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CHPATERONE

INTRODUCTION

\ . Ii Ih

Indexing of multi-dimensional data has been the focus of a considerable amount of

research effort over many years but no generally agreed paradigm has emerged to

compare with the impact of B-trees, for example, on the indexing of one-dimensional

data. Gaede and Gunther [GG98] gave an extensive review of multi-dimensional access

methods. At the same time, the need for efficient multi-dimensional indexing methods is

ever more important in an environment where databases become larger and more

complex in their structures and aspirations for extracting valuable information become

more sophisticated.

Mapping multi-dimensional data to one dimension, enabling simple and well­

understood one-dimensional access methods to be exploited, has been suggested as a

solution in the literature by FaLoutsos [FaI8o][FS89]. One way of implementing such a

mapping is to utilize space-filling curves. For a historical account of classical space­

fining curves, we could refer to Sagan's book [Sag94].

A space-fining curve is a linear traversal of a discrete finite multi-dimensional space,

thus it passes through every point in a space once so giving a one-to-one correspondence

between the coordinates of the points and the one-dimensional sequence numbers of the

curve. Space-fining curves were a topic of interest for mathematicians in the late 19th
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century. The first graphical representation of space-filh 19 curve W.1S giv.::n by Hilbert

[Hi1l891].

Several mapping functions have been proposed in the titer~lurc_ One based on

interleaving bits from the coordinates, which is called Z-ordering, was proposed by

Orenstein [Ore86). Its modification was suggested lly Faloutsos [FaI8()~ using Gray

coding on the interleaved bits. A third mapping method, based on Hilbert space-filling

curve. In a mathematical context, these three mapping functions are based on different

space-filling curves: Z-curves, the Gray-coded curves and the Hilbert curves. Figure I

illustrates the linear ordering yielded by the space-filling curves for a 4x4 grid. More

information on the will be presented in the next chapter.
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(a) (b)

(c)

Figure 1. Illustration of two-dimensional second order space-filling
curves: (a) Z-curve, (b) the Gray-coded curve, (c) the Hilbert curve.
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CHPATERTWO

SPACE-FILLING CURVES

For positive N, denote {1;",N} by (N]. A discrete m-dimensional space-filling

curve of length N n is a bijective mapping C : [Nil] ~ N n
, thus providing a linear traversal

ordering of the grid points in [N'l]. An m-dimensional grid is said to be or order k if it has

size N = 2
k

; a space-filling curve has order k if its codomain is a grid of order k. The

generation of a sequence of multi-dimensional space-filling curves usually follows a

recurSIve process.

Although it was G. Peano who discovered the first space-filling curve, it was

Hilbert who made this phenomenon of surface-filling curves luminous to the geometric..
imagination. Hilbert in 1891, first recognized a general geometric procedure that allows

the construction of an entire class of space-filling curves [Hi1l891]. Thereupon he

proceeded to promulgate the following heuristic principle: If the interval I can be mapped

continuousJy onto the square S, then after dividing I into four congruent subintervals and

S into four congruent subsquares, each subinterval can be mapped continuously onto one

of the subsquares. Next, each subintervals is, in tum, partitioned into fOUT congruent

subintervals and each subsquare into four congruent subsquares, and the process is

repeated. If this is carried on infinitely, I and S are partitioned into 2
2n congruent replicas

for n = 1,2,3, ... , oq Hilbert proved that the subsquares can be arranged so that adjacent

subintervals correspond to adjacent subsquares with an edge in common, and so that the

inclusion relationships are preserved, that is, if a square corresponds to an interval, then
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its subsquares correspond to the subintervals of the interval. Figure 2 illustrates how the

process is to be actualized for the first three steps. The generalization of a three-

dimensional Hilbert curve was described in [Jag90][Sag93]. A generalization of the

Hilbert curve, in an analytic form, for higher-dimensional space was given in [But69].

Sagan [Sag94] gave the definition of the Hilbert curve as follows: Every tEl is

uniquely determined by a sequence of nested closed intervals (that ~are generated by out

successive partitioning), the lengths of which shrink to O. With this sequence corresponds

a unique sequence of nested closed squares, the diagonals of which shrink into a point,

and which define a unique point in the square S.

Z-curve is based on Z-ordering, proposed by Orenstein [Ore86], which is based

on interleaving bits from the coordinates. For am-dimensional Z-curve has order k, grid

•. k S . b' d h l:. 11' . k -I k -2 lOtsIze IS N = 2 '. a m mary co e, we use te .10 owmg notation C I C I .. .c IC / a

represent the Ith coordinate, where 1~ 1 ~ m and each small c is 0 or 1. Then the index is

constructed from interleaving bits from the coordinates

In the Gray-coded curve, the index is generated from applying Gray coding on the

index under Z-ordering. There is one simple way to implement Gray coding is

performing XOR between the original index and its one-bit-right-shifted version.

Here in thesis, we will focus on these three families of space-filling curves and try

to do some work on the locality properties which we will discuss in the next chapter.
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Figure 2. The first three steps of the two-dimensional Hilbert space-filling curve:
(a) first step, (b) second step, (c) third step.
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CHAPTER THREE

LOCALITY OF SPACE-,FILLINGCURVES:

SURVEY AND RELATED WORK

tuJ .)1

. ·HI! \ . \'

Space-filling curves are useful in applications where a traversal (scan) of a multi­

dimensional grid is needed. Some algorithms perfonn ,local oomputations on

neighborhoods, or exploit spatial correlation present in data, so the preservation of

"locality" is required. By "locality", we mean that the traversal reflects proximity

between the points of [NY''', that is, points close in [NY" are also close in the traversal

order, and vice versa.

The locality-preserving properties of space-filling curves arc used for efficient

algorithms in various fi.elds of computation (for examples, data organization in multi­

dimensional or geographic databases, data compression, image manipulation and

compression, computational geometry problems, and parallel computation). In Moon et

at.' s work [MSFO1], they listed several categories in which applications benefit from

linear mapping that preserves locality and also some related references were given out.

Clustering, one of the most desired locality properties, means the locality between

points in multi-dimensional space is also kept in the linear space. A cluster is a set of grid

points that are consecutively connected by a mapping curve. In tenns of multi­

dimensional database indexing, all the points within the query range that have

consecutive indices win be considered as a cluster.

Under linear mapping, each grid point in multi-dimensional space is given a new

index in one-dimensional coordinate system. It is shown that under most situations, the

linear mapping based on Hilbert space-filling curves perform better than the others in

7



preserving locality [Jag90nMJFOl]. Much work on empirical and analytical studies of

clustering effect of the space-filling curves have been reported in the literature (see

[Jag90], [Jag97], [RF91], and [MJFOI] for details.)

Jagadish [Jag90] compared the clustering properties of several space-filling curves by

considering 2x2 range queries. Rong and Faloutsos [RF91] derived a closed-fonn

expression of the average number of the clusters for Z-curves. Jagadish [Jag97] derived

closed-fonn expressions of the average number of clusters for the Hilbert curves in a two­

dimensional grid, but only for 2x2 and 3x3 query regions.

Results are generalized in [MJFOl]. Moon et al. analyzed the clustering property of

Hilbert space-filling curves by:

(l) Giving an asymptotic formula for the clustering property of Hilbert space-filling

curves for general polyhedra in a multi-dimensional space.

(2) Derive a closed-form, exact fonnula of the number of clusters within query region

of size 2k x 21< in a two-dimensional grid space of order n.

Both the asymptotic solution for the general case and the exact solution for a special

case generalize previous work in pag90]. They agreed with the empirical results that the

number of clusters depends on the hyper-surface area of the query region and not its

hyper-volume. This works shows that the Hilbert curves achieve better clustering than Z-

curves and the Gray-coded curves.

Although the Hilbert curves are superior to Z-curves and also the Gray-coded curves

on clustering properties, however clustering is only one of the metric of locality­

preserving properties. Besides the clustering measure, there are a few locality measure

have been proposed and analyzed for space-fining curves in the literature. Denote by d,

8
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dj , and d"", the Euclidean, taxi-cab, and maximum metrics, respectively. Let (! denote a

family of m-dimensional curves ofsuccessive orders.

For quantifying the proximity preservation of close-by points in the m-dimensional

space [n]m, [PKK.92] employ an average Locality measure:

'"' li-jl
LpKK(C)= LJ ..

i ,jerl/'" IIi <j d (C (1 ),C (j» for C E (!

Mitchison and Durbin [MD86] use a more restrictive locality measure parameterized

byq:

LMD,q(C)= L li-jlq
i ,j ern'" land d (C (i ).C (j »=1

to study optimal 2-dimensional mappings for q E [0, I].

for C E (!

For measuring the proximity preservation of close-by points in the indexing space

[nnl], Gotsman and Lindenbaum [GL96] consider the following measures:

. d(C(i),C(j»'"
LcL,rnin(C)= mIll .. ,and

i,je[II"'lli<j 11-./1

d (C (i ),C (j »/11
LCL,rnax (C) = max I" I for C E (!

i,je[l/"' Ili<j 1 -.J

They show that for arbitrary m-dimensional curve C,

LOl, mineC) = O(n J-m), and

L (c»(zm -l)(l-!Y'
GL.max n

For the m-dimensional Hilbert curve family {H;' Ik = 1,2, ... }, they prove thait

In

LGL,max (H;' ) .::; 2m (m + 3) 2 •

For the two-dimensional Hilbert curve family, they obtain tight bounds:

9
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Furthermore Dai et a1. [DS02] present an analytical study of the locality properties of

the m-dimensional k-order discrete Hilbert and Z-curve families, (H;' Ik = 1,2, ... }, and
1

{Z ~n I k = 1,2,... }, respectively, based on the following locality measure Ls that

cumulates all the index-differences between point-pairs at a common. taxi-cab distance {},

which is similar to LMD.J conditional on a taxi-cab distance of 0 between points in [nt.

Lo(C)= L li-jl
i,jE[II'" Jli<jand d ,(C(i).C(j»=O

They derived the exact formulas for Ls(H;' ) and Ls(Z ;J) for In = 2 and arbitrary 0

that is an integral power of 2, and m = 3 and (j = 1. The results yield a constant

L/}(H;' )
asymptotic ratio limk .....", III ) > 1, which suggests that the Z-curves perform better

Lo(Z k

than the Hilbert curves.

Besides the clustering properties, we will have interest in other locality properties,

such as inter-cluster distance, query indexing range, and index-difference we've

mentioned above. By inter-cluster distance, we mean the index space between two

neighboring clusters. Query indexing-range means the index range the region query

covers. We find the largest index and smallest index inside the query region, then subtract

these two indices, and the result is the query indexing range. Inter-duster and query

indexing range will be both collected via region queries. While index-difference can be

got through point queries. In chapter 4, we win present the simulation results and

analyses of all these locality properties. We will also apply different query shapes on

10
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low-dimensional grid spaces. Our empirical study attempts to find out how these three

families of space-filling curves will behave, together with plausible explanations.

Space-filling curves are attractive to many image-space algorithms that are based on

the spatial coherence of nearby pixels. The resulting sequence of pixels is processed as

required by the particular application. For instance, the sequence may be compressed

using lossless or lossy compression, it may be processed for haIftoning, analysis, pattern

recognition or texture analysis, and it may be converted into an analog form and be

transmitted through channels with limited bandwidth. To obtain the image after

processing, the pixel-sequence is placed back in a frame along the same space-filling

curve. In the above applications and others, it is important that the intraframe correlation

in the image translates to a favorable auto-correlation per) within the pixel-sequence in

which per) = E(f(x)f(x+r)), E means the expectation over pixel index x, r is the distance

between two pixels and f(x) is the function of scanned image (f(x) is of value 0 for white

pixel and 1 for black pixel in binary images).

As an example of application of space-filling curves on image processing, we will

make comparisons between the one-dimensional representation of images that are

scanned along the three families of space-filling curves. This will be presented in chapter

5.

11
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CHPATER FOUR

SIMULATIONS AND ANALYSES

To obtain the average inter-cluster distance, it is required that we compute the mean

inter-cluster distance within a query region at all possible positions in a given grid space.

Exhaustive simulation runs allow us to approach the exact result of the average inter­

cluster distance versus the side length of the query region. For circular query and

spherical query, side length refers the radius. In ad-dimensional N x N x ... x N grid

space, the total number of distinct positions of ad-dimensional k x k x ... x k hyper-cubic

query is (N - k + l)d . For query shapes, we consider squares, rectangles, and circles for

two-dimensional cases. Here we chose the two sides of the rectangle to 0.5 and 1.5 of the

side length. Cubes, hyper-rectangles, and spheres are query shapes for three-dimensional

cases. We chose the three sides of the hyper-rectangle to be 0.5, 1.667, and I of the side

length.

To obtain the relationship between the Euclidean metric for one-dimensional space

and taxi/cab (Manhattan) metric for multi-dimensional space, it is necessary that we

average index-differences for all possible point-pair queries with a given taxi/cab

distance. Such exhaustive simulation runs allow us to approach the exact result of the

average index-difference versus taxi/cab distance.

In a two-dimensional N x N grid space, the total number of distinct positions ofpoint­

pair queries with taxi distance (, is approximately (N - (j + Il(5 + J). In a three­

dimensional N x N x N grid space, the total number of distinct positions of point-pair

12



queries with taxi distance 0 is approximately (N - 0 + 1i (0 + 1) (0 + 2)12. In a -d­

dimensional N x N x ... x N grid space, the total number of distinct positions of a d­

dimensional point-pair query is approximate~y (N - k + l)d 0 d-lI(d-l)!.

Consequently, for a large grid space and a high dimensionality, each simulation run

may require processing an excessively large number of queries, which in tum makes the

simulation time-consuming. Thus, for large grid spaces, we carried out statistical

simulations by random sampling of queries. For small grid spaces, we perfonned

exhaustive simulations. Simulations are performed on two-dimensional and three­

dimensional grid spaces.

The first set of experiments was carried out in two-dimensional grid spaces with size

27x27 and 215xi 5
• For 27x27 grid, we perfonned exhaustive simulations, and for 215xi 5

grid we carried out sampling simulations. The second set of experiments was carried out

in three-dimensional grid spaces with size 26x26x26 and 2 lOxioxio. For 26x26x26 grid,

we perfonned exhaustive simulations, and for 210xiox2 1O grid we carried out sampling

simulations.

Results and Analyses on Average Number of Clusters

Figures 4-1 to 4-4 present the average number of clusters for square, rectangular, and

circular queries on two-dimensionaI grid spaces, and cubic, hyper-rectangular, and

spherical queries on three-dimensional grid spaces.

The results of average number of clusters comply with those of Moon et a1.'s work

[MJFOI). The Hilbert curves perform the best on the clustering properties under aU

dimensionality and query shapes considered. In two-dimensional grid spaces, for square

queries and rectangular queries, Z-curves and the Gray-coded curves perform almost the

13



same; for circular queries, Z-curves achieve better clustering properties than the Gray­

coded curves. In three-dimensional grid spaces, the Gray-coded curves outperfonn Z­

curves for all query shapes.

The average number of clusters depends on the hyper-surface area of the query region

[MHFOl]. For the two-dimensional case, the average number of clusters is a linear

function ofthe side length, for the three-dimensional case, it is a quadratic function of the

side length. The Hilbert curves is superior to the other two space-filling curves on the

clustering properties.

14
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Average number of clusters (Grid: lx27
)
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Figure 4-1. Average number of clusters for two-dimensional queries
(exhaustive simulation on 27x27 grid): (a) square queries, (b) circular
queries, and (c) rectangular queries.
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Average number of clusters (Grid: iSxis)
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Figure 4-2. Average number of clusters for two-dimensional quenes
(sampling simulation on z15 x215 grid): (a) square queries, (b) circular
queries, and (c) rectangular queries.
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Average number of clusters (Grid: 1x 26x 2
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Figure 4-3. Average number of clusters for three-dimensiunal queries
(exhaustive simulation on 26x26x26 grid): (a) cubic queries, (b) spherical
queries, and (c) hyper-rectangular queries.
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Average number of clusters (Grid: iOxiox210)
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Average number of clusters (Grid: iOxiox2ul)
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Figure 4-4. Average number of clusters for three-dimensional queries
(sampling simulation on 210xiox2 1O grid): (a) cubic queries, (b) spherical
queries, and (c) hyper-rectangular queries.
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Results and Analyses on Que'ry Indexing Range

We also collect the average query indexing range during the simulation, which means

the difference between the indices of the two grid points with the. smallest index and the

largest index inside a query region. Figures 4-5 to 4-8 present the average query indexing

ranges for square, rectangular, and circular queries on two-dimensional grid spaces, and

cubic, hyper-rectangular, and spherical queries on three-dimensional grid spaces.

We can see from those figures that the average query indexing range is nearly a linear

function of the side length of the query region in both two-dimensional and three-

dimensional grid spaces. We apply the linear fit, which fits quite well with the

experimental results especially in larger grids with size Z15 xZ 15 and Z'ox2 10x2 1O. We can

also see that the query indexing range depends not only on the side length of the query

region, but also on the size of the grid space. The query indexing range increases with the

growing size of the grid space. Besides the query indexing range is related to the query

shape.

The Gray-coded curves have the largest average query indexing range for all the

query shapes. Except two-dimensional rectangular queries, Z-curves have the smallest

average query indexing range, and the Hilbert curves are in between.

Generally speaking, Z-curves are the best on the query indexing range propeliy.
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Figure 4-5. Average query indexing range for two-dimensional queries
(exhaustive simulation on 27x27 grid): (a) square queries, (b) circular
queries, and (c) rectangular queries.
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.qResults and Analyses on Average Inter-cluster' Dista!lce

Figures 4-9 to 4-12 present the average query indexing range for square, rectangular,

and circular queries in two-dimension~l grid spaces, and cubic, hyper-rect~guLar. and

spherical queries in three-dimensional grid spaces.

In two-dimensional grid spaces, the inter-cluster distance approaches constant with

the growing side length of the query region. In Table 1 we list; the constants of the

average inter-cluster distance for three families of space-filling curves. The constant

depends on the size of the grid space, the query shape, and the kind of space-filling

curves. The average inter-cluster distance is larger for larger-sized grid space.

Table 1. Constants of a.verage inter-cluster distance for three kinds
of space- filling curves vs. three kinds of query shapes for two­
dimensional grid spaces. The first column is the result in 2')(2'
grid space and the second is in 2 15 )(2 15 grid space.

Hilbert curve Gray-coded curve Z-curve

Square 150 40,000 85 25,000 64 16,800

Circle 140 56,000 80 32,000 73 30,000

Rectangle 130 35,000 80 25,000 70 D,OOO

In three-dimensional grid spaces, the average inter-cluster distance decreases with the

growing side length of query region. In Table 2 we list the ratios of the average inter-

cluster distance among three families of space-filling curves. From these figures and

Table 2, it seems that the ratios approach a constant with the growing side length of the

query regIOn.
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Table 2. Ratios of the average inter-c1u~ter distance ~ong

three kinds of space-filling curves for three kinds - of
query shapes on three-dimensional grid spaces. The result
is for 210)(210x210 grid.

Hilbert over Gray-coded Gray-coded over Z

Cube , 1.4 1.42
I

Sphere 1.2 1.3

Hyper- 1.3 1.3
rectangle

iC

f

So on inter-duster properties in both two-dimensional and three-dimensional grid

spaces, Z-curves perform the best, the Hilbert curves are the worst, and the Gray-coded

curves in between.

Let N denote the number of all possible d-dimensional query regions with side length

L. Suppose for the i th query, the query indexing range is R j , and the number of clusters is

N

LCR j _Ld
)

C, in which i E U, 2, ... J N}. Then the average inter-cluster distance is -,-i~"7~:-- , In

Lee; -1)
1=1

which Ld is the number of grid point within the query region, and Cl -l is the number of

inter-cluster segments for the i th query region. Compared with query range Rj , Ld is so

small for large grid space, and the average inter-cluster distance is approximated by

N

LR i NR --
...!..=.!.- = ------= =R Ie in which Rand C are the average query indexing range and

N NC 'IC j

;=1

average number of clusters respectively.

In the earlier section we've noticed that R is approximately a linear function of the

side length of the query region from the simulation runs. For the two-dimensional case,
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C is a linear function of side length of the query region [MJ~Ol]; t~e average inter-

cluster distance approaches constant in two-dimensional grid spaces. In three-

dimensional grid spaces, C is a quadratic function of side length of th~ query region

[MJFOI]; the inter-cluster distance decreases with the growing side length of the query

reglOn.
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Figure 4-9. Average inter-cluster distance for two-dimensional queries
(exhaustive simulation on 27x27 grid): (a) square queries, (b) circular
queries, and (c) rectangular queries.
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Results and Analyses on. Index-difference- ~'l ,:1<' rl.~ I j' II

Figures 4-13 and 4-]5 present the average.inde~-difference betw.een,point-pairs. at'a

common taxi/cab d.istance in two-dimensional and three-dimensional grid spaces.· The

average index-difference grows linearly with growing size oftax,jkab distance for aU

three families of space-filling curves.

Sampling simulations in large-sized two-dimensional and three-dimensional grid

spaces show that Z-curves always have the smallest index-differ,ences, the Gray-coded

curves the largest, and the Hilbert curves in between. Exhaustive -simulations in small

size two-dimensional grid 27x27 generate similar results. However exhaustive simulations.

in small size three-dimensional grid 26x26 x26 show that Z-curves have the lowest average

index-difference at small taxi/cab distance, and as the taxi/cab distance grows, Z-curves

exceed both the Gray-coded curves and the Hilbert curves. Over the considered range of

taxi/cab distance" the Gray-coded curves always have larger average index-difference

than the Hilbert curves.

Figures 4-14 and 4-16 present the ratios of the index-differences in two-dimensional

and three-dimensional grid spaces. Each figure consists of two curves, one is that

between the Gray-coded curves and tIle Hilbert curves, and the other is that between the

Hilbert curves and Z-curves.

Figure 4-14(b) shows that in larger-sized 2'5x2 1S grid, the ratio of the Hilbert curves

versus Z-curves fits quite well with 1.21. This result complies with the analytical result of

Dai and Su in [DS02], in which the ratio approaches 1.21 as the order of space-filling

curves grows to infinity. However Figure 4-14(a) shows in smaller-sized grid 27x 2
7

, this

result only holds for small taxi/cab distances.
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Figure 4-14(b) shows that the ratio of the Gray-coded curves versus the Hilbert

curves is about 1.21 in larger-sized grid 215 x21S. As switched to the smaner-sized grid

27x27 in Figure 4-14(a), the value decreases slightly over the range of large taxi/cab

distance. However the change is not so large compared with ratio between the Hi lbert

curves and Z-curves.

Figure 4-16(b) 'shows that in larger-sized grid 210X21Ox21O, the ratio of the Hilbert

curves versus Z-cnrves keeps constant at approximately 1.08 over the considered range of

taxi/cab distance. This result again complies with Dai and Su's result in [DS02], where

they give the asymptotic ratio only for taxi/cab distance (j = 1 in three-dimensional grid

spaces as the order of space-filling curve goes to infinity. While in our simulation, we

found that this ratio also holds for all 0 >= 1. Again Figure 4-16(a) shows that in smaller-

sized grid 26x26x26, the result is valid only over the range ofsmall taxi/cab distance.

Figure 4-16(b) also shows that the ratio of the Gray-coded curves versus the Hiibert

figure 4-16(31) shows, the value decreases slightly over the range of large taxi/cab

distance. Still just like the two-dimensional case, the change is not so large compared

with ratio between the Hilbert curves and Z-curves.

We can conclude that based on locality measure which is the index-difference

between point-pairs at a common taxi/cab distance, Z-curves perform better than the

Hilbert curves over the considered ranges of dimension, grid-order and taxi/cab distance,

and the Hilbert curves outperform the Gray-coded curves. As the dimensionality grows,

the differences between the index-difference of three families of space-filling curves

minish.
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CHAPTER FIVE

APPLICATIONS IN IMAGE PROCESSING

Space-filling curves have applications in a lot of field, among which is image

processing.. In this chapter, we will first of an introduce some concepts about image

processing, and then try to make comparisons of those. one-dimensional representations

of images that are scanned long the three families of space-filling curves.

Image processing has many interesting applications in medicine, biological research,

photography, space exploration, astronomy, and law enforcement forensics. Numerous

and widely varying types of image processing operations have been developed during the

past 20 years, among which are image enhancement, restoration, analysis, compression,

and synthesis. With the advent of the Internet and the WWW, image compression is now

more important than ever. To achieve acceptable throughout over the Internet, images are

usually compressed to minimize their size.

There are a host of known applications for image compressIOn techniques and

systems, and new applications are being proposed each day, creating a demand for

modifications of existing compression methods or entirely new approaches. Existing

applications of compression methods include facsimile, personal communications

systems, still-image archival, videoconferencing, and video and movie distribution.

The goal of image compression is the reduction of the amount of data required to

represent a digital image. The idea of image compression is to remove redundant data
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from the images (i ..e., data which do not affect image quality significantly).· Image

compression is very important for image storage and image transmission. .,
Some apphcations of image storage are: educational and business documents, medical

images, weather maps and fingerprints. Some applications of image transmission are:

remote sensing via satellite, military communications via aircraft, radar, and sonar,

teleconferencing, and facsimile transmission.

Image compression techniques are divided into two general groups: loseless and

lossy. Loseless image compression preserves the exact data content of the original.image.

Lossy image compression preserves some specified level of image quality, but not the

absolute data content of the original image.

Loseless coding techniques providle for exact recovery of the original image. Huffinan

coding, arithmetic decomposition, Lempel Ziv algorithms, and run length coding are all

loseless coding techniques. Lossy coding techniques include predictive coding,

frequency-oriented coding, importance-oriented coding, and hybrid coding.

Usually loseless coding techniques yield lower compression ratio, while lossy coding

techniques have higher compression ratio. So there is a tradeoff between image quality

and compression ratio. By compression ratio, we mean quotient of the number of units

used to represent the original image and number of units used to represent the

compressed image.

Before applying the image compression encoding, the two-dimensional image data

should first be scanned into a bit sequence, or a bit string using some scanning function.

For simplicity, here we only consider the binary image in which 0 stands for white pixels,

and 1 for black pixels.
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We assume an image to be a NxN grid of pixels. The pixel at point (i, j) in the image

has intensity value Pi.J°' Defmition: A scan of the image is a bijection! from the closed

interval of integers [1, .. .,Nl] to the set of ordered pairs {{iJ): 1<= i, j <= N}, where the

latter set denotes the points in the image. Equivalently, the image is encoded using the

scan! by encoding the pixel intensities in the order Pit!), Pr(2),"" Pl\N\

The level of compression using run length encoding is entirely dependent upon the

repetitive nature of the source image. An image with large runs of the same pixel

intensity will compress well. Images without this property will compress poorly.

However for the same image, different scanning functions yields different compression

ratios.

There is a lot of scanning methods applied in practice. Some of them are row-by-row

scan, column-by-colurnn scan, zig-zag scan. Besides these ordinary scanning methods,

space-filling curves are also very popular scanning methods. If the image does not have

long runs, better compression may be produced by a method that scans the bitmap area by

area instead of row-by-row scanning or column-by-column scanning. A space-filling

curve completely fills up a part of space by passing through every point in that part.

To investigate how the three space-filling curves we have interested in this thesis will

behave in image compression, we applied the image scan on an image of deer first, and

then on a 2' °x2 lo image filled with 200 randomly placed squares of size 8x8.

In Figure 5-1(a) we presented the image of deer [DeMOO], and in Figure 5-1(b) the

auto-correlation function based on scanned images which are scanned along three

families of space-filling curves and also row-by-row scanning. We can see that Hilbert

space-filling curves have the highest auto-correlation over the whole range of index

51

,:,..
)

: "

")
j:



difference, while Z-curves and the Gray-coded curves perform better than row-by-row

scanning at relatively large index difference.

Still we also want to compare all these space-filling curves when image of small

objects is scmmed. In Figure 5-2, we presented the auto-correlation results obtained

through one-dimensional images scanned along three families of space-filling curves and

row-by-row scanning. We can see from the figure that space-filling curves produce really
.

good auto-correlation even when the auto-correlation reaches almost zero under row-by-

row scanrung.

It is very clear that space-filling curves are really good at scanning images with

scattered small objeets. Among these three families of space-filling curves, Hilbert space-

filling curves are superior to the other two. Z-curves and the Gray-coded curves have

almost the same behavior when applied on image scanning. This is easy to understand if

we can recall that Hilbert space-filling curves have the best clustering properties, while

Z-curves and the Gray-coded curves have almost the same clustering properties in two-

dimensional cases as shown in Figure 4-1 and 4-2.

Finally we can conclude that when applied on image compression, Hilbert space-

filling curves is superior to Z-curves and the Gray-coded curves, and Z-curves and the

Gray-coded curves behave almost the same.
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(a)

Autocorrelation of the deer image

0.95 • Hilbert curve

0.90
-~- Z curve

~
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Figure 5-1. (a) A deer image applIed Hilbert space-filling curve scanning,
(b) Auto-correlation of the three scanned images under three families of
space-filling curves and row-by-row scanning.
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2 2 (200 randomly placed squares of size ax 8)
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Figure 5-2. Auto-correlation of the scanned images under three families of
space-filling curves and row-by-row scanning, in which the image is 200
randomly placed squares of size 8xg on 2 10x2 10 grid.
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CHAPTER SIX

CONCLUSION

From the simulations and the analyses in chapter 4 and 5, We can conclude that the

Hilbert curves are superior to Z-curves and also the Gray-coded curves on clustering

properties, Z-curves outperfonn the other two space-filling curves on inter-cluster

distance, query indexing range, and index-difference properties. When applied on image

scan in image compression, the Hilbert curves are the best.

Even though it seems that the Hilbert space-filling curves are the best on clustering

locality measure, Gotsman and Lindenbaum [GL96] posed the question as to "whether

there exists families of space-filling curves with locality properties better than those of

the Hilbert curves for all sizes". In their work [GL96], classic Hilbert space-filling curves

come close to achieving optimal locality based on locality metric ofL GL ,max (C). The

answer from R. Niedermeier et a1.'5 work [NRS97] is affinnative. In their work, they

proposed a new two-dimensional indexing scheme what they called !I-indexing, which is

related to two-dimensional Sierpinski curve [Sag94]. They proved that H-indexings are

optimally locality-preserving with respect to the Euclidean metric, maximum metric, and

Manhattan or taxi/cab metric.

Here we can say that no matter which space-filhng curve, it can't be always superior

to an the other space-filling curves on aU those locality property measures. To chose

which space-filling curve in a specific application filed depends on the locality measure
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which is the most important to that field, and also we should consider the space-filling

curve that perfonns the best in that locahty metric.

I •
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APPENDIX

Source code of simulation <thesis.cpp>

/*************'*********************************************************
* Author Hua LI *
* Date Oct., 2001 - April 2002 *
* Purpose This algorithm is used to perform simulation on locality*
* preserving properties of three kinds of space-filling *
* curves, Hilbert curves, Z-curves, and Gray-coded curves. *
***********************************************************************
* Function: zOrder_c2i( int nDims, int nBits, bitmask_t coord[]) *
* Purpose : Mapping coordinates (x,y,z) into the index under Z-curve.*
***********************************************************************

* Function gray_c2i ( int nDims, int nBits, bitmask_t coord [J *
* Purpose : Mapping coordinates (x,y,z) into the index under *
* Gray-coded curve. *
***********************************************************************
* Function : *
* numCluster( int x,int y,int z,int querySize,double &maxLength) *
* Purpose Given the querySize and also the randomly chosen locate *
* (x,y,z), return the number of clusters, and also collect *
* the number of inter-cluster distance. *
***********************************************************************
* Function interCluster() *
* Purpose This function will collect the average number of cluster,*
* the inter-cluster distance, and the average query range. *
***********************************************************************

* Function : random ( int& iseed ) *
* Purpose : With input iseed, return a random value between 0 and 1. *
***********************************************************************

* Function: indexDiff( int taxiDistance ) *
* Purpose : With input taxiDistance, give an average index-difference*
**********************************************************************/

#include "hilbert.h"
#include <iostream>
#include <string>
#include <iomanip>
#include <math.h>
#include <fstream>
#include <stack>
#include <utility>
#include <vector>
#include <list>
#include <numeric>
#include <algorithm>
using namespace std;

/***************************

* G - Gray-coded curve *
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* H - Hilbert curve
* Z - Z-curve

*
*

***************************/

const char curve_flag = 'G';

//output file name for index-difference
const char * distribution = "dis_3d_graY_IO";
ofstream disfile(distribution);

Iioutput file name for inter-cluster metrics
Ilconst char *statFile = "stat_3dyoly_graY_10";
Ilofstream statOut(statFile};

Ilconstants
const int nDims 3; Iidimensionality
const int nBits 10; II k in 2 A (k)
const int length = pow (2, nBits.); I I the grid size
II the number of sampling for inter-cluster distance
const int numSample = 100000;
II the number of sampling for index-difference
const int lengthSample = 20000000;

Ilglobal variants
double nlnterDis 0;
double totlnterDis = 0;

Ilfunctions and subroutines
int zOrder_c2i( int nDims, int nBits, void const* coordl );
int gray_c2i( int nDims, int nBits, void const* coordl );
int numCluster( int x, int y, int z, int querySize, double
&maxLength );
void interCluster();
float random ( int& iseed };
void indexDiff( int taxiDistance

int main ()

for( int i = 2; i <= 256; i *= 2 }
indexDiff (i) i

return 0;

/**********************************************************************

* Function: indexDiff( int taxiDistance )
* Purpose : With input taxiDistance, give an average index-difference.
**********************************************************************1
void indexDiff( int taxiDistance
{

static int xseed
static int yseed
static int zseed

2834;
28479 ;
1484;

double totGrid = 0;
double testLength = 0;
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double testTot = 0; . !

for( lnt i = 0; 1 < lengthSample; i ++ )
{

I/coordinates of the beginning point
lnt xl random (xseed) * length;
int yl random (yseed) * length;
int zl random (zseed) * length; *.

for ( int dx
for( int dy
{

0; dx <= taxiDistance; dx++)
0; dy <= taxiDistance - dXi dy++)

Iitaxi distance
int dz = taxiDistance - dx - dy;

Ilcoordinates of the ending point
int x2 xl + dx;
int y2 yl + dy;
int z2 zl + dz;

if( x2 < lengt.h && y2 < length && z2 < length)
{

double linearDi,s i

unsigned long cl[3]
unsigned long c2[3]

swit.ch(curve flag)
{

{xl fyI, Z 1 } ;
{x2 f y2 , z 2 } ;

case 'H':
linearDis

abs(hilbert c2i(3,nBits,cl)
-hilbert_c2i(3,nBits,c2)) ;
break;

cas,e 'Z I :

IlnearDis =
abs(zOrder_c2i(nDims,nBit.s,cl)­
zOrder_c2i(nDims,nBits,c2) };
break;

case 'G':
linearDis

abs(gray_c2i(nDims,nBits,cl)­
gray_c2i(nDims,nBits,c2) i

break;

test.Length += linearDis;
testTot ++;

}
if( i % 100000 == 0)

cout « taxiDistance « " " « i « endl;

Iioutput t.he results
disfile « taxiDistance « " ";
disfile « testLength/testTot « endl;
cout « taxiDistance « " ";
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cout « testLength/testTot « endl,

1***************************************************** *****************
* Function interCluster() *
* Purpose : This function will collect the average number of cluster,*
* the inter-cluster distance, and the average query range. *
*'***********************************************.*********************/
void interCluster()

static int xseed
static int yseed
static int zseed

fort int querySize
{

876749;
1343 ;
34589;

2; querySize <= 32; querySize +=2 l

nlnterDis = 0;
totlnterDis = 0;
double totCluster = 0;
double maxRange = 0;
int maxCluster = 0;

fort int i = 0; i < numSample; i++
{

double maxLength = 0;

IICube queries
II int x random (xseed) * (length - querySize) ;
II int y random (yseed) * (length - querySize) ;
II int z random (zseed) * (length - querySize) ;

IIPolyhedra queries
int x random (xseed) *
int y random (yseed) *
int z random (yseedl *

(length - querySize);
(length - querySize);
(length - 2*quex'ySizel;

1*

*/

Ilsphere queries

int x = random(xseed) * (length - 2*querySize)
+ querySize;
int y = random (yseed) * (length - 2*querySize)
+ querySize;
int z = random (zseed) * (length - 2*querySize)
+ que.rySize;

int nc = numClust.er(x,y,z,querySize,maxLength);
totCluster += nc;
if( nc > maxCluster) maxCluster = nc;
maxRange += maxLength;

if( i % 10000 == 0 )
cout « querySize « II II « i « endl;

float avglnterDis = totlnterDis/float(nlnterDis);
float avgCluster = totCluster 1= double (numSample) ;
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maxRange 1= double (numSample) ;

1*
cout « querySize « II n « avgCluster
« n " « maxCluster « " " « maxRange;
cout « " II « avgInterDis « endl;
statOut « querySize « " " « avgCluster
« n " « maxCluster « .. " « maxRange;
statOut « " " « avgInterDis « endl;
*1

int numCluster ( int x, int y, int z, int querySize, double & maxLength
)

{
int nc = 1; Iinumber of clusters, default value is set to 1.

list<int> Inc;

Iisquare query
II for ( int i X; i < X +
II for ( int j y; j < y +
II for ( int k z· k < z +,

Ilpolyhedra query
for ( int i x· i < x +,
fore int j y; j < y +
fore int k z; k < z +

querySize; i++
querySize; j++
querySize; k++

0.5 * querySize; i++
1.6667 * querySize; j++
querySize; k++ )

Iisphere query
II fore int i x - querySize; i < x + querySize; i++
II fore int j y - querySize; j < y + querySize; j++
II fore int k z - querySize; k < z + querySize; k++

{
/Isphere query check
/*float distance = (i-x>*{i-x);
distance += (j -y) * (j -y) ;
distance += (k-z)*(k-z);
if( distance <= pow (querySize,2) )

*1
{

int index = 0;
bitmask t cl[nDims]
switch (curve_flag)
{
case 'Z I :

{i,j,k};

index zOrder_c2i(nDims,nBits,cl);
break;

case 'G':
index = gray_c2i(nDims,nBits,cl);
break;

case 'H':
index = hilbert c2i(nDimS,nBits,cl);
break;

}
lnc.push_back{index) i
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....
lnc.sort();

listcint>::iterator p
listcint>::iterator q

Inc .begin () ;
lnc.begin() ;

maxLength = -1* (*q) ;
qt-t-;
for( ; q != lnc.end(); qt-t- )
{

II discontinuous interger means two clusters
if( *q > *p + 1 )
{

nc ++;
Ilinter-cluster distance between two neighbouring clusters.

nInterDis ++;
totInterDis += *q - *p;

p++;
}
maxLength += *pill the Maximum range of the query

return nc;

1***************************************************** *****************
* Function: zOrder_c2i( int neims. int nBits, bitmask_t coord[]) *
* Purpose : Mapping coordinates (x,y,.z) into the index under Z-curve.*
**********************************************************************1
int zOrder_c2i( int nDims, int nBits, bitmask t coord[]

int zcode = 0, n = 1;

for( int i = 0; i c nBits; iTT)
{

int j = 0; j c nDims; j++)

1*
int xl
int y1
int zl
zcode
x »=
y »=
Z »=
n cc=
*1
for{
{

+=
l'I
1 ;
1;
3 ;

x%2;

Y %2'• I

z%2;
x1*4*n + y1*2*n + zl*n;llthree-dimensional case

int k = coord[j] % 2;
zcode += k * n;
n c<= 1;
coord[j] »= 1;

}
return zcode;
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1***************************************************** *****************
* Function gray_c2i( ,int nDims, int nBits, bitmask_t coord[] *
* Purpose Mapping coordinate's (x, y, z) into the index under *
* Gray-coded curve.

*
**********************************************************************1
int gray_c2i ( int nDims, int nBits, bitmask_t coord []

int zcode = zOrder c2i(nDims, nBits, coord) i
return zcodeA(zcode »1 ) ii/convert binary code to gray code

1***************************************************** *****************
* Function : random ( int& iseed ) *
* Purpose : With input iseed, return a random value between 0 and 1. *
**********************~***********************************************1

float random ( int& iseed )
{

const int m
const int a

1048583;
1997i

iseed = ( a* iseed )tmi
return float (iseed) /float (m)
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<hilbert.h>

/* C header file for Hilbert curve functions */
#i£ !defined( hilbert h )
#define hilb~rt h --

#ifdef __cplusplus
extern "C" {
#endif

/* define the bitmask_t type as an intege~ of sufficient size */
typedef unsigned long int bitmask t;
/* define the halfmask_t type as ~n integer of 1/2 the size of
bitmask_t */
typedef unsigned long halfmask_t;

/*****************************************************************
* hilbert i2c

*

The list of nDims coordinates, each with nBits bits.

bits (so nDims*nBits

Number of coordinate axes.
Number of bits per axis.
The index,. contains nDims*nBits

S*sizeof(bitmasK_t» .

* Convert an index into a Hilbert curve to a set of coordinates.
* Inputs:
* nDims:
* nBits:
* index:
must be <=

* Outputs:
* coord:
* Assumptions:
* nDims*nBits <= (sizeof index) * (bits-per~yte)

*/

void hilbert i2c(unsigned nDims, unsigned nBits, bitmask t index,
bitmask_t coord[]);

/*****************************************************************
* hilbert c2i

*

Number of coordinates.
Number of bits/coordinate.
Array of n nBits-bit coordinates.

nDims*nBits bits.output index value.

* Convert coordinates of a point on a Hilbert curve to its index.
* Inputs:
* nDims:
* nBits:
* coord:
* Outputs:
* index:
* Assumptions:
* nDims*nBits <= (sizeof bitmask_t) * (bits-per_byte)
*/

/*****************************************************************

* hilbert_cmp, hilbert_ieee_cmp

*
* Determine which of two points lies further along the Hilbert curve
* Inputs:
* nDims: Number of coordinates.
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*

Number of coordinates.
Number of bytes/coordinate.
Number of bits/coordinate. (hilbert_cmp only)
Is it the least vertex sought?
Array of nDims nBytes-byte coordinates - one corner of

Array of nDims nBytes-byte coordinates - opposite

Number of coordinates.
Number of bytes/coordinate.

Number of bytes of storage/coordinate {hilbert_cmp* nByt,es:
only)

* n.Bits:
* coordl:

ieee_crop) .
* coord2:

ieee_cmp} .
* Return value:

Number of bits/coordinate. (hilbert_cmp only)
Array of nDims nBytes-byte coordinates {or doubles for

Array of nDims nBytes-byte coordinates (or doubles for

-1, 0, or 1 according to whether
coordl<coord2, coordl=.=coord2, coordl>coord2

* Assumptions:
* nBits <= (sizeof bitmask_t) * (bits-per_byte}
*/

int hilbert_cmp(unsigned nDims, unsigned nBytes, unsigned nBits, void
const* coordl, void const* coord2};
int hilbert_ieee_cmp(unsigned nDims, double const* coordl, double
const* coord2);

/*****************************************************************
* hilbert box vtx

*
* Determine the first or last vertex of a box to lie on a Hilbert

curve
* Inputs:
* nDims:
* nBytes:
* nBits:
* findMin:
* coordl:

box
* coord2:

corner
* output:
* cl and c2 modified to refer to selected corner
* value returned is 10g2 of size of largest power-of-two-aligned

box that
* contains the selected corner and no other corners
* Assumptions:
* nEits <= (sizeof bitmask_t) * (bits-per_byte)
*/

unsigned
hilbert box_vtx{unsigned nDims, unsigned nBytes, unsigned nBits,

int findMin, void* cl, void* c2}i
unsigned
hilbert_ieee_box_vtx(unsigned nDims,

int findMin, double* cl, double* c2);

/*****************************************************************

* hilbert box vtx

*
* Determine the first or last vertex of a box to lie on a Hilbert

curve
* Inputs:
* nDims:
* nBytes:
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Array of nDims nBytes-byte coordinates - opposite

Number of bits/coordinate _ ,(hilbert_cmp only)
Is it the least vertex sought?
Array of nDims nBytes-byte coordinates - one corner of

* nBit.s:
* findMin:
* coordl:

box
* coord2:

corner
* Output.:
* cl and c2 modified to refer to selected corner
* value returned is 10g2 of size of largest power-of-two-aligned

box that
* contains the selected corner and no other corners
* Assumpt.ions:
* nBit.s <= (sizeof bitmask_t) * (bits'yer_byte)
*/

unsigned
hilbert_box_vtx(unsigned nDims, unsigned nBytes, unsigned nBits,

int findMin, void* cl, void* e2);
unsigned
hilbert_ieee_box_vtx(unsigned nDims,

int findMin, double* el, double* e2);

/*****************************************************************
* hilbert_boxyt

*

r

* Determine
* Inputs:
* nDims:
* nBytes:
* nBits:
* findMin:
* eoordl:

box
* coord2:

the first or last point of a box to lie on a Hilbert curve

Number of coordinates.
Number of bytes/coordinate.
Number of bits/coordinate.
Is it the least vertex sought?
Array of nDims nBytes-byte coordinat.es - one corner of

Array of nDims nBytes-byte coordinates - opposite
corner

* Output:
* el and e2 modified to refer to least point.
* Assumptions:
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
*/

unsigned
hilbert_boxyt(unsigned nDims, unsigned nBytes, unsigned nBits,

int findMin, void* coordl, void* coord2);
unsigned
hilbert_ieee_boxyt.(unsigned nDims,

int findMin, double* cl, double* c2);

/*****************************************************************
* h~lbert nextinbox

*
* Determine the

Hilbert curve
* Inputs:
* nDims:
* nBytes:
* nBits:

first point of a box after a given point to lie on a

Number of coordinates.
Number of bytes/coordinate.
Number of bits/coordinate.
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Is the previousfpbint 'sought?
Array of nDims nBytes-byte coordinates - one corner of

* findPrev:
* coord!:

box
* coord2: Array of nDims nBy:tes-byte coordinates - opposite , '

r

*

Next point on Hilbert curve

Number of coordinates.
Number of bits/coordinate.
Array of nDims nBita-bit coordinates.

corner
* point: Array of nDirns nBytes-byte coordinates - lower bound on

point returned
*
* Output:

if returns 1:
c1 and c2 modified to refer to least point after "point" in box

else returns 0:
arguments unchanged; "point" is beyond the last point of the

box
* Assumptions:
* nBits <= (sizeof bitmask_t) * (bits-per_byte)
*/

int
hilbert_nextinbox(unsigned nDims, unsigned nBytes, unsigned nBits,

int findPrev, void* coordl, void* coord2,
void const* point);

/*****************************************************************
* hilbert iner

*
* Advance from one point to its successor on a Hilbert curve
* Inputs:
* nDims:
* nBits:
* coord:
* Output:
* coord:
* Assumptions:
* nBits <= (sizeof bitmask t) * (bits.yer_byte)
*/

void
hilbert_incr (unsigned nDims, unsigned nBlts I bitmask t coord (] ) ;

/* See LICENSE below for information on rights to use, modify and
distribute

this code. */

/*
* hilbert.c - Computes Hilbert space-filling curve coordinates,

without
* recursion, from integer index, and vice versa, and other Hilbert­

related
* calculations. Also known as Pi-order or Peano scan.

*
* Author:

*
*
*
* Date:

Doug Moore
Dept. of Computational and Applied Math
Rice University
http://www . caam. rice. edu/ -dougm
Sun Feb 20 2000
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* Copyright (e) 1998-2000, Rice University

*
* Acknowledgement:
* This implementation is based on the work of A. R. Butz ("Alternative
* Algorithm for Hilbert's Space-Filling Curve", IEEE Trans. Comp.,

April,
* 1971, pp 424-426) and its interpretation by Spencer W. Thomas,

University
* of Michigan (http://www-personal.umich.edu/-spencer/Home.html) in

his widely
* available C software. While the implementation here differs

considerably
* from his, the first two interfaces and the style of some comments

are very
* much derived from his work. */

//#include "hilbert.h"

/* implementation of the hilbert functions */

#define adjust_rotation (rotation,nDims,bits)
\
do
\

/* rotation = (rot,ation + 1 + ffs (bits» % nDims; */
\

bits &= -bits & ndlOnes;
\

while (bits)

\
bits »= 1, ++rotation;

\
if ( TTrotation >= nDims

\
rotation -= nDims;

\
} while (0)

#define ones(T,k) (((T)2) « (k-l» - 1)

#define rdbit (w, k) « (w) » (k» & 1)

#define rotateRight(arg, nRots, nDims)
\
( «arg) » (nRots» I ((arg) « «(nDims) - (nRots) ») &

ones (bitmask_t, nDims) )

#define rotateLeft(arg, nRots, nDims)
\
« ((arg) « (nRots» I ((arg) » «(nDims) - (nRots) > » &

ones(bitmask_t,nDims»

#define DLOGB_BIT_TRANSPOSE
static bitmask t
bitTranspose(unsigned nDims, unsigned nBits, bitmask t inCoords)
#if defined(DLOGB_BIT_TRANSPOSE)
{
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unsigned const nDims1 nDims-1i
unsigned inB = nBitsi
unsigned utB;
bitmask t inFieldEnds = 1;
bitmask t inMask ones (bitmask_t,inB) ;
bitmask t coords = 0;

while « utB = inB / 2»
{

unsigned const shiftAmt = nDimsl * utB;
bitmask t const utFieldEnds =
inFieldEnds 1 (inFieldEnds « (shiftAmt+utB»;
bitmask t const utMask =
(utFieldEnds «utB) - utFieldEnds;
bitmask_t utCoords = 0;

unsigned d;
if (inB & 1)
{

bitmask t const inFieldStarts = inFieldEnds « (inB-l);
unsigned oddShift = 2*shiftAmti
for (d = 0; d < nDims; ++d)

{
bitmask t in = inCoords & inMask;
inCoords »= inB;
coords 1= (in & inFieldStarts)« oddShift++i
in &= -inFieldStarts;
in = (in 1 (in« shiftAmt» & utMask;
utCoords 1= in « (d*utB)i

}
else
{

for (d = 0; d < nDims; ++d)
{

bitmask t in = inCoords& inMask;
inCoords »= inB;
in = (in 1 (in« shiftAmt» & utMask;
utCoords 1= in « (d*utB);

}
inCoords = utCoords;
inB = utB;
inFieldEnds = utFieldEnds;
inMask = utMaski

}
coords 1= inCoordsi
return coords;

}
#else
{

bitmask t coords = 0;
unsigned d;
for (d = OJ d < nDimsi ++d)

unsigned b;
bitmask t in = inCoords & ones (bitmask_t,nBits) ;
bitmask tout = Oi
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inCoords »= nBits;
for (b = nBits; b--;)
{

out «= nDims;
out 1= rdbit(in, b);

}
coords 1= out « d;

return coords;
}
#endif

1***************************************************** ************
* hilbert i2c
*
* Convert
* Inputs:
* nDims:
* nBits:
* index:
*

an index into a Hilbert curve to a set of coordinates.

Number of coordinate axes.
Number of bits per axis.
The index, contains nDims*nBits bits
(so nDims*nBits must be <= a*sizeof(bitmask_t».

* Outputs:
* coord: The list of nDims coordinates, each with nBits bits.
* Assumptions:
* nDims*nBits <= (sizeof index) *' (bitsyer_byte)
*1

void
Ilhilbert_i2c(unsigned nDims, unsigned nBits, bitmask_t index,
bitmask_t coord!])
hilbert i2c(unsigned nDims, unsigned nBits, bitmask t index, bitmask t
coord [])
{

if (nDims > 1)
{

bitmask t coords;
halfmask t const nbOnes
unsigned d;

if (nBi ts > 1)

{

ones (halfmask_t,nBits);

unsigned canst nDimsBits = nDims*nBitsj
halfmask t canst ndOnes = ones (halfmask_t,nDims) ;
halfmask t const nd10nes= ndOnes » 1; 1* for adjust rotation

*1
unsigned b = nDimsBits;
unsigned rotation = 0;
halfmask_t flipBit = 0;
bitmask_t const nthbits = ones(bitmask t,nDimsBits) I ndOnes;
index A= (index A nthbits) » 1;
coords = 0;
do

{
halfmask_t bits = (index » (b-=nDims» & ndOnes;
coords «= nDims;
coords 1= rotateLeft(bits, rotation, nDims) A flipBit;
flipBit = (halfmask_t)l « rotation;
adjust_rotation (rotation,nDims, bitsl ;
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} while (b);
for (b = nDims; b < nDimsBitsi b *= 2)

coords A= coords » b;
coords bitTranspose(nBits, nDims, coords);

}
else
coords index A (index » 1) i

for (d
{

Oi d < nDims; ++d)

coord [d) = coords & nbOnesi
coords »= nBitsi

}
else

coord [OJ index;

/*****************************************************************

* hilbert c2i

*

Number of coordinates.
Number of bits/coordinate.
Array of n nBits-bit coordinates.

nDims*nBits bits.Output index value.

* Convert coordinates of a point on a Hilbert curve to its index.
* Inputs:
* nDims:
* nBits:
* coord:
* Outputs:
* index:
* Assumptions:
* nDims*nBits <= (sizeof bitmask_t) * (bitsyer_byte)
*/

bitmask t
//hilbert_c2i(unsigned nDims, unsigned nBits, bitmask_t const coord[])
hilbert_c2i(unsigned nDims, unsigned nBits, bitmask t coord[])
{

if (nDims > 1)
{

unsigned const nDimsBits
bitmask_t index;
unsigned d;
bitmask_t coords = 0;

for (d = nDimsi d--;
{

coords «= nBits;
coords 1= coord[d]j

nDims*nBits;

if (nBits > 1)
{

halfmask t const ndOnes = ones (halfmask_t,nDims) i
halfmask t canst nd10nes= ndOnes » 1j /* for adjust_rotation

*/
unsigned b = nbimsBits;
unsigned rotation = OJ

halfmask_t flipBit = 0;
bitmask_t canst nthbits = ones(bitmask_t,nDimsBits) / ndOnes;
coords = bitTranspose(nDims, nBits, coords)j
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coords A= coords » nDims;
index = 0;
do

{
halfmask_t bits = (coords » (b-=nDims» & ndOnes;
bits = rotateRight(flipBit A bits, rotation, nDims);
index «= nDims;
index 1= bits;
flipBit = (halfmask_t)l « rotation;
adjust rotation(rotation,nDims,bits);

} while (b) ;
index A= nthbits » 1;

}
else
index = coords;
for (d = 1; d < nDimsBits; d *= 2)
index A= index » d;
return index;

}
else

return coord [0] ;
}

#ifdef __cplusplus
}
#endif

#endif /* hilbert h */
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