OPTIMIZING FIR FILTER COEFFICIENTS
USING CSD REPRESENTATION

AND DM TECHNIQUE

By
WEN FUNG LEONG

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
2000

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
In partial fulfillment of
The requirements for
The Degree of
MASTER OF SCIENCE
May, 2002

OPTIMIZING FIR FILTER COEFFICIENTS
USING CSD REPRESENTATION

AND DM TECHNIQUE

Thesis Approved:

—sfit P /%%

Thesis Adviser

K= a4 e S

‘/% i/w-.l / .{ I NS

~Zmaky) Ofs

Dea(l_Q/G}{duate College

Preface

Hardware saving criteria is one of the research fields in digital signal processing.
Particularly on hardware saving in digital filter designs, which are due to the usefulness
of digital filters in various fields especially in engineering fields. The main advantages in
hardware savings are reduce hardware complexity and reduce the usage of hardware
resources. One particular interest is to write a CAD program that can optimize the require
hardware for the filter design. Many researchers have developed various CAD software
programs for digital filter design with hardware realization capability. Some of the
researchers include the hardware reduction as the main theme of the CAD program.

This whole thesis is related to the second-generation public domain CAD program
and the main priority is to generate a set of FIR filter coefficients that requires little
hardware. The program is to allow users to design any transpose direct form linear phase
FIR filter with the least hardware needed and to be user friendly. However, the main
direction of this thesis is to discuss the techniques and algorithms that are incorporated
into the program with the main goal of meeting the filter specifications configured by the
user. One of the sections discusses the implementation of Canonical Signed Digit (CSD)
representation to the filter coefficients. The CSD coefficients are further optimized by the

three optimization algorithms, which contribute in more hardware savings for the filter.

il

Another section introduces another representation technique that provides better results
compared to CSD representation. This technique is called as the Dempster and Macleod
(DM) technique. The Signal Noise Ratio is also included to determine the structural adder
or delay size of the filter. The thesis also covers the details of the CAD programs such as

the instructions to use the program and the block diagrams that construct the program.

v

Acknowledgements

I sincerely thank my research advisor Professor Michael A. Soderstrand, who
provide the advice, patience and support through my master program. Under his
guidance, I have not only learned a lot from him but also learn to understand the basics of
DSP, which [had studied during my undergraduate program. [also acknowledge
Professors Louis G. Johnson and Keith A. Teach for reviewing my thesis and serving as
my thesis committee. I thank all my Digital Signal Processing and Communications
(DSPC) research colleagues for being cooperative and provide a friendly environment for
our lab. In addition, I thank all the faculties and staffs from Electrical and Computer
Engineering Department of Oklahoma State University. My special thank to Professors
H. Jack Allison and Gary G. Yen who not only help me a lot while pursuing my master
degree but for their inspiration, support and encouragement. I express my deepest
gratitude to my family for their love, encouragement, support and patience. Moreover, 1
express my appreciation to my parents who have supported and provided me the
opportunity to study in Oklahoma State University. Finally, a particular thanks to

Professor Joan Barrick for proofread the thesis.

1,

2. Background......

Introduction............

1|
152
1.3
1.4
1.5

2.1
22
23
24
25
2.6

Table of Contents

LY T T 1

Introduction
Objective
Finite Impulse Response Filter (FIR)
Fixed Point Representationi qiiiissiasbmssssiromnissnmiosnsamsbirtissiditnssterarss
H {3 B 111311) [-HOOR D RUUE S N R D S SN

Other Filter Design Programs
Cost Definition..........ccceee...
Order-Wordletigth TradeotT. . uuaaininnssnnmiisinaiiasaminsmmaiss
S ORI v s T e B R T s s R s
Adder Extraction
RonNdo T Brror ANAIVEIE. . couuwsmes sruvesnnmssisssamsssimass s e v sessxsss ss vesisiosmsons

3. Cost Analysis of Binary, CSD and DM Implementation 15

Al

32
3.2.1
3.2.2
3.2:3

33

Number RepresentationS.......cuisinimmisinnmsimmsiniiimiminsvismaivisie

Cost Analysis of Binary, CSD and DM Representation

Introduction...............

Binary REprESEmERHON. oo s s e i ot o o s S S e usaes
CSD Representation...........ccccvvevueueee
DM Representation

vi

4. CSD Optimization TechniqUesccccerersuereereecsarsnsssessessessassaessesassassacse 27

4.1 HIOAUCHON .. s S e 27
4.2 Order-Wordlength TradeofT...........cceviiiiiieiiiiiiiiinieeiesice e 27
4.2.1 Procedure for Determining Optimum Order and Wordlength................. 28
422 Function Introduction. ... auaninnniiniirnimnsaisimsisimvnvmmssi 31

43 SCALINE. ettt ettt s e e ea e e et e ene e b e esae e e ennenneas 35
43.1 TIN5 S S A T S v S A A S PSR 35
432 Procedure of Determining Minimum Order and Wordlength................... 35
432 Function INrodUCHION.couiiiiirieieiieeiaccteee et sae s 37

4.4 Adder EXIraction.....cccccieieiereiierereeniieineeeesiessesaesessnsessesssessnesnsecsessssessessessesnns 40
44.1 Procedure of Adder BXtraction ... iisasmniimmisiinisisisiiis 40
4.4.2 Function INroQUehOn: - icainsiimaas momami s i s i akmss fas st mems 41

4.5 Example Result of Three Optimization Techniques............ccccevevvvieeriireiriennes %)
5. Dempster and Macleod Implementation .. svsies BT
5.1 DM Optimization Iiirodictionz sunanmnnmamarm i mnanmasmiisineg 47
N2 DM Optimization Procedure.cooouevieriieireiiie et caeeneennenns 48
53 Funiotion ItOdUEHON.icumismmsisusmimmssmnssisa s A9
54 Implement DM technique after Optimization..........cccevevvveveivinveenenninenrennenn, 50
6. Signal to Noise Ratio......cceceereacssannene cernssssannessans D4

6.1 Introduction ald APPIOACH - ccoviismsmsvsinissiiessistinriasinssm e irsiiasssnssaassosissorss I
6.2 (SNR CompulalioNecesisisiatmsm i i s e 55
6.3 Pseudocode For SNR COMPULALIONoc.evviruiieririeierieieieseieeeesssessessesesseesnnns 58
64 Example Simulation ReSUIE ... usmmimmvososmissssmsiiinsssissmmsisssio 0l

7. Program REVIEW......cciieisssscsssssssssssssssorsssssissnsssssssssassissossssossusssonsass ceeenes 64
7.1 GUI OVETVIEWeeeveeriierteieeieeesae e et seasiassessaesesaeseasseesssinesseesaenarsessensansenseneas 04
Ti2) PIORIANY OVCIVIBN o aivnnisusrms iosisinsesiass saasansssssstssbins i sss Sr s s sasAwS S 4t 67

T.3i © ‘Fechuoclogy and ' Cost REVIEW v mimiamesisis s a s i 10

vii

8. Conclusion and Future WorK.....ccccceecceceenens SRR e 72

8.1 COMCIUSION ..vvvvieeceeseeeeeeieeee st eeeesrsbeesessbssseseensbbsssasssnsseseessnssseasasnssssessesnrenennnes 72
8.2 FULUTE WOTKS ...eiviiviiiiiiiiiiisiiisceiisssessssressteesesssssssessossnsssssnsessossssesessosssssssesssss 74

BIBETOGRAPHY woiississsisississsmaniniansissisiisiosiississsyissemiiiaon 76

Appendix A: Binary to CSD representation Conversion Algorithm..... 80

Appendix B: CSD and DM FIR Filter Design Program. 82

B.1 Introductory MENUcc.eiuiiiiiiiiicie ittt nnees B2
B2 BUEHEIATE ovosviminemimssssoomsmusnssssnss mts 55 A S e PR T SR e e Fasswerien o s OO

viii

List of Figures

Figure 1.1 General Transpose Direct Form FIR filterccccocciimeviveissasmsmsasssssssssssnesios 3
Figurg 2.l Graph 6f Cost{ND) VD curnnnmisnnmninmaaiimmrmrasivasmamimg 12
Figure 3.1 (a) Binary Implementation of Multiply by 93oovoviviieiviriiiccisiciees 16

(b) CSD Implementation of Multiply by 93coveiiiiiiiiiiiiieninanns 16

(c) DM Implementation Multiply by 93c.ccooieviviviciiciiiisievecrcieeieens 16
Figure 3.2 Histogram of Number of adders Vs Number of

Combinations for 8-bits wordlengthccocecveevinenieiineseeeieseeeeeenaeeens 21
Figure 3.3 Histogram of Number of adders Vs Number of

Combinations for 16-bits wordlength.............. vereereeneerresnennenaenss 24
Figure 3.4 Plot of Average Adder for Coefficient Multlpllers w1th

Wordlength Range from 4 bits to 20 bits......coooviiiiiiiiiiiiiiiiieeeceeeeeee 26
Figure 4.1 Optimum Order, Nopt Algorithm Block Diagram ... T R R e 17,
Figure 4.2 Optimum wordlength, Bopt Algorithm Block Dtagram 33
Figure 4.3 newcsd_fir Subroutine Block Diagram ... U P RN e RO * |
Figure 4.4 Scaling Algorithm Block Diagram... sl AR
Figure 4.5 newcsd firsc Subroutine Algorithm B[ock Diagram 39
Figure 4.6 Adder Extraction Optimization General Routine Block Diagram 42
Figure 4.7 Adder Extraction Algorithm Block Diagramcccoceoveviivicviccenccrcnenen. 43
Figure 5.1 DM Optimization Algorithm Block Diagramccceceveeenierreveriierenennes 53
Figure 6.1 Transpose Direct Form FIR Filter with Noise Model............ccccciviinininnnn. 56
Fimwe 6.2 Pseudocode of SNR subrontine......ciinmisuiismiamssoamesssosiomimis 59
Figure 7.1 CSD and DM FIR Filter GUIc..ccccoiniiiiiiiiiiiiiiiieinccieeseceesesieeaens 05
Figuré 7.2 An Example SUMMAY BOX .. oiuuisnimimiabmimnsissiioiasmmiimiimisie 66
Figure 7.3 Summary Data in Work Window Command.ccccoeicinininiiniinininin. 60
Figure 7.4 General Program Flow cereereneesennenenens 08
Figure 7.5 An Example CSD params. vhd Fsle 0cnerated by Mat]ab cesssesnias OB
Fignre 7.6 Program Flow Chart....cciaisiumimsismsmssrisssaiossssssiisostsssissiiss 69
Figure B-1 CSD and DM FIR filter design program.ccccceseveirannnnsensinnnnsnnnnens 83
Figure B-2 Top Level of Program File .. O USROS RRETT NN |
Figure B-3 File Chart for the Opllm:zatlon Process SRS i O

Section One

Introduction

1.1 Introduction

Digital Signal Processing (DSP) has grown widely during the past decades, due to
the technological advancement in computers. DSP has revealed more advantages in terms
of flexibility, cost reduction and performance compared to conventional analog signal
processing. Additionally, its advantages also cover versatility and stability. In the
industry, areas that require DSP applications such as medical applications, time series
analysis, and communication areas use digital signal processors with specialized
hardware, instructions and mathematical computations instructions for processing digital
signal projects.

DSP operations usually have two basic categories, which are signal analysis and
digital filtering. Implementation of new structures using digital filters is very popular due
to the flexibility of various applications of digital filters such as noise elimination and
frequency band separations. In general, a digital filter is a discrete time convolver since

the output of the filter is actually the sum of the weighted previous input and output.

Therefore, a digital filter is actually formed by three basic hardware elements, which are
adders, multipliers and registers.

There are numerous automated software programs available for engineers to
design any type of filter with reduced hardware requirements and the ability to implement
the design in different technologies. Designing a digital filter that has less hardware
complexity is important because reduced complexity can contribute to a reduction in
power, size and cost while increasing speed. The main contribution to complexity for
digital filtering is the coefficient multipliers, which are usually implemented using binary
arithmetic. There are many ways to reduce hardware complexity that range from
Hartley[10] numerical reduction method to direct building (Finite Impulse Response) FIR
filter using components available in the hardware realization software such as KCM
multipliers [20]. With new techniques implemented to improve the digital filter design
with hardware reduction as a goal in mind, both Canonical Signed Digit (CSD), and
Dempster and Macleod (DM) techniques appear very promising for filter design

purposes.

1.2 Objective

Previously, Husinga [1] developed an automated software program to design
highpass and lowpass FIR filters by using the CSD technique to minimize hardware
complexity. This Computer Aided Design Program is designed for linear phase transpose
direct form Finite Impulse Response (FIR) filters with minimal hardware complexity.

There are three optimization techniques that are used to obtain better results with the

CSD technique. The three techniques used are order-wordlength tradeoff, scaling and
adder extraction. These are the three objectives in this thesis. Firstly, Husinga’s work is
revised, identifying some errors and limitations occurring during the optimization
process. Then, the program is expanded by adding more features and selections. Finally,
a new hardware saving technique based upon the Dempster and Macleod (DM)
implementation [6-7] is introduced into the program. This program is aimed at
automatically generating a hardware layout for different targeted technologies such as
Xilinx FPGA’s and MOSIS CMOS processes. This paper will not cover the automation
of hardware layout. However, a script file called the params.vhd is mentioned since it is
included in the GUI program as one of the functions. The program does offer choices for

different targeted technologies that can be added in the future when needed.

1.3 Finite Impulse Response Filter (FIR)

According to many textbooks and articles [1-2],[16-19], FIR filters are simple to
design, flexible and there is no possibility of limit cycles. In addition, the reason that
FIR filters are also stable is because it is guaranteed to be a bounded-input bounded-
output (BIBO) system. Moreover, FIR filters with symmetrical characteristics will
guarantee a linear phase frequency response as linear phase response produces constant
amounts of delays, which make the design problem somewhat simpler. Therefore, the

design of FIR filters is the focus for this thesis.

The transfer function of an FIR filter in the z-domain is
M-l
H(z) =Y blk)z™ (1.1)
k=0
Hence a general difference equation for causal FIR system is represented as
M-
y[n]= > blkix[n k] (1.2)
k=0

This equation shows that if it is subjected to an impulse, the output will equal zero after
the impulse has passed through all the summation. This operation is equivalent to
convolution of input data samples with the desired unit impulse response of the filter,
which is defined as Finite Impulse Response (FIR).

The transfer function from Equation (1.1) can be implemented using a variety of
equivalent structures, which are equivalent in terms of transfer function but differ in
hardware complexity. These structures, which are equivalent in terms of transfer function
have different characteristics depending on quantization results due to finite wordlength
limitation. Mitra [18] does mention a few equivalent FIR filter structures such as the
direct form FIR filter structure, cascade form FIR filter structure, linear phase FIR
structure and polyphase FIR structure. For this thesis, the linear phase form FIR filter is
selected because of its wide applications. A characteristic of the linear phase form is that
the coefficients are in symmetrical form and this can be exploited to reduce the number
of filter coefficients by almost one half. In addition, the filter is selected for its transpose
direct form because it supports the linear phase form FIR structure better in terms of
hardware requirements for the filter coefficients. Transpose direct form also has a better

timing characteristic since the input is directly connected to the filter coefficient

multiplication. Figure 1.1 shows an example of a general transpose direct form of a N-
order linear phase FIR filter. However, there is a disadvantage of using transpose direct
from, which is the size of the delay which must be a reasonable size to prevent
quantization and this problem does not occur in direct form structure because all the
delays are at the input bit size. In fact direct form structure will result in less hardware
requirements compared to transpose direct form. In transpose direct from, half of the total
number of adders are connected at the input bit size whereas the rest of the adders are
connected at the output after the multipliers with the wordlength of input bit size plus the
coefficients bit size. Another interesting point is if the sharing block in the CSD or DM
realization is adapted to both the transpose direct form and direct form structures, the
hardware requirement is much lower. Anyway, this thesis focuses on the transpose direct
form FIR filters with no sharing block in CSD or DM realization, which is presented in

Figure 1.1.

x|n]

AR VA

Figure 1.1 General Transpose Direct Form FIR filter

1.4 Fixed-Point Representation
Fixed-point format is used to represent the coefficients since this format is
flexible both in DSP processing and VLSI implementations. This is because the binary
point is fixed at a certain location of a binary representation of a coefficient. We use this
representation to represent fractional numbers. A general fixed-point format for the
fractional number with a dynamic range of —1 to approximate 1 is shown below:
by @ bybyby ---bpjy (1.3)
where ‘e’ is the binary (radix) point.
According to Mitra [18], when the binary point is fixed, arithmetic operations are simpler
to implement and the positive fixed-point number is easy to represent. In general, there
are three formats to represent a fixed-point negative number. If we consider binary
representation as the main basis to represent the fractions, the three formats are sign
magnitude format, ones’ complement format and twos’ complement format. These
formats do apply to signed radix-2 fixed-point numbers. Note that the binary point plays

an important part in fixed-point representation.

1.5 Thesis Outline
Section 2 reviews previous work and research areas that are related to this thesis
and it will include an overview of the CAD design. Other main topics included are cost
calculations and optimization techniques that reduce the hardware requirement.
The following section will discuss the cost analysis of Binary, Canonical Signed

Digit (CSD) and Dempster and Macleod (DM) techniques. A simple explanation for

these representations is to produce hardware savings. The simulated results are presented
using the Matlab program for the ease of comparing each technique.

Section 4 describes and reviews the CSD optimization techniques that were
implemented in this thesis taken from previous research work done by other authors.
Basically it contains the procedure of all techniques with block diagrams and definition
function, while integrating the algorithm step by step and translating them into block
diagrams for future reference. The example results presented are also compared for
robustness in difference techniques.

Section 5 will introduce the new method, Dempster and Macleod (DM) technique
into the CAD as an added option for users and also to minimize hardware complexity.
The DM optimized algorithm for this technique is also presented with a block diagram.
When the filter coefficients are found, the coefficients will undergo optimization
techniques and then they are implemented only with the DM technique. The reasoning
behind this idea is discussed and example results from the Matlab program are presented.

Section 6 describes the computation of signal to noise ratio (SNR) in both cases.
The first case is one in which the user does not specify a SNR requirement while the
other case is to find the SNR value that meets the SNR requirement specified by the user.
Both the procedures are discussed and a pseudocode and example results are included in
this section.

Section 7 explains the routine of the CAD program. The features and block

diagrams are provided to simplify the explanation. This chapter includes the introduction

of the program and the procedure to run the program. It also discusses the reason that the
new cost function is introduced to the program.

The last section concludes this thesis based on the results discussed from the
previous sections. Future work is also recommended to future researchers who are

interested in improving the work done.

Section 2

Background

2.1 Other Filter Design Programs

Many programs have been written to construct a constant coefficient FIR filter
based on various user-defined parameters. For example, Matlab version 6-demo toolbox
for signal processing has a program that allows the user to compute a FIR filter with
many options. Intensive research into writing software programs that includes a hardware
implementation option has also been done by other researchers in the past. Research done
by Jain et al. [11] produced a FIRGEN program that automatically generated the
architecture and floorplan for integrated circuit fixed point FIR filters that achieves a high
sample rate with compact layout. Another example is the construction of a FIR filter
using the graphical toolbox available in Simulink toolbox provided by Mathworks in
Matlab version 6. The design is then translated into hardware programming language,
which produces hardware in Register-Transfer-Level (RTL) in VHDL that maps into a
FPGA using CAD tools. The paper written by Haldar et al. [12] uses this technique. The
authors presented their MATCH compiler that takes the Matlab input and implements the

digital filter design in a FPGA chip. While Husinga and Darren [1-2] wrote a Matlab

program which does takes certain technological specification into consideration. The
results from the program can be implemented in Xilinx FPGA’s or other targeted

technologies.

2.2 Cost Definition

Cost measurement is essential in order to evaluate the cost needed for a digital
filter design while performing any optimization routines. Most papers define the cost
based on the number of adders/subtractors and delay elements of a filter. Even so, cost
function is not a unique function. In Dempster [8] the cost is defined as a cost equation
for CSD representation, which is based on fewer adders needed for the multipliers
compared to the binary representation. The Dempster cost equation is represented in the

form of,

Cost =M x A(w)+ A+ D+a (2.1)
where
M is the number of multipliers or coefficients; A(w) is the average number of adders
expected from graph multiplier of wordlength, w; 4 is the number of structural adders;
D is the number of structural delays and o is the weighting factor, equivalent to the

number of adders in a delay.

In previous work done by Husinga and Darren[1-2] the cost function is defined
based on specific target technology. Therefore, different technology has a different
fundamental unit size and this will result in a different cost value for the different

technologies. Both Husinga and Darren estimated the cost using lookup tables, which

10

contain a list of fundamental cost units that represent a particular size of adders and delay
elements of the specific targeted technology. The following shows the general cost
function used by Husinga and Darren:

Cost = a(w)4 + B(w)D 2.2)
Both the a(w) and ﬂ(w) are technology dependent cost units of each adder and delay of
wordlength, w. The 4 and D are the number of adders and delays. The cost function is
just an estimated number to describe the hardware complexity. Cost function will vary
within different filter structures, hence cost is generalized as a function evaluation to aid

the optimization algorithms.

2.3 Order- Wordlength Tradeoff
There are different ways to compute the minimum wordlength required for a
digital filter. One approach is the use of the coefficients sensitivity function to compute
the required wordlength for each coefficient. Debrunner [21] uses this technique for
Infinite Impulse Response (IIR) filter design implementation. However, both Husinga
and Daren use the order and wordlength tradeoff technique introduced by Kodek [9].
Kodek introduced the construction of a graph where the cost product of order and
wordlength, Cost(Nb) versus the wordlength, b, is shown in Figure 2.1. Kodek found
out that at a certain point there is an optimum point that optimizes both the order and the
wordlength. The optimum point is referred to as a global minimum. He also noticed that,
as the wordlength increases further than the optimum wordlength, the curve becomes a

constant positive slope. On the other hand, when the wordlength decreases from

11

optimum wordlength towards zero, the wordlength will be too small to represent the
filter coefficient. Therefore, the filter specification will not be met. By observing the
characteristic of the graph, which is shown in Figure 2.1, Kodek drew some conclusions
and derived an equation that can compute the minimum wordlength from minimum
order. This method is very useful because when the order of the filter is increased
without changing the filter specifications, it will result in the decrease of wordlength
needed in the filter. This tradeoff provides the ability to find the best quantized
coefficients that will reduce the hardware area such as the number of CLBs for Xilinx’s
FPGA'’s. Section 4 explains the algorithm used for this method and for future reference

the notation N and b refer to order and wordlength respectively.

5500 = !

T

5000 | e

T

4500 | o f

4000 7 |

Cost (Nb)

3500 slope=Nopt 1

3000

25095 15 20 55

b

Figure 2.1: Graph of Cost (Nb) vs b

Source: D. L. Husinga, Digital of Optimized Filter Using CSD Coefficient
Representation [1]. Master’s Thesis, University of California, Davis,
CA.1995.

12

2.4 Scaling

Though scaling has been the oldest technique, it is still the best in DSP or
hardware applications. The drawback of using fixed point arithmetic for every addition or
subtraction operation in each stage of the filter is that overflows may occur. DSP
textbooks [17-19] use the norm and bound conditions to describe the scaling equation.
While Darren’s [2] approach is by scaling both the numerator coefficients and
denominator coefficients (for IIR filter only) separately, and Husinga [1] scales down the
inverse sum of the coefficients since the filter design is FIR filter. In previous papers,
there are several techniques such as using scale factor to reduce the number of nonzero
digits suggested by Serna [14] and using minimum weight representation (MWR)
approach by Yagyu [22], which modifies the filter coefficients with CSD representation
by using a scale factor approach. Another advantage of using scaling is to find the
coefficients with minimum hardware implementation cost. This thesis will use scaling
introduced by Husinga to overcome overflow and reduce the hardware complexity.
Section 4.3 explains the search method to find the optimum scale factor that will result in

the minimum hardware requirement.

2.5 Adder Extraction

The adder extraction technique was based on the work done by both
Soderstrand and Serna [15]. In previous work, Darren, Hunsinga and Balasubramanian
[1-3] used this method to further minimize the coefficients hardware requirement cost.

The idea is to reduce the number of adders by replacing the non-zero digit with zero and

13

check for specifications response of the new filter to make sure that the specifications are

still met; both Daren and Husinga included this technique in their programs.

2.6 Roundoff Error Analysis
Rounding and truncation after multiplication is often needed since all devices
only have finite wordlength. Roundoff error is modeled as noise, while roundoff error
can be avoided in FIR filters by making sure that the wordlengths are sufficient to
accommodate all mathematical operations. This leads to excessive hardware. Signal to
Noise ratio (SNR) is evaluated to make sure that the filter has a decent output
performance. Usually, for FIR filter the SNR is relatively large due to the zero feedback,
which means that it is easier to maintain the precision of the FIR filter coefficients.
Hartley’s [10] method of calculating SNR is used because the coefficients are
represented in CSD representation. Section 6 will explain the procedure for computing

SNR using Hartley’s method.

14

Section 3

Cost Analysis of Binary, CSD and
DM Implementation

3.1 Introduction

In digital signal processing theory, the coefficient multipliers are represented in
the real number system with infinite precision. However, in order to implement these
coefficients in the digital hardware, a digital number system with finite length
coefficients that are compatible with the digital hardware is required. Since the ideal
coefficients are expressed in infinite precision, the hardware implementation of the digital
processing systems may not be able to represent the coefficients very precisely or
accurately. There are various types of digital number representations and usually digital
hardware, such as DSP chips and digital computers, use a form of the binary number
system or representation. Therefore, in this thesis, the digital number system or
representation will represent the coefficient multipliers of the FIR filter. Finally, the
digital number representations play an important role in hardware reduction of the filter

so Section 3.3 will demonstrate the hardware cost reduction using three different digital

number representations.

15

3.2 Number Representations

U+

) 2 s
+T\ +

25
+ U by g N) 1 =
LA S + F F
v v v
93 93 93

Figure 3.1: (a) Binary Implementation of Multiply by 93

(b) CSD Implementation of Multiply by 93
(c) DM Implementation Multiply by 93

3.2.1 Binary Representation

The binary number system is mainly used in modern digital systems and is
actually the combination of the digits {1,0}. In fact binary representation is favored by
digital applications because it is simple to represent the inherent on or off nature of
digital hardware. Fractional numbers can also be represented by radix-2 binary number
system by using a binary point to separate the integer part and the fractional part. That is
how binary representation can represent the coefficient multiplications of the filter. For
example, taking a simple example of a multiplier with the value 93, it can be represented
as

93=2%4+2*42"42242° (3.1)

16

From this representation, the number 93 can be written as an eight bit wordlength, which
is 01011101,. Figure 3.1(a) also shows the equivalent model of a multiplier of the value
of 93 in a binary representation. Also note that there would be four elements multiplied
by the power of two and four adders. Since the elements are just multiplied by the power
of two, this represents shifts of number that can be accomplished by appropriate hardware
wiring. Hence, multiplying by positive or negative integer powers of two does not require
real hardware. In the case of Figure 3.1(a) the four adders are considered the real

hardware while the multipliers are just hard wiring.

3.2.2 CSD Representation

A “signed digit” (SD) number system has the combination of {i, 0, 1}, where 1
represents a negative one. The signed digit number system is useful in designing high-
speed arithmetic machines. Since this is a radix-2 number system with three possible
digits (ternary), there are redundancies to represent a simple decimal number, which
make SD representation not unique. However, by selecting the SD representation with the
fewest non-zero bits from the list of redundant representations, we can minimize the
hardware required to represent a binary number. Canonical signed digit is a unique

representation of signed digit numbers such that there are no adjacent nonzero digits.

CSD format has a maximum of M nonzero bits, which is roughly one half that of

binary representation. Taking the same example as above, the CSD representation is

93=2"-2°-2"+2° (3.2)

177

The implementation of multiplying by 93 is shown in Figure 3.1(b). Comparing this to
the binary implementation, CSD only requires three adders or subtractors. Based on this
example, there is a 25% hardware saving over binary implementation. In addition, using
signed digit for fixed-point format will allowed negative fractions to be represented in
fixed-point format. The algorithm (described by Hwang [5]) that converts binary

representation of a constant number to canonical signed digit is presented in Appendix A.

3.2.3 DM Representation
The Dempster and Macleod (DM) [6-7] technique is another technique to
represent the multipliers in digital applications. The basic idea proposed by Dempster is
a multiplier that is factorized into a set of prime numbers, where the constraint is that the
coefficient must not be a prime number. To use the same example discussed previously,
the factored numbers are 3 and 31, which now can be two module multipliers. Notice that
the numbers are now prime numbers, therefore each factored number or module will be
represented by a new number system, which is the best way is to represent the factored
numbers in CSD representation. The following demonstrates that example in a
mathematical form.
93=3x31=(2' +2°)x(2° -2°) 3.3)
Figure 3.1(c) is the equivalent model of the Equation 3.3. The figure shows that the
multiplier is connected in a cascading style, so for this example, only two adders or

subtractors are required. In this case, there will be a 50% and 33% hardware savings over

binary and CSD implementation respectively.

3.3 Cost Analysis of Binary, CSD and DM Representation

Section 3.2 describes the three digital number representations with an example
multiplier that results in the reduction of hardware complexity. As the wordlength
represented by the multipliers becomes smaller, the chances of hardware savings by using
Dempster and Macleod (DM) technique over CSD technique are reduced. Table 3.1
shows the average number of adders needed for all combinations with the positive
dynamic range of four bits for each of the digital number representations mentioned in
Section 3.2. In other words, for a four bit wordlength, there are 0 to 2*-1 combinations,
which means there are combinations that range from 0 to 15. The phrase number of
combinations represents the number of multipliers. These multipliers are also used to
calculate the average number of adders by taking the sum of the adders for all the
combinations and dividing by the total number of combinations. For Table 3.1, total

number of combinations is 16.

Number Of Combinations Total Adders

Adder Binary CSD DM Binary | CSD | DM

0 5 5 5 0 0 0

1 6 9 9 6 9 9

2 4 2 2 8 4 4

3 1 0 0 3 0 0
Total 16 16 16 17 13 13

Average 1 1 1 1.0625 |0.8125|0.8125

Table 3.1 Average Number of Adders for 4-bit Number of Combinations

19

By examining Table 3.1, the ADDER column means the number of adders. The Number
of combinations column gives the number of combinations while it is related to a specific
number of adders by referring to the ADDER column. The Total ADDERS column
displays the total number of adders of the required number of combinations. Observing
the highlighted row of the table on the previous page, it can be seen that under the
Number of combinations heading, there is only one combination for binary representation
and zero combinations for both CSD and DM representations. Therefore, the total adders
required are three for binary representation and zero for both CSD and DM
representation. The average number of adders produced by CSD and DM representation
is 0.8125. Nevertheless, both CSD and DM techniques show a 23.53% savings of adders
required over binary representation. For large numbers, which are determined by their
available wordlength, if they are represented in CSD representation, an additional bit is

required. For example, the number ‘14" in a four bit word length is ///0; in binary

representation, but in CSD representation, it is represented as / 00}03 .

The earlier case shows the average numbers for DM and CSD is the same due to
the fact that the wordlength is small. However with larger wordlength, the chances of
hardware savings using DM technique over CSD technique are much higher. For
discussion, observe Table 3.2 with eight bit dynamic range, which means that the
numbers range from 0 to 2%-1. The average numbers of adders for Binary, CSD and DM
representation are 3.0038, 2.1133 and 2.0078 respectively. The percentage savings for

CSD and DM over Binary representations are 29.65% and 33.16% respectively.

20

Number Of Combinations Total Adders
Adders | Binary CSD DM Binary CSD DM
0 9 9 9 0 0 0
1 28 49 49 28 49 49
2 56 110 133 112 220 266
3 70 80 61 210 240 183
4 56 8 4 224 32 16
5 28 0 0 140 0 0
6 8 0 0 48 0 0
i 1 0 0] F 0 0
Total 256 256 256 769 541 514
Average 1 1 1 3.0039 2.1133 2.0078

Table 3.2 Average Number of Adders for 8-bit Number of Combinations

Number of combinations

14 ' :
ez Binary
O csp
120r =
100 -
80f -
3 % !
@
§
\
\
o |
\
N
. l
20 §
i \ et ..
0 o 1 2 3 4 5 6 7
Number of adders

Figure 3.2: Histogram of Number of adders Vs Number of
Combinations for 8-bit wordlength

21

The histogram presented in Figure 3.2 is based on the data from Table 3.2. The vertical
axis represents the number of combinations that are required by the number of adders,
while the horizontal axis represents the number of adders. From this histogram, notice
that for the DM technique there are no combinations available starting from five adders
onwards which is the same for CSD representation. When the number of adders is two,
both CSD and DM technique achieve the highest number of combinations.

Another result is presented in Table 3.3 and the result is the average adder number
for all the positive combinations of sixteen bit wordlength. The average number of adders
for each combination is 7, 4.7778 and 4.3261 for binary, CSD and DM representations
respectively. Hence, in this case, the percentage savings for CSD representation over
binary representation is much higher, which is 31.45%. Similarly, the percentage savings
for DM technique over Binary representation is 38.2%. The results show a higher savings
for sixteen bit wordlength due to the number of combinations is significantly large
compared to the case for eight bit wordlength. If taking the consideration of comparing
DM technique over CSD representation, the percentage savings for eight bit and sixteen
bit wordlength are 4.98% and 9.45% respectively. The savings is increased by
approximately 5% between eight bit to sixteen bit wordlength. Relatively speaking, as the
wordlength increases the percentage hardware savings will also increase. The histogram
presented in Figure 3.3 is the graphical representation of the results from Table 3.3. By
obsewiné the histogram in Figure 3.3, the number of adders at the highest number of
combinations for CSD representation is five while for DM technique, the number of

adders where the highest number of combination is achieved is four. Also notice that for

22

both the CSD and DM representations, there are no more combinations left starting from

nine adders onwards.

Number Of Combinations Total Adders
Adders | Binary CSD DM Binary CSD DM
0 17 17 17 0 0 0
1 120 225 225 120 225 225
2 560 1638 2133 1120 3276 4266
3 1820 6864 10140 5460 20592 30420
4 4368 16632 24631 | 17472 66528 98524
5 8008 22176 21072 40040 110880 105360
6 11440 14400 6522 68640 86400 39132
T 12870 3456 778 90090 24192 5446
8 11440 128 18 91520 1024 144
9 8008 0 0 72072 0 0
10 4368 0 0 43680 0 0
11 1820 0 0 20020 0 0
12 560 0 0 6720 0 0
13 120 0 0 1560 0 0
14 16 0 0 224 0 0
15 1 0 0 15 0 0
Total | 65536 65536 65536 | 458753 313117 283517
Average 1 1 1 7 4.7778 4.3261

Table 3.3 Average Number of Adders for 16-bit Number of Combinations

23

x 10

2.5

L

O

Number of combinations

S
L

B e

E B i L

0 -] Z 1 4
-2 0 2 4 6 8 10 12 14 16 18
Number of adders

Figure 3.3: Histogram of Number of adders Vs Number
of Combinations for 16-bit Wordlength

Table 3.4 shows the average adders for each combination for three different
number representations from four bit to twenty bit wordlength. Basically, Table 3.4 is
obtained by finding the average adder number for each combination for every
wordlength, which ranges from four bits to twenty bits. Figure 3.4 is plotted based upon
the data presented in Table 3.4. The plot illustrates the three different curves that explain
the adders savings using the three different techniques described by the legend. Overall,
the performances of DM and CSD representations are better than Binary representation.
By comparing DM and CSD representation, DM representation shows a promising result
in hardware reduction as the wordlength increases, but note that at wordlength from 4 bits

to approximately 5.5 bits both CSD and DM implementation produce the same average

24

number of adders. By observing Figure 3.4, the slope computed for the binary, CSD and
DM technique are 0.498, 0.333 and 0.29 respectively. The slope for binary representation
is steeper than that for DM and CSD representation. Also note that the slope for CSD
representation is steeper than that for DM representation. This pattern shows a distinct
result that more adders are saved as the wordlength increases for both CSD and DM
representation. By taking Figure 3.4 as a reference to obtain the average number of adder

information, A(w), the cost function derived by Demspter shown in Section 2 can be put

into full use.
Wordlength Av?rage Adder Number for each Combination
Binary CSD DM

4 1.0625 0.8125 0.8125
5 1.5313 1.125 0.125
6 2.0156 1.4531 1.4188
7 2.5078 1.7813 1.7109
8 3.0039 2.1133 2.0078
9 3.5020 2.4453 2.3008
10 4.0010 2.7783 2.5986
11 4.5005 3.1113 2.8911
12 5.0002 3.4446 3.1785
13 5.5001 3.7778 3.4644
14 6.0000 4.1111 3.7525
15 6.5000 4.4445 4.0391
16 7.0000 4.7778 4.3261
17 7.5000 51111 4.6128
18 8.0000 5.4444 4.8999
19 8.5000 5.7778 5.1873
20 9.0000 6.1111 5.4751

Table 3.4: Average Adder Number for each Implementation

25

Average Adder, adders

10g T

-

T

= Binary Representation
9F| ===+ CSD Representation
== DM Representation

4 6 8
Wordlength of Coefficient Multipliers (0 to Zb's-l), bits

10 12

14 16 18 20

Figure 3.4: Plot of Average Adder for Coefficient Multipliers with
Wordlength Range from 4-bits to 20-bits

26

Section 4

CSD Optimization Techniques

4.1 Introduction

In previous work, Husinga [1] has demonstrated her ingenuity by incorporating
the three optimization techniques to find a set of optimum coefficients represented in
CSD representation. It is worthwhile to mention and revise all these techniques. Recall
that the three optimization techniques are order-wordlength tradeoff, scaling and adder
extraction. The purpose of optimization is to eliminate the adders’ requirement of the
filter coefficients. The restriction for each optimization process is that the specification of
the FIR filter must be maintained. The following subsections describe the three

optimization techniques and the results analysis which results in a reduction of adders.

4.2 Order- Wordlength Tradeoff

Matlab program is used to determine the coefficients and the order of a FIR filter
with required filter specifications. The coefficients are in infinite precision so in order to
determine the optimum wordlength that represents the coefficients, the optimum order

filter is computed. This optimum wordlength and order will be the guideline for the next

27

optimization technique, and it is the primary step of the three optimization process. This
optimization technique is the implementation of Kodek’s [9] idea discussed in Section 2.
The idea is to determine an optimum filter order that meets the specifications with
optimum wordlength to represent the filter coefficients. This will result in the minimized

coefficients wordlength and consequently reduce hardware requirement.

4.2.1 Procedure for Determining Optimum Order and Wordlength

Remezord and Remez function available in Matlab will determine the overall
order and coefficients for any type of FIR filter. First of all remezord function will
produce an equivalent filter order and a set of coefficients that meets the filter
specifications. By taking these parameters as a guideline, remez function is used again to
determine the optimum filter order. This is done by reducing the overall order one at a
time and for each order we apply to the remez function again to generate a new set of
coefficients. These coefficients are feed to the fregz function to obtain the frequency
response data. This data will be evaluated to check if the filter specifications are met.
This process will repeat itself until an optimum order is found. The objective function
that describes the task of obtaining the optimum order is shown below:

mi

n ;
Nopt = arg i {reinez function that meet filter specﬁmnons} (4.1)
order

where Nopt is the optimum order.
Since there are four types of filters, which are lowpass filter, highpass filter, bandpass

filter and bandreject filter, the specifications are classified as the constraints for all the

28

objective functions. The notation used to represent the filter specifications for all filter
types is presented as follow:

e Fsamp (fs) — Sampling Frequency (Hz)

e Fpland Fp2 - Passband Frequency (Hz)

e [s] and Fs2 — Stopband Frequency (Hz)

e Rp - Passband Ripple (dB)

e Rs— Stopband Ripple (dB)

These frequencies and ripple parameters give the characteristic of the frequency response

of the filter. To determine if the filter design meets the specifications constraint, the
specific magnitude frequency response,H(e""') is evaluated. There are two inequality

constraints and they are determined based on the criteria and the filter type prompt by the

user. The following are the two general inequality constraints.

max|201og, | (e ||-min|2010g,,|[H(e™ | |< &, 4.2)
max ZOIoglo‘H(ef“'] <R, (4.3)
. Frequency Range for Frequency Range for
Fiiter Type Passband Ripple,Rp Stopband Ripple,Rp
Lowpass O<w=<wp OsSOSON
Highpass OsSOSON 0<w<w,
Bandpass 0p1SO<Wp2 0<0<ms , Os2<O<ON
Band reject 0<w<wp1 , ®p2<O<ON 0s1<O<Ms2

Table 4.1: Frequencies Range For Passband Ripple and Stopband Ripple
of All Filter Types.

29

Figure 4.1 presents the frequencies range corresponds to the two inequalities constrains
shown in Equation 4.2 and Equation 4.3. The purpose of inequality constraint is to meet
the passband and stopband ripples criteria at the right frequency ranges. As long as the
inequality constraints are met, the original order is decreased by one or vice versa. This
procedure is repeated until the optimum order, Nopt is found.

The next step is to determine the optimum coefficients wordlength, bopr using the

equation defined by Kodek [9], and the following equation proposed is:
8o (N,b) = 2-(wore “"J(zxorj"")_] 4.4)

where 8, =, -9,
Note thatd, is the total deviation, which is the stopband deviation set by the user; &, is

the approximation error of stopband deviation due to infinite precision coefficients; and
0, is the round off error. Once the wordlength is determined using Equation 4.4, the
filter specifications are checked. If the filter specifications are not met, the wordlength
will increase by one, and this process is repeated until an optimum wordlength is found.
Figure 4.1- 4.3 display flowcharts that explain this optimization algorithm. Figure 4.1
describes the algorithm for finding the optimum order; Nopt while Figure 4.2 presents the
block diagram for obtaining the optimum wordlength, bopt. In bopt algorithm there is a
small subroutine named newcsd_fir, which is presented in Figure 4.3. This subroutine is

to check the filter specification status.

30

4.2.2 Function Introduction
The function to determine the optimum order, Nopt is ger Nopt. The function is
shown as follows:
[Nopt, Fo,Mo, Bopt, csts] = get _Nopt (4.5)
Where the function returns the following parameters:

e Nopt — Infinite precision optimum order

Fo — The cutoff frequencies vector for remez function

Mo — Magnitude description of frequency response vector for remez function

e Bopt — Optimum set of coefficients (infinite precision)

csdRs — Stopband Ripple Peak

The optimum wordlength function is get_bopr and it is shown as follows:

[bOpr] = get _bopt(Bopt, Nopt, csdRs) (4.6)
Where the Bopt, Nopt and csdRs are the input of the function and return the optimum
wordlength value, bopt. In get_bopt function, there is another function called newcsd_fir
that checks for filter specifications and returns the optimum wordlength, bopt, that meets
the specifications. The following shows the newcsd_fir function:

[torf | = newesd _ fir(B,N,b) .7

where the inputs are infinite precision coefficient, B; optimum order, N and wordlength,
b. The function returns the status value, rorf, where if the filter specifications are met, the

status value is equal to one.

31

Optimum Order, Nt
Subroutine Begins

remezord Function
Get order,N

l

—®» Remez function

Yes Status =1
Increment N

No
Status =0 Ngp=N-1
Increment,N

y
End Subroutine

Figure 4.1: Optimum Order, N,, Algorithm Block Diagram

32

Optimum wordlength,

b, Subroutine Begin

Order, N = N{,pl

l

Find &

l

Yes)
@ Bit. b=b-1
No l

Status = 0

Bit, b = b+1

v
—®»| Newcsd Fir Subroutine

End Subroutine

Figure 4.2: Optimum wordlength, B,,, Algorithm Block Diagram

33

newesd_fir Subroutine Begin

Find Scale factor avoid overflow

l

Set B=b/Scale

l

Find Order = Even or Odd
Find adder number

Status = 1

Yes
Spec meet ?

No

Status =0

End Subroutine

Figure 4.3: newcsd_fir Subroutine Block Diagram

34

4.3 Scaling

4.3.1 Theory

Because we are implementing the digital filter in fixed-point arithmetic, overflow
may occur at certain internal nodes. Scaling is normally used to minimize the probability
of overflow occurring in the filter. To pick a scale factor, first of all the maximum gain of

the transfer function, K, _must be determined. The maximum scaling factor is the inverse

max

of the maximum gain that is %{ . In our case, however, we will use the scaling factor
max

to reduce the number of adders in the coefficients. This is done by searching possible

scale factors between the ranges of the minimum gain factor, which is % k o the
=7 max

maximum gain factor, %’(. The optimum scale factor will result in the best set CSD

coefficients which in tum results in more hardware savings. Also notice that the
minimum scaled factor is scaled by half, which is the power of two and is implemented
simply by shift operation. Scaling down the coefficients will result in a slight decrease in

SNR and precision.

4.3.2 Procedure For Determining Minimum Order and Wordlength
To determine both the minimum order and wordlength, cost function is
incorporated in the program where the cost function is technology dependent. First the

search region is defined for both order and wordlength, hence they are noted as

35

N ={N

i = NEB% NW} and B ={bom *0.5<b<b,, } respectively. The search regions
of both order and wordlength are chosen to be wide enough to search for the minimum
order and wordlength that provide the least hardware requirement for the specific FIR
filter design. Each element from set N is evaluated with all the elements from set B. A
new search region with different scale factors is determined by different sets of
coefficients and the step size of each scale factor is incremented by 0.1. Each scale factor

is computed using the formula described below:

Scale factor,S = L =01, ..8 4.8)
(1+0.17)

Equation 4.8 shows the region of the scaling factor as ranging from %9 to 1. It now

forms a set, S, where the elements are the scale factors varying from %9 to 1. Every

coefficient within the search region will multiply by a single scale factor obtained from
the set, S, to generate a new set of coefficients. The new set of coefficients is evaluated
where the filter’s frequency response must meet the filter specification constraints. If it
meets the filter specifications, then the particular wordlength, order and scale factor are
recorded. So, for every three sets of costs, scale factors and wordlength that meet the
filter specifications will be stored in a new matrix. From this matrix, the least cost and
scale factor are preserved while the rest of the unimportant data will be eliminated. This
procedure will repeat until the search region meets the last order and wordlength of the
search regions. As the procedure ends, the most minimized order, Nmin and wordlength,
bmin will be determined from a list of corresponding minimum cost table and the

minimum scale factor. The flowcharts presented in Figure 4.4 and Figure 4.5 give a

36

general overview of the algorithm described. Figure 4.4 illustrates the role of the scaling
algorithm in the main program and Figure 4.5 illustrates the procedure steps of the

scaling algorithm.

4.3.2 Function Introduction
The function of optimizing the coefficients using the scaling technique is as
follows:

[addcm, addcef ,spcsmet, scafeopr] = newcsd _ ﬁrsc(IC , Nvec(i), bvec(k)) 4.9)

Where the inputs are

e /C - Infinite precision coefficients

e Nvec — Filter order obtain from the search region

* Bvec — Coefficient wordlength from the search region
And the outputs are

e addcnt — Total number of structural adders

e addcef— Total number of adders of the coefficients

e spcsmet — Status of meeting the specifications

e scaleopt — The optimum scale factor from the search region

37

Scaling Optimization Begin

v

N =N+1

Order, N

Count =1

A

Wordlength, b

!

Newecesd_firsc subroutine

Yes
Spec meet ?

Get Cost,
Scale factor
Wordlength

A

Count = Count +1

b=b+1
No Yes
N=N+8 ?2 >4 —
Count = 4
Yes
Find Nmin, No
bmin, Mincost,
scalemin
Yes

End Subroutine

Find Minimum Cost

Figure 4.4: Scaling Algorithm Block Diagram

38

newcesd_firsc Subroutine Begi

Scalevector={scale(I), 1<=1<=9}

I

I=1+1 ——»| Scale = scale(I)

I

Coefficients, B=b/Scale

l

Find Order = Even or Odd
Find adder number, nadd

\ 4
Status =0
\ 4
Min of nadd
Y
Spec meet ? Status = 1
No
Clear smallest nadd value
A
End

Figure 4.5: newcsd_firsc Subroutine Algorithm Block Diagram

39

4.4 Adder Extraction

The adder extraction technique removes non-zero bits from the coefficient table in
binary numbers and replaces them with zero digits. Thus, a new set of coefficients will be
generated and the frequency response is checked to make sure the filter specifications are
met. If the specifications are meet, then the coefficient table is updated. Hence a new
minimum cost is computed. This technique will usually work if the coefficients are
represented by a large wordlength such as 16 bits and 20 bits with many nonzero digits.
The process usually takes place on the least significant bit from strings of binary

numbers.

4.4.1 Procedure of Adder Extraction

Once the new set of coefficients is determined from the scaling optimization,
these coefficients are implemented using the adder extraction process, which is the last
optimization. This algorithm uses exhaustive search because each binary number
obtained from each coefficient is evaluated for each iteration. Every time this process is
done the filter specification constraints are checked to make sure that the filter
specification meets the requirement. If the filter specifications are met, each coefficient is
updated and this process continues for every coefficient for all the non-zero bits. Figure
4.7 shows a detailed explanation of adder extraction algorithm. Note that since it is a
linear phase FIR filter, the coefficients are in symmetry so there is a very high chance
that two coefficients will be affected. Once all the coefficients have been evaluated, the

adder extraction subroutine will produce sufficient output to the main program for further

40

evaluation. Figure 4.6 presents the role of adder extraction process in the main program.
If the optimization of the coefficients has occurred, a status describing the outcome of the
adder extraction will occur. If there are any nonzero bits that are extracted, the status will
return a true statement. At this point, a new minimized cost is recalculated and the new
coefficients replace the old coefficients. If no coefficients are minimized from adder

extraction subroutine, then all the results will be sustained.

4.4.2 Function Introduction
The redcadd function operates the adder extraction optimization and returns the
updated result.

[rmva’. Hrmvd,newtable newaddcefmin,newRpl] = (scalenin table, Nmin,bmin,addcefmin)
(4.10)

Where the inputs are
e scalemin — Optimized scale factor

table — A set of optimized coefficients in CSD representation

Nmin — Minimum order

bmin — Minimum wordlength

addcefmin — Total number of adders of the coefficients

Where the outputs are
e rmvd — Adder extraction status
e Hrmvd — Complex frequency response after adder extraction process

e newtable — A set of optimized coefficients in CSD representation

41

* newaddcefmin — Total number of adders of the coefficients

* newRpl — New set of ripples information in dB.

Redcadd Optimization Begin

h 4
redcadd subroutine

Remove status=1 ?

Find new mincost,
Update data

¢ Bl e

Figure 4.6: Adder Extraction Optimization General Routine Block Diagram

42

redcadd Subroutine Begin
A

Remove status =0

v

coefficient(I) |-

=11

A

coefficient(I) in CSD form,
= table(I,bmin)

Set index = bmin

A

index=index - 1
y

No L 4 -
Spec meet ? index=07?
Yes Yes

Remove Status = 1
Update data

End Subroutine

Figure 4.7: Adder Extraction Algorithm Block Diagram

43

4.5 Example Result of Three Optimization Techniques

The following tables show the example cost results of the four types of filters.
Each filter has its own fixed filter specifications except the passband ripple, Rp is varied
ranging from 5.5dB to 0.1dB. The sampling frequency is fixed on 24KHz and the input
wordlength is set at 8 bit. The filter type and its filter specification profile are listed on
the heading of each table. Referring to Tables 4.2 to 4.5, the cost results of each filter are
recorded under three main headings, which are Order-wordlength tradeoff, Scaling and
Adder Extraction. Additionally, the heading % Reduction (1) means the percentage cost
savings computed from the difference between the first technique, Order-wordlength
tradeoff over the second technique, Scaling. Similarly, the heading % Reduction (2)
displays the percentage cost savings for the second technique, Scaling and the third
technique, adder extraction. Also note that the cost is computed based on the cost
equation, which will be discussed in Section 7.3. From the observation, the percentage
savings of the second technique over the first technique range from 3% to 45%. On the
other hand, the percentage reduction obtained from the second and third techniques is
extremely low. The reduction range is 0 to 1.8 percent only. The reason is the large
saving occurs during the scaling optimization. Therefore, if there is no saving shown, this
means that the hardware representation of the coefficients is truly minimized. In short,
adder extraction optimization’s role is to make sure that the hardware required for the
coefficients is minimized. Overall, the average hardware savings for scaling technique
over order-wordlength tradeoff is about 20% and the average hardware savings for adder

extraction technique over scaling technique is approximately 0.3%.

44

Lowpass Filter:

Frequency = [5000 6000]Hz
Stopband Ripple, Rs = 40dB

ko | oor;?:r;th Scaling | %Reduction | _ Adder | %Reduction
Tradeoff (1) xtraction (2)

55 1872 1572 16.03 1560 0.76
5] 1956 1614 17.48 1614 0.00
4.5 2093 1685 19.50 1685 0.00
4 2022 1806 10.68 1794 0.66
3.5 2494 1880 24.62 1869 0.59
3 2144 1906 11.10 1894 0.63
25 2431 2078 14.52 2078 0.00
2 2878 2068 28.14 2068 0.00
1.5 2860 2304 19.44 23.04 0.00
1.0 3402 2548 25.10 2548 0.00
0.5 5112 2798 45.27 2798 0.00
0.2 4603 3532 23.27 3493 1.10
0.1 5488 3826 30.28 3826 0.00
Average (1) 21.96 Average (2) 0.29

Table 4.2: Percentage Cost reduction for Lowpass Filter Example

Highpass Filter:

Frequency = [5000 6000]Hz
Stopband Ripple, Rs = 40dB

Order- : ;
Rp | Wordlength | Scaling %Rec(:lliu)ctlon Ex?r(;(::iro] %Rec(izu)ctlon
Tradeoff

5.5 1728 1567 9.32 1567 0.00
5 1900 1762 7.26 1762 0.00
4.5 1888 1726 8.58 1726 0.00
4 2145 1795 16.32 1795 0.00
3.5 2156 1700 21.15 1700 0.00
3 27.16 1773 34.72 1773 0.00
2.5 2698 1992 26.17 1992 0.00
2 2918 2105 27.86 2094 0.52
1.5 2795 2088 25.30 2088 0.00
1.0 3591 2536 29.38 2488 1.89
0.5 3172 2552 19.55 2552 0.00
0.2 4394 3332 24.15 3320 0.36
0.1 4833 3696 23.53 3696 0.00
Average (1) 21.02 Average (2) 0.21

Table 4.3: Percentage Cost reduction for Highpass Filter Example

45

Bandpass Filter:

Frequency = [3000 4000 5000 6000]Hz
Stopband Ripple, Rs = 40dB

Order- . .
Rp | Wordlength | Scaling %Rec(l;:)ctlon Ex?;ﬁiron %Rec(i;)ctmn
Tradeoff

55 2236 1830 18.16 1818 0.66
5 2184 1906 12.73 1884 1.45
45 2210 1878 15.02 1878 0.00
4 2210 1987 10.09 1987 0.00
35 2550 2016 20.94 2016 0.00
3 2682 2158 19.54 2132 1.20
2.5 2994 2560 14.50 2548 0.47
2 3583 2726 23.92 2690 1.32
1.5 4266 2750 35.54 2726 0.87
1.0 3640 2868 21.21 2868 0.00
0.5 2990 2894 3.21 2882 0.41
0.2 6648 3600 45.85 3588 0.33
0.1 5033 3664 27.20 3652 0.33
Average (1) 20.61 Average (2) 0.52

Table 4.4: Percentage Cost reduction for Bandpass Filter Example

Band Reject Filter: Frequency = [3000 4000 5000 6000]Hz
Stopband Ripple, Rs = 40dB

Order- : ;
Rp | Wordlength | Scaling %Rec(:l;:)ctuon Ex?;(cj:?iron %Ret(izl.l)ctlon
Tradeoff

5.5 1752 1344 23.29 1344 0.00
5 1699 1412 16.89 1412 0.00
4.5 1876 1421 24.25 1421 0.00
4 1699 1385 18.48 1385 0.00
3.5 2000 1385 30.75 1385 0.00
3 2012 1385 31.16 1385 0.00
2.5 2136 1630 23.70 1630 0.00
2 2368 1884 20.44 1884 0.00
1.5 2215 2105 4.97 2083 1.05
1.0 2925 2223 24 2212 0.50
0.5 3406 2873 15.65 2847 0.91
0.2 4200 3592 14.48 3566 0.72
0.1 4522 4288 517 4223 1.52
Average (1) 19.48 Average (2) 0.36

Table 4.5: Percentage Cost reduction for Band Reject Filter Example

46

Section 5

Dempster and Macleod
Implementation

5.1 DM Optimization Introduction

The DM approach is based upon saving adders in coefficient multiplier
implementation by factoring the coefficient into numbers that require fewer adders to
implement the cascading of the factored coefficient multipliers. The initial step is to
convert the coefficients into decimal format and then factor the decimal formed
coefficients using only the prime numbers. The hope is that factoring the coefficient
numbers with prime numbers will be a better choice compared to choosing a vast range
of numbers for factorization. For some cases, factoring the coefficients with prime
numbers may not result in a savings in hardware. Thus, other factoring numbers may
need to be considered, and will result in many possible ways of factoring the coefficients.
Many combinations that represent the coefficients are produced and usually many
combinations are redundant. For a simple example, consider the coefficient with

multiplier 297, the computation of prime factors is as below:

297 =3x3x3x11 =22 ~1)x (2% —1)x (2% —1)x 2* - 22 1) (5.1)

47

Notice that factors 3 and 11 are prime numbers. Equation 5.1 shows that the multiplier
297 needs 5 adders. But there is another alternative result, shown here:
297 =9x33=(2* +1)x(2° +1) (5.2)

By just taking the factors of 9 and 11, now only two adders are needed. This result
requires fewer numbers of adders compared to Equation 5.1. Notice that for this example
the computation result has fewer adder requirements compared to CSD representation,
which require the total of three adders. As the value of the multiplier increases, the
number of possible combinations that represent the multiplier value increases. The only
exception is where no combinations are generated when the multiplier itself is a prime

number and then there is no need to perform DM optimization.

5.2 DM Optimization Procedure

Initially, all the coefficients are converted into decimal numbers based on the
minimum wordlength obtained earlier. These multipliers will be evaluated one by one to
determine the number of adders needed. First of all, each multiplier is tested to see if they
are the result of the power of two or a prime number itself. If either of the conditions is
true, then the number of adders will not be evaluated but will immediately state the
number of adders based on the number of adders obtain from CSD representation. If the
conditions are false, then all the possible combinations of the factored coefficients will be
stored in a matrix and each combination is evaluated by counting the number of adders
available. Note that if any of the factors is equal to two, it is ignored because no adders

are required for this case. Another problem occurs is when a single number is a power of

48

Notice that factors 3 and 11 are prime numbers. Equation 5.1 shows that the multiplier
297 needs 5 adders. But there is another alternative result, shown here:
297 =9x33=(2° +1)x (2° +1) (5.2)

By just taking the factors of 9 and 11, now only two adders are needed. This result
requires fewer numbers of adders compared to Equation 5.1. Notice that for this example
the computation result has fewer adder requirements compared to CSD representation,
which require the total of three adders. As the value of the multiplier increases, the
number of possible combinations that represent the multiplier value increases. The only
exception is where no combinations are generated when the multiplier itself is a prime

number and then there is no need to perform DM optimization.

5.2 DM Optimization Procedure

Initially, all the coefficients are converted into decimal numbers based on the
minimum wordlength obtained earlier. These multipliers will be evaluated one by one to
determine the number of adders needed. First of all, each multiplier is tested to see if they
are the result of the power of two or a prime number itself. If either of the conditions is
true, then the number of adders will not be evaluated but will immediately state the
number of adders based on the number of adders obtain from CSD representation. If the
conditions are false, then all the possible combinations of the factored coefficients will be
stored in a matrix and each combination is evaluated by counting the number of adders
available. Note that if any of the factors is equal to two, it is ignored because no adders

are required for this case. Another problem occurs is when a single number is a power of

48

two and has a negative value. One adder is required for this case to maintain the
negativity of the coefficients in the hardware perspective. All the number of adders
gathered by evaluating all the combinations for a single multiplier and the calculated
values are stored in a matrix. Then from this matrix, the number of minimum adders is
sorted out and the results will be preserved. In addition, the best combination that gives
the least number of adders is also preserved as well for future use. Figure 5.1 is the

flowchart that explains the DM optimization algorithm in graphical view.

5.3 Function Introduction
In the program the function representing the DM optimization algorithm is
presented as below:
[dm, dnmumopf] = dmmmi(csdnum, newtable, bmin, ac) (5.3)
From the function above, csdnum is the decimal number representation of the optimized
coefficients and newtable is the CSD representation of the coefficients. Both are useful to
find the factorized coefficients and identify the power of two including the sign
evaluation. bmin is the minimum wordlength of the coefficients and ac is a list of number
of adders for all coefficients computed from CSD representation. For the outputs, dm is a
list with the minimum number of adders of all coefficients and dmnumopt stores the best
combinations that provide the least number of adders needed. Another function that is
included in dmnum function is to find all the possible combinations for every multiplier.

This operation is done by heuristically defining all the possible combinations.

49

two and has a negative value. One adder is required for this case to maintain the
negativity of the coefficients in the hardware perspective. All the number of adders
gathered by evaluating all the combinations for a single multiplier and the calculated
values are stored in a matrix. Then from this matrix, the number of minimum adders is
sorted out and the results will be preserved. In addition, the best combination that gives
the least number of adders is also preserved as well for future use. Figure 5.1 is the

flowchart that explains the DM optimization algorithm in graphical view.

5.3 Function Introduction
In the program the function representing the DM optimization algorithm is
presented as below:
[a'm, dmmunopr] = dnmum(csdmun ,newtable, bmin, ac) (5.3)
From the function above, csdnum is the decimal number representation of the optimized
coefficients and newtable is the CSD representation of the coefficients. Both are useful to
find the factorized coefficients and identify the power of two including the sign
evaluation. hmin is the minimum wordlength of the coefficients and ac is a list of number
of adders for all coefficients computed from CSD representation. For the outputs, dm is a
list with the minimum number of adders of all coefficients and dmnumopt stores the best
combinations that provide the least number of adders needed. Another function that is
included in dmnum function is to find all the possible combinations for every multiplier.

This operation is done by heuristically defining all the possible combinations.

This function is presented as follows:

[posib] = pnuml(k, j, p) (5.4)

where £ is the index of prime factors which are not equal to two; ; is the last index of
prime factors; and p is the remaining prime factors. Notice that the &, j and p are the
indexes for a specific row and column of the matrix. It is for programming purposes. The

function returns a set of possible combinations of each multiplier.

5.4 Implement DM technique after Optimization

There are arguments concerning the reason to obtain the optimized coefficients by
DM implementation after CSD optimization. This is called the CSD/DM technique.
Originally, this technique is done by taking a set of coefficients after the remez function
and implementing them using pure DM technique which results in fewer adders required
but the number of adders is not minimized. So to prove this case, an experimental
program is written to find the optimized number of adders using pure DM technique after
obtaining the minimum wordlength and order of the filter. The reason that the order and
wordlength optimization technique is included in this experimental program is because
the fixed coefficients wordlength is difficult to determine by observation. The following
shows the comparison of hardware saving between the implementation of DM technique
with the combination of the three CSD optimization techniques and direct
implementation of pure DM technique after order-wordlength tradeoff procedure.

The following Tables 5.1 — 5.3 indicate the cost results of direct application of pure DM

implementation and the implementation of combining DM with the three CSD
optimization techniques. The tables indicate the cost result of the simulations by varying
the passband ripple (Rp), stopband ripple (Rs) and transition band (AF) over lowpass
filter. From the experimental cost results, notice that more hardware is saved by the
combined DM optimization implementation, when compared to just implementation of
pure DM technique without going through the optimization process. The results are
presented into three tables showing the cost reduction varying from 12% to 53%. Notice
that at certain specifications, the cost is higher due to the number of coefficients needed
to satisfy the specification constraint. Overall, the approximate average savings obtained
is about 25%. In conclusion, more hardware savings is expected if implementing the

combination DM optimization technique.

Lowpass Filter: Fsampling = 20000Hz
Transition Band = 0.2 [5000 7000]Hz
Stopband Ripple, Rs = 40dB
Input wordlength = 8 bit
Cost
Rp Pure DM Combine DM % Reduction
5.5 724 512 29.28
5 796 512 35.58
4.5 770 582 24 .42
4 770 582 24.42
3.5 794 642 19.14
3 888 636 28.38
2.5 939 712 23.93
2 1066 766 28.14
1.5 962 840 12.68
1 1152 844 26.74
0.5 1692 1061 39.95
0.1 1764 1518 13.95
Average 25.56

Table 5.1: Average cost reduction for varying Rp with AF=0.2 and Rs=40dB

implementation and the implementation of combining DM with the three CSD
optimization techniques. The tables indicate the cost result of the simulations by varying
the passband ripple (Rp), stopband ripple (Rs) and transition band (AF) over lowpass
filter. From the experimental cost results, notice that more hardware is saved by the
combined DM optimization implementation, when compared to just implementation of
pure DM technique without going through the optimization process. The results are
presented into three tables showing the cost reduction varying from 12% to 53%. Notice
that at certain specifications, the cost is higher due to the number of coefficients needed
to satisfy the specification constraint. Overall, the approximate average savings obtained
is about 25%. In conclusion, more hardware savings is expected if implementing the

combination DM optimization technique.

Lowpass Filter: Fsampling = 20000Hz
Transition Band = 0.2 [5000 7000]Hz
Stopband Ripple, Rs = 40dB
Input wordlength = 8 bit
Cost
Rp Pure DM Combine DM % Reduction
85 724 512 29.28
5 796 512 35.58
4.5 770 582 24 .42
4 770 582 24.42
3.5 794 642 19.14
3 888 636 28.38
2.5 939 712 23.93
2 1066 766 28.14
1.5 962 840 12.68
1 1152 844 26.74
0.5 1692 1061 39.95
0.1 1764 1518 13.95
Average 25.56

Table 5.1: Average cost reduction for varying Rp with AF=0.2 and Rs=40dB

Lowpass Filter: Fsampling =20000Hz
Transition Band = 0.2 [5000 7000]Hz
Passband Ripple, Rp = 3dB
Input Wordlength = 8 bit

Cost
Rs Pure DM Combine DM % Reduction
20 372 314 15.60
30 486 406 16.46
40 888 636 28.38
50 1416 976 31.07
60 1982 1355 31.63
70 2584 1860 28.02
80 3104 2382 23.26
Average 24.92

Table 5.2: Average cost reduction for varying Rs with AF=0.2 and Rp=3dB

Lowpass Filter: Fsampling = 20000Hz
Passband Ripple, Rp = 3dB
Stopband Ripple, Rs = 40dB
Input wordlength = 8 bit

Cost
g::: "t:;’: Pure DM Combine DM % Reduction

0.3 735 342 53.47
0.28 478 388 18.83
0.26 582 450 22 68
0.22 808 550 31.93
0.2 888 636 28.38
0.18 1032 840 18.60
0.16 1344 932 30.65
0.14 1563 1036 33.72
0.12 1440 1094 24.03
0.1 1846 1434 22.32
Average 28.00

Table 5.3: Average cost reduction for varying AF with Rp=3dB and Rs=40dB

I=I+1

p| Factor (coefficient(I))

dmnum subroutine Begin

with Prime numbers

Coefficient(I) is Yes

Prime number ?

Coefficient(I) is
Power of2?

Possible Combinations
Subroutine

y

v

Find number of adders

No

Evaluate all

Find number of
adders

Find CSD of combination ———

Next
combination

A

9

mbinatio

number ofadder

Find optimum combination [

Restore sign

.

Figure 5.1: DM Optimization Algorithm Block Diagram

Section 6

Signal to Noise Ratio

6.1 Introduction and Approach

The limited precision of digital hardware has caused it to be difficult to
implement the coefficients exactly. This is the oldest problem encountered by all DSP
experts. The oldest and most effective solution to this problem is either truncate, roundoff
or otherwise quantize the coefficients into a certain wordlength that can be implemented
into hardware realization. Rounding off or truncating the coefficients, will cause
additional noise to occur in the system. However, there are assumptions that need to be
considered that result in existing noise in the filter. If the filter coefficients are truncated
or rounded off before implementing them into the hardware, it will not result in the
production of noise in the filter. However the quantization of the coefficients will just
change the location of the FIR filter’s zeros [16-17]. Also, noise will be introduced if the
coefficients are rounded off or truncated after a shift operation, or an addition or
subtraction operation, which occurs between each stage.

Previously, Husinga [1] used the SNR equation defined by Hartley [10] to

compute the SNR of the FIR filter because Hartley’s equation is applicable to CSD

representation. This idea is to further implement the coefficients that use the Dempster
and Macleod technique. In fact this approach is reasonable because DM technique only
optimizes the structure of the CSD expression of a multiplier. Also, remember that the
term SNR is the ratio of the output signal variance to noise variance. In Husinga’s thesis,
she mentions using the Xilinx technology definition to fix structural adder size in order to
approximate the structural adder and delay size. This idea is not adopted in this thesis.
The structural adder size is determined by the input wordlength and the maximum shifted
wordlength of the coefficients. The main purpose of considering the maximum shifted
wordlength of the coefficients is to maintain the precision of the optimized coefficients

and to eliminate the redundant zero bits.

6.2 SNR Computation

Computing estimated SNR for FIR filters is the last subroutine of the program. To
compute SNR for the filter, first the structural adders or delays size are determined. The
main idea to find a suitable structural adder size with a reasonable SNR value and noise is
generated as the roundoff operation is done after each multiplier of every stage. The noise
presents in the filter is assumed to be only white noise. This concept can be equivalent to
injecting additive noise to every node of the filter before entering the adder or subtractor
[17-19] and the noise. Figure 6.1 shows the noise model concept graphically with
highlighted structural adders and delays. The noise from each node is summed together
as a single noise source. Also, due to the hardware equivalent, FIR filter is written in

hardware language, so the size of the adder is more flexible.

Figure 6.1: Transpose Direct Form FIR Filter with Noise Model

The size of the structural adder is estimated as large as possible to preserve the
coefficients. The structural adder or delay size is stated as badd and is computed as

follows:

; User specify input bit, b;,

badd = (6.1)
: Otherwise

coefficient + bmax_ shift

For the first case, if the user specifies the input bit, b,, the structural adder size, badd is
computed by adding the input bit to the maximum shifted wordlength of the coefficients,
Bmax shifi- The second case is by considering if the user does not specify the input bit size,
then the input bit size is assumed to be the wordlength of the coefficients, beoeficien. Using

the structural adder size computed from Equation 6.1, the SNR is estimated using

Hartley’s [10] equation.

The general error variance for the FIR filter for both CSD and DM representation is

order AZ
5. y —b 6.2
error b 12 ()
where the i coefficient’s maximum error introduced by Hartley is
A= T xb 27U (6.3)

J+k=badd
Note that Equation 6.3 is the product of the input, x and the i” coefficient, b, The
notation ; is the index for input x and the notation & is the index for ;. The equation
shows that the maximum error is calculated from the summation of the errors occurring at
the wordlength, which is the total wordlength of input bit size and coefficient bit size,
that is equal or more than the computed structural adder size, badd.

Also know that the output signal variance is

order

§ci¢rpm = é Z{:} (coeﬁiciems) i (6-4)
=

as the one half is actually the input variance, which is a sinusoid input. Hence, SNR is

computed simply by substituting both Equation 6.2 and 6.4 in the following equation:

2
error

52
SNR = 10*]0‘810{ 6outpm } (6.5)
For the exceptional case if the user wants to find the minimum SNR, SNR,;, for
the filter that satisfying the required SNR requirement, SNR equiremens, Which is set by the
same user, the program will go to the different conditional loop. A set of SNR values will

be computed based on the range from minimum coefficient wordlength to the structural

adder size, badd and stored in a matrix. Hence, the set of the SNR corresponds to the

different size of the structural adder. Every element from the matrix is compared with the
specified SNR,cquiremens and once a higher or equal value is found, the search process is
stopped. The new estimated SNR,,;, and the corresponding new minimum structural adder
size will be displayed. This specifies that as long as the minimum adder size is
implemented in hardware construction of the FIR filter, the SNR,cquiremens Value will be
satisfied. Also, note that the program computed SNR value is the estimated value, which
means that the SNR value obtained from the experimental data may appear different from

the SNR computed by the program.

6.3 Pseudocode For SNR Computation

The procedure will start by determining the structural adder size, badd. Then the
CSD coefficients table, newtable; minimum wordlength and order; input bit, bin; adder
size, the quantized coefficients, OC and the status of setting the SNR requirement, are fed
into the calcerr function subroutine, which is defined as computing the SNR. The
function is shown in Equation 6.5:

[SNR , newbadd] = calcerr(newtable, bmin, bin, badd, Nmin, QC, SNRset) (6.5)
First of all, the subroutine will calculate the output variance. The subroutine has two
conditions that will be determined by the SNR status, where the SNR status is the
constraint set by the user. If the SNR status is on, then a set of SNRs will be calculated
based on a range starting from coefficient wordlength, bmin to the overall adder size,
badd. By evaluating the computed SNR values, the minimum SNR value that meets the

SNR requirement will be determined, and the new structural adder size, newbadd will be

estimated. On the other hand, if the SNR status is off, then SNR value will be calculated
based on the overall adder size obtained from the calculation. Finally, a new SNR cost is
evaluated and the SNR cost is compared to the initial minimum cost obtained from the
optimization routine. Also, note that if the program is unable to find the SNR value that
meets the SNR requirement, then the program will only output the largest SNR value that

it can find.

Signal-to-Noise ratio (calcerr) Subroutine

Calculate output signal variance
If SNRset is off
Loop % size of Nmin
calculate all the coefficients error for adder size, badd
sum the absolute of maximum error
calculate the noise variance for single coefficient

End loop
Compute SNR
Else
Loop % range from bmin to badd
Loop % size of Nmin

calculate all the coefficients error for adder size, badd
sum the absolute of maximum error
calculate the noise variance for single coefficient
End Loop
Compute SNR
End Loop
Test for minimum SNR to meet SNRset (constraint)
Endif

Figure 6.2: Pseudocode of SNR subroutine

6.4 Example Simulation Result

Four sets of cost results are calculated and presented in four tables shown as Table
6.1 to Table 6.4. The tested filter is an example lowpass filter with specifications of
sampling frequency at 2000Hz, passband ripple at 3dB, stopband ripple at 40dB and the
input wordlength is set to eight bits. The transition band is varied from a ratio of 0.1 to
0.3. For a FIR filter to achieve infinite SNR, the structural adder size must be relatively
large to preserve both the precision of the coefficients, which is the summation of
maximum shift wordlength of the coefficients and the input data. Table 6.1 presents the
cost results obtained from the DM with optimization column of Table 5.3 in which the

cost results are equivalent to the cost results of the infinite SNR.

Lowpass Filter: Fsampling = 20000Hz

Passband Ripple, Rp = 3dB

Stopband Ripple, Rs = 40dB

Input Wordlength = 8 bit

SNR Requirement = Infinite dB

Maximum Original SNR cost
Transition Band, AF Shift of Structural (DM with
Coefficients | Adder Size Optimization)
0.3 6 14 342
0.28 fd 15 388
0.26 8 16 450
0.24 9 17 490
0.22 10 18 550
0.2 9 17 636
0.18 10 18 840
0.16 11 19 932
0.14 10 18 1036
0.12 11 19 1094
0.1 11 19 1434
Average 744.73

Table 6.1: Average Cost of Infinite SNR

Lowpass Filter: Fsampling = 20000Hz
Passband Ripple, Rp = 3dB
Stopband Ripple, Rs = 40dB
Input Wordlength = 8 bit
SNR Requirement = 80dB
Transition | Maximum Original Minimum -
Band Shift of Structural | Structural I\sﬂ;an;n;;;; gg:;
AF Coefficients | Adder Size | Adder Size
0.3 6 14 14 77.02 342
0.28 7 15 15 82.01 388
0.26 8 16 16 87.12 450
0.24 9 17 16 81.62 470
0.22 10 18 17 88.82 530
0.2 9 17 16 81.82 610
0.18 10 18 17 83.50 810
0.16 11 19 17 84.26 872
0.14 10 18 17 87.45 998
0.12 11 19 17 84.66 1018
0.1 11 19 17 82.87 1342
Average | 711.82

Table 6.2: Minimum SNR, Minimum Structural Adder Size, Average Cost for
Varying Bandwidth, AF with SNR Requirement = 80dB

Table 6.2 to Table 6.4 present the cost results using the set of specifications mentioned
earlier with the SNR requirements of 80dB, 60dB and 40dB respectively. Taking the case
to achieve SNR of 40dB, the minimum SNR computed must be 40dB and above. Table
6.2 to Table 6.4 show the result of the minimum SNR and the new structural adder size
that are able to satisfy the SNR requirements. However, in Table 6.2, the filter with
transition band of 0.3 does not meet the SNR of 80dB because the structural adder size is
at the maximum wordlength of fourteen bits. So the maximum SNR that this filter can
provide is only about 77dB. Also, the average cost values are computed for each table,

which are 744.73 for infinite SNR; 711.82 for SNR of 80dB; 644 for SNR of 60dB and

560 for SNR of 40dB. Observe the results in the tables starting from Table 6.1 to
Table 6.4. The structural adder sizes are getting smaller as the SNR requirements are
reduced. Hence, comparing the cost average of Table 6.1 (infinite SNR) and the cost
average of Table 6.2 (SNR of 80dB), the average percentage of hardware reduction is
4.42%. Hardware reduction is further improved a SNR of 60dB is allowed rather than
SNR of 80dB. Compare to the average cost for infinite SNR; by reduce the SNR
requirement from 80dB (Table 6.3) to 40dB (Table 6.4), the hardware cost savings

increases from 4.42% to 24.8%.

Lowpass Filter: Fsampling = 2000Hz
Passband Ripple, Rp = 3dB
Stopband Ripple, Rs = 40dB
Input Wordlength = 8 bit
SNR Requirement = 60 dB
Transition | Maximum Original Minimum .
Band Shiftof | Structural | Structural g"&“&"(‘;‘g; g'g:;
AF Coefficients | Adder Size | Adder Size
0.3 6 14 13 67.02 324
0.28 7 15 13 62.72 348
0.26 8 16 13 60.51 384
0.24 9 17 14 64.40 430
0.22 10 18 14 63.18 470
0.2 9 1 14 64.90 558
0.18 10 18 15 66.34 750
0.16 11 19 14 61.60 782
0.14 10 18 14 61.46 884
0.12 11 19 14 62.23 904
0.1 11 19 15 65.58 1250
Average 644

Table 6.3: Minimum SNR, Minimum Structural Adder Size, Average Cost for
Varying Bandwidth, AF with SNR Requirement = 60dB

Lowpass Filter: Fsampling = 2000Hz
Passband Ripple, Rp = 3dB
Stopband Ripple, Rs = 40dB

Input Wordlength = 8 bit

SNR Requirement = 40dB

Transition | Maximum Original Minimum o s
Band Shift of Structural Structural gﬂ]:‘";?:én) gg‘:t
AF Coefficients | Adder Size | Adder Size
0.3 6 14 10 44.00 270
0.28 7 15 10 42.03 288
0.26 8 16 10 40.01 318
0.24 9 17 1 43.69 370
0.22 10 18 11 42.64 410
0.2 9 17 11 43.63 480
0.18 10 18 12 44,68 660
0.16 11 19 11 43.40 692
0.14 10 18 11 41.40 770
0.12 11 19 11 43.84 790
0.1 11 19 12 44 .66 1112
Average 560

Table 6.4: Minimum SNR, Minimum Structural Adder Size, Average Cost for
Varying Bandwidth, AF with SNR Requirement = 40dB

Section 7

Program Review

7.1 GUI Overview

The graphical User Interface(GUI) of the computer aided design software; CSD
and DM FIR Filter design program contains several features that aid users in FIR filter
design. The GUI is shown in Figure 7.1. Now by referring to the figure on the left of the
GUI program, there is a magnitude plot area for the user to have a glance at the frequency
response of the FIR filter design. On the right side, notice a large blue box, which has a
menu with selection options. First, there is a help button that provides general
information on how to use program. Consider the kelp button as the reference position.
Below it there is a technique selection button that allows the user to select the desired
implementation techniques. Beside the help button on the right, is a fechnology button
that consists of several targeted technologies. Then, below the technology button, there is
a filter type selection button. The filter types include lowpass, highpass, bandpass and
bandreject filters. Once the type of filter is selected, the specification text boxes will
appear based on the type of filter chosen. The next section of the GUI contains three

buttons. The user can enter the desired wordlength or set the Aute button. Additionally,

the user can enter the desire Signal to Noise Ratio by turning on the selected SNR (dB)
button and entering the desired SNR value on the text box beside the SNR button.
Finally, there are two execution buttons, which are Design and Layout buttons. To run
the program, the user must press the Design button. When the program finishes its job, a
new frequency response plot is displayed on the GUI program and a summary box will
appear. The summary box displays the parameter results regarding the filter design such
as the coefficients, order, number of adders required, scale factor and the SNR value. An
example summary box and the summary data in the work command window are
displayed in Figure 7.2 and Figure 7.3 respectively. The user can press the Layout button
for hardware realization. Appendix B1 provides the introductory menu for running the

program.

i
i
'
'
L
[
[
[
[

Figure 7.1: CSD and DM FIR Filter GUI

A CSD and DM FIR Filter Design Program

File Edit View Insert Tools Window Help

FILTER DESIGN SUMMARY SHEET
16-Mar-2002

| Erter Design Name

=10] x|

Technology = jlinx Technique = CSD
Specifications: Lowpass Filter
Fzamp = 2000 Hz
Frequency Spec = 500 800 [Hz]
Rpazs = 3 [dB)
Rstop = 30 (dB)
Results:
Order = 5 User set Input bits = a8
SNR= 82.1788 Coef. Wordiength = 5]
Scale factor = 1.65
Minimum Stuctural Adder/Delay Size = 14
Total Number of adders = 7

=* Please refer to the Wok space for more data

r Enter file name

Figure 7.2: An Example Summary Box

Getting Spcifications.......

Loading Technology Parameters......

Clear Figure......

Run Order and Bits Tradeoff Optimization
[Run Scaling OptimiZzationc.o..n

Run Adder Extraction OptimiZzation
Ploting Frequency Response
[Estimating SINR cost and adder size

COptimum Order (INopt) and Wordlength (bopt)
Optimum Order = &

Fo = 0 0.5 0.8 1

Mo=1 1 0 O

ot = 1 5.961

Optimum Wordlength = 12

After Scaling and Adder Extraction
MMinimum Order = 5

MMinimum Wordlength = 7

Cuantized Coefficients (QC)

QC =
-0.0625 0.0313 0.3125 0.3125 0.0313 -0.0625

After SNR (Look at the Summary Sheet)

Figure 7.3: Summary Data in Work Window Command

7.2 Program Overview

There are three main function files in the main routine. The operation of
csddesign2.m is to generate a GUI menu as an initial step in the design process. The GUI
menu consists of two options, which are Design (csdoptimized.m) and Layout (layout.m)
options. Figure 7.4 presents the hierarchy of the main program flow. If the Design option
is chosen, then the program will perform the optimization process. A detailed program
flow of the whole optimization process is shown in Figure 7.6. To view more details of
the program file chart, please refer to Appendix B2. Note that if no filter coefficients are
initially optimized, the Design option must be implemented first to obtain some output
results for hardware realization. When the optimization process is completed, the output
result will be summarized. Then if the Layout option is selected, Matlab will generate a
script file for hardware realization. This script file is named params.vhd. The script file
contains coded information, which describes the characteristic of the coefficients and the
information is supplied to the VHDL package files that will be programmed into a Xilinx
FPGA chip for experiment. An example script file is shown in Figure 7.5 and it describes

the optimized coefficients, which are in CSD representation.

Gtart)

csddesign2.m

v

GUI |menu
! }

Figure 7.4: General Program Flow

W params.vhd - HDL Editor
Ele Edit Searth Wiaw Synthesic Proert Tooh Felp

Layout (layout.m) Design (csdoptimized. m)
Hardware Output
Implementation Summary

HEER

i@ 8] & [2[R] el 7] Bfizl-ie|d] B]

1 Library IEEE;
uce IEEE.ctd_logic_116%.all;
use IEEE.std_logic_unsigned.all;

PACKAGE paramo IS

TYPE int_arr1 IS ARRAY(natural range <>) OF INTEGER;
TYPE int_arr2 IS ARRAY(natural range <>) OF INTEGER;
TY2E int_arr3 IS ARRAY(natural range <>) OF INTEGER;

(11 COMSTANT M. INTEGER:= §;

(12 COMSTANT b- INTEGER:= 9;

(13 CONSTANT b_stage: int_arr1(® te 9):=(=, 1, 1, 71, 1, 1, 1, 1,
(14 COMSTONT n_per_row: int_arr2(@ te 9).= (1, 1, 3, 2, 1, 1, 2,
15 COMSTANT coeff_uec: int_arr3(® te 15):=(-8, €, 4, -g, 8, 3, -5,

16 CONSTANT zero_con: INTEGER:: §;

17 CONSTANT bshift: INTEGER:= 15;

1B CONSTENT yex: INTEGER:= 2;

19 CONSTANT NN: INTEGER::=%;

20 CONSTANT ODD: INTEGER:=1;

22 END package;

Figure 7.5: An Example CSD params.vhd File generated by Matlab

User promipt

| Update Specification parameters I

v

' Order and wordlength tradeoff Optimization

v

| Scaling Optimization

v

‘ Eliminate zero coefficients that not affect specification

w

| Adder Extraction Optimization l

v

‘ Find # adders of each coefficient and CSD number

Yes

I DM Subroutine |

v

’ Find total # of adders of filter "—-—

¥

| Plot frequency response |

Calcu late SNR

I Display Summary Sheet

Figure 7.6: Program Flow Chart

7.3 Technology and Cost Review

Initial work demonstrates that the cost function is technology dependent. The cost
function is the heart of evaluating the hardware requirement and also exhibits the
flexibility regarding the targeted technology. Nowadays the synthesis tools for FPGAs
are able to optimize the area and the speed of the circuit, which are compatible to specific
technology. So the cost function must be defined only to be technology independent and
can compute the estimated value that measures the amount of hardware area needed for
the filter design. In this thesis both Synplify Pro and FPGA Express are considered the
main logic synthesis tools for Xilinx FPGAs. The cost function of this thesis is redefined
to be more general and technology independent since our primarily target technology is
Xilinx FPGA. The general cost function is incorporated in the program and it is derived

based on the worst-case scenario. The general cost function is shown as follows:
cost = adders(coefficient)x wordlength +

2 x order x ((Input bits + wordlength)+ |-log 2 order-[) (k)
This cost function is defined based on the combination of the general fixed point
summation rule for FIR filters [23] and the cost function defined by Husinga [1]. The
general fixed point summation rule for FIR filters states that for unknown coefficients of
a FIR filter, the general adder wordlength is estimated based on the filter order, input and
coefficient wordlength. The adder wordlength equation is displayed as follows:
For a N tap FIR filter, L bit input, M bit coefficients

adder wordlength = L+ M +log,(N) (7.2)

Equation 7.2 is derived to maximize the Signal Noise Ratio, to maintain the precision of
the coefficients and to avoid any overflow occurring, which covers the worst case
scenario. Also the old cost function introduced by Husinga is maintained in the program,
which is defined for the MOSIS 1.2um CMOS technology. In the future, other target
technologies can be added to the program such as the 0.25um Silicon On Insulator (SOI)

CMOS or other technologies that are applicable to FIR filter design.

Section 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, the three algorithms are examined carefully to optimize the
coefficients using both CSD representations. Other algorithms are also discussed such as
optimizing DM technique and SNR constraint. Knowing the fact that Dempster and
Macleod (DM) technique is efficiently used to reduce the hardware cost for the fixed
coefficients FIR filter, at this point DM technique can be stated as the minimal structure
representation of CSD representation. Hence, the optimal DM technique can be obtained
from the optimum CSD coefficients. One observation shows that among all these
optimization techniques, scaling technique provides the most substantial hardware
savings result.

In theory, DM implementation provides more savings compared to CSD
representation. However, the optimization of CSD coefficients often results in a very
small amount of nonzero bits, which means fewer adders are required. Consequently,
the DM technique does not always show a substantial savings over optimized CSD

representation. Table 8.1 shows a list of results generated by the program for Lowpass

filter by fixing the stopband ripple equal to 40dB and varies the sampling frequency,
passband frequency, stopband frequency and the passband ripple. The last two columns
on the right show the number of total adders required for the whole filter implementing
both CSD and DM techniques. It shows that for some filter specifications there are
savings in the hardware area between CSD and DM techniques. However, the truth is,
most of the time both optimized CSD and DM results in the same number of adders. For
this case, other factors may distinguish the best of either technique. Moreover the choice
for choosing either CSD or DM implementation is up to user’s preference. The main
idea of this thesis is to produce a computer program that allows the user to design any

type of FIR filter using either CSD or DM techniques, which will speed up the design

Process.
Sampling | Passband | Stopband | Passband Fi Number of
; ilter
Frequency | Frequency | Frequency | Ripple Oidor Adders
(Hz) (Hz) (Hz) (dB) CSD | DM
20000 4000 4500 1 62 102 | 100
20000 5000 5300 1 105 | 171 | 170
20000 5000 8000 1 11 17 17
48000 9000 12750 3 17 28 28
48000 12000 15000 3 23 29 29
48000 12500 15500 3 21 34 34
48000 13000 15000 3 29 43 43
48000 15000 15500 3 120 | 187 | 186
48000 15000 18250 3 18 30 29

Table 8.1: Results Generated with different example Lowpass Filter
Specifications with Stopband Ripple fix at 40dB

Also note that the hardware requirement for the minimum SNR that meets the SNR

constraint set by the user is smaller compared to the hardware needed for both optimized

CSD and DM techniques. With the CAD program, a FIR filter with less hardware
requirements can be designed and the optimum output filter design, which is generated in

VHDL description, is implemented in the Xilinx FPGA.

8.2 Future Work

In the future, direct form Impulse Infinite Response (IIR) filter design can be added
to the program since IIR filters has its own advantages just as FIR filters do. For instance,
one advantage is IIR filters need less order to meet the filter specifications that are similar
to FIR filters. Another advantage is the digital filters, which are difficult to design using
FIR filters, but are easy to design using IIR filters. Future researchers can also expand the
program by adding more design options that can design either FIR filters or IIR filters
with different equivalent filter structures such as cascade structure and lattice structure.
Different equivalent filter structures may results in different needs of the hardware
requirements.

The Residue Number System (RNS) arithmetic is another technique that can be
implemented in FIR and IIR filter design [24], which results in hardware savings. RNS
arithmetic is a true integer number system. Hence the RNS system does not encounter
‘round off or truncation errors. Unless the coefficients are rounded off without exceeding
the dynamic range before implementing to the RNS arithmetic, no noise will occur in the
filter. The main thing is this technique has sufficient dynamic range to accommodate the

coefficient multipliers. In the future the RNS arithmetic can be added to the CAD where

there are options for the user to enter the modulus, the word length of the coefficient
multipliers and order of the FIR filter needed for the design.
Another idea is to implement the idea introduced by Hartley [10] and Dempster

[6-7], who designed non-fixed FIR structure to minimize the hardware utilization. Their
approach is difficult to implement because it needs to investigate different approaches to
find and optimize the partial sums across the coefficients. The algorithm introduced by
Hartley is to calculate the number of adders using sub-expression method and to define a
new FIR structure based on the calculations. Another author, Benyamin [25] implements
Dempster’s idea for filter design with optimized hardware area. This paper presents a
method called the Multiple Constant Multiplier Trees (MGMTs), which relies heavily on
common subexpressions elimination (CSE). The heart of MCMT algorithm is the
representation of common subexpressions contained in constant data patterns, which
provide several optimization capability strategies. There are other optimization
algorithms that may result in the least hardware requirement for the filter coefficients,
which are worthwhile to study. One example of the new optimization algorithm is
introduced by Persson [26], which is called the multimode mean field annealing (MM-
MFA). Another approach is to replace adder extraction technique with Genetic Algorithm
(GA) since GA may allow higher possibilities for finding coefficients that will result in
additional hardware savings. There is a new idea of representing the coefficients such as
the minimal signed digit (MSD), which is currently being introduced by Park and Kang
[27] and may result in more hardware area savings compared to CSD and DM

techniques.

Bibliography

(1]

(2]

[3]

[4]

[5]

[6]

[7]

D. L. Husinga, Digital of Optimized Filter Using CSD Coefficient Representation.
Master’s Thesis, University of California, Davis, CA.1995.

Darren S. Jue, Optimal Design of Canonic Signed Digit IIR Digital Filter. Master’s
Thesis, University of California, Davis, CA 1996.

Naren B. Balasubramanian, Optimal Design of Digital Filter using CSD
Coefficients. Master’s Thesis, University of California, Davis, CA 1997.

Choi, Hangsuk, Implementation of DSP part of modulator systems. Master’s Thesis,
University of California, Davis, CA 1995.

Kai Hwang, Computer Arithmetic: Principle, Architecture, And Design. John Wiley
& Son, Inc. 1979

Andrew G. Dempster and Malcolm D. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Trans. Circuits and Systems, vol. 42, no 9, pp.
407-413, October 1994.

Andrew G. Dempster and Malcolm D. Macleod, “Constant integer multiplication
using minimum adders,” IEE Proceedings CircuitsDevices Systems, vol. 141, no 5,

pp. 569-576, September 1995.

(8]

[9]

(10]

[11]

(12]

[13]

[14]

A.G. Dempster and M.D. Macleod, “Comparison of fixed-point FIR digital filter
design techniques,” IEEE Trans. Circuits and Systems, vol. 44, no. 7, pp. 591-593,
July 1997.

D. Kodek and K. Steiglitz, “Filter-length word-length trade-offs in FIR digital filter
design,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 28, pp. 739-744,
December 1980.

Richard Hartley, “Optimization of canonical signed digit multipliers for filter
design,” Proceedings IEEE International Symposium on Circuits and Systems, vol.
4, pp. 485-488, 1994.

R. Jain, P.T.Yang, T. Yoshino, *“ FIRGEN: A Computer Aided Design system for
high performance FIR filter Integrated Circuit,” /EEE Transaction on Signal
Processing, vol. 39, pp. 1655-1668, July 1991.

M. Haldar, A. Nayak, Nagrajshenoy, A. Choudhary and P. Banerjee, “ FPGA
hardware synthesis from MATLAB,” VLSI Design, Fourteenth International
Conferencel, pp 299-304, 2001.

Soderstrand, M.A., Johnson, L.G., Arichanthiran, H., Hoque, M.D., Elangovan, R,
“Reducing hardware requirement in FIR filter design” /EEE Trans. Acoust. Speech,
Signal Processing, vol.6, pp. 3275 -3278, 2000.

E. de la Semma and M. A. Soderstrand. “Trade-off between FPGA resource
utilization and roundoff error in optimized CSD FIR digital filters,” Proceedings of
28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,

pp. 187-191, November 1994.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

M. A. Soderstrand, N. Balasubramanian, D. Husinga and M. Potharlanka. “An
optimal automated implementation of FIR filters on field programmable gate
arrays,” Proceedings of the International Conference on Signal Processing

Applications and Technology, Boston, MA, October 1995.

Litwin. L . “FIR and IIR digital filter,” IEEE Potential, Volume 19, Issue 4,

pp. 28-31, Oct.- Nov. 2000..

A. V. Oppenheim and R. W. Schafer, Discrete - Time Signal Processing. Prentice

Hall, Englewood Cliffs, NJ. 1989.

Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach.

McGraw- Hill Companies, Schaum’s, New York 1998.

Boaz Porat, A Course in Digital Signal Processing. John Wiley, New York 1997.
V. Pasham, A. Miller and K. Chapman, Transposed Form FIR Filters, Xilinx

Application Note, XAP219 (v1.1), Jan 10, 2001. (http://www.xilinx.com/xapp/xapp219.pdf)
L.S. DeBrunner, V. DeBrunner,P. Pinault, “Variable wordlength IIR filter

implementations for reduced space designs,” Signal Processing System,

pp- 326-339, 2000.

M. Yagyu, T. Yoshida, A. Nishihara, N. Fujii. “Design of FIR digital filters with

minimum weight representation,” Proceedings IEEE International Symposium on

Circuits and Systems, pp. /227-230, 1995.

Randy Yates, Practical Considerations in Fixed-Point FIR Filter Implementations.

Digital Sound Lab,Digital Audio Signal Processing, March 2001.

[24] M.A. Soderstrand, K. Al-Marayati “VLSI Implementation of very-high-order FIR

filters,” Proceedings IEEE International Symposium on Circuits and Systems,
Vol. 2, pp. 1436-1439, 1995.

[25] D. benyamin, W. Luk, J. Villasenor, “Optimizing FPGA-based vector designs,”
Field-Programmable Custom Computing Machines, Proceedings Seventh Annual
IEEE Symposium, pp. 188-197, 1999.

[26] Persson. P, Nordebo. S and Claesson, I. “Hardware efficient digital filter design by
multimode mean field annealing,” /EEE Signal Processing Letters, Vol. 8, No. 7,
July 2001.

[27] Park. I-C, Kang. H-J. “Digital filter synthesis based on minimal signed digit
representation,” Design Automation Conference, Las Vegas, Nevada, pp. 468-473,

June 2001.

Appendix A

Binary to CSD representation
Conversion Algorithm

Hwang [5] procedure of converting binary numbers to CSD representation is
implemented to the program. The function is named as CSD and the command is
presented as following:

[C]=esd(x,k1,k2) (A-1)

The input x can be a decimal scalar or binary vector. k/ and k2 is denoted as the precision
of input x in CSD representation, where &/ is the wordlength on the left side of the binary
point and k2 is the wordlength on the right side of the binary point. Note that summation
of kI and k2 will be the total wordlength needed to represent input x. Finally, C is the
CSD representation of input x.

The following will simply explain Hwang’s method of computing CSD number. Lets
consider that any binary number as B and let b; be the binary bit, the binary number is

represented as below:

B=352 (A-2)
i=0

Taking the binary number and represent them in CSD number, the equivalent CSD

number is express as:

C=

L=

d;2' (A-3)

I

where d; is the element from the set {~/ 0 1}.

The following is Hwang algorithm to convert into binary number to CSD representation:

1. For a new binary number:
o Setindex, i =0, where it represents the least Significant Bit
(LSB) of the Binary number, B.
e Set the initial carry, ¢, =0.
2. Then find the next carry using this equation ¢,,, =ib, +b,,, +¢;.

3. Using the following equation to generate d;for vector d from
Equation (A-3):
d,' = b‘,- + CJ- -— 2C‘.+‘;
4. 1fi<n:i=i+1and go to Step 2.

If i=n: Go to Step 1 for the next binary number until it reaches the

Appendix B

CSD and DM FIR Filter Design
Program

B.1 Introductory Menu

1. Launch the Matlab software. You will see a window command. Now set the desired
directory. For example C:\MATLABRI l\work\new_csdoptimized|.

2. Type csddesign2 and press ENTER. A GUI labeled CSD and DM FIR Filter Design
Program will appear. The GUI will looks like the following Figure B-1.

3. First select the desire technology form the technology button. You can click on the
help button to read the help files.

4. Then click on the technigue button to select desired technique.

5. Select the filter type and enter the desired filter parameters (specifications) according
to the listed text boxes.

6. Now enter the wordlength after triggering the sef button if you know the desired input
bits of the filter. Or else if you do not know the input wordlength, trigger on the Auzo

button. The program will define the input wordlength.

Help Technology Filter Type

Frequency Technique

Response

.............................

Filter
Parameters

DESIGN

Figure B-1: CSD and DM FIR filter design program

7. If you wish to set the SNR constraint, trigger the SNR button and enter the desired
SNR value in dB.

8. Click on the DESIGN button to run the program. As the program finishes it task, you
will see a new and the old frequency responses on the plot on the left of the selection
buttons. The summary will appear on the window and some results will display on the
command window.

9. Click on the LAYOUT button for hardware implementation.

B.2 File Chart

The file chart presents the files of the program. Figure B-2 shows the main top level files

of the program. Figure B-3 presents the main routine of esdoptimized.m file.

togglebtns.m

strgdata. mat la yout.m

| indata.ma csddesign2.m helponline.m

togglebtna.m

csdoptimize.m

Update_type.m

Figure B-2: Top Level of Program File

calcerr.m

get Nopt.m :
get spec.m get_points.m
nxtmod.m
/ techparam.mat
csdoptimize.m
_—
s?mary.m \ dmnum.m
prfle.m
get_bopt.m redcadd.m
o newesd_firsc.m
pnum.m
' newesd fir.m
regencoef.m
newcsd_firplt.m
\ recode.m
dB.m /
count.m }\m’l
binary.m

Figure B-3: File Chart for the Optimization Process

VITA
Wen Fung Leong
Candidate for Degree of

Master of Science

Thesis: OPTIMIZING FIR FILTER COEFFICIENTS USING CSD
REPRESENTATION AND DM TECHNIQUE

Major Field: Electrical Engineering
Biographical:

Education: Graduate from High School in Port Dickson, Malaysia in 1995;
received a Bachelor of Science in Electrical Engineering from
Oklahoma State University, Stillwater, Oklahoma in July 2000.
Completed the requirements for Master of Science degree with a
major in Electrical Engineering at Oklahoma State University in
May, 2002.

Experience: ~Work as research assistant and teaching assistant while pursuing a
Master degree with Department of Electrical Engineering at
Oklahoma State University, 2000 to present.

Professional Membership: Institute of Electrical and Electronics Engineers, Inc
(IEEE)

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf
	Thesis-83.pdf
	Thesis-84.pdf
	Thesis-85.pdf
	Thesis-86.pdf
	Thesis-87.pdf
	Thesis-88.pdf
	Thesis-89.pdf
	Thesis-90.pdf
	Thesis-91.pdf
	Thesis-92.pdf
	Thesis-93.pdf
	Thesis-94.pdf
	Thesis-95.pdf
	Thesis-96.pdf
	Thesis-97.pdf
	Thesis-98.pdf

