in Eta analyses. For 1200 UTC 3 May 2004, initial soil moisture condi-

tions in the 0–10 cm layer of the CTRL simulation contain a dry bias compared with the

MM5SOIL simulation (Figs. 5.19 and 5.20). Maximum differences are on the order of 50%

of the range of observed values across the domain. This dry bias persists into deeper soil

layers (Figs. 5.21 and 5.22). Initial conditions for other case studies exhibit comparable

differences.

The detailed spatial resolution in CTRL initial soil conditions is not present within

the Eta analyses used for the initial conditions, but results from the way the interpolation

scheme within MM5 accounts for topography, land use, and soil type. Since the inser-

tion of observed soil fields into MM5 initial conditions occurs after the interpolation of

Eta analyses onto the model domains, this variability does not appear in MM5SOIL and

MM5VEGSOIL initial soil conditions. Lastly, rather than interpolating initial conditions

from the mother domain to each nested domain, Eta analyses provide initial conditions di-

rectly on the four MM5 domains for each case study. The model, with each of the four

MM5 initial land surface and soil conditions, uses the same atmospheric initial and bound-

ary conditions to produce 48-hour forecasts. When compared with Mesonet observations,

results from all four types of forecasts reveal the impact of improved land surface initial

conditions.

5.5.4 Results

At Oklahoma Mesonet sites, thermistors and relative humidity probes are installed at

1.5 m AGL with anemometers at 10 m AGL. Verification of MM5 model results compares

the 1.5-m observations of air temperature and mixing ratio with the 2-m model output.
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FIG. 5.15: Initial soil temperature (K) in the 0–10 cm layer for domain three of the 1200
UTC 3 May 2004 CTRL simulation.

FIG. 5.16: Initial soil temperature (K) in the 0–10 cm layer analyzed from Oklahoma
Mesonet observations for domain three of the 1200 UTC 3 May 2004 MM5SOIL simu-
lation.
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FIG. 5.17: Initial soil temperature (K) in the 10–40 cm layer for domain three of the 1200
UTC 3 May 2004 CTRL simulation.

FIG. 5.18: Initial soil temperature (K) in the 10–40 cm layer analyzed from Oklahoma
Mesonet observations for domain three of the 1200 UTC 3 May 2004 MM5SOIL simu-
lation.
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FIG. 5.19: Initial soil moisture (m3 m
� 3) in the 0–10 cm layer for domain three of the

1200 UTC 3 May 2004 CTRL simulation.

FIG. 5.20: Initial soil moisture (m3 m
� 3) in the 0–10 cm layer analyzed from Oklahoma

Mesonet observations for domain three of the 1200 UTC 3 May 2004 MM5SOIL simu-
lation.
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FIG. 5.21: Initial soil moisture (m3 m
� 3) in the 10–40 cm layer for domain three of the

1200 UTC 3 May 2004 CTRL simulation.

FIG. 5.22: Initial soil moisture (m3 m
� 3) in the 10–40 cm layer analyzed from Okla-

homa Mesonet observations for domain three of the 1200 UTC 3 May 2004 MM5SOIL
simulation.
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Root-mean squared error, mean absolute error, and bias (Wilks 2006, 278–280) for fore-

casts of 2-m air temperature and mixing ratio, 10-meter wind magnitude, soil temperature

and moisture, and surface energy fluxes for all of domain three illustrate the performance of

each forecast. Errors for each forecast rely on observations from no fewer than the number

of Mesonet sites listed in Table 5.1 for each output variable. Forecast errors for domain

three are very similar to and representative of the forecast errors for domain four.

MM5SOIL generally produced the best results, reducing bias errors for temperature

forecasts during the day (Fig. 5.23) and for mixing ratio forecasts at nearly all forecast

hours (Fig. 5.24). The unrealistic spike in mixing ratio errors at about 0000 UTC (fore-

cast hours 12 and 36) results from the interpolation procedure in the MRF PBL scheme

for determining the 2-m mixing ratio. As discussed in section 5.3, the 2-m mixing ratio

is strongly dependent upon the Obukhov length. The upward portion of the mixing ra-

tio spike is a consequence of this sensitivity. During the PBL regime transition from free

convection (RB � 0) to stable conditions (RB
�

0 � 2) near sunset, the Obukhov length drops

sharply from positive to negative values through a period of damped mechanical turbulence

(0 � 0 � RB � 0 � 2). The decrease in Obukhov length reduces the ratio of ψw

�
2m � to ψw

�
σ �

in Eq. (5.2), giving more weight to wsg . Since the saturation mixing ratio at the ground tem-

perature is much larger than the mixing ratio slightly above the ground, the extra weight

TABLE 5.1: Minimum number of observations from the Oklahoma Mesonet at any fore-
cast hour used in calculating error statistics for MM5 simulations for each case study.

3 May 2004 20 Jul 2004 1 Aug 2004 3 Sep 2004
2-m temperature 108 109 106 111
2-m mixing ratio 107 109 106 111
10-m wind speed 109 110 109 111
5-cm soil temperature 95 98 98 97
5-cm soil moisture 79 81 76 82
25-cm soil moisture 69 85 78 83
60-cm soil moisture 42 53 52 58
Sensible heat flux 9 9 8 9
Surface downward shortwave 9 9 8 9
Surface downward longwave 9 9 8 9
Ground heat flux 72 64 65 65
Precipitation 107 110 108 112
NR-Lite net radiation 76 72 72 72
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FIG. 5.23: 2-m air temperature bias (K) after comparison with Oklahoma Mesonet ob-
servations for CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL
(red) domain three simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 Au-
gust, and d) 3 September 2004.
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FIG. 5.24: 2-m mixing ratio bias (g kg
� 1) after comparison with Oklahoma Mesonet ob-

servations for CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL
(red) domain three simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 Au-
gust, and d) 3 September 2004.
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FIG. 5.25: Soil moisture bias (m3 m
� 3) in the 0–10 cm model layer after comparison with

Oklahoma Mesonet observations at 5-cm depth for CTRL (black), MM5SOIL (green),
MM5VEG (blue), and MM5VEGSOIL (red) domain three simulations initialized at 1200
UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004.

given to wsg causes the interpolated 2-m mixing ratio to increase. At the peak in the mixing

ratio spike, ψw

�
σ � reaches an artificially imposed minimum negative value, discontinuing

a reduction in the ratio of ψw

�
2m � to ψw

�
σ � . At this point, the drop in the 2-m mixing

ratio is driven solely by the reduction in wsg as the ground temperature decreases due to

the reversal of the sign of the sensible heat flux. A stronger spike occurs in the MM5SOIL

and MM5VEGSOIL simulations because mixing ratios are higher throughout these simu-

lations, primarily due to the availability of more soil moisture for evaporation (Fig. 5.25).

A similar reduction of the ratio of ψT

�
2m � to ψT

�
σ � in Eq. (5.1) causes air temperatures

to drop too quickly during the PBL transition to stable conditions. Errors for all 10-m

wind magnitude forecasts differed only slightly, though each simulation failed to capture

the diurnal cycle of increased wind speeds during the daytime and reduced wind speeds at

68



0 6 12 18 24 30 36 42 48
Forecast Hour

-3

-2

-1

0

1

2

B
ia

s 
(m

 s
-1
)

a)

0 6 12 18 24 30 36 42 48
Forecast Hour

-2

-1

0

1

B
ia

s 
(m

 s
-1
)

b)

0 6 12 18 24 30 36 42 48
Forecast Hour

-2.0

-1.5

-1.0

-0.5

0.0

0.5

B
ia

s 
(m

 s
-1
)

c)

0 6 12 18 24 30 36 42 48
Forecast Hour

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

B
ia

s 
(m

 s
-1
)

d)

FIG. 5.26: 10-m wind speed bias (m s
� 1) after comparison with Oklahoma Mesonet ob-

servations for CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL
(red) domain three simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 Au-
gust, and d) 3 September 2004.

night (Fig. 5.26) as also seen in Zhang and Zheng (2004). These errors may also arise from

parameterization choices within the MRF PBL scheme.

Soil temperature and soil moisture values were clearly more accurate in the MM5SOIL

and MMVEGSOIL simulations. In most cases, however, the model strongly overestimates

daytime soil temperatures and underestimates soil temperatures at night (Fig. 5.27), despite

driving the surface energy budget with solar radiation tuned to match observations. The

overall MM5SOIL forecast and MM5VEGSOIL forecast errors for soil temperature and

moisture do not drift appreciably back to control forecast errors during the forecast period.

Due to the marked discrepancy between observed and climatological σ f , the observed

departure from a constant LAI in MM5VEG, and increased initial soil moisture in

MM5SOIL, large differences exist between latent heat fluxes for each forecast type (Fig.
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FIG. 5.27: Soil temperature (K) at Norman, Oklahoma in the 0–10 cm model layer for
CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL (red) domain
four simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3
September 2004 compared with Oklahoma Mesonet observations at 5-cm depth (dashed).
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FIG. 5.28: Latent heat flux (W m
� 2) at Norman, Oklahoma for CTRL (black), MM5SOIL

(green), MM5VEG (blue), and MM5VEGSOIL (red) domain four simulations initialized
at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared
with the residual of the surface energy balance computed from Oklahoma Mesonet ob-
servations (dashed).

5.28). The maximum difference between the domain four MM5VEG and MM5SOIL fore-

casts of latent heat flux at Norman, Oklahoma exceeds 225 W m
� 2 in the forecast initial-

ized on 3 May 2004. These flux changes are consistent with the increased soil moisture

in all MM5SOIL simulations and the substantially reduced fractional vegetation coverage

compared with climatology in the 3 May 2004 MM5VEG simulation. Additionally, the

maximum difference in sensible heat flux exceeds 145 W m
� 2 (Fig. 5.29). Daytime sen-

sible heat flux bias errors for MM5VEG across domain three exceed 90 W m
� 2 on 3 May

and 1 August, though MM5SOIL shows remarkable improvements over the CTRL forecast

(Fig. 5.30). A severe underestimation of sensible heat flux only at the Burneyville Meso-

net site (Fig. 5.31) and an unrealistic spike in observations at the Grandfield Mesonet site

both contribute to the uncharacteristically negative daytime sensible heat flux errors for the
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FIG. 5.29: Sensible heat flux (W m
� 2) at Norman, Oklahoma for CTRL (black), MM5-

SOIL (green), MM5VEG (blue), and MM5VEGSOIL (red) domain four simulations ini-
tialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004
compared with Oklahoma Mesonet observations (dashed).

20 July and 3 September 2004 simulations, respectively. Sensible heat flux comparisons

between the model and observations at all other OASIS sites for these simulations exhibit

results that resemble those for the other two case studies. These strange anomalies require

more investigation. Ground heat fluxes are consistently too high at night (Fig. 5.32), though

the magnitude of the ground heat flux errors throughout each simulation is substantially less

than the errors in sensible and latent heat fluxes. Consistent with results from Marshall et

al. (2003), the differences in partitioning between sensible and latent heat fluxes contribute

to smaller daytime temperature and mixing ratio errors for MM5SOIL forecasts and larger

errors for MM5VEG forecasts compared with the control forecast. At Norman, these fac-

tors result in differences in 2-meter air temperatures between the domain four MM5SOIL

forecasts and the MM5VEG forecasts that may exceed 4°C at a given hour, though in each

72



0 6 12 18 24 30 36 42 48
Forecast Hour

-20

0

20

40

60

80

100

B
ia

s 
(W

 m
-2
)

a)

0 6 12 18 24 30 36 42 48
Forecast Hour

-60

-40

-20

0

20

40

60

B
ia

s 
(W

 m
-2
)

b)

0 6 12 18 24 30 36 42 48
Forecast Hour

-20

0

20

40

60

80

100

B
ia

s 
(W

 m
-2
)

c)

0 6 12 18 24 30 36 42 48
Forecast Hour

-60

-40

-20

0

20

40

60

B
ia

s 
(W

 m
-2
)

d)

FIG. 5.30: Sensible heat flux bias (W m
� 2) after comparison with Oklahoma Mesonet

observations for CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEG-
SOIL (red) domain three simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c)
1 August, and d) 3 September 2004.
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FIG. 5.31: Sensible heat flux (W m
� 2) at Burneyville, Oklahoma for CTRL (black),

MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL (red) domain three simula-
tions initialized at 1200 UTC on 20 July 2004 compared with Oklahoma Mesonet obser-
vations (dashed).

case study daily maximum temperatures still exceed observations for all four forecast types

(Fig. 5.33).

Positive temperature biases and negative mixing ratio biases during the day suggest

that MM5 erroneously partitions sensible and latent heat fluxes. Summing the sensible

and latent heat fluxes from the model and comparing the result with observations reveals

a remarkable agreement between simulations and observations, particularly for the CTRL

and MM5SOIL simulations (Fig. 5.34). This evidence indicates that partitioning errors

between sensible and latent heat fluxes are responsible for a significant portion of the model

errors. However, the magnitude of these heat fluxes tends to fall short of the observed values

at night and in simulations that include observed vegetation indexes, indicating that other

mechanisms also contribute to forecast errors.

Only the MM5SOIL forecast showed considerable improvement over the control fore-

cast; verification with observations shows reduced forecast errors for most variables, de-

spite using only climatological vegetation conditions. Forecasts incorporating satellite-

derived vegetation indexes into the initial conditions, however, generally produced worse

74



0 6 12 18 24 30 36 42 48
Forecast Hour

-100

-50

0

50

G
ro

un
d 

H
ea

t F
lu

x 
(W

 m
-2
)

a)

0 6 12 18 24 30 36 42 48
Forecast Hour

-100

-50

0

G
ro

un
d 

H
ea

t F
lu

x 
(W

 m
-2
)

b)

0 6 12 18 24 30 36 42 48
Forecast Hour

-100

-50

0

50

G
ro

un
d 

H
ea

t F
lu

x 
(W

 m
-2
)

c)

0 6 12 18 24 30 36 42 48
Forecast Hour

-60

-40

-20

0

20

40

G
ro

un
d 

H
ea

t F
lu

x 
(W

 m
-2
)

d)

FIG. 5.32: Ground heat flux (W m
� 2) at Norman, Oklahoma for CTRL (black), MM5-

SOIL (green), MM5VEG (blue), and MM5VEGSOIL (red) domain four simulations ini-
tialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004
compared with Oklahoma Mesonet observations (dashed).
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FIG. 5.33: 2-m air temperature (K) at Norman, Oklahoma for CTRL (black), MM5SOIL
(green), MM5VEG (blue), and MM5VEGSOIL (red) domain four simulations initialized
at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared
with Oklahoma Mesonet observations (dashed).
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FIG. 5.34: Sum of sensible and latent heat fluxes (W m
� 2) at Norman, Oklahoma for

CTRL (black), MM5SOIL (green), MM5VEG (blue), and MM5VEGSOIL (red) domain
four simulations initialized at 1200 UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3
September 2004 compared with Oklahoma Mesonet observations (dashed).

results than the control forecast. Testing the possibility that tuned parameterizations within

the Noah LSM may provide the best results for constant LAI, forecasts incorporating ob-

served σf and a constant LAI produce nearly identical results to those of the MM5VEG

simulations. The drier than normal spring in 2004, and to some extent the dry summer,

may exacerbate existing model errors. The MM5VEGSOIL forecast partially compensated

for surface energy flux errors in the MM5VEG forecast by improving the initial soil temper-

ature and moisture fields. It is important to note, however, that the greatly improved initial

conditions in the MM5VEGSOIL simulation did not provide much improvement over the

CTRL simulation. This result echoes the message from Robock et al. (2003), who stress

that initial conditions with greater accuracy do not necessarily guarantee an improvement

in model performance.
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When given the best possible characterization of the initial land surface, these simula-

tions highlight the errors present in the physical parameterizations within the Noah LSM.

Such errors specifically suggest the need for the improved latent heat flux parameterization

developed in chapter 6.
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Chapter 6

Surface fluxes in the Noah LSM

The Noah LSM is the primary driver for land surface processes in the Eta, WRF, and

MM5 forecast models. As shown in chapter 5, forecasts by the Noah LSM consistently

underestimate midday latent heat fluxes by 20–40% compared with observations on clear

days with weak synoptic forcing, even when given the best possible characterization of the

initial land surface conditions. These errors primarily result from errors in the partitioning

between the fluxes of sensible and latent heat. Partitioning errors can arise from a number

of problems, including incorrect estimates of moisture availability, skin temperature, and

resistance to heat flux, which is a function of air temperature and the vertical separation

of atmospheric model layers. Improving surface fluxes may lead to better surface and

boundary layer temperature and moisture forecasts, which will increase predictability (e.g.,

Crook 1996). The following discussion details the development of a new latent heat flux

parameterization that derives from several months of Oklahoma Mesonet observations and

provides improved predictions of sensible and latent heat fluxes. First, a summary of the

present methods by which the Noah LSM calculates surface energy fluxes sets the stage for

the development of this new scheme.
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6.1 Latent heat flux

More complicated factors influence latent heat fluxes compared with sensible heat

fluxes, exacerbating the difficulty of modeling evaporation near the land surface. However,

surface observations under a variety of atmospheric conditions may aid in appropriately

tuning the latent heat flux. In the current formulation within the Noah LSM, the latent heat

flux E is the sum of the contribution from each of three types of evaporation: direct evap-

oration from bare soil (Edir), transpiration from the vegetation canopy and roots (Et ), and

evaporation of precipitation intercepted by the vegetation canopy (Ec). All three of these

terms depend directly on the calculation of potential evaporation.

6.1.1 Potential evaporation

The potential evaporation Ep is the maximum possible evaporation that could occur

over an open water surface under existing atmospheric conditions. The Noah LSM calcula-

tion for potential evaporation involves an energy balance approach based on the Penman re-

lationship (Penman 1948) and includes a stability-dependent aerodynamic resistance term

(Mahrt and Ek 1984). Since calculation of the net radiation in the model requires knowl-

edge of the surface temperature, the actual set of equations in the model differs slightly

from the usual Penman relationship and the equation for potential evaporation appearing in

Mahrt and Ek (1984). This results in

Ep �
ρcpCh

Lv

��
∆ � Rn

ρcpCh

��� θ0 � T0 � � �
A

�
r

�
1 �

∆ �
r

�
1

�� � (6.1)

where ρ is the air density, cp is the specific heat at constant pressure, and θ0 and T0 are the

potential and actual temperatures at the lowest model level, respectively,

Rn �

�
1 � α � Rg

�
Ld � σT 4

0 � G � (6.2)
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is the net radiation (W m
� 2), where α is the surface albedo, Rg is the incoming solar

radiation, Ld is the downward longwave radiation, G is the ground heat flux, and σ is the

Stefan-Boltzmann constant,

∆ �
dqs

dT
Lv

cp � (6.3)

where dqs � dT is the slope of the saturation specific humidity curve with respect to temper-

ature and Lv is the latent heat of vaporization,

r �
4σT 4

0 Rd

psfccpCh
� (6.4)

where Rd is the dry gas constant and psfc is the surface pressure (Pa), and

A �
Lv

cp

�
qs
�
T0 � � q0 � � (6.5)

where q0 and qs

�
T0 � are the actual and saturation specific humidities at the model level

closest to the ground surface, respectively (Ek and Mahrt 1991). Here Ch is the surface

exchange coefficient for heat and momentum, the definition of which varies depending

upon the stability of the lower atmosphere, and is a function of the wind speed and height

above the surface at the first model level, the roughness lengths for momentum and heat,

and the bulk Richardson number for the surface layer. For details of the calculation of Ch,

see Mahrt and Ek (1984) and Ek and Mahrt (1991). Note that in the Noah LSM, the model

replaces the actual and saturation specific humidities with their nearly equivalent mixing

ratio counterparts.

6.1.2 Direct evaporation from bare soil

The direct evaporation term is a simple linear relationship based on the work of Mahfouf

and Noilhan (1991), who use a moisture availability parameter β to scale the evaporation

from the soil. The Noah LSM employs a similar approach based on the results from a
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sensitivity test for evaporation in the NCEP Eta model (Betts et al. 1997) in which

Edir �

�
1 � σf � βEp � (6.6)

where σf is the fractional vegetation coverage for a model grid cell and

β �

�
Θ1 � Θw

Θref � Θw

� f

(6.7)

represents a normalized soil moisture availability term where Θw is the wilting point and

Θref is the field capacity, both of which depend on soil texture, and Θ1 is the volumetric

water content of the top soil layer (Chen and Dudhia 2001). Some studies set f � 1 (e.g.,

Betts et al. 1997; Chen and Dudhia 2001), though in the version of the Noah LSM used

here, f � 2 as suggested by Ek et al. (2003).

6.1.3 Canopy transpiration

The canopy transpiration from the vegetated portion of a model grid cell is

Et � σf EpPc � 1 �

�
Wc

S

� 0 � 5 � � (6.8)

where Wc is the intercepted canopy water content and S is a constant but tunable maximum

canopy water capacity. The plant coefficient Pc includes the influence of stomatal control

and is expressed as

Pc �
r

� ∆
r

�
1

�
ChRc � � ∆ � (6.9)

where r, ∆, and Ch were defined in section 6.1.1 and

Rc �
Rcmin

LAIF1F2F3F4
(6.10)
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is the canopy resistance following the formulation of Jacquemin and Noilhan (1990) where

Rcmin is the minimum stomatal resistance for each vegetation type and LAI is the leaf area

index. The canopy resistance factors F1, F2, F3, and F4 are each bounded between 0 and 1

and represent the effects of solar radiation, vapor pressure deficit, air temperature, and soil

moisture, respectively (Chen and Dudhia 2001). These factors are defined by

F1 �
Rcmin � Rcmax

�
f

1
�

f
where f � 0 � 55

Rg

Rgl

2
LAI �

F2 �
1

1
�

hs � ws
�
T0 � � w0 � �

F3 � 1 � 0 � 0016
�
Tref � T0 � 2 � and

F4 �

n

∑
i � 1

�
Θi � Θw � dzi�

Θref � Θw � � n

∑
j � 1

dz j

� � (6.11)

where Rcmax is a constant maximum canopy resistance set to 5000 s m
� 1, Rg is the incoming

solar radiation, Rgl and hs are species-dependent radiation stress and empirical parameters,

respectively, ws is the saturation mixing ratio at air temperature T0, w0 is the mixing ratio,

Tref is 298 K as in Noilhan and Planton (1989), Θ is the volumetric water content of each

soil layer, dz is the depth of each individual soil layer, and n is the species-dependent

number of root zone soil layers.

The canopy resistance is the most important factor contributing to canopy transpira-

tion. Holtslag and Ek (1996) write “the [total] latent heat flux is mostly determined by

the canopy resistance.” Despite this physical importance, Eq. (6.10) that describes the

canopy resistance is arguably the most questionable formulation in the Noah LSM, since it

simply multiplies together four physically important atmospheric and land surface effects.

Jarvis (1976) proposed a very similar formulation in an effort to forecast stomatal conduc-

tance (the inverse of which is resistance) based on the known independent influence of air

temperature, leaf-air vapor pressure difference, carbon dioxide concentration, and water

stress on the stomatal conductance of leaves illuminated by solar radiation. Without know-

ing the effect on stomatal conductance from each variable acting in concert, Jarvis (1976)

83



hypothesized that the final stomatal conductance “is the result of complete expression of

the influence of all the variables without any synergistic interactions.” The final stomatal

conductance is thus the product of the percentages of the maximum stomatal conductance

contributed by each variable. This formulation, which several authors have adopted and

implemented in land surface models with some modification (e.g., Noilhan and Planton

1989; Jacquemin and Noilhan 1990; Chen and Dudhia 2001), leads to the canopy resis-

tance factors that appear in Eq. (6.11).

6.1.4 Wet canopy evaporation

The evaporation of precipitation intercepted by the vegetation canopy is substantially

smaller than the other evaporation terms and is

Ec � σf Ep

�
Wc

S

� 0 � 5
� (6.12)

In the experiments that follow, Oklahoma Mesonet observations facilitate the development

of an empirical parameterization for latent heat flux. At Oklahoma Mesonet sites, where

the predominant vegetation cover is grass, it is assumed that the canopy water content

is zero, thereby removing the contribution to evaporation by moisture in the vegetation

canopy (cf., Betts et al. 1997). The total latent heat flux is therefore the sum of the direct

evaporation and canopy transpiration terms. This is a reasonable assumption given the

relative insignificance of Ec compared with Edir and Et .

6.2 Sensible heat flux

The Noah LSM calculates the sensible heat flux as

H � ρcpCh

�
Ts � θ0 � � (6.13)
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where ρ is the air density, cp is the specific heat of air at constant pressure, Ch is the

surface exchange coefficient for heat and momentum discussed in section 6.1.1, Ts is the

skin temperature, and θ0 is the potential temperature at the first model level.

6.3 Ground heat flux

The ground heat flux in the Noah LSM is an integration of the three-dimensional heat

conduction equation for soil evaluated at the land-atmosphere interface such that

G �

�
κ

∂T
∂ z

������� z � 0
� (6.14)

which is scaled to account for the effect of vegetation coverage on soil heat fluxes. As

implemented in the model, the ground heat flux becomes

G �

κ
�
Ts � Tsoil1 �
0 � 5dz1

e
� 2σf � (6.15)

where Ts is the skin temperature, Tsoil1
is the temperature of the first soil layer, dz1

is the

depth of the first soil layer, and σf is the fractional vegetation coverage. The thermal

conductivity

κ � Ke

�
κsat � κdry � � κdry (6.16)

is weighted by the Kersten number (Ke), which is a normalized thermal conductivity and

is a function of the volumetric water content in the first soil layer (Θ1) and the soil poros-

ity (Θs). The dry thermal conductivity, κdry, is a function of Θs and the saturated thermal

conductivity, κsat, is a function of both Θs and quartz content. Details of the thermal con-

ductivity calculations appear in Peters-Lidard et al. (1998).
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6.4 Empirical latent heat flux parameterization

The latent heat flux formulation in the Noah LSM is much more complicated, and

therefore prone to more errors, than the sensible and ground heat flux equations. The

combination of the complexity of the physical processes leading to evapotranspiration and

the assumptions inherent in the current canopy transpiration term make the latent heat flux a

prime candidate for refinement. The unique set of soil, vegetation, atmospheric, and surface

flux observations available in Oklahoma presents an ideal opportunity for improving model

forecasts by examining the latent heat flux.

Given the physical importance of canopy resistance in the current approach to calculat-

ing the canopy transpiration term in the Noah LSM, one technique for improving short-term

latent heat flux forecasts is to focus on the formulation for canopy resistance, while leav-

ing the remainder of the Noah LSM untouched. Driven by observations, a reversed form

of the Noah LSM provides values of plant coefficient, Pc, and thereby canopy resistance,

Rc, that would be necessary for the original model to yield the observed latent heat flux.

Unfortunately, many of these values are unphysical, including exceedingly large canopy re-

sistances and unbounded plant coefficients. Results indicate that this occurs because 1) the

Edir term (Eq. 6.6) is greater than the observed latent heat flux or 2) the sum of Edir and σf Ep

(Eq. 6.8) in the Noah LSM is less than the observed latent heat flux, even after adjusting for

a maximum
�

20 W m
� 2 bias in the latent heat flux observations based on instrumentation

error studies by Brotzge (2000). Thus, the direct evaporation from bare soil and canopy

transpiration terms clearly yield inappropriate values when forced with observations. Any

empirical scheme designed to forecast Pc or Rc based on these formulae would lead to poor

model forecasts of latent heat flux. Improved forecasts for latent heat flux clearly require a

different approach. Therefore, the popular canopy resistance approach to modeling canopy

transpiration is abandoned and instead a completely new empirical latent heat flux scheme

is developed from all available sets of observations. Tests indicate that least squares simple

and multiple linear regression models with automatic and manual predictor selection have
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limited potential, though a principal-component regression procedure holds more promise

as a viable alternative for predictor selection. The following development of a new latent

heat flux parameterization takes advantage of the properties of this principal-component

regression technique.

6.4.1 Principal-component regression

Meteorological data generally exhibit large spatial and temporal correlations. Least

squares multiple linear regression models trained on such highly correlated data are there-

fore unstable and may perform poorly on independent data (Wilks 2006, p. 505). These

mutual correlations in the independent data can be removed through a principal component

analysis, which transforms a time series of correlated variables into temporally uncorre-

lated, spatially and temporally orthogonal time series that remain linear functions of all

the original variables (Haan 1977, p. 237; Richman 1986). These principal components

become the set of predictor variables in a least squares multiple linear regression. One

benefit of using principal component analysis is that it provides an objective method for

eliminating variables that are not highly correlated with any of the principal components

before using those variables in a principal-component regression. Secondly, because each

principal-component predictor is temporally uncorrelated with the others, elimination of

any principal component as an independent variable in a multiple regression analysis does

not affect the contribution of any of the other components.

Principal-component regression techniques are not new in studies of the atmosphere.

Predictions of tropical precipitation from marine surface observations (Tsonis 2002), mean

winter temperatures from sea-surface temperatures and pressure-surface heights (Harnack

1979), and wheat yield from temperature and rainfall observations (Wigley and Qipu 1983)

have all employed this method. Air quality studies have also exercised this technique to

forecast surface ozone concentrations (Pryor et al. 1995) and to determine source regions

for fine particulates and sulphate (Wolff et al. 1984). However, application of this technique
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in an attempt to predict fluxes of latent heat from a wealth of surface observations represents

a novel approach.

Since land surface models contain separate expressions for latent heat flux over bare

soil and vegetated surfaces, employing separate principal-component regression analyses

yields the best possible expressions for both Edir and Et to match the observed latent heat

fluxes. The first step in predictor selection requires determining which original variables

display a quasi-linear relationship with each contributor to the total latent heat flux. A

locally weighted regression accomplishes this goal by smoothing the dependent variable

as a function of the independent variable over a moving window, analogous to a moving

average for a time series (Cleveland and Devlin 1988). Locally weighted regression curves

that appear linear with non-zero slope suggest that a particular variable would perform

well in a multivariate regression. This provides an objective method for determining which

mathematical transformations of potential variables would improve the forecasts of both

Edir and Et .

Another necessary step before analyzing the surface data in a principal component anal-

ysis is to examine the autocorrelation of the selected variables. Whether chronologically

or randomly ordered, many of the variables exhibit strong serial correlations out to several

tens of lags. Since the data are largely from Oklahoma Mesonet measurements at approxi-

mately half-hour intervals (some data are missing), these serial correlations likely represent

diurnal, synoptic, and seasonal cycles. Sampling the data with a frequency low enough to

reduce these serial correlations substantially would vastly reduce the number of available

observations for use in determining a new empirical scheme for latent heat flux, thereby

limiting the ability of a new scheme to accurately forecast latent heat fluxes for all times,

seasons, and locations. Thus, there lies a massive serial correlation problem within the

data available for analysis such that the degrees of freedom are too high and the resulting

p � values are too small in the principal-component regression because the statistical test

has too much power. Rather than implementing strictly objective methods for determining

the appropriate terms in the principal-component regression, an alternative method relies
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on variable selection through a trial-and-error approach (M. B. Richman 2006, personal

communication).

Training data for both Edir and Et principal-component regressions derive from ran-

domly selected sets of observations containing possible predictors and their respective pre-

dictands, which constitute approximately half of the available data. The remaining data are

used for independent cross-validation. These independent data provide a measure of the

strength of the multiple regression relationship through several measures, including the co-

efficient of determination R2 and the residual standard error (Wilks 2006, 185–186). One

negative characteristic of the coefficient of determination is that its value continually in-

creases by simply adding more variables to a prediction equation. Thus, an adjusted R2,

such that

R
2

� 1 �
�
1 � R2 � � n � 1

n � p � 1

� � (6.17)

instead corrects for such a problem by the inclusion of a penalty term, where p is the

number of predictors in the multiple regression model and n is the sample size (Yamane

1967, p. 765). The R
2 value justifies the results of each principal-component regression in

each independent cross-validation data set.

For the principal component analysis, let X denote the n � p matrix of n observations

on p predictor variables and R denote the correlation matrix of these data. Standardizing

the data through the mathematical transformation

X �

xi j � x j

σj
� (6.18)

where σj is the population standard deviation of each column j, removes the problem of

differing units with widely varying magnitudes in the data and the analysis computes the

principal components from the resulting correlation matrix. This is standard practice when

computing principal components from variables with differing units (Haan 1977, p. 243).

If the units were similar in magnitude and the data were instead standardized using X �

xi j � x j, then the covariance matrix could substitute for the correlation matrix R in the
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following calculations.

The n � p matrix of n principal component scores for each of p principal components

U is

U � XE � (6.19)

where the matrix of eigenvectors E is a p � p linear transformation matrix whose jth column

is the eigenvector e j determined from

�
R � λ jI � e j � 0 � (6.20)

where I is the identity matrix and λ j is the set of eigenvalues for the matrix R. Following the

calculation of the principal components, a varimax rotation (Kaiser 1958; Richman 1986)

simplifies the physical interpretation of each eigenvector by maximizing or minimizing its

eigenvector elements. A varimax rotation is an orthogonal rotation that rotates the matrix

of eigenvectors through a p � p transformation matrix T such that

�
E � ET � (6.21)

This transformation produces rotated orthogonal eigenvectors, but the corresponding ro-

tated principal component time series are no longer uncorrelated (Wilks 2006, p. 498). For

details of the varimax rotation mechanics, see Kaiser (1958), Richman (1986), or Wilks

(2006, p. 494). Finally, �
U � X

�
E � XET (6.22)

defines the n � p matrix of rotated principal components.

Any forecast equation derived through principal component analysis requires measure-

ments of all of the original variables. Eliminating variables exhibiting low correlations

with any principal component reduces the number of variables that appear in any resulting

regression equation. A second principal component analysis on the remaining variables,
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followed by removal of insignificant principal components containing rotated eigenvector

elements smaller than
�

0.85 for all variables, yields a final set of rotated principal compo-

nents
�
U that serve as predictors for a multiple linear regression with either Edir or Et as the

predictands. A reverse transformation matrix

B � ED
� 1 
 2
λ TD1 
 2

λ (6.23)

converts the resulting principal-component regression equation into an equation in terms of

the original variables for use in the Noah land surface model. Here, Dλ is a p � p diagonal

matrix whose diagonal elements are the eigenvalues of R and D � 1 
 2
λ

is a diagonal matrix

formed by inverting Dλ and taking the square root of its elements.

6.4.2 Selection of observations

Practical and physical considerations limit the range of possible predictor variables in

a principal-component regression. The simplest choices for possible predictors include

variables that already exist within the Noah LSM. To calculate surface energy fluxes, the

model manipulates several atmospheric and soil variables determined from either inter-

nal calculations or input from the parent atmospheric model. These quantities include the

downward component of both longwave and shortwave radiation, surface pressure, pre-

cipitation rate, air temperature, mixing ratio, wind speed, potential temperature, fractional

vegetation coverage, leaf area index, soil temperature and soil moisture for several layers,

and skin temperature. Combinations of these variables define other necessary quantities,

including the saturation mixing ratio and the slope of the saturation mixing ratio curve at

the current air temperature. The Oklahoma Mesonet provides observations of the major-

ity of these variables, while NOAA AVHRR satellites measure the fractional vegetation

coverage and leaf area index. Since the satellite-derived quantities are only available as

biweekly composites, these observations require temporal interpolation to match the obser-

vation time of the Oklahoma Mesonet observations. Refer to chapter 3 for details on the
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surface and space-based instrumentation.

Data available for analysis span the period May 2004–June 2006 with satellite-derived

vegetation data spanning only the period 15 April–15 September 2004. Within this time

frame, there are several restrictions on the available observations from the Oklahoma Meso-

net. Complete sets of quantities determining the surface energy balance are only available

from nine OASIS super sites.1 Since the latent heat flux represents the residual of the

surface energy balance, the sensible heat flux, ground heat flux, and net radiation must

be present in each observation record. Estimates of the storage ground heat flux require

measurements of the volumetric water content at 5-cm, which is only sampled every 30

minutes. Latent heat flux observations are therefore only available at the top and bottom

of each hour. Since precipitation is known to interfere with measurements from a sonic

anemometer, which measures the sensible heat flux, periods of rainfall are removed from

consideration beginning with the first non-zero daily precipitation total through local mid-

night on the day of the observation.

Sets of possible predictor variables are limited to periods with ample incoming short-

wave radiation. To focus on this most important part of the day, and to limit the influence

of very small nighttime latent heat fluxes in creating a new scheme for latent heat flux

forecasts, the principal-component regression only considers sets of observations with in-

coming shortwave radiation that exceeds 10 W m
� 2.

In addition to these quantities, the Noah LSM also contains several fixed quantities that

could be useful directly or in transformations as possible predictors. These include albedo,

roughness length, and soil type. The wilting point and field capacity at model grid points are

functions of soil type. Soil cores from each OASIS super site provide the soil texture class

at each of four different levels corresponding roughly with the four available soil layers in

the Noah LSM. While observations of both incoming and outgoing shortwave radiation

provide accurate albedo measurements at each OASIS super site, practical usage in the

Noah LSM limits the utility of such a parameter in an improved formula for latent heat flux.

1The Burneyville, Oklahoma site did not measure ground heat flux during this period.
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Similarly, observations of the wind speed at multiple levels may provide information about

the roughness length. Simply assuming neutral stability in the boundary layer to determine

the roughness length from observations leads to widely varying roughness lengths that

would have little practical application in the Noah LSM. Therefore, the set of possible

predictor variables does not describe variability due to changes in albedo and roughness

length, leaving the model to determine these values from lookup tables based on the USGS

24-class vegetation type database categorization.

Several assumptions apply to the Oklahoma Mesonet data when considering potential

predictor variables in a regression equation for use in the Noah LSM. A major branch

occurs at the beginning of the Noah LSM code that accounts for the effect of snow cover.

Since Oklahoma Mesonet data do not explicitly provide information on snow cover, ac-

counting for this effect while searching for predictor variables in a new latent heat flux

parameterization would prove difficult. Observations therefore fall under the assumption

that there is no snow cover, that water in the soil is not frozen, and that precipitation is not

falling in the form of snow or freezing rain, which a Mesonet tipping bucket gauge would

not immediately register. These are reasonable assumptions for Oklahoma for the relevant

spring and summer observation period.

6.4.3 Direct evaporation from bare soil

Since vegetated surfaces surround every observation site, direct measurements of evap-

oration from bare soil are unavailable from the Oklahoma Mesonet. However, a long time

series of soil moisture observations from May 2004 through June 2006 contains several pe-

riods during which the vegetation in Oklahoma suffered under moderate to extreme drought

conditions. The permanent wilting point where transpiration ceases for most vegetation is

roughly where the matric potential ψ � � 1500 kPa (Marshall et al. 1996, 37–38). At loca-

tions where the matric potential is larger in magnitude than the permanent wilting point, the

only contribution to the total latent heat flux is from bare soil evaporation, assuming zero
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canopy water content. By separating only those sets of observations at Oklahoma Mesonet

sites where the soil has reached the permanent wilting point at the 5-cm level, the residual

of the surface energy balance becomes a good approximation to the direct evaporation from

bare soil.

Despite the purported accuracy of the empirical matric potential formula used previ-

ously (Eq. 3.2), this formula is insufficient for capturing the matric potential under very

dry soil conditions, since the minimum possible matric potential is ψ � � 852 � 2 kPa, well

above the permanent wilting point of most vegetation. A different matric potential formula,

ψ �
1
a

�
∆Tw � ∆Td

∆Tref � ∆Td
� 0 � 9

� 1 
 n � (6.24)

where the standard temperature differences for dry and saturated soil are ∆Td � 4 � 0°C and

∆Tw � 1 � 45°C, respectively, and a � � 0 � 01 kPa
� 1 and n � 0 � 77 are empirical coefficients

(Basara and Crawford 2000), yields a better response and is a more physical representation

of actual soil processes under very dry soil conditions. Figure 6.1 compares the response of

Eq. (3.2) with Eq. (6.24) for the entire spectrum of allowable normalized reference temper-

ature observations. Each formula responds similarly for intermediate normalized reference

temperatures, but Eq. (6.24) adjusts the matric potential such that moist soil is more moist

and dry soil is more dry compared with Eq. (3.2). The implication of the response of this

equation to very dry soil conditions is that it yields more physically realistic matric poten-

tial values and simplifies the identification of extremely dry periods.

Since the precision of the normalized reference temperature observations is 0.1°C, the

discrete matric potential value calculated from Eq. (6.24) that is nearest to the permanent

wilting point is just under ψ � � 1490 kPa. Therefore, a subset of the available Oklahoma

Mesonet observations containing matric potentials less than ψ � � 1490 kPa represents

extremely dry soil conditions where presumably transpiration has ceased and the latent

heat flux observations are equivalent to the direct soil evaporation. This subset of data

comprises more than 6300 sets of observations between May 2004 and June 2006 for use
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FIG. 6.1: Comparison of matric potential (kPa) obtained from Eq. (3.2) (gray) and Eq.
(6.24) (black) over the range of allowable normalized reference temperature observations
(°C) from the Oklahoma Mesonet. The arrow indicates the direction of increasing soil
moisture.

in determining a new direct soil evaporation parameterization.

A substantial portion of the data during dry periods falls outside the summertime 2004

satellite measurement window. However, under the assumption that transpiration ceases

when the magnitude of the matric potential exceeds the permanent wilting point, any vege-

tation coverage would not contribute to the total latent heat flux. The fractional vegetation

coverage therefore is set to zero regardless of the availability of satellite observations.

Following the procedure outlined in section 6.4.1, a locally weighted regression with

Edir as the predictand and a host of observable variables and selected transformations as

predictors leads to potentially useful variables in the final regression equation. From a

wide selection of possible observable or transformed variables, multiple passes through

a principal component analysis lead to a reduced pool of possible predictors for Edir. In

addition to the overarching goal of achieving the largest possible adjusted R2 value in the

cross-validation data, several other factors contribute to the decision to retain or eliminate

variables from the principal-component regression. Among these factors is the ease of
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implementation of the resulting flux equation in the Noah LSM. For example, matric po-

tential holds promise as a possible predictor for latent heat flux and relates directly to water

movement and plant-water uptake. Though several soil properties depend upon soil type,

observations of matric potential from the Oklahoma Mesonet are independent of soil type.

Including matric potential in the Noah LSM removes an exponential dependence upon

crude estimates of soil type and presumably improves the specification of water in the soil.

However, results from principal-component regression tests show that replacing volumetric

water content with matric potential does not generate enough improvement in Edir forecasts

to justify the difficulty of adding matric potential as a prognostic variable. Other factors

include the physical relevance of each variable to evaporative processes and the statistical

significance of each variable when included in a multiple linear regression. Additionally,

several combinations of variables possess strong mutual correlations and must not appear

together in the final regression equation. For example, the correlation coefficient between

the mixing ratio and the 2-m air temperature is 0.66. Correlations are also high between

incoming longwave radiation, the 2-m and 9-m air temperature, mixing ratio, saturation

mixing ratio, potential temperature, and the derivative of saturation mixing ratio with re-

spect to temperature because of the strong relationship between the air temperature and

atmospheric moisture content. The existence of such highly correlated variables justifies

the use of the principal-component approach in variable selection, even if the final regres-

sion equation retains all of the principal components.

The principal-component regression procedure yields a regression equation for direct

evaporation from bare soil assuming that no transpiring vegetation contributes to the total

latent heat flux. In practice, the fractional vegetation coverage scales the direct evaporation

from bare soil. Therefore, the final equation for direct evaporation from bare soil is

Edir ��� 22 � 33
�

0 � 0226 �Rg

�
1 � α ����� 3 
 2 � � Θ1 � Θw

Θref � Θw 	 f

� 3 � 426V
�

3650w � �
1 � σf � �

(6.25)

where Rg is the incoming solar radiation (W m
� 1), α is the albedo based on the Noah LSM
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land use category, Θ1 is the volumetric water content (m3 m
� 3 � at 5-cm depth, Θw is the

wilting point and Θref is the field capacity, both of which depend on the 5-cm soil texture

measured at each Oklahoma Mesonet site, f =1, V is the 10-m wind speed (m s
� 1), w is the

2-m mixing ratio (kg kg
� 1), and σf is the fractional vegetation coverage. As implemented

in the Noah LSM, Θ1 is the volumetric water content of the top soil layer, Θw and Θref

refer to the wilting point and field capacity of the relevant gridded soil type, and V and

w are the wind speed and mixing ratio at the lowest model level. The adjusted R2 for the

independent cross-validation data is 0.61, giving a correlation coefficient between forecasts

and observations of 0.78, and the residual standard error is 48.4 W m
� 2. By comparison,

the correlation coefficient between the same predictand and the direct soil evaporation from

the original Noah LSM formulation is 0.52.

As indicated by locally weighted regressions prior to the principal-component regres-

sion, each of the variables in Eq. (6.25) exhibits a quasi-linear relationship with the ob-

served latent heat flux during dry conditions. The second term on the right-hand side of Eq.

(6.25) materializes by recognizing that the available soil moisture tempers the evaporative

power of the sun. An excellent linear relationship with Edir in a locally weighted regres-

sion arises by multiplying the effective incoming solar radiation (incoming solar radiation

minus outgoing solar radiation) raised to the 3/2 power by the normalized soil moisture

availability term β from Eq. (6.7).

With the exception of the vegetation fraction term, each term in Eq. (6.25) represents a

single variable present in the principal component analysis. Since each component contains

a very strong signal from one of each of the three variables, the final regression equation

retains all three principal components. A multiple linear regression on these variables

produces the same regression equation, but the large correlations between the available

variables justifies using the principal-component regression approach both to ascertain the

significance of the mutual correlations and as a robust variable-selection method.

Compared with the existing direct soil evaporation parameterization in the Noah LSM,

the forecasts from the new empirical scheme more closely match the total latent heat flux
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FIG. 6.2: Direct soil evaporation from the original Noah LSM formulation (black) and
the empirical scheme (red) compared with the observed total latent heat flux under dry
soil conditions.

observations when the soil is dry enough to assume senescent vegetation, particularly for

increased direct soil evaporation (Fig. 6.2). When the soil contains sufficient moisture to

support canopy transpiration, the individual contribution to evaporation from bare soil in

the Noah LSM certainly should not exceed the observed total latent heat flux. Regardless

of soil conditions, the new empirical scheme improves upon the original Noah LSM direct

soil evaporation formulation when applied to all available sets of observations during the

period 15 April–15 September 2004 by reducing substantially the frequency of unrealistic

Edir values that exceed the observed total latent heat flux.
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6.4.4 Canopy transpiration

With a proper parameterization for the direct evaporation from bare soil in place, a sim-

ilar principal-component regression procedure leads to a new empirical canopy transpira-

tion scheme. The training and independent cross-validation data include fractional vegeta-

tion coverage and leaf area index observations spanning the period 15 April–15 September

2004. The canopy transpiration term defined by

Et �
Eobs � Edir

σf
(6.26)

is the predictor in the multiple regression, where Eobs is the observed total latent heat flux

and Edir is the empirical direct soil evaporation term from Eq. (6.25) that already includes

the vegetation fraction weighting.

Observed variables and those transformed based on physically plausible relationships

and locally estimated regressions compose a diverse set of possible forecast variables. As

with the direct soil evaporation parameterization, a principal component analysis combined

with physical, statistical, and practical considerations leads to the final regression equation

for canopy transpiration,

Et � � � 1392
�

0 � 9154 � Rg
�
1 � α � � �

Θ3 � Θw

Θref � Θw 	 f 
 2 � �
�

4 � 374Tair
�

60 � 59 � w

ws
�
Tair �

� � σf
�

6 � 116LAI � (6.27)

where Θ3 is the volumetric water content (m3 m
� 3) at 60-cm depth, Tair is the 9-m air

temperature (K), ws

�
Tair � is the saturation mixing ratio at the 9-m air temperature (kg kg

� 1),

LAI is the leaf area index, and the remaining terms are the same as those defined for Eq.

(6.25). The Θw and Θref terms correspond with the measured soil textures at a depth of

60 cm at each Oklahoma Mesonet site. Observations from locations where measured soil

textures are unavailable at this depth do not contribute to the training or independent cross-
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FIG. 6.3: Forecasts of total latent heat flux for 9239 forecast-observation pairs by the
original Noah LSM formulation (black) and the new empirical direct soil evaporation
and canopy transpiration schemes (red) compared with the observed total latent heat flux
for the period 15 April–15 September 2004.

validation data. As implemented in the model, Θ3 is the volumetric water content of the

third soil layer and Tair, w, and ws are the air temperature, mixing ratio, and saturation

mixing ratio at the lowest model level. A large correlation for each variable corresponds

with one of each of the four principal components. Therefore, the final regression equation

again retains the contribution from all four principal components.

Each term in Eq. (6.27) represents a single variable in the principal component analysis.

The leaf area index term arises by including LAI � σf as a variable. The first term describes

how the root-zone soil moisture availability scales the evaporative power of the sun. This is

by far the dominant term in the regression equation and its inclusion supports the results of

an observational study showing a strong linear relationship between root-zone soil moisture
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and both sensible and latent heat fluxes (Basara and Crawford 2002). The remaining air

temperature, relative humidity, and leaf area index terms in the regression equation are less

significant and may serve as tunable parameters for different locations. For this reason, the

final regression equation retains these terms. Note, however, that Eq. (6.27) includes the

effects of solar radiation, leaf area index, fractional vegetation coverage, vapor pressure

deficit, air temperature, and soil moisture just as in the theoretical parameterization (i.e.,

Jacquemin and Noilhan 1990; Chen and Dudhia 2001) that appears in the original Noah

LSM.

The adjusted R2 for the independent cross-validation data is 0.72 and the residual stan-

dard error is 98.32 W m
� 2, but recall that these numbers refer to the predictand from Eq.

(6.26) and neglect the scaling by the fractional vegetation coverage. Using only the in-

dependent cross-validation data and summing the Et forecasts from Eq. (6.27) with the

Edir forecasts from Eq. (6.25) to arrive at the total latent heat flux forecast, the correlation

coefficient between the forecast and observed total latent heat flux is 0.94 with a residual

standard error of 45.5 W m
� 2. In contrast, the correlation coefficient between the origi-

nal total latent heat flux forecasts from the Noah LSM and the observed latent heat flux

for the same pool of observations is 0.83 with a residual standard error of 83.8 W m
� 2.

Combined into a single total latent heat flux term, the empirical direct soil evaporation and

canopy transpiration parameterizations vastly improve the latent heat flux forecasts by the

Noah LSM when driven by observations (Fig. 6.3). The original parameterization tends to

overestimate latent heat fluxes, while the new parameterization corrects for this problem

without introducing a negative bias.

6.5 Closure of the surface energy budget

As discussed in section 5.5.4, the Noah LSM adequately captures the sum of the latent

and sensible heat fluxes when compared with observations, but fails to properly partition

each. With a new parameterization for latent heat flux, the surface energy budget changes.
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To force closure of the surface energy budget in the Noah LSM, one method calculates

the sensible heat flux from the residual of the surface energy balance within the model. A

second approach does not force closure of the surface energy budget and instead calculates

the sensible heat flux from the original formula (Eq. 6.13). Tests using coupled MM5

simulations that implement the empirical direct soil evaporation and canopy transpiration

schemes show that closing the surface energy budget does not significantly improve or

degrade surface energy flux forecasts. Thus, the Noah LSM calculates each component of

the surface energy balance individually as in the original model formulation.
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Chapter 7

Results

Several MM5 simulations initialized with satellite-derived vegetation indexes and soil

temperature and moisture observations from the Oklahoma Mesonet test the effectiveness

of the new latent heat flux parameterizations for the direct evaporation from bare soil and

the canopy transpiration. Each model simulation also allows contributions to the total latent

heat flux from the original formula for wet canopy evaporation. When placed within the

coupled MM5 model, the new latent heat flux parameterizations perform quite well for the

same four spring and summer 2004 case studies introduced in section 5.5.1. While daytime

latent heat flux forecasts improve compared with CTRL and MM5VEGSOIL forecasts,

nighttime fluxes may exceed observations by nearly 50 W m
� 2, especially shortly after

sunset. Limiting the selection of predictor variables to those sets of observations measured

when the incoming solar radiation exceeds 10 W m
� 2 in the principal-component regres-

sion constrains the resulting empirical formula. To overcome this limitation, when modeled

downward shortwave radiation falls below 10 W m
� 2, the latent heat flux parameterization

reverts to the original canopy resistance approach.

Latent heat flux forecasts from simulations implementing the new empirical latent heat

flux scheme and initialized with both satellite-derived vegetation indexes and soil temper-

ature and moisture observations (MM5LATENT) show vast improvement over both the

CTRL and MM5VEGSOIL simulations when compared with observations at Norman, Ok-
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FIG. 7.1: Latent heat flux (W m
� 2) at Norman, Oklahoma for CTRL (black), MM5VEG-

SOIL (red), and MM5LATENT (blue) domain four simulations initialized at 1200 UTC
on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared with the residual
of the surface energy balance computed from Oklahoma Mesonet observations (dashed).

lahoma (Fig. 7.1). In most cases, the model no longer severely underestimates daytime la-

tent heat fluxes as in each of the other four MM5 simulations that use the original latent heat

flux formulae with differing initial land surface and soil conditions. The MM5LATENT

simulations consistently produce latent heat flux forecasts with domain-wide biases, root-

mean squared errors, and mean absolute errors that are lower than or comparable to the

error measures for the other forecasts.

With reasonable latent heat flux forecasts, the previously overestimated sensible heat

flux forecasts more closely resemble the observations (Fig. 7.2), though in each case, the

model still tends to underestimate the magnitude of the observed downward sensible heat

flux at night. MM5LATENT ground heat flux forecasts show little to no overall improve-

ment over CTRL forecasts. Whether the model overestimates or underestimates the ground
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FIG. 7.2: Sensible heat flux (W m
� 2) at Norman, Oklahoma for CTRL (black), MM5-

VEGSOIL (red), and MM5LATENT (blue) domain four simulations initialized at 1200
UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared with
Oklahoma Mesonet observations (dashed).

heat flux during the day varies by location, but the model typically overestimates the mag-

nitude of the ground heat flux at night. Tests show that reducing the soil heat capacity in

the MM5LATENT forecasts has a negligible effect on all forecast fields, so factors other

than soil heat capacity errors are likely responsible for the poor ground heat flux estimates.

The remaining errors in the partitioning between latent, sensible, and ground heat flux re-

sult in errors in the air temperature forecasts. While the empirical latent heat flux scheme

improves the accuracy of temperature forecasts during the early morning, cumulative er-

rors in the surface energy balance likely cause the air temperature to decrease too early in

the diurnal cycle (Fig. 7.3). This problem appears in all forecast types. As discussed in

section 5.5.4, the sharp drop in 2-m air temperature near sunset is a consequence of the ex-

trapolation errors during planetary boundary layer regime transitions and not from surface
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FIG. 7.3: 2-m air temperature (K) at Norman, Oklahoma for CTRL (black), MM5VEG-
SOIL (red), and MM5LATENT (blue) domain four simulations initialized at 1200 UTC
on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared with Oklahoma
Mesonet observations (dashed).

energy flux errors.

As expected, mixing ratio forecasts improve with better latent heat flux forecasts. For

these four case studies, MM5 consistently underestimates the 2-m mixing ratio, regardless

of the latent heat flux parameterization or initial conditions. However, with the exception

of the unrealistic spike in mixing ratio values during planetary boundary layer regime tran-

sitions, mixing ratio forecast errors decrease for the MM5LATENT simulations compared

with all of the other simulations (Fig. 7.4).

Comparisons between the model and observations across the main body of Oklahoma

show similar results. However, observations from the Oklahoma Mesonet in 2004 serve

as the training data for the empirical latent heat flux parameterization in the Noah LSM.

Two locations outside this region provide further evidence of the ability of the new la-
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FIG. 7.4: 2-m mixing ratio (g kg
� 1) at Norman, Oklahoma for CTRL (black), MM5-

VEGSOIL (red), and MM5LATENT (blue) domain four simulations initialized at 1200
UTC on a) 3 May, b) 20 July, c) 1 August, and d) 3 September 2004 compared with
Oklahoma Mesonet observations (dashed).

tent heat flux scheme to more accurately predict latent heat fluxes in short-term forecasts.

Maintained by the United States Department of Agriculture (USDA) Agricultural Research

Service (ARS) National Soil Tilth Laboratory (NSTL), these sites directly measure the

four components of the surface energy balance using two meteorological-flux towers near

Ames, Iowa. One tower stands over a soybean field and the other tower resides over a

corn field. Roughly 2 m above the vegetation canopy at each location, Campbell Scientific

CSAT3 sonic anemometers equipped with Campbell Scientific KH20 krypton hygrometers

directly measure the sensible and latent heat flux using the eddy covariance method. REBS

net radiometers measure the net radiation and REBS soil heat flow transducers measure

the conductive ground heat flux at a depth of 6 cm with soil temperature probes buried at

2 and 4 cm to estimate the storage ground heat flux. Details of the instrumentation and
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FIG. 7.5: Latent heat flux (W m
� 2) near Ames, Iowa for CTRL (black) and MM5LA-

TENT (gray) simulations initialized at 1200 UTC on a) 20 July, b) 1 August, and c)
3 September 2004 compared with observations of latent heat flux over a soybean field
(dotted) and over a corn field (dashed).

site characteristics appear in Kustas et al. (2005). Data for the corn and soybean sites are

available for the 20 July, 1 August, and 3 September 2004 case studies.

Since soil temperature and moisture observations are only available from the Oklahoma

Mesonet, special initial conditions in the MM5LATENT forecasts only include satellite-

derived vegetation indexes. As with the CTRL forecasts, the remaining initial conditions

derive from Eta analyses. Despite lacking accurate initial soil temperature and moisture

conditions, the 20 July and 3 August 2004 MM5LATENT simulations perform remarkably

well compared with the latent heat fluxes measured over both corn and soybeans and reduce

errors in the CTRL forecast by as much as 100 W m
� 2 (Fig. 7.5). For these three cases,

the forecasts in the CTRL simulation overestimate rather than underestimate the observed

latent heat flux as in Oklahoma, perhaps due to cloud cover, but the new empirical latent
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heat flux scheme still realistically captures the total evapotranspiration at these sites. Since

the gridded model results are interpolated to each flux site from a 9-km grid, the modeled

fluxes over the nearly collocated corn and soybean fields are nearly identical. That fluxes

measured simultaneously over the corn and soybean fields may differ by more than 100

W m
� 2 highlights the variability of surface fluxes over small spatial scales as well as the

difficulty of comparing gridded model output with point measurements of atmospheric

fluxes. The MM5LATENT forecast underestimates the observed latent heat fluxes at each

Iowa site in the forecast initialized on 3 September 2004. The corn and soybeans were

not harvested until 24 and 29 September, respectively, but irrigation practices near the

time of harvest could increase the available soil moisture over the fields. This increase

would not appear in the soil moisture initialization from the Eta model. Additionally, the

satellite-derived fractional vegetation coverage averaged over a 9 km � 9 km forecast grid

includes vegetation conditions typical for early September in Iowa and may not represent

the relatively small region of photosynthetically active corn and soybean fields.

109



Chapter 8

Conclusions

While recent advances in numerical weather prediction models have led to improved

short-term forecasts, land surface models still inaccurately portray near-surface conditions

such as air temperature, mixing ratio, soil temperature and moisture, and surface energy

fluxes. Assessing and reducing these model errors remains a difficult task because of both

the wide variety of errors within the model and the lack of sufficient data for an accu-

rate specification of the land surface. As others have suggested (e.g., Matsui et al. 2005),

calibration of transpiration schemes within land surface models requires reliable soil and

vegetation data. The availability of Oklahoma Mesonet observations of soil temperature

and moisture, as well as vegetation conditions based on satellite observations, provides a

unique opportunity to begin the process of improving land surface model parameterizations

by initializing the model with the best possible characterization of the land surface. Indeed,

for the case studies discussed here, soil moisture and vegetation conditions strongly impact

model forecasts.

When observations replace climatological vegetation conditions, MM5 and its compan-

ion Noah LSM in their current state produce degraded surface energy flux forecasts when

compared with control forecasts and corresponding surface observations. In one case, the

peak in the diurnal cycle of latent heat flux is more than 135 W m
� 2 lower than the control

forecast, which is another 130 W m
� 2 below the observed latent heat flux. Including only
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soil temperature and moisture in the model initial conditions can improve sensible and la-

tent heat flux estimates by as much as 95 W m
� 2 over control forecasts when compared with

observations. Both the MM5SOIL and MM5VEG simulations show that a realistic speci-

fication of land surface variables clearly affects forecast accuracy substantially. However,

the problems apparent in the simulations initialized with vegetation observations offset the

improvements from the initial soil specification. Despite providing the Noah LSM with

the best possible initial conditions, the model forecasts still fail to capture realistically the

surface energy fluxes that drive the evolution of the planetary boundary layer. For the cases

described in this study, the difference between the observed and MM5VEGSOIL latent heat

fluxes may exceed 150 W m
� 2 and sensible heat flux errors may exceed 110 W m

� 2 in a

48-hour forecast period. This leads to temperature errors in excess of 2°C and mixing ratio

errors that exceed 3 g kg
� 1. That the MM5SOIL initial conditions lead to more accurate

forecasts than the MM5VEGSOIL initial conditions indicates that there are problems with

the physical parameterizations within the Noah LSM.

These results emphasize the significance of minimizing errors in surface initial condi-

tions, while illustrating the profound difficulty in evaluating individual model components

when all of the schemes are interdependent. Because the model physics determine the

partitioning of the surface energy budget, forecast improvements for simulations with ex-

cellent soil and vegetation initial conditions require a careful calibration of many of these

interdependent parameterization schemes within the Noah LSM. A new empirical param-

eterization determined from a wealth of unique surface, soil, and vegetation observations

dramatically improves the physical representation of latent heat flux in the Noah LSM. Ap-

plying a completely new approach, this scheme replaces the usual theoretical formulations

that appear in several numerical weather prediction models. For one case study, the error

for the maximum daily latent heat flux falls from close to 150 W m
� 2 for the MM5VEG-

SOIL simulation to approximately 12 W m
� 2 using the new empirical parameterization for

latent heat flux starting with the same set of initial conditions.

Despite the dramatic improvement in latent heat flux forecasts using this empirical pa-
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rameterization, nighttime latent heat fluxes require yet another approach. Here, the Noah

LSM reverts to the old canopy resistance formula for determining latent heat flux at night.

A different empirical parameterization based on nighttime surface energy flux observations

could replace the canopy resistance approach altogether.

Model simulations that combine the improved latent heat flux parameterization with the

best possible characterization of the land surface show improvements in daily maximum air

temperature and mixing ratio forecasts of greater than 4°C and 2 g kg
� 1 over control sim-

ulations with the same initial conditions and model formulations present in the operational

version of the Noah LSM. The dominant term both in the direct evaporation from bare soil

and in the transpiration equations in the empirical latent heat flux parameterization requires

a measure of soil moisture. Including soil moisture alone in model initializations therefore

has the potential to improve maximum daily air temperature forecasts by 2–4°C. This un-

derscores the importance of deploying a widespread soil moisture monitoring network that,

when combined with real-time satellite-derived vegetation indexes and incorporated into

high-spatiotemporal resolution numerical weather prediction models, will improve short-

term near-surface air temperature and moisture forecasts. To further maximize the accuracy

of initial surface conditions, this soil monitoring network should measure soil conditions

at multiple levels from shallow depths down through the root zone. At the very least, the

new empirical latent heat flux scheme requires two soil moisture measurements at shallow

and root-zone soil depths. Observations at a minimum of five soil depths would match the

levels of the existing Noah LSM and would provide enhanced accuracy for ground heat

flux and subsurface runoff calculations. To improve the vegetation specification, a reduced

time window for calculating maximum NDVI composites spanning fewer than 14 days

and a moving time window ending within 24 hours of the model initialization time would

produce more representative initial σf and LAI values.

Unfortunately, problems remain in the predicted sensible and ground heat fluxes that

are needed for a realistic representation of the surface energy balance and more accurate

air temperature and moisture forecasts. With the new latent heat flux parameterization, the

112



Noah LSM underestimates the magnitude of ground heat fluxes by up to 70 W m
� 2 and

consistently performs more poorly than even control forecasts when compared with obser-

vations. In many locations for each of the case studies, inadequate sensible and ground

heat fluxes indicate persistent problems in the Noah LSM physics. Several possible expla-

nations for this problem, if addressed, could allow for continued improvements to model

forecasts. For example, the five soil layers currently in the Noah LSM may fall short of the

number of soil levels required to accurately represent soil processes. In particular, rapid

soil-surface drying under certain conditions affects surface air temperatures and sensible

heat fluxes, but soil models require many layers near the surface with depths on the order

of a few centimeters in order to capture the phenomenon (Santanello and Carlson 2001).

With more detailed observations, including soil temperature and moisture at more fre-

quent and deeper soil depths, particularly in the root zone, and direct observations of latent

heat flux, an even more robust parameterization for latent heat flux could emerge. However,

the new empirical scheme improves midday latent heat flux forecasts by nearly 100 W m
� 2

for some cases in a location far from the region where the training data were collected,

even with no soil data to initialize the forecast model. This likely follows from the wide

range of observations in the predictor data for the multiple linear regression. The obser-

vations from Oklahoma comprise 9-m air temperatures ranging from -10.9°C to 37.7°C,

relative humidities ranging from 4% to 99%, 10-m wind speeds up to 20.3 m s
� 1, mixing

ratios between 0.7 and 23.6 g kg
� 1, 5-cm soil volumetric water contents ranging from 0.19

to 0.42 m3 m
� 3, and 60-cm soil volumetric water contents ranging from 0.20 to 0.38 m3

m
� 3. This large span of temperature, moisture, wind, and soil conditions further indicates

the applicability of the new latent heat flux parameterization to new locations across the

continental United States, Canada, and Mexico. However, the behavior of the new scheme

remains unclear during precipitation and when the ground lies under snow cover.

This research suggests that the scientists at NCEP should consider the following issues

with regard to the future development of operational forecast models. Continued improve-

ment of the characterization of the land surface would allow further upgrades to the Noah
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LSM thermodynamics and soil hydrology parameterizations and would produce even more

accurate forecasts of near-surface atmospheric and soil variables. Inclusion of soil temper-

ature and moisture observations in the NAM data assimilation system should be a primary

focus, with a secondary emphasis upon daily updates of fractional vegetation coverage and

leaf area index at a high spatiotemporal resolution that matches the grid resolution of the

forecast model. This would require deployment of a large-scale soil monitoring network.

Increasing the number of model soil layers and implementing the empirical latent heat flux

scheme developed during this study would also lead to operational forecast model improve-

ments.

Improving short-term forecasts of surface energy fluxes, which directly affects more

tangible temperature and moisture variables, has many implications for agriculture, min-

ing, transportation, finance, insurance, real estate, and other industrial operations. One

subjective estimate of the impact of weather on sensitive industries indicates that nearly

40% of the United States gross domestic product is sensitive to weather and climate (Dut-

ton 2002). While other studies calculate a substantially smaller impact on the economy

(e.g., Lazo 2007), these forecasts are undoubtedly extremely important. In addition, im-

proved surface energy flux forecasts may also influence the results of long-range climate

models. Since land surface characteristics such as soil moisture influence surface weather

over long time scales, and climate models typically employ the same land-surface physics

as the Noah LSM, short-term forecast improvements will ultimately enhance seasonal and

long-term climate predictions.
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